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Abstract

Loss reserves are typically one of the largest liabilities on an insurer’s balance sheet

since they can have a significant impact on profits as well as the insurer’s solvency.

The Chain Ladder model is an outstanding actuarial reserving technique that has been

applied over the years to estimate Incurred But Not Reported claims.

This project aims to provide the most accurate estimates possible for the calculation

and prediction of reserve claim amounts in the context of corporate health insurance.

For this, the Chain Ladder approach is compared with machine learning algorithms

such as the Support Vector Machine (SVM), the Random Forest (RF), the Extreme

Gradient Boosting (XGBoost) and Neural Networks (NN).

Keywords: IBNR, Health Insurance, Chain Ladder, Machine Learning, Predicting

Claims
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Chapter 1

Introduction

In health insurance, the insurer covers a specific risk related to a person’s healthcare

costs. The insurer undertakes to make the agreed payment in case of a random event

provided for in the contract in exchange for a premium paid by the policyholder.

These events, known as "claims" in the insurance industry, occur almost every day in

the healthcare sector.

However, there are several situations where there is a delay between the actual date

of the event and the date it is reported to the insurer and accounted for in the balance

sheet. This may happen because claims: may be reported within a certain time lag;

the claims’ settlement process may take a long time or be reopened; or there may be

insufficient claim information (Bornhuetter & Ferguson, 1972).

Estimating reserves is then an essential task for any insurer to get an authentic

picture of its liabilities, as they are also a measure of a company’s financial solvency.

On the one hand, sufficient resources are needed to fulfill the liabilities arising from

insurance contracts. On the other hand, excess provisions can affect the insurer’s

profitability.

Loss reserving is one of the most important topics within actuarial sciences. The

total loss reserve can be divided into the reserve for known claims and the Incurred

But Not Reported (IBNR) reserve. As Skurnick (1973) explains, "the reserve for known

claims represents the amount of paid loss that will be required to settle all reported

claims not including payments already made on these claims. The IBNR reserve rep-

resents the amount of paid loss that will be required to settle all incurred but not

reported claims" (p. 17).

A good reserving method will produce an estimated total loss reserve that is close

to the required total loss reserve. There is a growing need to select appropriate reserv-

ing methodologies and assumptions that can be as practical as they are accurate and

are often applied to imperfect data. Insurers must consider the duration of the insur-

ance contract, the kind of coverage provided, and the likelihood of a claim occurring.

Insurers also have to adjust their calculations as circumstances change.

Over the past few years, several approaches have been carried out to calculate IBNR.
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CHAPTER 1. INTRODUCTION

With the development of artificial intelligence and Machine Learning (ML) models,

it has been possible to improve the predictions of these calculations. In partnership

with the Portuguese insurance company "Multicare - Seguros de Saúde, S.A." a work

project was developed to assess the current method for calculating IBNR and build a

new model using machine learning. This project compares traditional models with

ML algorithms to understand how accurate each one is when it comes to predicting

claim reserves when considering major databases.

Therefore, firstly, the main objective was to understand and measure the level of

accuracy that the current methods for calculating IBNR have and, secondly, to build

a model using machine learning that could improve the obtained results. That said,

this project will mainly focus on the following research question: at any given time,

what is the most accurate way to estimate IBNR claims amount? To achieve this, it is

necessary to determine if the machine learning model to be developed will be better

than the current Chain Ladder (CL) method. Other critical research questions will also

be considered: Can it be used in real-world business settings? Is it feasible? What

are the advantages/disadvantages of ML methods vs. the statistical CL method in

forecasting claim reserves?

This master thesis is organized as follows. Section 2 presents the Chain Ladder
method to give the reader an actuarial background. A brief overview of the work

done in this area can be found in Section 3. Section 4 explains the methodology of

this project. In section 5 the results are discussed and finally, in sections 6 and 7 the

conclusion and recommendations for future work are presented.

1.1 Significance to the insurance company

This project aims to respond to one of the needs of the Corporate Actuarial Support

team. The data and conclusions drawn will support the calculations for corporate

businesses contracts - when a company offers its employees’ health insurance benefits

- and not for contracts at the individual level.

When offering health insurance for corporate businesses there are two crucial mo-

ments for premium pricing: pricing, when a company wants to purchase a product

for the first time and has no history with the insurance company; and renewal which

takes place every year and aims to ensure that the insurance company is not losing

profits, that is, that premiums are adjusted to the actual aggregated claims.

Following the values of the insurer in question, of "reinventing the past with the

future through constant innovation", several projects are underway to optimize pricing

and renewal processes using contemporary data science and machine learning method-

ologies. This project work is one of them, focusing on improving the automation of

the IBNR calculation needed for the renewal process.

2



1.1. SIGNIFICANCE TO THE INSURANCE COMPANY

Each contract has a one-year duration (an annuity). At the beginning of the tenth

month, the subscription team begins preparing for the renewal process. Their work

depends on the loss ratio (represented in the equation 1.1) of each business.

LossRatio =
ClaimsAmount

P remiums
(1.1)

If at the end of the annuity, the loss ratio of a business is greater than 1, that is, the

claims amount is greater than the amount received in premiums, then the premium

price of that business in the next annuity will have to be higher.

In order to project the future loss rate, it is necessary to be aware of the claims that

occurred in the last 9 months, whether those that have already been reported (and

therefore are already known by the insurer), as well as those that are yet to be reported

(IBNR component). Only by knowing these two installments can the claims that will

occur in the last 3 months be projected.

In addition, the calculation of IBNR claims is required every month for the com-

pany’s accounting. The model built here, if more efficient, should replace the method

currently used in order, once again, to automate the process and provide more trust-

worthy results.

The more reliable these reserve estimates are, the more opportunities the insurer

will have to, on the one hand, offer a better product that stands out in the market, with

the possibility of having more profit opportunities and, on the other, be more up to

date with the current Directive of the European Union, Solvency II, which reduces the

risk of insolvency.

3





Chapter 2

Actuarial Background

2.1 Terminology

The moment in which a claim occurs, known as the accident period, may not coincide

with the moment in which the same claim is reported or settled. The time that elapses

between these two moments is called the development period. This information is

usually represented in run-off triangles, as the one shown in table 2.1, that is, an

upper triangle where the lines represent the accident period and the columns the

development period. These periods can be years, semesters, months, or other.

Table 2.1: Run-off triangle

Accident period i/
Development period j 0 1 2 ... j ... n

0 X0,0 X0,1 X0,2 ... X0,j ...
1 X1,0 ...
...

...
i Xi,0
...

...
n− 1

n

Let observations Xij , with 0 ≤ i ≤ n and 0 ≤ j ≤ n−i, be the claims amount paid to

the insurer for the development period j corresponding to the accident period i. This

information, available in table 2.1, is presented in the form of incremental data. It can

also be represented in the form of cumulative data through the sum of incremental

values:

Cij =
j∑

k=0

Xi,k (2.1)

The main objective is to estimate the filling of the lower triangle, that is, to infer

on the amounts that will be paid in the future.

5



CHAPTER 2. ACTUARIAL BACKGROUND

2.2 Chain Ladder Method

The Chain Ladder method is one of the oldest actuarial techniques and the one most

applied by insurers in estimating the provision for claims due to its simplicity and

easy understanding. It is a deterministic model as the estimates obtained are based

only on observed historical data and do not assume any probability distribution. In

this way, point estimates are obtained, that is, estimates that do not inform about their

variability or about their errors. In order to obtain those, Thomas Mack improved this

model as will be seen in the next chapter.

The CL model assumes that future loss development patterns will be in line with

historical loss development patterns. It is thus based on a set of ratios that relate the

amounts for a given year to the amounts for the following year, known as link ratios.

The following equations can be found in Thomas Mack’s articles on Chain Ladder
(1993).

2.2.1 Methodology

For the calculation of reserves by the Chain Ladder method, it is necessary to calcu-

late the so-called Loss Development Factors (LDFs) between successive periods of

development:

f̂j =

∑n−j−1
i=0 Ci,j+1∑n−j−1
i=0 Ci,j

, with j = 0, ...,n− 1 (2.2)

Through the product of the development factors the projection factors are obtained:

F̂k =
k∏

j=0

f̂j , with k = 0, ...,n− 1 (2.3)

Based on the last known accumulated amounts and estimated development coeffi-

cients, the following estimate is available to fill the bottom triangle:

Ĉi,j+1 = F̂jCi,j with i + j > n; i = 0, ...,n; j = 0, ...,n− 1 (2.4)

In this way, it is possible to calculate reserves per year of origin, R̂i , through the

difference between the estimate of the accumulated quantity of the last year of devel-

opment - known as ultimate claim amount - and the last observed value of it:

R̂i = Ĉi,n −Ci,n−i with i = 0, ...,n (2.5)

The total reserve R̂, that is, the total expected value of liabilities for claims still

outstanding, is calculated as the sum of reserves per accident year R̂i :

R̂ =
n∑
i=1

R̂i (2.6)

6



2.2. CHAIN LADDER METHOD

2.2.2 Model Assumptions

In order to determine if it is appropriate to apply the model to the given data, the

model takes into account some assumptions. If one or more assumptions are rejected,

the possibility of not applying the model should be considered. The assumptions are

as follows:

2.2.2.1 Proportionality between development years

There are development factors, fj , j = 0, ...,n− 1, such that

E[Ci,j+1|Ci,0, ...,Ci,j ] = Ci,jfj , i = 0, ...,n (2.7)

The estimates of these coefficients, as seen earlier, are given by the expression 2.2.

This assumption implies that individual developmental factors are not correlated.

2.2.2.2 Independence between accident years

The random variables Ci,j from different accident years are independent, that is

{Ci,0, ...,Ci,∞} and {Cj,0, ...,Cj,∞}, i , j, are independent (2.8)

which leads to the estimators of the development factors, f̂j , j = 0, ...,n − 1, being

centered, that is, unbiased, a property that an estimator should always have.

2.2.2.3 Development factor estimators correspond to minimum variance

estimators

There is a constant of proportionality, σ2
j ≥ 0, such that

V ar(Ci,j+1|Ci,0, ...,Ci,j ) = Ci,jσ
2
j , i = 0, ...,n; j = 0, ...,n− 1 (2.9)

For each development year j, there is a unique proportionality constant σ2
j . Thus,

it is guaranteed that the estimators of the development factors are the ones with the

lowest variance.

Once again, the proof of the results of the previous assumptions can be found in

Thomas Mack’s articles (1993).

2.2.3 Limitations

In general, this methodology presents eligible results when there is a relatively stable

pattern of loss development and a relatively large number of reported claims. It is

appropriate for insurers in a relatively stable environment where there are no major

organizational changes for the insurer and when there are no major external environ-

mental changes.

7



CHAPTER 2. ACTUARIAL BACKGROUND

However, it is not very robust as it only takes into account arithmetic averages

over rows and columns, which makes it highly sensitive to small changes in the data:

a small fluctuation in observed data can cause large fluctuations in the estimates.

Nevertheless, a singular event, such as an unusually large claim, shouldn’t affect an

insurer’s estimate of IBNR, underlining the need to apply more powerful methods.

It does not include any risk theory or any calendar year effects. It only gives esti-

mates dependent on the upper triangle.

8



Chapter 3

Literature Review

3.1 Traditional Methods

Within the traditional methods there are other alternatives such as Bornhuetter-Ferguson

method, introduced by Bornhuetter and Ferguson (1972). Rather than being based on

past experience like the Chain Ladder method, it relies on the insurer’s exposure to

loss. It is most useful when there is a low frequency of claims but with high severity

and smooths the variance when there are random fluctuations or major claims at early

maturities.

In the late 1980s stochastic models were introduced and since then they have been

the subject of several studies. Thomas Mack (1993) developed a stochastic model

that produces the same estimation of provisions as the Chain Ladder method with the

advantage of being able to deduce estimates from the mean squared error, which is

associated with the variability of the results. For point estimates, confidence intervals

are thus obtained (T. C. Mack, 1999) assuming that the data does not follow a specific

probability distribution (distribution-free). Understanding the variability of Chain
Ladder reserve estimates contributes to valuable information and helps the insurer

define which strategy to follow. And one of the biggest advantages of stochastic re-

serve models is the availability of measures of accuracy of reserve estimates. England

and Verrall (2002) developed a comparison between a wide range of stochastic reserv-

ing models for use in general insurance such as the Generalized Linear Model, the

Generalized Additive Model or the Markov Chain.

All case studies presented in the literature have a common point: it is not possible

to guarantee a predominant model, i.e., a model that can be used in any situation.

Any insurer must explore existing methods and try to find those that are best suited.

Despite their popularity, these traditional methods rely only on the historical value of

claims and do not consider other important variables that are available to the insurer

and, on the other side, they are estimated by elementary arithmetic procedures, such

as averaging over rows and/or columns.
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CHAPTER 3. LITERATURE REVIEW

3.2 Machine Learning Methods

The development of areas related to artificial intelligence and machine learning could

give a contemporary response to this issue since they provide a sophisticated and

efficient tool for understanding and modeling the characteristics of those mentioned

objections. Over the years, several studies have been carried out on the application of

ML in forecasting loss reserves. Although the IBNR does not correspond to the totality

of the loss reserving problem, in the literature is more common to find models adapted

to the loss reserves.

There are studies that instead of building complex models, seek to apply ML in

improving the traditional methods. John (2018), for example, proposed a claim seg-

mentation with the K-means algorithm before the application of the Chain Ladder. As

this traditional algorithm only works with aggregate claims, actuaries may have some

difficulties in explaining the behavior of a certain estimate. By segmenting aggregate

data appropriately into homogeneous segments of data, the interpretation of the re-

sults becomes more accessible. On the other hand, forecasts are expected to improve as

each claims segment will be able to adopt LDFs more suited to each behavior. However,

this methodology did not guarantee the improvement of the results in all cases.

Nevertheless, the main advantage of highly developed computing power in this

context is the ability to develop models at an individual level rather than handling

aggregated values. This also allows to incorporate other individual features about the

insured persons. Wang, We and Qiu (2021) used the data from a health insurance

company to explore the effect of adding individual information to loss reserving prob-

lems. They compared individual models with and without individual features such as

age, gender, policy type, and geometric region, concluding that adding these variables

can contribute to more accurate projections of a portfolio’s outstanding liabilities. In

addition, they drew other interesting conclusions that would not exist without the in-

formation about insured persons. For example, older ages tend to increase claims, and

claims rates are higher in general health insurance than in critical illness insurance,

while in the latter the delays are greater. Although the data to be studied in this project

may not follow the same behavior, it is possible to understand the impact of adding

information with this level of granularity, thus being an approach to consider when

building the database.

Several machine learning techniques have been addressed in recent years, from

the simplest to the most sophisticated. McGuire, Taylor and Miller (2018) applied a

Least Absolute Shrinkage and Selection Operator (LASSO) regression, which produces

a similar Generalized Linear Model (GLM) but at much less time and cost. They used

a database of motor injuries with 139.000 claims and variables such as injury severity

score, legal representation, operational time and the proportion of claims per quarter.

The LASSO regression was tested with reasonable success, managing to model features

that are awkward for traditional approaches. However, it tends to perform worse when
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there are a large number of predictor variables, and furthermore, it can be difficult for

an unsupervised model to recognize some unusual type changes.

Kotsalo (2021) has investigated if machine learning methods can provide better

estimations of loss reserves compared to the Chain Ladder method. The problem

was divided into two: one to predict the claims amount and another to predict the

development month. A Ridge regression was applied to predict the claims amount

through features such as gender, the policy period, the accident year, the delay in

the reporting and settlement days, and the corresponding payment, finding that the

CL performs better. However, it is necessary to understand that the dataset used

had only 8.000 claims with values below e200, which makes it easier for a simple

statistical method to predict. The Chain Ladder does not predict the development

month question, which might be a piece of valuable information for the insurance

company. To predict the month where the claims will be paid Kotsalo used a Logistic

regression and Random Forests, where it was concluded that the Logistic regression

might be accurate enough to base future decisions. In addition to all this, the two

algorithms were not combined which is not very useful in practical terms.

Duval and Pigeon (2019), on the other hand, chose to compare GLMs and gradi-

ent boosting models, using a database with more than 67.000 claims considering the

variables mentioned above and also the number of health service providers. They con-

cluded that using a model-based only on GLMs could be unstable for loss reserving.

But an approach where a gradient-boosting model is applied represents an interesting

approach for an insurance company. A gradient boosted decision-tree model requires

little data preprocessing and is known for strong performance for prediction on struc-

tured data. Particularly, the XGBoost algorithm has a relatively short calculation time.

However, the gradient boosting models presented in this paper only allow to compute

a prediction for the total paid amount of each claim and not for the payment date - the

development month.

Neural Networks can also be a path to follow. Mulquiney (2006) modeled the

expected size of finalised claims at each future finalisation date, where it was con-

cluded that an Artificial Neural Network (ANN) model, although more difficult to

interpret, resulted in better predictive accuracy compared to a GLM model. This pa-

per represented ANNs through a dataset from a motor bodily injury portfolio with

approximately 60.000 claims.

It is now necessary to choose from the literature the best method to answer the

question under study. The aim is to find a model that, in addition to being the most

suitable possible, is also simple to be implemented.
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Chapter 4

Methodology

4.1 Introduction

One of the main objectives of this project is to build a machine learning model to

optimise the calculation of claim reserves. However, it is also necessary to explain the

assumptions and calculations currently made by the insurer.

Therefore, in this chapter, the methodology used for the traditional approach and

for the machine learning approach will be presented. It is important to note that the

database to be used in the machine learning models will always have to be in line with

the data used in the current model.

Any machine learning strategy should start by following a data mining process.

Currently, there is no standard framework to guide the development of data mining

projects (Wirth & Hipp, 2000). CRISP-DM (CRoss Industry Standard Process for Data

Mining) is a process that provides a framework for carrying out data mining projects

that is independent of both the industrial sector and the technology used (Wirth &

Hipp, 2000), consisting of 6 phases (Business Understanding, Data Understanding,

Data Preparation, Modeling, Evaluation and Deployment) (Chapman et al., 2000).

The methodology chapter will follow some of the phases of the CRISP-DM process

represented in figure 4.1. The remaining phases are presented in the remaining chap-

ters. It is essential that this chapter provides the necessary tools to make a comparison

between models easily understandable.

Data Understanding
-Initial Data

-Describe and Explore Data

Data Preparation
-Data Cleaning

-Data Transformation
-Data Reduction

Modeling
-Modeling tecnhiques

-Test Design
-Build Model

-Verify Model Assumptions
-Assess Model

Figure 4.1: Methodology structure
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4.2 Data Understanding

The construction of the database was done using the SAS Enterprise Guide software

(version 7.1). The ultimate goal was to create a database that included the same inputs

as the Chain Ladder method, such as claim amounts, accident and accounting dates,

but also information at the insured person level. Therefore, the database will need

to be organized by company. Given the large amount of data and the computing

power available, in order to make this project viable in real time, only a sample of 18

companies was considered. Furthermore, the time span was also reduced. Claims that

occurred between 2015 and 2019 were selected - this means that when talking about

accounting dates, the year 2020 and the first six months of 2021 were also considered.

This selection of data enables a more comprehensive study of several models without

the factor of computational power being detrimental.

4.2.1 Collect and Describe Initial Data

To answer the purpose of this project, it was necessary to collect data from differ-

ent sources. The first one had information about claims, containing 8 variables and

8.586.627 rows. Each observation in this dataset corresponded to a claim for a par-

ticular insured person. That person’s ID, the claim ID, the date it occurred, the date

it was reported, and other information about the claim were therefore available. The

variables of the claims dataset are represented in table 4.1.

Table 4.1: Variables Claims dataset

Variable Description
SINISTRO Claim ID;
CLIENTE Insured person ID;
NEGOCIO Corporate business ID;
COBERTURA Insurance coverage;
DT_EFEITO_SINISTRO Accident date (format YYYYMM);
DT_CONTABILIZACAO Accounting date (format YYYYMM);
IDENTIFICA_SIN Identification of the type of claim;
VALOR_PAGO Total claims amount (in euros) that the

insurer had to pay.

The second one had information about insured persons. One row represents in-

formation about an insured person at a particular company in a particular annuity.

Therefore, if the same person is insured for, for example, three annuities, it will appear

three times in this database. That person’s ID and other information about the person

is available in about 4.229.046 observations. The 10 variables of the insured persons

dataset are represented in table 4.2.
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Table 4.2: Variables Insured Persons dataset

Variable Description
CLIENTE Insured person ID;
NEGOCIO Corporate business ID;
COBERTURA Insurance coverage;
LIMITE_DESPESAS Available plafond that the insured person has

in the respective coverage;
PERC_COMP Percentage of co-payment that the insurer has

to pay if the claim is in reimbursement (for the
respective coverage);

ANUIDADE Annuity start date (format YYYYMM);
PARENTESCO Degree of kniship;
IDADE Age;
SEXO Gender;
DISTRITO District where the insured person lives.

4.2.2 Data Exploration

In this task, the data is examined more closely to get to know the data beyond its

meaning, detect signs of data quality problems, and establish the data preparation

steps. For this, simple data manipulation and basic statistical techniques are used. For

each variable, the ranges of values and their distribution are analyzed. Some graphs

are also presented in the data visualization section as it is essential to understand how

the data behaves and connects with each other.

4.2.2.1 Quantitative Data

From the Claims dataset, only the VALOR_PAGO variable is considered as quantitative

data. This will be the target variable, since the objective is to predict the amount of

money that the insurer will have to pay in the future. As can be seen from the table 4.3,

it can assume any value and is therefore a continuous variable. Its distribution is

difficult to visualize since the range of values it can assume is very large and most

of these values are concentrated close to 0. About 95% of the more than 8 million

observations are between 0 and 100 euros. Figure 4.2 depicts the distribution of these

95% of observations. More than 2.7 million are in the first range between 0 and 5

euros. The ranges between 5 and 30 euros are also quite representative.

Table 4.3: Quantitative data description

Variable Mean Std Dev NAs Median Min Max
VALOR_PAGO 54,9 439,6 - 14,0 0 118.645,7
LIMITE_DESPESAS 44.630 197.436 6.857 750 0 1.000.000
PERC_COMP 56,0 33,5 323.265 65 0 100
IDADE 32,7 15,9 - 35 0 111
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Figure 4.2: Distribution of amount paid (between 0 and 100 euros)

Although age (the IDADE variable) is technically continuous, it is regarded as

a discrete variable because the values are always presented as integers. The same

happens with LIMITE_DESPESAS and PERC_COMP. The available plafond is always

shown in multiples of 10. The percentage of co-payment is an integer value between 0

and 100%. The visualization and interpretation of these variables will be done later in

conjunction with other qualitative variables.

4.2.2.2 Qualitative Data

Table 4.4 shows the levels of each qualitative variable. The first, COBERTURA, cor-

responds to the seven segments that the health insurer covers. It is common to both

the Insured Persons and Claims datasets, given that a person has health insurance for

certain coverages and the claims that reach the insurer are from those coverages.

Table 4.4: Qualitative data description

Variable Type Levels
COBERTURA Nominal AMBULATÓRIO; ESTOMATOLOGIA; INTERNA-

MENTO; MEDICAMENTOS; OUTROS; PARTO;
PRÓTESES E ORTÓTESES

DT_EFEITO_SINISTRO Ordinal Between 201501 and 201912

DT_CONTABILIZACAO Ordinal Between 201501 and 202106

IDENTIFICA_SIN Nominal SPE; SPNE; PROV

PARENTESCO Nominal TITULAR; CONJUGE; FILHO(A); OUTRO

SEXO Nominal F; M

DISTRITO Nominal AVEIRO; BEJA; BRAGA; BRAGANÇA; CASTELO
BRANCO; COIMBRA; FARO; GUARDA; LEIRIA;
LISBOA; PORTALEGRE; PORTO; SANTARÉM;
SETÚBAL; VIANA DO CASTELO; VILA REAL;
VISEU; ÉVORA; ACORES; MADEIRA; ES-
TRANGEIRO

ANUIDADE Ordinal Between 201501 and 201912
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In figure 4.3 it is possible to see how many people are insured for each coverage (in

yellow) and how many claims there were for each coverage (in gray). Most people have

access to Outpatient (AMBULATÓRIO), Stomatology (ESTOMATOLOGIA), Inpatient

(INTERNAMENTO), Prostheses and Orthoses (PRÓTESES E ORTÓTESES) and Other

coverages (OUTROS). The number of claims in Outpatient and in Stomatology is much

higher. This happens because each person has more than one claim in these coverages.

For example, within the Outpatient, a person can go to the emergency room, can go

to a doctor’s appointment, can do clinical analyses, exams, and many other acts. The

number of Inpatients is much lower than the number of people insured.

Figure 4.3: Count of coverages by Claims (gray) and Insured Persons (yellow)

A claim can be identified as one of three categories: SPE, when a claim occurs;

PROV, when there is some type of authorization; and SPNE, when the claim changes

from SPE to PROV, that is, it already has authorization but will still occur. Figure 4.4

shows the distribution of each type of claim in the claims database. The SPEs are the

most representative, as they are the most frequent, with more than 60%. Claims in

PROV are those that exist in lesser quantity, since the process of accepting a claim is

fast. The fact that it takes place after authorization may take longer, and therefore,

there is greater representation in SPNE.

Figure 4.4: Distribution of types of claims in the Claims database
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Regarding gender, figure 4.5 shows that there are more women than men in the

database of Insured Persons. Most of them are holders (TITULAR), that is, they are

employees who work in the companies under study. The rest belong to their household,

with children (FILHO(A)) having more representation than the consorts (CONJUGE).

Figure 4.5: Count of kinship degrees (DESC_EPARENTESCO) by gender (SEXO)

Figure 4.6 represents the distribution of people across the districts of Portugal, the

islands and abroad (DISTRITO). As the population patterns observed in the country,

about 43% of the population under study lives in Lisboa. The districts of Porto and

Setúbal also have some representation, with 23% and 11% of the sample. This is due to

the fact that most companies are located in the metropolitan areas of Portugal. Other

districts that are close to these, such as Santarém, Braga and Aveiro also have some

insured persons. The cities that are further inland, such as Portalegre, Guarda and

Bragança and the Açores islands, have less population, less employment, and therefore

less representation of people who have health insurance. Those who live abroad are

few cases where holders live in Portugal.

Figure 4.6: Count of Insured Persons by district
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4.2.2.3 Data Visualization between different types of variables

Figure 4.7 represents the age distribution (IDADE) by gender (SEXO). Given that the

insurance contracts chosen for this project cover not only holders but their household,

it is to be expected that children (age 15 and under) will have some representation

in this database. It is normal that the number of young people between the ages of

15 and 20 is not so high given that it is an age when many lose their parents’ health

insurance. On the other hand, there are also not many holders under the age of 20.

The remaining distribution follows a normal behavior, with significantly more women

than men.

Figure 4.7: Age distribution (IDADE) by gender (SEXO)

Other important variables are the plan conditions to which each person has ac-

cess. In this case, we have information on the ceiling (LIMITE_DESPESAS) that

can be spent on each coverage (figure 4.8) and the percentage of reimbursement

(PERC_COMPARTICIPARCAO) that the insurer pays (figure 4.9). The higher the

ceiling and the higher the percentage of co-payment, the more expenses will be borne

by the insurer.

Figure 4.8: Plafond boxplot by insurance coverage
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Figure 4.9: Reimbursement percentage boxplot by insurance coverage

For an Outpatient, on average, people have 1.000 euros available and the insurance

company usually pays all expenses (which does not happen in any other coverage).

Coverages such as Stomatology, Medicine, Childbirth, and Prostheses and Orthoses

have a lower available plafond between 250 and 2.000 euros with reimbursement

between 50 and 75%. In the case of Inpacient, the available plafond varies a lot

depending on the company. However, on average, people have 100.000 euros available

and the insurance company pays an average of 80% of the expenses.

To end the exploratory data analysis, figure 4.10 shows the total amount paid (over

the 6 years available) that the insurer had to pay per company. As mentioned before,

in this database there are 18 businesses that are represented here with the letters of

the alphabet. Businesses A, B, and C are the ones with the highest expenses (since they

are probably the ones with the most insured people). Inpatient and Outpatient care

are the most significant coverage in all cases.

Figure 4.10: Paid amount by insurance coverage (COBERTURA) per business (NEGO-
CIO)
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4.3 Data Preparation

Data preparation is the process of cleaning and transforming raw data. This phase

encompasses all operations required to create the final dataset, which will be used to

feed the models. For the sake of this project, this chapter will begin by transforming

the data so that later on, it’s possible to integrate the two initial databases. The cleaning

and selection of the most relevant variables will take place only after that. From these

last 2 processes, the software used became R Cran, version 4.2.0.

4.3.1 Data Transformation

4.3.1.1 Aggregate data

As explained earlier, the goal is to create a database that includes the same inputs as

the Chain Ladder method. Therefore, the information at the level of the insured person

had to be structured by business, for a certain year and month of accident, for a certain

year and month of accounting, and for a certain coverage. As a result, the data was

aggregated.

In the case of the Claims dataset, the variables were grouped by: business ID (NE-

GOCIO); coverage (COBERTURA); accident date (DT_EFEITO_SINISTRO); account-

ing date (DT_EFEITO_CONTABILIZACAO); and type of claim (IDENTIFICA_SIN).

The amount paid is now summarized as the sum of the total amount paid for each of

these groups (SUM_of_VALOR_PAGO for now referred to as VALOR_PAGO_TOTAL).

Thus, the claim ID (SINISTRO) and the client ID (CLIENTE) dropped from the database,

as they correspond to individual variables.

The similar approach was used to the Insured Persons dataset. The data was

grouped by: business ID (NEGOCIO); coverage (COBERTURA); and annuity start date

(ANUIDADE). The client ID variable also dropped. The rest of them were summed up

as follows:

• LIMITE_DESPESAS: Average plafond for that business, coverage and annuity;

• PERC_COMP: Average percentage of co-payment for that business, coverage

and annuity;

• PARENTESCO: Total count of people of each kinship, (for that business, cover-

age and annuity), thus creating 4 new columns - total count of holders, children,

consorts and others;

• IDADE: Variable used to create 8 new columns. For that business, coverage

and annuity - the average age, the total count of people with less than 18 years,

the total count of people with more than 65 years, the 10th, 25th, 50th (median),

75th and 90th percentiles of the distribution of each population. The idea behind

the percentiles is that the models could better capture the age distribution.

• SEXO: Total count of people of each gender (for that business, coverage and

annuity), thus creating 2 new columns - total male count and total female count;
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• DISTRITO: Total count of people living in each district (for that business, cover-

age and annuity), thus creating 21 new columns - each corresponding to a level

of the DISTRITO variable.

4.3.1.2 Construct data - before data merging

ANO_MES While the Insured Persons dataset only has information on the first

month of the year the annuity started, the Claims dataset contains both the month

and year of accident. There is a need to have 12 rows for each annuity instead of

just 1. Therefore, a simple dataset was created with the MES variable, with 12 rows,

each filled with the numbers 01 to 12 (representing January to December). This new

dataset was merged with the dataset of the insured persons, with a join by no variable

- meaning that each row would be multiplied by 12.

The first 4 characters were selected from the ANUIDADE variable, which corre-

sponds to the year in which the annuity began. And they were added to the MES

variable to recreate the ANO_MES variable with the condition that the annuity is al-

ways respected. For example, an annuity starting in April 2015, will now have an

ANO_MES of ’201504’, ’201505’, ..., ’201512’, ’201601’, ’201602’, and ’201603’.

MES_NEGOCIO The fifth and sixth characters of the ANUIDADE variable were

selected, so that there is a variable that indicates the month when the annuity starts

(which will be important in the division between train and test). And, instead of 2

characters with numbers, they were replaced by the respective months, (’01’ becomes

January, ’02’ becomes February, and so on). ANUIDADE variable drops.

DELAY A key variable is now created: DELAY. It will be one of the links between

the two datasets, and one of the most crucial for the models.

It will be built first in the Claims dataset. The delay is the difference, in months,

between the accounting date (also known as development date) and the date of oc-

currence. So, for example, assuming that the DT_EFEITO_SINISTRO is ’201501’ and

the DT_CONTABILIZACAO is ’201604’, the DELAY will be 15 (months). Thus, the

DT_CONTABILIZACAO drops from the database, since all that is needed is the date of

occurrence and how many months later it was reported to the insurer. It goes without

saying that the delay will be 0 if the claim is submitted in the same month that it

occurred. All claims with a delay of more than 12 months were disregarded due to

computational constraints and practical considerations. This is due to the fact that the

money that must be paid after 1 year is insignificant (less than 1% of the total) and

because it will be easier to merge with the other dataset.

The same was done for the dataset of insured persons as it did for the annuity

months: a variable named DELAY was introduced, with values ranging from 0 to 12,

multiplying each row by 13, making it possible to merge them later.
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For the same set of business, coverage, year and month, and type of claim, regard-

less of the delay, the values of the variables of the insured persons will be the same.

The only variable that changes will be the delay, and in the future, the amount paid.

IDENTIFICA_SIN The same thing goes for the type of claims. For each combination

of business, coverage, year and month of occurrence and delay, there is a need to have

the information about SPE, SPNE or PROV claims. That’s why the IDENFICA_SIN

variable was added to the Insured Persons dataset, which multiplies each line by 3.

4.3.1.3 Data Merging

The two datasets are then merged into one after having all the essential variables. The

join scheme is shown in figure 4.11.

Figure 4.11: Data merging scheme

The reason why there was so much concern over multiplying the Insured Persons

dataset also explains why a left join is made in this way, where all of the insured

persons’ data appears. It’s because this project’s objective is to determine how much

money will need to be paid in the future for claims that have already happened, taking

into consideration the characteristics of the insured persons. And for that, just like a

time series, it needs all the reference points. There may be combinations of business,

coverage, year and month, delay and claim types that will not have a paid amount

(appearing as a missing value). But the goal is that even in these cases, the models can

predict that the insurer won’t have to pay anything.

4.3.1.4 Construct data - after data merging

Separate ANO from MES The year and month are now two different variables.

OUTRO_PARENTESCO This variable becomes the sum of the consorts with the

others, given the little significance they have. So the CONJUGE variable drops.

TEMPO_EM_RISCO Sum of the total number of people in that business, for that

coverage, year and month of accident. (It’s just the sum of columns M and F).
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VALOR_PAGO_TOTAL When using the Chain Ladder method, the insurer does not

take into account the type of claim. This is because the two components SPNE and

PROV are cumulative over time. Assuming that a person requests an authorization

of 500 euros for a claim in one month and that authorization is accepted. Even if it

only refers to one authorisation, if the person does not use it for three months, the 500

euros will appear three times in the database.

Therefore, the variable VALOR_PAGO_TOTAL will, from now on, be the sum of

the SPE with the variation of the SPNE between accounting months and the variation

of the SPNE between accounting months, as is currently done for the Chain Ladder
method. So, IDENTIFICA_SIN variable drops from the database.

DELAY0 The claim amount (in euros) that the insurer already paid for that business,

coverage, year, and month, when the accident month is the same as the reporting

month.

This variable is simply the value of the VALOR_PAGO_TOTAL variable at delay 0.

It is important to know the amount of claims that were reported in the same month

they occurred, as this could affect the future, that is, the same accident month, with a

delay greater than 1.

VP_ACUMULADO The accumulated claim amount (in euros) that the insurer al-

ready paid for that business, coverage, year and month.

For example, for business A, for Outpatient coverage, the VP_ACUMULADO in

January 2015 delay 4, (that is, the accumulated amount that has already arrived until

May 2015), is the sum of the VALOR_PAGO_TOTAL variable in January 2015, for

delays 0, 1, 2, and 3. Once again, knowing what has arrived at a given time can be

crucial to predicting the future.

RANDOM Random number generated through a normal distribution with mean 0

and standard deviation 1.

When selecting features, these can be ranked in decreasing order of importance to

the output. Only the most relevant features, the top ones of the list, should be selected.

The question is how to establish the cutoff point between them, i.e., what features

should be chosen and what should be eliminated. If a random variable that isn’t at all

correlated with the output is more significant than other variables in the dataset, it

means that these variables will have no value for the models.

4.3.2 Data Cleaning

4.3.2.1 Missing values treatment

As mentioned before, some values of the amount paid variable were assigned with

’NA’ as a result of the left join of the insured persons with the claims datasets. This
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means that for that business, coverage, year, month, and delay, there were no claims.

Therefore, in cases where VALOR_PAGO_TOTAL is missing, it will be replaced by 0.

The PERC_COMP variable follows the same line of thought. If it is missing, the co-

payment percentage is 0 because the insurance company does not contribute anything

to reimbursement.

The same could be done for the LIMITE_DESPESAS variable: if it was missing,

then it would be 0. However, if the plafond that a particular person has to spend on a

particular coverage is zero, it means that person does not have access to that coverage.

So, when the plafond is missing, this row is eliminated from the database. Most of the

rows that were eliminated were from the OTHERS coverage, which does not have a

great impact on the variable to be studied. It was also guaranteed that for these deleted

lines, there were no values different from 0 in the VALOR_PAGO_TOTAL variable.

At this point, there are no more missing values in the database.

4.3.2.2 Outliers treatment for the target variable

A special consideration is given for the outliers treatment of the target variable, the

VALOR_PAGO_TOTAL. It was chosen to handle these since it was not desired that

extremely rare events have an impact on the models. Undoubtedly, the goal is to

predict any value that might be received by the insurer, but there are rare observations

that completely miss business and coverage behaviour. This phenomenon can be seen

in the boxplots in figure 4.12.

Figure 4.12: Boxplot of relative paid amount for coverage and delay
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For this analysis it did not make sense to directly compare the values of the total

amount paid given that a company with more employees would incur higher costs. A

company with fewer employees, on the other hand, will present lower costs, leading

to the misalignment of the outliers. Therefore, the VALOR_PAGO_TOTAL was made

a relative measure, as it was divided by the TEMPO_EM_RISCO (represented on the y

axis). In this way, the amount paid per insured person is analyzed.

On the other hand, since, for instance, a Stomatology claim that arrives 10 months

late cannot be compared to an Inpatient claim that arrives 1 month late, the boxplots

are separated by delay (from 0 to 12) and by the 7 available coverages (represented on

the x axis).

In order to treat only extreme events, for this project, the 1% and 99% percentiles of

each boxplot were considered outliers, which correspond to about 15 to 20 observations

per boxplot. These rows would never be deleted from the database as, once again, it

would make no sense to lose knowledge from a period of time. Instead, it was decided

to replace these observations.

The outliers imputation was done as follows:

1. For each outlier, the business ID to which it belongs, the coverage and the delay

were identified. For instance, in figure 4.12 it is clear to see that there is an outlier

of value 60 for delay 1, Inpatient coverage. This outlier belongs to business K.

2. Then all the values that have the same characteristics as that outlier were selected.

All the values that this business, coverage and delay have in common and that

are not outliers. Specifically, values with the same characteristics that happened

throughout different year-month combinations. Taking into account the previous

example, all values of business K , of Inpatient with delay 1, that are not outliers,

would be selected.

3. If the outlier belongs to the 1st percentile, then that value is replaced by the

minimum of the values selected in the previous point. If the outlier belongs

to the 99th percentile, then it will be replaced by the maximum. The goal is

to substitute the outlier with the closest number that is not an outlier but still

has the same features. Thus, high values will remain high and low values will

remain low, but not with such extreme events. Considering the example, the

outlier which actually corresponded to 14.835 euros, was replaced by 2.649 euros,

which was the highest value of business K, for Inpatient and delay 1.

4.3.2.3 Coherence checking of the target variable

Figure 4.13 shows the distribution of the total paid amount by delay and insurance

coverage. As would be expected, most claims are reported in the month in which they

occur, i.e., they have a delay equal to 0. The longer the delay, the lower the number of

claims reported, as most are reported up to 3 months later. As is also to be expected,
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the largest payments go to Outpatient and Inpatient care. What would no longer be

expected is that there are some observations with a negative value paid. This happens

because, as mentioned earlier, the VALOR_PAGO_TOTAL variable has become the

sum of the SPE with the variation of the SPNE between accounting months and the

variation of the SPNE between accounting months. The variation of SPNE and PROV

can be negative and make the VALOR_PAGO_TOTAL variable also negative.

In this case, it then makes sense to have negative amounts paid. However, having

values with such a huge amplitude and dealing with both positive and negative values

is a significant challenge for any model.

Figure 4.13: Distribution of total paid amount (VALOR_PAGO_TOTAL ) by delay and
insurance coverage (COBERTURA)

4.3.3 Data Reduction - Clustering District Variables

At this point, the variable ’DISTRITO’ has been transformed into columns, each con-

taining the number of people based in each district. Given the size of the dataset and

the purpose of the problem, there was no need to have 21 columns indicating how

many people there were in each place. Therefore, a clustering algorithm was used to

divide the districts into groups with similar characteristics.

The K-Means algorithm was chosen to accomplish this, due to its simplpicity. After

defining the k number of centroids, it allocates every observation to the cluster whose

centre is closest. The number of centroids was defined by the Elbow method.

Figure 4.14: Elbow graphic
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The Elbow method runs the K-Means algorithm for each k, in a predefined range,

and calculates the Sum of the Square Errors (SSE) of each one of them. The goal is to

choose a small value of k that still has a low SSE, i.e., a low distance to the centre.

In order for the districts to be comparable, 2 pieces of information were extracted

about each one: the average paid amount and the average delay. The Elbow Graphic

4.14 indicates that 3 is the ideal number of centroids. Then, figure 4.15 shows how

K-Means divides the districts into the 3 clusters.

Figure 4.15: Clustering Districts

The clusters are essentially divided by the average paid amount: those that pay the

most (green), medium (red) and least (blue). The red cluster is the one that contains

the largest number of people, as it includes the metropolitan areas of Portugal. The

green cluster has, on average, higher paid amounts because it is likely that in those

districts of the country the supply of medical services is lower. Finally, the blue cluster

is the one that has the lowest average paid amounts, however, it is also where the

average delay to report claims is greater.

4.3.4 Current Dataset

As an overview of everything accomplished in the methodology chapter until this point,

the dataset is presented in this section. The current dataset has 71.042 observations.

Table 4.5 includes the 30 variables and a brief description of each one. It is divided into

sections: the first corresponds to the identification variables; the second corresponds

to the variables about the people insured for that business, coverage, year and month

(e.g., how many people had business A, for January 2015); the third corresponds to

variables with amounts in euros; and the last to a random variable.
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Table 4.5: Variables currently available on the dataset

Variable Description
NEGOCIO Corporate business ID;
COBERTURA Insurance coverage;
ANO Accident year;
MES Acciedent month;
DELAY Delay (in months) between the accident month and

the development month;
LIMITE_DESPESAS Average plafond;
PERC_COMP Average co-payment percentage for the insurer if

the claim is in reimbursement;
MES_NEGOCIO Month that the annuity for that business started;
TITULAR Total holders count;
FILHO.A Total children count;
OUTRO_PARENTESCO Total count of other kniship;
TEMPO_EM_RISCO Total count of insured persons;
M Total male count;
F Total female count;
IDADE_MEDIA Average age;
IDADE.18 Total count of people under the age of 18;
IDADE.65 Total count of people above the age of 65;
IDADE_PCTL10 10th percentile of the age distribution;
IDADE_PCTL25 25th percentile of the age distribution,
IDADE_PCTL50 Median of the age distribution,
IDADE_PCTL75 75th percentile of the age distribution,
IDADE_PCTL90 90th percentile of the age distribution,
CLUSTER_DISTRITO1 Total count of people living in Açores, Aveiro, Beja,

Évora, Faro, Lisboa, Leiria, Portalegre, Porto, San-
tarém and Setúbal;

CLUSTER_DISTRITO2 Total count of people living in Braga, Bragança,
Coimbra, Viana do Castelo, Vila Real e Viseu;

CLUSTER_DISTRITO3 Total count of people living in Castelo Branco,
Guarda, Madeira and abroad;

VALOR_PAGO_TOTAL Total claims amount (in euros) that the insurer had
to pay in that year, month and delay;

DELAY0 Total claims amount (in euros) that the insurer had
to pay in that year and month (at delay 0);

VP_ACUMULADO Accumulated claims amount (in euros) that the in-
surer had to pay in that year and month until that
DELAY;

RANDOM Random numbers from a normal distribution.
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4.3.5 Correlation Analysis

In order to discover multicollinearity issues and identify features that may have greater

predictive power in a model, it is crucial to check for correlation.

The first step was to calculate the correlation between variables regardless of their

type, i.e., whether they are continuous or categorical. To do this, all non-numeric

variables were one-hot encoded using the model.matrix() function from the stats pack-

age (version 4.2.0). As no categorical variable showed highly correlated levels, and to

make the data easier to visualize, from this point on, only the continuous variables

were worked on. Their correlation can be seen through figure 4.16. The Spearman

method was used in the calculation because it was not possible to guarantee a linear

relationship between the variables.

Figure 4.16: Correlation plot between quantitative variables

As would be expected, ’TEMPO_EM_RISCO’ variable has a high level of correla-

tions, as it represents the total number of insured persons and:

• ’TITULAR’ + ’FILHO.A.’ + ’OUTRO_PARENTESCO’ = ’TEMPO_EM_RISCO’
• ’M’ + ’F’ = ’TEMPO_EM_RISCO’
• ’CLUSTER_DISTRITO1’ + ’CLUSTER_DISTRITO2’ + ’CLUSTER_DISTRITO3’ =

’TEMPO_EM_RISCO’

The age variables also present high correlations among themselves. As for the

target variable ’VALOR_PAGO_TOTAL’, it only highlights the relationship with the

’DELAY’, which will certainly be a feature present in the models.

As regression models are not applied in this project, these variables will not be

previously removed. Machine learning models can handle multicollinearity. However,

a possibility for improving the models is identified here: not taking into account

variables that are highly correlated.
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4.4 Modeling

In this phase, the chosen techniques are specified. A brief description is given of

each model, the assumptions that each requires, and how their parameters could be

calibrated to optimal values. The division between training and testing is explained,

as is how the most important variables are chosen. In the end, the measures that will

enable model comparison and optimum model selection are presented.

4.4.1 Modeling Techniques

It is crucial to identify the kind of problem that has to be solved in order to select

the appropriate model. In this project, the objective is to predict the amount that

the insurer will have to pay in the future on claims that occurred in the past. It is

undoubtedly needed a supervised learning regression algorithm. Supervised learning

algorithms try to model relationships and dependencies between the target prediction

output (’VALOR_PAGO_TOTAL’) and the input features such that it’s possible to pre-

dict the output values for new data. And, it is a regression algorithm as the objective

is to predict continuous outcomes.

4.4.1.1 Random Forest

RF is an ensemble learning method built out of Decision Trees, developed by Leo

Breiman (2001). Ensembles use multiple learning algorithms to obtain better predic-

tive performance than could be obtained from any of the constituent learning algo-

rithms alone. In addition to improving accuracy, an ensemble reduces the spread or

dispersion of the predictions.

RF algorithm have three main hyperparameters, which need to be set before train-

ing. These include node size N, the number of trees K, and the number of features

sampled F. The algorithm works as follows:

1. Randomly select K subsets of data from the training set to construct K bootstrap

datasets with repeated samples;

2. K trees are built using each bootstrap dataset. Each tree is built until there are

fewer or equal to N samples in each node. In each node, F features are randomly

selected (F is generally defined as the square root of the total number of features

of the original dataset);

3. There are K trained models, and the final result for the regression task is pro-

duced by averaging the predictions of the individual trees – a technique known

as Bagging (Breiman, 1996);

4. Samples that to not appear are called ’out-of bag’ samples and are used to validate

the results through cross-validation.
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Figure 4.17: Flow chart of a Random Forest Algorithm

Random Forest limits the greatest disadvantage of Decision Trees. Through the

Bagging technique, it reduces the risk of overfitting due to subset and feature random-

ization. Firstly, because it uses a unique subset of the initial data for each model, which

helps to make Decision Trees less correlated. On the other hand, it splits each node in

every tree using a random set of features, which means that no single tree sees all the

data. This helps to focus on the general patterns within the training data, reducing

the correlation among decision trees and minimising sensitivity to noise. By averaging

uncorrelated trees, the total variance and prediction error are decreased.

RF also provides flexibility. It works well with no hyperparameter tuning, it is

rather fast, robust, and can show feature importance. Moreover, it can handle large

datasets efficiently and produce good predictions that can be easily understood. All of

these possibilities make it a good option when compared to linear models.

This algorithm is not flawless, though. As it often works with larger datasets, it

requires more resources to store the data. Besides that, the process might be time-

consuming as it needs to compute data for each individual decision tree.

Also, a major disadvantage is that RF is not able to extrapolate based on the data.

The predictions it makes are always in the range of the training set. The Random

Forest Regressor is unable to discover trends that fall outside of that range. So, if the

problem to be solved requires identifying any sort of trend, Random Forest might not

be able to formulate it.

4.4.1.2 Extreme Gradient Boosting

While bagging consists of different individual models learning in parallel, boosting in-

volves learning models in a sequence, i.e., each model is created taking into account the

previous one. Within the gradient boosted trees algorithms it was developed the XG-

Boost by Chen and Guestrin (2016). Given that it is an "optimized distributed gradient

boosting library designed to be highly efficient, flexible, and portable" as the authors
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mentioned, it is currently one of the most popular machine learning techniques. A

brief description of its workflow is shown below:

1. The first line of the algorithm initializes to the optimal constant model, which is

just a single terminal node tree. The residuals are then computed;

2. According to the additive training strategy of boosting, each tree is constructed

based on learning from the residual r of the previous tree. The prediction of the

i-th iteration is given by ŷi = ŷi−1 +Fi(X), i = 1, ...,K . At every iteration, XGBoost

optimizes the model and decreases the prediction error;

3. Repeat until the specified number of trees K is reached. The final prediction

output ŷK is generated by the weighted summation of trees as follows:

ŷK =
K∑
i=0

Fi(X), Fk ∈F, (4.1)

where F is the space of functions containing all regression trees;

4. To learn function F of each tree, XGBoost minimizes a regularized (L1 and L2)

objective function that combines a convex loss function (based on the difference

between the predicted and target outputs) and a regularization term to penalize

the model complexity and prevent overfitting.

Figure 4.18: Flow chart of an Extreme Gradient Boosting Algorithm

XGBoost is reliant on the performance of a model and computational speed. It

provides several benefits, including parallelization, distributed computing, cache op-

timization, and out-of-core computing. During training, XGBoost uses parallel com-

putation to build trees across all CPU cores. It also distributes computing when it is
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training large models using machine clusters. Algorithms and data structures can also

benefit from cache optimization to make the best use of the hardware that is avail-

able. For larger data sets that won’t fit into the conventional memory size, out-of-core

computing is used.

Furthermore, it can automatically determine the optimal missing value based on

training loss, meaning that it can handle well with missing values. It includes regu-

larization to prevent overfitting; it has in-built cross validation capability; and tree

pruning uses a depth-first approach. This greatly enhances XGBoost’s computational

efficiency and speed compared to competing GBM frameworks or other models.

However, due to its high capacity to identify complex relationships, it is more

likely to overfit than bagging techniques do. There are several ways to attenuate this

drawback, including specifying some hyperparameters, such as regularization and

early stopping. XGBoost might be sensitive to outliers, and it is almost impossible to

scale up, because every estimator rests its accuracy on the prior predictions.

4.4.1.3 Support Vector Machine - Regression

SVM is a popular machine learning tool for classification and regression, introduced

by Vapnik (1995). The objective of the SVM algorithm is to find a hyperplane in an

N-dimensional space, being N the number of features, that distinctly classifies the data

points.

The Support Vector Regression (SVR) adopts identical principles as the SVM for

classification, with only a few minor differences. As the name suggests, it is a regression

algorithm, where the output is a real number with infinite possibilities. The main idea

is the same: to minimize error, individualizing the hyperplane which maximizes the

margin, keeping in mind that part of the error is tolerated. More specifically:

1. Assume that the equation of the hyperplane is yi = xiβ + b. To ensure that is as

flat as possible, the objective function is formulated as a convex optimization:

minimize 1
2∥β∥

2.

Subject to all residuals having a value less than ε, |yi − (xiβ + b)| ≤ ε;

2. However, it is possible that no such function exists to satisfy these constraints for

all points. To deal with otherwise infeasible constraints, introduce slack variables

ξi and ξ∗i for each point. The slack variables allow regression errors to exist up

to the value of ξi and ξ∗i , yet still satisfy the required conditions. Including slack

variables leads to the objective function:

minimize
1
2
∥β∥2 +C

N∑
i=1

(ξi + ξ∗i ), with ξi ≥ 0 and ξ∗i ≥ 0 (4.2)

Subject to yi − (xiβ + b) ≤ ε+ ξi and (xiβ + b)− yi ≤ ε+ ξ∗i .
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Figure 4.19: Flow chart of a Support Vector Machine Regression Algorithm

The SVR algorithm seeks to fit the error inside a threshold value as opposed to

other regression models that try to reduce the error between the actual and projected

value. It is simpler to implement and robust against outliers. SVR provides a proficient

prediction model while acknowledging the non-linearity in the data. However, in cases

where the number of features for each data point exceeds the number of training data

samples, the SVR will underperform as well as when the data set has more noise. It

might not be suitable for large datasets.

4.4.1.4 Neural Networks

NN, also known as Artificial Neural Networks, are computational models that are capa-

ble of extracting meaning from imprecise or complex data. The learning process finds

patterns and detects trends, similar to how the human brain works, where biological

neurons signal to each other. This concept was first proposed by Turing (1948).

A neural network contains an input layer, zero or more hidden layers, and an

output layer. Each layer has one or more nodes (figure 4.20). Each node connects to

the nodes in the next layer, and each connection has an associated weight. Starting

from input nodes, a neural network produce an output, which is the solution of a

problem. The workflow is briefly described:

1. Define the connection weight between nodes. A gradient descent technique is

used to compute coefficients to minimize the cost function. During the iterations

these values will be updated in order to reach the best predicted value.

2. Each layer’s output is calculated forwardly by an activation function, f . The

activation function can be linear or nonlinear.

Commonly, a bias node (a constant, typically initialized to 1) is added to each

input layer to shift the activation function.
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3. The obtained value from the activation function will be the final value of this

neuron at the current step, and continues until it reaches the final output.

Figure 4.20: Flow chart of a Neural Network Algorithm

Neural networks are flexible and can be used for both regression and classification

problems. It is reliable in an approach of tasks involving nonlinear data with a large

number of inputs and many features. After training, they are able to extract from a

huge continuous stream of data only the information necessary for them, ignoring all

extraneous noise. Once trained, predictions are made rather quickly. However, the

hardware cost increases with the complexity of the problem, and its setup requires

additional effort to maintain.

The greater amount of data used during training, the more accurate the results are.

Dependency on data is one of the leading disadvantages of NN, as some have to be

on the maintenance side to watch it. Furthermore, most neural networks are black-

box systems, generating results based on experience and not on specified programs,

making it difficult for modifications.

4.4.2 Test Design

To build a reliable machine learning model, it is necessary to split the dataset into

distinct sets. The training set is the set of data that is used to train and make the model

learn the hidden features and patterns in the data. The validation set is used to validate

model performance during training. This validation procedure gives information that

may be used to adjust the hyperparameters and settings of the model. The main idea

of splitting the dataset into a validation set is to avoid overfitting the model. After

training is complete, the model is tested using a different set of data called the test

set. It provides an unbiased final model performance metric in terms of accuracy and

precision.
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To help explain the test design made in this project, consider figure 4.21 that

illustrates a business whose contract starts in January. As previously described, one of

the insurer’s tasks is to predict, at the beginning of the tenth month of contract, the

claims that will still arrive in the future, referring to accidents occurred in the first

9 months. Forecasting claims that occur at the tenth, eleventh and twelfth month is

another different issue. As a result, claims related to the accident months of October,

November, and December are disregarded (represented in dark grey).

Regarding the remaining months, what is interesting for the insurer is to have a

model with the ability to learn data that are not yet known. For instance, claims that

happened in January and were reported in the same month (delay 0), in February

(delay 1),..., and in September (delay 8) are already known. The same for claims that

occurred in February. Those reported in the same month (delay 0) to those reported

in September (with delay 7) are already known. What is not known a priori are the

claims that will be reported from October on wards whose accident month was between

January and September (which correspond to the yellow part). So, the ones that fall

within the light grey area are removed.

The same reasoning was taken into account for the other contracts that do not start

in January: considering the tenth, eleventh and twelfth months and the delays of the

remaining months.

Figure 4.21: Slip representation between train, validation and test

After selecting the appropriate data to train the model, the test design follows.

For the training set, were considered the contracts that start between 2015 and 2017,

corresponding to 17.872 observations (55%). For the validation set, were selected

contracts that started in 2018 and for the test set, contracts of 2019, each corresponding

to 7.344 observations (22.5% each).
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4.4.3 Data Reduction - Feature Importance

The feature importance describes which variables are relevant for use in model con-

struction. It is desirable to reduce the number of input variables to both reduce the

computational cost of modeling and, in some cases, improve the performance of the

model. This will aid in a better understanding of the solved problem.

For this, the Random Forest algorithm is a particularly effective tool. It computes

the average impurity decrease from all decision trees in the forest to determine feature

importance. There are two key measures to take into account: the mean decrease

accuracy, which computes the feature importance on permuted out-of-bag samples

based on the mean decrease in accuracy (the prediction error for regression is Mean

Squared Error (MSE)); and the mean decrease impurity, which is the total decrease in

node impurities from splitting on the variable, averaged over all trees (for regression,

it is measured by the residual sum of squares). Figure 4.22 illustrates these measures

when the RF algorithm is applied.

Figure 4.22: Feature importance output when using a Random Forest

The first fundamental point is how crucial the delay is to the problem (as previously

seen, the longer the delay, the less likely the insurer will receive an expense). That is

why having an idea of the value that arrived in the month in which the claim happened

(’DELAY0’) is also important. If the amount that arrives is less than expected, it may

indicate that more claims will arrive in the upcoming months. There are additional

variables that were chosen for the model, despite the fact that the RANDOM variable

appeared as one of the first ones. The selection process was based on choosing the first

variables in the left table, which did not have a correlation greater than 0,8.
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The following variables were then selected to reflect the IBNR phenomenon:

• ’DELAY’

• ’DELAY0’

• ’PERC_COMP’

• ’LIMITE_DESPESAS’

• ’IDADE.65’

• ’CLUSTER_DISTRITO3’

• ’COBERTURA_MEDICAMENTOS’

• ’COBERTURA_INTERNAMENTO’

• ’COBERTURA_AMBULATÓRIO’

The variables that represent each insured person’s plans are significant factors to

consider - the higher the plafond, the greater the expense the insurer will have to be

responsible for. The number of elderly or those residing in Portugal’s interior can

capture some effects (of lower costs) that the remaining variables are unable to.

There is one variable that also stands out: ’COBERTURA’. Given its importance

and the fact that different coverages have different weights in the overall cost of the

IBNR component, it was decided to build different models in addition to the model

with all coverages: one for the Outpatient coverage, another for Inpatient (the ones

that cost the insurer the most), and another for the remaining coverages. This could

enhance the forecasting power of the models because each coverage represents a dif-

ferent phenomenon and might have different variables to better explain it. In the end,

it will be determined whether the model that includes all coverages is better than the

combination of the three models that consider each coverage individually.

Therefore, the dataset was divided into 3: one corresponding to Outpatient cover-

age; one for Inpatient coverage; and, one for all other coverages together. Then, 3 new

feature importance were made, one for each submodel.

4.4.3.1 Feature Selection: Outpatient model

Given the output of the importance that Random Forest gives to Outpatient data

(figure 4.23), the following variables were selected:

• ’DELAY’

• ’DELAY0’

• ’IDADE.65’

• ’OUTRO_PARENTESCO’

• ’IDADE_PCTL50’

The plafond and the percentage of reimbursement are no longer as significant

because they are quite similar in all Outpatient coverage - regardless of the plan that

the company chooses for its employees. For this phenomenon, the median age of each

company and the number of people who are not holders are considered.

39



CHAPTER 4. METHODOLOGY

Figure 4.23: Feature importance of the Outpatient data

4.4.3.2 Feature Selection: Inpatient model

When considering Inpatient data (figure 4.24), the most important variables are the

following:

• ’DELAY’

• ’DELAY0’

• ’IDADE.65’

• ’IDADE_PCTL50’

• ’TEMPO_EM_RISCO’

• ’LIMITE_DESPESAS’

• ’PERC_COMP’

Figure 4.24: Feature importance of the Inpatient data

As seen in the previous outputs, the variables related to delay and age are still

significant with regard to Inpatient coverage. Here, the number of people is also

relevant since the likelihood of 1 or more people being hospitalized increases with the

number of people insured by a company’s health insurance (thus, the opposite is also
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true: the fewer people a company has, the lower the probability of hospitalizations).

Additionally, the conditions of the plan (plafond and percentage of reimbursement)

are important because, depending on the company, the plan can be quite different.

4.4.3.3 Feature Selection: Remaining coverages model

And finally, the feature importance output for coverage of Stomatology, Prostheses and

Orthoses, Childbirth and others (figure 4.25). The chosen variables are a mixture of

what was presented:

• ’DELAY’

• ’DELAY0’

• ’PERC_COMP’

• ’LIMITE_DESPESAS’

• ’COBERTURA_PARTO’

• ’COBERTURA_PO’

• ’COBERTURA_ESTOMATOLOGIA’

• ’COBERTURA_MEDICAMENTOS’

• ’IDADE.65’

• ’CLUSTER_DISTRITO3’

Figure 4.25: Feature importance of the Remaining coverages data

This time, with the specification of each coverage belonging to this dataset, since

each one represents a different phenomenon. Once again, the importance of the delay,

the conditions of the plan, the number of people over 65, and the number of people

living in the interior of Portugal are highlighted.

4.4.4 Build Model

Most modeling techniques have multiple parameters or settings that can be adjusted to

control the modeling process. Typically, a model is first built using the default options,

and then parameters are refined during subsequent trainings.
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4.4.4.1 Building Random Forest model

To apply the RF algorithm, it was used the randomForest() function from the random-
Forest package (version 4.7). Although there aren’t many options available in this

package to optimize the function’s parameters, it does have the benefit of running

more efficiently. Even so, there is an argument that can be enhanced with tuneRF() -

the mtry, the number of variables randomly sampled at each split. Usually, the default

value is considered to be the number of variables divided by 3. The tunning function

tuneRF() searches for the optimal value with respect to Out-of-Bag error estimate, so

it doesn’t take into account the validation set. Therefore, this model was trained with

the training and validation datasets together (as well as the others, the difference is

that there was no differentiation to optimize the parameter). The value chosen to train

each of the 4 models is represented in table 4.6.

There is also a parameter that defines the number of trees to grow - ntree. Despite

the fact that increasing the number of trees increases the precision of the outcome, the

value of ntree will remain at the default value since 500 trees are adequate enough.

Table 4.6: Optimized parameter for the RF model

Parameter All coverages Outpatient Inpatient Remaining
mtry 4 2 4 4

4.4.4.2 Building Extreme Gradient Boosting model

One of the biggest advantages that makes this algorithm one of the preferred is that it

is highly customizable and has some very important parameters that can be changed

in each different situation. For this purpose, the xgboost package (version 1.6.0.1) was

chosen.

To simplify hyperparameter tuning, only 2 parameters were optimized through

a simple grid search: eta which is the step size shrinkage used in update to prevent

overfitting (the default value is 0.3); and max.depth the number of splits in each tree

(the default value is 6). These parameters were optimized and are shown in table 4.7.

The following task parameters were selected to fit this particular problem and were

shared by all models: the objective as reg:squarederror; and the eval_metric as mae. This

means that the loss function to be minimized is a regression with squared loss and

the chosen evaluation metric for validation data is the mean absolute error. All other

arguments remained at their default values.

Table 4.7: Optimized parameters for the XGBoost model

Parameter Grid Search All cov. Outpatient Inpatient Remaining
eta (0.01,0.02,

0.1,0.2,0.3)
0.01 0.1 0.02 0.3

max.depths (5,6,7,8,9,10) 5 5 5 5
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4.4.4.3 Building Support Vector Regressor model

The svm() function from the e1071 package (version 1.7) was implemented to apply

SVM models. They were trained using a linear kernel, fitted to a regression model by

setting the type equal to eps-regression. Therefore, there is only one parameter that

needs to be optimized: the cost, which represents misclassification or error term. The

misclassification tells the SVM optimization how much error is bearable. When the

cost is high, it will accurately classify every data point and there is a possibility of

overfitting.

Additionally, as was previously demonstrated, an epsilon tolerance margin must

be established to approximate the SVM. The parameters that maximized the mean

absolute error in the validation set were selected as the ones to train models (table 4.8).

Table 4.8: Optimized parameters for the SVR model

Parameter Grid Search All cov. Outpatient Inpatient Remaining
cost (50, 75, 100,

125)
100 100 100 100

epsilon (0.1, 0.5, 1) 0.1 1 1 0.1

4.4.4.4 Building Neural Networks model

When configuring a neural network to a dataset, it is crucial to ensure optimal data

scalability. Without it, a variable’s scale alone could have a significant impact on the

prediction variable. Unscaled data could produce meaningless results. For scaling the

data in this case, min-max normalization was used.

A neural network is one of the most complex algorithms. It is essentially a black

box so it’s more challenging to discuss fitting, weights, and the model itself. Therefore,

and given the low computational power, it was decided to change only the number of

layers and the number of hidden neurons in each layer for each model. To do this, the

neuralnet() function from the neuralnet package (version 1.44.2) was used.

Table 4.9 displays the selected hidden layers. Although some layer combinations

were tested, the chosen values were arbitrary. Still, some heuristics were considered:

as the data has few features, the number of hidden layers should be between 1 and

3; the number of hidden neurons should be between the size of the input layer and

the output layer; and the number of hidden neurons should keep on decreasing in

subsequent layers.

Table 4.9: Optimized parameter for the NN model

Parameter All coverages Outpatient Inpatient Remaining
hidden layers 2 layers: 5 and

3 nodes
2 layers: 3 and
2 nodes

2 layers: 4 and
2 nodes

3 layers:
5, 3 and 2
nodes
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4.4.5 Verify Chain Ladder assumptions

Before applying the model, it is necessary to ensure that its main assumptions are

verified. In Mack’s 1994 paper, a procedure was designed to test for calendar year

influences (T. Mack, 1994). The ChainLadder package (version 0.2.15), available in R

(Gesmann et al., 2022), provides some functions that simulate those procedures. This

package was also used for all Chain Ladder method-related topics.

One of the main assumptions is the non-correlation of individual development

factors. The dfCorTest() function uses Spearman’s correlation coefficient to test this

assumption. It is returned a statistic T that is assumed to be normally distributed. As

a result, it is possible to provide a confidence interval threshold to evaluate the test’s

outcome. If the metric is within the confidence interval, therefore the development

factors are not correlated (Gesmann et al., 2022).

Table 4.10 shows the results for each business and for each model to be applied.

The data used in each instance are the test data from known claims (for a visual

representation, see figure 4.21, test matrix, cells in light gray). If the output is ’False’

then the development factors are not correlated and the Chain Ladder method can

be applied. Otherwise, if it is ’True’, the development factors are correlated, and, in

theory, the method could not be applied. In cases where the output is ’NA’, it indicates

that at least one of the columns of the triangle under study has the value 0. This

means that it is not possible to calculate the correlation, much less the Chain Ladder
method since it would have a development factor that had been divided by 0, which is

impossible.

Table 4.10: Test for proportionality between development years

NEGOCIO All Coverages Outpatient Inpatient Remaining
A True True True True
B False False False True
C True False True False
D True True NA False
E True True False False
F True True NA True
G True True NA True
H False True NA False
I False False NA False
J NA NA NA NA
K NA NA NA NA
L NA NA NA NA
M False True NA False
N NA False NA NA
O False NA NA False
P False NA NA False
Q NA NA NA NA
R False True NA False

44



4.4. MODELING

Another basic assumption is the independence between accident years, in this case,

between accident months. The cyEffTest() tests for it in a similar way. If the output

metric is within the confidence interval, therefore the triangle doesn’t have a Monthly

Calendar Effect (Gesmann et al., 2022). Results are displayed in table 4.11. The above-

mentioned interpretation holds.

Table 4.11: Test for independence between accident months

NEGOCIO All Coverages Outpatient Inpatient Remaining
A False True False True
B False True False True
C False False False False
D True True True True
E False False False False
F True False True False
G False NA False False
H False False True False
I False False False False
J False False NA False
K False False NA True
L False False NA True
M False NA NA False
N False False NA False
O True False NA True
P False False NA False
Q False False NA False
R False NA False False

For the data under study, the non-correlation between development factors is more

challenging to ensure. Only 30% of the 72 matrices tested guaranteed this assumption.

Results at the level of ’All coverages’ are easier to obtain because more data is available.

For the remaining models, given that the data are split up, there are fewer observations,

and therefore it becomes more challenging to demonstrate the assumption. Addition-

ally, it seems that using the Chain Ladder approach becomes more difficult the smaller

the insured universe is (i.e., the fewer employees a company has). In general, it can be

said that there is a correlation between the subsequent months.

The independence between accident months is easier to verify, being true for 62%

of the matrices tested. Here, it should be noted once again that smaller businesses will

have fewer claims, which means a lower likelihood of hospitalization, and thus, many

missing values.

As a result, the traditional Chain Ladder method might not be the ideal one to apply

as it cannot guarantee the assumptions it requires, particularly in smaller businesses.

Although the insurer does not calculate the coverage level, this method should be

applied with caution.
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4.4.6 Assess Model

Performance measures are essential for supervised machine learning models to evalu-

ate and track the performance of their predictions. Such metrics add substantial and

necessary value in model selection and model assessment and can be used to evaluate

different types of models. 4 error metrics are commonly used for regression models:

4.4.6.1 R-Squared (R2)

The coefficient of determination, or R2, is the proportion of variation in the outcome

that can be explained by the predictor variables. It is a measure that provides informa-

tion about the goodness of fit of a model. In the context of regression, it is statistical

indicator of how closely the regression line resembles the actual data. The closer R2 is

to 1, the better the model.

R2 = 1−
Sum of Squares of Residuals

T otal Sum of Squares
= 1−

∑
(yi − ŷi)2∑
(yi − yi)2 (4.3)

4.4.6.2 Mean Squared Error (MSE)

MSE assesses the average of the squares of the errors, that is, the average squared

difference between the observed actual outcome values and the values predicted by

the model. When a model has no error, the MSE equals zero. As model error increases,

its value increases.

MSE = Mean((Observed − P redicted)2) =
∑

(yi − ŷi)2

Number of observations
(4.4)

4.4.6.3 Root Mean Squared Error (RMSE)

Mathematically, the RMSE is the square root of the MSE. So, the lower the RMSE, the

better the model. The RMSE is the used to return the MSE error to the original unit by

taking the square root of it while maintaining the property of penalizing higher errors.

MSE is more difficult to interpret and is more sensitive to outliers in absolute terms.

RMSE =
√
MSE (4.5)

4.4.6.4 Mean Absolute Error (MAE)

The MAE measures the prediction error similarly to RMSE. It is the average absolute

difference between observed and predicted values. It is a linear score, which means

that all the individual differences are weighted equally in the average. MAE is less

sensitive to outliers compared to RMSE.

MAE = Mean(Abs(Observed − P redicted)) =
∑

(|yi − ŷi |)
Number of observations

(4.6)
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Chapter 5

Results and Discussion

In this chapter, the results of each model and their respective performances are given,

employing all the methodologies previously presented. The models will be tested in

the test subset, which is the final contract year available for each business.

The output of each model is given at the corporate business level for each month,

and delay, i.e., the value of each yellow cell in figure 4.21 is filled in. The first perfor-

mance measures will be at the level of this output.

However, the ultimate goal of this project is to have the most accurate results pos-

sible for each business, regardless of the month or the delay. The insurance company

wants to predict after the first 9 months of the contract, the amount of claims that

will arrive referring to these 9 months. Therefore, the error at a global level will also

be analyzed, that is, the error that compares the total sum of estimates per business.

These results will be more significant in the profitability analysis of ML models when

compared to the traditional one. Furthermore, the ChainLadder package only provides

outputs at the monthly level without considering the delay, so it is only possible to

compare the traditional method on global errors.

5.1 ’All coverages’ models

Table 5.1 then represents the first performance measures of the models. These are

obtained directly from what comes out of the models - at the business, month, and

delay level.

Table 5.1: Performance measures of ’all coverages’ models

Model R2 MAE MSE RMSE
RF 0,84 795 4.629.478 2.151
XGBoost 0,83 755 4.751.250 2.179
SVM 0,03 1.170 27.035.432 5.200
NN 0,33 25.025 657.303.924 25.637
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Tables 5.2 and 5.15 represent the performance of the models when the outputs are

summed per business.

Table 5.2: Sum of ’all coverages’ outputs per business (in euros)

NEG. Observed CL RF XGBoost SVM NN
A 160.851 136.747 260.691 184.602 6.834 -1.784.102
B 1.756 68.368 -18.771 13.328 28.380 -2.191.478
C 109.169 102.455 139.710 94.777 41.952 -2.121.865
D 32.758 58.383 17.064 37.346 9.268 -2.209.037
E -6.001 22.493 17.879 11.589 9.098 -1.906.516
F -10.295 33.484 14.247 11.892 13.270 -2.219.767
G 14.067 16.101 18.179 13.879 2.379 -1.586.200
H 11.461 9.089 19.428 12.175 11.877 -1.903.943
I 1.792 21.800 6.344 7.451 7.655 -1.902.214
J -238 -10.710 1.210 2.310 -228 -951.278
K 5.820 2.867 1.027 2.757 8.487 -1.902.952
L 4.465 9.368 5.726 4.914 7.398 -1.902.842
M 1.538 5.255 6.116 3.635 3.146 -1.587.000
N 1.902 7.056 -154 3.458 3.538 -949.897
O 548 1.588 4.362 5.052 9.876 -1.900.601
P 5.067 1.848 4.419 3.672 7.050 -1.583.795
Q 1.478 4.552 6.163 2.007 4.760 -1.586.373
R 4.177 11.729 5.327 5.901 7.717 -1.902.513

Table 5.3: Performance measures of the models when the ’all coverages’ outputs are
summed per business

Model R2 MAE MSE RMSE
RF 0,94 14.227 718.455.285 26.804
XGBoost 0,96 6.583 100.491.345 10.024
SVM 0,14 19.720 1.699.419.961 41.224
NN 0,03 1.801.815 3.380.862.954.724 1.838.712
CL 0,77 14.546 506.622.612 22.508

The expected prediction effect could not be captured by either the SVM or the NN

models. They present the poorest performance measure outcomes. MSE is excessively

high and R2 is too low, in particular for neural networks, meaning that the models did

not adjust to the regression. NN generates similar outputs and far beyond the actual

values. The number of layers might not be adequately adapted to the problem, or

the standardization performed might not be the most correct. There are many more

sophisticated experiments that could enhance NN performance, but the complexity

required to apply them to real business scenarios is not worthwhile. Furthermore, the

behaviour of the SVM model is unstable. Analyzing the absolute values reveals that in

5 cases (businesses E, H, J, K, and M), it turns out to be the one that manages to predict

better. In other instances, though, it ends up failing so miserably that its performance

metrics end up being inadequate. It is not a suitable choice because of its instability.
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The tree-based algorithms, on the other hand, had quite satisfactory results. At the

individual level, both RF and XGBoost had very similar results. But when summed

up by business, there is an obvious highlight for XGBoost, which has lower MAE and

RMSE. In fact, in the 3 cases where RF was better at forecasting (businesses I, P, and

R), XGBoost had similar predictions. The mean absolute error of this model is around

6.500 euros.

To this day, Chain Ladder calculations are made without taking coverage into ac-

count. Therefore, the results presented in this section are those that correspond to

what is currently being done. On average, the insurer is missing around 14.500 euros

per business. Surprisingly, despite how simple the calculations are to perform, it turns

out to be a really effective method. However, it only outperforms the ML models in 2

of the 18 businesses (C and O). When comparing only the CL method and the best ML

model (XGBoost), it is possible to see that the new model made better predictions for

15 businesses and has better performance measures.

5.2 Single models

As previously explained, given the importance of the coverage variable, a comparison

was also carried out by separating the data into Outpatient, Inpatient, and the remain-

ing ones. The results are presented in the following subsections. Given that many of

the behaviours are repeated and the result of aggregating these results will be the most

important, there won’t be very extensive analysis in this section.

5.2.1 ’Outpatient’ models

When looking at only the most representative coverage - Outpatient - the results are

as follows:

Table 5.4: Performance measures of ’Outpatient’ models

Model R2 MAE MSE RMSE
RF 0,65 145 540.761 735
XGBoost 0,69 136 379.594 616
SVM 0,03 828 1.763.675 1.328
NN 0,61 715 895.542 946

If only the performance measures are compared, an enormous recovery of the NN

model is observed, both from the R2 and the RMSE. However, table 5.5 shows that the

absolute results per business are well below expectations. Just like for the SVM model.

The outcomes for the remaining models are fairly good, with XGBoost showing a

clear highlight, being closer to the observed values in 12 of the clients. Even though it

has also a good performance, the CL model is consistently surpassed by the XGBoost.
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Table 5.5: Sum of ’outpatient’ outputs per business (in euros)

NEG. Observed CL RF XGBoost SVM NN
A 43.757 111.461 52.798 36.031 30.540 -4.965
B 5.535 16.057 18.048 13.729 -494 -34.435
C 8.308 50.417 36.125 22.519 -247 -30.981
D 12.915 23.237 13.840 9.206 -14.399 -44.007
E -1.835 5.871 7.541 3.149 3054 -41.807
F -1.439 8.015 5.485 3.691 -12.645 -45.885
G 4.520 6.436 10.031 4.530 -2.157 -43.407
H 2.055 3.539 4.853 1.901 -19.410 -46.714
I 2.096 5.478 3.918 1.837 -10.310 -46.098
J 1.435 2.199 1.960 1.439 -17.552 -46.470
K 1.093 294 1.514 661 -22.312 -46.612
L 1.034 1.461 1.582 1.163 -17.819 -45.995
M 420 1.594 1.404 1.154 -22.891 -46.310
N 1.343 1.173 1.427 759 -28.760 -45.632
O 133 557 544 493 -34.231 -46.133
P 851 1.192 920 573 -29.111 -46.128
Q 264 1.012 692 555 -31.619 -46.120
R 426 2.846 1.624 1.154 -21.366 -46.264

Table 5.6: Performance measures of the models when the ’Outpatient’ outputs are
summed per business

Model R2 MAE MSE RMSE
RF 0,77 4.522 66.326.009 8.144
XGBoost 0,8 2.662 21.984.042 4.689
SVM 0,56 19.134 451.245.371 21.243
NN 0,86 46.493 2.176.559.996 46.654
CL 0,91 8.993 374.993.588 19.365

5.2.2 ’Inpatient’ models

Looking at the results of the inpatient coverage data:

Table 5.7: Performance measures of ’Inpatient’ models

Model R2 MAE MSE RMSE
RF 0,57 758 4.559.629 2.135
XGBoost 0,58 707 4.482.422 2.117
SVM 0,01 1.233 10.730.014 3.276
NN 0,47 4.768 26.569.080 5.155

Hospitalizations are a phenomenon that is considerably harder to predict, and the

results reflect this. The R2 score falls abruptly in all cases.

Nevertheless, as shown in table 5.8, the conventional CL model would be incapable

of predicting this coverage on its own for clients with lower claims amounts. This oc-

curs because the CL cannot forecast during the months when the claims are null (don’t
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Table 5.8: Sum of ’Inpatient’ outputs per business (in euros)

NEG. Observed CL RF XGBoost SVM NN
A 52.447 -70.585 198.216 160.855 -25.739 -286.005
B -23.229 21.684 -83.067 -34.182 -75.497 -373.593
C 58.913 -10.293 26.919 9.723 -10.225 -312.062
D 5.423 -642 -12.948 -4.114 -20.725 -317.162
E -4.512 7.261 1.385 3.858 6.000 -312.402
F -12.409 16.536 1.627 -774 -31.201 -320.090
G 338 744 -905 -457 -8.492 -316.929
H 2.784 -507 9.792 1.182 -18.086 -300.377
I -5.252 NA -6.082 -1.487 -26.356 -320.253
J -1.673 NA -1.013 -1.186 -12.963 -320.786
K 2.023 NA 1.776 -1.347 -21.698 -321.394
L 731 NA 1.074 -405 -28.800 -322.625
M 320 NA 2.048 -57 -22.720 -321.252
N -1.194 NA -2.601 664 -12.625 -321.766
O -895 NA 938 -381 -11.687 -321.921
P 3.632 NA 1.001 266 -19.029 -321.765
Q 533 NA 1.535 -593 -20.073 -322.045
R 282 NA -710 -1.014 -26.654 -321.895

Table 5.9: Performance measures of the models when the ’Inpatient’ outputs are
summed per business

Model R2 MAE MSE RMSE
RF 0,57 16.435 1.471.731.668 38.363
XGBoost 0,48 12.099 813.140.116 28.516
SVM 0,1 26.992 1 096.408.261 33.112
NN 0,4 324.032 105.233.511.099 324.397
CL 0,62 35.954 2.870.983.361 53.582

exist). For that reason, it is possible to determine that selecting the RF or XGBoost

models would be a wise decision for 10 of the clients. For the remaining 8 clients, who

present claims amounts in all months, the CL only proves to be better in 2 cases.

5.2.3 ’Remaining coverages’ models

When adding data from Stomatology, Prostheses and Orthoses, Medicines, Childbirth,

and other coverages the results are as follows:

Table 5.10: Performance measures of ’remaining coverages’ models

Model R2 MAE MSE RMSE
RF 0,69 61 138.636 372
XGBoost 0,64 65 154.580 393
SVM 0,02 92 416.235 645
NN 0,39 453 528.103 727
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Table 5.11: Sum of ’remaining coverages’ outputs per business (in euros)

NEG. Observed CL RF XGBoost SVM NN
A 64.646 111.500 59.705 57.350 5.135 -72.127
B 19.450 26.953 44.228 37.570 23.309 -43.300
C 41.948 60.016 51.389 45.332 11.715 -27.423
D 14.420 27.154 12.709 9.932 399 -140.126
E 346 7.532 3.245 5.571 1.944 -98.051
F 3.553 8.484 6.476 9.717 1.717 -132.252
G 9.210 9.835 7.420 6.781 534 -85.582
H 6.622 6.658 8.766 6.307 3.780 -108.085
I 4.948 11.209 5.641 8.227 3.487 -113.276
J 0 NA 686 343 -804 -28.880
K 2.704 2.035 2.469 2.297 4.350 -111.992
L 2.700 6.568 3.161 3.044 3.995 -112.112
M 7.99 3.724 2.093 2.421 1.953 -84.123
N 1.753 NA 956 821 2.122 -28.017
O 1.310 NA 2.645 2.197 2.687 -109.839
P 584 NA 1.226 738 3.660 -82.822
Q 680 NA 2.148 1.837 2.013 -83.350
R 3.468 NA 4.205 4.123 3.767 -112.401

Table 5.12: Performance measures of the models when the ’remaining coverages’ out-
puts are summed per business

Model R2 MAE MSE RMSE
RF 0,89 3.276 42.419.912 6.513
XGBoost 0,91 3.178 27.871.255 5.279
SVM 0,16 7.522 265.456.459 16.293
NN 0,09 97.383 10.591.827.383 102.917
CL 0,98 9.305 239.978.373 15.491

Again, the CL proved to be incapable of making some predictions. Despite its

good R2 score, it only reveals forecasts closer to those observed in 2 clients (businesses

G and H). On the other hand, the SVM and NN models continue to show the same

behavior, however, it should be noted that for businesses B, E, F, M, N, and R the SVM

forecasts are closer to the real. Anyway, in this scenario, XGBoost would also be the

chosen model.

5.3 Summed single models: ’Outpatient’, ’Inpatient’ and

’Remaining’

Results are presented in a similar way to the previous ones. Here, a new perspective is

given to the insurer: making calculations at the coverage level in order to try to obtain

some particular effect. Table 5.13 shows, at the business, month, and delay level, what

it would be like if the insurer had models that summed up forecasts for Outpatient,
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’REMAINING’

Inpatient, and other coverages individually.

Table 5.13: Performance measures of summed single models

Model R2 MAE MSE RMSE
RF 0,82 817 4.899.051 2.213
XGBoost 0,83 779 4.810.907 2.193
SVM 0,03 2.102 28.067.883 5.298
NN 0,73 6.788 51.172.823 7.154

Tables 5.14 and 5.15 represent the performance of the models when those outputs

are summed per business. As it is possible to observe in table 5.2, the same observed

values are being compared under 2 different perspectives.

Table 5.14: Sum of ’single’ outputs per business (in euros)

NEG. Observed CL RF XGBoost SVM NN
A 160.851 152.376 310.719 254.236 9.935 -363.097
B 1.756 64.695 -20.791 17.117 -52.682 -451.328
C 109.169 100.140 114.433 77.575 1.243 -370.466
D 32.758 49.749 13.602 15.024 -34.725 -501.295
E -6.001 20.664 12.171 12.579 10.998 -452.259
F -10.295 33.035 13.588 12.635 -42.129 -498.227
G 14.067 17.014 16.546 10.853 -10.115 -445.918
H 11.461 9.690 23.412 9.390 -33.716 -455.176
I 1.792 16.686 3.477 8.577 -33.179 -479.627
J -238 2.199 1.633 595 -31.319 -396.135
K 5.820 2.329 5.758 1.610 -39.659 -479.998
L 4.465 8.029 5.818 3.802 -42.624 -480.731
M 1.538 5.317 5.546 3.518 -43.658 -451.686
N 1.902 1.173 -218 2.244 -39.264 -395.415
O 548 557 4.127 2.309 -43.231 -477.893
P 5.067 1.192 3.146 1.576 -44.480 -450.715
Q 1.478 1.012 4.375 1.799 -49.679 -451.516
R 4.177 2.846 5.119 4.263 -44.252 -480.560

Table 5.15: Performance measures of the ’single’ models when the outputs are summed
per business

Model R2 MAE MSE RMSE
RF 0,90 15.209 1.359.320.594 36.869
XGBoost 0,86 12.519 624.408.028 24.988
SVM 0,43 52.047 3.634.169.306 60.284
NN 0,45 467.909 220.091.629.717 469.139
CL 0,82 11.484 404.895.718 20.122
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Despite a significant improvement in their performances, the SVM and NN models

remain unable to predict desirable outcomes. Also, both tree-based algorithms lose

performance when making predictions this way. When comparing XGBoost, for most

clients, the perspective that calculates all coverages together turns out to be better

(except for J, M, N, O, Q and R businesses). So the mean absolute error rises from

6.500 to 12.500 euros.

The Chain Ladder turns out to have better performance measures from this per-

spective, as evidenced by an increase in R2 from 0.77 to 0.82. In fact, it is forecasting

better for companies with fewer claims. What happened in these cases is that it was

predicting much more what actually occurred. It is now predicting slightly lower val-

ues, which helps in forecasting this type of business. Businesses with more claims may

find that their forecast has also improved, which demonstrates a better ability to adapt

to any behaviour. The mean absolute error goes from 14.500 to 11.400 euros. The

forecast using the Chain Ladder technique improved for 13 of the 18 clients (excluding

C, G, K, M, and P businesses). The insurance company was predicting a total of around

162.000 euros above the observed; after this change, it would predict 148.000 euros

above, which represents an improvement of 14.000 euros.
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Chapter 6

Conclusions

This project compares the traditional Chain Ladder model with machine learning al-

gorithms when predicting claim reserves. For this purpose, a database of corporate

clients of a health insurance company was used. The main objective was to identify

the most accurate way to determine these provisions.

As ML models, the performances of a RF algorithm, an XGBoost algorithm, a

SVM algorithm for regression, and a simple NN algorithm were tested. In addition to

comparing the 4 new models with the Chain Ladder technique, it was also provided

to the insurer a new perspective on performing these calculations by considering

Outpatient, Inpatient, and remaining coverages separately. Each of these predictions

attempted to capture any distinctive behaviour that one of these coverages might

exhibit.

The neural network produced the worst results, with extremely high MAE and

RMSE and very low R2. It was unable to accurately capture the behaviour of the

regression under study. Its application might be too complex for real-world business

scenarios, so it is not worthwhile to conduct a more thorough investigation on the

matter. The SVM model, on the other hand, proved to be unstable, with some values

quite accurate and others quite distant from the actual value, which also proved to be

inadequate.

Tree-based algorithms had very satisfactory results, with the XGBoost outperform-

ing slightly better the RF model. When forecasting all coverages together, XGBoost has

a mean absolute error of 6.500 euros, while RF has 14.200 euros. Its results make this

the best ML algorithm for predicting IBNR claims. In neither of the two, forecasting

by coverage has improved the results.

As also seen in the literature, the Chain Ladder approach offers admirable results

considering how straightforward the computations are, with an R2 score of 0.77. On

average per business, this current methodology has an absolute error of 14.500 euros

for the IBNR estimates. If the insurance company started to calculate the Chain Ladder
by coverage, it would achieve a significant improvement in its forecasts, reducing the

mean absolute error per client to 11.400 euros.
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This method’s worth has been demonstrated once more, and its popularity over the

years has justified it. However, the insurer neglects to consider the fact that, in theory,

it does not verify the assumptions that it requires, as can be observed. The majority of

the research data does not ensure proportionality between the development months,

and there is no independence between accident months. On the other hand, if a

business is smaller, that is, if it has fewer claims and thus many null values, the model

becomes unable to generate forecasts because it is unable to calculate one or more

development factors.

A way to overcome these obstacles is by using more sophisticated algorithms that

are able to adjust to the complexity needed in each situation, as is the case with the

XGBoost algorithm. It is a resilient and reliable approach that prevents excessive

overfitting quite easily, with output predictions that are easy to handle. However, it

must be taken into account that the algorithm is still a black box. In real-world business

scenarios, there is sometimes a need to understand and explain to non-specialized co-

workers and clients how calculations are made. It is therefore more difficult for these

models to gain acceptance within the business. Even for those who work with this kind

of algorithms, the overall method is hardly scalable. This is because the estimators

base their accuracy on prior predictors, making it difficult to streamline the process.

Still, compared to the current method, the XGBoost model that forecasts all cov-

erages together compensates significantly. For the analysed clients, the Chain Ladder
would predict around 162.000 euros above the observed, while XGBoost predicted

only 80.400 euros above, which represents a gain of 81.600 euros and an improvement

of 50%. The mean absolute error per client has improved by around 8.000 euros.

So, the most accurate method to predict IBNR claims is by using an XGBoost algo-

rithm that takes into account the delay to predict, health insurance conditions (plafond

and co-payment percentage), number of people with more than 65 years old, district

of living, coverages and the claims amount where the accident month is the same as

the reporting month. Thus, predictions will be better than they would be using the

traditional approach.
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Chapter 7

Limitations and recommendations
for future works

The project’s major limitation was definitely the computational power available, which

severely constrained the project’s scope. Several attempts were made to improve the

models, but the tools available made the process very time-consuming and were even-

tually left out of the study. For instance, the caret package would have been an ideal

package to implement ML models and tuning parameters in R. However, it requires

cross-validation techniques and a dataset of 20.000 rows proved to be quite heavy for

this purpose (failed attempt after running for 8 hours). This was unfortunate given

that one of the biggest requirements in this project is that it would not make sense to

make a random division between training, validation, and testing (that’s why it ended

up being split into 2015 to 2017, 2018, and 2019 respectively) and the caret pack-

age allowed a manual choice for this division. There was even an attempt to switch

to Python, to explore if it was feasible to find more efficient packages that satisfied

the same requirement. It was discovered and tried to implement the hypopt package

that was specifically designed to manually define the design between training and

validation. Still, it was also demanding a lot of computing power.

Working with such a large amount of data using these resources was a really diffi-

cult challenge. Given the growth of data that is been observed, it would be interesting

to start considering working with servers as an alternative to local processors.

Despite being aware of the potential for improvement, it was decided to run the

models mostly using default parameters. Even with those default parameters, it should

be noted that quite satisfactory results were achieved. However, computational power

also limited the sample under study. The insurance company in question has a huge

portfolio of corporate clients and only 18 were analyzed. One of the recommendations

for future work would be to study the application of the models to different samples

of clients and determine whether the performance is maintained or not. Thus, it is

possible to more confidently apply these IBNR projections across the entire portfolio.
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WORKS

Furthermore, as analyzed in the results, the traditional Chain Ladder method offers

the best predictions for clients with fewer claims, especially when calculations are

made at the coverage level. It would be interesting to study a hybrid model in which

computations are performed using XGBoost for the largest clients and Chain Ladder
for the smaller ones. For this, it would be necessary to find an optimal threshold

that categorizes clients as large or small based on the number of claims they submit

annually. Finally analyzing whether this new perspective could be even better than

having just one model tailored to any case.

It would also be crucial to investigate whether the results are consistent with more

current data to understand how the COVID-19 virus has impacted the behaviour and

forecast of these provisions. Therefore, consider the accident years of 2020, 2021 and

2022.
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