
I

MDSAA

Mestrado em Métodos Analíticos Avançados

Master Program in Data Science and Advanced Analytics

Threat Detection with Computer Vision
Internship at Everis UK

Gabriel Azenha Cardoso

Internship report presented as a requirement to be awarded
the master’s degree in Data Science and Advanced Analytics

II

NOVA Information Management School
Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

Threat Detection with Computer Vision

by

Gabriel Azenha Cardoso

Internship report presented as a requirement to be awarded the master’s degree in Data Science and
Advanced Analytics

Advisor: Professor Doutor Mauro Castelli

February 2023

III

ACKNOWLEDGEMENTS

I must express my gratitude to my family, especially my mother who encouraged me to take this master
course and gave the support and conditions I needed to fulfill this goal.

I am also thankful to my friends from back home and all the new friendships I made along the way by
helping me going through some hard moments that only a few could understand.

I also must thank Everis UK for the opportunity, and in particular to the Innovation team for receiving
me with arms wide open and being extremely patient to answer all my questions and appeals for
assistance.

A special thanks to Mauricio for guiding me through my first professional experience in information
technology and being always kind and supportive and Wen for teaching me everything she knew on
computer vision and deep learning.

My final acknowledgement goes to Professor Mauro Castelli, for all the advice and suggestions to this
paper.

IV

ABSTRACT

This document describes the work conducted during an internship experience at the AI Innovation
Department of Everis UK (now NTT Data). It reports what was done, learned, and developed with the
sole objective of having a commercial product solution for the company's clients.

The primary goal was to implement a solution in retail stores, to help assist the security team with
threat detection. To do so, the solution consists in deploying trained deep learning models into
hardware connected to the CCTV security cameras and detecting in that live feed any potential threats.

By the time I started working on this project, was at an advanced stage so I had to study all the work
previously done to understand what was needed and properly integrate the team fully. My
contribution was focused on the model training process, where I had to create and structure a dataset
and train a model capable of detecting the targeted classes quickly and accurately.

KEYWORDS

computer vision; deep learning; inference; security

V

INDEX

LIST OF FIGURES ... VII

LIST OF TABLES .. VIII

LIST OF ABREVIATIONS AND ACRONYMS ... IX

1. INTRODUCTION ... 1

1.1. IDEA DESCRIPTION ... 2

1.2. BUSINESS OBJECTIVES .. 3

1.3. SITUATION ASSESSMENT ... 3

1.3.1. Resources .. 3

1.3.2. Challenges and Benefits .. 3

1.3.3. Value Proposition .. 3

1.3.4. Business Model ... 4

2. THEORETHICAL FRAMEWORK ... 5

2.1. DEEP LEARNING ... 5

2.2. DEEP LEARNING APPLICATIONS IN COMPUTER VISION 5

2.2.1. Computer Vision Introduction .. 5

2.2.2. Neural Networks ... 5

2.2.3. Convolutional Neural Networks .. 7

2.2.4. TensorFlow .. 9

2.3. NVIDIA DEEPSTREAM ... 11

2.3.2. Deepstream Graph Architecture ... 12

2.3.3. Key Features .. 13

3. SOFTWARES AND TOOLS ... 15

3.1. COMPUTER VISION ANNOTATION TOOL .. 15

3.1.1. Introduction .. 15

3.1.2. CVAT Setup Basics .. 15

3.2. AZURE VIRTUAL MACHINE ... 16

3.3. NVIDIA JETSON NANO .. 16

3.4. NVIDIA TRANSFER LEARNING TOOLKIT .. 17

3.4.1. Overview ... 17

3.4.2. Pre-trained Models ... 18

3.5. PYTHON .. 19

3.6. MOBAXTERM ... 19

3.7. DOCKER .. 20

VI

4. MODELLING ... 22

4.1. STATUS OF THE PROJECT .. 22

4.1.1. Overview ... 22

4.1.2. Scripts .. 23

4.1.3. Model Train Step Guide .. 28

4.1.4. Limitations ... 30

4.2. TRANSFER LEARNING TOOLKIT DEMO ... 31

4.3. DATA PREPARATION .. 41

4.3.1. KITTI Conversion ... 41

4.3.2. Annotations and Folder Structure ... 43

4.4. TRAINING ... 44

5. RESULTS DISCUSSION .. 48

6. CONCLUSIONS .. 50

7. REFERENCES .. 52

VII

LIST OF FIGURES

FIGURE 1 – MAIN ARCHITECTURE COMPONENTS ... 2
FIGURE 2 – MODEL DEVELOPMENT COMPONENTS .. 2
FIGURE 3 - NTT DATA VALUE PROPOSITION CANVAS ... 3
FIGURE 4 - BUSINESS MODEL CANVAS .. 4
FIGURE 5 – BIOLOGICAL AND ARTIFICIAL NEURONS [5] .. 6
FIGURE 6 – ACTIVATION FUNCTIONS PLOTS ... 7
FIGURE 7 – CNN REPRESENTATION ... 8
FIGURE 8 – DIAGRAM OF TENSORFLOW ARCHITECTURE .. 9
FIGURE 9 – A SIMPLIFIED GRAPH CORRESPONDING TO A MODEL [6] .. 10
FIGURE 10 – NVIDIA METROPOLIS .. 11
FIGURE 11 – FULL DEEPSTREAM ARCHITECTURE .. 12
FIGURE 12 – INFERENCE WORKFLOW ... 14
FIGURE 13 – TAO TOOLKIT INTEGRATION ... 14
FIGURE 14 – TLT PRE-TRAINED MODEL’S OVERVIEW .. 18
FIGURE 15 – PERFORMANCE OF PRE-TRAINED MODELS ... 19
FIGURE 16 – OBJECT DETECTION WORKFLOW .. 22
FIGURE 17 – TRAIN_SSD.PY RUNNING LOG ... 30
FIGURE 18 – TLT PAGE ON THE NGC CATALOG FOR VIDEO STREAMING .. 31
FIGURE 19 – DATA TREE FOR NVIDIA DEMO ... 33
FIGURE 20 – TLT INFERENCE WITH MASK/NO MASK DEMO MODEL .. 40
FIGURE 21 – CVAT ANNOTATION EXAMPLE .. 43
FIGURE 22 – TLT RUNNING LOG .. 45
FIGURE 23 – TRAINED MODEL 2 CLASS PRECISION ... 46
FIGURE 24 – TLT INFERENCE TEST ... 47

VIII

LIST OF TABLES

TABLE 1 – UK STORES INCIDENT REGISTRATION ... 1
TABLE 2 – THE TRAIN_SSD.PY ARGUMENTS .. 24
TABLE 3 – EVAL_SSD.PY ARGUMENTS ... 27
TABLE 4 - RUN_SSD_EXAMPLE.PY ARGUMENTS ... 28

IX

LIST OF ABREVIATIONS AND ACRONYMS

AI Artificial Intelligence

API Application Programming Interface

CCTV Closed-Circuit Television

CLI Command Line Interface

CNN Convolutional Neural Networks

CPU Central Processing Unit

CSI Camera Serial Interface

CUDA Compute Unified Device Architecture

CVAT Computer Vision Annotation Tool

DLA Deep Learning Accelerator

GPU Graphics Processing Unit

HPC High Performance Computing

HR Human Resources

IT Information Technology

IVA Intelligent Virtual Agent

ML Machine Learning

MVP Minimum Viable Product

NGC NVIDIA GPU Cloud

NN Neural Networks

NVDEC NVIDIA Video Decoding

NVENC NVIDIA Video Encoding

OEM Original Equipment Manufacturer

RTSP Real Time Stream Protocol

SASL Simple Authentication and Security Layer

SDK Software Development Kit

SVM Support-vector machine

TLS Transport Layer Security

UI User Interface

UK United Kingdom

USB Universal Serial Bus

VGG Visual Geometry Group

X

VIC Video Image Compositor

VM Virtual Machine

1

1. INTRODUCTION

“Everis (an NTT Data Company) is a multinational consulting firm that offers business and strategic
solutions, development, maintenance of technological applications, and outsourcing services. The
company operates in the telecommunications, financial, industrial, utilities, energy, public
administration, and health sectors. It currently employs professionals at its offices and high-
performance centers in 17 countries” [1]. At Everis I integrated the Innovation department. This
department is a key leverage for dealing with volatility, uncertainty, complexity and for creating
adaptative strategies that help break down resistance and seize all possible opportunities. Here the
process is to transform ideas into something tangible and beneficial for customers and society by
creating a vision for a sustainable future through technology. The company works hard to foster a
culture of innovation, both within its organization and its customers. Innovation takes many forms,
and it can help to improve more traditional sectors of activity and business models while accompanying
companies in more ambitious and disruptive initiatives to boost innovation and reach new markets
and customers.

I was assigned to a project that the team had already started to develop, and my inclusion had the
purpose of supporting the current team and speeding up the final delivery for testing and
implementation at the client’s premises.

The client is a retail multinational, and this project aims to develop a solution for the store’s
security teams. The solution consists in connecting and running an AI model with the live camera feed
to identify potentially threatening objects and wearables in real-time. This happens by raising an alert
that will be followed up by security and lead them to act swiftly on the potential issue. As previously
stated, the customer for this solution is from the retail sector and internally they have a Computer
Vision Platform initiative where they listed an Automated Weapon Detection System as one of the top
4 priorities to tackle and solve with this technology. In the UK alone there have been 815 assaults and
robbery incidents reported where a weapon or a face-covering wearable was used.

Incident obs. Occurrences

Weapon detected 558

Face covering worn 257
Table 1 – UK Stores Incident Registration

2

1.1. IDEA DESCRIPTION

This computer vision business use was already requested by our client’s client, so at this point,
NTT Data was a 3rd party in their CV Platform initiative. Another positive outcome from this project is
that the technologies, tools, and methodologies for the solution can and will be re-used to create
future computer vision use cases, where the changing requirement will be to build a new machine
learning model, taking obvious advantage of the same architecture. The solution’s architecture will be
detailed in this report since the main challenge at first was its design and implementation, but mainly,
the initiative aims to have an end-to-end solution able to use a live camera feed, process the videos
using a deep learning model, get detections and send it through an API to a dashboard that will register
those occurrences with details such as the hour, the object detected and the detection camera’s id.

Figure 1 – Main Architecture Components

The Model Dev component is where we have the model training workflow represented below.

Figure 2 – Model Development Components

The Edge Computer is where the camera feed will be connected, and the trained model deployed to
run a real-time inference process that will detect the intended objects. Those detections will be sent

3

to the Cloud component, where an API will filter the no threats and register the threats log in
monitoring dashboards where real-time alerts will be raised per new entry.

1.2. BUSINESS OBJECTIVES

Create an end-to-end MVP ready for implementation and testing. The initial strategy was to
implement a trial in 3 large stores by Q4 and if the results prove to be positive it will be followed by a
trial in 10 other stores (8 large and 2 small).

The success criteria of it will be set by having the end-to-end MVP successfully detect the intended
objects according to the configuration rules imputed.

1.2. SITUATION ASSESSMENT

1.2.1. Resources

There are 3 different resource types necessary to complete this project, hardware, software, and
HR. For hardware necessities, we have the Nvidia Jetson Nano, Azure VM (which later was replaced by
a HP local server). For software we need Nvidia SDK, TensorFlow (though at first, we used Pytorch),
Python, Docker, git and CVAT. Regarding HR, the team should be composed by one Tech Lead, one
Data Scientist and one ML Engineer.

1.2.2. Challenges and Benefits

Some of the main challenges identified were, how to get a proper dataset to train the model,
the need to create realistic scenarios to train this model with and to use CCTV cameras as a source,
and the cloud integration for real-time purposes. Overcoming these key challenges, the team will be
able to conclude the project and have an innovative system to support security operations for a big
variety of industries with the ability to process multiple standard CCTV cameras (without requiring the
installation of new cameras) and have real-time reports and alerts.

1.2.3. Value Proposition

 For the value proposition, we filled the NTT Data Value Proposition Canvas where we start by
identifying the client’s profile to select the Customer Job (this specific case relates to the store’s
security), identify the Gains that come with completing the tasks, and the Pains that come from failing
to do so. Then we relate those Gains and Pains with the Products & Services the company offers and
with that we can identify the Pain Relievers and the Gain Creators.

4

 Figure 3 - NTT Data Value Proposition Canvas

1.2.4. Business Model

Same as in the Value Proposition case, the company already has a Business Model Canvas which
is filled with all the information necessary to successfully develop the solution. The key information
was already addressed above but with the canvas we can better illustrate it and present it to all
stakeholders.

Figure 4 - Business Model Canvas

5

2. THEORETHICAL FRAMEWORK

2.1. DEEP LEARNING

“Deep learning is a subfield of machine learning concerned with algorithms inspired by the
structure and function of the brain called artificial neural networks” [3]. Emerged after the 2000s
computational growth, and with the winning of some complex machine learning competitions. After
20 years we still see deep learning mentioned everywhere.

Deep learning networks, such as Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs), differ from traditional feed-forward multilayer networks. They have more neurons,
enabling the representation of more sophisticated models. How layers t in deep learning networks are
more specialized, such as using locally connected patches of neurons in CNNs and recurrent
connections in RNNs. Deep learning networks require significant computing power to train, which has
become more available in recent years. Additionally, deep learning networks can automatically extract
features from data, eliminating the need for manual feature engineering. These factors have
contributed to the success of deep learning networks in various applications [2].

Among the most known factors that contributed to this boost of deep learning use was the public
availability of large, labeled datasets and the empowerment of parallel GPU computing, which enabled
the transition from CPU-based to GPU-based training, accelerating the training process, which is a key
feature used on the modeling phase of this project [4].

All this fueled a large variety of computer vision problems, such as object detection and face
recognition which are the main ones related to this project.

2.2. DEEP LEARNING APPLICATIONS IN COMPUTER VISION

2.2.1. Computer Vision Introduction

Computer vision can be described as “the automated extraction of information from digital
image”s [5]. Since images are merely sets of matrices without inherent meaning for computers, the
objective is to train them to interpret the pixels in a manner that mimics human perception. The rise
of deep learning had such an impact that in some tasks such as text recognition and face verification,
it achieves performance levels even more accurately than humans.

There are a lot of tasks and ambitious problems being tackled, and this project covers some of them,
specifically video analysis and object detection.

2.2.2. Neural Networks

NNs are inspired by how human brains work. In a neural network, multiple artificial neurons
are organized into layers, with the output of one layer serving as the input to the next. By chaining

6

multiple layers together, a neural network can learn complex patterns in data and perform a wide
range of tasks, such as image classification, speech recognition, and natural language processing.

Figure 5 – Biological and artificial neurons [5]

The sum of the inputs is weighted, so each input is scaled depending on its corresponding weight.
Together with the neuron’s bias, they are the main parameters that we can adjust during the training
phase to optimize the final results. Formalizing the process mathematically for one neuron that takes
two inputs x0 and x1, weighted by a factor w0 and w1, respectively, (with an optional bias) we can express
the input values as a horizontal vector, the weights as vertical vector and multiply them resulting in
the following equation:

So, we can represent a simple artificial neuron in a network as it follows.

Here, z is the output of the neuron, x is the input vector, w is the weight vector, and b is the bias. The
weight vector determines the strength of the connections between the input and the output, and the
bias determines the threshold of the activation function.

7

The equation represents the dot product between the input vector and the weight vector, with the
addition of the bias term. This dot product captures the weighted sum of the inputs, and the bias term
shifts the activation function to the left or right, which affects the range of outputs that can be
produced by the neuron.

Before the neuron outputs, the signal has to pass a key component of the original perceptron, the
activation function, which with linear inputs takes a binary form, returning 1 or a 0 (usually with t =
0).

In non-linearity cases (more complex behaviors) and continuous differentiability the most common
functions are:

● The sigmoid function, (with 𝑒	the exponential function)

● The hyperbolic tangent,

● The Rectified Linear Unit (ReLU),

To visualize the difference between each function, plots in the following figure:

Figure 6 – Activation functions plots [5]

With this logic in mind, we modeled a simple artificial neuron, that can receive a signal, process it and
out a value that can be forwarded to other neurons, building a network [5].

2.2.3. Convolutional Neural Networks

Knowing what Neural Networks are, we go a step deeper into the concept and went on the
understanding what convolutional neural networks (CNNs) are and how these modern methods are
trained to further improve their robustness. CNNs were introduced to solve some of the shortcomings
of the original neural networks. The two main drawbacks of basic networks when dealing with images
are the explosive number of parameters and the lack of spatial reasoning.

8

Images are very complex structures with a large number of values (H x W x D values with H indicating
the image’s height, W width, and D the depth). Even small single-channel images can have input
vectors of size (e.g.) 28 x 28 x 1 = 784 values each and these numbers simply explode when considering
larger RGB images or deeper networks.

Also, because their neurons receive all the values from the previous layer without any distinction (they
are fully connected), these neural networks do not have the concepts of distance or spatiality. Spatial
relations in the data are lost. Multidimensional data (e.g. images) could also be anything from column
vectors to dense layers because their operations do not take into account the data dimensionality nor
the positions of input values, more precisely this means that the idea of proximity between pixels is
lost to fully connected (FC) layers, as all pixel values are combined by the layers without considering
their original positions.

As it does not change the behavior of dense layers, to simplify, it flattens multidimensional inputs
before passing them to these layers (reshapes them into column vectors). Neural layers would be
smarter if they could consider the spatial information, meaning that some input values belong to the
same pixel (channel values) or the same image region (neighbor pixels).

CNNs offers simple solutions to these shortcomings while working in the same way as the networks
previously presented. First, CNNs can handle multidimensional data. For images, it takes as input the
same three-dimensional data (H x W x D) and has its neurons arranged in a similar volume, and this
leads to the second improvement of CNNs that unlike fully connected networks each neuron only has
access to some elements in the neighboring region of the previous layer. This region is called the
receptive field of the neurons:

Figure 7 – CNN representation [7]

By linking neurons only to their neighboring ones in the previous layer, CNNs not only drastically reduce
the number of parameters to train, but also preserve the localization of image features [7].

9

Now that we know the basic concept and logic of CNNs we can understand why they lay the robust
training and optimization foundations of the models used for computer vision projects and used for
the development of our solution.

2.2.4. TensorFlow

TensorFlow is an open-source library developed by Google primarily to simplify the
deployment of machine learning solutions on various platforms.

TensorFlow’s architecture is composed of a C++ layer, a python low-level API that wraps C++ sources,
so when calling a python method in TensorFlow, it usually invokes C++ code behind the scenes but
since python is considered to be easier to use this wrapper allows users to work more quickly. At the
top layer is the high-level API made from two components, Keras and the Estimator API.

The Estimator API contains pre-made components that allow you to build machine learning models
more easily, very similar to building blocks or templates. Keras is a user-friendly, modular, and
extensible wrapper for TensorFlow that at first was designed as an interface to enable fast
experimentation with neural networks.

Figure 8 – Diagram of TensorFlow architecture [6]

In this project, we used TensorFlow 2 which was released with some new features and concepts. One
of those core concepts is the tensors, which can be described as N-dimensional arrays that could take
the form of a scalar, a vector, a 3D matrix, or an N-dimensional matrix. This component is used to store
mathematical values which can be fixed values created using tf.constant or changing values created
using tf.variable.

TensorFlow uses tensors as inputs and as outputs, and a component that transforms one into the other
is called an operation, therefore a computer vision model is composed of multiple operations. These
operations are represented using what is called a directed acyclic graph (DAC), also referred to as a
TensorFlow graph.

10

Figure 9 – A simplified graph corresponding to a model [6]

Each node is composed of smaller operations such as matrix multiplications and additions and while
very simple this graph represents the different layers of a simple model in the form of multiple
operations. By relying on graphs, TensorFlow can run part of the operations on the CPU and another
part on the GPU, run different parts of the graph on different machines in case of a distributed model,
and optimize the graph to avoid unnecessary operations, lending to better computational
performance.

Another useful concept is backpropagating errors using gradient tape. In short, TensorFlow computes
the results of an operation instead of storing the operation, with no information on the operation and
its inputs it would be impossible to automatically differentiate the loss operation. That is where the
gradient tape makes a difference, by running our loss computation in the context of tf.gradienttape,
TensorFlow will automatically record all operations and allow us to replay them backward afterward.

def train_step():
with tf.GradientTape() as tape:
loss = tf.math.abs(A * X - B)
dX = tape.gradient(loss, X)
print('X = {:.2f}, dX = {:2f}'.format(X.numpy(), dX))
X.assign(X - dX)
for i in range(7):
train_step()

The code above defines one training step. Every time train_step is called, the loss is computed in the
context of the gradient tape, then the context is used to compute the gradient. The X variable is then
updated, and we can see it converging toward the value that solves the equation:

X = 20.00, dX = 3.000000
X = 17.00, dX = 3.000000
X = 14.00, dX = 3.000000
X = 11.00, dX = 3.000000

So, for innovative models or when experimenting, the gradient tape is a powerful tool that allows
automatic differentiation without much effort [6].

11

2.3. NVIDIA DEEPSTREAM

2.3.1. What is NVIDIA Deepstream?

“NVIDIA’s Deepstream SDK is a complete streaming analytics toolkit based on GStreamer for
AI-based multi-sensor processing, video, audio, and image understanding. It’s ideal for vision AI
developers, software partners, startups, and OEMs building IVA apps and services” [8]. With this toolkit,
developers can construct stream processing pipelines that include neural networks and other
advanced processing tasks, such as tracking, video encoding/decoding, and video rendering. These
pipelines enable real-time analysis on video, image, and sensor data, facilitating timely insights and
analytics.

Figure 10 – NVIDIA Metropolis [8]

Deepstream takes the streaming data as input – from a USB/CSI camera, video from a file, or streams
over RTSP (which is the available stream format for us) and uses “AI and computer vision to generate
insights from pixels for a better understanding of the environment” [9]. This toolkit has the potential
to serve as a fundamental building block for various video analytic applications, such as safety
monitoring, retail self-checkout, and our specific focus, object detection.

DeepStream supports application development in C/C++ and Python, offering Python bindings for
extra ease of use. The toolkit includes pre-built reference applications in C/C++ and Python to simplify
the development process. The core SDK includes hardware accelerator plugins that leverage
accelerators such as VIC, GPU, DLA, NVDEC, and NVENC, enabling compute-intensive tasks to be
offloaded to dedicated accelerators for optimal performance in video analytics applications.

12

A notable feature of DeepStream is its secure bi-directional communication between edge and cloud
environments. The toolkit includes built-in security protocols such as SASL/Plain authentication using
username/password and 2-way TLS authentication to ensure data security.

DeepStream uses various NVIDIA libraries from the CUDA-X stack, including CUDA, TensorRT, NVIDIA
Triton Inference server, and multimedia libraries. TensorRT accelerates AI inference on NVIDIA GPUs,
and DeepStream abstracts these libraries into plugins, simplifying the development of video analytic
pipelines without the need to learn each library.

DeepStream is optimized for NVIDIA GPUs and can integrate on embedded edge devices running the
Jetson platform, as well as data center GPUs like T4. DeepStream applications can be containerized
using NVIDIA container Runtime and are available on NGC, the NVIDIA GPU cloud registry [9].

2.3.2. Deepstream Graph Architecture

“Deepstream is an optimized graph architecture built using the open-source GStreamer
framework. The graph below shows a typical video analytic application starting from input video to
outputting insights. All the individual blocks are various plugins that are used. At the bottom are the
different hardware engines that are utilized throughout the application. Optimum memory
management with zero-memory copy between plugins and the use of various accelerators ensure the
highest performance” [9].

Figure 11 – Full Deepstream Architecture [9]

DeepStream provides a comprehensive suite of GStreamer plugins that serve as foundational
building blocks for constructing efficient video analytics pipelines. These plugins are specifically
designed to harness hardware acceleration capabilities and optimize performance in various video
processing tasks:

• The streaming data can be captured from diverse sources such as RTSP, local file systems,
or cameras and processed using the CPU.

• Optionally, image pre-processing can be applied after decoding, including image de-
warping for correcting distortions from FishEye lenses or color space conversion.

13

• Frames are then batched for optimal inference performance using the gst-nvstreammux
plugin.

• Inference can be performed using TensorRT, NVIDIA's inference accelerator runtime, or
native frameworks such as TensorFlow or PyTorch with the Triton inference server. GPU
or DLA (Deep Learning Accelerator) can be utilized for inference on Jetson AGX Xavier and
Xavier NX.

• Object tracking can be performed after inference using built-in reference trackers in the
SDK.

• Visualization artifacts such as bounding boxes, segmentation masks, and labels can be
created.

DeepStream offers various options for outputting the results, such as rendering the output with
bounding boxes on the screen, saving the output to a local disk, streaming out over RTSP, or sending
metadata to the cloud. Built-in broker protocols such as Kafka, MQTT, AMQP, and Azure IoT are
available, and custom broker adapters can be created to suit specific requirements [9].

2.3.3. Key Features

DeepStream provides comprehensive support for AI models, specifically for object detection
and segmentation, encompassing cutting-edge models such as SSD, YOLO, FasterRCNN, and
MaskRCNN. Moreover, DeepStream facilitates the integration of custom functions and libraries,
catering to unique requirements.

The versatility of DeepStream spans from rapid prototyping to full-scale production-level solutions,
affording the flexibility to choose the most suitable inference path. The platform seamlessly integrates
with the NVIDIA Triton™ Inference Server, allowing for the deployment of models in native frameworks
such as PyTorch and TensorFlow for inference. Additionally, DeepStream leverages the NVIDIA
TensorRT™ to enable high-throughput inference with support for multi-GPU, multi-stream, and
batching, leading to optimal performance.

In addition to supporting native inference, DeepStream's capabilities extend to communication with
independent/remote instances of the Triton Inference Server via gRPC, enabling the implementation
of distributed inference solutions. This empowers efficient and scalable deployment of AI models in
distributed environments, ensuring robustness and scalability of the inference process.

14

Figure 12 – Inference workflow [8]

Furthermore, DeepStream facilitates seamless integration with the Transfer Learning Toolkit (TAO
Toolkit) within the NVIDIA Metropolis ecosystem, enabling accelerated development and enhanced
real-time performance of vision AI systems. The TAO Toolkit enables developers to adapt and optimize
production-quality vision AI models, including SSD, MaskRCNN, YOLOv4, RetinaNet, and other state-
of-the-art models, while DeepStream offers turnkey integration of these models for deployment.This
integrated approach empowers the use of pre-trained models and transfer learning techniques,
resulting in a streamlined workflow for building end-to-end vision AI applications. By leveraging the
TAO Toolkit in conjunction with DeepStream, developers can achieve faster development cycles and
superior performance in real-time scenarios, making it a valuable tool for academic research and
development in the field of vision-based AI [9].

Figure 13 – TAO Toolkit integration [11]

15

3. SOFTWARES AND TOOLS

3.1. COMPUTER VISION ANNOTATION TOOL

3.1.1. Introduction

CVAT is a free and open-source interactive video and image annotation tool for computer
vision. It was designed to provide users with a set of convenient instruments for annotating digital
images and videos since data scientists need lots of annotated data to train (in our case) the CNNs at
the core of AI workflows and obtain that data with the necessary quality is a huge and time-consuming
challenge.

CVAT supports supervised machine learning tasks pertaining to object detection, image classification,
image segmentation, and 3D data annotation. It allows users to annotate images with multiple tools
(boxes, polygons, cuboids, circles, skeletons, etc).

3.1.2. CVAT Setup basics

In our particular case, we used machines with Windows 10 and for that, we needed to install
a few other tools for further use:

• Install WSL2 (Windows Subsystem for Linux);
• Download and install Docker Desktop;
• Download and install git for Windows;
• Download and install Google Chrome, it is the only browser that supports CVAT;

Open the Git Bash application and clone the CVAT source code from the GitHub repository with the
following command.

git clone https://github.com/opencv/cvat
cd cvat

Then we must run docker containers. It will take some time to download the latest CVAT release and
other required images like Postgres, Redis, etc. from DockerHub and create containers.

docker-compose up -d

After this, we create a superuser. A superuser can use an admin panel to assign correct groups to other
users.

enter docker image first
Docker exec -it cvat_server /bin/bash
then run

16

Python3 ~/manage.py createsuperuser

Now we must choose a username and password for the admin account and we’re good to go.

Finally, we open the Google Chrome browser and go to localhost:8080, type the previously created
superuser login/password account and we can create our first task.

3.2. AZURE VIRTUAL MACHINE

 Azure virtual machines are dynamic and scalable computing resources that provision on
demand in the Microsoft Azure cloud environment. These virtual machines are utilized on host
applications when greater control over the computing environment is desired, as compared to other
available computing resources. By leveraging virtual machines, organizations can benefit from
virtualization without the need for investment in physical hardware. However, it is paramount to note
that virtual machines require management tasks, such as configuration, patch management, and
software installation, like traditional servers.

One of the notable advantages of utilizing Azure virtual machines is the ease and expediency of their
setup, making them well-suited for deploying development and test environments. Moreover,
organizations often employ Azure virtual machines for hosting their applications in Microsoft Azure
due to the pay-as-you-go pricing model, which enables them to only pay for virtual machines when
they are actively used. Furthermore, virtual machines in Azure can be utilized to extend on-premises
data centers to the cloud through site-to-site VPN connectivity, facilitating communication between
on-premises environments and virtual machines attached to a virtual network in Azure.

When designing an application infrastructure that incorporates Azure virtual machines, several crucial
factors must be considered. These include establishing appropriate naming conventions for virtual
machines and selecting optimal deployment locations based on proximity to end users. Additionally,
determining the appropriated virtual machine sizing based on performance and resource
requirements and understanding and managing CPU and virtual machine quotas imposed by Microsoft
Azure are crucial factors to consider. Furthermore, careful consideration of the operating system and
configuration requirements for virtual machines is essential to ensure optimal performance and
functionality of the deployed applications.

3.3. NVIDIA JETSON NANO

“NVIDIA® Jetson Nano™ Developer Kit is a small, powerful computer that lets you run multiple
neural networks in parallel for applications like image classification, object detection, segmentation,
and speech processing. All in an easy-to-use platform that runs in as little as 5 watts” [10]. To use the
system, it is necessary to insert a microSD card containing the system image, boot the developer kit,
and commence using the NVIDIA JetPack SDK, which is uniformly employed across the entire NVIDIA
Jetson™ product family. JetPack is compatible with NVIDIA's state-of-the-art AI platform for training
and deploying AI software, simplifying the development process for researchers and practitioners. This

17

powerful tool facilitates exploration of the comprehensive functionalities of the DeepStream SDK for
video and image understanding based on AI, as well as enables access and effective utilization of the
Nvidia Transfer Learning Toolkit.

3.4. NVIDIA TRANSFER LEARNING TOOLKIT

3.4.1. Overview

 “The NVIDIA Transfer Learning Toolkit (TLT) is used with NVIDIA pre-trained models to create
custom Computer Vision (CV) and Conversational AI models with our data. Training AI models using TLT
does not require expertise in AI or deep learning. A simplified Command Line Interface (CLI) abstracts
away all the AI framework complexity and enables users to build production-quality AI models using a
simple spec file and one of the NVIDIA pre-trained models. A basic understanding of deep learning and
minimal to zero coding is required” [11].

With TLT we can:

• Refine models for computer vision (CV) applications, including object detection, image
classification, segmentation, character recognition (CR), and point estimation, by leveraging
NVIDIA's pre-trained CV models.

• Adapt pre-trained models for conversational AI applications, such as automatic speech
recognition (ASR) or natural language processing (NLP), using NVIDIA's pre-trained
conversational AI models.

• Incorporate new classes into an existing pre-trained model to expand its capabilities.

• Re-train a model to adapt to different use cases or scenarios.

• Apply a model pruning capability on CV models to reduce the overall size and optimizing its
efficiency and performance.

With the Transfer Learning Toolkit (TLT), we can create customized artificial intelligence (AI) models
by modifying the training hyperparameters specified in each spec file. It can be easily accomplished by
following the provided guide, which includes sample spec files and parameter definitions for all models
supported by TLT, in either the Computer Vision or Conversational AI section based on the desired
model. In addition to creating accurate AI models, TLT also offers the capability to optimize models for
inference, ensuring the highest throughput for deployment scenarios..

TLT “is a Python package hosted on the NVIDIA Python Package Index. It interacts with lower-level TLT
dockers available from the NVIDIA GPU Accelerated Container Registry (NGC) and its containers come
pre-installed with all dependencies required for training” [11]. The CLI executes from Jupyter
notebooks that include Docker containers and offer a set of straightforward commands, including data
augmentation, training, evaluation, inference, pruning, and export, as part of the TLT workflow. The
outcome of this workflow is a trained model that can be deployed for inference on NVIDIA devices
using DeepStream, TensorRT, Riva, and the TLT CV Inference Pipeline, providing a comprehensive
solution for custom AI model development and deployment. The TLT application layer, built on top of

18

CUDA-X, includes NVIDIA Container Runtime for GPU acceleration, CUDA, cuDNN, and TensorRT for
optimized and accelerated deep learning model deployment.

3.4.2. Pre-trained Models

There are two types of pre-trained models:

• Purpose-built pre-trained models, built for a specific task, offer high accuracy, and can be used
directly for inference or as a starting point for transfer learning with TLT using our own dataset.

• General purpose vision models, where pre-trained weights serve as a valuable starting point
to build more complex models, as they are trained on Open image datasets and offer improved
performance compared to random weight initialization.

There are 100+ permutations of model architecture with the general-purpose vision models.

Figure 14 – TLT Pre-trained model’s overview [11]

“Purpose-built models are built for high accuracy and performance” [11]. These pre-trained models
design facilitate the deployment for enumerous applications, such as smart cities, retail, public safety,
healthcare, and also they can be fine-tuned with the users' own data. All models are trained on
proprietary images and demonstrate high accuracy on NVIDIA test data. Detailed information about
each model is in individual model cards, including typical use cases and key performance indicators as
summarized in the table below. For instance, PeopleNet is well-suited for people detection and
counting in buildings, retail spaces, hospitals, and more. TrafficCamNet and DashCamNet are ideal for
traffic applications, enabling vehicle detection and tracking on roads.

This table represents the inference performance measured using the trtexec tool in TensorRT samples.

19

Figure 15 – Performance of Pre-trained Models [11]

Users can train general-purpose image classification and object detection models using a variety of
architectures, including ResNet, EfficientNet, VGG, MobileNet, GoogLeNet, SqueezeNet, DarkNet,
YOLOV3/V4, FasterRCNN, SSD, RetinaNet, DSSD, and DetectNet_v2. [11].

3.5. PYTHON

“Python is an interpreted, object-oriented, high-level programming language with dynamic
semantics” [12]. Its high-level built-in data structures, dynamic typing, and dynamic binding make
it ideal for Rapid Application Development and as a scripting or glue language for connecting
existing components. Its simple and readable syntax reduces the cost of program maintenance,
and support for modules and packages promotes modularity and code reuse. The availability of
Python interpreters and an extensive standard library for all major platforms without charge allows
for easy distribution. Python's edit-test-debug cycle is fast due to the lack of a compilation step,
and debugging is made easy with exceptions and stack trace. The source-level debugger, written
in Python itself, showcases Python's introspective power. Additionally, adding print statements for
debugging is effective due to Python's fast edit-test-debug cycle. [12].

3.6. MOBAXTERM

 MobaXterm is a toolbox for remote computing where in a single application we have at our
disposal loads of functions that are tailored for our remote jobs more simply and it provides all the
important remote network tools (SSH, X11, RDP, VNC, FTP, MOSH, ...) and Unix commands (bash, ls,
cat, sed, grep, awk, rsync, ...). “There are many advantages of having an All-In-One network application
for our remote tasks, e.g. when we use SSH to connect to a remote server, a graphical SFTP browser
will automatically pop up to directly edit the remote files” [13].

20

In our project, we use MobaXterm to launch a remote session on the VM with an SSH key. That way,
using Unix commands we manage the data stored inside and apply the necessary files to train our
model and export it easily.

3.7. DOCKER

 “Docker is an open platform for developing, shipping, and running applications. Docker enables
us to separate applications from our infrastructure so we can deliver software quickly. With Docker, we
can manage our infrastructure in the same ways we manage our applications. By taking advantage of
Docker’s methodologies for shipping, testing, and deploying code quickly, we reduce the delay between
writing code and running it in production” [14].

“Docker provides the ability to package and run an application in a container” [14]. Containers provide
isolation, security, and portability, allowing for concurrent execution of multiple lightweight and self-
contained application environments on a single host, facilitating easy sharing and consistent behavior
across different environments.

Docker operates on a client-server architecture, where the Docker client communicates with the
Docker daemon responsible for building, running, and distributing containers. The Docker client and
daemon can be on the same system or connected remotely, using a REST API, UNIX sockets, or a
network interface. Docker Compose is another Docker client that facilitates working with containerized
applications composed of multiple containers.

“The Docker daemon (dockerd) listens for Docker API requests and manages Docker objects such as
images, containers, networks, and volumes. A daemon can also communicate with other daemons to
manage Docker services” [14].

“The Docker client (docker) is the primary way that many Docker users interact with Docker. When you
use commands such as docker run, the client sends these commands to dockerd, which carries them
out. The docker command uses the Docker API. The Docker client can communicate with more than one
daemon” [14].

“Docker Desktop is an easy-to-install application for your Mac, Windows, or Linux environment that
enables you to build and share containerized applications and microservices. Docker Desktop includes
the Docker daemon (dockerd), the Docker client (docker), Docker Compose, Docker Content Trust,
Kubernetes, and Credential Helper. For more information, see Docker Desktop” [14].

“A Docker registry stores Docker images. Docker Hub is a public registry that anyone can use, and
Docker is configured to look for images on Docker Hub by default. You can even run your private
registry. When you use the docker pull or docker run commands, the required images are pulled from
your configured registry. When you use the docker push command, your image is pushed to your
configured registry” [14].

“When you use Docker, you are creating and using images, containers, networks, volumes, plugins, and
other objects. This section is a brief overview of some of those objects” [14].

21

“An image is a read-only template with instructions for creating a Docker container. Often, an image is
based on another image, with some additional customization” [14]. Docker images can be created
using a Dockerfile with simple syntax to define the steps, resulting in lightweight, small, and fast images
that are composed of layers and can be built from scratch or obtained from a registry.

“A container is a runnable instance of an image. You can create, start, stop, move, or delete a container
using the Docker API or CLI. You can connect a container to one or more networks, attach storage to it,
or even create a new image based on its current state” [14]. Docker containers provide default isolation
from other containers and the host machine, and their state changes are lost when the containers are
removed, making them lightweight and flexible for application deployment.

22

4. MODELLING

4.1. STATUS OF THE PROJECT

4.1.1. Overview

By the time I got assigned to this project, there was already a system designed and tested. This
system was based on the work that an Nvidia developer that goes by the name of dusty-nv in GitHub.
On his GitHub, there is a repository with a shared work (https://github.com/dusty-nv/pytorch-
ssd/tree/8ed842a408f8c4a8812f430cf8063e0b93a56803) that consists of the implementation of an
SSD (Single Shot Detector) for object detection with PyTorch and using MobilleNet architecture.

In this git repository, we have all the necessary scripts (written in python) for the training, evaluation,
and export of the trained model, we must prepare the input with our labeled data and run the scripts
with our specifications.

Figure 16 – Object Detection Workflow

To start the process, we have to get a usable input, meaning we have to label data with the classes we
want to detect (e.g. knife, face mask…), which will be explained in more detail ahead.

Having the correct input, we call directly the split_traintest.py to separate our data into two datasets,
one for training and the other for testing later. Then we run the train_ssd.py script, with the selected
pre-trained model and subsequent specifications. When the training concludes we check the detection
accuracy of our model for each class by calling the eval_ssd.py. With the output, we evaluate if the
model is ready to be exported and tested or if we need to retrain it with more data labeled with a
specific class or even with a different pre-trained model, the accuracy benchmark is 70% for each class
detection.

Finally, if the accuracy is over our minimum benchmark, we call the onnx_export.py, which will give us
a .onnx file containing the model ready to be tested with the run_ssd_example.py, where we confirm
if our model detects anything in a set of random images. After we confirm detections, the model is
stored in our VM and sent to the Jetson Nano, to run on the live CCTV feed connected to that machine.

23

4.1.2. Scripts

 As mentioned above, in the training process with PyTorch we use 5 scripts:

• split_traintest.py
• train_ssd.py
• eval_ssd.py
• onnx_export.py
• run_ssd_example.py

The first is the split_traintest.py, which is a Python script that splits annotated images into training,
validation, and test datasets. The script uses the ArgumentParser module to allow the user to input
the path to the annotations directory and the images split text output directory. The Path() object is
used to format the input paths according to the operating system being used. The os module's listdir
function is used to get a list of all the files in the annotations directory. The names of the files are then
extracted, split into training and test datasets using the ‘train_test_split’ function from scikit-learn, and
written to separate text files in the images split txt output directory.

split the whole dataset to train and test: 8:2
from sklearn.model_selection import train_test_split
X_train, X_test = train_test_split(name_list, test_size=0.20, random_state=
1)

write the names to sperate txt files: train_val and test
train_list = open(train_filename,'w')
for element in X_train:
 train_list.write(element)
 train_list.write('\n')
train_list.close()

test_list = open(test_filename,'w')
for element in X_test:
 test_list.write(element)
 test_list.write('\n')
test_list.close()

With the input data for the train_ssd.py script, the train can begin. This is a script for training and
evaluating a single-shot multi-box detection model using the PyTorch deep learning framework. It
supports several base architectures (VGG-16, MobileNet-V1, MobileNet-V2) and allows for training on
different datasets (PASCAL VOC, OpenImages). The script covers the following steps:

1. Setting up logging and command line argument parsing.
2. Loading datasets and defining data loaders.
3. Defining the base architecture and customizing it with the desired parameters.
4. Setting up the loss function and optimizer.
5. Initializing the model and running training and evaluation.
6. Logging training statistics using TensorBoard.

This script uses several libraries such as argparse, torch, and torchvision. The argparse module is used
to define command-line arguments for various hyperparameters and settings, and once these
hyperparameters and settings are defined, the script will train the detector according to those
specifications.

24

Table 2 – The train_ssd.py arguments

The ‘train()’ is the function that trains a deep learning model on an object detection task. The input
includes a data loader, a network model, a loss criterion, an optimizer, and a device (GPU in this case
is). During each iteration, the gradients of the model parameters are computed and updated using the
optimizer. The running loss, regression loss, and classification loss are computed and logged every
"debug_steps" iterations. The TensorBoard scalar values for the average loss, average regression loss,
and average classification loss are also recorded. Additionally, the network graph is added to
TensorBoard after the training is completed.

def train(loader, net, criterion, optimizer, device, debug_steps=100, epoch
=-1):
 net.train(True)
 running_loss = 0.0
 running_regression_loss = 0.0
 running_classification_loss = 0.0
 for i, data in enumerate(loader):
 images, boxes, labels = data
 images = images.to(device)
 boxes = boxes.to(device)
 labels = labels.to(device)

 optimizer.zero_grad()
 confidence, locations = net(images)
 regression_loss, classification_loss = criterion(confidence, locati
ons, labels, boxes) # TODO CHANGE BOXES
 loss = regression_loss + classification_loss
 loss.backward()
 optimizer.step()

 running_loss += loss.item()
 running_regression_loss += regression_loss.item()
 running_classification_loss += classification_loss.item()
 if i and i % debug_steps == 0:
 avg_loss = running_loss / debug_steps
 avg_reg_loss = running_regression_loss / debug_steps
 avg_clf_loss = running_classification_loss / debug_steps
 logging.info(
 f"Epoch: {epoch}, Step: {i}/{len(loader)}, " +
 f"Avg Loss: {avg_loss:.4f}, " +
 f"Avg Regression Loss {avg_reg_loss:.4f}, " +
 f"Avg Classification Loss: {avg_clf_loss:.4f}"
)

25

 running_loss = 0.0
 running_regression_loss = 0.0
 running_classification_loss = 0.0
 tb.add_scalar('Train_Loss', avg_loss, epoch)
 tb.add_scalar('Train_Regression_Loss', avg_reg_loss, epoch)
 tb.add_scalar('Train_Classification_Loss', avg_clf_loss, epoch)
 tb.add_graph(net, images)

Then the ‘test()’ function is used to evaluate the performance of the object detection model. It sets
the network to evaluation mode by calling ‘net.eval()’, and then calculates the loss on the validation
dataset. The function loops over the validation data and calculates the loss, regression loss and
classification loss. The loss is calculated by calling the ‘criterion’ function and passing it the network's
output, ‘confidence’ and ‘locations’, along with the ground truth ‘labels ‘and ‘boxes.’ The loss is
accumulated for each batch and divided by the number of batches to obtain the average loss for the
entire validation dataset.

def test(loader, net, criterion, device):
 net.eval()
 running_loss = 0.0
 running_regression_loss = 0.0
 running_classification_loss = 0.0
 num = 0
 for _, data in enumerate(loader):
 images, boxes, labels = data
 images = images.to(device)
 boxes = boxes.to(device)
 labels = labels.to(device)
 num += 1

 with torch.no_grad():
 confidence, locations = net(images)
 regression_loss, classification_loss = criterion(confidence, lo
cations, labels, boxes)
 loss = regression_loss + classification_loss

 running_loss += loss.item()
 running_regression_loss += regression_loss.item()
 running_classification_loss += classification_loss.item()
 return running_loss / num, running_regression_loss / num, running_class
ification_loss / num

At the end of the function, it returns the average of the total loss, average regression loss, and average
classification loss.

The next step is to evaluate the model’s precision with the eval_ssd.py script.

It has two functions, the first one is the ‘group_annotation_by_class()’, which is the function that
groups the annotations in the dataset, loops over all of those annotations and extracts information
such as the ground-truth bounding boxes, the class labels, and whether the annotation is considered
difficult or not. The extracted information is then stored in three dictionaries: ‘true_case_stat’,
‘all_gt_boxes’, and ‘all_difficult_cases’. The ‘true_case_stat’ dictionary stores the number of true (i.e.,

26

non-difficult) cases for each class. The ‘all_gt_boxes’ dictionary stores the ground-truth bounding
boxes for each image and class, and the ‘all_difficult_cases’ dictionary stores the difficulty status for
each annotation for each class and image. Finally, the function converts the lists of bounding boxes
and difficulties into tensors and returns the three dictionaries.

Then it runs the second function on this script, the compute_average_precision_per_class(), which is
the function that computes the average precision of object detection. The input arguments include:

• ‘num_true_cases’: a dictionary with class index as key and number of true positive cases for
that class as value.

• ‘gt_boxes’: a dictionary with class index as key and for each class, a dictionary of image IDs and
their corresponding ground truth bounding boxes.

• ‘difficult_cases’: a dictionary with class index as key and for each class, a dictionary of image
IDs and the corresponding ground truth "difficulty" labels.

• ‘prediction_file’: a file containing the model predictions, with each line having the format
‘image_id\tscore\tbox_coordinates’.

• ‘iou_threshold’: the Intersection over Union (IoU) threshold used to determine a true positive
match between a prediction and ground truth.

• ‘use_2007_metric’: a flag indicating whether to use the 11-point interpolation method (VOC
2007) or not.

The function first reads the prediction file and stores the image IDs, boxes, and scores in separate lists,
sorted by score in descending order. Then, for each prediction, it finds the corresponding ground truth
box (if there is one) and computes its IoU with the prediction. If the IoU is above the threshold, the
prediction is considered a true positive, unless the ground truth is marked as "difficult". The true and
false positive counts are accumulated as the loop progresses and are used to compute precision and
recall. Finally, the average precision is computed using either the VOC 2007 method (if
‘use_2007_metric’ is set) or the standard method.

def compute_average_precision_per_class(num_true_cases,gt_boxes,
 difficult_cases, prediction_file,
 iou_threshold, use_2007_metric):
 with open(prediction_file) as f:
 image_ids = []
 boxes = []
 scores = []
 for line in f:
 t = line.rstrip().split("\t")
 image_ids.append(t[0])
 scores.append(float(t[1]))
 box = torch.tensor([float(v) for v in t[2:]]).unsqueeze(0)
 box -= 1.0
 boxes.append(box)
 scores = np.array(scores)
 sorted_indexes = np.argsort(-scores)
 boxes = [boxes[i] for i in sorted_indexes]
 image_ids = [image_ids[i] for i in sorted_indexes]
 true_positive = np.zeros(len(image_ids))

27

 false_positive = np.zeros(len(image_ids))
 matched = set()
 for i, image_id in enumerate(image_ids):
 box = boxes[i]
 if image_id not in gt_boxes:
 false_positive[i] = 1
 continue

 gt_box = gt_boxes[image_id]
 ious = box_utils.iou_of(box, gt_box)
 max_iou = torch.max(ious).item()
 max_arg = torch.argmax(ious).item()
 if max_iou > iou_threshold:
 if difficult_cases[image_id][max_arg] == 0:
 if (image_id, max_arg) not in matched:
 true_positive[i] = 1
 matched.add((image_id, max_arg))
 else:
 false_positive[i] = 1
 else:
 false_positive[i] = 1

 true_positive = true_positive.cumsum()
 false_positive = false_positive.cumsum()
 precision = true_positive / (true_positive + false_positive)
 recall = true_positive / num_true_cases
 if use_2007_metric:
 return measurements.compute_voc2007_average_precision(precision, re
call)
 # 11 point interpolation for average precision
 else:
 return measurements.compute_average_precision(precision, recall)

The argsparse input hyperparameters and settings for this script.

Table 3 – eval_ssd.py arguments

If the precision across all classes is over 70%, the model is ready to be exported, tested, and sent to
the team that will test the inference in the store’s CCTV live feed with the Jetson Nano.

To export the file there is the onnx_export.py script. This script converts the trained PyTorch object
detection model to ONNX format. It uses the ‘torch.onnx’ module for the conversion and ‘argparse’
for parsing the command-line arguments of network architecture, input and output paths, labels file,
input dimensions, and batch size. The script sets the device to use CUDA if available and specified by
the user, otherwise it uses the CPU.

28

The script supports multiple network architectures, including VGG16, MobileNet v1, MobileNet v1 Lite,
SqueezeNet Lite, and MobileNet v2 Lite.

It formats the input model paths and automatically selects the checkpoint with the lowest loss if an
input path is not specified, determines the number of classes by counting the lines in the labels file,
constructs the network architecture based on the specified architecture argument, then loads the
PyTorch model checkpoint, converts it to ONNX format, and saves it to the specified output path.

Table 4 – onnx_export.py arguments

The last script of this model train workflow is the run_ssd_example.py, which is the inference test of
the object detection model. The script loads the input images and the label file and creates a list of
image paths. After that, it chooses the network architecture based on the provided "--net" argument
and creates the corresponding SSD network, then it loads the trained model weights and runs object
detection on each image in the ‘images_paths’ list. The output of the detection is the images with the
bounding boxes around the detected objects, which are saved in the specified ‘output_images_dir’.

Table 5 - run_ssd_example.py arguments

4.1.3. Model train step guide

The whole model train workflow with PyTorch can be resumed to a few steps. Before running
the scripts and assuming that there already is a VOC PASCAL annotations dataset, we start by accessing
the GPU machine (Azure virtual machine with 4 GPUs) with MobaXterm.

ssh everisai@**.***.***.**
password: *********

29

Next we activate the ‘opencv’ environment with a conda command. It allows to use a specific version
of the library in isolation from the rest of our system. After executing this command, we should be able

to run the scripts that use OpenCV.

conda activate opencv

Then we run a command to start a PyTorch Docker container using the Nvidia GPU acceleration and
map the host directory, where we have stored the annotations dataset and the scripts, to the container
directory.

sudo nvidia-docker run --ipc=host --gpus all -it --rm -v /home/everisai/pyt
hon/:/python nvcr.io/nvidia/pytorch:21.05-py3

The ‘--ipc=host’ flag is used to share the host inter-process communication namespace with the
container, allowing it to access the host's GPU devices, the ‘--gpus all’ flag specifies that all available
GPUs should be used, the ‘-it’ starts the container in interactive mode and the ‘—rm’ automatically
removes the container when it exits. The ‘nvcr.io/nvidia/pytorch:21.05-py3’ is the image name for the
PyTorch environment with the CUDA version.

The next step is to install the libraries that we need and are missing from the container.

pip install torch==1.7.0+cu110 torchvision==0.8.1+cu110 torchaudio===0.7.0
-f https://download.pytorch.org/whl/torch_stable.html

The command will install (outdated versions used by the time of this project) PyTorch version 1.9.0,
torchvision 0.8.1 and torchaudio 0.7.0. The ‘+cu110’ indicates that these packages are built with CUDA
11.0 support, which requires an Nvidia GPU. The ‘-f’ option allows you to specify the official PyTorch
repository for stable releases URL from which to download the package.

Then we set the directory to the scripts folder and start to run them.

cd /python/training/detection/model_v1.0

Inside the container we start by running the train_ssd.py script. The split_traintest.py is ran in our local
machines and then the separated data is imported into the container.

python3 train_ssd.py --net=vgg16-ssd --dataset-type=voc --pretrained-ssd=mo
dels/vgg16-ssd-mp-0_7726.pth --data=data/ --model-dir=models/vgg16/ --batch
-size=30 --workers 1 --learning-rate=0.001 --base-net-lr=0.001 --epochs 100

30

The command runs the training script for the object detection model using the architecture with the
VGG16 backbone. The model is set to use a batch size of 30, a learning rate of 0.001, and is trained for
100 epochs.

I specified the use of a single worker for training with the ‘--workers 1’. This argument is used to specify
the number of worker threads to use for data loading, which can help speed up the training process
by loading data in parallel with the training process.

The next step is the evaluation of the object detection model with the eval_ssd.py script. The
evaluation script will use the specified SSD architecture (vgg16-ssd), the trained model and the dataset
to evaluate the model's precision across all classes.

python3 eval_ssd.py --net vgg16-ssd --dataset data/ --trained_model models/
vgg16/vgg16-ssd-Epoch-93-Loss-2.5332502018321645.pth --label_file models/ l
abels.txt

If the model has an acceptable precision, it is exported with the onnx_export.py script.

python3 onnx_export.py --model-dir=models/vgg16

Then we run the trial implementation with the run_ssd_example.py script.

python3 run_ssd_example_WY.py vgg16-ssd models/vgg16/vgg16-ssd-Epoch-93-Los
s-2.5332502018321645.pth models/vgg16/labels.txt data/JPEGImages

If there is confirmation of correct detections in the test images, the model moves to the inference
process.

4.1.4. Limitations

 This solution works and has positive results, but it also has limitations that can become
liabilities for this project. The main problem here was that the time it takes an immense amount of
time to fully run the train_ssd.py script. Each train attempt with a dataset of approximately 30
thousand annotations took between 15 and 16 hours.

Figure 17 – train_ssd.py running log

31

That time was not ideal since each hour of VM usage has its associated cost, and those costs were over
the budget, which raised a financial liability. With this code, we were only able to train our model with
one CUDA card at a time, but since our VM machine has four available GPU cards there is a possibility
of using multiple cards to run the same script.

My challenge here is to change the workflow and enable the multi-GPU model training. That will be
accomplished with the NVIDIA Transfer Learning Toolkit since it is compatible with our hardware, has
a lot of architectural frameworks flexibility, and has a multi-GPU selection feature which in theory will
accelerate the whole process.

4.2. TRANSFER LEARNING TOOLKIT DEMO

 The first step to implement the NVIDIA Transfer Learning Toolkit is to install and configure an
NGC Catalog account (NVIDIA GPU Cloud). This catalog is a curated set of GPU-optimized software for
AI, HPC and Visualization.

NGC offers a diverse collection of containers, including deep learning frameworks, that bundle
software applications, libraries, dependencies, and run-time compilers in a self-contained
environment for seamless deployment across different computing environments, facilitating software
portability and enabling easy scaling of applications across the cloud, data center, and edge
environments with a single command [16].

Then I had to create an NGC account in https://catalog.ngc.nvidia.com/ and get an API $KEY that it can
be generated in the account options.

Having the previous step concluded, I am able to fetch and start any NGC container. In the TLT
collection, there’s a detailed overview that goes through of what it is, how it works, where to get
started. After studying the TLT available options, I settled for the Transfer Learning Toolkits For
Streaming Video Analytics container.

The next step was to fetch the container from NGC onto the GPU instance, and that is done by running
a provided docker command on the VM terminal.

Figure 18 – TLT page on the NGC catalog for video streaming [16]

32

The docker command for pulling the container.

$ docker pull nvcr.io/nvidia/tlt-streamanalytics:v2.0_py3

Concluding the container download, we need to run the command to start the same container in an
interactive terminal session. Http requests are forwarded from the port 80:8888 for the Jupyter
notebook, so a local directory is mounted on the GPU instance with access to the dataset for the
transfer learning with the following command:

$ docker run --gpus all -it -v "/path/to/dir/on/host":"/path/to/dir/in/dock
er" \

-p 80:8888 nvcr.io/nvidia/tlt-streamanalytics:v2.0_py3 /bin/bash

The command starts by running the Docker container using the docker run command, followed by
some flags and options:

• The --gpus all flag is used to enable GPU support for the container.
• The -it flag is used to run the container in interactive mode with a TTY.
• The -v flag is used to mount a host directory to a directory inside the container, in this case,

the "/path/to/dir/on/host" on the host is being mounted to the "/path/to/dir/in/docker"
directory inside the container.

• The -p flag is used to publish a container's port to the host.
• The "nvcr.io/nvidia/tlt-streamanalytics:v2.0_py3" is the image name from the NGC registry.
• The "/bin/bash" is the command that is run when the container starts.

This command will start a new container from the specified image with the specified options. The -v
flag allows to access files from the host machine in the container and the -p flag allows to access the
web-based interface of the TLT inside the container by going to localhost:80 in the host machine.

The data type used with the TLT features has to be in KITTI format and since the data that I had was in
Pascal VOC, I downloaded a suggestion of data samples from Kaggle [17] and ran a face mask detection
demo [18] provided by NIVIDIA.

The downloaded datasets must be in a specific data tree for the example to work:

33

Figure 19 – Data tree for NVIDIA demo [18]

This dataset is also in XML format and in the git repository there is a script to convert this data into
KITTI format (data2kitti.py). The script is specifically conceived for this and other provided datasets,
thus not working on my data. So, before preparing the dataset I have to run a command to clone the
NVIDIA face mask detection repository into my docker image.

git clone https://github.com/NVIDIA-AI-IOT/face-mask-detection.git

After running the conversion script and the dataset in KITTI format, we need to create the TensorFlow
records (tfrecords) which is a binary file format used to store data for TensorFLow. The format allows
for storing large amounts of data in a single file, as well as for efficient reading and decoding of the
data. Each tfrecord file contains a sequence of binary records, where each record is a binary string that
represents a serialized example protobuf. The example protobuf is a data structure that contains the
actual data, as well as metadata about the data such as its shape and data type. TFRecords can be used
to store a variety of data types, including images, text, and numerical data [19].

To create the tfrecords I just need to access the specific file for a given architecture, which will be
detectnet_v2.

tlt-dataset-convert -d $SPECS_DIR/detectnet_v2_tfrecords_kitti_trainval.txt
-o $DATA_DOWNLOAD_DIR/tfrecords/kitti_trainval/kitti_trainval

In this command calls the tlt-dataset-convert feature. It has two flags has input, the -d flag which is
specifying the path to the dataset and the -o flag, which is specifying the path to where the converted
dataset will be saved.

34

Having the tfrecords, it’s necessary to download the pre-trained model from the NGC model registry.
As mentioned, the selected architecture framework is DetectNet_v2 since the input is expected to be
0-1 normalized with input channels in RGB order, therefore for optimum results I just must select a
model with the *_detectnet_v2 tag in the name.

Available I have the following supported networks:

• Resnet10/ Resnet18/ Resnet34/resnet50
• Vgg16/vgg19
• Googlenet
• Mobilenet_v1/mobilenet_v2
• Squeezenet
• Darknet19/darknet53

Since Resnet18 is the best network classification, I can test it in this demo and evaluate the results
myself, since the face mask is one of the necessary detections of our solution.

Before running the download command I need to create a destination folder with the mkdir -p bash
command.

mkdir -p pretrained_resnet18/

And then download the selected model from NGC.

ngc registry model download-version nvidia/tlt_pretrained_detectnet_v2:resn
et18 \
 --dest $USER_EXPERIMENT_DIR/pretrained_resnet18

This command is composed by the model identifier and the –dest flag to specify the path to where the
pre-trained model will be saved.

Having the model, I just need to customize the training specifications in the
detectnet_v2_train_resnet18_kitti.txt file. The specifications file is already set to work with the test
data and train a model for ‘mask’ and ‘no-mask’ detection, but although there was no need for changes
to properly use it, I studied it and listed for future reference some potential parameter changes.

The data sources section, where the data and tfrecords directory paths have to be specified.

data_sources {
 tfrecords_path: "/home/data/tfrecords/kitti_trainval/*"
 image_directory_path: "/home/data/train"
 }

The target classes, where the change is necessary to detect the classes that we want.

35

target_class_mapping {
 key: "balaclava"
 value: "balaclava"
 }
 target_class_mapping {
 key: "knife"
 value: "knife"
 }

The preprocessing section where we can customize the output image width and height.

preprocessing {
 output_image_width: 960
 output_image_height: 544
 min_bbox_width: 1.0
 min_bbox_height: 1.0
 output_image_channel: 3
 }

The classes in the postprocessing configuration section.

postprocessing_config {
 target_class_config {
 key: "balaclava "
 value {
 clustering_config {
 coverage_threshold: 0.00499999988824
 dbscan_eps: 0.20000000298
 dbscan_min_samples: 0.0500000007451
 minimum_bounding_box_height: 20
 }
 }
 }
 target_class_config {
 key: "knife"
 value {
 clustering_config {
 coverage_threshold: 0.00499999988824
 dbscan_eps: 0.15000000596
 dbscan_min_samples: 0.0500000007451
 minimum_bounding_box_height: 20
 }

The model configurations section where there is the actual model file selection and the architecture
specification.

36

model_config {
 pretrained_model_file: "/home/detectnet_v2/pretrained_resnet18/tlt_pretra
ined_detectnet_v2_vresnet18/resnet18.hdf5"
 num_layers: 18
 use_batch_norm: true
 objective_set {
 bbox {
 scale: 35.0
 offset: 0.5
 }
 cov {
 }
 }
 training_precision {
 backend_floatx: FLOAT32
 }
 arch: "resnet"
}

The classes in the evaluation configurations and the validation epoch.

evaluation_config {
 validation_period_during_training: 10
 first_validation_epoch: 10
 minimum_detection_ground_truth_overlap {
 key: "balaclava "
 value: 0.5
 }
 minimum_detection_ground_truth_overlap {
 key: " knife "
 value: 0.5
 }
 evaluation_box_config {
 key: " balaclava "
 value {
 minimum_height: 20
 maximum_height: 9999
 minimum_width: 10
 maximum_width: 9999
 }
 }
 evaluation_box_config {
 key: " knife "
 value {
 minimum_height: 20
 maximum_height: 9999
 minimum_width: 10
 maximum_width: 9999
 }
 }
 average_precision_mode: INTEGRATE
}

The classes in the cost function configurations section.

37

cost_function_config {
 target_classes {
 name: " balaclava "
 class_weight: 1.0
 coverage_foreground_weight: 0.0500000007451
 objectives {
 name: "cov"
 initial_weight: 1.0
 weight_target: 1.0
 }
 objectives {
 name: "bbox"
 initial_weight: 10.0
 weight_target: 10.0
 }
 }
 target_classes {
 name: " knife "
 class_weight: 8.0
 coverage_foreground_weight: 0.0500000007451
 objectives {
 name: "cov"
 initial_weight: 1.0
 weight_target: 1.0
 }
 objectives {
 name: "bbox"
 initial_weight: 10.0
 weight_target: 1.0
 }

The training configurations, where we can adjust some important parameters, such has the batch size
per gpu, number of epochs and the learning rate.

training_config {
 batch_size_per_gpu: 24
 num_epochs: 120
 learning_rate {
 soft_start_annealing_schedule {
 min_learning_rate: 5e-06
 max_learning_rate: 5e-04
 soft_start: 0.10000000149
 annealing: 0.699999988079
 }
 }

And the last necessary change I identified were the classes in the bounding box configurations.

38

bbox_rasterizer_config {
 target_class_config {
 key: " balaclava "
 value {
 cov_center_x: 0.5
 cov_center_y: 0.5
 cov_radius_x: 0.40000000596
 cov_radius_y: 0.40000000596
 bbox_min_radius: 1.0
 }
 }
 target_class_config {
 key: " knife "
 value {
 cov_center_x: 0.5
 cov_center_y: 0.5
 cov_radius_x: 1.0
 cov_radius_y: 1.0
 bbox_min_radius: 1.0
 }
 }

Having these changes listed and understood, everything was ready to run the tlt-train feature.

tlt-train detectnet_v2 -e $SPECS_DIR/detectnet_v2_train_resnet18_kitti.txt \
 -r model_unpruned \
 -k $KEY \
 -n resnet18_detector \
 --gpus $NUM_GPUS

After the train is completed, I can evaluate the model’s accuracy on each class.

tlt-evaluate detectnet_v2 -e $SPECS_DIR/detectnet_v2_train_resnet18_kitti.t
xt\
 -m model_unpruned/weights/resnet18_detector.tlt \
 -k $KEY

The tlt-evaluate detectnet_v2 command is used to evaluate a trained model using the detectnet_v2
architecture. The -e flag is specifying the path to the evaluation configuration file, is the same used for
the training process, the -m flag is specifying the path to the trained model, and the -k flag is the access
key which has to be the same used for the train process.

As of this step, I have a trained model and its detection accuracy. It already can be exported for testing
purposes, but before that, there is the optional step of prune the model. Model pruning is the process
of removing unnecessary parameters from a trained model in order to reduce its size and
computational requirements. Pruning a model with TLT is done using the prune command, but first I
must create a new directory to store the pruned model:

mkdir -p model_pruned

39

And now the TLT model prune command:

tlt-prune -m $USER_EXPERIMENT_DIR/model_unpruned/weights/resnet18_detector.
tlt \
 -o $USER_EXPERIMENT_DIR/model_pruned/resnet18_nopool_bn_detectne
t_v2_pruned.tlt \
 -eq union \
 -pth 0.8 \
 -k $KEY

Here, the -eq flag is specifying the pruning method: in this case, it is 'union', a method that removes
the weights with the lowest absolute. The -pth flag is specifying the pruning threshold: in this case the
suggestion is to use 0.8, which means that only the weights that are below 0.8 will be pruned but later
I can adjust for accuracy and model size trade off. A higher pth gives higher inference speed but worse
accuracy.

Now, the pruned model must be retrained.

tlt-train detectnet_v2 -e $SPECS_DIR/detectnet_v2_retrain_resnet18_kitti.tx
t \
 -r $USER_EXPERIMENT_DIR/model_retrain \
 -k $KEY \
 -n resnet18_detector_pruned \
 --gpus $NUM_GPUS

This command is like the previous one, but to run the retrain there’s the need to specify a different
specifications file, which is very similar to the train file. The --gpus and -k input must be the same used
in the train process.

When the retrain process is finished, I can re-evaluate the model.

tlt-evaluate detectnet_v2 e $SPECS_DIR/detectnet_v2_retrain_resnet18_kitti.
txt \
 -m $USER_EXPERIMENT_DIR/model_retrain/weights/re
snet18_detector_pruned.tlt \
 -k $KEY

After concluding these steps, I have a .tlt file, and to test if it properly detects the intended classes I
can run the TLT inference feature in a data sample with at least 8 images and see if there is any
detection.

tlt-infer detectnet_v2 -e $SPECS_DIR/detectnet_v2_inference_kitti_tlt.txt \
 -o $USER_EXPERIMENT_DIR/tlt_infer_testing \
 -i $DATA_DOWNLOAD_DIR/test_images \
 -k $KEY

40

This command will perform inference on a trained model using the .tlt file on the input images located
in the directory specified by the -i flag and save the inference output to the directory specified by the
-o flag. Same as before, the specifications file is already set to work with this data and these classes,
but looking at it I could identify that besides the class names I also will have to change the inference
dimensions to match what the model was trained for.

Inference dimensions.
 image_width: 960
 image_height: 544

Looking into the tlt_infer_testing files, I confirmed that the model was detecting both classes properly.

Figure 20 – TLT inference with mask/no mask demo model [18]

Finally the next and last step is to export the file to .etlt format. In summary, the .tlt format is used to
store the model's architecture, weights, and other metadata and it can be used for both training and
inference while the .etlt format is an optimized format for deployment and inference and it can be
used only for inference.

tlt-export detectnet_v2 \
-m experiment_dir_retrain/weights/resnet18_detector_pruned.tlt \
-o experiment_dir_final_pruned/resnet18_detector_pruned.etlt \
-k $KEY

41

Now the model is ready for deployment, and I can move on to the next phase and apply these TLT
features with our data and detect a different set of classes.

4.3. DATA PREPARATION

4.3.1. KITTI Conversion

 This is the final step to fully integrate our data with the TLT features. The TLT train process only
works if the input data is in KITTI format, which is not possible to export directly from CVAT, so I need
to export the data in VOC PASCAL which gives me the annotations files in .xml, and then convert to
KITTI with a script.

To fulfill this task, I cloned a github repository (https://github.com/krustnic/xml2kitti) with that same
purpose and created some extra features to customize the code according to our necessities.

Another TLT train specification is that all images in the dataset have to be the same size, so if in the
configuration file I set the width to 960 and the height to 544, all images must have that exact same
dimensions.

path = r'…/JPEGImages'
c=0
for file in os.listdir(path):
 f_img = f+"/"+file
 img = Image.open(f_img)
 img = img.resize((height,width))
 img.save(f_img)
 c+=1
print(f'{c} resized images')

This code uses the Python imaging library (PIL) to resize the set of images located in a directory. The
first line assigns the path of the directory containing the images to the variable ‘path’ then it initializes
a variable ‘c’ to zero, which will be used to keep track of the number of resized images.

In the for loop, the ‘os.listdir(path)’ function is used to list all the files in the directory specified by the
’path’ variable. The loop iterates through each file in the directory. For each iteration, the code opens
the file using the PIL's ‘Image.open()’ function and assigns it to the variable 'img'. Then it uses the
‘.resize()’ method on the 'img' variable to resize the image to the given 'height' and 'width' size. Then
it saves the resized image to the same file using the ‘.save()’ method.

Finally, the 'c' variable is incremented by 1 for each iteration of the loop, to keep track of the number
of resized images. At the end of the loop, the code prints the total number of resized images.

The xml2kitti.py successfully converted most of the files. The output was sent into the same folder of
the input and there were some conversion exceptions, raising the issue of having more images than
KITTI annotations, which must be the same number. To solve this problem first I added a file moving

42

function to move the output to another directory ('.../Annotations_kitti') and a file remover function
to remove the images without a corresponding KITTI annotation.

dest_dir = '.../Annotations_kitti'
for file in glob.glob('.../Annotations/*.txt'):
 shutil.move(file, dest_dir)

In this code snippet I use the python 'glob' and 'shutil' libraries to move a set of files from one directory
to another. The first line assigns the path of the destination directory to the variable 'dest_dir'. The for
loop uses the 'glob' library function 'glob.glob()' to search for all the files in the directory
'.../Annotations/' that have the '.txt' extension and then it iterates through each file found. For each
file, the code uses the 'shutil' library function 'shutil.move()' to move the file from its current location
to the destination directory specified by the 'dest_dir' variable.

kitti_list=[]
c=0
for file2 in os.listdir(".../Annotations_kitti"):
 name2 = file2.rsplit('.',1)[0]
 kitti_list.append(name2)

for file in os.listdir(".../JPEGImages"):
 name1 = file.rsplit('.',1)[0]
 filename = ".../JPEGImages/"+file
 if name1 not in kitti_list:
 os.remove(filename)
 c+=1
 print(f'Removed-------{file}')
print(f'Removed {c} files')

Here I use python's os library to remove a set of files from a directory based on a comparison with the
files in another directory. The variable 'c' will be used to keep track of the number of removed files,
and the 'kitti_list' will have the names of all the KITTI files, which are added in the first loop using the
‘os.listdir()’ function to list all the files in ".../Annotations_kitti" and iterates through each file in the
directory. For each file, I apply the ‘.rsplit()’ function to remove the file extension and append the name
to the variable 'kitti_list'. The second for loop uses the ‘os.listdir()’ function to list all the files in the
image directory (".../JPEGImages") and iterates through each file in the directory. For each file, I again
apply the ‘.rsplit()’ function to remove the file extension and assign the name of the file to the 'name1'
variable to then compare it to the names in the ‘kitti_list’, if is not found I apply the ‘os.remove()’ to
delete the image file and increment the ‘c’ variable by 1.

By the end, to apply these changes I just need to run the following in the prompt.

python3 xml2kitti.py .../Annotations

43

4.3.2. Annotations and Folder Structure

 The first step of this segment is the labeling process in CVAT. We start by running the docker
CVAT image and access through the http://localhost:8080/ on google chrome. Next I have to create a
new task, name it, add the labels that will be the classes in the exported annotations, upload the
images to be labeled and manually select in the image the objects associated to the labels.

Figure 21 – CVAT Annotation example

After finishing the label process in all images there is an export option to dump all the annotations in
PASCAL VOC format into a folder. That folder will be the one used to convert the files to KITTI and
import the data for the model training, but there are some necessary changes to have the folder in
the right structure.

The dumped folder is composed by the following:

• Labels ‘.txt’ file
• ‘Annotations’ folder
• ‘ImageSets’ folder

For the desired structure I must do these changes:

• Insert the images folder with the name ‘JPEGImages’.
• Rename the labels file to ‘labels’.
• In the labels file, delete everything except the classes names and I also need to make sure

that there are not any empty lines.
• Delete the ‘ImageSets’ folder.
• Create an empty folder named ‘Annotations_kitti’.

By the end of these changes the desired folder structure should look like this.

44

|---Annotations
| image_name.xml
|
|
|
|---Annotations_kitti
| (empty)
|
|---JPEGImages
| image_name.jpeg
|
|
|
|---labels.txt

4.4. TRAINING

 With the annotations in KITTI format I finally can use the TLT features. The first data batch is
composed of close to 30000 annotations of two classes, balaclava, and knife. The main goal here is to
apply the train feature and guarantee a lower training time with the multiple gpus option and still
maintain an acceptable precision (>70%).

Before the whole process, download the tlt_specs folder from the NVIDIA demo to my local machine
and adjust the configuration files as listed above.

The docker image directory name will be "train_tlt", so the data sources change must be according to
that, set the target classes names to “balaclava” and “knife”, select the output image width and height
to 1280 and 720 respectively (the resolution of the input images) and to reduce the train time I can set
number of training epochs to 100.

Having done these changes on all files I can start the process steps according to the NVIDIA demo.

First, pull the docker TLT container.

docker pull nvcr.io/nvidia/tlt-streamanalytics:v2.0_py3

Run the docker image with the name “train_tlt”.

docker run --gpus all -it -v "/path/to/dir/on/host/":"train_tlt" \
-p 8888:8888 nvcr.io/nvidia/tlt-streamanalytics:v2.0_py3 /bin/bash

The path on host we should apply is the one where the TLT specifications files and the annotations are.
For this first run I am going to select the same architecture framework used in the demo, the
Detectnet_v2 and the pretrained model will be the Resnet18. Later, when the process is fully working,
I can test another frameworks and models and tune it to optimize the detection.

45

With the docker image created and the necessary data there, I must convert the tf records from the
KITTI annotations.

tlt-dataset-convert -d tlt_specs/detectnet_v2_tfrecords_kitti_trainval.txt -
o /train_tlt/tfrecords/kitti_trainval/

After confirming that the records are in the output directory, I need to create a target destination
folder and download the pretrained model.

mkdir pretrained_resnet18

ngc registry model download-version nvidia/tlt_pretrained_detectnet_v2:resn
et18 \
--dest pretrained_resnet18

Next, open the detectnet_v2_train_resnet18_kitti.txt to confirm that everything is correctly set to run
the TLT train feature. After guarantee that the specifications are correct, I can train the model with my
data. First, I am going to use 2 gpus and compare the total training time with the performance I got
using just 1. The previous train time was around 15h-16h.

tlt-train detectnet_v2 -e tlt_specs/detectnet_v2_train_resnet18_kitti.txt \
-r model_unpruned \
-k $KEY \
-n resnet18_detector \
--gpus 2

Figure 22 – TLT running log

As observed in the figure above, the time it took to complete the model training was 5 hours and 22
minutes, which reduces by 10 hours the model train time and fulfills the main goal of this
implementation. Now I will directly prune and retrain the model and after that evaluate and try to test
the inference on some test images.

I will create a different directory for the pruned model and then run the tlt-prune feature.

mkdir model_pruned

tlt-prune -m model_unpruned/weights/resnet18_detector.tlt \
 -o model_pruned/resnet18_nopool_bn_detectnet_v2_pruned.tlt \
 -eq union \
 -pth 0.01 \
 -k $KEY

46

After the model prune the model must be retrained.

tlt-train detectnet_v2 -e tlt_specs/detectnet_v2_retrain_resnet18_kitti.txt
\
-r model_retrain \
-k $KEY \
-n resnet18_detector_pruned \
--gpus 2

Again, the time of retrain is around the 5 hours mark. Now I run the evaluation and check the model’s
detection quality.

tlt-evaluate detectnet_v2 -e tlt_specs/detectnet_v2_retrain_resnet18_kitti.
txt \
-m model_retrain/weights/resnet18_detector_pruned.tlt \
-k $KEY

Figure 23 – Trained model 2 class precision

The results are very promising, we can observe that the balaclava classes detection precision is very
good and well above the 70%, which is not the case for the knife detection which is quite
understandable since a knife is much more difficult to detect.

Although the knife precision is not ideal, is very close to the minimum necessary and the precision
across all classes meets the requirements, so I can proceed to the inference test phase and depending
on the results I decide if this model will be exported and tested in loco or if it needs to be improved
immediately.

With this thought, I will run the inference command to generate detections on some random images
that I have put together and imported to the docker image.

tlt-infer detectnet_v2 -e train_tlt/detectnet_v2_inference_kitti_tlt.txt \
 -o tlt_infer_testing \
 -i test_images \
 -k $KEY

Looking to the output, I confirm that the results are satisfactory and in fact detection is running
accordingly the expectations.

47

Figure 24 – Tlt inference test

Has observed the values associated to the detections are according to the tlt-evaluation results. Since
these results demonstrate that the model can in fact detect I will export and share with the local team
to test it in the client’s premises. To do so, I apply the export command.

mkdir -p model_final_pruned

tlt-export detectnet_v2 \
-m model_retrain/weights/resnet18_detector_pruned.tlt \
-o model_final_pruned/resnet18_detector_pruned.etlt \
-k $KEY

The .etlt file is the final product of the whole process and is what I will share with the inference team.

48

5. RESULTS DISCUSSION

 By the end of my internship, the business objectives were not yet fulfilled. My implementation
was available in Q4 and there was the deployment and testing in 3 different stores to be done and
approved before the next step.

The Data Mining goals of the model also were not yet fulfilled due to the knife’s precision of 66%,
below the established 70% minimum. This will be solved in the next steps and future work that will
come with this implementation.

The in-loco test of the first balaclava/ knife detection model had very positive feedback. This was the
process to use on the solution due to the speed detection .etlt provided and the significant training
time reduction. The detection quality was not the desired, but the TLT implementation brought much
more flexibility to changes, and parameters tuning and with the train time reduction, the resources
necessary for new model tests and developments also decreased.

Before this implementation, the training process was rigid due to the code used. The architecture
framework was much harder to change due to the code being set to work exclusively with SSD. The
TLT process not only works with ssd architecture but is also compatible with other architectures which
consequently guarantees access to numerous more pre-trained models.

These are the new training flow steps:

1. Get the annotations with CVAT
2. Convert dataset to KITTI format
3. Download the pretrained model
4. Train model with tlt-train
5. Prune trained model with tlt-prune
6. Retrain pruned model
7. Evaluate the re-trained model on validation data with tlt-evaluate
8. If the accuracy is not satisfactory get back to step 1 with more data or prune and retrain again, else

move on to the next step
9. Export trained model with tlt-export

Overall, the process got faster, simpler and with a few minor tweaks it will outperform the previous
implementation.

For future work, besides monitoring the model’s inference performance with the CCTV’s live feed,
there’s also the quality issue since one of the classes had values bellow the objective, namely of the
knife. There’s a need to obtain more knife images and balance the dataset in favor of this class. The
main cause of this performance disparity can be traced to the object itself. Knives are smaller and
reflect light, which affects the detection as opposed to the balaclava class, a bigger and more obvious
object that does not reflect light as much, thus impacting the detection performance. Also, to reach
better overall results, we can adjust the configuration parameters, such as the learning rate, the
training batch, or the pruning threshold.

49

Another task ahead is the inclusion of more classes, not only more threatening objects but also other
face covers, such as the face mask or a burka, since both can be classified as non-threatening in a real-
life context but the similarity with other face covers can lead our model to a detection mistake. This is
a task for a more advanced phase but necessary for the successfull implementation of this solution in
a store.

50

6. CONCLUSIONS

 This internship at Everis was an amazing opportunity to have my first experience in the
technological sector, and to have the chance to work on my first Computer Vision and AI project in a
professional context.

My integration into this project was a challenge that came from the company, since they knew that
the process they had was not ideal, and although it worked, it lacked efficiency. The time it took to
train detection models was too high, consequently spending excessive money due to the Azure VM
usage. Also, it was inflexible on what architecture framework and pre-trained models could be used.

To integrate this project, I had to be comfortable with the tools and the whole process so the first
couple of months the tasks were mainly theoretical and research. After understanding the whole
process, I focused a lot on the image labeling and training process (I labeled over 80000 images for
training and testing purposes) to fulfill new data and the trained model’s demand. That high demand
for models to test at the client’s stores, was what evidenced the resource and time ineffectiveness and
what triggered the improvement necessity (multiple GPU training) and my role in the project.

I had the responsibility of doing the research and improving the solution. After some trials and several
time-consuming tests, I found the NVIDIA Transfer Learning Toolkit (now called “TAO Toolkit”), which
provides a powerful and efficient framework for implementing computer vision models. The use of
pre-trained models and the CUDA-enabled GPU architecture allows for a quick and easy model fine-
tuning for specific use cases with minimal data and computational resources. The ability to train and
deploy models in different environments (including on-premises and in the cloud) makes TLT a
versatile and valuable tool for computer vision implementation. This report demonstrated the
potential of TLT through the implementation of object detection models for a retail store use case,
where it could accurately detect and classify threatening objects using CCTV footage in real time. The
results show that TLT can accelerate the development and deployment of computer vision models,
making it an ideal solution for organizations looking to implement computer vision technology. Overall,
this thesis highlights the potential of TLT as a powerful tool for computer vision implementation and
its ability to improve security, operational efficiency, and the customer experience in a retail setting.

During this internship, there were many lessons learned. New software tools and new fields made this
an amazing learning experience where i acquired and developed multiple skills.

Working in a multinational tech company, and particularly in an innovation department highlighted
that curiosity, motivation, and know-how help us thrive and get innovative breakthroughs. There is the
need for great people leading and a resourceful structure behind us, but also there is a need to work
outside our comfort zone and test our limits. There was lots of new information I had to deal with, and
every day was a challenge, but that made me understand that this is the right path, and if I keep the
same urge and motivation to learn, I can be happy and enjoy working in such projects.

Artificial intelligence is here to stay, and my learning curve on the subject increased exponentially on
subjects such as Pytorch or Tensorflow. Working and getting comfortable with lots of new tools like git
and bash commands, Jira tickets, docker containers and images, cloud virtual machine, and a computer
vision annotation tool was another highlight of this experience.

51

Looking back to those six months it became evident that every day was not only technically
challenging but also a test for my soft skills, which I must point out that improved a lot by developing
my teamwork, organizational, problem solving and communication skills. In conclusion, by the end of
the internship I felt a personal improvement and growth and ready to take on my next challenge.

52

7. REFERENCES

[1] NTT Data, 2021. URL: https://pt.nttdata.com/about-us

[2] Josh Patterson & Adam Gibson, 2017. “Deep Learning A Practitioner’s Approach”, Chapter 3

“Fundamentals of Deep Networks”

[3] Ian Goodfellow, Yoshua Bengio, & Aaron Courville, 2015. “Deep Learning”

[4] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis & Eftychios Protopapadakis,
 2018. “Deep Learning for Computer Vision: A Brief Review”

[5] Benjamin Planche & Eliot Andres, 2019. “Hands-On Computer Vision with TensorFlow 2”,
 Chapter 1, “Computer Vision and Neural Networks”

[6] Benjamin Planche & Eliot Andres, 2019. “Hands-On Computer Vision with TensorFlow 2”,
 Chapter 2, “Tensorflow Basics and Training a Model”

[7] Benjamin Planche & Eliot Andres, 2019. “Hands-On Computer Vision with TensorFlow 2”,
 Chapter 3, “Modern Neural Networks”

[8] NVIDIA Corporation, 2022. URL: https://developer.nvidia.com/deepstream-sdk

[9] NVIDIA Corporation, 2022.

URL: https://docs.nvidia.com/metropolis/deepstream/dev-
guide/text/DS_Overview.html#nvidia-deepstream-overview

[10] NVIDIA Corporation, 2022.

URL: https://developer.nvidia.com/embedded/jetson-nano-developer-kit

[11] NVIDIA Corporation, 2022.

URL: https://docs.nvidia.com/tao/archive/tlt-30/text/overview.html

[12] Python Software Foundation 2001-2002 URL: https://www.python.org/doc/essays/blurb/

[13] Mobatek 2008-2022. URL: https://mobaxterm.mobatek.net/

[14] Docker Inc. 2013-2022. URL: https://docs.docker.com/get-started/overview/

[15] scikit-learn developers (BSD License) 2007 – 2022.

URL: https://scikit-learn.org/stable/modules/sgd.html

53

[16] NVIDIA Corporation, 2022.
URL: https://docs.nvidia.com/ngc/ngc-catalog-user-guide/index.html#what-is-ngc-catalog

[17] Evan Danilovich (2020 March). Medical Masks Dataset. Version 1. Retrieved May 14, 2020.

URL: https://www.kaggle.com/datasets/ivandanilovich/medical-masks-dataset-images-
tfrecords

[18] NVIDIA Corporation, 2022. URL: https://github.com/NVIDIA-AI-IOT/face-mask-detection

[19] Apache 2.0, 2022. URL: https://www.tensorflow.org/tutorials/load_data/tfrecord

[20] Shiming Ge, Jia Li, Qiting Ye, Zhao Luo, 2017. "Detecting Masked Faces in the Wild With LLE-

CNNs", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)

[21] Vidit Jain and Erik Learned-Miller, 2010. "FDDB: A Benchmark for Face Detection in
 Unconstrained Settings". Technical Report UM-CS-2010-009, Dept. of Computer Science,
 University of Massachusetts, Amherst.

[22] Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou, 2016. "WIDER FACE: A Face
 Detection Benchmark", IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

54

