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ABSTRACT 

The development of object detection models has revolutionized the analysis of personal information 
on identification cards, leading to a decrease in external human labor. Although previous strategies 
have been employed to address this issue without using machine learning models, they all present 
certain limitations, which artificial intelligence aims to overcome. This report delves into the 
development of a deep learning-based object detection capable of recognizing relevant information 
from Portuguese identification cards. All the decisions made during the project will be accompanied 
by a detailed background theory. Additionally, we provide an in-depth analysis of Optical Character 
Recognition (OCR) technology, which was utilized throughout the project to generate text from 
images. As the newest member of the Machine learning Team of Biometrid, I had the privilege of 
being involved in this project that led to the improvement of the current approach that does not 
leverage machine learning in the detection of relevant sections from ID cards. The findings of this 
project provide a foundation for further research into the use of AI in identification card analysis. 
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Detection Models; Optical Character Recognition (OCR)



vii 
 

 

INDEX 

1. Introduction ................................................................................................................ 1 

1.1. Company Overview .............................................................................................. 2 

1.2. Problem Definition ............................................................................................... 3 

1.2.1. Case Study ..................................................................................................... 4 

1.2.2. Constraints and Limitations .......................................................................... 4 

1.2.3. Proposed Solution ......................................................................................... 5 

2. Theoretical Framework ............................................................................................... 6 

2.1. Machine Learning ................................................................................................. 6 

2.1.1. Supervised Learning ...................................................................................... 9 

2.2. Artificial Neural Networks & CNNs ....................................................................... 9 

2.2.1. Convolution Layers ...................................................................................... 10 

2.2.2. Pooling Layers ............................................................................................. 11 

2.2.3. Fully Connected Layers ............................................................................... 12 

2.3. Deep learning ..................................................................................................... 13 

2.4. Object Detection ................................................................................................ 14 

2.4.1. Region-based Convolution Neural Networks (R-CNN) ................................ 15 

2.4.2. Faster-RCNN ................................................................................................ 16 

2.4.3. Single Shot MultiBox Detector (SSD) ........................................................... 17 

2.4.4. CenterNet .................................................................................................... 18 

2.5. Evaluation Metrics ............................................................................................. 19 

2.5.1. Confusion Matrix ......................................................................................... 20 

2.5.2. Intersection over Union (IoU) ..................................................................... 21 

2.5.3. Precision and Recall .................................................................................... 22 

2.5.4. F1-Score: ..................................................................................................... 22 

2.5.5. Average Precision ........................................................................................ 22 

2.5.6. Mean Average Precision (mAP) ................................................................... 23 

2.6. Optical Character Recognition (OCR) ................................................................. 23 

3. Methodology ............................................................................................................. 26 

3.1. Tools and Technologies ...................................................................................... 26 

3.1.1. TensorFlow .................................................................................................. 26 

3.1.2. Label Studio ................................................................................................. 27 

3.1.3. OpenCV ....................................................................................................... 28 



viii 
 

3.1.4. Streamlit ...................................................................................................... 28 

3.2. ID Elements PT Project ....................................................................................... 29 

3.2.1. Data Processing ........................................................................................... 29 

3.2.2. Model Training ............................................................................................ 32 

3.2.3. Model Fine-Tuning ...................................................................................... 34 

3.2.4. Image Pipeline ............................................................................................. 37 

4. Experimental Study ................................................................................................... 40 

4.1. Evaluation Protocol ............................................................................................ 40 

4.2. Experimental Results and Discussion ................................................................. 41 

4.2.1. TensorBoard Results ................................................................................... 42 

4.2.2. Size & Latency Tests .................................................................................... 43 

4.2.3. OCR Results Comparison ............................................................................. 45 

5. Conclusions ............................................................................................................... 47 

5.1. Limitations .......................................................................................................... 47 

5.2. Future Work ....................................................................................................... 48 

6. Bibliography .............................................................................................................. 49 
 

 



ix 
 

LIST OF FIGURES 

Figure 1 - Usage of Deep Learning models in autonomous cars ............................................... 1 

Figure 2 - Biometrid's Logo ....................................................................................................... 2 

Figure 3 - Biometrid's Milestones ............................................................................................. 2 
Figure 4 - Expected result ......................................................................................................... 5 

Figure 5 - Machine Learning investments by category ............................................................. 7 

Figure 6 - Traditional Programming against Machine Learning approach ................................ 7 
Figure 7 - Train, Validation & Test Split .................................................................................... 8 

Figure 8 - Convolution Neural Network Architecture ............................................................. 10 

Figure 9 - Example of a convolution operation with a kernel size 3x3 ................................... 11 
Figure 10 - Example of max pooling operation with a filter size of 2 × 2 ................................ 11 

Figure 11 - Example of a neural network with fully connected layers .................................... 13 

Figure 12 - Example of the expected output of an object detection model trained to detect 
dogs, cats and humans. ................................................................................................... 14 

Figure 13 - R-CNN Stages ........................................................................................................ 16 

Figure 14 - Faster R-CNN's Architecture ................................................................................. 16 
Figure 15 - SSD Architecture ................................................................................................... 17 

Figure 16 - SSD Framework ..................................................................................................... 18 

Figure 17 - CenterNet Architecture ........................................................................................ 19 
Figure 18 - Object Detection Evaluation Process .................................................................... 20 

Figure 19 - Formula and Representation of the IoU calculation ............................................. 21 
Figure 20 - Precision Formula ................................................................................................. 22 
Figure 21 - Recall Formula ...................................................................................................... 22 

Figure 22 - F1-Score Formula .................................................................................................. 22 
Figure 23 – General OCR Workflow ........................................................................................ 25 

Figure 24 - TensorBoard Interface .......................................................................................... 26 

Figure 25 - Label Studio Interface ........................................................................................... 28 
Figure 26 - Segmentation Model output ................................................................................ 30 

Figure 27 - Image Augmentation techniques used for the CenterNet configuration file ....... 35 

Figure 28 - Image Augmentation techniques provided by Tensorflow Object Detection API 36 
Figure 29 – Python function used to make model inferences ................................................ 38 

Figure 30 – Python function used to crop card sections by given coordinates ...................... 38 

Figure 31 – Python function used to apply OCR in given sections .......................................... 39 
Figure 32 - Streamlit Output Comparison App ....................................................................... 41 

Figure 33 - Latency per prediction .......................................................................................... 44 



x 
 

Figure 34 - Cumulative Latency ............................................................................................... 44 

Figure 35 - Success rate per section for each OCR Strategy ................................................... 45 

 

 



xi 
 

LIST OF TABLES 

Table 1 - Confusion Matrix ...................................................................................................... 21 

Table 2 - Model's architecture used per version. ................................................................... 33 

Table 3 - Loss Comparison ...................................................................................................... 42 
Table 4 - Mean Average Precision/Recall Results per model architecture. ............................ 43 

 



xii 
 

 

LIST OF ABBREVIATIONS AND ACRONYMS 

AMA Agência para a Modernização Administrativa 

ANN Artificial Neural Networks 

AP Average Precision 

AUC Area Under the Curve 

CNN Convolution Neural Networks 

CV Computer Vision 

DL  Deep Learning 

FNN Feedforward Neural Networks 

FPS Frames per second 

IoU Interception over Union 

mAP Mean Average Precision 

ML Machine Learning 

OCR Optical Character Recognition 

R-CNN Recurrent Neural Networks 

RNN Recurrent Neural Networks 

ROI Region of Interest 

SVM  Support Vector Machines 

TF TensorFlow 

TFOD TensorFlow Object Detection API 

 

 



xiii 
 

 



1 
 

1. INTRODUCTION 

With the technological advances registered in recent years, it can be acknowledged that we are 
currently in an era where data is being produced at an unprecedented rate, compelling businesses to 
rely on automated methods for data analysis. Retrieving useful insights from this amount of data is 
crucial, so involuntarily companies in this situation notice that it is mandatory to develop advanced 
algorithms that can summarize, classify, extract important information, and convert them into an 
understandable form (V. Y., Mariano et al., 2002). 

To address this issue, there has been a huge increase in the usage of Artificial Intelligence (AI) 
algorithms to guide business decisions. Machine learning (ML) models and Artificial Neural Networks 
(ANN), in particular, have demonstrated outstanding performance in resolving complex challenges 
across a wide range of industries, effectively revolutionizing the way companies approach problem-
solving (A. Zulkhaizar, 2023). 

For example, in computer vision tasks like object detection and semantic segmentation, deep 
learning models have been successfully used in applications such as autonomous driving. This 
technology is rapidly advancing, bringing systems closer to possessing a level of intelligence 
comparable to humans in certain situations. According to the current Nvidia CEO, Jensen Huang, 
“Deep Learning can train a car to drive, and ultimately perform far better, and more safely, than any 
human driver could do behind the wheel.”. This was the goal of Huang’s company when developing 
hardware for the upcoming autonomous cars (J. Huang, 2017). 

 

Figure 1 - Usage of Deep Learning models in autonomous cars1 

In the example above, object detection models offer a solution for identifying relevant items in the 
road that allow the vehicle to drive safely. This ability renders them highly efficient for activities such 
as perception, decision-making, and vehicle control. Nevertheless, their usefulness extends beyond 
this use case scenario, as they have the capability to analyze and retrieve information from a given 
frame. 

As another example, throughout this report, we’ll highlight the experience of a Junior Machine 
Learning Engineer responsible for a project that led to the improvement of Biometrid’s machine 
learning infrastructure behind its OCR solution for information retrieval for Portuguese identification 

 
1 Source: https://www.cbinsights.com/research/startups-drive-auto-industry-disruption/  
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cards. The responsibilities regarding the collection, processing, and analysis of information will be 
described in detail. 

We’ll start by introducing the problem addressed and clarify the challenges faced, regarding the 
development of an object detection model capable of recognizing relevant sections from the 
Portuguese identification cards. 

Next, we’ll do a concise explanation of how the company is composed alongside its objective, before 
delving into more specific and technical aspects regarding the theory behind the project. Finally, this 
report will end up by clearly exposing all the practical implementations of the project alongside the 
final results. 

1.1. COMPANY OVERVIEW 

 

Figure 2 - Biometrid's Logo2 

Created in 2015 under the name Polygon, the current Biometrid emerged as an IT company with 
headquarters established in Porto that promised to revolutionize the way we communicate with 
digital systems. At a time when with one click it is possible to open a bank account, register on a 
social network or even subscribe to a service it is no surprise that the digital footprint of all internet 
users has been growing exponentially. With that in mind, Biometrid is committed to delivering a 
range of tools that facilitate the onboarding, authentication, and validation of personnel in 
companies of all sizes. 

 

Figure 3 - Biometrid's Milestones 

Biometrid offers a range of solutions to simplify the Know Your Customer (KYC) processes. The 
company's flagship product, which shares the same name, streamlines these time-consuming 
activities, which are essential to safeguard financial institutions against fraud, corruption, money 
laundering, and terrorism financing. 

 
2 Source: https://biometrid.com/  
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Compared to its main competitors, Biometrid's product takes a unique approach. It uses a 
Drag&Drop methodology, which provides customers with autonomy and flexibility to build 
personalized verification processes. The product enables users to open bank accounts remotely, 
verify Proof-of-Life using personal documents, and generate digital signatures for public services.  

The company has established partnerships with banking institutions, insurance companies, and 
Portuguese Government departments. It has also expanded its operations to international markets, 
including Poland, Hungary, Colombia, Angola, and Mozambique. Biometrid's goal is to continue 
expanding its services and reach into new sectors and regions worldwide.  

For the ML team the main responsibility is to create and maintain all the ML models that support its 
solutions, especially the Optical Character Recognition (OCR) production pipeline for retrieving 
information from identification cards. The focus is divided into two: on one side improving the OCR 
pipeline, which would receive images of ID cards or passports, and from there extract information 
that could identify users in the future. On the other side, researching and developing new ML tools 
for the OCR infrastructure. 

1.2. PROBLEM DEFINITION 

As mentioned before, systems equipped with artificial intelligence algorithms are now more present 
than ever in our daily lives. This paradigm shift means that processes that required a lot of manual 
work are now being replaced by models that simulate human behavior. 

One of the several examples where this change is noticeable is in the registration process. In the 
past, regardless of the industry, to perform the onboarding of a new client this one needed to fill out 
a form with his personal information manually and wait for the responsible staff to transfer the 
information into a dedicated database. This implied a rather lengthy process with several dedicated 
parts and a complex infrastructure. Luckily, to streamline the process, a new method has emerged 
for extracting this information without requiring manual entry from either the customer or staff (M. 
Ryan, & N. Hanafiah., 2015). 

A new system using optical character recognition (OCR) has been proposed to extract customer 
information from identification cards instead of manual data entry. This system, in the first instance, 
is powered by an object detection model responsible for processing an ID card image and retrieving 
the coordinates of the sections related to personal data as the result. These image coordinates are 
then used to crop the original image and feed those outputs into an OCR application that recognizes 
the text in the picture and converts it into machine-readable and editable text. 
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1.2.1. Case Study 

This chapter will examine the application of the selected approach in the Biometrid OCR pipeline to 
automate the process of retrieving personal information from Portuguese ID cards. By leveraging 
cutting-edge optical character recognition technology, the pipeline aims to streamline the data input 
process and provide accurate and efficient results. This subsection will delve into the details of this 
strategy and its impact on the process of retrieving personal information from ID cards. 

The growth of members of the ML team led to a new project which has the objective of improving 
the way the OCR data pipeline analyses images. Currently, the extraction process contains several 
layers of pre-processing: 

1. The documents are exposed to a rotation model that orients them horizontally in an 
automatic way.  

2. Next, this resulting image will serve as input for a segmentation model, which aims to 
remove all surrounding elements from the photo and generate cropped images.  

3. These images are then converted from an RGB Format to Grayscale to improve the 
performance of the binarization that will be applied to the image lately.  

4. After multiple morphological image transformations, the coordinates from the regions of 
interest were detected by multiple traditional image processing techniques that use relative 
coordinates to capture informational sections.  

5. The process ends just when all of the proposed areas are analyzed by an OCR engine. 

This strategy presents itself as a very good alternative compared to a full-manual process, however, 
it’s in many ways limited as its results are only viable in favorable conditions where the document 
has a capture angle and favorable light conditions. 

As a company that consistently embraces new technologies, Biometrid extends this philosophy to 
every aspect of its product. So, the main goal of this project is to improve the OCR Pipeline by 
creating an artificial neural network capable of detecting all sections of the front of the Portuguese 
identification card. This way we hope to enhance the general performance of the OCR processes and 
establish a strategy that delivers favorable outcomes in all image scenarios. 

1.2.2. Constraints and Limitations 

In the realm of camera-based analysis of text and documents, there exist several challenges 
associated with capturing images, including low resolution, uneven lighting, distorted perspectives, 
non-planar surfaces, wide-angle lens distortion, cluttered backgrounds, difficulties with zooming and 
focusing (M. Ryan, & N. Hanafiah., 2015). Throughout the report, we will explain all the strategies 
and techniques that we will apply to solve some of those problems.  

Besides that, we also find some constraints related to the dataset containing images of Portuguese 
Identification Cards. This is not publicly available due to GDPR restrictions, but fortunately, Biometrid 
had already obtained this type of data through a partnership with the “Agência para a Modernização 
Administrativa” (AMA) and regularly utilized it for other projects. So, even with limited data we still 
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manage to organize and curate approximately 3000 of these images to construct a consistent dataset 
capable of successfully training the model. Important to mention that these images contain personal 
information, and their public share is expressly forbidden. 

1.2.3. Proposed Solution 

To address the case study, always with the limitations and constraints in consideration, it was 
decided by the team that the best strategy to improve the detection of the sections of the front face 
of the Portuguese identification card would go through the training of a deep neural network capable 
of improving the previous results and address situations where the image quality is not favorable. 

Previous studies suggest that various methods have been employed to tackle this issue. One 
commonly employed approach involves identifying saliencies in the image to locate documents 
inside a photo or video frame, without any prior knowledge about the document (F. Attivissimo et 
al., 2019). However, this strategy still presents some limitations mainly when the image contains 
noise, or the angle of capture is not favorable. The improved solution for the Biometrid OCR that will 
be presented throughout this report presents itself as a more advanced approach to this problem. It 
starts by using a detection model to locate the document, then crops the image to isolate the 
document from the background. After proper segmentation, the document is classified using a deep 
learning model. 

Throughout this document, we aim to enhance the average success rate of detecting relevant 
elements in identification cards, compared to the results that were achieved in the past. The models 
tested in the development of this solution will be thoroughly evaluated and compared to the current 
production models. Through this comparison, we can gain a better understanding of the progress 
made in our development and its potential for future advancements. 

Also, in the evaluation phase, we will focus on evaluating the inference latency since we believe that 
this will be of utmost importance. The duration between capturing an image and producing a result 
has a significant impact on delivering a smooth and seamless experience for our consumers and is 
therefore a top priority for the company. 

 

Figure 4 - Expected result 
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2. THEORETICAL FRAMEWORK 

This chapter will provide a comprehensive overview of the technical knowledge that underpins the 
project recently completed by the Machine Learning team at Biometrid. 

In Section 2.1, a comprehensive overview of Machine Learning will be presented. In Section 2.2, we 
will clarify the theoretical topics surrounding artificial neural networks, with a particular focus on 
convolutional neural networks (CNNs). In Section 2.3, we'll delve further into artificial neural 
networks by explaining the concept of Deep Learning. In Section 2.4, we will provide an overview of 
the various object detection model architectures that were tested over the past few months. In 
Section 2.5, we will discuss the evaluation stage of the project by presenting various metrics used to 
evaluate the performance of object detection models. Finally, in Section 2.6 of this report, we will 
provide an in-depth explanation of Optical Character Recognition (OCR) technology. This section will 
be crucial to understand the final phase of the project as it will cover the theory and technical 
aspects behind OCR. 

2.1. MACHINE LEARNING 

Machine Learning (ML) is one of the subject fields of artificial intelligence that makes use of statistical 
models so that, with the help of data, it generates reliable predictions. Systems that offer these 
capabilities offer solutions to previous common limitations, examples comprehend a huge space of 
possibilities from correctly identifying spam emails to image/video recognition (P. Ariwala, 2022). 
This makes it possible to find hidden insights and identify complex patterns without explicit 
programming, not just because of the ML development but also due to an increase in computational 
power registered in recent years (C. Janiesch et al., 2021).  

According to a report by McKinsey, machine learning can create a potential economic impact of $2 
trillion to $10 trillion per year across industries (J. Bughin et al., 2017) and is expected to grow at a 
compound annual growth rate of 38.8% from 2022 through 2029 and reach a value of $210 billion by 
the end of 2029. One of the key factors fueling this expansion is the growing acceptance of machine 
learning by major technology companies such as Apple, Microsoft, and many others across a wide 
range of industries, including healthcare, manufacturing, automotive, retail, advertising, automation, 
defense, financial services, and others (O. Farooq, 2022).  
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Figure 5 - Machine Learning investments by category3 

Compared to conventional or classical programming, where systems were fed by input data, and a 
function with predefined rules, which generates results according to them. An intelligent mechanism, 
that is, a system equipped with an ML model, presents itself as an alternative to the conventional 
engineering approach which receives the same data, but unlike the previous one, it also receives the 
expected outputs and thus creates a mathematical model with parameters adjusted to the problem. 
(O. Simeone, 2018) 

 

Figure 6 - Traditional Programming against Machine Learning approach4 

The idea behind the development of any machine learning algorithm is the presence of a large 
number of data that present a considerable level of quality. An organized collection of data is 
denominated by dataset and usually present a group of features in a tabular format. These datasets 

 
3 Adapted from: https://www.statista.com/chart/17966/worldwide-artificial-intelligence-funding/  
4 Adapted from: Moroney, L. (2020). AI and Machine Learning for coders. O'Reilly Media. 
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can be used to train machine learning models for tasks such as classification, regression, clustering, 
and others. 

On the other hand, image datasets contain information in the form of images, which are two-
dimensional arrays of pixel values. These datasets are used to train machine learning models for 
tasks such as image classification, object detection, semantic segmentation, and others. Image 
datasets can be much larger in size compared to other types of datasets, as they often contain 
hundreds of thousands of images, each with multiple channels (e.g., red, green, and blue) and high 
resolution. 

To evaluate the performance of a machine learning model, the data are usually divided into three 
groups: training, testing, and validation. Only in this way, it is possible to have a perception of the 
behavior of the model with data never processed in the training phase. The first group has the 
biggest amount of data, typically between sixty to eighty percent, and is used to train the model. The 
validation set is used as an evaluation at the end of each epoch to evaluate the model during training 
and help optimize its parameters and settings. Finally, the test set is presented as a way to evaluate 
the model with different data from those presented in the previous sets and have a final evaluation 
of the results.   

 

Figure 7 - Train, Validation & Test Split5 

However, to conclude this chapter is worth mentioning that, despite the potential benefits in the 
industry, ML implementations have also challenges that need to be addressed. Being one of the most 
important examples to highlight the interpretation of accuracy. In most cases, a model that presents 
a high accuracy is considered a good one, and the opposite can lead to harm. For example where 
facial recognition systems are used in law enforcement. But highly accurate facial recognition 
systems can also pose risks to privacy and indicate the presence of mass surveillance (J. Fletcher, & A. 
Kostiainen., 2022).  

Another important topic related to accuracy and the ability of AI to perform correct predictions is its 
usage in areas that don’t have an objective ground truth and need external human judgment. The 
impact of an incorrect output depends on the context. For instance, predicting false occurrences of 
cancer can increase costs, but on the other hand, failing to predict a true result can have a much 
more impact on people’s life and delay the treatment. Another common example of this is using ML 
in a judicial context, false positives may send innocents to jail, while false negatives may make it 
harder to convict criminals. (J. Fletcher, & A. Kostiainen., 2022).  

 
5 Adapted from: https://community.alteryx.com/t5/Data-Science/Holdouts-and-Cross-Validation-Why-the-Data-Used-to-

Evaluate-your/ba-p/448982  
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Overall, is important to note that ML technologies are rapidly shaping a new future for the industry’s 
panorama. Companies embracing this type of AI have the potential to gain a competitive edge and 
improve their bottom line. However, it is important for companies to understand the challenges and 
limitations of machine learning, and to invest in the necessary expertise and resources to ensure the 
success of their machine learning initiatives. 

2.1.1. Supervised Learning 

Based on a given problem and the available data, different types of Machine Learning algorithms can 
be used, each with its advantages and disadvantages. The first step is to understand which strategy 
to use to analyze the data. This data has great relevance in the results and can be classified as labeled 
data, that is, data that have one or more classes and allow their grouping or unlabeled data. In this 
project, we will focus on the first type of data which is characterized as data that contains input and 
output features. 

For a full understanding of this project is crucial to understand the theoretical aspects of supervised 
learning. This type of machine learning model receives input data (x) and output data (y). The goal is 
to discover the parameters of a function that will generate the best predictions when faced with 
information that has never been processed before. This is an algorithm that needs to receive labeled 
data, acquire a deep knowledge of them based on its parameters, and create a cause-effect 
relationship. 

We can divide the application of this type of machine learning into two categories, classification, and 
regression. In the case of classification, the objective is to predict a categorical result for each of the 
data, based on its independent variables. In regression problems, the expected output value is of the 
continuous type. 

2.2. ARTIFICIAL NEURAL NETWORKS & CNNS 

Artificial Neural Networks (ANN) are statistical models that are directly inspired by the structure and 
function of the neurons in the brain. The fundamental units of neural networks are also referred to 
as neurons, nodes, or artificial neurons. A group of connected neurons creates networks that are 
trained to perform a variety of tasks, such as recognizing patterns in data, making predictions, or 
making decisions. This can be achieved by adjusting the weights of the connections between the 
nodes based on example inputs and their corresponding outputs (K. O'Shea, & R. Nash., 2015). 

An ANN is modeled by overlaying several layers of artificial neurons, or computational units, to 
receive inputs and then transfer them onto the next layer. The basic architecture consists of a 
network that has three types of neuron layers: input, hidden, and output layers (A. Abraham, 2005). 
However, there are some configuration variants, depending on the outputs and the data processing 
approach. Some common types of neural networks are Feedforward Neural Networks (FNN), 
Convolution Neural Networks (CNN), and Recurrent Neural Networks (RNN). However, throughout 
this report, we’ll just focus on CNNs since this type will be the only one that will be used to address 
our problem. 

Convolutional Neural Networks (CNN), which are also called “ConvNets”, is a type of ANN that, like 
the others, consists in neurons that learn through self-optimization. The main difference between 
this architecture and traditional ANN architecture is that this one is designed to deal with visual data. 
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CNN process images or videos and extracts relevant features directly from each pixel value without 
requiring any hand-engineered features or previous knowledge about the world.  

 

Figure 8 - Convolution Neural Network Architecture6 

To understand CNNs is important to know how its architecture is composed and what the types of 
layers that take part of it are. This type of ANN includes several building blocks, such as convolution 
layers, pooling layers, and fully connected layers. A common structure consists of repetitions of 
several convolution layers and a pooling layer, followed by one or more fully connected layers. 

2.2.1. Convolution Layers 

A Convolution Layer is a fundamental component of the CNN architecture that performs feature 
extraction, which typically consists of a combination of linear and nonlinear operations. 

The first type of linear operation is convolution. This operation involves sliding a small matrix of 
weights (called a kernel or filter) over the input data (or input tensor) and computing an element-
wise product of the weights and the values in the input volume at each position. The result for each 
pixel is then summed to obtain an output array called a feature map. This procedure is repeated by 
applying multiple kernels to form an arbitrary number of feature maps that extract different features 
from the input tensors (R. Yamashita et al., 2018). 

Two key hyperparameters that define the convolution operation are size (I x J) and the number of 
kernels (K). The size is typically 3 × 3, but sometimes 5 × 5 or 7 × 7. The number of kernels that are 
stacked on top of each other will set the depth of the feature maps and the complexity of the 
detection. 

 
6 Source: Horak, K., & Sablatnig, R. (2019, August). Deep learning concepts and datasets for image recognition: overview 2019. 

In Eleventh international conference on digital image processing (ICDIP 2019) (Vol. 11179, pp. 484-491). SPIE. 
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Figure 9 - Example of a convolution operation with a kernel size 3x37 

Important to mention that to preserve the spatial dimensions of the input data when it is convolved 
with a kernel, rows, and columns of extra elements are added to the edges of the input tensor in a 
technique called padding. Without padding, each successive feature map would get smaller after the 
convolution operation. 

2.2.2. Pooling Layers 

In addition to convolutional layers, CNNs also include pooling layers, which provide a down-sampling 
operation of the feature maps by taking the maximum or average value of a small region of the 
feature map and preserving important features learned by the convolutional layers. This has the 
effect of reducing the dimensionality of the data and making the network more robust to small 
translations or deformations of the input data.  

There are several different ways to perform pooling, like Max, Sum, or Average, however the most 
common and preferred one is Max pooling, which extracts patches from the input feature maps, 
outputs the maximum value in each patch, and discards all the other values. 

 

Figure 10 - Example of max pooling operation with a filter size of 2 × 28 

 
7,8 Source: Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and 

application in radiology. Insights into imaging, 9, 611-629. 
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2.2.3. Fully Connected Layers 

Finally, after applying several convolution and pooling layers, the output of the feature maps is 
generally transformed into a one-dimensional array of numbers (vector) and fed to one or more Fully 
Connected Layers, also known as dense layers.  

The main idea behind these layers is the same that is implemented on feed-forward neural networks. 
They are used to retrieve the features from the last pooling or convolutional layer and use them to 
classify the input image into various classes based on the training dataset (D. Bhatt et al., 2021). 
Generally, in the more advanced ANN architectures, the last few layers are fully connected layers 
with the same number of nodes as the number of possible outcomes. 

First is important to understand that a flattened vector will be the input layer that will be coupled to 
a first Fully Connected Layer meaning that each input neuron is connected to all the neurons of that 
layer (A. Alexandari, M. Shrikumar, & A. Kundaje., 2017). The same will happen between the first 
layer and the second one until the end of the network creating a Fully Connected Network. In this 
network, the connections between the layers are called weights and these are trainable parameters 
that our model needs to learn to associate features to a particular category.  

The training process is done by applying a non-linear function called the activation function. This 
function decides whether a neuron should be triggered or not. This means that it will decide whether 
the neuron’s input to the network is important or not in the process of prediction using simpler 
mathematical operations. A bias parameter will always be present in the network and is added to the 
weighted sum of the inputs to each node. It is a constant value that shifts the activation function of 
the node to help the network to better model the underlying data by allowing the neurons to have a 
non-zero output even when all of the inputs to the neuron are zero. This can be useful for modeling 
certain types of patterns in the data, such as trends or seasonal effects. The bias can also help to 
improve the convergence of the network during training, by providing a non-zero starting point for 
the optimization algorithm. 

Fully connected layers are easy to implement and can learn a wide range of functions. However, they 
are also the second most computationally expensive, behind convolution layers, because they 
require a large number of parameters to be learned (J. Janke, M. Castelli, & A. Popovič.,2019) and 
can be susceptible to overfitting if the network is not sufficiently regularized. As a result, they are 
often used in combination with other types of layers, such as dropout layers, to improve the 
performance and generalization ability of the network. 
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Figure 11 - Example of a neural network with fully connected layers9 

The performance of an artificial neural network is determined by its architecture, the training 
algorithm used, and the quality and quantity of the training data. By adjusting these factors, it is 
possible to create neural networks that are highly effective for a wide range of tasks. However, 
training neural networks can be a complex and computationally intensive process, requiring 
specialized knowledge and expertise. 

Nevertheless, as datasets become larger and more complex, there is a growing need for more 
sophisticated learning processes to effectively analyze them. This has led to increased research into 
developing more advanced neural network architectures. In the upcoming chapter, we will explore 
this area of deep learning that focuses on creating deep neural networks. We will also focus on how 
these models can be applied to our specific use case, highlighting their potential to improve 
performance. 

2.3. DEEP LEARNING 

Deep Learning is another subfield of machine learning, that only focuses on designing artificial neural 
networks with three or more layers making it possible to perform accurate decisions based on large 
and complex amounts of data. As an approximation of how the human brain behaves, this 
technology becomes possible to carry out recognition tasks and analysis of complex patterns. This 
offers useful possibilities, not just for computer vision tasks, but also for other types of tasks without 
the need for extensive programming or manual feature engineering. 

By using a network of layers as architecture, where each layer can be thought of as the state of the 
computer’s memory after executing another set of instructions in parallel (I. Goodfellow et al., 2016), 
systems powered by deep learning algorithms can process multiple iterations of data processing, 
resulting in a continuously improve their accuracy and performance.  

 
9 Adapted from: https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-4-full-connection  
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The algorithms are typically trained using large amounts of data and powerful computational 
resources, such as GPUs. This means that training deep learning models can be time-consuming and 
computationally intensive and requires specialized knowledge and expertise. 

Important to mention, for the full understanding of this project, that there is a field of AI that relies 
very much on deep learning to develop this kind of model to understand the contents of digital data, 
such as images or videos. This field is known as Computer Vision (CV), and the goal is to create deep 
artificial neural networks capable of process and understanding information in a way that is similar to 
humans and performing tasks like object recognition, image, and video analysis, medical imaging, 
etc. 

CV image-related models can be seen as a highly versatile solution, however, it’s worth noting that 
these models can only perform tasks that they were trained to execute. This introduces a major 
limitation when exposed to new tasks that require a different set of data. Meaning that the 
algorithms need huge amounts of dedicated data specifically for each project to produce good 
results. Our days, this is not a deal breaker since images are available online in bigger quantities than 
ever, but the fact that these images need to be labeled for many occasions can reveal expensive 
labeling work that can only be done by humans (S. Mavrikis et al., 2021). 

In the next section, we will focus on the theoretical knowledge of object detection algorithms. This is 
one of the most popular computer vision use cases and represents the foundation of the solution for 
this work. This will be important to understand how the Machine Learning team in Biometrid 
developed the object detection algorithm that is capable of retrieving sections of the Portuguese 
identification card.  

2.4. OBJECT DETECTION  

Object detection is a computer vision type of task that combines the tasks of identifying the location 
of one or more objects in a frame and classifying them. It is a crucial component for many 
applications and is required for unattended monitoring systems that need the ability to detect, 
identify, and, in some cases, track moving objects. Examples such as self-driving cars, image search 
engines, and robotics can be cases where this type of detection needs to present a higher monitoring 
performance even in complex environments (H. Zhu et al., 2020). 

 

Figure 12 - Example of the expected output of an object detection model trained to detect dogs, cats and humans. 
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It's important to understand the difference between object detection and image recognition tasks. 
While both tasks involve analyzing images to identify objects, the key difference lies in the output 
they generate. Object detection tasks aim to predict bounding box coordinates and assign a label to 
each detected object in an image. This involves drawing one or more boxes around each object and 
providing information about its location, scale, and pose. On the other hand, image recognition tasks 
only focus on identifying the presence of an object in an image or video, without providing 
information about its location. In other words, image recognition is a simpler task that involves 
identifying objects without the need to localize them (Fritz Labs, 2018). While both tasks are 
important in computer vision, object detection is more complex and requires more advanced 
techniques to accurately identify and locate objects within an image. 

In recent years, the fast development of artificial neural networks has gained a lot of interest in the 
context of object detection tasks providing powerful learning abilities. By learning parameters 
themselves, ANN can now deliver a high degree of accuracy compared to previous computer vision 
strategies. Following the publication of the original paper in 2012, which achieved huge attention 
from the community due to their results on the ImageNet classification benchmark (Krizhevsky A. et 
al., 2012.), many ANN architectures have emerged and proposed different strategies to help improve 
previous results (H. Hakim, A. Fadhil., 2021). 

The following paragraphs will present and compare variants that we tested throughout the past 
months and are important for the full understatement of this project. These variants give us different 
views to solve the problem of detecting and correctly classifying objects in an image or video.  

2.4.1. Region-based Convolution Neural Networks (R-CNN) 

In 2014, Girshick et al. proposed a new method called Region-based Convolution Neural Networks (R-
CNN) that achieved a high level of accuracy regarding a variety of applications, including image 
classification, object detection, and facial recognition.  The basic idea behind R-CNNs is to use CNNs 
to learn features from an input image, and then use those features to classify and localize objects 
within the image (Girshick R. et al., 2014).  

To do this, R-CNNs follow a two-step process:  

1) Region Proposal: In the first step the algorithm proposes a set of potential bounding boxes or 
regions of interest (ROIs) that may contain an object of interest. These bounding boxes are 
typically generated using a sliding window approach, where the algorithm slides a fixed-size 
window across the image and proposes a bounding box at each location. 

2) Feature Extraction: Next, R-CNN takes use of a CNN to extract features from the image within 
each bounding box. These features are then fed into a Support Vector Machines (SVM) 
classifier trained to predict the class of the object and the location of the object within the 
bounding box. 

Despite producing good results, R-CNNs still presented some disadvantages mainly regarding the 
high time consumption to train and make inferences caused by the multiple-stage pipeline. 



16 
 

 

Figure 13 - R-CNN Stages10 

2.4.2. Faster-RCNN 

In 2015, Microsoft Research (Ren S. et al., 2016) introduced Faster R-CNN as an improvement over 
the original R-CNN algorithm and since then has become a popular choice for object detection due to 
its speed and accuracy. 

With shared philosophy with R-CNNs, Faster R-CNNs aim to classify and localize objects within an 
input image using a combination of convolutional neural networks (CNNs) and region proposal 
algorithms. However, Faster R-CNNs introduce Region Proposal Networks (RPN) as a more efficient 
approach compared to the previous ones since it only uses one neural network to perform both the 
region proposal and the feature extraction steps, rather than using separate networks for each step. 

In other words, the architecture of a Faster R-CNN algorithm begins with several convolution layers 
responsible for the feature extraction of the input image. Before the last pooling layer, a convolution 
RPN layer of size 3x3 is implemented and comes with the responsibility of receiving the feature maps 
and generating outputs to both a classifier, that determines the probability of a pixel to host a target 
object (proposals) and a regressor, that regresses the coordinates of the regions of interest. (S. Ren 
et al., 2015). 

 

Figure 14 - Faster R-CNN's Architecture11 

 
10 Source: Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and 

semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587). 

11 Source: Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal 
networks. Advances in neural information processing systems, 28. 
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At each sliding-window location, several proposals are predicted, and knowing that the regressor has 
4*k coordinate outputs and the classification layer generates 2*k binary results the authors 
introduce the definition of “anchors” to define the central point of each sliding window. For any 
image, scale, and aspect ratio play a decisive role as important parameters to calculate the number 
of anchors (k). The developers chose 3 scales and 3 aspect-ratio as default parameters meaning that 
the maximum number of proposals per pixel is equal to 9, concluding that for the whole image, k = 
W*H*9. 

According to the original paper, the loss function of the RPN is minimized by the binary class label (of 
being an object or not) of each anchor. To assign a positive label to an anchor this one has to have 
the highest Intersection-over-Union (IoU) overlap with a ground-truth box or has to have an IoU 
overlap higher than 0.7 (S. Ren et al., 2015).   

2.4.3. Single Shot MultiBox Detector (SSD) 

To address the high computational problems caused by the Faster R-CNN, other object detection 
systems, proposed different techniques that reduce the inference time while maintaining the same 
level of accuracy. So, by the end of 2016, C. Szegedy presented a paper on the implementation of 
Single Shot MultiBox Detector (SSD) reaching immediate breakthrough records in terms of 
performance and precision for object detection tasks compared to the previous models. 

This model approach is based on a feed-forward convolutional network that produces a fixed 
number of bounding boxes and creates a scoring mechanism that evaluates the presence of objects 
in those boxes. The architecture of the SSD uses VGG-16 architecture as its base network inheriting in 
this way its strong performance in high-quality image classification tasks. From there, the main 
difference stands in the removal of the fully connected layers by a set of convolutional layers that 
decrease in size progressively and enable predictions at multiple scales. These layers are then 
followed by a non-maximum suppression step to produce the final detections. 

 

Figure 15 - SSD Architecture12 

The SSD Model works as follows, the base network processes an input image that is divided into grids 
of various sizes, and, for each grid, detection is performed for different classes and different aspect 
ratios. After that, each of these grids is evaluated by a score that says how well the detected object 
fits in that particular grid. The non-maximum suppression step is as stated before, responsible for 
choosing the best final detection from the set of overlapping detections (W. Liu et al., 2016).  

 
12  Source: Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. 

In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp. 
21-37). Springer International Publishing. 
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Figure 16 - SSD Framework13 

In the year of its launch, the SSD model registered better results than the previous state-of-the-art 
detection algorithms, but in recent years, new variants of YOLO architecture and SSD keep competing 
for the award of best object detection model in the PASCAL VOC 2007 Challenge. 

2.4.4. CenterNet 

To reduce the steps performed by two-stage object detection architectures, like R-CNN or Faster R-
CNN models, and to deal with the limitations of anchor-based models, CenterNet architecture was 
proposed in 2019 as an anchorless object detection algorithm that proves to be an effective 
lightweight option (K. Duan et al., 2019).  

Taking as the baseline the CornerNet architecture, CenterNet is a one-stage detector that aims to 
improve to performance of its predecessor by using a triplet of keypoints, rather than a pair. This 
architecture reduces the analysis cost by only paying attention to the central information using a 
keypoint detection process. 

In the given figure, the model represents each object using a center keypoint and a pair of corners. 
To generate a heatmap, CenterNet uses CNNs as a model backbone to generate bounding boxes, 
then count the number of bounding boxes that contain the center keypoint and uses this information 
to predict the likelihood of a central region in the image containing the same class of center 
keypoints. Each pixel in the heatmap represents the probability of an object center being present at 
the corresponding spatial location in the image. A high probability score indicates a high likelihood of 
an object center being present at that location, while a low probability score indicates a low 
likelihood of an object center is present. This approach of predicting the likelihood of object centers 
using a heatmap can improve the accuracy of object detection, particularly for small or occluded 
objects. 

 
13 Source: Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. 

In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp. 
21-37). Springer International Publishing. 
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Figure 17 - CenterNet Architecture14 

The authors presented an architecture that employs two key strategies to predict the geometric 
centers and corners of objects. The first strategy is called Center Pooling and starts by predicting the 
center keypoint by finding the maximum value in both horizontal and vertical directions and adding 
these two values together. This helps to obtain more recognizable visual patterns within objects, 
making it easier to perceive the central part of the proposal. 

The second strategy is denominated Cascade Corner Pooling, which aims to find the corner points 
similarly to the previous one, but now by obtaining the maximum summed response in both the 
boundary and internal directions of objects on a feature map for corner prediction. Empirically, the 
authors claim that the results are more stable and robust to feature-level noises, leading to improved 
precision and recall. 

In summary, the CenterNet model is a state-of-the-art object detection architecture that achieves 
high accuracy with low computational costs. The model predicts object centers directly using a 
heatmap, which reduces the complexity of the model and improves detection accuracy for small and 
occluded objects. The model has achieved state-of-the-art results on several benchmark datasets and 
is widely used in both research and industry for various computer vision applications. 

2.5. EVALUATION METRICS 

Evaluation metrics play a crucial role in the development and deployment of machine learning 
models. Building a machine learning model can be seen as a recursive pipeline where the responsible 
team trains a model, then evaluate it using evaluation metrics, finetune specific model 
hyperparameters, and repeat this procedure until the desired performance is achieved. So, it is 
extremely important to carefully choose and track the right evaluation metrics to ensure that the 
model is performing well, to perform a model comparison, and to meet the desired objectives. 

In this chapter, we will discuss the theoretical background of the evaluation metrics used throughout 
the project and explore how to choose and interpret these metrics in a production environment. We 
will also discuss the importance of considering the specific characteristics and goals of the task when 
selecting an evaluation metric, and the role of evaluation metrics in model selection, optimization, 
and monitoring. 

 
14 Source: Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. 

In Proceedings of the IEEE/CVF international conference on computer vision (pp. 6569-6578). 
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Since we are dealing with an object detection algorithm, is expected to evaluate the model by 
comparing its output with ground-truth bounding boxes generated by a human operator responsible 
for manually labeling the objects and defining their boundaries (V. Y. Mariano et al., 2002). From this 
analysis, it’s common to use evaluation metrics like accuracy, precision, recall, and many others to 
understand how well the model can distinguish between different class labels and the trade-offs 
between false positive and false negative predictions. 

Since 2010 challenges like VOC PASCAL Challenge, COCO, ImageNet Object Detection Challenge, and 
Google Open Images Challenge have emerged as competitions that aim to evaluate new 
implementations and are now seen as valuable benchmarks to test object detection models in 
specific scenarios by using real-world annotated datasets (M. Everingham et al., 2009). These 
competitions contribute to the definition of standard evaluation procedures within the scientific 
community by using popular metrics like Average Precision (AP), Intersection over Union (IoU), or 
creating their variants to rank the models. 

In the next sections, we’ll try to clarify the metrics previously mentioned in a simplified and 
organized strategy where the reader is guided by a sequential process illustrated in the figure below. 
It should be noted that each step can be considered as a standalone method of evaluation, but they 
are interdependent and build upon one another. 

 

Figure 18 - Object Detection Evaluation Process 

2.5.1. Confusion Matrix 

This table comes up as a useful tool for an initial understanding of the types of errors made by a 
model and for comparing the performance of different models. It’s constructed by comparing the 
predicted class labels with the true class labels of the data.  
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 Positive Negative 

Positive TP FP 

Negative FN TN 

Table 1 - Confusion Matrix15 

Looking at the table above, a confusion matrix will be composed by four main areas that help to 
understand the strengths and weaknesses of a model and for identifying areas for improvement. 
More precisely, each prediction can be classified as:  

• True positive (TP) if the prediction contains a correct detection of a ground-truth bounding 
box. 

• False positive (FP) if the algorithm performs an incorrect detection of a nonexistent object or 
a misplaced detection of an existing object. 

• False negative (FN) if the ground-truth object is not detected.  

Bear in mind that, within the realm of object detection, there is no such thing as a False Positive (FP) 
as there are an infinite number of bounding boxes that should not be identified within a given image. 

2.5.2. Intersection over Union (IoU) 

Based on the Jaccard Index, this metric individually evaluates the overlap between a pre-annotated 
ground truth bounding box (gt) and the one predicted by the model (pd) having in consideration a 
specific threshold value.  

IoU score ranges between 0 and 1 where the closer the two boxes the higher the score, meaning that 
detection output with maximum IoU value is considered to have a perfect overlap with the ground 
truth bounding box. 

 

Figure 19 - Formula and Representation of the IoU calculation16 

 
15 Adapted from: Jeppesen, J. H., Jacobsen, R. H., Inceoglu, F., & Toftegaard, T. S. (2019). A cloud detection algorithm for 

satelliteimagery based on deep learning. Remote sensing of environment, 229, 247-259. 
16 Adapted from: Padilla, R., Netto, S. L., & Da Silva, E. A. (2020, July). A survey on performance metrics for object-detection 

algorithms. In 2020 international conference on systems, signals and image processing (IWSSIP) (pp. 237-242). IEEE. 
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By computing the IoU score for each detection, it’s important to define a threshold (a) to convert 
real-valued scores into classifications. 

2.5.3. Precision and Recall 

This performance benchmark act as a measure of how closely a predicted value agrees with the true 
value of a quantity. It is defined as the ratio of the number of correctly predicted positive cases 
(positive predictions containing an IoU greater than the threshold) to the total number of predicted 
positive cases (correctly identified objects + false positive predictions). In other words, it is a measure 
of the proportion of positive cases that are actually positive. 

 

Figure 20 - Precision Formula 

Precision is often used in conjunction with another metric called Recall (or Sensivity) to evaluate the 
performance of a model. Precision is typically more relevant when the goal is to limit the number of 
false positive predictions, whereas recall is more relevant when the goal is to identify as many 
positive cases as possible. This way we can define Recall as the metric that measures the ratio of the 
number of correctly predicted positive cases to the total number of actual positive cases. In other 
words, it is a measure of the proportion of actual positive cases that are correctly identified by the 
model. 

 

Figure 21 - Recall Formula 

Important to mention that, in the presence of imbalanced datasets, where one class is rare, it’s 
important to focus on the recall of the model.  

2.5.4. F1-Score:  

This is the harmonic mean of precision and recall, with a higher score indicating a better balance 
between the two. The F1 score is defined as: 

 

Figure 22 - F1-Score Formula 

The F1 score is often used in imbalanced classification tasks, where it is important to achieve a 
balance between precision and recall. It is also useful when the cost of false positive and false 
negative predictions is not the same, as it allows for the weighting of these costs to be incorporated 
into the evaluation metric. 

2.5.5. Average Precision 

In object detection algorithms, it is essential to strike a balance between precision and recall. The 
traditional evaluation metric, which is the F1 score, can only provide a single score for a given 
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threshold, making it less informative in situations where the threshold varies. To address this issue, 
the Average Precision (AP) metric was introduced, which has become a widely used evaluation 
metric for object detection algorithms. AP considers the number of true positives, false positives, and 
false negatives, making it particularly useful when the data is imbalanced. By computing the area 
under the precision-recall curve (AUC), AP provides a comprehensive summary of the trade-off 
between precision and recall across different thresholds, thus providing a more informative 
evaluation metric for object detection algorithms. 

To calculate the AP, the precision-recall curve is first computed by varying the threshold values and 
plotting the precision on the y-axis and recall on the x-axis. The AUC is then computed, which ranges 
from 0 to 1, with higher values indicating better performance. AP provides a more precise evaluation 
metric compared to traditional metrics, making it a valuable tool for object detection algorithms. As 
such, it has become a standard metric used in many object detection benchmarks and competitions. 

2.5.6. Mean Average Precision (mAP) 

Multiclass Object Detection models face the challenge of detecting multiple object classes in an 
image. As a result, a metric called Mean Average Precision (mAP) was developed as an extension of 
the AP metric to calculate the average precision for each class. mAP calculates the AP for each class 
in the dataset and then averages the AP values for all the classes to obtain the final mAP score. The 
resulting value ranges from 0 to 1, with 1 indicating the best possible performance. mAP is a useful 
metric as it provides an overall view of the model's performance and helps to identify which classes 
the model is performing well on and which classes it is struggling with, providing insight into where 
the model needs improvement. 

The simplicity of mAP has made it an essential benchmark for evaluating the performance of object 
detection models in competitions and challenges. The mAP allows for easy comparison of different 
models and provides a fair evaluation metric for all models, regardless of the number of classes in 
the dataset. This makes it an effective tool for researchers and developers to assess the performance 
of their models and identify areas for improvement. 

2.6. OPTICAL CHARACTER RECOGNITION (OCR) 

Optical Character Recognition (OCR) is a technology that provides the capacity of converting 
handwritten, typewritten, or printed text into machine-readable images. This offers numerous 
applications that can be used to improve workflow efficiency. Common examples are industries like 
legal, banking, and healthcare that are currently leveraging OCR technology to simplify their 
operations and streamline their processes (A. Singh, K. Bacchuwar, & A. Bhasin., 2012). 

Unlike humans, machines do not have the capability to recognize text or characters easily from an 
image, which is why significant research efforts have been put into developing OCR techniques. OCR 
is a complex problem due to the numerous languages, fonts, and styles in which text can be written, 
as well as the complex rules of languages. As a result, OCR requires the integration of various 
computer science disciplines, such as image processing, pattern classification, and natural language 
processing, to overcome these challenges (N. Islam, Z. Islam, & N. Noor., 2017). 

The process of OCR involves a series of distinct phases. The first one, denominated by image 
acquisition, entails obtaining an image from an external source such as a camera or scanner, and 
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transforming it into a format that is compatible with computer processing. This is a crucial step in the 
OCR process as it sets the foundation for accurate and efficient optical character recognition. 

Once the image has been acquired, the subsequent step in the OCR process is known as 
preprocessing. During this phase, a variety of techniques can be utilized to enhance the quality of the 
image. These techniques may involve removing noise, setting thresholds, and extracting the baseline 
of the image. By improving the image quality, the OCR algorithm can achieve a higher level of 
accuracy when it comes to recognizing the text or characters contained within the image. This phase 
is critical to ensuring the overall effectiveness of the OCR process. 

Moving to the next phase, the next step in the OCR process will focus on character segmentation. 
The goal of this phase is to isolate individual characters within the image so that they can be properly 
identified by the recognition engine. While simple techniques such as connected component analysis 
and projection profiles may be sufficient in certain cases, more advanced segmentation techniques 
are necessary for complex situations where characters may be overlapping, broken, or obscured by 
noise within the image. By effectively separating the characters, the OCR system can accurately 
recognize the text and produce an output that is faithful to the original document. 

The segmented characters are then processed to extract different features. Based on these features, 
the characters are recognized. Different types of features that can be used extracted from images are 
moments etc. The extracted features should be efficiently computable, minimize intra-class 
variations, and maximizes inter-class variations.  

The segmented characters are then processed in order to extract different features that will be used 
for character recognition. Based on these features, the characters are recognized. The features 
extracted from the characters should be efficiently computable and should minimize intra-class 
variations (variations within the same class of characters) while maximizing inter-class variations 
(variations between different classes of characters). Various types of features can be extracted from 
the characters, such as moments and other image-based features. After that, the features of 
segmented images are assigned to different categories or classes using different types of character 
classification techniques. 

Finally, post-processing techniques can be performed to improve the accuracy of OCR systems. These 
techniques utilize natural language processing, and geometric and linguistic context to correct errors 
in OCR results. 
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Figure 23 – General OCR Workflow17 

Over the years, OCR technology has undergone tremendous improvements, and modern systems can 
now recognize various fonts, sizes, and styles of text. Despite this, the accuracy of OCR systems still 
depends on factors such as image quality, text complexity, and language. Fortunately, advancements 
in artificial intelligence and machine learning have resulted in substantial improvements in OCR 
accuracy, leading to more reliable and precise results (A. Ranjan, V.N.J. Behera, & M. Reza., 2021). 

Nowadays, there are numerous OCR tools available that have made their usage more common in 
different environments. Some of the most popular OCR tools include Tesseract, developed by 
Google, Microsoft Cognitive Services by Microsoft, and Amazon Textract. For our project, we have 
decided to utilize the Pytesseract Python library, which provides an easy-to-use interface to leverage 
all the features and capabilities of Tesseract. The Pytesseract library offers a straightforward and 
efficient way of integrating OCR functionality into Python-based applications, making it a great choice 
for our project needs. 

 
17 Adapted from: Mudiarta, I. M. D. R., Atmaja, I. M. D. S., Suharsana, I. K., Antara, I. W. G. S., Bharaditya, I. W. P., Suandirat, G. A., 

& Indrawan, G. (2020, April). Balinese character recognition on mobile application based on tesseract open-source OCR engine. In Journal 
of Physics: Conference Series (Vol. 1516, No. 1, p. 012017). IOP Publishing. 
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3. METHODOLOGY 

3.1. TOOLS AND TECHNOLOGIES 

In this chapter, all the tools and technologies used throughout this project will be presented. We will 
explore the reasons for their selection, enumerate alternatives available in the market, and 
understand the importance of these tools and technologies for the success of the project. The 
chapter will cover the various libraries, frameworks, and platforms that have been employed to 
facilitate the process of building an object detection model, from data preparation to model training 
and deployment. By the end of this chapter, readers will have a comprehensive understanding of the 
tools and technologies used in the project, and how they contribute to the overall objective of the 
project. 

3.1.1. TensorFlow 

TensorFlow (TF) is a powerful open-source software library for machine learning and deep learning, 
developed by researchers and engineers working on the Google Brain Team. At its core, TF uses data 
flow graphs to represent any computation. A data flow graph is a directed acyclic graph (DAG) where 
the edges represent the flow of data, and the nodes represent operations. This makes it easy to 
implement machine learning algorithms, such as neural networks (M. Abadi et al., 2016). 

TensorFlow also provides a wide range of tools for building, training, and deploying machine learning 
models using a variety of platforms including CPUs, GPUs, and TPUs. However, the development 
team maintains a collection of pre-made models on a platform called TensorFlow Hub, which can be 
used for tasks like object detection, image classification, and text generation.  

For visualization purposes, TensorFlow has a visualization tool called TensorBoard, which allows 
developers to easily visualize and understand the behavior of their models during training, 
evaluation, and inference. 

 

Figure 24 - TensorBoard Interface18 

The main alternative to TensorFlow is PyTorch. This python library was developed by Facebook and 
defines itself as an easier-to-use tool easy for tasks such as image classification, natural language 

 
18 Source: https://www.tensorflow.org/tensorboard  
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processing, and generative models. The optimized integration with the most popular python libraries 
like NumPy, Pandas, and Matplotlib makes it a great choice for data scientists who want to leverage 
their existing knowledge and tools. 

Biometrid uses this specific framework as its primary tool for training machine learning models in a 
production setting. However, the team is open to utilizing different tools and encourages the 
exploration of new options that may offer improved performance. 

TF presents itself as the main tool for almost all the tasks that were performed during this project, 
and the full understanding of this library was central to being able to train, evaluate and deploy new 
algorithms for the extraction of elements of the identification card. In the next subsection, we’ll 
explain in more detail a specific TensorFlow API for the creation of Object Detection models. 

3.1.1.1. TensorFlow Object Detection API 

TensorFlow Object Detection API (TFOD API) presents as a framework for a specific build and 
deployment of object detection models using TensorFlow. It provides a collection of pre-trained 
detection models that are good baselines for out-of-the-box inferences. 

The API also provides tools to fine-tune the model on a new dataset, or to train a new model from 
scratch. Additionally, TFOD API facilitates this workflow by including a collection of utilities for 
converting existing object detection datasets to the "TFRecord" file format, which is the input format 
for TensorFlow training and evaluation. 

Once the model is trained, TensorBoard can also be used as a visualization tool to understand and 
debug your model during training, evaluation, and inference. In terms of the deployment of the 
model, this can be done in a variety of ways, including as a command-line tool, as a library that can 
be integrated into other Python code, or as a web service using TensorFlow Serving.  

Overall, TensorFlow Object Detection API is a powerful tool for building and deploying object 
detection models, making it easy to train and deploy models using TensorFlow, and providing a 
collection of pre-trained models that include architectures like Faster-RCNN, SSD, and CenterNet. 

3.1.2. Label Studio 

Label Studio is a software platform for creating and managing data annotation projects. It is designed 
to help machine learning engineers, data scientists, and other professionals easily create and manage 
annotation projects. 

With its user-friendly interface users can define the data that needs to be labeled, create annotation 
tasks, and invite other users to collaborate on the project. The platform supports a wide range of 
annotation tasks, including text classification, object detection, image segmentation, and more. 
Users can also customize the annotation interface to suit their needs, by creating custom forms, 
adding instructions, and setting up validation rules.  
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Figure 25 - Label Studio Interface19 

Once the data is labeled, it can be exported in various formats, including JSON, CSV, and TFRecord, 
which makes it easy to use the labeled data in machine learning pipelines and other applications. 

This was the tool used to perform labeling activities and build the dataset used since the beginning of 
the project. All of its advantages made it the preferred choice over its competitors like LabelImg and 
Labelme. 

3.1.3. OpenCV 

Open-Source Computer Vision (OpenCV) is a library of programming functions mainly aimed at real-
time computer vision for multiple languages, including Python, Java, and C#. It was presented by Intel 
in 2000 and is now maintained by a non-profit organization called Willow Garage.  

OpenCV provides a wide range of features for image and video processing, including image filtering, 
image transformation, object detection, and machine learning. Currently is widely used in industry 
and academia, and it is supported by a large and active community. It is also supported by many 
platforms, including Windows, Linux, and macOS, and it can be used on both desktops and mobile 
devices. 

Throughout the project, this was used to manipulate the images and understand the best image 
conditions for the OCR engine.  

3.1.4. Streamlit 

Streamlit is an open-source framework used to build and share interactive data-driven applications. 
This relatively new Python-based library simplifies the development of machine learning and data 
science web applications. Streamlit has gained popularity among data scientists due to its intuitive 
interface, ease of use, and ability to develop applications quickly. With it, everyone that knows how 
to code in Python can easily create interactive dashboards and data visualizations without any web 
development experience. 

Another feature of this library is its ability to render real-time data. Streamlit automatically updates 
the data and visualizations whenever there is a change in the input. This means that data scientists 
can work with their data in real time and get instant feedback on the changes made to the data. 

 
19 Source: https://labelstud.io  
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A variety of built-in widgets is provided allowing developers to create interactive user interfaces 
quickly. These widgets include sliders, buttons, and drop-down menus, which can be used to interact 
with the data and visualize the results in real time. 

Streamlit has support for a wide range of data science and machine learning libraries, including 
NumPy, Pandas, Matplotlib, and Scikit-learn. Developers can easily integrate these libraries into their 
applications and leverage their functionalities to analyze and visualize data. 

3.2. ID ELEMENTS PT PROJECT 

Since starting at Biometrid, the objective was to expand the understanding of the subjects and 
technologies mentioned above. An initial experience with the business world and the field of 
machine learning outside of an academic setting has proven to be a valuable step in pursuing a 
career that aligns with a personal desire to continue learning and, in particular as a ML Engineer to 
comprehend the inner workings of systems utilizing artificial intelligence. 

With the growth in terms of personnel inside the company and, in particular with the growth of the 
Machine Learning team, an improved version of the OCR Pipeline was proposed enabling a more 
accurate analysis of a high volume of identification card images from different countries daily. This 
data extraction, transformation, and loading process is an essential component of the Biometrid SDK 
as it plays a crucial role in enrolling new users and validating existing ones on the platform where it is 
integrated. 

The procedure starts by acquiring images taken by a mobile device or webcam, and a classification 
algorithm is then employed to determine the type of document being analyzed, before proceeding to 
the next phase (card type model). The next step involves applying pre-processing methods to 
properly segment the images (segmentation model), isolating the relevant portion from the 
background, and adjusting the orientation of the document to a horizontal layout (rotation model). 

The entire process described above is accomplished with the aid of multiple machine learning models 
that were trained and implemented previously. These models serve as a foundation for this project, 
and it’s important to enhance that every point mentioned in this chapter will have that attention.  

Throughout the next chapters, we will go into detail on the various steps that compose this project 
consisting of finding the best object detection model architecture and training it to the point that is 
capable of successfully locating and identifying all the sections from the front face of the Portuguese 
identification card. It is extremely important to mention that reading the previous chapters regarding 
the theoretical background of this project is mandatory to fully understand the subsequent sections. 

3.2.1. Data Processing 

3.2.1.1. Data Collection 

After one week of gaining a comprehensive understanding of the company's operations and the 
specific project assigned to me, it became apparent that a dataset containing a significant quantity of 
images captured in various settings and featuring diverse arrangements was necessary to ensure that 
the model would be as robust as possible and avoid any overfitting issues. 
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To replicate the OCR pipeline in a local setting, it was necessary to properly segment and align the 
images in a horizontal orientation before they were processed by the detection model, to avoid any 
potential conflicts with the other components of the pipeline. To accomplish this, we initiated 
interactions with existing segmentation and rotation models that were already in use in the 
production environment. 

In essence, we are examining object detection models with distinct objectives for the first time. 
Specifically, the segmentation model's goal is to partition an image into regions of interest (in this 
case, a single region) that correspond to an object or a class of objects. The output of the model will 
be a segmentation mask, which is effectively a binary image that categorizes each pixel to indicate 
the locations where objects of interest are present.  

 

Figure 26 - Segmentation Model output 

As for the rotation model, we utilize an automated method to rotate images based on the model's 
output. This returns a list of probabilities corresponding to each rotation operation, allowing us to 
apply the technique with the highest probability to achieve a successful outcome and align the image 
in a horizontal orientation. 

With that in mind, the objective for each image was to utilize the segmentation model to 
automatically crop out most of the background. To achieve this, we wrote a Python script that, after 
properly initiating the model, would iterate through the entire directory of images and create a copy 
of each image, but with the background segmented out. This approach ensured that all data analysis 
and manipulation would be performed on the copy of the images, thus preserving the integrity of the 
original dataset. 

However, upon collecting data, it became apparent that the rotation model would not need to be 
run locally as the majority of images were already in a horizontal layout. Despite this, it is crucial to 
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note that the alignment of the images is of paramount importance as a successful OCR outcome is 
highly dependent on it. 

In summary, the majority of the two initial weeks at Biometrid were dedicated to research tasks, 
where the primary focus was to gain a comprehensive understanding of how the product functions, 
its components, the core objectives of the project assigned to me, and the methods for utilizing the 
models locally. Only after gaining this understanding, we were able to commence organizing a study 
dataset and begin testing the manipulations applied in the OCR pipeline locally. 

3.2.1.2. Data Annotation 

The process of training an object detection model involves several steps, in our case, the second one 
is data labeling. After collecting a sufficient number of images, the goal is to manually identify and 
label all the objects of interest in each image. This manual process requires close attention to detail 
and the ability to identify the objects in the image. The desired result of the object detection model 
must be defined before starting the data labeling process, as any changes in the desired outcome, 
later on, will require re-annotating all the images. 

For our specific task, we selected bounding boxes as the method for identifying the objects in the 
images. Bounding boxes are widely used in computer vision and consist of rectangular boxes defined 
by their edge coordinates. This type of annotation is used to identify objects in an image by 
surrounding them with these boxes. By using bounding boxes, we created a custom dataset that 
consists of images paired with the accurate coordinates of the objects, which will assist in both 
training and evaluating the model. These coordinates are saved in a specific XML file alongside other 
information about each image. 

This stage was important to become familiar with various data labeling tools and dedicate a few days 
to evaluating and selecting the best one for the company. The goal was to establish a standard for 
data labeling. Biometrid aims to utilize open-source technologies with a strong developer 
community, to leverage the community in case any issues arise. Keeping this in mind, we surveyed 
the tools commonly used by machine learning teams at major technology companies and concluded 
that Label Studio would be the ideal option for this phase. 

The tool presents itself as a data labeling platform known for its user-friendly design and 
customization options. Upon first use, you are presented with a comprehensive menu that allows 
you to customize and configure various aspects of the annotation process, such as the type of 
annotation, the classes for the bounding boxes, and more. With its robust customization capabilities 
and intuitive design, Label Studio is revealed to be an excellent choice for the general majority of 
data labeling tasks in the computer vision field. 

This week's efforts culminated in a preliminary understanding of the project outcome and an 
introduction to previously unfamiliar tools. Although the days were relatively routine and involved 
repetitive tasks, they also served as opportunities for meetings with the machine learning team to 
plan future steps. 
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3.2.1.3. Preparing the Workspace 

After organizing the training dataset and performing the necessary annotations, we enter a phase of 
the project where we need to organize the workspace so that it is possible to test our data in several 
model architectures and run several experiments with different combinations of parameters. 

With that in mind, the TensorFlow API dedicated to object detection tasks presents us with very well-
written documentation where, through a few steps, it is possible to train models out-of-the-box or to 
train custom ones from scratch. 

The first step involves dividing the dataset with a script provided in the documentation, and creating 
subsets as discussed at the end of chapter 2.1. This is a common practice where, in our case, we opt 
to split the data in a way that 90% is utilized for training and the remaining is reserved for evaluation 
(test set). Once the script has finished, two new folders were created in our working folder. To avoid 
the loss of any files, the script will not delete the original data that will be present where it previously 
was. 

Next, another important component in the process of preparing the train of a detection model was 
the creation of a label map. It provides the mapping between class names and class IDs in the 
training dataset. This file has a .pbtxt extension used by the model to recognize objects in images, 
and also to decode the predictions made by the model during inference. 

During training, TensorFlow requires the ground-truth object labels to be associated with each image 
in the training set. The label map is used to encode this information in a format that the model can 
understand. This allows the model to learn the relationships between the object classes and their 
corresponding bounding boxes in the training images. 

During inference, the label map is used to decode the class IDs predicted by the model back into 
human-readable class names. Without the label map, the model's predictions would be difficult to 
interpret and would not provide meaningful results. 

Then we move to the next step where, according to TensorFlow Object Detection API, we need to 
convert the entire dataset into a proprietary binary file format called TensorFlow Records 
(TFRecords). This is an efficient and convenient format used to receive large amounts of data during 
the training and evaluation of models and provides an optimized way to manipulate data inside 
TensorFlow’s data processing pipelines. 

This also offers several advantages like portability and speed, since TFRecords can be used on 
different platforms and devices much faster than other formats, making it easy and lightweight to 
share datasets between different systems. To apply this conversion a python script was also provided 
in the official documentation. 

3.2.2. Model Training 

In order to obtain better results, we use transfer learning as a starting point to retrain a previously 
designed model. In this way, we take advantage of the complex structure of a model that was 
previously trained on a large volume of data and adjust some parameters according to our purpose.  
By fine-tuning the model for a new task, the model is able to leverage its prior knowledge, making 
training faster and more efficient. This approach is especially useful in situations where the amount 
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of data for a new task is limited, as transfer learning reduces the need for extensive data collection 
and labeling. 

Luckily, TensorFlow offers a repository that contains several model architectures previously trained 
and accompanied by their evaluations when used in the COCO dataset. This way we started to 
research which ones met our needs seeking a model with consistent performance but at the same 
time not presenting a high inference time as this would negatively affect the processing time of the 
OCR pipeline. 

To organize the project and observe improvements over time, we opt to divide it into versions. Each 
version would present a different group of models alongside data modifications that we believed 
that made sense according to the outputs retained. In this way, it was possible to evolve our work 
while delivering reports to the Biometrid team at the end of each month. Below is displayed a table 
illustrating all the models tested per version. 

 Models Observations 

Version 1 

EfficientDet D1  

SSD ResNet50  

SSD ResNet101  

SSD ResNet152  

Version 2 

SSD ResNet152 1024x1024  

SSD ResNet50 v2 Improved version with 
different hyperparameters 

SSD ResNet101 v2 Improved version with 
different hyperparameters 

Version 3 

Faster R-CNN Inception  

EfficientDet D2  

CenterNet HourGlass104  

Version 4 

Faster R-CNN Inception v2 Improved version with 
different hyperparameters 

CenterNet Resnet50  

CenterNet Resnet101  

Table 2 - Model's architecture used per version. 

It's crucial to emphasize that the model’s key aspects have to be altered to adapt to the appropriate 
data format for our project. This involved modifying each model's configuration file to enhance the 
detection of objects based on the quantity and shape of the bounding boxes. 



34 
 

To measure the performance of our models, we focused on evaluating them using metrics explained 
previously such as mAP, Recall, and IoU. For this purpose, the evaluation metrics group was set to 
“coco_detection_metrics” in the eval_config parameter. Although the library provides other 
evaluation metrics, we found this to be the most appropriate for our project. 

The model training procedure was thoroughly documented, making it possible to initiate the first 
training iteration after inserting the data and label maps. This gave us a preliminary understanding of 
the model's capabilities. The training process was monitored by not only the console logs but also 
through the use of TensorBoard. This allowed for comprehensive tracking of the training evolution. 

3.2.3. Model Fine-Tuning 

In the initial iteration of the models, we solely relied on the training and test data converted to 
TFRecords format without making any modifications to the model architecture. Nonetheless, we 
conducted research to identify the optimal parameters suited for our scenario. This led to the next 
phase of the solution's development known as finetuning the model, where during each training 
session, small modifications are made to the model's architecture to enhance its efficacy. 

In this section, the main objective is to discuss the various modifications that the team made to the 
model's configuration file to obtain the optimal architecture for our particular problem. The focus 
will be on the dataset composition, and a detailed overview will be provided for each of the themes 
contained within the configuration file. Throughout this process, we will explain the reasoning 
behind all the choices and provide insight into the various options that are available through this 
library. 

3.2.3.1. Image Preprocessing 

In the context of any computer vision project, it is absolutely crucial to have a full understanding of 
the input data that is being fed into the model. Without this understanding, it is impossible to design 
and train a model that is truly effective at the task at hand. Deep learning algorithms that power this 
kind of project are heavily dependent on the input data, and even small variations or inconsistencies 
in the data can greatly impact the performance of the model. It is therefore essential to carefully 
preprocess the data, ensuring that it is in a format that is compatible with the model's architecture.  

Fortunately, the TFOD API provides a range of preprocessing tools that can be accessed right out of 
the box. In the initial section of the configuration file, users have the ability to exercise control over 
the image resizing process, including the shape of the resulting resized image. The library offers a 
considerable amount of flexibility concerning the various parameters that can be modified to achieve 
the desired results. However, it is important to note that before any modifications are applied, 
TensorFlow automatically handles the normalization of the images. This is an important feature that 
ensures consistency in the data and helps to optimize the performance of the model. 

When configuring the strategy chosen to process the input image for our model, the API offers two 
distinct options: "keep_aspect_ratio_resizer" and "fixed_shape_resizer". The former option allows 
users to specify a minimum size while maintaining the aspect ratio of the original image. However, it 
is important to note that this option can sometimes result in extensively padded images, especially in 
cases where the original image is rectangular. In such cases, it may be more suitable to use the 
"fixed_shape_resizer" option, which resizes the image to a specified rectangle size defined by the 
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"height" and "width" parameters. For our specific use case, we have determined that the 
"fixed_shape_resizer" option is the optimal choice, as it allows us to maintain consistency in the size 
of the input images, which is critical for optimizing the performance of the model. 

3.2.3.2. Image Augmentation 

Image augmentation is an essential technique that can greatly enhance the accuracy and robustness 
of the model. By applying various transformations and manipulations to the input images, 
augmentation procedures can help to address issues such as overfitting, insufficient training data, 
and class imbalance. For example, flipping, rotating, and cropping images can increase the variability 
and diversity of the training data while adjusting brightness, contrast, and color can help to account 
for variations in lighting conditions. Additionally, image augmentation can also help to mitigate the 
effects of occlusions, viewpoint changes, and other real-world factors that may impact the model's 
ability to accurately detect objects in new and unseen images.  

Throughout the course of this project, we explored various of these methods to augment our dataset 
with synthetic images generated through the application of image manipulation techniques. Knowing 
that our images were accurately segmented and correctly oriented from the segmentation and 
rotation models, we made a deliberate effort to avoid modifying their orientation. Instead, we 
focused on applying techniques that could alter the color system of the data as you can check in the 
image below. This decision proved to be highly effective, as adjustments to factors such as hue, 
contrast, saturation, and brightness allowed us to minimize the model's sensitivity to color. As a 
result, the model was able to detect objects more accurately across a wider range of colors, leading 
to improved overall performance. The use of these techniques demonstrates the importance of 
careful and strategic data augmentation in the context of object detection and underscores the 
critical role that it plays in optimizing model performance. 

 

Figure 27 - Image Augmentation techniques used for the CenterNet configuration file 

While the techniques described above can be highly effective for augmenting image data in our 
context, it's worth noting that the TensorFlow Object Detection API offers a much broader range of 
augmentation options. As you can see in the image below, there are a wide variety of different 
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techniques that can be used to manipulate and enhance image data, ranging from simple color 
adjustments to more complex transformations like rotation, flipping, and distortion. By carefully 
considering the unique characteristics and requirements of your specific use case, you can leverage 
these powerful tools to create highly customized and effective data augmentation strategies that can 
significantly improve the accuracy and performance of your object detection models. 

 

Figure 28 - Image Augmentation techniques provided by Tensorflow Object Detection API20 

3.2.3.3. Post-processing 

Post-processing is another indispensable step in any object detection project, as it enables the model 
to generate accurate and meaningful results from the raw output of the detection algorithm. In the 
context of object detection, post-processing typically involves analyzing the output of the model and 
applying various techniques to refine and filter the results. By carefully tailoring these post-
processing techniques to the specific requirements of the project, it's possible to significantly 
improve the accuracy and precision of the object detection model, while also reducing the risk of 
false positives or other errors.  

As we are facing an anchorless architecture, our primary concern at this stage was preventing 
overfitting and improving model performance. To achieve this, we focused on advanced approaches 
to learning rate control over time. Learning rate plays a critical role in determining the rate at which 
the model's internal parameters and weights are updated during training. A carefully chosen learning 
rate can significantly impact the model's convergence and its ability to find the optimal set of 
parameters for the given task. As such, we employed various strategies to tune the learning rate, 

 
20 Source: Tensorflow Model Garden Repository 
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including learning rate schedules and optimization algorithms. Through these techniques, we aimed 
to strike a balance between model convergence and generalization, ultimately leading to improved 
performance. 

In our case, we employed the cosine learning rate decay schedule for controlling the learning rate 
over time. This approach enables the learning rate value to alternate between increasing and 
decreasing throughout the training process. Specifically, the learning rate is gradually decreased 
towards zero as the training progresses, which helps the model converge toward an optimal solution 
while reducing the risk of overfitting.  

To correctly configure the learning rate schedule, it is important to focus on the following parameters 
and understand their impact of them on the performance of the model: 

• learning_rate_base: parameter that defines the initial learning rate that will be used to train 
your model. 

• total_steps: parameter that defines the number of total steps your model is going to train. 
Important to note that in the last steps of your training job, the learning rate scheduler will 
drive the learning rate value to be close to zero. 

• warmup_learning_rate: the maximum value that the learning rate will reach before starting 
to decrease. 

• warmup_steps: defines the number of steps that will be taken to increase the learning rate 
from learning_rate_base to warmup_learning_rate 

3.2.4. Image Pipeline 

Once we had properly trained the model on our custom dataset and fine-tuned its parameters to 
enhance its performance, the subsequent phase involved comprehending the outcomes produced by 
the model. For every examined image, the model delivers numerous results, with the first ones being 
the labels assigned to each section. This is crucial for linking the section's name with the coordinates 
of the bounding boxes that will eventually be showcased. 

The bounding box coordinates generated by the model during image inference play a vital role in 
determining the location of the regions of interest. Utilizing these coordinates makes it feasible to 
isolate specific subsections of the images that only contain the desired information. In our scenario, 
we aim to extract sections of the image that exclusively contain personal data presented on the front 
face of the Portuguese identification card. 

To achieve this objective, we designed a data pipeline that involves conducting an image inference 
and subsequently utilizing the model's outcomes to crop the original image, leading to several sub-
images, each corresponding to a particular section. Our workflow deliberately involves minimal 
image manipulation techniques since the model is adept at processing horizontal segmented images 
and can accommodate color variations owing to the pre-applied image augmentation techniques. 
This represents one of the key benefits of our implementation over the current approach, as we can 
simply resize the image and feed it into the model, reducing the reliance on extensive image 



38 
 

processing that can lead to latency issues. As a result, our ML-powered solution operates 
independently of any time-consuming image processing, enhancing its overall efficiency. 

In the following paragraphs, we will discuss each function that constitutes our pipeline. Our pipeline 
was entirely coded in Python and created entirely by the Machine Learning team, which modified the 
existing functions to accommodate the changes introduced by the object detection algorithm. 

The initial function in our pipeline is called "detect_sectionsML" and only needs a parameter that 
refers to the image that will be analyzed. For the function to operate correctly, it must receive an 
image of a Portuguese identification card, which will be fed into our model to generate a prediction. 
Although the model generates several pieces of information, the function is designed to solely return 
the values corresponding to the bounding box coordinates and their respective classes/labels. 

 

Figure 29 – Python function used to make model inferences 

With a clear understanding of the preceding function's outcomes, we will now proceed to crop the 
original image utilizing the "crop_sections_ML" function, resulting in a list of images, with each 
element corresponding to a particular section. 

 

Figure 30 – Python function used to crop card sections by given coordinates 

Concluding our pipeline is the "extract_sections_data_ML" function, which plays a fundamental role 
in processing the images of each section. This function employs the Pytesseract library to convert 
images into text. However, as each section can display data in various formats, such as numbers and 
punctuation marks (as in the case of height) or solely letters (as in fields like first or last name), each 
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section requires a distinct Tesseract configuration. As a result, this function merges the multiple 
configurations with their respective sections and creates a Python dictionary to save the results. 

 

Figure 31 – Python function used to apply OCR in given sections 
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4. EXPERIMENTAL STUDY 

In this chapter, we will present the outcomes of our experimentation with various model 
architectures and determine the optimal one for deployment in a production setting. We will start by 
outlining the evaluation metrics used, and their relationship to the concepts introduced in chapter 
2.5. Following that, we will end by providing a detailed analysis of the comparative performance of 
our best model against the existing production strategy.  

4.1. EVALUATION PROTOCOL 

Throughout our object detection model training, TensorFlow generates real-time training process 
checkpoint log files which allow us to assess the performance of our models. These logs contain 
COCO evaluation metrics, which include essential metrics like mean average precision, recall, and 
Intersection over Union. These metrics aid us in quantifying the accuracy and precision of our models 
and enable us to identify areas that require improvement. By using COCO evaluation metrics, we can 
ensure that our models are optimized to detect and classify objects with high accuracy and 
efficiency, allowing us to achieve our research goals. 

As we have previously mentioned, we split our dataset into two parts - a training set and a test set. 
The test set plays a crucial role in evaluating the performance of our model, as it contains data that 
the model has never seen before. Important to understand that the evaluation process utilizes the 
checkpoint files generated during the training process to assess the model's ability to detect objects 
in the test dataset. The evaluation generates a set of metrics that provide a summary of the model's 
performance, enabling us to track its accuracy and precision over time. These metrics offer valuable 
insights into the strengths and weaknesses of our model, allowing us to fine-tune it for optimal 
performance. By regularly monitoring the evaluation metrics, we can ensure that our models are 
continuously improving and delivering reliable results (L. Vladimirov, 2020). 

All these results can also be visualized with the help of TensorBoard. This visualization tool converts 
the evaluation results obtained from the checkpoint files into intuitive and informative dashboards. 
These dashboards provide a comprehensive overview of the model's performance, enabling us to 
identify areas that require improvement. In addition to the evaluation metrics, TensorBoard also 
allows us to visualize the detection results in the test images, providing a clear understanding of how 
well the bounding boxes are detecting the areas of interest. This feature is particularly useful in 
identifying false positives or false negatives, which can be further investigated and corrected to 
improve the model's accuracy. By utilizing TensorBoard to analyze the evaluation results and 
visualize the detection outputs, we can gain a deeper understanding of our model's performance and 
make informed decisions on how to optimize it further. 

Once we establish that a model produces favorable outcomes, it becomes crucial to assess the 
latency it introduces while making an inference. This aspect holds immense significance since it can 
adversely impact the pipeline's performance if the response time increases significantly. Therefore, it 
is essential to carefully scrutinize the model's inference time to ensure that it meets the 
requirements of the intended application. 

Finally, upon analyzing the model's performance metrics over the test set, checking the bounding 
boxes display and the latency, the final evaluation phase now shifts focus to assessing the outputs 
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generated by the OCR engine. In light of this, the project team decided to build a web application 
using Streamlit to compare the results of our approach against the current production environment's 
output. The application provides an interface that you can check below, that allows us to browse 
through a folder of images depicting identification cards and manually check which sections 
Tesseract accurately converted to text using tick boxes. This evaluation phase is undoubtedly the 
most time-consuming since there is no record of all the ground truth values of the documents, and 
the performance of the OCR engine must be assessed by manually inspecting each section to 
determine if the output matches the expected values. 

 

Figure 32 - Streamlit Output Comparison App 

Upon evaluating both methods' results on our 3000-image dataset, the application generates a CSV 
file, which we use to produce a line plot that will be used to compare visually the two 
implementations. We will present this plot below when analyzing the results. 

The evaluation process for this project is comprehensively outlined, highlighting each distinct phase. 
The next chapter will provide a detailed overview of the outcomes obtained in each of these phases 
and explicate the rationale behind selecting the final model. 

4.2. EXPERIMENTAL RESULTS AND DISCUSSION 

This chapter focuses on presenting the outcomes achieved with our artificial intelligence algorithm's 
implementation for detecting Portuguese ID card sections. We have divided the results into three 
phases, as discussed in the previous chapter, to assess our approach's effectiveness in different ways. 
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4.2.1. TensorBoard Results 

Throughout each phase presented in Table 2, we started checking the performance of each model via 
TensorBoard by analyzing its evaluation metrics on the train and test set. This approach allowed us to 
monitor the training progress of a specific model in real time and compare it to previously trained 
models. 

Our initial emphasis is on the evaluation metric known as loss, which is a value assigned during the 
training of a model that aims to reflect the disparity between the model's predicted output and the 
real output. The fundamental objective of the training process is to decrease the loss metric, 
indicating that the predicted output should closely resemble the actual output. 

Presented in the following table are the loss values of the most optimized versions for each of the 
trained models. It is evident that all the loss values are quite low, but the CenterNet Resnet101 
model outperformed the rest, indicating that its predictions are the most accurate. This initial 
evaluation positions it as a strong contender for the final model, although we still need to analyze 
numerous other metrics to determine if it is the optimal choice. 

Model Loss value 

CenterNet HourGlass104 0.01957 

EfficientDet1 0.02583 

EfficientDet2 0.02957 

Faster R-CNN Inception 0.01372 

SSD ResNet101 0.04287 

SSD ResNet50 0.0577 

CenterNet Resnet50 0.01219 

CenterNet Resnet101 0.0106 

Table 3 - Loss Comparison 

Regarding the metrics of mean average precision and recall values, the results were found to be 
dissimilar. Among the evaluated model architectures, only three achieved values higher than 80% for 
mean average precision, namely CenterNet HourGlass104, Faster R-CNN Inception, and CenterNet 
Resnet50. These models also performed exceptionally well in terms of recall values. Thus, these 
same three models were considered the most effective ones for the given task. A comparative view 
of the recorded values for both these evaluation metrics is presented in the following table. 
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Model mAP value Recall value 

CenterNet HourGlass104 0.8175 0.8563 

EfficientDet1 0.7683 0.8093 

EfficientDet2 0.7637 0.8072 

Faster R-CNN Inception 0.8159 0.8538 

SSD ResNet101 0.7844 0.8254 

SSD ResNet50 0.7591 0.7971 

CenterNet Resnet50 0.8109 0.8480 

CenterNet Resnet101 0.7988 0.8347 

Table 4 - Mean Average Precision/Recall Results per model architecture. 

After analyzing the results obtained, it was evident that four models had performed remarkably well 
on the test set. Despite being able to comprehend the functioning of the models visually through the 
TensorBoard, an additional group of images was created. These images were never before analyzed 
by the models, and visualizations with bounding boxes were generated for them. By doing so, an 
extra evaluation layer was established to gauge the robustness of the model's results. This helped in 
obtaining a more comprehensive understanding of the effectiveness of the models and their capacity 
to generalize to unseen data. 

The test results revealed that the CenterNet Resnet50 model had difficulty in detecting certain 
sections, even in favorable conditions, whereas the other models performed better in this aspect. 
Taking this into account, the Machine Learning team decided to focus solely on the other three 
models that consistently and similarly detected all sections of all images. Hence, the size and latency 
tests were continued only for these models to ensure that they met the desired performance criteria. 
This approach helped in streamlining the evaluation process and optimizing the selection of the best-
performing model for the project. 

4.2.2. Size & Latency Tests 

The second testing phase was initiated to identify the architecture that could introduce the least 
amount of latency to the OCR pipeline. Latency, in this context, refers to the time taken by the model 
to process a single inference, i.e., the time between the model receiving an image and returning the 
results. This test assumes great significance as it is not sufficient for a model to have exemplary 
performance alone if it consumes an extended period for processing. If such an instance occurs 
within the pipeline that is currently in production, it could significantly slow down the entire OCR 
solution and worsen the user experience. 

The two bar plots below provide an overview of the results obtained in the latency testing phase. The 
first one was made by measuring the processing time taken by the models on the images present in 
our dataset. To achieve this, we developed a python script that iterated through the entire dataset 
and calculated the average time taken by each of the models to return results compared to the 
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current OCR strategy (OCR Legacy), in seconds. The second one provides us with the cumulative 
latency, which offers an understanding of the total time it would take to perform 500 inferences. This 
information assumes significance while evaluating the effectiveness of implementing this strategy in 
production. This helped us to compare and contrast the performance of the different models in 
terms of their latency and select the most efficient one for integration into the OCR pipeline. 

 

Figure 33 - Latency per prediction 

 

Figure 34 - Cumulative Latency 

Despite presenting impressive results the Faster R-CNN Inception model, as you can check above, 
comes with a major drawback - its unacceptable latency time. In comparison to the current OCR 
implementation, the model takes approximately 3.5x longer to execute a substantial number of 
inferences. Consequently, our focus shifts to evaluating the remaining models to determine the most 
suitable replacement candidate for the OCR Legacy. Fortunately, these alternative models offer 
processing times compared to the current implementation, and although their integration with ML 
technology may marginally increase latency time, the benefits they provide far outweigh the slight 
increase in processing time. 
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We initiated efforts to differentiate between the remaining models based on their respective storage 
sizes. Typically, models that occupy more storage space tend to demand more computational 
resources and memory to function optimally. This can pose challenges for resource-constrained 
systems, rendering such models unsuitable for online or real-time applications where low latency is 
of paramount importance.  

Once we became aware of the vast difference in the storage space occupied by the two models, the 
decision became clear. We would opt for the CenterNet Resnet101 model as a viable replacement 
for the OCR Legacy. However, to substantiate this decision, we needed to ascertain whether this 
alternative could deliver better outcomes than the previous model. In the next section, we’ll present 
the results that we aim to obtain using a Streamlit app that compares the OCR powered by ML and 
the OCR Legacy. 

4.2.3. OCR Results Comparison 

In the final evaluation phase, we aim to compare the performance of the pipeline presented in 
chapter 3.2.4 with the current results produced by Biometrid daily. To achieve this, we use a Python 
framework called Streamlit to create a CSV file containing the success rate of each card section that 
was used to generate the plot that you can observe below. 

 

Figure 35 - Success rate per section for each OCR Strategy 

Based on the information presented, it seems reasonable to conclude that the new OCR pipeline 
powered by machine learning performed better than the current implementation in most sections, 
except for the identification digits section where the current implementation returned better results. 
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Even though, as we stated earlier, there was an increase in latency by the new implementation, we 
were able to improve the average success rate by approximately 3%, indicating that the new model is 
set ahead over the current implementation. 

After these results, we conclude that the new OCR model shows promise for improving accuracy in 
most sections of the OCR process, though further testing and optimization may be necessary to 
address the identified issues regarding the identification digits. 
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5. CONCLUSIONS 

In this internship report, the challenge was to train and deploy an object detection model that was 
able to automate the process of retrieving all the front sections from a Portuguese identification card 
using artificial neural networks to support an OCR-based solution for information retrieval of 
identification cards. This new implementation had as a baseline the current production environment, 
which only uses image manipulation techniques to detect card sections, an approach that has some 
limitations regarding inferences on low-quality images. 

The applied research in this report was based on a case study using a custom anonymized real-world 
dataset composed of images provided by AMA. 

The theoretical framework section of this report aimed to provide a comprehensive understanding of 
object detection algorithms, from basic concepts to the model architectures experimented with over 
the past few months. We started by providing a comprehensive explanation of Machine Learning and 
how to approach a project utilizing it. Moving forward, we delved into the realm of Deep Learning 
and outlined the process of evaluating models to determine whether they perform as expected. 

Within the methodology chapter of this report, we presented the various tools that were utilized 
throughout the project. Additionally, we provided a detailed, step-by-step explanation of how we 
trained an artificial neural network (ANN) utilizing the TensorFlow Object Detection API. Finally, we 
explained the image pipeline construction process, which is capable of receiving model-generated 
results and extracting information from them via an Optical Character Recognition mechanism, 
ultimately allowing for the conversion of images to text. 

As we conclude this report, we presented the various evaluation phases that were implemented in 
the selection of the optimal model. Through this process, we ultimately compare our strategy with 
the currently implemented approach and publish the final results. 

5.1. LIMITATIONS 

The major limitations that emerged during the course of this project were mainly regarding the data 
and insufficient work equipment. This includes the limited availability of images for developing our 
custom dataset, the unavailability of cloud services for expediting machine learning model training, 
and the confidentiality of personal information that impeded result sharing. 

The primary constraint of this project was the shortage of images available for building the dataset 
necessary for training machine learning models. Despite strenuous efforts to collect relevant images, 
the dataset employed in this study remained comparatively small compared to the datasets 
commonly employed in similar investigations. This limitation was considered, and the team use 
techniques like data augmentation to prevent negative impacts on the model’s accuracy, 
generalizability, and an increased likelihood of overfitting. 

Another limitation experienced during this project was the lack of cloud services for training the 
model and storing all the experiments that were made. We were aware that because of that the 
training process was slower and required more computational resources than would have been 
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necessary with cloud services. This limitation resulted in extended wait times and reduced the 
number of experiments conducted. 

Finally, the need to restrict the sharing of results due to the personal information contained within 
the dataset constituted a significant limitation of this project. Although measures were taken to 
ensure the privacy and confidentiality of the individuals in the dataset, this limitation prevented the 
broad dissemination of the results, which could have limited the impact of the research. 

5.2. FUTURE WORK 

Moving forward, our focus will be directed toward improving our model by utilizing additional data 
and enhancing the efficiency of our data pipeline. Following the model's deployment, it will undergo 
multiple stages of testing to ensure its effectiveness in a production environment. Only through this 
rigorous testing can we determine the viability of its implementation. 

If the implementation of our model proves to be successful, we anticipate the emergence of new 
projects focused on training models capable of identifying elements from identification cards and 
passports from various countries. These models would then be integrated into Biometrid's Optical 
Character Recognition (OCR) pipeline to further enhance its capabilities. 
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