
i

Implementation of Deep Learning models for
Information Extraction on Identification
Documents

Henrique Eduardo Espadinha Renda

Internship at Biometrid

Internship report presented as partial requirement for
obtaining the Master’s degree Program in Data Science and
Advanced Analytics

i

Title: Implementation of Deep Learning models for Information
Extraction on Identification Documents
Internship at Altice Portugal

Henrique Eduardo Espadinha Renda MAA

202 3

i

ii

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

IMPLEMENTATION OF DEEP LEARNING MODELS FOR INFORMATION
EXTRACTION ON IDENTIFICATION DOCUMENTS

by

Henrique Renda

Internship report presented as partial requirement for obtaining the Master’s degree in Data Science
and Advanced Analytics

Advisor: Prof Doutor Roberto Henriques

Co Advisor: Lucas Soares

iii

STATEMENT OF INTEGRITY

As a member of the Biometrid team and master´s student at NOVA Information Management School,
I pledge to uphold the highest standards of integrity and ethical conduct in the completion of my
internship report. This includes ensuring the accuracy and truthfulness of all information presented,
properly citing any sources used, and refraining from plagiarism or any other form of academic
dishonesty. I will also maintain confidentiality and respect any privacy or sensitive information that
may be shared during the course of my internship. I understand that any violation of these principles
may result in disciplinary action, and I am fully committed to conducting myself in an honest and
trustworthy manner throughout my internship.

Lisbon, February 2023

iv

 February 2023

DEDICATION

I dedicate this report to my family and friends, who have been a constant source of inspiration and
motivation. In particular, I would like to express my deepest appreciation to my parents and
girlfriend for their unwavering support, encouragement, and motivation that have been instrumental
in helping me persevere through the challenges and celebrate the triumphs. Additionally, I extend
my gratitude to my mentors for providing invaluable guidance and support throughout the research
process. This report represents the culmination of years of hard work, and I am honored to share it
with those who have played a significant role in shaping my academic and personal growth.

v

vi

ABSTRACT

The development of object detection models has revolutionized the analysis of personal information
on identification cards, leading to a decrease in external human labor. Although previous strategies
have been employed to address this issue without using machine learning models, they all present
certain limitations, which artificial intelligence aims to overcome. This report delves into the
development of a deep learning-based object detection capable of recognizing relevant information
from Portuguese identification cards. All the decisions made during the project will be accompanied
by a detailed background theory. Additionally, we provide an in-depth analysis of Optical Character
Recognition (OCR) technology, which was utilized throughout the project to generate text from
images. As the newest member of the Machine learning Team of Biometrid, I had the privilege of
being involved in this project that led to the improvement of the current approach that does not
leverage machine learning in the detection of relevant sections from ID cards. The findings of this
project provide a foundation for further research into the use of AI in identification card analysis.

KEYWORDS

Artificial Intelligence; Machine Learning; Artificial Neural Networks; Computer Vision; Object
Detection Models; Optical Character Recognition (OCR)

vii

INDEX

1. Introduction .. 1

1.1. Company Overview .. 2

1.2. Problem Definition ... 3

1.2.1. Case Study ... 4

1.2.2. Constraints and Limitations .. 4

1.2.3. Proposed Solution ... 5

2. Theoretical Framework ... 6

2.1. Machine Learning ... 6

2.1.1. Supervised Learning .. 9

2.2. Artificial Neural Networks & CNNs ... 9

2.2.1. Convolution Layers .. 10

2.2.2. Pooling Layers ... 11

2.2.3. Fully Connected Layers ... 12

2.3. Deep learning ... 13

2.4. Object Detection .. 14

2.4.1. Region-based Convolution Neural Networks (R-CNN) 15

2.4.2. Faster-RCNN .. 16

2.4.3. Single Shot MultiBox Detector (SSD) ... 17

2.4.4. CenterNet .. 18

2.5. Evaluation Metrics ... 19

2.5.1. Confusion Matrix ... 20

2.5.2. Intersection over Union (IoU) ... 21

2.5.3. Precision and Recall .. 22

2.5.4. F1-Score: ... 22

2.5.5. Average Precision .. 22

2.5.6. Mean Average Precision (mAP) ... 23

2.6. Optical Character Recognition (OCR) ... 23

3. Methodology ... 26

3.1. Tools and Technologies .. 26

3.1.1. TensorFlow .. 26

3.1.2. Label Studio ... 27

3.1.3. OpenCV ... 28

viii

3.1.4. Streamlit .. 28

3.2. ID Elements PT Project ... 29

3.2.1. Data Processing ... 29

3.2.2. Model Training .. 32

3.2.3. Model Fine-Tuning .. 34

3.2.4. Image Pipeline ... 37

4. Experimental Study ... 40

4.1. Evaluation Protocol .. 40

4.2. Experimental Results and Discussion ... 41

4.2.1. TensorBoard Results ... 42

4.2.2. Size & Latency Tests .. 43

4.2.3. OCR Results Comparison ... 45

5. Conclusions ... 47

5.1. Limitations .. 47

5.2. Future Work ... 48

6. Bibliography .. 49

ix

LIST OF FIGURES

Figure 1 - Usage of Deep Learning models in autonomous cars ... 1

Figure 2 - Biometrid's Logo ... 2

Figure 3 - Biometrid's Milestones ... 2
Figure 4 - Expected result ... 5

Figure 5 - Machine Learning investments by category ... 7

Figure 6 - Traditional Programming against Machine Learning approach 7
Figure 7 - Train, Validation & Test Split .. 8

Figure 8 - Convolution Neural Network Architecture ... 10

Figure 9 - Example of a convolution operation with a kernel size 3x3 11
Figure 10 - Example of max pooling operation with a filter size of 2 × 2 11

Figure 11 - Example of a neural network with fully connected layers 13

Figure 12 - Example of the expected output of an object detection model trained to detect
dogs, cats and humans. ... 14

Figure 13 - R-CNN Stages .. 16

Figure 14 - Faster R-CNN's Architecture ... 16
Figure 15 - SSD Architecture ... 17

Figure 16 - SSD Framework ... 18

Figure 17 - CenterNet Architecture .. 19
Figure 18 - Object Detection Evaluation Process .. 20

Figure 19 - Formula and Representation of the IoU calculation ... 21
Figure 20 - Precision Formula ... 22
Figure 21 - Recall Formula .. 22

Figure 22 - F1-Score Formula .. 22
Figure 23 – General OCR Workflow .. 25

Figure 24 - TensorBoard Interface .. 26

Figure 25 - Label Studio Interface ... 28
Figure 26 - Segmentation Model output .. 30

Figure 27 - Image Augmentation techniques used for the CenterNet configuration file 35

Figure 28 - Image Augmentation techniques provided by Tensorflow Object Detection API 36
Figure 29 – Python function used to make model inferences .. 38

Figure 30 – Python function used to crop card sections by given coordinates 38

Figure 31 – Python function used to apply OCR in given sections .. 39
Figure 32 - Streamlit Output Comparison App ... 41

Figure 33 - Latency per prediction .. 44

x

Figure 34 - Cumulative Latency ... 44

Figure 35 - Success rate per section for each OCR Strategy ... 45

xi

LIST OF TABLES

Table 1 - Confusion Matrix .. 21

Table 2 - Model's architecture used per version. ... 33

Table 3 - Loss Comparison .. 42
Table 4 - Mean Average Precision/Recall Results per model architecture. 43

xii

LIST OF ABBREVIATIONS AND ACRONYMS

AMA Agência para a Modernização Administrativa

ANN Artificial Neural Networks

AP Average Precision

AUC Area Under the Curve

CNN Convolution Neural Networks

CV Computer Vision

DL Deep Learning

FNN Feedforward Neural Networks

FPS Frames per second

IoU Interception over Union

mAP Mean Average Precision

ML Machine Learning

OCR Optical Character Recognition

R-CNN Recurrent Neural Networks

RNN Recurrent Neural Networks

ROI Region of Interest

SVM Support Vector Machines

TF TensorFlow

TFOD TensorFlow Object Detection API

xiii

1

1. INTRODUCTION

With the technological advances registered in recent years, it can be acknowledged that we are
currently in an era where data is being produced at an unprecedented rate, compelling businesses to
rely on automated methods for data analysis. Retrieving useful insights from this amount of data is
crucial, so involuntarily companies in this situation notice that it is mandatory to develop advanced
algorithms that can summarize, classify, extract important information, and convert them into an
understandable form (V. Y., Mariano et al., 2002).

To address this issue, there has been a huge increase in the usage of Artificial Intelligence (AI)
algorithms to guide business decisions. Machine learning (ML) models and Artificial Neural Networks
(ANN), in particular, have demonstrated outstanding performance in resolving complex challenges
across a wide range of industries, effectively revolutionizing the way companies approach problem-
solving (A. Zulkhaizar, 2023).

For example, in computer vision tasks like object detection and semantic segmentation, deep
learning models have been successfully used in applications such as autonomous driving. This
technology is rapidly advancing, bringing systems closer to possessing a level of intelligence
comparable to humans in certain situations. According to the current Nvidia CEO, Jensen Huang,
“Deep Learning can train a car to drive, and ultimately perform far better, and more safely, than any
human driver could do behind the wheel.”. This was the goal of Huang’s company when developing
hardware for the upcoming autonomous cars (J. Huang, 2017).

Figure 1 - Usage of Deep Learning models in autonomous cars1

In the example above, object detection models offer a solution for identifying relevant items in the
road that allow the vehicle to drive safely. This ability renders them highly efficient for activities such
as perception, decision-making, and vehicle control. Nevertheless, their usefulness extends beyond
this use case scenario, as they have the capability to analyze and retrieve information from a given
frame.

As another example, throughout this report, we’ll highlight the experience of a Junior Machine
Learning Engineer responsible for a project that led to the improvement of Biometrid’s machine
learning infrastructure behind its OCR solution for information retrieval for Portuguese identification

1 Source: https://www.cbinsights.com/research/startups-drive-auto-industry-disruption/

2

cards. The responsibilities regarding the collection, processing, and analysis of information will be
described in detail.

We’ll start by introducing the problem addressed and clarify the challenges faced, regarding the
development of an object detection model capable of recognizing relevant sections from the
Portuguese identification cards.

Next, we’ll do a concise explanation of how the company is composed alongside its objective, before
delving into more specific and technical aspects regarding the theory behind the project. Finally, this
report will end up by clearly exposing all the practical implementations of the project alongside the
final results.

1.1. COMPANY OVERVIEW

Figure 2 - Biometrid's Logo2

Created in 2015 under the name Polygon, the current Biometrid emerged as an IT company with
headquarters established in Porto that promised to revolutionize the way we communicate with
digital systems. At a time when with one click it is possible to open a bank account, register on a
social network or even subscribe to a service it is no surprise that the digital footprint of all internet
users has been growing exponentially. With that in mind, Biometrid is committed to delivering a
range of tools that facilitate the onboarding, authentication, and validation of personnel in
companies of all sizes.

Figure 3 - Biometrid's Milestones

Biometrid offers a range of solutions to simplify the Know Your Customer (KYC) processes. The
company's flagship product, which shares the same name, streamlines these time-consuming
activities, which are essential to safeguard financial institutions against fraud, corruption, money
laundering, and terrorism financing.

2 Source: https://biometrid.com/

3

Compared to its main competitors, Biometrid's product takes a unique approach. It uses a
Drag&Drop methodology, which provides customers with autonomy and flexibility to build
personalized verification processes. The product enables users to open bank accounts remotely,
verify Proof-of-Life using personal documents, and generate digital signatures for public services.

The company has established partnerships with banking institutions, insurance companies, and
Portuguese Government departments. It has also expanded its operations to international markets,
including Poland, Hungary, Colombia, Angola, and Mozambique. Biometrid's goal is to continue
expanding its services and reach into new sectors and regions worldwide.

For the ML team the main responsibility is to create and maintain all the ML models that support its
solutions, especially the Optical Character Recognition (OCR) production pipeline for retrieving
information from identification cards. The focus is divided into two: on one side improving the OCR
pipeline, which would receive images of ID cards or passports, and from there extract information
that could identify users in the future. On the other side, researching and developing new ML tools
for the OCR infrastructure.

1.2. PROBLEM DEFINITION

As mentioned before, systems equipped with artificial intelligence algorithms are now more present
than ever in our daily lives. This paradigm shift means that processes that required a lot of manual
work are now being replaced by models that simulate human behavior.

One of the several examples where this change is noticeable is in the registration process. In the
past, regardless of the industry, to perform the onboarding of a new client this one needed to fill out
a form with his personal information manually and wait for the responsible staff to transfer the
information into a dedicated database. This implied a rather lengthy process with several dedicated
parts and a complex infrastructure. Luckily, to streamline the process, a new method has emerged
for extracting this information without requiring manual entry from either the customer or staff (M.
Ryan, & N. Hanafiah., 2015).

A new system using optical character recognition (OCR) has been proposed to extract customer
information from identification cards instead of manual data entry. This system, in the first instance,
is powered by an object detection model responsible for processing an ID card image and retrieving
the coordinates of the sections related to personal data as the result. These image coordinates are
then used to crop the original image and feed those outputs into an OCR application that recognizes
the text in the picture and converts it into machine-readable and editable text.

4

1.2.1. Case Study

This chapter will examine the application of the selected approach in the Biometrid OCR pipeline to
automate the process of retrieving personal information from Portuguese ID cards. By leveraging
cutting-edge optical character recognition technology, the pipeline aims to streamline the data input
process and provide accurate and efficient results. This subsection will delve into the details of this
strategy and its impact on the process of retrieving personal information from ID cards.

The growth of members of the ML team led to a new project which has the objective of improving
the way the OCR data pipeline analyses images. Currently, the extraction process contains several
layers of pre-processing:

1. The documents are exposed to a rotation model that orients them horizontally in an
automatic way.

2. Next, this resulting image will serve as input for a segmentation model, which aims to
remove all surrounding elements from the photo and generate cropped images.

3. These images are then converted from an RGB Format to Grayscale to improve the
performance of the binarization that will be applied to the image lately.

4. After multiple morphological image transformations, the coordinates from the regions of
interest were detected by multiple traditional image processing techniques that use relative
coordinates to capture informational sections.

5. The process ends just when all of the proposed areas are analyzed by an OCR engine.

This strategy presents itself as a very good alternative compared to a full-manual process, however,
it’s in many ways limited as its results are only viable in favorable conditions where the document
has a capture angle and favorable light conditions.

As a company that consistently embraces new technologies, Biometrid extends this philosophy to
every aspect of its product. So, the main goal of this project is to improve the OCR Pipeline by
creating an artificial neural network capable of detecting all sections of the front of the Portuguese
identification card. This way we hope to enhance the general performance of the OCR processes and
establish a strategy that delivers favorable outcomes in all image scenarios.

1.2.2. Constraints and Limitations

In the realm of camera-based analysis of text and documents, there exist several challenges
associated with capturing images, including low resolution, uneven lighting, distorted perspectives,
non-planar surfaces, wide-angle lens distortion, cluttered backgrounds, difficulties with zooming and
focusing (M. Ryan, & N. Hanafiah., 2015). Throughout the report, we will explain all the strategies
and techniques that we will apply to solve some of those problems.

Besides that, we also find some constraints related to the dataset containing images of Portuguese
Identification Cards. This is not publicly available due to GDPR restrictions, but fortunately, Biometrid
had already obtained this type of data through a partnership with the “Agência para a Modernização
Administrativa” (AMA) and regularly utilized it for other projects. So, even with limited data we still

5

manage to organize and curate approximately 3000 of these images to construct a consistent dataset
capable of successfully training the model. Important to mention that these images contain personal
information, and their public share is expressly forbidden.

1.2.3. Proposed Solution

To address the case study, always with the limitations and constraints in consideration, it was
decided by the team that the best strategy to improve the detection of the sections of the front face
of the Portuguese identification card would go through the training of a deep neural network capable
of improving the previous results and address situations where the image quality is not favorable.

Previous studies suggest that various methods have been employed to tackle this issue. One
commonly employed approach involves identifying saliencies in the image to locate documents
inside a photo or video frame, without any prior knowledge about the document (F. Attivissimo et
al., 2019). However, this strategy still presents some limitations mainly when the image contains
noise, or the angle of capture is not favorable. The improved solution for the Biometrid OCR that will
be presented throughout this report presents itself as a more advanced approach to this problem. It
starts by using a detection model to locate the document, then crops the image to isolate the
document from the background. After proper segmentation, the document is classified using a deep
learning model.

Throughout this document, we aim to enhance the average success rate of detecting relevant
elements in identification cards, compared to the results that were achieved in the past. The models
tested in the development of this solution will be thoroughly evaluated and compared to the current
production models. Through this comparison, we can gain a better understanding of the progress
made in our development and its potential for future advancements.

Also, in the evaluation phase, we will focus on evaluating the inference latency since we believe that
this will be of utmost importance. The duration between capturing an image and producing a result
has a significant impact on delivering a smooth and seamless experience for our consumers and is
therefore a top priority for the company.

Figure 4 - Expected result

6

2. THEORETICAL FRAMEWORK

This chapter will provide a comprehensive overview of the technical knowledge that underpins the
project recently completed by the Machine Learning team at Biometrid.

In Section 2.1, a comprehensive overview of Machine Learning will be presented. In Section 2.2, we
will clarify the theoretical topics surrounding artificial neural networks, with a particular focus on
convolutional neural networks (CNNs). In Section 2.3, we'll delve further into artificial neural
networks by explaining the concept of Deep Learning. In Section 2.4, we will provide an overview of
the various object detection model architectures that were tested over the past few months. In
Section 2.5, we will discuss the evaluation stage of the project by presenting various metrics used to
evaluate the performance of object detection models. Finally, in Section 2.6 of this report, we will
provide an in-depth explanation of Optical Character Recognition (OCR) technology. This section will
be crucial to understand the final phase of the project as it will cover the theory and technical
aspects behind OCR.

2.1. MACHINE LEARNING

Machine Learning (ML) is one of the subject fields of artificial intelligence that makes use of statistical
models so that, with the help of data, it generates reliable predictions. Systems that offer these
capabilities offer solutions to previous common limitations, examples comprehend a huge space of
possibilities from correctly identifying spam emails to image/video recognition (P. Ariwala, 2022).
This makes it possible to find hidden insights and identify complex patterns without explicit
programming, not just because of the ML development but also due to an increase in computational
power registered in recent years (C. Janiesch et al., 2021).

According to a report by McKinsey, machine learning can create a potential economic impact of $2
trillion to $10 trillion per year across industries (J. Bughin et al., 2017) and is expected to grow at a
compound annual growth rate of 38.8% from 2022 through 2029 and reach a value of $210 billion by
the end of 2029. One of the key factors fueling this expansion is the growing acceptance of machine
learning by major technology companies such as Apple, Microsoft, and many others across a wide
range of industries, including healthcare, manufacturing, automotive, retail, advertising, automation,
defense, financial services, and others (O. Farooq, 2022).

7

Figure 5 - Machine Learning investments by category3

Compared to conventional or classical programming, where systems were fed by input data, and a
function with predefined rules, which generates results according to them. An intelligent mechanism,
that is, a system equipped with an ML model, presents itself as an alternative to the conventional
engineering approach which receives the same data, but unlike the previous one, it also receives the
expected outputs and thus creates a mathematical model with parameters adjusted to the problem.
(O. Simeone, 2018)

Figure 6 - Traditional Programming against Machine Learning approach4

The idea behind the development of any machine learning algorithm is the presence of a large
number of data that present a considerable level of quality. An organized collection of data is
denominated by dataset and usually present a group of features in a tabular format. These datasets

3 Adapted from: https://www.statista.com/chart/17966/worldwide-artificial-intelligence-funding/
4 Adapted from: Moroney, L. (2020). AI and Machine Learning for coders. O'Reilly Media.

8

can be used to train machine learning models for tasks such as classification, regression, clustering,
and others.

On the other hand, image datasets contain information in the form of images, which are two-
dimensional arrays of pixel values. These datasets are used to train machine learning models for
tasks such as image classification, object detection, semantic segmentation, and others. Image
datasets can be much larger in size compared to other types of datasets, as they often contain
hundreds of thousands of images, each with multiple channels (e.g., red, green, and blue) and high
resolution.

To evaluate the performance of a machine learning model, the data are usually divided into three
groups: training, testing, and validation. Only in this way, it is possible to have a perception of the
behavior of the model with data never processed in the training phase. The first group has the
biggest amount of data, typically between sixty to eighty percent, and is used to train the model. The
validation set is used as an evaluation at the end of each epoch to evaluate the model during training
and help optimize its parameters and settings. Finally, the test set is presented as a way to evaluate
the model with different data from those presented in the previous sets and have a final evaluation
of the results.

Figure 7 - Train, Validation & Test Split5

However, to conclude this chapter is worth mentioning that, despite the potential benefits in the
industry, ML implementations have also challenges that need to be addressed. Being one of the most
important examples to highlight the interpretation of accuracy. In most cases, a model that presents
a high accuracy is considered a good one, and the opposite can lead to harm. For example where
facial recognition systems are used in law enforcement. But highly accurate facial recognition
systems can also pose risks to privacy and indicate the presence of mass surveillance (J. Fletcher, & A.
Kostiainen., 2022).

Another important topic related to accuracy and the ability of AI to perform correct predictions is its
usage in areas that don’t have an objective ground truth and need external human judgment. The
impact of an incorrect output depends on the context. For instance, predicting false occurrences of
cancer can increase costs, but on the other hand, failing to predict a true result can have a much
more impact on people’s life and delay the treatment. Another common example of this is using ML
in a judicial context, false positives may send innocents to jail, while false negatives may make it
harder to convict criminals. (J. Fletcher, & A. Kostiainen., 2022).

5 Adapted from: https://community.alteryx.com/t5/Data-Science/Holdouts-and-Cross-Validation-Why-the-Data-Used-to-

Evaluate-your/ba-p/448982

9

Overall, is important to note that ML technologies are rapidly shaping a new future for the industry’s
panorama. Companies embracing this type of AI have the potential to gain a competitive edge and
improve their bottom line. However, it is important for companies to understand the challenges and
limitations of machine learning, and to invest in the necessary expertise and resources to ensure the
success of their machine learning initiatives.

2.1.1. Supervised Learning

Based on a given problem and the available data, different types of Machine Learning algorithms can
be used, each with its advantages and disadvantages. The first step is to understand which strategy
to use to analyze the data. This data has great relevance in the results and can be classified as labeled
data, that is, data that have one or more classes and allow their grouping or unlabeled data. In this
project, we will focus on the first type of data which is characterized as data that contains input and
output features.

For a full understanding of this project is crucial to understand the theoretical aspects of supervised
learning. This type of machine learning model receives input data (x) and output data (y). The goal is
to discover the parameters of a function that will generate the best predictions when faced with
information that has never been processed before. This is an algorithm that needs to receive labeled
data, acquire a deep knowledge of them based on its parameters, and create a cause-effect
relationship.

We can divide the application of this type of machine learning into two categories, classification, and
regression. In the case of classification, the objective is to predict a categorical result for each of the
data, based on its independent variables. In regression problems, the expected output value is of the
continuous type.

2.2. ARTIFICIAL NEURAL NETWORKS & CNNS

Artificial Neural Networks (ANN) are statistical models that are directly inspired by the structure and
function of the neurons in the brain. The fundamental units of neural networks are also referred to
as neurons, nodes, or artificial neurons. A group of connected neurons creates networks that are
trained to perform a variety of tasks, such as recognizing patterns in data, making predictions, or
making decisions. This can be achieved by adjusting the weights of the connections between the
nodes based on example inputs and their corresponding outputs (K. O'Shea, & R. Nash., 2015).

An ANN is modeled by overlaying several layers of artificial neurons, or computational units, to
receive inputs and then transfer them onto the next layer. The basic architecture consists of a
network that has three types of neuron layers: input, hidden, and output layers (A. Abraham, 2005).
However, there are some configuration variants, depending on the outputs and the data processing
approach. Some common types of neural networks are Feedforward Neural Networks (FNN),
Convolution Neural Networks (CNN), and Recurrent Neural Networks (RNN). However, throughout
this report, we’ll just focus on CNNs since this type will be the only one that will be used to address
our problem.

Convolutional Neural Networks (CNN), which are also called “ConvNets”, is a type of ANN that, like
the others, consists in neurons that learn through self-optimization. The main difference between
this architecture and traditional ANN architecture is that this one is designed to deal with visual data.

10

CNN process images or videos and extracts relevant features directly from each pixel value without
requiring any hand-engineered features or previous knowledge about the world.

Figure 8 - Convolution Neural Network Architecture6

To understand CNNs is important to know how its architecture is composed and what the types of
layers that take part of it are. This type of ANN includes several building blocks, such as convolution
layers, pooling layers, and fully connected layers. A common structure consists of repetitions of
several convolution layers and a pooling layer, followed by one or more fully connected layers.

2.2.1. Convolution Layers

A Convolution Layer is a fundamental component of the CNN architecture that performs feature
extraction, which typically consists of a combination of linear and nonlinear operations.

The first type of linear operation is convolution. This operation involves sliding a small matrix of
weights (called a kernel or filter) over the input data (or input tensor) and computing an element-
wise product of the weights and the values in the input volume at each position. The result for each
pixel is then summed to obtain an output array called a feature map. This procedure is repeated by
applying multiple kernels to form an arbitrary number of feature maps that extract different features
from the input tensors (R. Yamashita et al., 2018).

Two key hyperparameters that define the convolution operation are size (I x J) and the number of
kernels (K). The size is typically 3 × 3, but sometimes 5 × 5 or 7 × 7. The number of kernels that are
stacked on top of each other will set the depth of the feature maps and the complexity of the
detection.

6 Source: Horak, K., & Sablatnig, R. (2019, August). Deep learning concepts and datasets for image recognition: overview 2019.

In Eleventh international conference on digital image processing (ICDIP 2019) (Vol. 11179, pp. 484-491). SPIE.

11

Figure 9 - Example of a convolution operation with a kernel size 3x37

Important to mention that to preserve the spatial dimensions of the input data when it is convolved
with a kernel, rows, and columns of extra elements are added to the edges of the input tensor in a
technique called padding. Without padding, each successive feature map would get smaller after the
convolution operation.

2.2.2. Pooling Layers

In addition to convolutional layers, CNNs also include pooling layers, which provide a down-sampling
operation of the feature maps by taking the maximum or average value of a small region of the
feature map and preserving important features learned by the convolutional layers. This has the
effect of reducing the dimensionality of the data and making the network more robust to small
translations or deformations of the input data.

There are several different ways to perform pooling, like Max, Sum, or Average, however the most
common and preferred one is Max pooling, which extracts patches from the input feature maps,
outputs the maximum value in each patch, and discards all the other values.

Figure 10 - Example of max pooling operation with a filter size of 2 × 28

7,8 Source: Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and

application in radiology. Insights into imaging, 9, 611-629.

12

2.2.3. Fully Connected Layers

Finally, after applying several convolution and pooling layers, the output of the feature maps is
generally transformed into a one-dimensional array of numbers (vector) and fed to one or more Fully
Connected Layers, also known as dense layers.

The main idea behind these layers is the same that is implemented on feed-forward neural networks.
They are used to retrieve the features from the last pooling or convolutional layer and use them to
classify the input image into various classes based on the training dataset (D. Bhatt et al., 2021).
Generally, in the more advanced ANN architectures, the last few layers are fully connected layers
with the same number of nodes as the number of possible outcomes.

First is important to understand that a flattened vector will be the input layer that will be coupled to
a first Fully Connected Layer meaning that each input neuron is connected to all the neurons of that
layer (A. Alexandari, M. Shrikumar, & A. Kundaje., 2017). The same will happen between the first
layer and the second one until the end of the network creating a Fully Connected Network. In this
network, the connections between the layers are called weights and these are trainable parameters
that our model needs to learn to associate features to a particular category.

The training process is done by applying a non-linear function called the activation function. This
function decides whether a neuron should be triggered or not. This means that it will decide whether
the neuron’s input to the network is important or not in the process of prediction using simpler
mathematical operations. A bias parameter will always be present in the network and is added to the
weighted sum of the inputs to each node. It is a constant value that shifts the activation function of
the node to help the network to better model the underlying data by allowing the neurons to have a
non-zero output even when all of the inputs to the neuron are zero. This can be useful for modeling
certain types of patterns in the data, such as trends or seasonal effects. The bias can also help to
improve the convergence of the network during training, by providing a non-zero starting point for
the optimization algorithm.

Fully connected layers are easy to implement and can learn a wide range of functions. However, they
are also the second most computationally expensive, behind convolution layers, because they
require a large number of parameters to be learned (J. Janke, M. Castelli, & A. Popovič.,2019) and
can be susceptible to overfitting if the network is not sufficiently regularized. As a result, they are
often used in combination with other types of layers, such as dropout layers, to improve the
performance and generalization ability of the network.

13

Figure 11 - Example of a neural network with fully connected layers9

The performance of an artificial neural network is determined by its architecture, the training
algorithm used, and the quality and quantity of the training data. By adjusting these factors, it is
possible to create neural networks that are highly effective for a wide range of tasks. However,
training neural networks can be a complex and computationally intensive process, requiring
specialized knowledge and expertise.

Nevertheless, as datasets become larger and more complex, there is a growing need for more
sophisticated learning processes to effectively analyze them. This has led to increased research into
developing more advanced neural network architectures. In the upcoming chapter, we will explore
this area of deep learning that focuses on creating deep neural networks. We will also focus on how
these models can be applied to our specific use case, highlighting their potential to improve
performance.

2.3. DEEP LEARNING

Deep Learning is another subfield of machine learning, that only focuses on designing artificial neural
networks with three or more layers making it possible to perform accurate decisions based on large
and complex amounts of data. As an approximation of how the human brain behaves, this
technology becomes possible to carry out recognition tasks and analysis of complex patterns. This
offers useful possibilities, not just for computer vision tasks, but also for other types of tasks without
the need for extensive programming or manual feature engineering.

By using a network of layers as architecture, where each layer can be thought of as the state of the
computer’s memory after executing another set of instructions in parallel (I. Goodfellow et al., 2016),
systems powered by deep learning algorithms can process multiple iterations of data processing,
resulting in a continuously improve their accuracy and performance.

9 Adapted from: https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-4-full-connection

14

The algorithms are typically trained using large amounts of data and powerful computational
resources, such as GPUs. This means that training deep learning models can be time-consuming and
computationally intensive and requires specialized knowledge and expertise.

Important to mention, for the full understanding of this project, that there is a field of AI that relies
very much on deep learning to develop this kind of model to understand the contents of digital data,
such as images or videos. This field is known as Computer Vision (CV), and the goal is to create deep
artificial neural networks capable of process and understanding information in a way that is similar to
humans and performing tasks like object recognition, image, and video analysis, medical imaging,
etc.

CV image-related models can be seen as a highly versatile solution, however, it’s worth noting that
these models can only perform tasks that they were trained to execute. This introduces a major
limitation when exposed to new tasks that require a different set of data. Meaning that the
algorithms need huge amounts of dedicated data specifically for each project to produce good
results. Our days, this is not a deal breaker since images are available online in bigger quantities than
ever, but the fact that these images need to be labeled for many occasions can reveal expensive
labeling work that can only be done by humans (S. Mavrikis et al., 2021).

In the next section, we will focus on the theoretical knowledge of object detection algorithms. This is
one of the most popular computer vision use cases and represents the foundation of the solution for
this work. This will be important to understand how the Machine Learning team in Biometrid
developed the object detection algorithm that is capable of retrieving sections of the Portuguese
identification card.

2.4. OBJECT DETECTION

Object detection is a computer vision type of task that combines the tasks of identifying the location
of one or more objects in a frame and classifying them. It is a crucial component for many
applications and is required for unattended monitoring systems that need the ability to detect,
identify, and, in some cases, track moving objects. Examples such as self-driving cars, image search
engines, and robotics can be cases where this type of detection needs to present a higher monitoring
performance even in complex environments (H. Zhu et al., 2020).

Figure 12 - Example of the expected output of an object detection model trained to detect dogs, cats and humans.

15

It's important to understand the difference between object detection and image recognition tasks.
While both tasks involve analyzing images to identify objects, the key difference lies in the output
they generate. Object detection tasks aim to predict bounding box coordinates and assign a label to
each detected object in an image. This involves drawing one or more boxes around each object and
providing information about its location, scale, and pose. On the other hand, image recognition tasks
only focus on identifying the presence of an object in an image or video, without providing
information about its location. In other words, image recognition is a simpler task that involves
identifying objects without the need to localize them (Fritz Labs, 2018). While both tasks are
important in computer vision, object detection is more complex and requires more advanced
techniques to accurately identify and locate objects within an image.

In recent years, the fast development of artificial neural networks has gained a lot of interest in the
context of object detection tasks providing powerful learning abilities. By learning parameters
themselves, ANN can now deliver a high degree of accuracy compared to previous computer vision
strategies. Following the publication of the original paper in 2012, which achieved huge attention
from the community due to their results on the ImageNet classification benchmark (Krizhevsky A. et
al., 2012.), many ANN architectures have emerged and proposed different strategies to help improve
previous results (H. Hakim, A. Fadhil., 2021).

The following paragraphs will present and compare variants that we tested throughout the past
months and are important for the full understatement of this project. These variants give us different
views to solve the problem of detecting and correctly classifying objects in an image or video.

2.4.1. Region-based Convolution Neural Networks (R-CNN)

In 2014, Girshick et al. proposed a new method called Region-based Convolution Neural Networks (R-
CNN) that achieved a high level of accuracy regarding a variety of applications, including image
classification, object detection, and facial recognition. The basic idea behind R-CNNs is to use CNNs
to learn features from an input image, and then use those features to classify and localize objects
within the image (Girshick R. et al., 2014).

To do this, R-CNNs follow a two-step process:

1) Region Proposal: In the first step the algorithm proposes a set of potential bounding boxes or
regions of interest (ROIs) that may contain an object of interest. These bounding boxes are
typically generated using a sliding window approach, where the algorithm slides a fixed-size
window across the image and proposes a bounding box at each location.

2) Feature Extraction: Next, R-CNN takes use of a CNN to extract features from the image within
each bounding box. These features are then fed into a Support Vector Machines (SVM)
classifier trained to predict the class of the object and the location of the object within the
bounding box.

Despite producing good results, R-CNNs still presented some disadvantages mainly regarding the
high time consumption to train and make inferences caused by the multiple-stage pipeline.

16

Figure 13 - R-CNN Stages10

2.4.2. Faster-RCNN

In 2015, Microsoft Research (Ren S. et al., 2016) introduced Faster R-CNN as an improvement over
the original R-CNN algorithm and since then has become a popular choice for object detection due to
its speed and accuracy.

With shared philosophy with R-CNNs, Faster R-CNNs aim to classify and localize objects within an
input image using a combination of convolutional neural networks (CNNs) and region proposal
algorithms. However, Faster R-CNNs introduce Region Proposal Networks (RPN) as a more efficient
approach compared to the previous ones since it only uses one neural network to perform both the
region proposal and the feature extraction steps, rather than using separate networks for each step.

In other words, the architecture of a Faster R-CNN algorithm begins with several convolution layers
responsible for the feature extraction of the input image. Before the last pooling layer, a convolution
RPN layer of size 3x3 is implemented and comes with the responsibility of receiving the feature maps
and generating outputs to both a classifier, that determines the probability of a pixel to host a target
object (proposals) and a regressor, that regresses the coordinates of the regions of interest. (S. Ren
et al., 2015).

Figure 14 - Faster R-CNN's Architecture11

10 Source: Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and

semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).

11 Source: Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal
networks. Advances in neural information processing systems, 28.

17

At each sliding-window location, several proposals are predicted, and knowing that the regressor has
4*k coordinate outputs and the classification layer generates 2*k binary results the authors
introduce the definition of “anchors” to define the central point of each sliding window. For any
image, scale, and aspect ratio play a decisive role as important parameters to calculate the number
of anchors (k). The developers chose 3 scales and 3 aspect-ratio as default parameters meaning that
the maximum number of proposals per pixel is equal to 9, concluding that for the whole image, k =
W*H*9.

According to the original paper, the loss function of the RPN is minimized by the binary class label (of
being an object or not) of each anchor. To assign a positive label to an anchor this one has to have
the highest Intersection-over-Union (IoU) overlap with a ground-truth box or has to have an IoU
overlap higher than 0.7 (S. Ren et al., 2015).

2.4.3. Single Shot MultiBox Detector (SSD)

To address the high computational problems caused by the Faster R-CNN, other object detection
systems, proposed different techniques that reduce the inference time while maintaining the same
level of accuracy. So, by the end of 2016, C. Szegedy presented a paper on the implementation of
Single Shot MultiBox Detector (SSD) reaching immediate breakthrough records in terms of
performance and precision for object detection tasks compared to the previous models.

This model approach is based on a feed-forward convolutional network that produces a fixed
number of bounding boxes and creates a scoring mechanism that evaluates the presence of objects
in those boxes. The architecture of the SSD uses VGG-16 architecture as its base network inheriting in
this way its strong performance in high-quality image classification tasks. From there, the main
difference stands in the removal of the fully connected layers by a set of convolutional layers that
decrease in size progressively and enable predictions at multiple scales. These layers are then
followed by a non-maximum suppression step to produce the final detections.

Figure 15 - SSD Architecture12

The SSD Model works as follows, the base network processes an input image that is divided into grids
of various sizes, and, for each grid, detection is performed for different classes and different aspect
ratios. After that, each of these grids is evaluated by a score that says how well the detected object
fits in that particular grid. The non-maximum suppression step is as stated before, responsible for
choosing the best final detection from the set of overlapping detections (W. Liu et al., 2016).

12 Source: Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector.

In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp.
21-37). Springer International Publishing.

18

Figure 16 - SSD Framework13

In the year of its launch, the SSD model registered better results than the previous state-of-the-art
detection algorithms, but in recent years, new variants of YOLO architecture and SSD keep competing
for the award of best object detection model in the PASCAL VOC 2007 Challenge.

2.4.4. CenterNet

To reduce the steps performed by two-stage object detection architectures, like R-CNN or Faster R-
CNN models, and to deal with the limitations of anchor-based models, CenterNet architecture was
proposed in 2019 as an anchorless object detection algorithm that proves to be an effective
lightweight option (K. Duan et al., 2019).

Taking as the baseline the CornerNet architecture, CenterNet is a one-stage detector that aims to
improve to performance of its predecessor by using a triplet of keypoints, rather than a pair. This
architecture reduces the analysis cost by only paying attention to the central information using a
keypoint detection process.

In the given figure, the model represents each object using a center keypoint and a pair of corners.
To generate a heatmap, CenterNet uses CNNs as a model backbone to generate bounding boxes,
then count the number of bounding boxes that contain the center keypoint and uses this information
to predict the likelihood of a central region in the image containing the same class of center
keypoints. Each pixel in the heatmap represents the probability of an object center being present at
the corresponding spatial location in the image. A high probability score indicates a high likelihood of
an object center being present at that location, while a low probability score indicates a low
likelihood of an object center is present. This approach of predicting the likelihood of object centers
using a heatmap can improve the accuracy of object detection, particularly for small or occluded
objects.

13 Source: Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector.

In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp.
21-37). Springer International Publishing.

19

Figure 17 - CenterNet Architecture14

The authors presented an architecture that employs two key strategies to predict the geometric
centers and corners of objects. The first strategy is called Center Pooling and starts by predicting the
center keypoint by finding the maximum value in both horizontal and vertical directions and adding
these two values together. This helps to obtain more recognizable visual patterns within objects,
making it easier to perceive the central part of the proposal.

The second strategy is denominated Cascade Corner Pooling, which aims to find the corner points
similarly to the previous one, but now by obtaining the maximum summed response in both the
boundary and internal directions of objects on a feature map for corner prediction. Empirically, the
authors claim that the results are more stable and robust to feature-level noises, leading to improved
precision and recall.

In summary, the CenterNet model is a state-of-the-art object detection architecture that achieves
high accuracy with low computational costs. The model predicts object centers directly using a
heatmap, which reduces the complexity of the model and improves detection accuracy for small and
occluded objects. The model has achieved state-of-the-art results on several benchmark datasets and
is widely used in both research and industry for various computer vision applications.

2.5. EVALUATION METRICS

Evaluation metrics play a crucial role in the development and deployment of machine learning
models. Building a machine learning model can be seen as a recursive pipeline where the responsible
team trains a model, then evaluate it using evaluation metrics, finetune specific model
hyperparameters, and repeat this procedure until the desired performance is achieved. So, it is
extremely important to carefully choose and track the right evaluation metrics to ensure that the
model is performing well, to perform a model comparison, and to meet the desired objectives.

In this chapter, we will discuss the theoretical background of the evaluation metrics used throughout
the project and explore how to choose and interpret these metrics in a production environment. We
will also discuss the importance of considering the specific characteristics and goals of the task when
selecting an evaluation metric, and the role of evaluation metrics in model selection, optimization,
and monitoring.

14 Source: Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection.

In Proceedings of the IEEE/CVF international conference on computer vision (pp. 6569-6578).

20

Since we are dealing with an object detection algorithm, is expected to evaluate the model by
comparing its output with ground-truth bounding boxes generated by a human operator responsible
for manually labeling the objects and defining their boundaries (V. Y. Mariano et al., 2002). From this
analysis, it’s common to use evaluation metrics like accuracy, precision, recall, and many others to
understand how well the model can distinguish between different class labels and the trade-offs
between false positive and false negative predictions.

Since 2010 challenges like VOC PASCAL Challenge, COCO, ImageNet Object Detection Challenge, and
Google Open Images Challenge have emerged as competitions that aim to evaluate new
implementations and are now seen as valuable benchmarks to test object detection models in
specific scenarios by using real-world annotated datasets (M. Everingham et al., 2009). These
competitions contribute to the definition of standard evaluation procedures within the scientific
community by using popular metrics like Average Precision (AP), Intersection over Union (IoU), or
creating their variants to rank the models.

In the next sections, we’ll try to clarify the metrics previously mentioned in a simplified and
organized strategy where the reader is guided by a sequential process illustrated in the figure below.
It should be noted that each step can be considered as a standalone method of evaluation, but they
are interdependent and build upon one another.

Figure 18 - Object Detection Evaluation Process

2.5.1. Confusion Matrix

This table comes up as a useful tool for an initial understanding of the types of errors made by a
model and for comparing the performance of different models. It’s constructed by comparing the
predicted class labels with the true class labels of the data.

21

 True Class

Pr
ed

ic
te

d
Cl

a s
s

 Positive Negative

Positive TP FP

Negative FN TN

Table 1 - Confusion Matrix15

Looking at the table above, a confusion matrix will be composed by four main areas that help to
understand the strengths and weaknesses of a model and for identifying areas for improvement.
More precisely, each prediction can be classified as:

• True positive (TP) if the prediction contains a correct detection of a ground-truth bounding
box.

• False positive (FP) if the algorithm performs an incorrect detection of a nonexistent object or
a misplaced detection of an existing object.

• False negative (FN) if the ground-truth object is not detected.

Bear in mind that, within the realm of object detection, there is no such thing as a False Positive (FP)
as there are an infinite number of bounding boxes that should not be identified within a given image.

2.5.2. Intersection over Union (IoU)

Based on the Jaccard Index, this metric individually evaluates the overlap between a pre-annotated
ground truth bounding box (gt) and the one predicted by the model (pd) having in consideration a
specific threshold value.

IoU score ranges between 0 and 1 where the closer the two boxes the higher the score, meaning that
detection output with maximum IoU value is considered to have a perfect overlap with the ground
truth bounding box.

Figure 19 - Formula and Representation of the IoU calculation16

15 Adapted from: Jeppesen, J. H., Jacobsen, R. H., Inceoglu, F., & Toftegaard, T. S. (2019). A cloud detection algorithm for

satelliteimagery based on deep learning. Remote sensing of environment, 229, 247-259.
16 Adapted from: Padilla, R., Netto, S. L., & Da Silva, E. A. (2020, July). A survey on performance metrics for object-detection

algorithms. In 2020 international conference on systems, signals and image processing (IWSSIP) (pp. 237-242). IEEE.

22

By computing the IoU score for each detection, it’s important to define a threshold (a) to convert
real-valued scores into classifications.

2.5.3. Precision and Recall

This performance benchmark act as a measure of how closely a predicted value agrees with the true
value of a quantity. It is defined as the ratio of the number of correctly predicted positive cases
(positive predictions containing an IoU greater than the threshold) to the total number of predicted
positive cases (correctly identified objects + false positive predictions). In other words, it is a measure
of the proportion of positive cases that are actually positive.

Figure 20 - Precision Formula

Precision is often used in conjunction with another metric called Recall (or Sensivity) to evaluate the
performance of a model. Precision is typically more relevant when the goal is to limit the number of
false positive predictions, whereas recall is more relevant when the goal is to identify as many
positive cases as possible. This way we can define Recall as the metric that measures the ratio of the
number of correctly predicted positive cases to the total number of actual positive cases. In other
words, it is a measure of the proportion of actual positive cases that are correctly identified by the
model.

Figure 21 - Recall Formula

Important to mention that, in the presence of imbalanced datasets, where one class is rare, it’s
important to focus on the recall of the model.

2.5.4. F1-Score:

This is the harmonic mean of precision and recall, with a higher score indicating a better balance
between the two. The F1 score is defined as:

Figure 22 - F1-Score Formula

The F1 score is often used in imbalanced classification tasks, where it is important to achieve a
balance between precision and recall. It is also useful when the cost of false positive and false
negative predictions is not the same, as it allows for the weighting of these costs to be incorporated
into the evaluation metric.

2.5.5. Average Precision

In object detection algorithms, it is essential to strike a balance between precision and recall. The
traditional evaluation metric, which is the F1 score, can only provide a single score for a given

23

threshold, making it less informative in situations where the threshold varies. To address this issue,
the Average Precision (AP) metric was introduced, which has become a widely used evaluation
metric for object detection algorithms. AP considers the number of true positives, false positives, and
false negatives, making it particularly useful when the data is imbalanced. By computing the area
under the precision-recall curve (AUC), AP provides a comprehensive summary of the trade-off
between precision and recall across different thresholds, thus providing a more informative
evaluation metric for object detection algorithms.

To calculate the AP, the precision-recall curve is first computed by varying the threshold values and
plotting the precision on the y-axis and recall on the x-axis. The AUC is then computed, which ranges
from 0 to 1, with higher values indicating better performance. AP provides a more precise evaluation
metric compared to traditional metrics, making it a valuable tool for object detection algorithms. As
such, it has become a standard metric used in many object detection benchmarks and competitions.

2.5.6. Mean Average Precision (mAP)

Multiclass Object Detection models face the challenge of detecting multiple object classes in an
image. As a result, a metric called Mean Average Precision (mAP) was developed as an extension of
the AP metric to calculate the average precision for each class. mAP calculates the AP for each class
in the dataset and then averages the AP values for all the classes to obtain the final mAP score. The
resulting value ranges from 0 to 1, with 1 indicating the best possible performance. mAP is a useful
metric as it provides an overall view of the model's performance and helps to identify which classes
the model is performing well on and which classes it is struggling with, providing insight into where
the model needs improvement.

The simplicity of mAP has made it an essential benchmark for evaluating the performance of object
detection models in competitions and challenges. The mAP allows for easy comparison of different
models and provides a fair evaluation metric for all models, regardless of the number of classes in
the dataset. This makes it an effective tool for researchers and developers to assess the performance
of their models and identify areas for improvement.

2.6. OPTICAL CHARACTER RECOGNITION (OCR)

Optical Character Recognition (OCR) is a technology that provides the capacity of converting
handwritten, typewritten, or printed text into machine-readable images. This offers numerous
applications that can be used to improve workflow efficiency. Common examples are industries like
legal, banking, and healthcare that are currently leveraging OCR technology to simplify their
operations and streamline their processes (A. Singh, K. Bacchuwar, & A. Bhasin., 2012).

Unlike humans, machines do not have the capability to recognize text or characters easily from an
image, which is why significant research efforts have been put into developing OCR techniques. OCR
is a complex problem due to the numerous languages, fonts, and styles in which text can be written,
as well as the complex rules of languages. As a result, OCR requires the integration of various
computer science disciplines, such as image processing, pattern classification, and natural language
processing, to overcome these challenges (N. Islam, Z. Islam, & N. Noor., 2017).

The process of OCR involves a series of distinct phases. The first one, denominated by image
acquisition, entails obtaining an image from an external source such as a camera or scanner, and

24

transforming it into a format that is compatible with computer processing. This is a crucial step in the
OCR process as it sets the foundation for accurate and efficient optical character recognition.

Once the image has been acquired, the subsequent step in the OCR process is known as
preprocessing. During this phase, a variety of techniques can be utilized to enhance the quality of the
image. These techniques may involve removing noise, setting thresholds, and extracting the baseline
of the image. By improving the image quality, the OCR algorithm can achieve a higher level of
accuracy when it comes to recognizing the text or characters contained within the image. This phase
is critical to ensuring the overall effectiveness of the OCR process.

Moving to the next phase, the next step in the OCR process will focus on character segmentation.
The goal of this phase is to isolate individual characters within the image so that they can be properly
identified by the recognition engine. While simple techniques such as connected component analysis
and projection profiles may be sufficient in certain cases, more advanced segmentation techniques
are necessary for complex situations where characters may be overlapping, broken, or obscured by
noise within the image. By effectively separating the characters, the OCR system can accurately
recognize the text and produce an output that is faithful to the original document.

The segmented characters are then processed to extract different features. Based on these features,
the characters are recognized. Different types of features that can be used extracted from images are
moments etc. The extracted features should be efficiently computable, minimize intra-class
variations, and maximizes inter-class variations.

The segmented characters are then processed in order to extract different features that will be used
for character recognition. Based on these features, the characters are recognized. The features
extracted from the characters should be efficiently computable and should minimize intra-class
variations (variations within the same class of characters) while maximizing inter-class variations
(variations between different classes of characters). Various types of features can be extracted from
the characters, such as moments and other image-based features. After that, the features of
segmented images are assigned to different categories or classes using different types of character
classification techniques.

Finally, post-processing techniques can be performed to improve the accuracy of OCR systems. These
techniques utilize natural language processing, and geometric and linguistic context to correct errors
in OCR results.

25

Figure 23 – General OCR Workflow17

Over the years, OCR technology has undergone tremendous improvements, and modern systems can
now recognize various fonts, sizes, and styles of text. Despite this, the accuracy of OCR systems still
depends on factors such as image quality, text complexity, and language. Fortunately, advancements
in artificial intelligence and machine learning have resulted in substantial improvements in OCR
accuracy, leading to more reliable and precise results (A. Ranjan, V.N.J. Behera, & M. Reza., 2021).

Nowadays, there are numerous OCR tools available that have made their usage more common in
different environments. Some of the most popular OCR tools include Tesseract, developed by
Google, Microsoft Cognitive Services by Microsoft, and Amazon Textract. For our project, we have
decided to utilize the Pytesseract Python library, which provides an easy-to-use interface to leverage
all the features and capabilities of Tesseract. The Pytesseract library offers a straightforward and
efficient way of integrating OCR functionality into Python-based applications, making it a great choice
for our project needs.

17 Adapted from: Mudiarta, I. M. D. R., Atmaja, I. M. D. S., Suharsana, I. K., Antara, I. W. G. S., Bharaditya, I. W. P., Suandirat, G. A.,

& Indrawan, G. (2020, April). Balinese character recognition on mobile application based on tesseract open-source OCR engine. In Journal
of Physics: Conference Series (Vol. 1516, No. 1, p. 012017). IOP Publishing.

26

3. METHODOLOGY

3.1. TOOLS AND TECHNOLOGIES

In this chapter, all the tools and technologies used throughout this project will be presented. We will
explore the reasons for their selection, enumerate alternatives available in the market, and
understand the importance of these tools and technologies for the success of the project. The
chapter will cover the various libraries, frameworks, and platforms that have been employed to
facilitate the process of building an object detection model, from data preparation to model training
and deployment. By the end of this chapter, readers will have a comprehensive understanding of the
tools and technologies used in the project, and how they contribute to the overall objective of the
project.

3.1.1. TensorFlow

TensorFlow (TF) is a powerful open-source software library for machine learning and deep learning,
developed by researchers and engineers working on the Google Brain Team. At its core, TF uses data
flow graphs to represent any computation. A data flow graph is a directed acyclic graph (DAG) where
the edges represent the flow of data, and the nodes represent operations. This makes it easy to
implement machine learning algorithms, such as neural networks (M. Abadi et al., 2016).

TensorFlow also provides a wide range of tools for building, training, and deploying machine learning
models using a variety of platforms including CPUs, GPUs, and TPUs. However, the development
team maintains a collection of pre-made models on a platform called TensorFlow Hub, which can be
used for tasks like object detection, image classification, and text generation.

For visualization purposes, TensorFlow has a visualization tool called TensorBoard, which allows
developers to easily visualize and understand the behavior of their models during training,
evaluation, and inference.

Figure 24 - TensorBoard Interface18

The main alternative to TensorFlow is PyTorch. This python library was developed by Facebook and
defines itself as an easier-to-use tool easy for tasks such as image classification, natural language

18 Source: https://www.tensorflow.org/tensorboard

27

processing, and generative models. The optimized integration with the most popular python libraries
like NumPy, Pandas, and Matplotlib makes it a great choice for data scientists who want to leverage
their existing knowledge and tools.

Biometrid uses this specific framework as its primary tool for training machine learning models in a
production setting. However, the team is open to utilizing different tools and encourages the
exploration of new options that may offer improved performance.

TF presents itself as the main tool for almost all the tasks that were performed during this project,
and the full understanding of this library was central to being able to train, evaluate and deploy new
algorithms for the extraction of elements of the identification card. In the next subsection, we’ll
explain in more detail a specific TensorFlow API for the creation of Object Detection models.

3.1.1.1. TensorFlow Object Detection API

TensorFlow Object Detection API (TFOD API) presents as a framework for a specific build and
deployment of object detection models using TensorFlow. It provides a collection of pre-trained
detection models that are good baselines for out-of-the-box inferences.

The API also provides tools to fine-tune the model on a new dataset, or to train a new model from
scratch. Additionally, TFOD API facilitates this workflow by including a collection of utilities for
converting existing object detection datasets to the "TFRecord" file format, which is the input format
for TensorFlow training and evaluation.

Once the model is trained, TensorBoard can also be used as a visualization tool to understand and
debug your model during training, evaluation, and inference. In terms of the deployment of the
model, this can be done in a variety of ways, including as a command-line tool, as a library that can
be integrated into other Python code, or as a web service using TensorFlow Serving.

Overall, TensorFlow Object Detection API is a powerful tool for building and deploying object
detection models, making it easy to train and deploy models using TensorFlow, and providing a
collection of pre-trained models that include architectures like Faster-RCNN, SSD, and CenterNet.

3.1.2. Label Studio

Label Studio is a software platform for creating and managing data annotation projects. It is designed
to help machine learning engineers, data scientists, and other professionals easily create and manage
annotation projects.

With its user-friendly interface users can define the data that needs to be labeled, create annotation
tasks, and invite other users to collaborate on the project. The platform supports a wide range of
annotation tasks, including text classification, object detection, image segmentation, and more.
Users can also customize the annotation interface to suit their needs, by creating custom forms,
adding instructions, and setting up validation rules.

28

Figure 25 - Label Studio Interface19

Once the data is labeled, it can be exported in various formats, including JSON, CSV, and TFRecord,
which makes it easy to use the labeled data in machine learning pipelines and other applications.

This was the tool used to perform labeling activities and build the dataset used since the beginning of
the project. All of its advantages made it the preferred choice over its competitors like LabelImg and
Labelme.

3.1.3. OpenCV

Open-Source Computer Vision (OpenCV) is a library of programming functions mainly aimed at real-
time computer vision for multiple languages, including Python, Java, and C#. It was presented by Intel
in 2000 and is now maintained by a non-profit organization called Willow Garage.

OpenCV provides a wide range of features for image and video processing, including image filtering,
image transformation, object detection, and machine learning. Currently is widely used in industry
and academia, and it is supported by a large and active community. It is also supported by many
platforms, including Windows, Linux, and macOS, and it can be used on both desktops and mobile
devices.

Throughout the project, this was used to manipulate the images and understand the best image
conditions for the OCR engine.

3.1.4. Streamlit

Streamlit is an open-source framework used to build and share interactive data-driven applications.
This relatively new Python-based library simplifies the development of machine learning and data
science web applications. Streamlit has gained popularity among data scientists due to its intuitive
interface, ease of use, and ability to develop applications quickly. With it, everyone that knows how
to code in Python can easily create interactive dashboards and data visualizations without any web
development experience.

Another feature of this library is its ability to render real-time data. Streamlit automatically updates
the data and visualizations whenever there is a change in the input. This means that data scientists
can work with their data in real time and get instant feedback on the changes made to the data.

19 Source: https://labelstud.io

29

A variety of built-in widgets is provided allowing developers to create interactive user interfaces
quickly. These widgets include sliders, buttons, and drop-down menus, which can be used to interact
with the data and visualize the results in real time.

Streamlit has support for a wide range of data science and machine learning libraries, including
NumPy, Pandas, Matplotlib, and Scikit-learn. Developers can easily integrate these libraries into their
applications and leverage their functionalities to analyze and visualize data.

3.2. ID ELEMENTS PT PROJECT

Since starting at Biometrid, the objective was to expand the understanding of the subjects and
technologies mentioned above. An initial experience with the business world and the field of
machine learning outside of an academic setting has proven to be a valuable step in pursuing a
career that aligns with a personal desire to continue learning and, in particular as a ML Engineer to
comprehend the inner workings of systems utilizing artificial intelligence.

With the growth in terms of personnel inside the company and, in particular with the growth of the
Machine Learning team, an improved version of the OCR Pipeline was proposed enabling a more
accurate analysis of a high volume of identification card images from different countries daily. This
data extraction, transformation, and loading process is an essential component of the Biometrid SDK
as it plays a crucial role in enrolling new users and validating existing ones on the platform where it is
integrated.

The procedure starts by acquiring images taken by a mobile device or webcam, and a classification
algorithm is then employed to determine the type of document being analyzed, before proceeding to
the next phase (card type model). The next step involves applying pre-processing methods to
properly segment the images (segmentation model), isolating the relevant portion from the
background, and adjusting the orientation of the document to a horizontal layout (rotation model).

The entire process described above is accomplished with the aid of multiple machine learning models
that were trained and implemented previously. These models serve as a foundation for this project,
and it’s important to enhance that every point mentioned in this chapter will have that attention.

Throughout the next chapters, we will go into detail on the various steps that compose this project
consisting of finding the best object detection model architecture and training it to the point that is
capable of successfully locating and identifying all the sections from the front face of the Portuguese
identification card. It is extremely important to mention that reading the previous chapters regarding
the theoretical background of this project is mandatory to fully understand the subsequent sections.

3.2.1. Data Processing

3.2.1.1. Data Collection

After one week of gaining a comprehensive understanding of the company's operations and the
specific project assigned to me, it became apparent that a dataset containing a significant quantity of
images captured in various settings and featuring diverse arrangements was necessary to ensure that
the model would be as robust as possible and avoid any overfitting issues.

30

To replicate the OCR pipeline in a local setting, it was necessary to properly segment and align the
images in a horizontal orientation before they were processed by the detection model, to avoid any
potential conflicts with the other components of the pipeline. To accomplish this, we initiated
interactions with existing segmentation and rotation models that were already in use in the
production environment.

In essence, we are examining object detection models with distinct objectives for the first time.
Specifically, the segmentation model's goal is to partition an image into regions of interest (in this
case, a single region) that correspond to an object or a class of objects. The output of the model will
be a segmentation mask, which is effectively a binary image that categorizes each pixel to indicate
the locations where objects of interest are present.

Figure 26 - Segmentation Model output

As for the rotation model, we utilize an automated method to rotate images based on the model's
output. This returns a list of probabilities corresponding to each rotation operation, allowing us to
apply the technique with the highest probability to achieve a successful outcome and align the image
in a horizontal orientation.

With that in mind, the objective for each image was to utilize the segmentation model to
automatically crop out most of the background. To achieve this, we wrote a Python script that, after
properly initiating the model, would iterate through the entire directory of images and create a copy
of each image, but with the background segmented out. This approach ensured that all data analysis
and manipulation would be performed on the copy of the images, thus preserving the integrity of the
original dataset.

However, upon collecting data, it became apparent that the rotation model would not need to be
run locally as the majority of images were already in a horizontal layout. Despite this, it is crucial to

31

note that the alignment of the images is of paramount importance as a successful OCR outcome is
highly dependent on it.

In summary, the majority of the two initial weeks at Biometrid were dedicated to research tasks,
where the primary focus was to gain a comprehensive understanding of how the product functions,
its components, the core objectives of the project assigned to me, and the methods for utilizing the
models locally. Only after gaining this understanding, we were able to commence organizing a study
dataset and begin testing the manipulations applied in the OCR pipeline locally.

3.2.1.2. Data Annotation

The process of training an object detection model involves several steps, in our case, the second one
is data labeling. After collecting a sufficient number of images, the goal is to manually identify and
label all the objects of interest in each image. This manual process requires close attention to detail
and the ability to identify the objects in the image. The desired result of the object detection model
must be defined before starting the data labeling process, as any changes in the desired outcome,
later on, will require re-annotating all the images.

For our specific task, we selected bounding boxes as the method for identifying the objects in the
images. Bounding boxes are widely used in computer vision and consist of rectangular boxes defined
by their edge coordinates. This type of annotation is used to identify objects in an image by
surrounding them with these boxes. By using bounding boxes, we created a custom dataset that
consists of images paired with the accurate coordinates of the objects, which will assist in both
training and evaluating the model. These coordinates are saved in a specific XML file alongside other
information about each image.

This stage was important to become familiar with various data labeling tools and dedicate a few days
to evaluating and selecting the best one for the company. The goal was to establish a standard for
data labeling. Biometrid aims to utilize open-source technologies with a strong developer
community, to leverage the community in case any issues arise. Keeping this in mind, we surveyed
the tools commonly used by machine learning teams at major technology companies and concluded
that Label Studio would be the ideal option for this phase.

The tool presents itself as a data labeling platform known for its user-friendly design and
customization options. Upon first use, you are presented with a comprehensive menu that allows
you to customize and configure various aspects of the annotation process, such as the type of
annotation, the classes for the bounding boxes, and more. With its robust customization capabilities
and intuitive design, Label Studio is revealed to be an excellent choice for the general majority of
data labeling tasks in the computer vision field.

This week's efforts culminated in a preliminary understanding of the project outcome and an
introduction to previously unfamiliar tools. Although the days were relatively routine and involved
repetitive tasks, they also served as opportunities for meetings with the machine learning team to
plan future steps.

32

3.2.1.3. Preparing the Workspace

After organizing the training dataset and performing the necessary annotations, we enter a phase of
the project where we need to organize the workspace so that it is possible to test our data in several
model architectures and run several experiments with different combinations of parameters.

With that in mind, the TensorFlow API dedicated to object detection tasks presents us with very well-
written documentation where, through a few steps, it is possible to train models out-of-the-box or to
train custom ones from scratch.

The first step involves dividing the dataset with a script provided in the documentation, and creating
subsets as discussed at the end of chapter 2.1. This is a common practice where, in our case, we opt
to split the data in a way that 90% is utilized for training and the remaining is reserved for evaluation
(test set). Once the script has finished, two new folders were created in our working folder. To avoid
the loss of any files, the script will not delete the original data that will be present where it previously
was.

Next, another important component in the process of preparing the train of a detection model was
the creation of a label map. It provides the mapping between class names and class IDs in the
training dataset. This file has a .pbtxt extension used by the model to recognize objects in images,
and also to decode the predictions made by the model during inference.

During training, TensorFlow requires the ground-truth object labels to be associated with each image
in the training set. The label map is used to encode this information in a format that the model can
understand. This allows the model to learn the relationships between the object classes and their
corresponding bounding boxes in the training images.

During inference, the label map is used to decode the class IDs predicted by the model back into
human-readable class names. Without the label map, the model's predictions would be difficult to
interpret and would not provide meaningful results.

Then we move to the next step where, according to TensorFlow Object Detection API, we need to
convert the entire dataset into a proprietary binary file format called TensorFlow Records
(TFRecords). This is an efficient and convenient format used to receive large amounts of data during
the training and evaluation of models and provides an optimized way to manipulate data inside
TensorFlow’s data processing pipelines.

This also offers several advantages like portability and speed, since TFRecords can be used on
different platforms and devices much faster than other formats, making it easy and lightweight to
share datasets between different systems. To apply this conversion a python script was also provided
in the official documentation.

3.2.2. Model Training

In order to obtain better results, we use transfer learning as a starting point to retrain a previously
designed model. In this way, we take advantage of the complex structure of a model that was
previously trained on a large volume of data and adjust some parameters according to our purpose.
By fine-tuning the model for a new task, the model is able to leverage its prior knowledge, making
training faster and more efficient. This approach is especially useful in situations where the amount

33

of data for a new task is limited, as transfer learning reduces the need for extensive data collection
and labeling.

Luckily, TensorFlow offers a repository that contains several model architectures previously trained
and accompanied by their evaluations when used in the COCO dataset. This way we started to
research which ones met our needs seeking a model with consistent performance but at the same
time not presenting a high inference time as this would negatively affect the processing time of the
OCR pipeline.

To organize the project and observe improvements over time, we opt to divide it into versions. Each
version would present a different group of models alongside data modifications that we believed
that made sense according to the outputs retained. In this way, it was possible to evolve our work
while delivering reports to the Biometrid team at the end of each month. Below is displayed a table
illustrating all the models tested per version.

 Models Observations

Version 1

EfficientDet D1

SSD ResNet50

SSD ResNet101

SSD ResNet152

Version 2

SSD ResNet152 1024x1024

SSD ResNet50 v2 Improved version with
different hyperparameters

SSD ResNet101 v2 Improved version with
different hyperparameters

Version 3

Faster R-CNN Inception

EfficientDet D2

CenterNet HourGlass104

Version 4

Faster R-CNN Inception v2 Improved version with
different hyperparameters

CenterNet Resnet50

CenterNet Resnet101

Table 2 - Model's architecture used per version.

It's crucial to emphasize that the model’s key aspects have to be altered to adapt to the appropriate
data format for our project. This involved modifying each model's configuration file to enhance the
detection of objects based on the quantity and shape of the bounding boxes.

34

To measure the performance of our models, we focused on evaluating them using metrics explained
previously such as mAP, Recall, and IoU. For this purpose, the evaluation metrics group was set to
“coco_detection_metrics” in the eval_config parameter. Although the library provides other
evaluation metrics, we found this to be the most appropriate for our project.

The model training procedure was thoroughly documented, making it possible to initiate the first
training iteration after inserting the data and label maps. This gave us a preliminary understanding of
the model's capabilities. The training process was monitored by not only the console logs but also
through the use of TensorBoard. This allowed for comprehensive tracking of the training evolution.

3.2.3. Model Fine-Tuning

In the initial iteration of the models, we solely relied on the training and test data converted to
TFRecords format without making any modifications to the model architecture. Nonetheless, we
conducted research to identify the optimal parameters suited for our scenario. This led to the next
phase of the solution's development known as finetuning the model, where during each training
session, small modifications are made to the model's architecture to enhance its efficacy.

In this section, the main objective is to discuss the various modifications that the team made to the
model's configuration file to obtain the optimal architecture for our particular problem. The focus
will be on the dataset composition, and a detailed overview will be provided for each of the themes
contained within the configuration file. Throughout this process, we will explain the reasoning
behind all the choices and provide insight into the various options that are available through this
library.

3.2.3.1. Image Preprocessing

In the context of any computer vision project, it is absolutely crucial to have a full understanding of
the input data that is being fed into the model. Without this understanding, it is impossible to design
and train a model that is truly effective at the task at hand. Deep learning algorithms that power this
kind of project are heavily dependent on the input data, and even small variations or inconsistencies
in the data can greatly impact the performance of the model. It is therefore essential to carefully
preprocess the data, ensuring that it is in a format that is compatible with the model's architecture.

Fortunately, the TFOD API provides a range of preprocessing tools that can be accessed right out of
the box. In the initial section of the configuration file, users have the ability to exercise control over
the image resizing process, including the shape of the resulting resized image. The library offers a
considerable amount of flexibility concerning the various parameters that can be modified to achieve
the desired results. However, it is important to note that before any modifications are applied,
TensorFlow automatically handles the normalization of the images. This is an important feature that
ensures consistency in the data and helps to optimize the performance of the model.

When configuring the strategy chosen to process the input image for our model, the API offers two
distinct options: "keep_aspect_ratio_resizer" and "fixed_shape_resizer". The former option allows
users to specify a minimum size while maintaining the aspect ratio of the original image. However, it
is important to note that this option can sometimes result in extensively padded images, especially in
cases where the original image is rectangular. In such cases, it may be more suitable to use the
"fixed_shape_resizer" option, which resizes the image to a specified rectangle size defined by the

35

"height" and "width" parameters. For our specific use case, we have determined that the
"fixed_shape_resizer" option is the optimal choice, as it allows us to maintain consistency in the size
of the input images, which is critical for optimizing the performance of the model.

3.2.3.2. Image Augmentation

Image augmentation is an essential technique that can greatly enhance the accuracy and robustness
of the model. By applying various transformations and manipulations to the input images,
augmentation procedures can help to address issues such as overfitting, insufficient training data,
and class imbalance. For example, flipping, rotating, and cropping images can increase the variability
and diversity of the training data while adjusting brightness, contrast, and color can help to account
for variations in lighting conditions. Additionally, image augmentation can also help to mitigate the
effects of occlusions, viewpoint changes, and other real-world factors that may impact the model's
ability to accurately detect objects in new and unseen images.

Throughout the course of this project, we explored various of these methods to augment our dataset
with synthetic images generated through the application of image manipulation techniques. Knowing
that our images were accurately segmented and correctly oriented from the segmentation and
rotation models, we made a deliberate effort to avoid modifying their orientation. Instead, we
focused on applying techniques that could alter the color system of the data as you can check in the
image below. This decision proved to be highly effective, as adjustments to factors such as hue,
contrast, saturation, and brightness allowed us to minimize the model's sensitivity to color. As a
result, the model was able to detect objects more accurately across a wider range of colors, leading
to improved overall performance. The use of these techniques demonstrates the importance of
careful and strategic data augmentation in the context of object detection and underscores the
critical role that it plays in optimizing model performance.

Figure 27 - Image Augmentation techniques used for the CenterNet configuration file

While the techniques described above can be highly effective for augmenting image data in our
context, it's worth noting that the TensorFlow Object Detection API offers a much broader range of
augmentation options. As you can see in the image below, there are a wide variety of different

36

techniques that can be used to manipulate and enhance image data, ranging from simple color
adjustments to more complex transformations like rotation, flipping, and distortion. By carefully
considering the unique characteristics and requirements of your specific use case, you can leverage
these powerful tools to create highly customized and effective data augmentation strategies that can
significantly improve the accuracy and performance of your object detection models.

Figure 28 - Image Augmentation techniques provided by Tensorflow Object Detection API20

3.2.3.3. Post-processing

Post-processing is another indispensable step in any object detection project, as it enables the model
to generate accurate and meaningful results from the raw output of the detection algorithm. In the
context of object detection, post-processing typically involves analyzing the output of the model and
applying various techniques to refine and filter the results. By carefully tailoring these post-
processing techniques to the specific requirements of the project, it's possible to significantly
improve the accuracy and precision of the object detection model, while also reducing the risk of
false positives or other errors.

As we are facing an anchorless architecture, our primary concern at this stage was preventing
overfitting and improving model performance. To achieve this, we focused on advanced approaches
to learning rate control over time. Learning rate plays a critical role in determining the rate at which
the model's internal parameters and weights are updated during training. A carefully chosen learning
rate can significantly impact the model's convergence and its ability to find the optimal set of
parameters for the given task. As such, we employed various strategies to tune the learning rate,

20 Source: Tensorflow Model Garden Repository

37

including learning rate schedules and optimization algorithms. Through these techniques, we aimed
to strike a balance between model convergence and generalization, ultimately leading to improved
performance.

In our case, we employed the cosine learning rate decay schedule for controlling the learning rate
over time. This approach enables the learning rate value to alternate between increasing and
decreasing throughout the training process. Specifically, the learning rate is gradually decreased
towards zero as the training progresses, which helps the model converge toward an optimal solution
while reducing the risk of overfitting.

To correctly configure the learning rate schedule, it is important to focus on the following parameters
and understand their impact of them on the performance of the model:

• learning_rate_base: parameter that defines the initial learning rate that will be used to train
your model.

• total_steps: parameter that defines the number of total steps your model is going to train.
Important to note that in the last steps of your training job, the learning rate scheduler will
drive the learning rate value to be close to zero.

• warmup_learning_rate: the maximum value that the learning rate will reach before starting
to decrease.

• warmup_steps: defines the number of steps that will be taken to increase the learning rate
from learning_rate_base to warmup_learning_rate

3.2.4. Image Pipeline

Once we had properly trained the model on our custom dataset and fine-tuned its parameters to
enhance its performance, the subsequent phase involved comprehending the outcomes produced by
the model. For every examined image, the model delivers numerous results, with the first ones being
the labels assigned to each section. This is crucial for linking the section's name with the coordinates
of the bounding boxes that will eventually be showcased.

The bounding box coordinates generated by the model during image inference play a vital role in
determining the location of the regions of interest. Utilizing these coordinates makes it feasible to
isolate specific subsections of the images that only contain the desired information. In our scenario,
we aim to extract sections of the image that exclusively contain personal data presented on the front
face of the Portuguese identification card.

To achieve this objective, we designed a data pipeline that involves conducting an image inference
and subsequently utilizing the model's outcomes to crop the original image, leading to several sub-
images, each corresponding to a particular section. Our workflow deliberately involves minimal
image manipulation techniques since the model is adept at processing horizontal segmented images
and can accommodate color variations owing to the pre-applied image augmentation techniques.
This represents one of the key benefits of our implementation over the current approach, as we can
simply resize the image and feed it into the model, reducing the reliance on extensive image

38

processing that can lead to latency issues. As a result, our ML-powered solution operates
independently of any time-consuming image processing, enhancing its overall efficiency.

In the following paragraphs, we will discuss each function that constitutes our pipeline. Our pipeline
was entirely coded in Python and created entirely by the Machine Learning team, which modified the
existing functions to accommodate the changes introduced by the object detection algorithm.

The initial function in our pipeline is called "detect_sectionsML" and only needs a parameter that
refers to the image that will be analyzed. For the function to operate correctly, it must receive an
image of a Portuguese identification card, which will be fed into our model to generate a prediction.
Although the model generates several pieces of information, the function is designed to solely return
the values corresponding to the bounding box coordinates and their respective classes/labels.

Figure 29 – Python function used to make model inferences

With a clear understanding of the preceding function's outcomes, we will now proceed to crop the
original image utilizing the "crop_sections_ML" function, resulting in a list of images, with each
element corresponding to a particular section.

Figure 30 – Python function used to crop card sections by given coordinates

Concluding our pipeline is the "extract_sections_data_ML" function, which plays a fundamental role
in processing the images of each section. This function employs the Pytesseract library to convert
images into text. However, as each section can display data in various formats, such as numbers and
punctuation marks (as in the case of height) or solely letters (as in fields like first or last name), each

39

section requires a distinct Tesseract configuration. As a result, this function merges the multiple
configurations with their respective sections and creates a Python dictionary to save the results.

Figure 31 – Python function used to apply OCR in given sections

40

4. EXPERIMENTAL STUDY

In this chapter, we will present the outcomes of our experimentation with various model
architectures and determine the optimal one for deployment in a production setting. We will start by
outlining the evaluation metrics used, and their relationship to the concepts introduced in chapter
2.5. Following that, we will end by providing a detailed analysis of the comparative performance of
our best model against the existing production strategy.

4.1. EVALUATION PROTOCOL

Throughout our object detection model training, TensorFlow generates real-time training process
checkpoint log files which allow us to assess the performance of our models. These logs contain
COCO evaluation metrics, which include essential metrics like mean average precision, recall, and
Intersection over Union. These metrics aid us in quantifying the accuracy and precision of our models
and enable us to identify areas that require improvement. By using COCO evaluation metrics, we can
ensure that our models are optimized to detect and classify objects with high accuracy and
efficiency, allowing us to achieve our research goals.

As we have previously mentioned, we split our dataset into two parts - a training set and a test set.
The test set plays a crucial role in evaluating the performance of our model, as it contains data that
the model has never seen before. Important to understand that the evaluation process utilizes the
checkpoint files generated during the training process to assess the model's ability to detect objects
in the test dataset. The evaluation generates a set of metrics that provide a summary of the model's
performance, enabling us to track its accuracy and precision over time. These metrics offer valuable
insights into the strengths and weaknesses of our model, allowing us to fine-tune it for optimal
performance. By regularly monitoring the evaluation metrics, we can ensure that our models are
continuously improving and delivering reliable results (L. Vladimirov, 2020).

All these results can also be visualized with the help of TensorBoard. This visualization tool converts
the evaluation results obtained from the checkpoint files into intuitive and informative dashboards.
These dashboards provide a comprehensive overview of the model's performance, enabling us to
identify areas that require improvement. In addition to the evaluation metrics, TensorBoard also
allows us to visualize the detection results in the test images, providing a clear understanding of how
well the bounding boxes are detecting the areas of interest. This feature is particularly useful in
identifying false positives or false negatives, which can be further investigated and corrected to
improve the model's accuracy. By utilizing TensorBoard to analyze the evaluation results and
visualize the detection outputs, we can gain a deeper understanding of our model's performance and
make informed decisions on how to optimize it further.

Once we establish that a model produces favorable outcomes, it becomes crucial to assess the
latency it introduces while making an inference. This aspect holds immense significance since it can
adversely impact the pipeline's performance if the response time increases significantly. Therefore, it
is essential to carefully scrutinize the model's inference time to ensure that it meets the
requirements of the intended application.

Finally, upon analyzing the model's performance metrics over the test set, checking the bounding
boxes display and the latency, the final evaluation phase now shifts focus to assessing the outputs

41

generated by the OCR engine. In light of this, the project team decided to build a web application
using Streamlit to compare the results of our approach against the current production environment's
output. The application provides an interface that you can check below, that allows us to browse
through a folder of images depicting identification cards and manually check which sections
Tesseract accurately converted to text using tick boxes. This evaluation phase is undoubtedly the
most time-consuming since there is no record of all the ground truth values of the documents, and
the performance of the OCR engine must be assessed by manually inspecting each section to
determine if the output matches the expected values.

Figure 32 - Streamlit Output Comparison App

Upon evaluating both methods' results on our 3000-image dataset, the application generates a CSV
file, which we use to produce a line plot that will be used to compare visually the two
implementations. We will present this plot below when analyzing the results.

The evaluation process for this project is comprehensively outlined, highlighting each distinct phase.
The next chapter will provide a detailed overview of the outcomes obtained in each of these phases
and explicate the rationale behind selecting the final model.

4.2. EXPERIMENTAL RESULTS AND DISCUSSION

This chapter focuses on presenting the outcomes achieved with our artificial intelligence algorithm's
implementation for detecting Portuguese ID card sections. We have divided the results into three
phases, as discussed in the previous chapter, to assess our approach's effectiveness in different ways.

42

4.2.1. TensorBoard Results

Throughout each phase presented in Table 2, we started checking the performance of each model via
TensorBoard by analyzing its evaluation metrics on the train and test set. This approach allowed us to
monitor the training progress of a specific model in real time and compare it to previously trained
models.

Our initial emphasis is on the evaluation metric known as loss, which is a value assigned during the
training of a model that aims to reflect the disparity between the model's predicted output and the
real output. The fundamental objective of the training process is to decrease the loss metric,
indicating that the predicted output should closely resemble the actual output.

Presented in the following table are the loss values of the most optimized versions for each of the
trained models. It is evident that all the loss values are quite low, but the CenterNet Resnet101
model outperformed the rest, indicating that its predictions are the most accurate. This initial
evaluation positions it as a strong contender for the final model, although we still need to analyze
numerous other metrics to determine if it is the optimal choice.

Model Loss value

CenterNet HourGlass104 0.01957

EfficientDet1 0.02583

EfficientDet2 0.02957

Faster R-CNN Inception 0.01372

SSD ResNet101 0.04287

SSD ResNet50 0.0577

CenterNet Resnet50 0.01219

CenterNet Resnet101 0.0106

Table 3 - Loss Comparison

Regarding the metrics of mean average precision and recall values, the results were found to be
dissimilar. Among the evaluated model architectures, only three achieved values higher than 80% for
mean average precision, namely CenterNet HourGlass104, Faster R-CNN Inception, and CenterNet
Resnet50. These models also performed exceptionally well in terms of recall values. Thus, these
same three models were considered the most effective ones for the given task. A comparative view
of the recorded values for both these evaluation metrics is presented in the following table.

43

Model mAP value Recall value

CenterNet HourGlass104 0.8175 0.8563

EfficientDet1 0.7683 0.8093

EfficientDet2 0.7637 0.8072

Faster R-CNN Inception 0.8159 0.8538

SSD ResNet101 0.7844 0.8254

SSD ResNet50 0.7591 0.7971

CenterNet Resnet50 0.8109 0.8480

CenterNet Resnet101 0.7988 0.8347

Table 4 - Mean Average Precision/Recall Results per model architecture.

After analyzing the results obtained, it was evident that four models had performed remarkably well
on the test set. Despite being able to comprehend the functioning of the models visually through the
TensorBoard, an additional group of images was created. These images were never before analyzed
by the models, and visualizations with bounding boxes were generated for them. By doing so, an
extra evaluation layer was established to gauge the robustness of the model's results. This helped in
obtaining a more comprehensive understanding of the effectiveness of the models and their capacity
to generalize to unseen data.

The test results revealed that the CenterNet Resnet50 model had difficulty in detecting certain
sections, even in favorable conditions, whereas the other models performed better in this aspect.
Taking this into account, the Machine Learning team decided to focus solely on the other three
models that consistently and similarly detected all sections of all images. Hence, the size and latency
tests were continued only for these models to ensure that they met the desired performance criteria.
This approach helped in streamlining the evaluation process and optimizing the selection of the best-
performing model for the project.

4.2.2. Size & Latency Tests

The second testing phase was initiated to identify the architecture that could introduce the least
amount of latency to the OCR pipeline. Latency, in this context, refers to the time taken by the model
to process a single inference, i.e., the time between the model receiving an image and returning the
results. This test assumes great significance as it is not sufficient for a model to have exemplary
performance alone if it consumes an extended period for processing. If such an instance occurs
within the pipeline that is currently in production, it could significantly slow down the entire OCR
solution and worsen the user experience.

The two bar plots below provide an overview of the results obtained in the latency testing phase. The
first one was made by measuring the processing time taken by the models on the images present in
our dataset. To achieve this, we developed a python script that iterated through the entire dataset
and calculated the average time taken by each of the models to return results compared to the

44

current OCR strategy (OCR Legacy), in seconds. The second one provides us with the cumulative
latency, which offers an understanding of the total time it would take to perform 500 inferences. This
information assumes significance while evaluating the effectiveness of implementing this strategy in
production. This helped us to compare and contrast the performance of the different models in
terms of their latency and select the most efficient one for integration into the OCR pipeline.

Figure 33 - Latency per prediction

Figure 34 - Cumulative Latency

Despite presenting impressive results the Faster R-CNN Inception model, as you can check above,
comes with a major drawback - its unacceptable latency time. In comparison to the current OCR
implementation, the model takes approximately 3.5x longer to execute a substantial number of
inferences. Consequently, our focus shifts to evaluating the remaining models to determine the most
suitable replacement candidate for the OCR Legacy. Fortunately, these alternative models offer
processing times compared to the current implementation, and although their integration with ML
technology may marginally increase latency time, the benefits they provide far outweigh the slight
increase in processing time.

45

We initiated efforts to differentiate between the remaining models based on their respective storage
sizes. Typically, models that occupy more storage space tend to demand more computational
resources and memory to function optimally. This can pose challenges for resource-constrained
systems, rendering such models unsuitable for online or real-time applications where low latency is
of paramount importance.

Once we became aware of the vast difference in the storage space occupied by the two models, the
decision became clear. We would opt for the CenterNet Resnet101 model as a viable replacement
for the OCR Legacy. However, to substantiate this decision, we needed to ascertain whether this
alternative could deliver better outcomes than the previous model. In the next section, we’ll present
the results that we aim to obtain using a Streamlit app that compares the OCR powered by ML and
the OCR Legacy.

4.2.3. OCR Results Comparison

In the final evaluation phase, we aim to compare the performance of the pipeline presented in
chapter 3.2.4 with the current results produced by Biometrid daily. To achieve this, we use a Python
framework called Streamlit to create a CSV file containing the success rate of each card section that
was used to generate the plot that you can observe below.

Figure 35 - Success rate per section for each OCR Strategy

Based on the information presented, it seems reasonable to conclude that the new OCR pipeline
powered by machine learning performed better than the current implementation in most sections,
except for the identification digits section where the current implementation returned better results.

46

Even though, as we stated earlier, there was an increase in latency by the new implementation, we
were able to improve the average success rate by approximately 3%, indicating that the new model is
set ahead over the current implementation.

After these results, we conclude that the new OCR model shows promise for improving accuracy in
most sections of the OCR process, though further testing and optimization may be necessary to
address the identified issues regarding the identification digits.

47

5. CONCLUSIONS

In this internship report, the challenge was to train and deploy an object detection model that was
able to automate the process of retrieving all the front sections from a Portuguese identification card
using artificial neural networks to support an OCR-based solution for information retrieval of
identification cards. This new implementation had as a baseline the current production environment,
which only uses image manipulation techniques to detect card sections, an approach that has some
limitations regarding inferences on low-quality images.

The applied research in this report was based on a case study using a custom anonymized real-world
dataset composed of images provided by AMA.

The theoretical framework section of this report aimed to provide a comprehensive understanding of
object detection algorithms, from basic concepts to the model architectures experimented with over
the past few months. We started by providing a comprehensive explanation of Machine Learning and
how to approach a project utilizing it. Moving forward, we delved into the realm of Deep Learning
and outlined the process of evaluating models to determine whether they perform as expected.

Within the methodology chapter of this report, we presented the various tools that were utilized
throughout the project. Additionally, we provided a detailed, step-by-step explanation of how we
trained an artificial neural network (ANN) utilizing the TensorFlow Object Detection API. Finally, we
explained the image pipeline construction process, which is capable of receiving model-generated
results and extracting information from them via an Optical Character Recognition mechanism,
ultimately allowing for the conversion of images to text.

As we conclude this report, we presented the various evaluation phases that were implemented in
the selection of the optimal model. Through this process, we ultimately compare our strategy with
the currently implemented approach and publish the final results.

5.1. LIMITATIONS

The major limitations that emerged during the course of this project were mainly regarding the data
and insufficient work equipment. This includes the limited availability of images for developing our
custom dataset, the unavailability of cloud services for expediting machine learning model training,
and the confidentiality of personal information that impeded result sharing.

The primary constraint of this project was the shortage of images available for building the dataset
necessary for training machine learning models. Despite strenuous efforts to collect relevant images,
the dataset employed in this study remained comparatively small compared to the datasets
commonly employed in similar investigations. This limitation was considered, and the team use
techniques like data augmentation to prevent negative impacts on the model’s accuracy,
generalizability, and an increased likelihood of overfitting.

Another limitation experienced during this project was the lack of cloud services for training the
model and storing all the experiments that were made. We were aware that because of that the
training process was slower and required more computational resources than would have been

48

necessary with cloud services. This limitation resulted in extended wait times and reduced the
number of experiments conducted.

Finally, the need to restrict the sharing of results due to the personal information contained within
the dataset constituted a significant limitation of this project. Although measures were taken to
ensure the privacy and confidentiality of the individuals in the dataset, this limitation prevented the
broad dissemination of the results, which could have limited the impact of the research.

5.2. FUTURE WORK

Moving forward, our focus will be directed toward improving our model by utilizing additional data
and enhancing the efficiency of our data pipeline. Following the model's deployment, it will undergo
multiple stages of testing to ensure its effectiveness in a production environment. Only through this
rigorous testing can we determine the viability of its implementation.

If the implementation of our model proves to be successful, we anticipate the emergence of new
projects focused on training models capable of identifying elements from identification cards and
passports from various countries. These models would then be integrated into Biometrid's Optical
Character Recognition (OCR) pipeline to further enhance its capabilities.

49

6. BIBLIOGRAPHY

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016, November).
Tensorflow: a system for large-scale machine learning. In Osdi (Vol. 16, No. 2016, pp. 265-283).

[2] Abraham, A. (2005). Artificial neural networks. Handbook of measuring system design.

[3] Alexandari, A. M., Shrikumar, A., & Kundaje, A. (2017). Separable fully connected layers
improve deep learning models for genomics. BioRxiv, 146431.

[4] Ariwala. (2022, October). 9 Real-World Problems that can be Solved by Machine Learning.
Maruti Techlabs. https://marutitech.com/problems-solved-machine-learning/

[5] Attivissimo, F., Giaquinto, N., Scarpetta, M., & Spadavecchia, M. (2019, October). An
automatic reader of identity documents. In 2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC) (pp. 3525-3530). IEEE.

[6] Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., ... & Ghayvat, H. (2021). CNN
variants for computer vision: history, architecture, application, challenges and future
scope. Electronics, 10(20), 2470.

[7] Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlstrom, P., ... & Trench, M.
(2017). Artificial intelligence: The next digital frontier?

[8] Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for
object detection. In Proceedings of the IEEE/CVF international conference on computer vision (pp.
6569-6578).

[9] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2009). The pascal
visual object classes (voc) challenge. International journal of computer vision, 88, 303-308.

[10] Farooq, O. (2022, October 3). [10 Best Machine Learning Stocks to Invest In]. Yahoo Finance.
https://finance.yahoo.com/news/10-best-machine-learning-stocks-165306920.html

[11] Fletcher, J., & Kostiainen, A. (2022, November). Ethical Principles for Web Machine Learning.
W3C. https://www.w3.org/TR/webmachinelearning-ethics

[12] Fritz Labs. (2018). Object Detection Guide. Fritz AI. https://www.fritz.ai/object-detection/

[13] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 580-587).

[14] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

[15] H. Zhu, X. Yan, H. Tang, Y. Chang, B. Li and X. Yuan, "Moving Object Detection with Deep
CNNs," in IEEE Access, vol. 8, pp. 29729-29741, 2020, doi: 10.1109/ACCESS.2020.2972562.

[16] Hakim, H., & Fadhil, A. (2021, February). Survey: Convolution neural networks in object
detection. In Journal of Physics: Conference Series (Vol. 1804, No. 1, p. 012095). IOP Publishing.

50

[17] Horak, K., & Sablatnig, R. (2019, August). Deep learning concepts and datasets for image
recognition: overview 2019. In Eleventh international conference on digital image processing (ICDIP
2019) (Vol. 11179, pp. 484-491). SPIE.

[18] Huang, J. (2017, August 14). “Our goal: Every single car will be autonomous.” Bosch Global.
https://www.bosch.com/stories/thought-leader-jensen-huang/

[19] Islam, N., Islam, Z., & Noor, N. (2017). A survey on optical character recognition system. arXiv
preprint arXiv:1710.05703.

[20] Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep
learning. Electronic Markets, 31(3), 685-695.

[21] Janke, J., Castelli, M., & Popovič, A. (2019). Analysis of the proficiency of fully connected
neural networks in the process of classifying digital images. Benchmark of different classification
algorithms on high-level image features from convolutional layers. Expert Systems with
Applications, 135, 12-38.

[22] Krizhevsky A., Sutskever I. & Hinton G.E., 2012. Imagenet Classification with Deep
Convolutional Neural Networks. Advances in Neural Information Processing Systems (NIPS). :1097–
1105.

[23] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October).
SSD: Single shot multibox detector. In European conference on computer vision (pp. 21-37). Springer,
Cham.

[24] Mariano, V. Y., Min, J., Park, J. H., Kasturi, R., Mihalcik, D., Li, H., ... & Drayer, T. (2002,
August). Performance evaluation of object detection algorithms. In 2002 International Conference on
Pattern Recognition (Vol. 3, pp. 965-969). IEEE.

[25] Mavrikis, S. T., Antonopoulos, C. P., Voros, N. S., & Keramidas, G. (2021, September).
Comparative evaluation of computer vision technologies, targeting object identification and
localization scenarios. In 2021 6th South-East Europe Design Automation, Computer Engineering,
Computer Networks and Social Media Conference (SEEDA-CECNSM) (pp. 1-8). IEEE.

[26] Moroney, L. (2020). AI and Machine Learning for coders. O'Reilly Media.

[27] Mudiarta, I. M. D. R., Atmaja, I. M. D. S., Suharsana, I. K., Antara, I. W. G. S., Bharaditya, I. W.
P., Suandirat, G. A., & Indrawan, G. (2020, April). Balinese character recognition on mobile
application based on tesseract open-source OCR engine. In Journal of Physics: Conference Series (Vol.
1516, No. 1, p. 012017). IOP Publishing.

[28] Padilla, R., Netto, S. L., & Da Silva, E. A. (2020, July). A survey on performance metrics for
object-detection algorithms. In 2020 international conference on systems, signals and image
processing (IWSSIP) (pp. 237-242). IEEE.

[29] Ranjan, A., Behera, V. N. J., & Reza, M. (2021). Ocr using computer vision and machine
learning. Machine Learning Algorithms for Industrial Applications, 83-105.

51

[30] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection
with region proposal networks. Advances in neural information processing systems, 28.

[31] Ryan, M., & Hanafiah, N. (2015). An examination of character recognition on ID card using
template matching approach. Procedia Computer Science, 59, 520-529.

[32] Simeone, O. (2018). A very brief introduction to machine learning with applications to
communication systems. IEEE Transactions on Cognitive Communications and Networking, 4(4), 648-
664.

[33] Singh, A., Bacchuwar, K., & Bhasin, A. (2012). A survey of OCR applications. International
Journal of Machine Learning and Computing, 2(3), 314.

[34] Vladimirov, L. (2020). TensorFlow 2 Object Detection API Tutorial. TensorFlow 2 Object
Detection API Documentation. https://tensorflow-object-detection-api-
tutorial.readthedocs.io/en/latest/index.html

[35] Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks:
an overview and application in radiology. Insights into imaging, 9(4), 611–629.
https://doi.org/10.1007/s13244-018-0639-9

[36] Zulkhaizar, A. (2023, January 4). The Future of AI: How Artificial Intelligence is Revolutionizing
the Way We Work - Digital First Magazine. Digital First Magazine.
https://www.digitalfirstmagazine.com/the-future-of-ai-how-artificial-intelligence-is-revolutionizing-
the-way-we-work/

	Untitled

