A Work Project, presented as part of the requirements for the Award of a

Master's degree in Finance from the Nova School of Business and Economics.

DOES WORKING CAPITAL MANAGEMENT IMPACT PROFITABILITY IN THE MEDICAL DEVICE INDUSTRY? EVIDENCE FROM GERMANY AND THE UNITED STATES

ALICIA GIESLER

Work project carried out under the supervision of:

Leonor Fernandes Ferreira

17-12-2021

Abstract

Does Working Capital Management Impact Profitability in the Medical Device Industry? Evidence from Germany and the United States

This Work Project analyses the effect of working capital management (cash conversion cycle and its components) on profitability (gross profit margin) for the medical device industry, an industry not previously researched. It uses a sample of 151 observations from market leaders of the world (United States) and Europe (Germany) for the period 2016-2020. Findings indicate that managers may extend cash conversion cycle and days inventory outstanding to increase gross profit margin. German managers may also reduce days sales outstanding and expand days payable outstanding, while managers in the United States may not consider them due to insignificance.

Keywords: Financial Statement Analysis, Working Capital Management, Profitability,
 Cash Conversion Cycle, Days Inventory Outstanding, Days Sales Outstanding,
 Days Payable Outstanding, Gross Profit Margin, Medical Devices, Germany,
 United States

This work used infrastructure and resources funded by Fundação para a Ciência e a Tecnologia (UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences DataLab, Project 22209), POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences DataLab, Project 22209) and POR Norte (Social Sciences DataLab, Project 22209).

1. Introduction

The Medical Device (MD)¹ industry is diverse with products ranging from plasters to machine resonance imaging devices (MedTech Europe 2021). Its relevance was visible during the COVID-19 pandemic, when demand for personal protective equipment peaked (EY 2020). It has a world market size of c. USD 432 billion (2020), which will increase with a compound annual growth rate (CAGR) of c. 5.4% (2021-2028) (Fortune Business Insights 2021). Currently, the United States of America (USA) are the global leader, while Germany (GER) leads the European market, which is the second largest market worldwide (Fitch Solutions quoted in MedTech Europe 2021). All MD firms need an efficient working capital management (WCM) to optimize profitability with a favourable risk and profitability trade-off (Deloof 2003; Aktas, Croci, and Petmezas 2015). The working capital (WC) structure is made up of current assets and current liabilities (Filbeck and Krueger 2005). WCM is a lever of value creation for firm stakeholders (Rappaport 1986; Shin and Soenen 1998) since it impacts corporate value, liquidity, risk and profitability (K. Smith 1980; Chang 2018). As part of liquidity management, it is crucial in daily business operations (Eljelly 2004).

Recent studies proved the WCM effect on profitability, yet with diverse results. Research uses a widely accepted measure of WCM – the cash conversion cycle (*CCC*) (Gitman 1974). *CCC* represents the period it takes for a firm to sell finished goods and "collect receivables [minus] the time it takes to [settle] payables" (Wang 2002, 472). Wens, Moldenhauer, Lindenberg, and Kengelbach (2019) showed that European MD firms reduced *CCC* from 2013 to 2018 but increased profitability. This is a sound reason to analyse the question if WCM, via *CCC* and its components, impacts profitability. This Work Project evaluates major MD firms in Germany (GER) and the United States (USA) between 2016 and 2020 with gross

¹ The MD industry is also often referred as medical technology industry in literature. A MD is an "instrument, apparatus, appliance, software, implant, [...] or other item [...] to be used [...] for human beings" (World Health Organization 2021, 9). A complete overview of all abbreviations applied in this Work Project is provided in *Table A1 (Appendix-Appx.)*.

profit margin (*GPM*) as profitability proxy. It provides several contributions: (i) Given divergence in previous research results, it helps to clarify the effect of *CCC* by using a so far rarely applied profitability proxy. (ii) Past research focused less on specific subindustries (*Appx. Table A2*). To the best of our knowledge, no study has solely analysed the MD industry yet. (iii) Many studies concentrated on developing countries (Singh, Kumar, and Colombage 2017). There has been some research for the USA, but evidence for GER is very limited. (iv) Differences in country factors (e.g., investor protection or healthcare system) and market factors (e.g., MD portfolio) are considered. The results are especially useful for MD firm managers, who can apply the WCM suggestions to rise profitability at reasonable risk.

This Work Project proceeds as follows: Section 2 delves into the MD industry. Section 3 explains the theoretical framework. Section 4 develops the main hypotheses based on a literature review. Section 5 outlines the research methodology. Section 6 analyses the data and discusses the findings, including robustness check of results and limitations of the analysis. Section 8 concludes and gives suggestions to firm managers and for future research.

2. Medical device industry

Typical MD subsectors are the orthopaedic, cardiovascular, dental, surgical, or diagnostic imaging device fields (Fortune Business Insights 2021). MD diversity may lead to deviating WCM and *GPM* due to e.g., divergent raw materials or production processes. MD industry suppliers are MD raw material producers, while MD customers are mainly healthcare providers and private consumers (MarketLine 2021a). The German MD market size was estimated to c. USD 40.5 billion in 2020 (Marketline 2021b, 2) with a market share of c. 26% in Europe (Fitch Solutions quoted in MedTech Europe 2021, 27). It will grow with a CAGR of c. 5% from 2020 to 2025 (Euromonitor International 2021, 33). In comparison, the United States (U.S.) market size was c. USD 173.6 billion in 2020 (Marketline 2021c, 2), being c. 42% of the global market (Fitch Solutions quoted in MedTech Europe 2021, 26). It will

expand with a CAGR of c. 4% from 2020 to 2025 (Euromonitor International 2021, 27). The U.S. market has large conglomerates, but the main market is comprised of small firms (SelectUSA n.d.), also applying for GER (SPECTARIS 2021). *Table 1* presents strengths, weaknesses, opportunities, and threats (SWOT) of the MD industry in both countries.

Strengths	 Low dependence on economic cycles and low seasonality High regulatory burdles and innovation power are partiers for market entry.
	The regulatory nucles and mitovation power are barners for market entry
	• Highly diversified portfolio with niche products and short average lifecycles (1.5-2 years)
	Stable and high profitability
Weaknesses	• Low supply chain resilience with interruption risk due to international raw material sourcing
	• Stricter regulations increase compliance costs and extend product approval processes
	• High research and development costs (R&D), being c. 7% (USA) to c. 9% (GER) of sales
Opportunities	Rising demand due to aging population and higher prevalence of chronic diseases
	Global market growth due to improvement of healthcare systems in developing countries
	• Rising importance of better healthcare services and lifestyles extends customer groups
Threats	• High competition from conglomerates, emerging markets, and outside industry players
	Budget pressure for healthcare expenditure of countries
	• Purchasing groups, used to buy medical devices (MDs) for several healthcare providers due to
	provider consolidation, exercise high negotiation power, forcing MD firms to reduce prices
	• MD world market also hit by the pandemic due to lower demand for specific MDs resulting
	from reduction in elective medical procedures

Table 1: SWOT analysis for the German and U.S. MD industry

Sources: Morabito 2020; Zhu, Gupta, Park, and Mukherjee 2020; apoBank 2021; Euromonitor International 2021; Fortune Business Insights 2021; MarketLine 2021a; MedTech Europe 2021; State Bank Baden-Wuerttemberg (*Landesbank Baden-Württemberg*) 2021; Federal Statistical Office (*Statistisches Bundesamt*) quoted in SPECTARIS 2021, 5; SelectUSA n.d.

In the USA, the Food and Drug Administration (FDA) is supervising the MD market (FDA 2020), while in GER it is the task of the Federal Institute for Drugs and Medical Devices (*Bundesinstitut für Arzneimittel und Medizinprodukte*), Paul Ehrlich Institute and notified bodies (BVMed 2020). Both countries structure MDs based on their malfunction risk in three main classes (Cheng and Fromer 2021; MedTech Europe 2021). Risk increases with class and respective controls (Wagner and Schanze 2019; FDA 2020).² Besides, GER and the USA differ in their healthcare systems. In 2019, healthcare spending had a slightly higher gross domestic product (GDP) share in the USA (17%) than in GER (12%) (OECD 2021b), but medical goods expenses represented a lower share of this spending in the USA (14%) than in GER (19%) (OECD 2021a). 88% of German citizen are covered by statutory health insurance (German Federal Ministry of Health 2020, 24), while in the USA only 34% have a public

² The new European Union "Medical Device Regulation" converges to U.S. regulation's strictness. It augments requirements for premarket controls, clinical trials, and post-market surveillance, which increases the compliance costs in GER (Daigle and Torsekar 2019; BVMed 2020).

insurance (Berschick, Barnett, and Upton 2019, 2). Hence, the U.S. system tends to be driven by private and the German one by public payors (AiM 2021). Healthcare providers in both countries are reimbursed for MDs by payors. Based on care type, they are reimbursed in e.g., fixed lump sums, bundles, or one-time sums (Zhu et al. 2020; AiM 2021; AiM and iGES Institute 2021; ISPOR 2021). Overall, WCM policy may differ due to divergent healthcare systems (impact of reimbursement on MD firm's receivables), MD portfolios and tax rates³.

3. Theoretical framework

WCM can prevent liquidity shortage via efficient inventory and receivables management and timely discharge of liabilities (Shin and Soenen 1998). Since external financing is more costly than internal one, WC changes may lead to additional cost (Myers and Majluf 1984; Baños-Caballero, García-Teruel, and Martínez-Solano 2010). There are three policies of WCM: aggressive, moderate and conservative (Weinraub and Visscher 1998; Nazir and Afza 2009).

Aggressive WCM aims at a low net working capital⁴ by having a low current assets and/or a high current liabilities share (scaled by total assets). It enables lower inventory storage and obsolescence costs (Kim and Chung 1990), shorter customer payment collection, and less need for short-term debt (Jose, Lancaster, and Stevens 1996). However, it may impede sales growth since lower inventory interrupts operations and shorter trade credits to customers increment churn rates (Blinder and Maccini 1991; Jose et al. 1996). Late supplier payments may lead to unused discounts, impaired supplier relationships and risk of future debt supply (C. Ng, J. Smith, and R. Smith 1999; Wang, 2002). Conservative WCM is opposite to aggressive WCM regarding common-sized current assets and current liabilities. The WC increase is firstly financed by internal resources and then by debt based on pecking-order theory

³ The taxation regime, affecting sales and payables, is different for GER and the USA. Value-added tax (VAT) rate for MDs in GER is 19%, with exceptions of 7% (German Bundestag (*Deutscher Bundestag*) 2019). In the USA, application of the MD tax (2.3%) was interrupted for 2016-2019 and repealed in 2019 (Japsen 2019). States apply different sales taxes, ranging from 2.9% to 7.25% (KPMG n.d.). MDs are divergently taxed, including tax exemptions and reductions (Dumler 2020). ⁴ Net working capital is the net form of WC and the difference of current assets and current liabilities.

(Myers and Majluf 1984). Costs of inventory shortage and interruptions (Blinder and Maccini 1991) are avoided. Higher sales and product pre-assessment by customers are enabled due to longer payment periods (J. Smith 1987). However, inventory handling and financing costs and receivables recovery risk increment (Deloof 2003; Chang 2018). Higher risk and return are typical for aggressive WCM policies, while the opposite applies for conservative ones (Weinraub and Visscher 1998). Moderate WCM balances between both policies.

Static liquidity ratios (current ratio *CR*, quick ratio *QR*, cash ratio *CASHR*), based only on balance sheet items, were proven to be unreliable to analyse WCM policies (Richards and Laughlin 1980; Kamath 1989). In contrast, *CCC* is a more dynamic metric, combining balance sheet and income statement items (Jose et al. 1996). Gitman (1974) initially suggested *CCC*. It is measured in time units (usually days) and it is the sum of days inventory outstanding (*DIO*) and days sales outstanding (*DSO*) minus days payable outstanding (*DPO*) (Richards and Laughlin 1980; Deloof 2003)⁵. *DIO* is the average period inventory is held, *DSO* is the average period a company needs to gather receivables and *DPO* is the average period a firm needs to fulfil supplier payments (García-Teruel and Martínez-Solano 2007). The sum of *DIO* and *DSO* is the operating cash cycle (Richards and Laughlin 1980). The formulas for *CCC* and its components (in days) in this Work Project [1]-[4] are the ones mainly used in past research (Lazaridis and Tryfonidis 2006; Gill, Biger, and Mathur 2010).⁶

$$CCC_t = DIO_t + DSO_t - DPO_t$$
^[1]

$$DIO_{t} = \frac{Inventories at end of period t}{Cost of Goods Sold during period t} \times 365$$
[2]

$$DSO_t = \frac{Accounts \ Receivables \ at \ end \ of period \ t}{Sales \ during \ period \ t} \times 365$$
[3]

$$DPO_t = \frac{Accounts Payables at end of period t}{Cost of Goods Sold during period t} \times 365$$
[4]

⁵ *CCC* parts are also called inventory conversion (*DIO*), receivables conversion (*DSO*) and payables deferral period (*DPO*) (Wang 2002). A similar measure to *CCC*, applied by e.g., Soenen (1993) and Shin and Soenen (1998), is the net trade cycle. Contrary to *CCC*, it uses total sales in the denominator of *DIO* and *DPO*.

⁶ Calculation of *CCC* components differs in research: Some researchers (Chang 2018) use average values for the balance sheet items to account for fluctuating values during the year, induced by seasonality and business cycles (e.g., substantial sales changes). Others (Lin and Wang 2021) apply different proxies for the number of days per year (e.g., 360).

A longer positive *CCC* implies conservative WCM (Lin and Wang 2021) and is common for manufacturing firms due to capital intensity (Uyar 2009). A shorter (and/or negative) *CCC* refers to aggressive WCM (Lin and Wang 2021). Related to this, longer *DPO* indirectly serves as cheap financing (Petersen and Rajan 1997). There is rare proof for the WCM policy of the MD industry. Wens, Moldenhauer et al. (2019) showed a relatively long *CCC*, which was also found by Chang (2018) and Wang (2019) for MD firms in their multisector analyses. It indicates conservative WCM, being plausible due to the manufacturing business character.

Besides, MD firms are impacted by country factors (such as investor protection laws, healthcare systems, financial reporting standards, interest levels, tax rates or gross domestic product growth (GDPG)) and by MD market factors (such as market size or MD portfolio). Investor protection law defends the position of owners against that of managers. Based on the agency theory (Jensen and Meckling 1976), the segregation of firm ownership and management lets agents pursue their own targets at costs of owners due to information asymmetry. GER and USA differ in their investor protection level (La Porta, Lopez-de-Silanes, Shleifer, and Vishny 2002). The USA follows common law, while GER adopts civil law (La Porta et al. 1997). Investors in civil law countries have lower protection, which is accompanied with less developed capital markets, due to greater agency problems, and higher capital costs (La Porta et al. 1997, 2002; Hail and Leuz 2006; Almeida, Campello, and Weisbach 2011). Hence, there are less financing and investment options and German firms are less capital market-focused than U.S. ones (La Porta et al. 1997). The relative importance of trade credits might be higher for GER due to its lower investor protection and the resulting limited financing sources (Demirgüç-Kunt and Maksimovic 2001; Marotta 2005; Ferrando and Mulier 2012). Generally, divergent variable levels between GER and the USA may appear due to country and market factors highlighted above. Based on investor protection, German firms may have longer payments periods for receivables and payables due to less established protection laws, extending *DSO* and *DPO*. Diverse MD portfolios result in the purchase of different raw material, divergently held on stock. Thus, *CCC* levels may deviate, probably also visible in *GPM* due to the assumed effect of *CCC* on it. Finally, it is expected: *Hypothesis 1*: *DIO* (*a*), *DSO* (*b*), *DPO* (*c*), *CCC* (*d*) and *GPM* (*e*) statistically significantly⁷ differ between GER and the USA.⁸

4. Hypotheses development based on literature review

Tables A2-A3 (Appx.) depict a literature overview of studies of the effect of *DIO*, *DPO*, *DPO* and *CCC* on profitability. It covers diverse regions, industries, profitability proxies and regression models but shows non-consensual outcomes. Since the MD industry was not analysed yet and *GPM* was only rarely used, research scope is extended to similar sectors and profitability proxies. As the MD industry, the pharmaceutical industry is part of healthcare supply chain and a manufacturing sector. Hence, pharmaceutical and manufacturing industry are covered. Gross operating income (GOI), scaled by assets, has the same numerator as *GPM*, making it a reliable proxy. However, there is no proof comparing the WCM effect in diverse investor protection and healthcare system settings. Also, research often uses periods before 2016. In conclusion, the Work Project adds value with bi- and multivariate analyses.

Bivariate analysis (Appx. Table A2)

<u>*DIO*</u>: Research indicates a significant correlation of *DIO* and profitability, e.g., *GPM* (Yilmaz and Acar 2019). The USA and manufacturing industry (Gill et al. 2010) show more often insignificant results and the pharmaceutical industry proof is inconsistent. Generally, there is a tendency for a significant correlation between *DIO* and *GPM*. It might be positive based on results for *GPM* and GOI, despite mainly negative other findings. A *DIO* increase, induced by inventory growth, leads to lower cost of goods sold and finally, higher *GPM*. Thus, it is set:

⁷ In the context of the Work Project, significance refers to statistical significance.

⁸ The variable medians are used to test differences between the countries. The median is less distracted from outliers in case of non-normally distributed data, which may lead to large deviations between variable median and mean (Wooldridge 2012).

Hypothesis 2: DIO is statistically significantly correlated to GPM in GER and the USA.

<u>DSO</u>: A significant correlation to GOI, ROA (return on assets) or NOI (net operating income) was mostly found in past research, including proof for the USA (Gill et al. 2010) and the manufacturing industry (Kasozi 2017). The rare results for *GPM* are inconsistent, while in the pharmaceutical industry insignificance exceeds. Correlation tends to be negative (also for *GPM*) since shorter *DSO* lowers sales power and thus, *GPM*. Overall, research emphasises a significant (probably negative) correlation between *DSO* and profitability. Hence, it follows:

Hypothesis 3: DSO is statistically significantly correlated to GPM in GER and the USA.

<u>DPO</u>: Outcomes of a significant correlation between *DPO* and profitability (e.g., GOI) are slightly outweighing, supported by manufacturing industry findings (Kasozi 2017). In contrast, results for the USA (Gill et al. 2010) and for *GPM* are insignificant (Nijam 2016). There is enough proof for a significant correlation. Most past results show negative relations, but *GPM* and GOI (partly) have positive ones. Higher *DPO* may imply higher payables and inventory, which will lower cost of goods sold and increase *GPM*. As a result, it is expected:

Hypothesis 4: DPO is statistically significantly correlated to GPM in GER and the USA.

<u>*CCC*</u>: Research indicates a significant correlation to e.g., GOI, ROA or NOI, also for the USA (Jose et al. 1996). Despite contrary results for the rare proof for *GPM* (Yilmaz and Acar 2019) and for the manufacturing (Gill et al. 2010) and pharmaceutical industry (Sharif and Islam 2018), a significant correlation between *CCC* and *GPM* is expected from past results. It is potentially negative based on previous findings (also for *GPM* and GOI). Thus, it is assumed:

Hypothesis 5: CCC is statistically significantly correlated to GPM in GER and the USA.

Multivariate analysis (Appx. Table A3)

<u>*DIO*</u>: A significant impact of *DIO* on profitability, being e.g., *GPM* (Altaf and Shah 2018) or GOI (Abuzayed 2012), clearly exceeds. Proof was added for the USA (Gill et al. 2010), GER (Hoegerle, Charifzadeh, Ferencz, and Kostin 2020) and the manufacturing industry (S. Ng, Ye, Ong, and Teh 2017). The pharmaceutical industry has more insignificant results. Overall,

there is strong evidence for a significant *DIO* effect. Although it is primary negative, it tends to be more positive for *GPM*, GOI and the manufacturing industry due to the above explained lower cost goods sold for *DIO* growth. Generally, **Hypothesis 6** is formulated:

Hypothesis 6: DIO has a statistically significant impact on GPM in GER and the USA.

<u>DSO</u>: Literature often found a significant influence of *DSO* on profitability, including *GPM* (Basyith, Djazuli, and Fauzi 2021) and GOI (Gill et al. 2010). Besides the USA, it was often discovered for the pharmaceutical (Sharif and Islam 2018) and manufacturing industry (S. Ng et al. 2017). For GER inconsistent results were analysed. Overall, a significant *DSO* impact is derived from findings. It might be negative based on most past outcomes and arguments in **Hypothesis 3**, despite a weak positive tendency for *GPM*. Thus, **Hypothesis 7** is outlined:

Hypothesis 7: DSO has a statistically significant impact on GPM in GER and the USA.

<u>*DPO*</u>: The impact on profitability, being e.g., GOI (Lazaridis and Tryfonidis 2006), is primary significant and negative. The pharmaceutical industry (Sharif and Islam 2018) also indicates this, but results for *GPM* show no clear tendency (Altaf and Shah 2018) and those for GER (Hoegerle et al. 2020), the USA (Gill et al. 2010) and the manufacturing industry (S. Ng et al. 2017) are insignificant. Generally, findings for a significant *DPO* effect still outweigh. Despite mainly negative results (for e.g., GOI or manufacturing industry), outcomes for *GPM* are positive (like in **Hypothesis 4**). Hence, *DPO* effect might be positive⁹ and it follows:

Hypothesis 8: DPO has a statistically significant impact on GPM in GER and the USA.

<u>CCC</u>: Findings in *Table A4 in Appx.* show a prevailing significant *CCC* impact on profitability, being e.g., *GPM* (Yilmaz and Acar 2019) or GOI (Deloof 2003). Proof for GER (Hoegerle et al. 2020), the USA (Ebben and Johnson 2011) and the pharmaceutical (Sharif and Islam 2018) and manufacturing industry (Gill et al. 2010) primary support this. As a result, a significant *CCC* impact on *GPM* is expected. It might be negative based on most

⁹ Also, the assumed positive effect of *DPO* on *GPM* is equivalent to the expected negative impact of *DSO* on *GPM*, since the opposite *CCC* components assume similar measures (aggressive WCM) to increase profitability.

results for many profitability ratios, GER, the USA or pharmaceutical industry, despite inconsistency for GOI and only a very weak positive tendency for *GPM*. Thus, **Hypothesis 9** is set: *Hypothesis 9*: *CCC has a statistically significant impact on GPM in GER and the USA*.

5. Research methodology

This Work Project analyses the effect of *CCC* and *CCC* components on *GPM* for mostly large MD firms in GER and the USA in the years 2016 to 2020. The period comprises the most recent available data and captures the MD market growth between 2016 and 2019 as well as the COVID-19 pandemic effect (EY 2020; SPECTARIS 2021). To be comparable, the period length was derived from past research, which often evaluates shorter periods to account for changing economic conditions (*Appx. Table A3*). Sample firms were selected from major MD company overviews of industry associations, exchange traded funds, industry research and a social network.¹⁰ This procedure together with financial statement data creates a more representable sample than the usage of databases as Orbis, despite the hand collection effort and inconsistent financial data calculation.¹¹ Data was retrieved from financial statements¹², which were downloaded from firm websites and the Federal Gazette (*Bundesanzeiger*)¹³. For comparability, financial data was partly adjusted and aggregated due to different financial statement structures resulting from divergent financial reporting standards (*Appx. Table B1*).¹⁴

Variables¹⁵

<u>Dependent variable</u>: Past research mostly used ROA (Singh et al. 2017). However, this Work Project contributes novelty by supporting the rare evidence for *GPM* as proxy, which in contrast to ratios as ROA shows not only the operating performance but also isolates the

¹³ Federal Gazette is a website for obtaining the financial statements of German firms.

¹⁰ Industry associations are BVMed (2020, 2021) and SPECTARIS (n.d.). Exchange traded funds are from BlackRock (2021) and S&P Dow Jones Indices (2021). Industry research is from EY (2020), Freiland, Golenko, Philippi, Yzer, Beeres, Carius, Steckeler, Kressner, Leonhardt, Pott, and Koziol (2020) and Statista (2021). The social network is Xing (n.d.).

¹¹ Filtering by industry codes in Orbis excludes firms with code adjustments and wrongly assigned codes (Kalemli-Ozcan, Sorenson, Villegas-Sanchez, Volosovych and Yesiltas 2015). Also, Orbis often lacks consolidated accounts or financial data.
¹² For firms lacking consolidated financial statements, individual ones were used (only for BIOTRONIK SE & Co. KG).

¹⁴ For c. 90% of the firm observations (obs.), specific variables were changed for better comparability.

¹⁵ *Table B2 (Appx.)* includes the dataset variables. The dataset is an Excel file with 151 firm obs. (rows) for 62 variables (columns), hence 9,362 total obs. (cells). It is a contribution to this Work Project and a starting point for future research.

effectiveness of sales power and inventory as well as purchasing management. *GPM* is calculated with the frequently used formula of Damodaran (2021): Gross profit (difference of total sales and cost of goods sold) divided by total sales.

<u>Independent variables:</u> Like *GPM*, *CCC* reflects the operating activity (Lazaridis and Tryfonidis 2006). Formulas of *CCC* components and *CCC* were explained in Section 3. For the balance sheet items, values at the period end were used since MD industry exhibits low seasonality in activity and low changes in the business cycle.

<u>Control variables (Table 2)</u>: They were selected based on the industry overview (Section 2) and their effect on profitability in past research (Section 4). The variables cover general firm characteristics, financing and liquidity ratios, and fixed assets and R&D activity investment.

Variable	Measurement	Application as control variable in research (incl. impact)	Impact
General firm	characteristics		
Firm size	Natural logarithm of total	Positive: Hoegerle et al. (2020)*; negative: Lin and Wang (2021);	+
SIZE	salest	insignificant: Gill et al. (2010)*	
Firm age	Natural logarithm of age_t	Positive: Afrifa and Padachi (2016); negative: Yazdanfar and	+
AGE	(# years until t since	Öhman (2014)	
	formation)		
Sales	$Sales_t - Sales_{t-1}$	Positive: Deloof (2003); insignificant: Hoegerle et al. (2020)*	+
growth	$Sales_{t-1}$		
GROW			
Financing		r	r
Debt ratio	Total Liabilities _t	Negative: Sensini (2020); insignificant: Padachi (2006)	-
DEBT	Total Assets _t	Past research used financial debt for debt ratio. Due to the different	
		liability structure of MD firms, financial debt is not consistently	
		disclosed and total liabilities were taken instead to show leverage.	
Investments i	n fixed assets and R&D acti	vity	
Asset	Fixed Assets _t	Positive: Chang (2018); negative: Afrifa and Padachi (2016)	-
tangibility	Total Assets _t		
TANG			
Goodwill &	Goodwill & Intangibles _t	To the best of our knowledge, GWIA has not yet been used as	+
intangible	Total Assets _t	control variable in this context. It is relevant for MD firms since it	
assets ratio		includes i.a., goodwill, patents, and trademarks necessary for the	
GWIA		R&D activity. Despite differences in accounting of R&D expendi-	
		ture, a positive impact of GWIA on GPM can be expected because	
		higher R&D activity may be related to higher growth opportunities	
		and competitive advantage. Thus, there is a benefit for profitability	
		(Tudor, Dima, Dima, and Rațiu 2014; Gamayuni 2015).	
Liquidity			
Current	Current Assets _t	Positive: Enqvist, Graham and Nikkinen (2014); negative: Afrifa	-
ratio CR	Current Liabilities _t	and Padachi (2016); <u>insignificant:</u> Sharma and Kumar (2011)	

Table 2: Measurement, past application and expected impact of control variables

Note: "*" indicates research for GER and the USA. Impact is the primary effect in past research regressions. It is significant for all control variables. However, past research used other profitability proxies and partly also control variable formulas.

Dummy variables: Reasoning for inclusion of dummy variables COUNTRY, LIST, IFRS,

YEAR2017, YEAR2018, YEAR2019 and YEAR2020 is outlined in Table B3 in Appx.

The statistical analysis tool is Stata. Despite winsorization, variables are mainly non-normally distributed. Based on the country sample sizes, they are approximately normally distributed.¹⁶

To be robust, parametric and non-parametric methods are used for uni- and bivariate analysis.

Sample

Sorted by revenue in the latest annual report (minimum EUR/USD 200 million), the initial sample had 20 firms for GER and 28 for the USA (*Appx. Tables B5-6*). The inclusion criteria refer to requirements for e.g., business model, fiscal year end, equity as well as profitability (*Appx. Tables B7-B8*). After application, the final sample includes 19 firms for GER and 18 for the USA (*Appx. Tables B9-B10*). From 172 total obs., 21 were excluded due to negative profitability. Finally, there are 151 obs. with 75 for GER and 76 for the USA (*Table 3*).

Table 3: Sample size per country and year

Country	2016	2017	2018	2019	2020	Total firms
GER	17	16	17	17	8	75
USA	16	14	15	18	13	76
Total firms	33	30	32	35	21	151

Six listed final sample firms (28 obs.) have been collected for GER and 18 listed ones (76 obs.) for the USA (*Appx. Table B11*). Industry diversity is already visible since larger MD firms in GER tend to be more non-listed, while their U.S. competitors are more publicly listed. Hence, major German MD firms may have more limited financing options. All 18 U.S. firms use national accounting standards (US GAAP), whereas in GER 10 firms (45 obs.) apply *IFRS* and the remaining national standards (HGB) (*Appx. Table B12*).¹⁷ Financial reporting standards influence accounting of relevant variables (e.g., inventory) in GER but also between GER and the USA. To reflect a diverse MD portfolio, the sample covers several subsectors (*Appx. Tables B13-B14*). GER shows higher MD diversity (for e.g., optical and electromedical products) and its MD portfolio differs from that of the USA.

¹⁶ Variables were winsorized at the 5th and 95th percentile (*Appx. Table B4*) to reduce outliers (Afrifa and Padachi 2006). Since the sample size per country exceeds 30 obs., variables are assumed to be approximately normally distributed (Wooldridge 2012).

¹⁷ *IFRS* are the International Financial Reporting Standards, US GAAP the national U.S. Generally Accepted Accounting Principles and HGB the national German accounting standards of the Commercial Code (*Handelsgesetzbuch*).

Research models for multivariate analysis

This Work Project uses pooled ordinary least squares (OLS) and fixed effects (FE) regressions for higher robustness since both were frequently used in past research (*Appx. Table A3*). As in Deloof (2003), the FE model is assumed to be an appropriate model next to pooled OLS. The year and company effects are fixed in the FE model. Besides the general error term and a time dummy, the FE model captures individual firm effects, accounting for unobservable firm specific characteristics that are "constant over time" (Deloof 2003, 580) but impact independent variables (García-Teruel and Martínez-Solano 2007). Pooled OLS and FE models are run with normal and clustered standard errors (SDE) to be robust for heteroskedasticity and autocorrelation (Rogers 1993; Stata n.d.-a).¹⁸ Clustered SDE are created via clustering by firms. Models 5.A and 6.A refer to the pooled OLS models and models 5.B and 6.B to the FE models.¹⁹ The models are firstly estimated for the total sample by including *COUNTRY* to analyse if its effect is significant. It would indicate a variation in the effect of *DIO*, *DSO*, *DPO* and *CCC* on *GPM* between GER and the USA. Then, the models are applied to the sample of each country by conditioning via *COUNTRY*. The general methodology for the multivariate analysis is presented in *Figure B1* (*Appx.*).

- $GPM_{it} = \beta_{0} + \alpha_{1}DIO_{it} + \alpha_{2}DSO_{it} + \alpha_{3}DPO_{it} + \beta_{1}SIZE_{it} + \beta_{2}AGE_{it} + \beta_{3}GROW_{it} + \beta_{4}DEBT_{it} + \beta_{5}TANG_{it} + \beta_{6}GWIA_{it} + \beta_{7}CR_{it} + \beta_{8}LIST_{it} + \beta_{9}IFRS_{it} + \beta_{10}YEAR2017_{t} + \beta_{11}YEAR2018_{t} + \beta_{12}YEAR2019_{t} + \beta_{13}YEAR2020_{t} + \varepsilon_{it}$ (5.A)
- $GPM_{it} = \beta_0 + \alpha_1 DIO_{it} + \alpha_2 DSO_{it} + \alpha_3 DPO_{it} + \beta_1 SIZE_{it} + \beta_2 AGE_{it} + \beta_3 GROW_{it} + \beta_4 DEBT_{it}$ $+ \beta_5 TANG_{it} + \beta_6 GWIA_{it} + \beta_7 CR_{it} + \nu_i + \lambda_t + \varepsilon_{it}$ (5.B)
- $\begin{array}{l} GPM_{it} = \ \beta_0 + \ \alpha_4 CCC_{it} \ + \ \beta_1 \ SIZE_{it} \ + \ \beta_2 \ AGE_{it} \ + \ \beta_3 \ GROW_{it} \ + \ \beta_4 \ DEBT_{it} \ + \ \beta_5 TANG_{it} \ + \ \beta_6 \ GWIA_{it} \\ + \ \beta_7 \ CR_{it} \ + \ \beta_8 \ LIST_{it} \ + \ \beta_9 \ IFRS_{it} \ + \ \beta_{10} \ YEAR2017_t \ + \ \beta_{11} \ YEAR2018_t \\ + \ \beta_{12} \ YEAR2019_t \ + \ \beta_{13} \ YEAR2020_t \ + \ \varepsilon_{it} \end{array}$ $\begin{array}{l} \ \left[6.A \right] \\ \end{array}$
- $GPM_{it} = \beta_0 + \alpha_4 CCC_{it} + \beta_1 SIZE_{it} + \beta_2 AGE_{it} + \beta_3 GROW_{it} + \beta_4 DEBT_{it} + \beta_5 TANG_{it} + \beta_6 GWIA_{it}$ $+ \beta_7 CR_{it} + \nu_i + \lambda_t + \varepsilon_{it}$ (6.B)

¹⁸ Model assumptions are linearity, normality of errors, homoskedasticity, and neither autocorrelation nor multicollinearity (Wooldridge 2012).

¹⁹ Models 5.A and 6.A do not include *LIST* and *IFRS* for the U.S. sample since all firms are listed and do not apply *IFRS*. The subscript *i* measures the firm obs. (*i*=1 to 75 for GER; *i*=76 to 151 for USA) and the subscript *t* the year (t=2016 to 2020) (Padachi 2006). To account for different yearly sensitivities, year dummies are included in models 5.A and 6.A (Chang 2018). Year effects are automatically fixed in models 5.B and 6.B via the time dummy λ_t (García-Teruel and Martínez-Solano 2007). ε_{it} represents the idiosyncratic error term (Pais and Gama 2015) and v_i the "unobservable heterogeneity" (García-Teruel and Martínez-Solano 2007, 171; Pais and Gama 2015) of each firm in models 5.B and 6.B.

6. Data analysis and results discussion

Univariate analysis – Descriptive statistics

Analysing means and medians per country in the descriptive statistics (2016-2020) in *Table 4* shows that *GPM* is generally high in the MD industry and exhibits higher levels for the USA. In contrast, the German *GPM* slightly fluctuates more. The MD industry has an overall long *CCC*, implying a more conservative WCM. The German *CCC* is weakly longer, but the U.S. *CCC* visibly shows more variation. For *DIO*, which mainly leads to the long *CCC*, the mean lies in GER slightly below that of the USA, but the median is higher in GER. *DSO* is shorter than half of *DIO* in both countries and contributes less to the long industry *CCC*. It is as the median *DIO* and the *CCC* slightly longer in the German MD industry. However, German *DPO* lies marginally below the U.S. one, supporting the longer *CCC* in GER. Generally, standard deviation (SD) for *DIO* is substantially higher in the USA, whereas for *DSO* and *DPO* it exceeds in GER. Since in both countries are paid for it. In contrast, *DSO* is outweighing *DPO* for both countries. Thus, firms fulfil supplier payment earlier than customer settle bills. Overall, there are slight WCM and *GPM* differences between German and U.S. firms.

•	~	J 1 / 1				J			
Statistics	Ν	Mean	Median	SD	Ν	Mean	Median	SD	
Variables									
			GER		USA				
Dependent									
GPM	75	0.5613	0.5687	0.1448	76	0.5954	0.6295	0.1177	
Independent									
CCC (days)	75	171.8511	167.0122	55.7363	76	167.1295	145.4711	80.4014	
DIO (days)	75	152.2073	145.7881	58.4093	76	155.3522	138.9854	74.1783	
DSO (days)	75	65.2820	61.5914	20.4157	76	60.6048	61.3709	10.4689	
DPO (days)	75	46.5277	43.2401	21.0197	76	48.1790	47.4804	17.3704	
Control									
SIZE (in ln)	75	13.8146	13.4997	1.4096	76	15.2672	15.1332	1.1841	
AGE (in ln)	75	4.1296	4.2905	0.8388	76	3.6178	3.3673	0.7645	
AGE (years)	75	83.8400	73.0000	58.7096	76	49.6579	29.0000	37.7714	
GROW	75	0.0641	0.0557	0.0672	76	0.1239	0.1046	0.1051	
DEBT	75	0.4683	0.4471	0.1711	76	0.4829	0.5293	0.1500	
TANG	75	0.2053	0.1780	0.1166	76	0.1378	0.1111	0.0719	
GWIA	75	0.1702	0.1343	0.1470	76	0.4211	0.4779	0.2533	
CR	75	2.8886	2.4109	1.4088	76	2.7559	2.4236	1.3026	

Table 4: Summary statistics of independent, dependent and control variables for 2016-2020

Note: SIZE (in ln) is size as natural logarithm of total sales. AGE (in ln) is age as natural logarithm of years since formation.

According to control variables (Table 4; Appx. Tables C1, C5), U.S. MD firms are significantly larger than German ones (SIZE), probably due to country (e.g., larger GDP and population size) and market factors (e.g., MD portfolio). The larger SIZE might influence e.g., supplier relations. However, German MD firms are significantly older (AGE). In contrast to SIZE, German firms might have more established relationships due to their longer market experience. Besides the appropriate GROW in both countries, U.S. MD firms have significantly higher GROW.²⁰ They may exceed in customer acquisition and R&D activity. Despite the higher investor protection in the USA, *DEBT* is only insignificantly higher in MD firms there. The reason could be that U.S. firms have more growth opportunities, increasing need for cheaper financing than equity. Nearly half of the capital in the MD industry is financed by DEBT. U.S. GWIA is significantly higher than the German one, contrary to the expected lower level since under IFRS and HGB development expenses can be capitalized, which is not permitted under US GAAP (FASB n.d.). Hence, U.S. firms show stronger innovation activity, driving GROW. But they have significantly lower TANG, maybe caused by a MD production that requires less capital or a higher knowledge level (thus higher GWIA) relative to German firms. As a result, MD portfolio diversity between firms in both countries may be visible. The IFRS fair value option might also contribute to the higher TANG for German firms. CR only insignificantly diverges and exhibits high liquidity for both countries. Further differences are detected for WCM items in the common-sized balance sheet and income statements. However, the other common-sized items are mainly similar. It probably results from an exceeding MD industry effect over country and market factors (Appx. Tables C2-C5).²¹

 $^{^{20}}$ *GROW* differences may not result from *GDPG* because it is only insignificantly higher in the USA (*Appx. Tables C4-C5*). 21 The median common-sized balance sheet items (scaled by total assets except for *CASHR* and *QR*) show similarities for liquidity (*CASH*, *CASHR*, *QR*) and equity. However, significantly higher current assets *CARAT* and current liabilities ratios *CLRAT* for German firms are indicated, resulting in a significantly exceeding net working capital *NWC*. It suggests more conservative WCM. It is also visible in the significantly higher inventory *INV* and accounts receivable *RECEIV* levels and the significantly lower accounts payable *PAY* for German companies. In contrast, the median common-sized income statement items (scaled by total sales) highlight industry similarities for cost of goods sold *COGS*, operating expenses *OPEX*, operating profit *OPM*, earnings before interest and taxes *EBIT* and net income *NI*. Contrary, depreciation & amortization *DA* and net interest *INTEREST* were significantly higher in the USA.

Generally, the MD industry is a highly profitable industry in both countries, which is visible from *GPM* and the profitability ratios in the common-sized income statements.

Univariate analysis – Evolution of median dependent and independent variables

From 2016 to 2020 (*Appx. Tables C6-C10; Figures C1-C3*), German *DIO* fell with variation, while U.S. *DIO* grew with fluctuations. There were divergent changes for *DIO* in both countries. First, *DIO* was primary longer in GER, this switched towards the period end. U.S. *DSO* weakly varied but stayed stable, whereas German *DSO* slightly rose. *DSO* levels of both countries were close, weakly exceeded in alternation and only began to diverge in 2020. U.S *DPO* gradually grew but slightly dropped in 2020, while German *DPO* initially remained stable and then weakly increased before falling. Generally, U.S. and German *DPO* diverged with generally longer U.S. *DPO*. U.S. *CCC* (*Figure 1*) steadily grew but decreased in 2020, whereas German *GPM* (*Figure 2*) started close together. Then, U.S. *GPM* weakly varied, being higher than German *GPM*, which slightly fell and remained stable. In 2020, German *GPM* crashed, diverging from the U.S. one. Evolutions for *DSO*, *CCC* and *GPM* indicate MD industry similarities, while those for *DIO* (main *CCC* contributor) and *DPO* imply diversity.

Figures 1 and 2: Median CCC and GPM for GER and USA from 2016-2020

Univariate analysis – Test of significant differences in variables (Hypotheses 1a to 1e)

Median equality is tested with the non-parametric median test (*Table 5; Appx. Table C11*). Also, the equality of population distributions (Wilcoxon rank-sum test) is checked. Based on the p-values, differences in *DIO*, *DSO*, *DPO*, *CCC* and *GPM* between GER and the USA are insignificant at all conventional significance levels. To be robust, two-sample t-tests for equality of means were executed. They yielded similar results, except for *DSO*. At a level of 10%, mean of *DSO* is statistically different. However, due to non-normality of *DSO* in GER (*Appx. Table B4*), it is reasonable to rely on the non-parametric test, also considering the low significance (10%). As a result, **Hypotheses 1a-e** are rejected. Contrary to expectation, MD firms in GER and USA do not significantly differ in the length of *DIO*, *DSO* and *DPO* and the size of *GPM*. It reveals a higher industry effect on WCM relative to the impact of country (as investor protection law or healthcare system) and market factors (as product diversity).

Table 5: P-values of population distribution, median and mean tests for 2016-2020

Variable	Wilcoxon test – p-value	Median test – p-value	Mean test – p-value
DIO	0.5557	0.3270	0.7728
DSO	0.1739	1.0000	0.0780*
DPO	0.3110	0.2530	0.5993
CCC	0.1141	0.4140	0.6759
GPM	0.2902	0.1410	0.1141

Note: ***: p-value <0.01; **: p-value <0.05; *: p-value <0.1

Bivariate analysis (Hypotheses 2 to 5)

The bivariate analysis was done with the Spearman's rank correlation matrix as nonparametric method and the Pearson matrix as parametric alternative. For GER (*Table 6; Appx. Table C12*), both correlation matrices yielded consistent results, except for a slight significance change for *DPO*. As expected, *DIO* exhibits a significant correlation to *GPM*, which is positive and supported by Yilmaz and Acar (2019). Thus, **Hypothesis 2** cannot be rejected, implying longer *DIO* is correlated to higher *GPM* for German MD firms. Also, as assumed and in line with Yilmaz and Acar (2019), *DSO* is significantly correlated to *GPM*. Hence, **Hypothesis 3** cannot be rejected and outcomes suggest that when *DSO* decreases a higher *GPM* is expected. Consistent with expectations and Lazaridis and Tryfonidis (2006), *DPO* is significantly related to *GPM* (at 10% significance level for Spearman and at 5% for Pearson). In conclusion, **Hypothesis 4** cannot be rejected, suggesting that longer *DPO* is associated with higher *GPM* for GER. Finally, *CCC* is, as expected, significantly related to *GPM* as discovered by Enqvist et al. (2014). Thus, **Hypothesis 5** cannot be rejected because German MD firms with longer *CCC* tend to have higher *GPM*. Generally, *CCC* has positive correlation coefficients, which is contrary to initial expectation of a negative relation.

Tuble 6. Correlation coefficients with G1 M in Spearman's rank and 1 earson matrix									
Variable	GPM – GER Spearman	GPM – USA Spearman	GPM – GER Pearson	GPM – USA Pearson					
DIO	0.7687***	0.4063***	0.7669***	0.4896***					
DSO	-0.4354***	0.2883**	-0.3025***	0.2646**					
DPO	0.1964*	0.0089	0.2503**	0.0261					
CCC	0.5768***	0.3768***	0.6069***	0.4763***					

Table 6: Correlation coefficients with GPM in Spearman's rank and Pearson matrix

Note: ***: p-value <0.01; **: p-value <0.05; *: p-value <0.1

For the USA (*Table 6; Appx. Table C13*), correlation matrices have consistent outcomes. As for GER, *DIO* is statistically positively related to *GPM*. Hence, **Hypothesis 2** cannot be rejected. Contrary to GER, *DSO* of U.S. firms is significantly but positively correlated to *GPM*, being consistent with Abuzayed (2012). As a result, **Hypothesis 3** cannot be rejected, implying that longer *DSO* is related to higher *GPM*. Like in GER, *DPO* is positively correlated to *GPM*, but the coefficient is not significant. It was also found by Yilmaz and Acar (2019). Thus, **Hypothesis 4** is rejected. Lastly, *CCC* behaves as assumed and has a statistically significant correlation to *GPM*, which is positive like in GER and in Enqvist et al. (2014). **Hypothesis 5** cannot be rejected, indicating that a longer *CCC* relates to a higher *GPM*. *DSO* and *CCC* have positive coefficients, contrary to initial assumption. Similarity in signs and significances for GER and the USA are only existent for *DIO* and *CCC*. Hence, **Hypotheses 3 and 4** show industry diversity, while **Hypotheses 1, 2 and 5** suggest similarity.

Multivariate analysis (Hypotheses 6 to 9)²²

For all models (*Table 7*), explanatory, control, and dummy variables are jointly significant (except for model 6.B with clustered SDE for total sample). Adjusted R^2 is higher in the FE models, showing higher explanation power for *GPM* relative to OLS models (Deloof 2003).

²² Pooled OLS and FE models mainly differ in the significance of the coefficients of the independent variables but not in their signs. Recommendations for managers are primary derived from the significant outcomes, which imply that there may be a significant effect. Coefficient interpretation considers the ceteris paribus effect of a particular variable. Significance levels are indicated inside brackets. Only major differences in significance of coefficients of the independent variables between normal and clustered SDE regressions are highlighted. Otherwise, discussion of results for a model applies for the regression with normal and with clustered SDE. Past research examples partially used different profitability proxies and regression methods.

For the total sample (*Table 7; Appx. Tables D1-D2*), Model 5.A shows that *COUNTRY* is statistically significant (*at least 5%*) and thus, the impact of *CCC* components on *GPM* tends to be different between the USA and GER. The *COUNTRY* effect is positive and implies that being from the USA has a positive impact on *GPM* of a MD firm. As expected, models 5.A and 5.B indicate a significant (*at least 5%*) *DIO* effect, which is positive. The significantly (*at least 10%*) negative impact of *DSO* was confirmed in model 5.B together with insignificant outcomes in model 5.A. Aligned with the initial hypothesis, *DPO* significantly (*1%*) positively influences *GPM* in model 5.A, but only insignificantly in model 5.B. Analysing model 6.A, *COUNTRY* is also significantly (*1%*) positively associated with *GPM* but only for normal SDE. Moreover, higher *CCC* leads to significantly (*1%*) incremented *GPM* in model 6.B. In conclusion, results show the WCM relevance to improve *GPM*, but they suggest splitting the sample per country.

		Pooled OLS model				FE model			
Sample	Varia- ble	Normal SDE	Adjusted R ²	Deviation clustered	Adjusted R ²	Normal SDE	Adjusted R ²	Deviation clustered	Adjusted R ²
			(F-test	SDE	(F-test		(F-test	SDE	(F-test
			p-value)		p-value)		p-value)		p-value)
	DIO	0.00090***	0 7262	-	0 7262	0.00025**	0.0854	-	0.0852
	DSO	-0.00062	(0.0000)	-	(0.7203)	-0.00061**	(0.9834	*	(0.9852)
Total	DPO	0.00169***	(0.0000)	-	(0.0000)	0.00028	(0.0000)	-	(0.0220)
	CCC	0.00074***	0.6081	-	0.6081	0.00010	0.9836	-	0.9835
			(0.0000)		(0.0000)		(0.0005)		(0.2602)
	DIO	0.00013	0.0006	-	0.0006	0.00043***	0.0040	**	0.0047
	DSO	-0.00089**	(0.0000)	***	(0.0000)	-0.00023	(0.0000)	-	(0.0000)
GER	DPO	0.00304***		-		0.00031		-	
	CCC	0.00025	0.7180	-	0.7180	0.00027*	0.9931	**	0.9929
			(0.0000)		(0.0000)		(0.0000)		(0.0008)
	DIO	0.00091***	0 6079	-	0 6079	0.00020	0.0760	-	0.0764
USA	DSO	0.00028	0.0978	-	0.6978	0.00028	0.9769	-	(0.0270)
	DPO	0.00051	(0.0000)	-	(0.0000)	0.00013	(0.0477)	-	(0.0279)
	CCC	0.00080***	0.6708	-	0.6708	0.00014	0.9772	-	0.9766
			(0.0000)		(0.0000)		(0.0283)		(0.0152)

 Table 7: Regression coefficients of independent variables for 2016-2020

Note: Deviation clustered SDE only refers to significance changes; ***: p-value <0.01; **: p-value <0.05; *: p-value <0.1

<u>Starting with GER</u> (*Table 7; Appx. Tables D3-D5*), model 5.A exhibits that *DIO* is positively but insignificantly associated with *GPM*. However, the effect is significant (*at least 5%*) in model 5.B (in line with Altaf and Shah 2018). It indicates that an extension of *DIO* by one day may result on average in an increase of *GPM* by 0.04 percentage points (pp.) for German MD firms. Hence, **Hypothesis 6** cannot be rejected for model 5.B but for model 5.A.

There is indication that German MD firm managers may lever GPM by lengthening DIO via higher inventory or lower cost of goods sold (conservative WCM measure). Thus, benefits of avoiding supply chain interruptions by holding more inventories may outweigh increased costs of inventory handling (Kim and Chung 1990). This is reasonable because MD firms in GER and the USA faced supply chain disruptions during the pandemic due to international raw material sourcing (EY 2020). As expected, and in line with Basyith et al. (2021), DSO has a negative effect on GPM, however it is only significant in model 5.A (at least 5%). In detail, a reduction of DSO by one day may rise GPM on average by 0.09 pp for German MD firms. As a result, Hypothesis 7 cannot be rejected for model 5.A but for model 5.B (the latter in line with Enqvist et al. 2014). Managers may lower receivables or increase sales to favour GPM (aggressive WCM measure). Shorter DSO may crowd out customers with less liquidity, increase revenue collection and reduce financing cost, but it lowers GROW due to shorter customer payment periods (Deloof 2003). DPO significantly (1%) positively affects GPM in model 5.A (consistent with Altaf and Shah 2018) but only insignificantly in model 5.B (in line with Nijam 2016). An DPO expansion by one day may lead on average to growth in GPM by 0.3 pp. Hence, **Hypothesis 8** cannot be rejected for model 5.A but for model 5.B. There may be an outweighing benefit of cheap supplier financing relative to savings from discounts for earlier payments to suppliers (C. Ng et al. 1999). Managers may favour GPM by increasing payables or lowering cost of goods sold (aggressive WCM measure).

CCC weakly significantly positively affects *GPM* (*at least 10%*) in model 6.B (in line with Altaf and Shah 2018), but this effect is insignificant in model 6.A. It indicates that managers may slightly uplift *GPM* by 0.03pp for each day of prolonging *CCC* (conservative WCM measure). It may be induced by e.g., extending *DIO* based on results above. Thus, **Hypothesis 9** cannot be rejected for model 6.B but for model 6.A. The positive impact of *CCC* is contrary to the negative effect initially expected. Besides, models 5.A to 6.B indicate that *SIZE*, *AGE*,

GROW and *GWIA* (as expected) may have a positive impact on *GPM*, while *DEBT* and *TANG* (as expected) as well as *LIST* and *IFRS* (contrary to assumption) may have a negative one. Also, *CR* (contrary to assumption) has an insignificant influence on *GPM*.²³

For the USA (Table 7; Appx. Tables D6-D8), the assumption of a significant GPM change for a higher *DIO* was found to be significant (1%) and positive in model 5.A, which is in line with Altaf and Shah (2018). However, the positive effect was insignificant for model 5.B. Findings are like those for GER, but the other way around in terms of models. The significant effect is slightly larger for the USA. MD firm managers may raise GPM on average by 0.09 pp. for each day of DIO expansion (conservative WCM measure). The effect may be triggered by the same reason as for GER. Hence, the influence of being from the same industry on the impact of DIO on GPM is superordinated relative to impact differences induced by country and market factors. Thus, Hypothesis 6 cannot be rejected for model 5.A but for model 5.B. DSO is, contrary to expectations, in both models insignificantly related to GPM. These results are consistent with Nijam (2016). That is why Hypothesis 7 is rejected. Findings are partially deviating from those in GER and coefficients are overall slightly lower. There appears to be diversity since managers in U.S. MD firms may put their effort on other CCC parts and CCC itself, whereas their colleagues in GER may implement DSO measures based on model 5.A outcomes. DSO may not be an effective measure for the USA as it is in GER, where reimbursement regulation for MD customers, investor protection law and product portfolio may push earlier payment of receivables for higher GPM, supporting the negative DSO effect. Since investor protection mechanism is higher in the USA, the trade credit is probably less relevant for financing relative to other sources (Demirgüç-Kunt and Maksimovic 2001; Marotta 2005; Ferrando and Mulier 2012). Hence, DSO has lower relevance, favouring the insignificant DSO effect on GPM. Contrary to initial assumption, DPO has an insignificant

²³ Results for control and dummy variables mainly differ between pooled OLS and FE models for coefficient significances and signs, implying that further robustness tests are needed. A detailed analysis was done in *Table D5 (Appx.)*.

influence on *GPM* in both models, which is consistent with Nijam (2016). Thus, **Hypothesis 8** is rejected. Findings match with those of GER for signs and partially for significance. Coefficients are slightly lower than those for GER. In contrast to GER, leveraging *DPO* may not be efficient for managers. Besides divergent financial reporting standards (influencing e.g., cost of goods sold) and a less diverse U.S. MD portfolio (impacting e.g., raw material sourcing), higher investor protection in the USA may lower the *DPO* relevance and its impact on *GPM*. Other country and market factors, outlined before, may also affect the *DPO* impact.

CCC shows the expected significant (1%) effect only in model 6.A, where it is positive and in line with Altaf and Shah (2018). In model 6.B, the positive impact is insignificant. Model 6.A suggests that an extension of *CCC* by one day may be on average associated with a *GPM* growth by 0.08 pp. (conservative WCM measure). Concluding, **Hypothesis 9** cannot be rejected for model 6.A but for model 6.B. Like in GER, there seems to be a positive effect of *CCC* on *GPM*, but the coefficient significance and size (the effect) is higher in the USA and differs between the models for the countries. Contrary to initial expectation, *DSO* and *CCC* have a positive impact on *GPM*. Besides, models 5.A to 6.B imply that *TANG* and *CR* (as expected) as well as *GWIA* (contrary to assumption) may negatively affect *GPM*, while the effect of *SIZE*, *AGE*, *GROW* and *DEBT* (contrary to assumption) may be insignificant.²⁴ Compared to GER, only the impact of *TANG* may be similar across the MD industry. The different effects of the control variables between GER and the USA may result from divergent control variable levels, caused by the influence of country (e.g., financial reporting standards, investor protection or healthcare systems) and market factors (e.g., size or MD portfolio).

Overall, for each independent variable for GER and the USA, the significant coefficients are larger than the insignificant ones, showing a larger impact on *GPM*. Despite the small size of the effects of *CCC* and its components, their economic significance for profitability,

²⁴ Results for control and dummy variables partly differ between pooled OLS and FE models for coefficient significances and signs, implying that further robustness tests are needed. A detailed analysis was done in *Table D8 (Appx.)*.

liquidity and risk is high (K. Smith 1980; Chang 2018). Due to an already high profitability in the MD industry, further *GPM* growth might be more difficult to achieve. Also, the industry effect partially outweighs country and market differences. Managers in both countries may apply longer *CCC* and *DIO* (conservative WCM) as lever for higher *GPM*, but diversity for *DSO* and *DPO* is visible between GER and USA, requiring different WCM measures.

Robustness check and limitations

The robustness check analyses changes in the results for the hypotheses when data of the year 2020 is deleted from the sample. Hence, the effect of the COVID-19 pandemic is excluded. Median and mean testing (*Appx. Table E1*) came to similar results. This applies also for correlation coefficients (*Appx. Table E2*) except for *DPO* in GER. In this case, the coefficient is insignificant in the Spearman matrix, leading to the rejection of **Hypothesis 4** when relying on Spearman due to non-normality of *DPO*. For the multivariate analysis (*Appx. Tables E3-E6*), findings for GER and the USA are equivalent to those in Section 6. Hence, outcomes are mainly robust to the pandemic impact, except for *DPO* in **Hypothesis 4** in GER.

This Work Project has some limitations, which may affect findings. First, only major firms of two countries and one profitability proxy were analysed, potentially stressing the result robustness for small and medium enterprises (SME), other countries and different profitability ratios. Second, *CCC* component formulas can be altered: Purchases can be used for cost of goods sold (García-Teruel and Martínez-Solano 2007) to better reflect the purchasing process. Average values for numerators (Chang 2018) can be applied in case of potential business activity changes. Also, *DSO* and *DPO* can be adjusted for the VAT rate in GER and the sales tax in the USA to avoid overweighting (Lyngstadaas and Berg 2016). Third, different financial reporting standards require assumptions for data adjustments and aggregations due to divergent financial data measurement and recognition. It results in deviations in dependent, independent or control variables between German and U.S. firms but also between German

firms. Moreover, different exercise of accounting options by managers lead to divergences in measurement and recognition of financial statement items, which cannot be captured.

7. Conclusion

This Work Project analysed the WCM impact on GPM for 37 major MD firms in GER and the USA in the years 2016 to 2020. Median values of CCC and CCC components were insignificantly different between GER and the USA. The MD industry has a long CCC in both countries, implying conservative WCM. Bivariate analysis suggests that higher DIO and CCC are significantly related to higher GPM in both countries, but lower DSO significantly correlates to higher GPM in GER and to lower GPM in the USA. DPO has a positive relation to GPM in GER, but it is insignificant in the USA. Multivariate analysis shows that in both countries MD firm managers may significantly favour the already high GPM level by extending DIO and CCC. German managers may also consider to lower DSO and extend DPO, while their U.S. colleagues may focus on DIO and CCC due to their slightly higher effect in the USA and the insignificant DSO and DPO impact. Based on the effect size, managers may adapt larger DIO, DSO, DPO and CCC adjustments to drive GPM. Overall, WCM, measured by CCC and its components, impacts profitability in the MD industry in GER and the USA, but partially in different ways. It may help managers to improve or maintain the already high profitability. Overall, similarities between GER and the USA imply that the MD industry effect outweighs different country (e.g., investor protection) and market factors (e.g., MD portfolio), while it is subordinated when differences were analysed.

Future research should expand the scope of analysis to earlier sample periods, SME, firms with other MD portfolios and additional countries. Alternative regression methods, profitability proxies and formulas of *CCC* components should be also covered. In addition, other investor protection, financial reporting and healthcare system settings should be tested. All in all, it ensures the robustness of the Work Project findings for the whole MD industry.

Reference list

- Abbott Laboratories. 2021a. "Annual Reports." Accessed October 10, 2021. https://www.abbottinvestor.com/financials/annual-reports/.
- ------. 2021b. "Our Heritage." Accessed October 10, 2021. https://www.abbott.com/about-abbott/our-heritage.html.
- Abiomed Inc. 2021. "Growing Shareholder Value." Accessed October 10, 2021. https://investors.abiomed.com/financial-information/sec-filings.
- Abuzayed, Bana. 2012. "Working Capital Management and Firms' Performance in Emerging Markets: The Case of Jordan." *International Journal of Managerial Finance* 8 (2): 155-179. doi:https://doi.org/10.1108/17439131211216620.
- Afrifa, Godfred Adjapong, and Kesseven Padachi. 2016. "Working Capital Level Influence on SME Profitability." *Journal of Small Business and Enterprise Development* 23 (1): 44-63. doi:https://doi.org/10.1108/JSBED-01-2014-0014.
- Ahmed, Zeeshan, Muhammad Zahid Awan, Muhammad Zulqarnain Safdar, Tafakhar Hasnain, and Muhammad Kamran. 2016. "A Nexus between Working Capital Management and Profitability: A Case Study of Pharmaceutical Sector in Pakistan." *International Journal of Economics and Financial Issues* 6 (S3): 153-160. https://www.econjournals.com/index.php/ijefi/article/view/2624.
- AiM. 2021. "Medical Device Reimbursement Important Aspects on the German Market." Accessed September 21, 2021. https://aim.iges.com/reimbursement/index_eng.html.
- AiM, and iGES Institute. 2021. Reimbursement of Medical Devices in Germany. Lörrach and Berlin: AiM and iGES Institute. Accessed September 21, 2021. https://aim.iges.com/sites/igesgroup/aim-germany.com/myzms/content/e207/citemtext/AiM_ Reimbursement_of_Medical_Devices_in_Germany_2020_21_eng.pdf.
- Akoto, Richard Kofi, Dadsen Awunyo-Vitor, and Peter Lawer Angmor. 2013. "Working Capital Management and Profitability: Evidence from Ghanaian Listed Manufacturing Firms." *Journal of Economics and International Finance* 5 (9): 373-379. doi:https://doi.org/10.5897/JEIF2013.0539.
- Aktas, Nihat, Ettore Croci, and Dimitris Petmezas. 2015. "Is Working Capital Management Value-Enhancing? Evidence from Firm Performance and Investments." *Journal of Corporate Finance* 30: 98-113. doi:https://doi.org/10.1016/j.jcorpfin.2014.12.008.
- Align Technology Inc. 2021. "SEC Filings." Accessed October 10, 2021. https://investor.aligntech.com/financial-information/sec-filings.
- Almeida, Heitor, Murillo Campello, and Michael S. Weisbach. 2011. "Corporate Financial and Investment Policies when Future Financing Is Not Frictionless." *Journal of Corporate Finance* 17 (3): 675-693. doi:https://doi.org/10.1016/j.jcorpfin.2009.04.001.
- Altaf, Nufazil, and Farooq Ahmad Shah. 2018. "How does Working Capital Management Affect the Profitability of Indian Companies?" *Journal of Advances in Management Research* 15 (3): 347-366. doi:https://doi.org/10.1108/JAMR-06-2017-0076.
- apoBank. 2021. Zwischen Regulierung und Digitalisierung: Medizintechnik 2021 [Between Regulation and Digitalization: Medical Technology 2021]. Dusseldorf: apoBank. Accessed September 19, 2021. https://www.apobank.de/dam/jcr:0d303ad1-c3f9-4b4f-8b45a140f5a7d99a/apoBank_Medizintechnik2021.pdf.
- Asker, John, Joan Farre-Mensa, and Alexander Ljungqvist. 2015. "Corporate Investment and Stock Market Listing: A Puzzle?" *The Review of Financial Studies* 28 (2): 342–390. doi:https://doi.org/10.1093/rfs/hhu077.

- Banos-Caballero, Sonia, García-Truel, Pedro J., and Pedro Martínez-Solano. 2010. "Working Capital Management in SMEs." Accounting & Finance 50 (3): 511-527. doi:https://doi.org/10.1111/j.1467-629X.2009.00331.x.
- ———. 2012. "How Does Working Capital Management Affect the Profitability of Spanish SMEs?" Small Business Economics 39: 517-529. doi:https://doi.org/10.1007/s11187-011-9317-8.
- Basyith, Abdul, Abid Djazuli and Fitriya Fauzi. 2021. "Does Working Capital Management Affect Profitability? Empirical Evidence from Indonesia Listed Firms." *Asian Economic and Financial Review* 11 (3): 236-251. doi:https://doi.org/10.18488/journal.aefr.2021.113.236.251.
- Bauerfeind AG. 2021. "Bauerfeind History." Accessed October 10, 2021. https://www.bauerfeind.com.au/pages/history.
- Baxter International Inc. 2021a. "Our History." Accessed October 10, 2021. https://www.baxter.com/our-story/our-history.
- ———. 2021b. "SEC Filings." Accessed October 10, 2021. https://investor.baxter.com/investors/secfilings/default.aspx.
- B. Braun SE. 2021a. "Annual Report 2020." Accessed October 10, 2021. https://www.bbraun.com/en/company/organization-facts-figures/annual-report-2020.html#.
 - —. 2021b. "From Pharmacy to Global Player." Accessed October 10, 2021. https://www.bbraun.com/en/company/history.html.
- Becton, Dickinson and Company. 2021a. "About BD." Accessed October 10, 2021. https://www.bd.com/en-us/company/about-bd.
 - ——. 2021b. "Annual Reports / Proxy Statements." Accessed October 10, 2021. https://investors.bd.com/financial-information/annual-reports.
- Berschick, Edward R., Jessica C. Barnett, Rachel D. Upton. 2019. *Health Insurance Coverage in the United States: 2018.* Washington DC: United States Census Bureau. Accessed September 20, 2021. https://www.census.gov/content/dam/Census/library/publications/2019/demo/p60-267.pdf.
- BioSpace. 2006. "Merger of Thermo Electron Corporation and Fisher Scientific International Inc. Completed, Forming Thermo Fisher Scientific." November 9, 2006. https://www.biospace.com/article/releases/merger-of-thermo-electron-corporation-and-fisher-scientificinternational-inc-completed-forming-b-thermo-fisher-scientific-b-/.
- BIOTRONIK SE & Co. KG. 2021. "BIOTRONIK from 1963 to Today." Accessed October 10, 2021. https://www.biotronik.com/en-us/about-us/our-company/our-history.
- BlackRock. 2021. "iShares U.S. Medical Devices ETF." Accessed October 10, 2021. https://www.ishares.com/us/products/239516/ishares-us-medical-devices-etf.
- Blinder, Alan S., and Louis J. Maccini. 1991. "The Resurgence of Inventory Research: What Have We Learned?" *Journal of Economic Surveys* 5 (4): 291-328. doi:https://doi.org/10.1111/j.1467-6419.1991.tb00138.x.
- Bloomberg (Bloomberg for Education; accessed October 1-15, 2021). https://portal.bloombergforeducation.com/login.
- Boston Scientific Corporation. 2021a. "Annual Results & Proxy Statements." Accessed October 10, 2021. https://investors.bostonscientific.com/financials-and-filings/annual-results-and-proxy-statements.
- ——. 2021b. "Our History." Accessed October 10, 2021. https://www.bostonscientific.com/kr-KR/company-overview/history1.html.

Brainlab AG. 2021. "History." Accessed October 10, 2021. https://www.brainlab.com/about-brainlab/history/.

- Brav, Omer. 2009. "Access to Capital, Capital Structure, and the Funding of the Firm." *The Journal of Finance* 64 (1): 263-308. doi:https://doi.org/10.1111/j.1540-6261.2008.01434.x.
- Breusch, Trevor S., and Adrian R. Pagan. 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation." *Econometrica* 47 (5): 1287-1294. doi:https://doi.org/10.2307/1911963.
- BVMed (German Federal Association of Medical Technology) [Bundesverband Medizintechnologie]. 2020.
 Branchenbericht Medizintechnologien 2020 [Industry Report Medical Technologies 2020]. Berlin:
 German Federal Association of Medical Technology [Bundesverband Medizintechnologie]. Accessed
 September 19, 2021. https://www.bvmed.de/de/branche/standort-deutschland/branchenstudien.
- ------. 2021. "Mitglieder" [Members]. Accessed October 10, 2021. https://www.bvmed.de/de/bvmed/mitglieder.
- Carl Zeiss Meditec AG. 2021a. "A Company with Tradition and History." Accessed October 10, 2021. https://www.zeiss.com/meditec-ag/about-us/company-history.html.
- ———. 2021b. "Financial Publications." Accessed October 10, 2021. https://www.zeiss.com/meditecag/investor-relations/reports-publications.html.
- Chang, Chong-Chuo. 2018. "Cash Conversion Cycle and Corporate Performance: Global Evidence." *International Review of Economics & Finance* 56: 568-581. doi:https://doi.org/10.1016/j.iref.2017.12.014.
- Cheng, Nathan, and Debra Fromer. 2021. "Understanding the FDA Device Approval Process in FPMRS." *Current Bladder Dysfunction Reports* 16: 46-51. doi:https://doi.org/10.1007/s11884-021-00630-7.
- Chowdhury, Ahm Yeaseen, Mohammad Zahedul Alam, Sabiha Sultana, and Md. Kaysher Hamid. 2018. "Impact of Working Capital Management on Profitability: A Case Study on Pharmaceutical Companies of Bangladesh." *Journal of Economics, Business and Management* 6 (1): 27-35. doi:https://doi.org/10.18178/joebm.2018.6.1.546.
- Commercial Code [Handelsgesetzbuch]. n.d. "Handelsgesetzbuch" [Commercial Code] Accessed October 10, 2021. https://www.gesetze-im-internet.de/hgb/.
- Cooper Companies Inc. 2021. "SEC Filings." Accessed October 10, 2021. https://investor.coopercos.com/financial-information/sec-filings.
- Correia, Sergio. 2015. *Singletons, Cluster-Robust Standard Errors and Fixed Effects: A Bad Mix.* Technical Note, Durham, NC: Duke University. http://scorreia.com/research/singletons.pdf.
 - -----. 2016. Estimating Multi-Way Fixed Effect Models with reghdfe. Chicago, IL: 2016 Stata Conference. https://www.stata.com/meeting/chicago16/slides/chicago16_correia.pdf.
- Daigle, Brian, and Mihir Torsekar. 2019. "The EU Medical Device Regulation and the U.S. Medical Device Industry." *Journal of International Commerce and Economics*: 1-22. https://www.usitc.gov/publications/332/journals/eu_medical_device_regulation_us_medical_device_in dustry.pdf.
- Dalci, Ilhan, Cem Tanova, Hasan Özyapici, and Murad Bein. 2019. "The Moderating Impact of Firm Size on the Relationship between Working Capital Management and Profitability." *Prague Economic Papers* 28 (3): 296–312. https://www.ceeol.com/search/article-detail?id=788507.
- Damodaran, Aswath. 2021. "Financial Ratios and Measures." *Stern School of Business New York University*, Accessed October 10, 2021. https://pages.stern.nyu.edu/~adamodar/New_Home_Page/definitions.html.
- Danaher Corporation. 2021. "Financial Reports." Accessed October 10, 2021. http://investors.danaher.com/sec-filings.

- Deloof, Marc. 2003. "Does Working Capital Management Affect Profitability of Belgian Firms?" *Journal of Business Finance & Accounting* 30 (3-4): 573-587. doi: https://doi.org/10.1111/1468-5957.00008.
- Demirgüç-Kunt, Asli, and Vojislav Maksimovic. 2001. "Firms as Financial Intermediaries: Evidence from Trade Credit Data." Policy Research Working Paper Series 2696, World Bank, Washington DC. https://openknowledge.worldbank.org/handle/10986/19511.
- Dentsply Sirona Inc. 2021a. "Annual Reports." Accessed October 10, 2021. https://investor.dentsplysirona.com/financial-information/annual-reports/.
 - 2021b. "Dentsply Sirona: Merger Creates the Dental Solutions Company." February 29, 2016. Accessed October 10, 2021. https://news.dentsplysirona.com/en/corporate-news/2016/dentsply-sirona--mergercreates-the-dental-solutions-company.html.
- Dexcom Inc. 2021. "SEC Filings." Accessed October 10, 2021. https://investors.dexcom.com/sec-filings.
- Doidge, Craig, G. Andrew Karolyi, and René M. Stulz. 2017. "The U.S. Listing Gap." *Journal of Financial Economics* 123 (3): 464-487. doi:https://doi.org/10.1016/j.jfineco.2016.12.002.
- Drägerwerk AG & Co. KGaA. 2021a. "Company History: Technology for Life Since 1889: Our Company History." Accessed October 10, 2021. https://www.draeger.com/en-us_us/About-Draeger/History.
- ———. 2021b. "Publications: Annual Reports." Accessed October 10, 2021. https://www.draeger.com/enus_us/News-Room/Publications.
- Dürr Dental SE. 2021 "Milestones of Our History." Accessed October 10, 2021. https://www.duerrdental.com/en/GB/company/duerr-dental-se/milestones/.
- Dumler, James R. 2020. "Which States Tax Medical Devices?" *McClellan Davis*, February 27, 2020. https://salestaxhelp.com/states-tax-medical-devices.
- Ebben, Jay J., and Alec C. Johnson. 2011. "Cash Conversion Cycle Management in Small Firms: Relationships with Liquidity, Invested Capital, and Firm Performance." *Journal of Small Business & Entrepreneurship* 24 (3): 381-396. doi:https://doi.org/10.1080/08276331.2011.10593545.
- Edwards Lifesciences Corporation. 2021. "Annual Reports & Proxy Statements." Accessed October 10, 2021. https://ir.edwards.com/financials/annual-reports-proxies/.
- Eljelly, Abuzar M. A. 2004. "Liquidity Profitability Tradeoff: An Empirical Investigation in an Emerging Market." *International Journal of Commerce and Management* 14 (2): 48-61. doi:https://doi.org/10.1108/10569210480000179.
- Enqvist, Julius, Michael Graham, and Jussi Nikkinen. 2014. "The Impact of Working Capital Management on Firm Profitability in Different Business Cycles: Evidence from Finland." *Research in International Business and Finance* 32: 36-49. doi:https://doi.org/10.1016/j.ribaf.2014.03.005.
- Envista Holdings Corporation. 2021. "Filings & Reports." Accessed October 10, 2021. https://investors.envistaco.com/sec-filings.
- Eppendorf AG. 2021a. "Annual Report 2020." Accessed October 10, 2021. https://corporate.eppendorf.com/en/company/annual-report/.
- Erbe Elektromedizin. 2021 "History." Accessed October 10, 2021. https://de.erbe-med.com/de-en/company/history/.
- Euromonitor International. 2021. *Global Overview of the Pharmaceuticals and Medical Equipment Industry*. London: Passport. Accessed September 19, 2021. https://www.portal.euromonitor.com/portal/analysis/tab.

- EY (Ernst & Young). 2020. *Pulse of the Industry: Medical Technology Report 2020*. London: Ernst & Young. Accessed September 18, 2021. https://assets.ey.com/content/dam/ey-sites/eycom/en_gl/topics/health/ey-pulse-medical-technology-report.pdf.
- FASB. n.d. "Codification." Accessed October 10, 2021. https://asc.fasb.org/home.
- FDA (U.S. Food and Drug Administration). 2020. "Overview of Device Regulation." Accessed September 20, 2021. https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/overview-device-regulation.
- Federal Gazette [Bundesanzeiger]. n.d. "Suchen: Rechnungslegung/Finanzberichte" [Search: Accounting/ Financial Reports]. Accessed October 1-15, 2021. https://www.bundesanzeiger.de/pub/de/start?7.
- Federal Statistical Office [Statistisches Bundesamt], (Wiesbaden: Federal Statistical Office [Statistisches Bundesamt], n.d.), https://www.destatis.de/DE/Home/_inhalt.html, quoted in SPECTARIS, *Die deutsche Medizintechnik-Industrie: SPECTARIS Jahrbuch 2020/2021* [The German Medical Technology Industry: SPECTARIS Yearbook 2020/2021] (Berlin: SPECTARIS, 2021), 5. Accessed September 20, 2021. https://www.spectaris.de/fileadmin/Content/Medizintechnik/Zahlen-Fakten-Publikationen/SPECTARIS_Jahrbuch2020-21_11-2020_Lesezeichen_3.pdf.
- Ferrando, Annalisa, and Klaas Mulier. 2012. "Do Firms Use the Trade Credit Channel to Manage Growth?" Working Paper Series No. 1502, European Central Bank, Frankfurt am Main. https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1502.pdf.
- Filbeck, Greg, and Thomas M. Krueger. 2005. "An Analysis of Working Capital Management Results Across Industries." *American Journal of Business* 20 (2): 11-20. doi:https://doi.org/10.1108/19355181200500007.
- Fisher, Ronald Aylmer. 1935. The Design of Experiments. Edinburgh: Oliver and Boyd.
- Fitch Solutions, Worldwide Medical Devices Market Factbook. (New York: Fitch Solutions, 2021), https://store.fitchsolutions.com/all-products/worldwide-medical-devices-market-factbook, quoted in MedTech Europe, The European Medical Technology Industry in Figures 2021 (Brussels: MedTech Europe, 2021), 26-27. Accessed September 19, 2021. https://www.medtecheurope.org/resource-library/medtech-europes-facts-and-figures-2021/.
- Fortune Business Insights. 2021. "The Global Medical Devices Market Is Projected to Grow from \$455.34 Billion in 2021 to \$657.98 Billion in 2028 at a CAGR of 5.4% in forecast period, 2021-2028." Accessed September 20, 2021. https://www.fortunebusinessinsights.com/industry-reports/medicaldevices-market-100085.
- Freiland, Dirk, Nikolai Golenko, Ulrich Philippi, Cornelia Yzer, Manfred Beeres, Diethelm Carius, Julia Steckeler, Maximilian Kressner, Hubertus Leonhardt, Peter P. Pott, and Christian Koziol. 2020.
 Marktstudie Medizintechnik 2020 [Market Study Medical Technology 2020]. Stuttgart: Luther and Clairfield Internal in cooperation with BVMed, VDMA and Universität Stuttgart. Accessed September 20, 2021. https://www.bvmed.de/download/marktstudie-medizintechnik-2020-luther-clairfield.pdf.
- Fresenius Medical Care AG & Co. KGaA. 2021a. "Our History." Accessed October 10, 2021. https://www.freseniusmedicalcare.com/en/about-us/history/.
 - ——. 2021b. "Publications." Accessed October 10, 2021. https://www.freseniusmedicalcare.com/en/investors/publications/.
- Gamayuni, Rindu Rika. 2015. "The Effect of Intangible Asset, Financial Performance and Financial Policies on the Firm Value." International Journal of Scientific and Technology Research 4 (1): 202-212. http://www.ijstr.org/final-print/jan2015/The-Effect-Of-Intangible-Asset-Financial-Performance-And-Financial-Policies-On-The-Firm-Value.pdf.
- García-Teruel, Pedro Juan, and Pedro Martínez-Solano. 2007. "Effects of Working Capital Management on SME Profitability." *International Journal of Managerial Finance* 3 (2): 164-177. doi:https://doi.org/10.1108/17439130710738718.

- Gaure, Simen. 2010. "OLS with Multiple High Dimensional Category Dummies." Working Paper, Memorandum No. 14/2010, Department of Economics, University of Oslo, Oslo. https://www.econstor.eu/bitstream/10419/47280/1/637363027.pdf.
- General Electric. 2021. "General Electric SEC Filings." Accessed October 10, 2021. https://www.ge.com/investor-relations/sec-filings.
- German Bundestag [Deutscher Bundestag]. 2019. Sachstand Fragen zur Mehrwertsteuer auf Medizinprodukte in Deutschland [State of Affairs – Questions about the Value Added Tax for Medical Devices in Germany]. Berlin: Wissenschaftliche Dienste – Deutscher Bundestag [Scientific Services – German Bundestag]. Accessed November 15, 2021. https://www.bundestag.de/resource/blob/653356/d723011009b09669368f38d90c1d477f/WD-4-085-19pdf-data.pdf.
- German Federal Ministry of Health. 2020. *The German Healthcare System: Strong. Reliable. Proven.* Berlin: Federal Government Publication Office. https://www.bundesregierung.de/breg-en/service/information-material-issued-by-the-federalgovernment/the-german-healthcare-system-strong-reliable-proven--1765016.
- Gill, Amarjit, Nahum Biger, and Neil Mathur. 2010. "The Relationship between Working Capital Management and Profitability: Evidence from the United States." *Business and Economics Journal* 9 (1): 1-9. https://www.researchgate.net/publication/284875433_The_Relationship_Between_Working_Capital_M anagement_And_Profitability_Evidence_From_The_United_States.
- Gitman, Lawrence J. 1974. "Estimating Corporate Liquidity Requirements: A Simplified Approach." *Financial Review* 9 (1): 79-88. doi:https://doi.org/10.1111/j.1540-6288.1974.tb01453.x.
- Guimarães, Paulo, and Pedro Portugal. 2010. "A Simple Feasible Procedure to Fit Models with High-Dimensional Fixed Effects." *The Stata Journal* 10 (4): 628-649. https://journals.sagepub.com/doi/pdf/10.1177/1536867X1101000406.
- Hail, Luzi, and Christian Leuz. 2006. "International Differences in the Cost of Equity Capital: Do Legal Institutions and Securities Regulation Matter?" *Journal of Accounting Research* 44 (3): 485-531. doi:https://doi.org/10.1111/j.1475-679X.2006.00209.x.
- Hill-Rom Holdings Inc. 2021. "SEC Filings." Accessed October 10, 2021. https://ir.hill-rom.com/financials/default.aspx#section=sec.
- Hoegerle, Bernadette, Michel Charifzadeh, Marlene Ferencz, and Konstantin B. Kostin. 2020. "The Development of Working Capital Management and its Impact on Profitability and Shareholder Value: Evidence from Germany." *Strategic Management* 25 (2): 27-39. doi:https://doi.org/10.5937/StraMan2002027H.
- ICU Medical Inc. 2021. "SEC Filings." Accessed October 10, 2021. https://ir.icumed.com/financial-information/sec-filings.
- IFRS Foundation. 2021a. "IAS 38 Intangible Assets." Accessed October 10, 2021. https://www.ifrs.org/issued-standards/list-of-standards/ias-38-intangible-assets/#about.
- ————. 2021b. "IAS 2 Inventories." Accessed October 10, 2021. https://www.ifrs.org/issued-standards/list-ofstandards/ias-2-inventories.html/content/dam/ifrs/publications/html-standards/english/2021/issued/ias2/.
 - ———. 2021c. "IAS 16 Property, Plant and Equipment." Accessed December 4, 2021. https://www.ifrs.org/issued-standards/list-of-standards/ias-16-property-plant-andequipment.html/content/dam/ifrs/publications/html-standards/english/2021/issued/ias16/#about.
- Insulet Corporation. 2021. "SEC Filings." Accessed October 10, 2021. https://investor.insulet.com/financial-information/sec-filings.
- Integra Lifesciences Holdings Corporation. 2021. "SEC Filings." Accessed October 10, 2021. https://investor.integralife.com/financial-information/sec-filings.

ISPOR (International Society for Pharmacoeconomics and Outcomes Research). 2021. "US Healthcare System Overview-Medical Devices and In Vitro Diagnostics." Accessed September 20, 2021. https://www.ispor.org/heor-resources/more-heor-resources/us-healthcare-system-overview/ushealthcare-system-overview-medical-devices-in-vitro-diagnostics-page-3.

Intuitive Surgical Inc. 2021. "SEC Filings." Accessed October 10, 2021. https://isrg.intuitive.com/sec-filings.

- Japsen, Bruce. 2019. "Medical Device Tax Is History After Trump Signs Repeal." *Forbes*, December 21, 2019. https://www.forbes.com/sites/brucejapsen/2019/12/21/medical-device-tax-is-history-after-trump-signs-repeal/.
- Jensen, Michael C. 1989. "Eclipse of the Public Corporation." *Harvard Business Review* 67 (September-October), revised (1997): 61-74. doi:http://dx.doi.org/10.2139/ssrn.146149.
- Jensen, Michael C., and William H. Meckling. 1976. "Theory of the Firm: Managerial Behavior, Agency Costs and Ownership Structure." *Journal of Financial Economics* 3 (4): 305-360. doi:https://doi.org/10.1016/0304-405X(76)90026-X.
- Johnson & Johnson. 2021. "Corporate Reports." Accessed October 10, 2021. https://www.jnj.com/about-jnj/corporate-reports.
- Jose, Manuel L., Carol Lancaster, and Jerry L. Stevens. 1996. "Corporate Returns and Cash Conversion Cycles." Journal of Economics and Finance 20 (1): 33-46. doi:https://doi.org/10.1007/BF02920497.
- Kalemli-Ozcan, Sebnem, Bent Sorensen, Carolina Villegas-Sanchez, Vadym Volosovych, and Sevcan Yesiltas. 2015. "How to Construct Nationally Representative Firm Level Data from the Orbis Global Database: New Facts and Aggregate Implications." NBER Working Paper No. 21558, National Bureau of Economic Research, Cambridge, MA. https://www.nber.org/papers/w21558.
- Kamath, Ravindra. 1989. "How Useful Are Common Liquidity Measures?" *Journal of Cash Management* 9 (1): 24-28.
- Karl Storz SE & Co. KG. 2021. "Headquarters Germany, Tuttlingen." Accessed October 10, 2021. https://www.karlstorz.com/at/en/headquarter-germany-tuttlingen.htm.
- Kasozi, Jason. 2017. "The Effect of Working Capital Management on Profitability: A Case of Listed Manufacturing Firms in South Africa." *Investment Management and Financial Innovations* 14 (2): 336-346. doi:http://dx.doi.org/10.21511/imfi.14(2-2).2017.05.
- Kim, Yong H., and Kee H. Chung. 1990. "An Integrated Evaluation of Investment in Inventory and Credit: A Cash Flow Approach." *Journal of Business Finance and Accounting* 17 (3): 381-389. doi:https://doi.org/10.1111/j.1468-5957.1990.tb01192.x.
- KLS Martin Group. 2021 "History." Accessed October 10, 2021. https://www.klsmartin.com/en/company/history/.
- KPMG. n.d. "United States Indirect Tax Guide." Accessed November 15, 2021. https://home.kpmg/xx/en/home/insights/2018/10/united-states-indirect-tax-guide.html.
- La Porta, Rafael, Florencio Lopez-de-Silanes, Andrei Shleifer, and Robert W. Vishny. 1997. "Legal Determinants of External Finance." *The Journal of Finance* 52 (3). doi:https://doi.org/10.2307/2329518.
- ———. 2002. "Investor Protection and Corporate Valuation." The Journal of Finance 57 (3): 1147-1170. doi:https://doi.org/10.1111/1540-6261.00457.
- Lazaridis, Ioannis and Dimitrios Tryfonidis. 2006. "The Relationship between Working Capital Management and Profitability of Listed Companies in the Athens Stock Exchange." *Journal of Financial Management and Analysis* 19 (1): 1-12. https://papers.srn.com/sol3/papers.cfm?abstract_id=931591.

- Lin, Qiang, and Yue Wang. 2021. "Working Capital Management, the Market Environment and Corporate Performance: Evidence from China." *Applied Economics* 53 (39): 4505-4516. doi:https://doi.org/10.1080/00036846.2021.1904120.
- Lohmann & Rauscher International GmbH & Co. KG. 2021. "L&R Success with Deep Roots." Accessed October 10, 2021. https://www.lohmann-rauscher.com/en/company/who-we-are/history/.
- Lyngstadaas, Hakim, and Terje Berg. 2016. "Working Capital Management: Evidence from Norway." *International Journal of Managerial Finance* 12 (3): 295-313. doi:https://doi.org/10.1108/IJMF-01-2016-0012.
- Lyroudi, Katerina, and Yiannis Lazaridis. 2000. "The Cash Conversion Cycle and Liquidity Analysis of the Food Industry in Greece." Department of Accounting and Finance, University of Macedonia, Thessaloniki, Greece. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=236175.
- MarketLine. 2021a. *Global Medical Devices Market: Supply Chain Analysis*. London: MarketLine. Accessed September 19, 2021. https://advantage-marketlinecom.eu1.proxy.openathens.net/Analysis/details/global-medical-devices-market-supply-chain-analysis-128160.
- ———. 2021b. MarketLine Industry Profile: Health Care Equipment & Supplies in Germany May 2021. London: MarketLine. Accessed September 21, 2021. https://advantage-marketlinecom.eu1.proxy.openathens.net/Analysis/ViewasPDF/germany-health-care-equipment-supplies-132390.
- Marotta, Giuseppe. 2005. "When Do Trade Credit Discounts Matter? Evidence from Italian Firm-Level Data." *Applied Economics* 37 (4): 403-416. doi:https://doi.org/10.1080/0003684042000329063.
- Masimo Corporation Inc. 2021. "SEC Filings." Accessed October 10, 2021. https://investor.masimo.com/financials/sec-filings/default.aspx.
- MedTech Europe. 2021. *The European Medical Technology Industry in figures 2021*. Brussels: MedTech Europe. Accessed September 19, 2021. https://www.medtecheurope.org/resource-library/medtech-europes-facts-and-figures-2021/.
- Merit Medical Systems Inc. 2021. "Annual Reports & Proxy Statements." Accessed October 10, 2021. https://www.merit.com/investors/annual-reports-and-proxy-statements/.
- Morabito, Julie. 2020. "US Food and Drug Administration Seeks Input from Healthcare Technology Management Community on Medical Device Supply Disruption during COVID-19 Pandemic." *Journal of Clinical Engineering* 45 (4): 195-197. doi:https://doi.org/10.1097/JCE.00000000000423.
- Myers, Stewart C., and Nicholas S. Majluf. 1984. "Corporate Financing and Investment Decisions when Firms Have Information that Investors Do Not Have." *Journal of Financial Economics* 13 (2): 187-221. doi:https://doi.org/10.1016/0304-405X(84)90023-0.
- Nazir, Mian Sajid, and Talat Afza. 2009. "Working Capital Requirements and the Determining Factors in Pakistan." *The Icfai Journal of Applied Finance* 15 (4): 28-38. https://lahore.comsats.edu.pk/Papers/Abstracts/146-8588087907446883308.pdf.
- Ng, Chee K., Janet Kiholm Smith, and Richard L. Smith. 1999. "Evidence on the Determinants of Credit Terms Used in Interfirm Trade." *The Journal of Finance* 54 (3): 1109-1129. doi:https://doi.org/10.1111/0022-1082.00138.

- Ng, Sin Huei, Chen Ye, Tze San Ong, and Boon Heng Teh. 2017. "The Impact of Working Capital Management on Firm's Profitability: Evidence from Malaysian Listed Manufacturing Firms." *International Journal of Economics and Financial Issues* 7 (3): 662-670. http://www.econjournals.com/index.php/ijefi/article/download/3889/pdf.
- Nijam, Habeeb Mohamed. 2016. "Cash Conversion Cycle, its Properties and Profitability: Evidence from Listed Hotel Companies in Sri Lanka." *Research Journal of Finance and Accounting* 7 (1): 23-32. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2778437.
- Nobanee, Haitham, Modar Abdullatif, and Maryam AlHajjar. 2011. "Cash Conversion Cycle and Firm's Performance of Japanese Firms." *Asian Review of Accounting* 19 (2): 147–156. doi:https://doi.org/10.1108/1321734111181078.
- NuVasive Inc. 2021. "SEC Filings." Accessed October 10, 2021. https://ir.nuvasive.com/financial-information/sec-filings.
- OECD. 2021a. "Health Expenditure and Financing." (OECD Health database, accessed September 21, 2021). https://stats.oecd.org/viewhtml.aspx?datasetcode=SHA&lang=en.

———. 2021b. "Health Spending: Total, % of GDP, 2019." (OECD Health database; accessed September 21, 2021). doi:https://doi.org/10.1787/8643de7e-en.

- Orbis (Orbis Bureau van Dijk, accessed October 1-15, 2021). https://orbis.bvdinfo.com/version-2021107/orbis/1/Companies/Search.
- Ottobock SE & Co. KGaA. 2021. "100 Years of Mobility for People." Accessed October 10, 2021. https://www.ottobock.com/en/company/history/.
- Padachi, Kesseven. 2006. "Trends in Working Capital Management and its Impact on Firms' Performance: An Analysis of Mauritian Small Manufacturing Firms." *International Review of Business Research Papers* 2 (2): 45-58.

https://www.researchgate.net/profile/KessevenPadachi2/publication/238599541_Trends_in_Working_C apital_Management_and_its_Impact_on_Firms'_Performance_An_Analysis_of_Mauritian_Small_Man ufacturing_Firms/links/02e7e538f5d9cc1924000000/Trends-in-Working-Capital-Management-and-its-Impact-on-Firms-Performance-An-Analysis-of-Mauritian-Small-Manufacturing_Firms.pdf.

- Pais, Maria Amélia, and Paulo Miguel Gama. 2015. "Working Capital Management and SMEs Profitability: Portuguese Evidence." *International Journal of Managerial Finance* 11 (3): 341-358. doi:https://doi.org/10.1108/IJMF-11-2014-0170.
- Paul Hartmann AG. 2021a. "Hartmann: Helping, Caring and Protecting since 1818." Accessed October 10, 2021. https://www.hartmann.info/en-corp/whoweare/history.
- ———. 2021b. "Our Reports Hartmann Group at a Glance." Accessed October 10, 2021. https://www.hartmann.info/en-corp/investor-relations/l/corp/investor-relations/downloads-en.
- Petersen, Mitchell A., and Raghuram G. Rajan. 1997. "Trade Credit: Theories and Evidence." *The Review of Financial Studies* 10 (3): 661–691. doi:https://doi.org/10.1093/rfs/10.3.661.
- Raheman, Abdul, Talat Afza, Abdul Qayyum, and Mahmood Ahmed Bodla. 2010. "Working Capital Management and Corporate Performance of Manufacturing Sector in Pakistan." *International Research Journal of Finance and Economics* 47: 151-163.
- Rahemann, Abdul, and Mohamed Nasr. 2007. "Working Capital Management And Profitability Case Of Pakistani Firms." *International Review of Business Research Papers* 3 (1): 279-300. https://www.researchgate.net/profile/Mohamed-Nasr-22/publication/228727444_Working_capital_management_and_profitabilitycase_of_Pakistani_Firms/links/0c960523758d23d0e1000000/Working-capital-management-andprofitability-case-of-Pakistani-Firms.pdf.

- Rappaport, Alfred. 1986. *Creating Shareholder Value: The New Standard for Business Performance*. New York: Free Press.
- ResMed Inc. 2021. "SEC Filings." Accessed October 10, 2021. https://investors.resmed.com/investor-relations/financials/default.aspx.
- Richards, Verlyn D., and Eugene J. Laughlin. 1980. "A Cash Conversion Cycle Approach to Liquidity Analysis." *Financial Management* 9 (1): 32.38. https://www.jstor.org/stable/3665310?seq=1#metadata_info_tab_contents.
- Richard Wolf GmbH. 2021. "Welcome to Richard Wolf." Accessed October 10, 2021. https://www.richard-wolf.com/en/company/.
- Rogers, William. 1993. "Regression Standard Errors in Clustered Samples." *Stata Technical Bulletin* 3 (13): 1-32. https://www.stata-press.com/journals/stbcontents/stb13.pdf.
- Şamiloğlu, Famil, and Kartal Demirgüneş. 2008. "The Effect of Working Capital Management on Firm Profitability: Evidence from Turkey." *The International Journal of Applied Economics and Finance* 2 (1): 44-50. doi:https://doi.org/10.3923/ijaef.2008.44.50.
- Samosir, Ferry Christian. 2018. "Effect of Cash Conversion Cycle, Firm Size, and Firm Age to Profitability." Journal of Applied Accounting and Taxation 3 (1): 50-57. doi:https://doi.org/10.5281/zenodo.1305136.
- Sarstedt AG & Co. KG. 2021. "Welcome to Sarstedt." Accessed October 10, 2021. https://www.sarstedt.com/en/the-company/about-us/about-us/.
- Select USA. n.d. "Medical Technology Spotlight: The Medical Technology Industry in the United States." Accessed September 21, 2021. https://www.selectusa.gov/medical-technology-industry-united-states.
- Sensini, Luca. 2020. "Working Capital Management and Performance: Evidence from Italian SME's." International Journal of Business Management and Economic Research 11 (2): 1749-1755. http://www.ijbmer.com/docs/volumes/vol11issue2/ijbmer2020110205.pdf.
- Shapiro, Samuel Sanford, and Martin Wilk. 1965. "An Analysis of Variance Test for Normality (Complete Samples)." *Biometrika* 52 (3/4): 591-611. doi:https://doi.org/10.2307/2333709.
- Sharif, Md. Amir, and Md. Rafiul Islam. 2018. "Working Capital Management a Measurement Tool for Profitability: A Study on Pharmaceutical Industry in Bangladesh." *Journal of Finance and Accounting* 6 (1): 1-10. doi:https://doi.org/10.11648/j.jfa.20180601.11.
- Sharma, Amit K., and Satish Kumar. 2011. "Effect of Working Capital Management on Firm Profitability: Empirical Evidence from India." *Global Business Review* 12 (1): 159-173. doi:https://doi.org/10.1177/097215091001200110.
- Shin, Hyun-Han, and Luc A. Soenen. 1998. "Efficiency of Working Capital and Corporate Profitability." *Financial Practice and Education* 8 (2): 37-45.
- Siemens Healthineers AG. 2021. "Reports & Presentations." Accessed October 10, 2021. https://www.siemens-healthineers.com/investor-relations/presentations-financial-publications.
- Singh, Harsh Pratap, Satish Kumar, and Sisira Colombage. 2017. "Working Capital Management and Firm Profitability: A Meta-Analysis." *Qualitative Research in Financial Markets* 9 (1): 34-47. doi:https://doi.org/10.1108/QRFM-06-2016-0018.
- Smith, Janet Kiholm. 1987. "Trade Credit and Information Asymmetry." *The Journal of Finance* 42 (4): 863-872.
- Smith, Keith Vincent. 1980. "Profitability versus Liquidity Tradeoffs in Working Capital Management." In *Readings on the Management of Working Capital*, edited by Keith Vincent Smith, 549-562. St Paul, MN: West Publishing Company.
- Soenen, Luc A. 1993. "Cash Conversion Cycle & Corporate Profitability." *Journal of Cash Management* 13 (4): 53-58.
- S&P Dow Jones Indices. 2021. "S&P Health Care Equipment Select Industry Index." Accessed October 10, 2021. https://www.spglobal.com/spdji/en/indices/equity/sp-healthcare-equipment-select-industry-index/#data.
- SPECTARIS. 2021. *Die deutsche Medizintechnik-Industrie: SPECTARIS Jahrbuch 2020/2021* [The German Medical Technology Industry: SPECTARIS Yearbook 2020/2021]. Berlin: SPECTARIS. Accessed September 20, 2021. https://www.spectaris.de/fileadmin/Content/Medizintechnik/Zahlen-Fakten-Publikationen/SPECTARIS_Jahrbuch2020-21_11-2020_Lesezeichen_3.pdf.
- . n.d. "Unternehmen im Bereich Medizintechnik" [Companies in the Medical Technology Sector]. Accessed October 10, 2021. https://www.spectaris.de/medizintechnik/mitglieder/.
- Stata. n.d.-a. "Estimation and Postestimation Commands." Accessed November 13, 2021. https://www.stata.com/manuals13/u20.pdf#u20.21Obtainingrobustvarianceestimates.
 - . n.d.-b. "ranksum Equality Tests on Unmatched Data." Accessed November 13, 2021. https://www.stata.com/manuals/rranksum.pdf.
 - . n.d.-c. "vce options Variance Estimators." Accessed November 12, 2021. https://www.stata.com/manuals13/xtvce_options.pdf.
 - ——. n.d.-d. "regress Linear regression." Accessed December 7, 2021. https://www.stata.com/manuals/rregress.pdf.
 - . n.d.-e. "xtreg Fixed-, between-, and random-Effects and Population-Averaged Linear Models." Accessed December 7, 2021. https://www.stata.com/manuals/xtxtreg.pdf#xtxtreg.
- State Bank Baden-Wuerttemberg [Landesbank Baden-Württemberg]. 2021. Med-Tech in Deutschland: Ein attraktives Wachstumssegment – mit spezifischen Herausforderungen [MedTech in Germany: An Attractive Growth Segment – with Specific Challenges]. Stuttgart: State Bank Baden-Wuerttemberg [Landesbank Baden-Württemberg]. Accessed September 19, 2021. https://www.lbbw.de/leistungen/unsere-leistungen/finanzierungen/branchenreports/branchenreportmedtech-mergers-and-acquisitions_acgm83itqp_m.pdf.
- Statista. 2021. "Top 100 Unternehmen weltweit: Medizintechnik" [Top 100 Companies Worldwide: Medical Technology]. Accessed October 10, 2021. https://de.statista.com/statistik/studie/id/43440/dokument/top-100-unternehmen-medizintechnik/.
- Stratec SE. 2021a. "Financial Reports." Accessed October 10, 2021. https://ir.stratec.com/websites/stratec/English/4000/financial-reports.html.
 - . 2021b. "History." Accessed October 10, 2021. https://www.stratec.com/company/about-us.
- Stryker Corporation. 2021a. "Our History." Accessed October 10, 2021. https://www.stryker.com/us/en/about/history.html.

———. 2021b. "SEC Filings." Accessed October 10, 2021. https://investors.stryker.com/financial-information/sec-filings/default.aspx.

- Studenmund, Arnold Harwood. 2014. Using Econometrics: A Practical Guide. Harlow, Essex: Pearson Education Limited.
- Tauringana, Venancio, and Godfred Adjapong Afrifa. 2013. "The Relative Importance of Working Capital Management and Its Components to SMEs' Profitability." *Journal of Small Business and Enterprise Development* 20 (3): 453-469. doi:https://doi.org/10.1108/JSBED-12-2011-0029.
- Teleflex Incorporated. 2021. "SEC Filings." Accessed October 10, 2021. https://investors.teleflex.com/financials/sec-filings/default.aspx.

- Thermo Fisher Scientific Inc. 2021. "Annual Reports." Accessed October 10, 2021. https://ir.thermofisher.com/investors/financials/annual-reports/default.aspx.
- Tudor, Adriana Tiron, Ştefana Dima, Bogdan Dima, and Raluca Valeria Raţiu. 2014. "The Linkage between Intangibles and Profitability." Annales Universitatis Apulensis Series Oeconomica 16 (1): 283-293. https://www.researchgate.net/profile/Adriana-Tiron-Tudor/publication/343172196_The_Linkage_Between_Intangibles_And_Profitability/links/5f20955745 851515ef52bb58/The-Linkage-Between-Intangibles-And-Profitability.pdf.
- Usman, Muhammad, Sarfaraz Ahmed Shaikh, and Shahbaz Khan. 2017. "Impact of Working Capital Management on Firm Profitability: Evidence from Scandinavian Countries." *Journal of Business Strategies* 11 (1): 99-112. https://www.researchgate.net/publication/318337667_Impact_of_Working_Capital_Management_on_F irm_Profitability_Evidence_From_Scandinavian_Countries.
- U.S. Securities and Exchange Commission. 2017. "Filings & Forms." Accessed October 10, 2021. https://www.sec.gov/edgar.shtml.
- Uyar, Ali. 2009. "The Relationship of Cash Conversion Cycle with Firm Size and Profitability: An Empirical Investigation in Turkey." *International Research Journal of Finance and Economics* 24: 186-193. https://www.researchgate.net/profile/Ali-Uyar/publication/290982782_The_relationship_of_cash_conversion_cycle_with_firm_size_and_profita bility_An_empirical_investigation_in_Turkey/links/575c7cdb08aed88462133b42/The-relationship-ofcash-conversion-cycle-with-firm-size-and-profitability-An-empirical-investigation-in-Turkey.pdf.
- Wagner, Marcel Vila, and Thomas Schanze. 2019. "Comparison of Approval Procedures for Medical Devices in Europe and the USA." *Current Directions in Biomedical Engineering* 5 (1): 605-608. doi:https://doi.org/10.1515/cdbme-2019-0152.
- Wang, Baolian. 2019. "The Cash Conversion Cycle Spread." *Journal of Financial Economics* 133 (2): 472-497. doi:https://doi.org/10.1016/j.jfineco.2019.02.008.
- Wang, Yung-Jang. 2002. "Liquidity Management, Operating Performance, and Corporate Value: Evidence from Japan and Taiwan." *Journal of Multinational Financial Management* 12 (2): 159-169. doi:https://doi.org/10.1016/S1042-444X(01)00047-0.
- Weinraub, Herbet J., and Sue Visscher. 1998. "Industry Practice Relating to Aggressive Conservative Working Capital Policies." *Journal of Financial and Strategic Decisions* 11 (2): 11-18. https://www.financialdecisionsonline.org/archive/pdffiles/v11n2/weinraub.pdf.
- Wens, Tobias, Ralf Moldenhauer, Jan Lindenberg, and Jens Kengelbach. 2019. Boost Business Resilience by Improving Net Working Capital. Boston: Boston Consulting Group. Accessed September 19, 2021. https://image-src.bcg.com/Images/BCG-Boost-Business-Resilience-by-Improving-Net-Working-Capital-Nov-2019_tcm22-233866.pdf.
- Woehrmann, Arnt, Thorsten Knauer and Johannes Gefken. 2012. "Kostenmanagement in Krisenzeiten: Rentabilitätssteigerung durch Working Capital Management?" [Cost Management in Crises: Profitability Increase by Working Capital Management]. Controlling & Management 56: 83-88. doi:https://doi.org/10.1365/s12176-012-0649-2.
- Wooldridge, Jeffrey M. 2002. *Econometric Analysis of Cross Section and Panel Data*. Cambridge, MA: MIT Press.
 - ———. 2012. *Introductory Econometrics: A Modern Approach*. Mason, OH: South-Western, Cengage Learning.

- World Bank. 2021. "World Development Indicators: GDP growth (annual %)." (World Bank database; accessed September 25, 2021). https://databank.worldbank.org/reports.aspx?source=2&series=NY.GDP.MKTP.KD.ZG&country=.
- World Health Organization. 2021. WHO Compendium of Innovative Health Technologies for Low-Resource Settings: COVID-19 and Other Health Priorities. Geneva: World Health Organization. Accessed September 20, 2021. https://www.who.int/publications/i/item/9789240032507.
- Xing. n.d. "Companies in the Medical Technology Sector." Accessed October 10, 2021. https://www.xing.com/companies/industries/50100-medical-technology.
- Yazdanfar, Darush, and Peter Öhman. 2014. "The Effect of Cash Conversion Cycle on Profitability in Omani Companies." *International Journal of Economics, Management and Accounting* 27 (2): 269-290. doi:https://doi.org/10.1108/IJMF-12-2013-0137.
- Yilmaz, Ilker, and Goksel Acar. 2019. "The Impact of Cash Conversion Cycle on Firm Profitability: An Empirical Study Based on Swedish Data." *International Journal of Managerial Finance* 10 (4): 442-452. https://journals.iium.edu.my/enmjournal/index.php/enmj/article/view/654.
- Zhu, Jay, Leena Gupta, Christopher Park and Debanshu Mukherjee. 2020. New Payment Models in Medtech: Regulatory, Technology, and Marketplace Trends Converging to Create New Opportunities for Manufacturers. London: Deloitte Insights. Accessed September 20, 2021. https://www2.deloitte.com/content/dam/insights/us/articles/6461_Medtech-paymentmodels/DI_Medtech-payment-models.pdf.
- Zimmer Biomet Holdings Inc. 2021a. "Annual Reports." Accessed October 10, 2021. https://investor.zimmerbiomet.com/financial-information/annual-reports.

——. 2021b. "Company Overview: A Vision Built on a Legacy of Innovation and Success." Accessed October 10, 2021. https://www.zimmerbiomet.com/en/about-us/company-overview.html.

3M Company. 2021. "SEC Filings." Accessed October 10, 2021. https://investors.3m.com/financials/sec-filings/default.aspx.

Appendices

Appendix A	
Table A1	List of abbreviations, acronyms and siglas used in Work Project
Table A2	Overview of past research about impact of CCC and its components on profitability and
	findings for correlation coefficients
Table A3	Overview of past research about impact of CCC and its components on profitability and
	findings for regression coefficients
Table A4	Literature review of the impact of CCC on profitability
Appendix B	
Table B1	Adjustments and aggregations applied to balance sheet and income statement items
Table B2	Overview of variables in dataset
Table B3	Listing and explanation of dummy variables
Table B4	Shapiro-Wilk and skewness and kurtosis tests after winsorization per country for 2016-2020
Table B5	Initial sample of companies for GER
Table B6	Initial sample of companies for the USA
Table B7	Inclusion criteria for final sample companies
Table B8	Foundation years of sample firms
Table B9	Transition from initial to final sample for GER and USA via exclusion
Table B10	Firms excluded from final sample for GER and USA
Table B11 Table P12	Number of firms with and without JEDS reporting per country and year
Table D12 Table B13	Number of firms per U.S. SIC code per country and year
Table B13	Total number of firms per U.S. SIC code per country for all years
Figure R1	Generalized overview of the research model for multivariate analysis
Annondiu C	Seneralized over view of the research model for maniful and sub-
Toble C1	Summary statistics of independent dependent and control variables per country
	for 2016-2020
Table C2	Common-sized balance sheet (based on median) per country for 2016-2020
Table C3	Common-sized income statement (based on median) per country for 2016-2020
Table C4	Summary statistics of other financial statement items and <i>GDPG</i> per country for 2016-2020
Table C5	Non-parametric median and parametric mean tests for control variables, other financial
	statement items and GDPG for 2016-2020
Table C6	Summary statistics of independent, dependent and control variables per country for 2016
Table C7	Summary statistics of independent, dependent and control variables per country for 2017
Table C8	Summary statistics of independent, dependent and control variables per country for 2018
Table C9	Summary statistics of independent, dependent and control variables per country for 2019
Table C10	Summary statistics of independent, dependent and control variables per country for 2020
Figure C1	Median <i>DIO</i> for GER and USA from 2016-2020
Figure C2	Median DSO for GER and USA from 2016-2020
Figure C3	Median DPO for GER and USA from 2016-2020
Table C11	P-values for wilcoxon rank-sum, non-parametric median and parametric mean tests for dependent and independent variables for 2016 2020
Table C12	Spearman's rank and Dearson correlation matrix of dependent independent and control
	variables for GER for 2016-2020
Table C13	Spearman's rank and Pearson correlation matrix of dependent, independent and control
	variables for USA for 2016-2020
Appendix D	
Table D1	Regression analysis of <i>DIO</i> , <i>DSO</i> and <i>DPO</i> (Models 5 A and 5 B) for total sample
	for 2016-2020
Table D2	Regression analysis of CCC (Models 6.A and 6.B) for total sample for 2016-2020
Table D3	Regression analysis of DIO, DSO and DPO (Models 5.A and 5.B) for GER for 2016-2020
Table D4	Regression analysis of CCC (Models 6.A and 6.B) for GER for 2016-2020
Table D5	Interpretation of regression coefficients of control and dummy variables for GER
Table D6	Regression analysis of DIO, DSO and DPO (Models 5.A and 5.B) for USA for 2016-2020
Table D7	Regression analysis of CCC (Models 6.A and 6.B) for USA for 2016-2020
Table D8	Interpretation of regression coefficients of control and dummy variables for USA

Appendix E	
Table E1	Non-parametric median and parametric mean tests for dependent and independent variables for 2016-2019
Table E2	Correlation coefficients of independent variables with <i>GPM</i> in GER and USA for Spearman's rank and Pearson correlation matrix for 2016-2019
Table E3	Regression analysis of DIO, DSO and DPO (Models 5.A and 5.B) for GER for 2016-2019
Table E4	Regression analysis of CCC (Models 6.A and 6.B) for GER for 2016-2019
Table E5	Regression analysis of DIO, DSO and DPO (Models 5.A and 5.B) for USA for 2016-2019
Table E6	Regression analysis of CCC (Models 6.A and 6.B) for USA for 2016-2019
Appendix F	

Stata code for the main analysis

Abbreviation	Explanation
AGE	Firm age
Appx.	Appendix
AT	Asset turnover
с.	circa
CAGR	Compound annual growth rate
CASH	Cash to total assets ratio
CASHR	Cash ratio
CARAT	Current assets to total assets ratio
CCC	Cash conversion cycle
CLRAT	Current liabilities to total assets ratio
COGS	Cost of goods sold to total sales ratio
COUNTRY	Dummy variable for country
CR	Current ratio
DA	Depreciation and amortization to total sales ratio
DAX	Deutscher Aktienindex (German Stock Index)
DEBT	Debt to total assets ratio
DIO	Days inventory outstanding
DPO	Days payable outstanding
DSO	Days sales outstanding
EBIT	Earnings before interest and taxes to total sales ratio
EBITDA	Earnings before interest, taxes, depreciation, and amortization to total sales ratio
e.g.	Exempli gratia
EQUITY	Equity to total assets ratio
EUR	Euro
FDA	U.S. Food and Drug Administration
FE	Fixed effects regression
US GAAP	U.S. Generally Accepted Accounting Principles
GDP	Gross domestic product
GDPG	Gross domestic product growth
GER	Germany
GLS	Generalized least squares model
GMM	Generalized method of moment model
GOI	Gross operating income (scaled by assets)
GPM	Gross profit margin
GROW	Sales growth
GWIA	Goodwill and intangible assets ratio
HGB	Handelsgesetzbuch (German Commercial Code)
i.a.	Inter alia
IFRS	Dummy variable for International Financial Reporting Standards
INTEREST	Interest to total sales ratio
INV	Inventory to total sales ratio
LIST	Dummy variable for listed firms
MD	Medical Device
MDs	Medical Devices
MVA	Market value added
NI	Net income to total sales ratio
NOI	Net operating income (scaled by assets)
NPM	Net profit margin
NWC	Net working capital to total sales ratio
obs.	Observations
OLS	Pooled ordinary least squares regression
OPEX	Operating expenses to total sales ratio
ОРМ	Operating profit margin
PAY	Accounts payable to total assets ratio
pp.	Percentage points
QR	Quick ratio
R&D	Research and development
RE	Random effects regression
RECEIV	Accounts receivable to total assets ratio
ROA	Return on assets
ROCE	Return on capital employed
ROE	Return on equity
ROI	Return on investment
ROIC	Return on invested capital
SD	Standard deviation
SDE	Standard errors
SE	Stock exchange

Appendix A					
Table A1: List of abbreviations,	acronyms a	and siglas	used in	Work Pro	ject

Table A1 (continued).

Abbreviation	Explanation
SIC	Standard industry classification
SIZE	Firm size
SME	Small and medium enterprises
SUR	Seemingly unrelated regression model
SWOT	Strengths, weaknesses, opportunities, and threats
TANG	Asset tangibility
U.S.	United States
USA	United States of America
USD	U.S. Dollar
VAT	Value added tax
WC	Working Capital
WCM	Working Capital Management
WLS	Weighted least squares model
YEAR2017	Dummy variable for year 2017
YEAR2018	Dummy variable for year 2018
YEAR2019	Dummy variable for year 2019
YEAR2020	Dummy variable for year 2020

						Cor	Correlation coefficients of		
						in	depender	nt variabl	es
Authors and year	Period	Country	Sample	Industry	Dependent variable	CCC	DIO	DSO	DPO
Jose, Lancaster and Stevens	1974-	USA	Large firms	Multiple industries	ROA	-***	n.a.	n.a.	n.a.
(1996)	1993			(i.a., manufacturing)	ROE	-***	n.a.	n.a.	n.a.
					(for manufacturing				
					industry)				
Lyroudi and Lazaridis	1997	Greece	Small to large firms	Food industry	ROI	+*	n.a.	n.a.	n.a.
(2000)					ROE	+			
					NPM	+***			
Wang (2002)	1985-	Taiwan	n.a.	Multiple industries	ROA (Japan)	-***	n.a.	n.a.	n.a.
	1996	Japan		(i.a., manufacturing)	ROE (Japan)	_***	n.a.	n.a.	n.a.
					ROA (Taiwan)	-***	n.a.	n.a.	n.a.
					ROE (Taiwan)	_***	n.a.	n.a.	n.a.
					(for manufacturing				
					industry)				
Deloof	1991-	Belgium	Large firms	Non-financial firms	GOI	-	-	-	-
(2003)	1996								
Lazaridis and Tryfonidis	2001-	Greece	Firms listed on Athens	Non-financial firms	GOI	_***	_***	_***	+***
(2006)	2004		Stock Exchange (SE)						
Padachi (2006)	1998-	Mauritius	Small firms	Manufacturing industry	ROA	+	-	-	-
	2003				OPM	+	-	-	-
					AT	-	-	-	-
García-Teruel and	1996-	Spain	Small and medium	Multiple industries	ROA	-***	_***	-***	_***
Martínez-Solano (2007)	2002		enterprises (SME)	(i.a., manufacturing)					
Raheman and Nasr (2007)	1999-	Pakistan	Firms listed on Karachi	Non-financial firms	NOI	_**	_***	_***	_***
	2004		SE						
Uyar (2009)	2007	Turkey	Firms listed on Istanbul	Multiple industries	ROA	_***	n.a.	n.a.	n.a.
			SE		ROE	+	n.a.	n.a.	n.a.
Gill, Biger and Mathur	2005-	USA	Firms listed on New	Manufacturing industry	GOI	+	+	_***	+
(2010)	2007		York SE						
Raheman, Afza, Qayyum	1998-	Pakistan	Firms listed on Karachi	Manufacturing industry	NOI	-	_***	_***	_***
and Bodla (2010)	2007		SE	(i.a., pharmaceutical)					
Ebben and Johnson (2011)	2002-	USA	Small and private	Manufacturing and retail industries	AT	_***	n.a.	n.a.	n.a.
	2004				ROIC	-	n.a.	n.a.	n.a.
					(for manufacturing				
					1ndustry)				

Table A2: Overview of past research about impact of CCC and its components on profitability and findings for correlation coefficients

Table A2	(continued)).
----------	-------------	----

Authors and year	Period	Country	Sample	Industry	Dependent variable	CCC	DIO	DSO	DPO
Sharma and Kumar (2011)	2000- 2008	India	Firms listed at Bombay SE	Multiple non-financial industries (i.a., healthcare)	ROA	+	-	+**	-
Abuzayed (2012)	2000- 2008	Jordan	Firms listed on Amman SE	Multiple industries (i.a., pharmaceutical & medical)	GOI	+***	+***	+***	_***
Baños-Caballero, García- Teruel and Martínez-Solano (2012)	2002- 2007	Spain	SME	Multiple industries (i.a., manufacturing)	GOI NOI	_*** _***	n.a. n.a.	n.a. n.a.	n.a. n.a.
Tauringana and Afrifa (2013)	2005- 2009	UK	SME listed on London SE	Alternative Investment Market	ROA	+	+	_**	_***
Enqvist, Graham and Nikkinen (2014)	1990- 2008	Finland	Firms listed on Nasdaq OMX Helsinki SE	Non-financial firms	ROA GOI (for normal period)	+ +**	++++	-+	- _**
Yazdanfar and Öhman (2014)	2008- 2011	Sweden	SME	Multiple industries (i.a., metal & retail)	ROA	_***	n.a.	n.a.	n.a.
Pais and Gama (2015)	2002- 2009	Portugal	SME	Multiple industries (i.a., manufacturing & human health activities)	ROA	_***	_***	_***	_***
Ahmed, Awan, Safdar, Hasnain and Kamran (2016)	2005- 2012	Pakistan	Firms listed on Karachi SE	Pharmaceutical industry	ROI ROE	_*** _***	n.a.	n.a.	n.a.
Afrifa and Padachi (2016)	2005- 2010	UK	SME listed on London SE	Alternative Investment Market	ROA ROCE ROE	_*** _*** _***	n.a. n.a. n.a.	n.a. n.a. n.a.	n.a. n.a. n.a.
Lyngstadaas and Berg (2016)	2010- 2013	Norway	SME	Multiple industries (i.a., manufacturing)	ROA	_***	_***	_***	_***
Nijam (2016)	2011- 2013	Sri Lanka	Firms listed on Colombo SE	Hotel and travel industry	GPM NPM ROA ROE	+ +*** + +	+** _** _*** -	+ +*** +** +	+ - -
Kasozi (2017)	2007- 2016	South Africa	Firms listed on Johannesburg SE	Manufacturing industries	ROA	+*	-	_**	_***
Usman, Shaikh and Khan (2017)	2003- 2015	Denmark Norway Sweden	n.a.	Non-financial firms	ROA	_***	_***	_***	_***
Chowdhurry, Alam, Sultana and Hamid (2018)	2001- 2015	Bangladesh	Firms listed on Dhaka SE	Pharmaceutical industry	ROA ROE	-	-	- +	+ -

Table A2 (continued).

Authors and year	Period	Country	Sample	Industry	Dependent	CCC	DIO	DSO	DPO
					variable				
Sharif and Islam (2018)	2010-	Bangladesh	Firms listed on Dhaka	Pharmaceutical industry	ROA	-	+**	-	-
	2014		and Chittagong SE						
Yilmaz and Acar (2019)	2013-	Oman	Firms from Muscat	Non-financial firms	GPM	-	+**	-**	+
	2016		Securities Market		EBIT	-	+	-**	-*
					ROA	-	-	-	-
Sensini (2020)	2010-	Italy	SME	Agri-food industry	GPM	-	-	-	-
	2016								
Lin and Wang (2021)	2008-	China	A-share listed firms	Non-financial firms	ROA	_***	n.a.	n.a.	n.a.
	2019								

Note: Table serves as overview of past research. Calculation of CCC components may differ from calculation in the Work Project. Pearson correlation matrix was mainly used. Cells with n.a.: information is not available; dark grey highlighted cells: no availability of significance for correlation coefficients; PEA: Pearson correlation matrix; GOI: gross operating income; NOI: net operating income; OPM: operating profit margin; GPM: gross profit margin; NPM: net profit margin; EBIT: EBIT margin; ROA: return on assets; ROI: return on investment; ROIC: return on investment; ROIC: return on investment; ROIC: return on equity; ROCE: return on capital employed; AT: asset turnover; ***: p-value <0.01; **: p-value <0.05; *: p-value <0.1.

							Re	Regression coefficients of		
Anthong and year	Dowind	Country	Samula	Inductory	Madal	Dependent veriable			IL VARIADI	DBO
Authors and year	1074		Sample	Industry Maltin la industria	Niodei	Dependent variable	***	DIO	050	DPO
Stevens (1006)	19/4-	USA	Large firms	(i.e. monufacturing)	n.a.	ROA	***	n.a.	n.a.	n.a.
Stevens (1990)	1995			(I.a., manufacturing)		KOE (for manufacturing		II.a.	11.a.	n.a.
						(nor manufacturing industry)				
Wang (2002)	1985-	Taiwan	n.a.	Multiple industries	Cross-	ROA (Japan)	_***	n.a.	n.a.	n.a.
	1996	Japan		(i.a., manufacturing)	sectional	ROA (Taiwan)	_***	n.a.	n.a.	n.a.
		1			regression	(for manufacturing				
						industry)				
Deloof (2003)	1991-	Belgium	Large firms	Non-financial firms	FE	GOI	-	-**	-***	_***
	1996				OLS	GOI	_***	_***	_***	_***
Lazaridis and	2001-	Greece	Firms listed on	Non-financial firms	n.a.	GOI	_***	_***	_***	+***
Tryfonidis (2006)	2004		Athens SE							
Padachi (2006)	1998-	Mauritius	Small firms	Manufacturing industry	FE	ROA	+	+	-**	-
	2003				OLS	ROA	-	-	-	_*
García-Teruel and	1996-	Spain	SME	Multiple industries	FE	ROA	_***	_***	_***	_***
Martínez-Solano (2007)	2002			(i.a., manufacturing)	FE/IV	ROA	_***	_***	_***	-
Raheman and Nasr	1999-	Pakistan	Firms listed on	Non-financial firms	OLS	NOI	-**	-***	-***	_***
(2007)	2004		Karachi SE		GLS	NOI	_***	_***	_***	$+^{***}$
Şamiloğlu and	1998-	Turkey	Firms listed on	Manufacturing industry	n.a.	ROA	-	-***	-***	n.a.
Demirgüneş (2008)	2007		Istanbul SE							
Gill, Biger and Mathur	2005-	USA	Firms listed on	Manufacturing industry	WLS	GOI	+**	+*	-**	-
(2010)	2007		New York SE							
Raheman, Afza,	1998-	Pakistan	Firms listed on	Manufacturing industry	FE	NOI	-***	-***	+	+
Qayyum and Bodla	2007		Karachi SE	(i.a., pharmaceutical)	OLS	NOI	-	_***	_***	_***
(2010)										
Ebben and Johnson	2002-	USA	Small and private	Manufacturing and retail	n.a.	AT	_***	n.a.	n.a.	n.a.
(2011)	2004			industry		ROIC	_**	n.a.	n.a.	n.a.
						(for manufacturing				
						industry)				
Nobanee, Abdullatif	1990-	Japan	Small to large	Multiple industries	GMM	ROI	_***	n.a.	n.a.	n.a.
and AlHajjar (2011)	2004		firms listed on	(i.a., healthcare, pharma-						
			Tokyo SE	ceutical & biotechnological)						
Sharma and Kumar	2000-	India	Firms listed at	Multiple non-financial	OLS	ROA	+	-	+**	-
(2011)	2008		Bombay SE	industries (i.a., healthcare)						

Table A3: Overview of past research about impact of CCC and its components on profitability and findings for regression coefficients

Table A3 (continued).

							Regression coefficients of			s of	
	D • 1		C 1	T 1 /			In	Independent variables			
Authors and year	Period	Country	Sample	Industry	Model	Dependent variable	CCC	DIO	DSO	DPO	
Abuzayed (2012)	2000-	Jordan	Firms listed on	Multiple industries	FE	GOI	+*	+**	+*	-	
	2008		Amman SE	(i.a., pharmaceutical & medical)	OLS	GOI	+***	+***	+***	_*	
					GMM	GOI	+	+*	+**	_***	
Baños-Caballero,	2002-	Spain	SME	Multiple industries	GMM	GOI	_***	n.a.	n.a.	n.a.	
García-Teruel and	2007			(i.a., manufacturing)		NOI	_***	n.a.	n.a.	n.a.	
Martínez-Solano (2012)											
Woehrmann, Knauer,	2007-	GER	Medium and large	Multiple industries	Panel data	ROCE	n.a.	_***	+	+***	
and Gefken (2012)	2010		firms	(i.a., healthcare &							
				manufacturing)							
Akoto, Awunyo-Vitor	2005-	Ghana	Firms listed on	Manufacturing industry	OLS	ROE	+**	n.a.	_**	+	
and Angmor (2013)	2009		Ghana SE								
Tauringana and Afrifa	2005-	UK	SME listed on	Alternative Investment Market	RE	ROA	-	-	-**	_***	
(2013)	2009		London SE								
Enqvist, Graham and	1990-	Finland	Firms listed on	Non-financial firms	n.a.	ROA	_***	_***	-	-	
Nikkinen (2014)	2008		Nasdaq OMX			GOI	_***	_**	-	_***	
			Helsinki SE			(for normal period)					
Yazdanfar and Öhman	2008-	Sweden	SME	Multiple industries	SUR	ROA	_***	n.a.	n.a.	n.a.	
(2014)	2011			(i.a., metal & retail)							
Pais and Gama (2015)	2002-	Portugal	SME	Multiple industries	FE	ROA	_***	_***	_***	_***	
	2009	0		(i.a., manufacturing & human	FE/IV	ROA	_***	_***	+***	_***	
				health activities)	OLS	ROA	_***	_***	_***	_***	
					OLS	ROIC	_***	_***	-***	_***	
Afrifa and Padachi	2005-	UK	SME listed on	Alternative Investment Market	RE	ROA	+*	n.a.	n.a.	n.a.	
(2016)	2010		London SE			ROCE	+***	n.a.	n.a.	n.a.	
						ROE	+***	n.a.	n.a.	n.a.	
Ahmed, Awan, Safdar,	2005-	Pakistan	Firms listed on	Pharmaceutical industry	n.a.	ROI	_***	n.a.	n.a.	n.a.	
Hasnain and Kamran	2012		Karachi SE	-		ROE	_***	n.a.	n.a.	n.a.	
(2016)											
Lyngstadaas and Berg	2010-	Norway	SME	Multiple industries	FE	ROA	_***	_***	_***	_***	
(2016)	2013	5		(i.a., manufacturing)	FE	ROIC	_***	_***	_***	_**	
					OLS	ROA	_***	_***	_***	_***	
					OLS	ROIC	_***	_***	-***	_**	
Nijam (2016)	2011-	Sri Lanka	Firms listed on	Hotel and travel industry	OLS	GPM	+	+	+	+	
	2013		Colombo SE		OLS	NPM	+***	-	+***	-	
					OLS	ROA	+	-	+	-	
					OLS	ROE	+	-	+	-	

Table A3 (continued).

							Re; ir	Regression coefficients of independent variables		
Authors and year	Period	Country	Sample	Industry	Model	Dependent variable	CCC	DIO	DSO	DPO
Kasozi (2017)	2007-	South	Firms listed on	Manufacturing industries	OLS	ROA	+	+	-	-***
	2016	Africa	Johannesburg		RE	ROA	+	+*	_**	_***
			Securities		FE	ROA	+**	+**	-	_***
			Exchange							
S. Ng, Ye, Ong and Teh	2007-	Malaysia	Listed firms from	Manufacturing industry	OLS	GOI	+***	+***	_***	+
(2017)	2012		industrial							
			products							
			industries on							
			Bursa Malaysia							
II (11) 1	2002		Main market		01.0	DOA	ste ste ste	ale ale ale	aleale	عاد عاد عاد
Usman, Shaikh, and Khar (2017)	2003-	Denmark	n.a.	Non-financial firms	OLS	ROA	-***	_* * *	-**	-***
Knan (2017)	2015	Norway								
Altof and Shah (2018)	2007	Judio	Einma from DCE	Multiple inductries	CMM	DOA	. ***	. ***	***	. ***
Altai aliu Shali (2018)	2007-	mula	ALL CAD Index	(i.e. abamical and abamical	GMM	CDM	+****	+***	+***	+***
	2010		ALLCAF IIIdex	(i.a., chemical and chemical	GIVIIVI	OFM	+	+	+	+
Chang (2018)	1994-	Global	na	Multiple industries	OI S	ROA	_***	na	na	na
Chang (2018)	2011	(i.a. GER	11.a.	(i.a. medical equipment		ROA (GER)		n a	n.a.	n.a.
	2011	and USA)		pharmaceutical products &	OLS	ROA (USA)	+***	n a	n a	n a
				healthcare)	3SLS	ROA	_***	n.a.	n.a.	n.a.
Chowdhurry, Alam,	2001-	Bangla-	Firms listed on	Pharmaceutical industry	n.a.	ROA	_***	-	_**	+***
Sultana, and Hamid	2015	desh	Dhaka SE			ROE	+	+	+	_***
(2018)										
Samosir (2018)	2012-	Indonesia	Firms listed on	Manufacturing industry	FE	ROA	+***	n.a.	n.a.	n.a.
	2014		Indonesia SE							
Sharif and Islam (2018)	2010-	Bangla-	Firms listed on	Pharmaceutical industry	n.a.	ROA	+**	+**	+***	+**
	2014	desh	Dhaka and Chitta-							
			gong SE							
Yilmaz and Acar (2019)	2013-	Oman	Firms from	Non-financial firms	GMM	GPM	_***	+	+	+***
	2016		Muscat Securities		GMM	EBIT	+**	-	+	_**
			Market		GMM	ROA	-	-	+	-
Hoegerle, Charifzadeh,	2011-	GER	Firms listed on	Multiple industries	FE	ROCE	_***	_***	_**	+
Ferencz and Kostin	2017		German stock	(i.a., pharma & healthcare)						
(2020)			index (DAX)							
Sensini (2020)	2010-	Italy	SME	Agri-tood industry	OLS	GPM	-*	n.a.	n.a.	n.a.
	2016									

Table A3 (continued).

							Reg in	gression c depender	oefficient 1t variabl	s of es
Authors and year	Period	Country	Sample	Industry	Model	Dependent variable	CCC	DIO	DSO	DPO
Basyith, Djazuli and	2008-	Indonesia	Firms listed on	Multiple industries	OLS	ROA	-	-	-***	+***
Fauzi (2021)	2019		Indonesia SE	(i.a., pharmaceutical)		GPM	+***	$+^{***}$	-***	+
Lin and Wang (2021)	2008-	China	A-share listed	Non-financial firms	FE	ROA	_***	n.a.	n.a.	n.a.
	2019		firms							

Note: Table serves as overview of past research. Calculation of CCC components may differ from calculation in the Work Project. Cells with n.a.: information is not available; GOI: gross operating income; NOI: net operating income; GPM: gross profit margin; OPM: operating profit margin; NPM: net profit margin; EBIT: EBIT margin; ROA: return on assets; ROI: return on investment; ROIC: return on invested capital; ROE: return on equity; ROCE: return on capital employed; AT: asset turnover; OLS: pooled ordinary least squares model; FE: fixed effects model; fE/IV: fixed effects model with instrumental variables; RE: random effects model; GLS: generalized least squares model; WLS: weighted least squares model; SUR: seemingly unrelated regression model; GMM: generalized method of moment model; 3SLS: three-stage least squares model; ***: p-value <0.01; **: p-value <0.05; *: p-value <0.1.

Table A4: Literature review of the impact of CCC on profitability

Significantly negative and linear impact of CCC on profitability

For the variable of interest, *GPM*, Yilamz and Acar (2019) and Sensini (2020) supported with proof for non-financial Omani firms and Italian small and medium enterprises (SME) from the agri-food industry, respectively.

Jose et al. (1996) found evidence of a negative impact of *CCC* on ROA and ROE for U.S. companies from seven industries companies. Similar evidence for the USA was later analysed by Ebben and Johnson (2011) for small manufacturing firms using return on invested capital (ROIC) and by Wang (2019) for listed firms (including MD firms) using return on equity (ROE). Proof for GER was delivered by Hoegerle et al. (2020) for listed firms from the German stock index *DAX* with return on capital employed (ROCE) as proxy. With regard to ROA, additional evidence was added for Japanese and Taiwanese firms (Wang 2002), Spanish SME (García-Teruel and Martínez-Solano 2007), Finish listed firms (Enqvist, Graham, and Nikkinen 2014), Swedish SME (Yazdanfar and Öhman 2014), Portuguese SME (Pais and Gama 2015), Norwegian SME (Lyngstadaas and Berg 2016), listed pharmaceutical firms in Bangladesh (Chowdhurry, Alam, Sultana, and Hamid 2018) and Chinese listed firms (Lin and Wang 2021). Chang (2018) supported with equivalent findings for a global sample including medical equipment firms.

For GOI, Lazaridis and Tryfonidis (2006) recommended a negative influence for firms listed on the Athens Stock SE, which was confirmed by Enqvist et al. (2014) for Finland. Deloof (2003) only provided a significantly negative effect in one model for large firms in Belgium. Further evidence for the manufacturing industry (i.e., pharmaceutical) was provided by Raheman et al. (2010) for Pakistani firms using NOI. A negative *CCC* influence on ROE and return on investment (ROI) was proven for the pharmaceutical industry in Pakistan by Ahmed, Awan, Safdar, Hasnain, and Kamran (2016).

Significantly positive and linear impact of CCC on profitability

A positive *CCC* impact on *GPM* was analysed for Indian firms by Altaf and Shah (2018). Dalci, Tanova, Özyapici, and Bein (2019) provided additional proof for a positive effect on profitability for large German companies. With respective to ROA, evidence was analysed for firms in the USA (Chang 2018), manufacturing firms in Indonesia (Samosir 2018) and listed pharmaceutical firms in Bangladesh (Sharif and Islam 2018). Similar results for GOI were found by Gill et al. (2010) for listed U.S. manufacturing firms, by Abuzayed (2012) for listed firms from Amman SE and by S. Ng et al. (2017) for listed Malaysian manufacturing firms. Akoto, Awunyo-Vitor, and Angmor (2013) and Kasozi (2017) strengthened the results for the manufacturing industry.

Insignificant and linear impact of CCC on profitability

An insignificant effect was suggested for *GPM* for listed hotel and travel firms in Sri Lanka (Nijam 2016) and for listed firms in Indonesia (Basyith et al. 2021). For ROA, small Mauritian firms (Padachi 2006), listed Turkish manufacturing firms (Şamiloğlu and Demirgüneş 2008), listed Indian firms (Sharma and Kumar 2011) and German firms (Chang 2018) showed an insignificant effect of *CCC*.

Significant and non-linear impact of CCC on profitability

Baños-Caballero et al. (2012) found a concave influence of *CCC* on GOI for Spanish SME. It was supported for ROA, ROE and ROCE by Afrifa and Padachi (2016) for SME of the Alternative Investment Market of London SE.

Appendix B

	Table B1: Ad	justments and	aggregations	applied to	balance	sheet and	income	statement	items
--	--------------	---------------	--------------	------------	---------	-----------	--------	-----------	-------

Item	Adjustment
Accounts	Receivables include trade receivables (short-term, sometimes also long-term), in some cases also receivables to
receivables	related parties.
Accounts payable	Payables include trade payables (short-term, sometimes also long-term), in some cases also payables to related
	parties.
Provisions	Provisions with missing term (current or non-current) were assumed to be long-term.
Cost of goods sold	In case of missing cost of goods sold (for income statements with total cost structure), sum of cost of material and
	changes in inventory were used as proxy for cost of goods sold.
Operating profit	Operating profit only includes operating expenses and income. Non-recurring and non-operating income and
	expenses were excluded.
Earnings before	Earnings before interest and taxes include all earnings except for interest and taxes. Hence, it also comprise non-
interest and taxes	recurring and non-operating income and expenses, making it different from operating profit.
Net interest	Interest includes interest expense and income. Thus, it is the net interest expense. In some cases, other income is
	not separated from net interest expense, hence it is not included in earnings before interest and taxes but in
	interest.

Note: Adjustments and aggregations were applied to the extent of available information. They ensure the comparability of the financial data between firms in GER itself and between companies in GER and the USA due to different financial reporting standards. Selling, general and administration expenses and R&D expenses were not included since they were not consistently available for each sample firm.

Table B2: Overview of variables in dataset

Variable	Explanation
COUNTRY	Dummy for country indication
COMPANY	Name of company
SICCODE	U.S. SIC Code
YEAR	Year of reporting
YEAR2017	Dummy variable for year 2017
YEAR2018	Dummy variable for year 2018
YEAR2019	Dummy variable for year 2019
YEAR2020	Dummy variable for year 2020
PERIOD_END	End of reporting period
INCORPORATION	Year of incorporation
AGE_ABS	Age in years
AGE	Age in natural logarithm of years
IFRS	Dummy variable for financial reporting according to International Financial Reporting Standards
ACCOUNTING	Financial Reporting Standards
	Dummy variable for a public listing of a firm
IA_ABS	Absolute value of total assets (in thousand EUR/USD)
CAPAT	Absolute value of current assets (in mousting EOK/USD)
CASHD	Continuon-sized current assets (current assets to total assets faile)
OR	Oujek ratio (current assets minus inventories to current liabilities ratio)
CR	Current ratio (current assets to current liabilities ratio)
NWC	Common-sized net working capital (net working capital to total assets ratio - net working capital is current
itwe	assets minus current liabilities)
CASH ABS	Absolute value of cash (in thousand EUR/USD)
CASH	Common-sized cash (cash to total assets ratio)
INV_ABS	Absolute value of inventory (in thousand EUR/USD)
INV	Common-sized inventories (inventories to total assets ratio)
RECEIV_ABS	Absolute value of accounts receivable (in thousand EUR/USD)
RECEIV	Common-sized accounts receivable (accounts receivable to total assets ratio)
NCA_ABS	Absolute value of non-current assets (in thousand EUR/USD)
NCARAT	Common-sized non-current assets (non-current assets to total assets ratio)
TANG_ABS	Absolute value of fixed assets (in thousand EUR/USD)
TANG	Common-sized fixed assets (fixed assets to total assets ratio)
GWIA_ABS	Absolute value of goodwill and intangible assets (in thousand EUR/USD)
GWIA	Common-sized goodwill and intangible assets (goodwill and intangible assets to total assets ratio)
EQUITY_ABS	Absolute value of equity (in thousand EUR/USD)
EQUITY	Common-sized equity (equity to total assets ratio)
DEBT_ABS	Absolute value of total liabilities (in thousand EUR/USD)
DEBT	Common-sized total liabilities (total liabilities to total assets ratio)
CL_ABS	Absolute value of current liabilities (in thousand EUR/USD)
CLKAI DAV ADS	Common-sized current habilities (current habilities to total assets ratio)
PA1_ADS	Common sized accounts payable (in mousaid EUN/USD)
NCL ABS	Absolute value of non-current liabilities (in thousand FUR/USD)
NCL RAT	Common-sized non-current liabilities (non-current liabilities to total assets ratio)
SALES ABS	Absolute value of total sets (in thousand FUIR/USD)
SIZE	Firm size (nature of clair states)
GROW	Annual cales growth
COGS ABS	Absolute value of cost of goods sold (in thousand EUR/USD)
COGS	Common-sized cost of goods sold (cost of goods sold to total sales ratio)
GP ABS	Absolute value of gross profit (in thousand EUR/USD)
DA_ABS	Absolute value of depreciation and amortization expenses (in thousand EUR/USD)
DA	Common-sized depreciation and amortization (depreciation and amortization expense to total sales ratio)
OP_ABS	Absolute value of operating profit (in thousand EUR/USD)
EBIT_ABS	Absolute value of earnings before interest and taxes (in thousand EUR/USD)
EBIT	Common-sized earnings before interest and taxes (earnings before interest and taxes to total sales ratio)
INTEREST_ABS	Absolute value of net interest expenses (in thousand EUR/USD)
INTEREST	Common-sized net interest (net interest expense to total sales ratio)
EBT_ABS	Absolute value of earnings before taxes (in thousand EUR/USD)
EBT	Common-sized earnings before taxes (earnings before taxes to total sales ratio)
NI_ABS	Absolute value of net income (in thousand EUR/USD)
NI	Common-sized net income (net income to total sales ratio)
GDPG	Annual gross domestic product growth
DIO	Days inventory outstanding (inventory divided by cost of goods sold multiplied by 365)
DSO	Days sales outstanding (accounts receivable divided by total sales multiplied by 365)
	Days payable outstanding (accounts payable divided by cost of goods sold multiplied by 365)
CDM	Cases conversion cycle (sum of days inventory and sales outstanding minus payable outstanding)
GPM OPM	Gross profit margin (gross profit to total sales ratio)
OPM	Operating margin (operating profit to total sales ratio)

Note: Variables are ordered as in the dataset, which is a hand-collected data collection from MD firms in GER and the USA.

Tuble De.	Ensuing and explanation	
Dummy variable	Possible values of the variable	Explanation
COUNTRY	<i>COUNTRY</i> = 1 if a company is from the USA; else COUNTRY = 0.	COUNTRY is necessary to differentiate between GER and USA sample data.
YEAR2017	YEAR2017 = 1 if data is from the year 2017; else YEAR2017 = 0 .	<i>YEAR2017</i> accounts for e.g., the specific inflation, interest and <i>GDPG</i> levels in the particular year 2017.
YEAR2018	YEAR2018 = 1 if data is from the year 2018; else YEAR2018 = 0 .	<i>YEAR2018</i> accounts for e.g., the specific inflation, interest and <i>GDPG</i> levels in the particular year 2018.
YEAR2019	YEAR2019 = 1 if data is from the year 2019; else YEAR2019 = 0 .	<i>YEAR2019</i> accounts for e.g., the specific inflation, interest and <i>GDPG</i> levels in the particular year 2019.
YEAR2020	YEAR2020 = 1 if data is from the year 2020; else YEAR2020 = 0 .	<i>YEAR2020</i> accounts for e.g., the specific inflation, interest and <i>GDPG</i> levels in the particular year 2020.
LIST	LIST = 1 if a company is publicly listed; else LIST = 0. LIST only applies for regressions for GER since in all U.S. firms are listed.	Listed firms are less dependent on WC as financing method than unlisted companies due to additional (potentially cheaper) financing sources (Brav 2009). Simultaneously, they have increased agency costs resulting from the splitting of ownership and management (Jensen 1989; Asker, Farre-Mensa, and Ljungqvist 2015). For larger firms, as it is primary the case for the sample firms, the benefits of improved capital market access may exceed agency costs and thus, being listed might positively affect profitability (Doidge, Karolyi, and Stulz 2017). In conclusion, <i>LIST</i> is expected to have a positive effect on <i>GPM</i> .
IFRS	<i>IFRS</i> = 1 if a company adopts <i>IFRS</i> standards; else <i>IFRS</i> = 0. <i>IFRS</i> only applies for regressions for GER since all U.S. firms do not apply <i>IFRS</i> .	Sample firms apply different financial reporting regulation: international standards, being International Financial Reporting Standards (<i>IFRS</i>), and national standards, being U.S. Generally Accepted Accounting Principles (US GAAP) and German Commercial code (<i>Handelsgesetzbuch</i>) (HGB). The divergent accounting standards will lead to differences in financial statement items between German and U.S. firms but also between German firms because German firms differ in the application of international (<i>IFRS</i>) and national standards (HGB). The divergent exercise of accounting options by managers may lead to further deviations in the financial statement items. Apart from many divergences, the regulations differ in the consecutive valuation of inventory. First-in-first-out (FIFO) can be applied under <i>IFRS</i> (IAS 2), US GAAP (ASC 330) and HGB (§253), whereas last-in-first-out (LIFO) is only permitted under HGB and US GAAP (IFRS Foundation 2021b; FASB n.d.; Commercial Code n.d.). Hence, the adopted financial reporting standards may induce different inventory measurement, which influences <i>COGS</i> and ultimately, <i>DIO</i> , <i>DPO</i> , <i>CCC</i> and <i>GPM</i> . As a result, there might be an influence on the effect of <i>CCC</i> and <i>CCC</i> components on <i>GPM</i> . R&D has an important role in the MD industry and hence, divergent recognition and measurement of R&D expenses might also impact the value of <i>GWIA</i> and its relationship to <i>GPM</i> . In detail, U.S. firms according to US GAAP (ASC 730) need to expense R&D costs in the income statement (FASB n.d.), whereas German firms may capitalize development cost, either according to <i>IFRS</i> (IAS 38) or HGB (§248, §255) (IFRS Foundation 2021a; Commercial Code n.d.). Hence, US GAAP might have a negative impact on profitability. Furthermore, the consecutive measurement of fixed assets differs between <i>IFRS</i> and US GAAP as well as HGB. Fixed assets are subsequently valued at initial cost reduced by accumulated depreciation under IFRS (IAS 16), US GAAP (ASC 360) and HGB (§253), but there is an additional option fo

Table B3: Listing and explanation of dummy variables

P-value	Test	Shapiro-Wilk test p-value for GER	Shapiro-Wilk test p-value for USA	Skewness and kurtosis test p-value for GER	Skewness and kurtosis test p-value for USA
GPM		0.0017***	0.0002***	0.0115**	0.0000***
DIO		0.3408	0.0000***	0.4010	0.0051***
DSO		0.0045***	0.4861	0.5574	0.8631
DPO		0.0019***	0.3948	0.0537*	0.5892
CCC		0.0051***	0.0000***	0.0660*	0.0004***
SIZE		0.0001***	0.0045***	0.0286**	0.0000***
AGE		0.0025***	0.0002***	0.0015***	0.0000***
GROW		0.0002***	0.0279**	0.0031***	0.0604*
DEBT		0.4309	0.0000***	0.1208	0.0094***
TANG		0.0007***	0.0000***	0.0138**	0.0076***
GWIA		0.0000***	0.0000***	0.0072***	0.0000***
CR		0.0004***	0.0002***	0.0005***	0.0247**

Table B4: Shapiro-Wilk and skewness and kurtosis tests after winsorization per countryfor 2016-2020

Note: If p-value of Shapiro-Wilk test is below 10%, the null hypothesis, which implies normality of that variable, is rejected. Similarly, if p-value of joint test for skewness and kurtosis is below 10%, then skewness and kurtosis exist for the variable. ***: p-value <0.01; **: p-value <0.05; *: p-value <0.1.

Tuble Do: Initial sample			IDDC		TE 6	Ŧ
Company	Website	Listed	IFRS	End of	Type of	Income
		IIIII		reporting	statements	statement
Fresenius Medical Care AG &	https://www.freseniusme	Yes	Yes	31 st	Consolidated	Cost of sales
Co. KGaA	dicalcare.com/en/home/	103	105	December	Consolidated	Cost of sales
Siemens Healthineers AG	https://www.siemens-	Yes	Yes	30 th	Consolidated	Cost of sales
	healthineers.com/			September		
B. Braun SE	https://www.bbraun.com	No	Yes	31 st	Consolidated	Cost of sales
	/en.html			December		
Drägerwerk AG & Co. KGaA	https://www.draeger.com	Yes	Yes	31 st	Consolidated	Cost of sales
	/en-us_us/Home			December		
Paul Hartmann AG	https://www.hartmann.in	Yes	Yes	31 st	Consolidated	Total cost
<u> </u>	fo/en-corp/			December		
Karl Storz SE & Co. KG	https://www.karlstorz.co	No	No	31 st	Consolidated	Cost of sales
	m/de/en/index.ntm?targe			December		
Carl Zaiss Meditec AG	l=	Vac	Vec	30 th	Consolidated	Cost of sales
Call Zelss Medilee AG	editec/int/home.html	105	105	September	Consolidated	Cost of sales
Näder Holding GmbH & Co	https://www.ottobock.co	No	No	31 st	Consolidated	Total cost
KG - before 2018 Otto Bock	m/en/	110	110	December	Consolidated	roun cost
Holding GmbH & Co. KG						
(Parent company of Ottobock						
SE & Co. KGaA)						
Eppendorf AG	https://www.eppendorf.c	No	Yes	31 st	Consolidated	Cost of sales
	om/OC-en/			December		
BIOTRONIK SE & Co. KG	https://www.biotronik.co	No	No	31 st	Individual	Total cost
	m/en-de			December		
Lohmann GmbH & Co. KG	https://www.lohmann-	No	No	31 st	Consolidated	Total cost
Lahmann & Daugahan	tapes.com/en/nome2/	No	No	21st	Consolidated	Total agat
International GmbH & Co. KG	rauscher.com/us-en/	INO	INO	December	Consolidated	Total cost
Sarstedt AG & Co. KG	https://www.sarstedt.co	No	No	31 st	Consolidated	Total cost
Sublet No & Co. No	m/en/home/	110	110	December	Consolidated	rotar cost
Brainlab AG	https://www.brainlab.co	No	Yes	30 th	Consolidated	Total cost
	m/			September		
Karl Leibinger GmbH & Co.	https://www.klsmartin.co	No	No	31 st	Consolidated	Total cost
KG (Parent company of KLS	m/en-na/			December		
Martin Group)						
C. Erbe GmbH (Parent	https://de.erbe-	No	No	31 st	Consolidated	Total cost
company of Erbe	med.com/de-en/			December		
Elektromedizin GmbH)					~	
Dürr Dental SE	https://www.duerrdental.	No	Yes	31 st	Consolidated	Total cost
Cturte - CE	com/en/GL/	V	V	December	Concellidated	Cast of calas
Stratec SE	https://www.stratec.com/	res	res	51 ^m	Consolidated	Cost of sales
Bauerfeind AG	https://www.bouerfoind.o.	No	No	31 st	Consolidated	Total cost
Bauenelliu AG	om/worldman/	INU	110	December	Consolidated	i otai cost
Richard Wolf GmbH	https://www.richard-	No	No	31 st	Consolidated	Total cost
	wolf.com/en/			December	2 Shison dated	

Table B5: Initial sample of companies for GER

Note: Firms are ranked according to the revenue in the most recent available annual report. Some companies were not included in the initial sample since they deviated from the inclusion criteria. For the companies, for which financial statements were downloaded from the firm websites, sources are included in the reference list.

						-
Company	Website	Listed firm	IFRS	End of reporting period	Type of financial statements	Income statement structure
Johnson & Johnson	https://www.ini.com/	Ves	No	3 rd January	Consolidated	Cost of sales
Abbott Laboratories	https://www.abbott.com/	Yes	No	31 st December	Consolidated	Cost of sales
Thermo Fisher Scientific Inc.	https://corporate.thermof isher.com/us/en/index.ht ml	Yes	No	31 st December	Consolidated	Cost of sales
3M Company	https://www.3m.com/	Yes	No	31 st December	Consolidated	Cost of sales
GE Healthcare	https://www.gehealthcar e.com/	Yes	No	31 st December	Consolidated	Cost of sales
Becton, Dickinson and Company	https://www.bd.com/en- us	Yes	No	30 th September	Consolidated	Cost of sales
Stryker Corporation	https://www.stryker.com /	Yes	No	31 st December	Consolidated	Cost of sales
Danaher Corporation	https://www.danaher.co m/	Yes	No	31 st December	Consolidated	Cost of sales
Baxter International Inc.	https://www.baxter.com/	Yes	No	31 st December	Consolidated	Cost of sales
Boston Scientific Corporation	https://www.bostonscien tific.com/en- US/Home.html	Yes	No	31 st December	Consolidated	Cost of sales
Zimmer Biomet Holdings Inc.	https://www.zimmerbio met.com/en	Yes	No	31 st December	Consolidated	Cost of sales
Edwards Lifesciences Corporation	https://www.edwards.co m/	Yes	No	31 st December	Consolidated	Cost of sales
Intuitive Surgical Inc.	https://www.intuitive.co m/en-us	Yes	No	31 st December	Consolidated	Cost of sales
Dentsply Sirona Inc.	https://www.dentsplysiro na.com/en	Yes	No	31 st December	Consolidated	Cost of sales
ResMed Inc.	https://www.resmed.com /en-us/	Yes	No	30 th June	Consolidated	Cost of sales
Hill-Rom Holdings Inc.	https://www.hillrom.com /	Yes	No	30 th September	Consolidated	Cost of sales
Teleflex Incorporated	https://teleflex.com/usa/e n/index.html	Yes	No	31 st December	Consolidated	Cost of sales
Align Technology Inc.	https://www.aligntech.co m/	Yes	No	31 st December	Consolidated	Cost of sales
Cooper Companies Inc.	https://www.coopercos.c om/	Yes	No	31 st October	Consolidated	Cost of sales
Envista Holdings Corporation	https://www.envistaco.co m/en	Yes	No	31 st December	Consolidated	Cost of sales
Dexcom Inc.	https://www.dexcom.co m/	Yes	No	31 st December	Consolidated	Cost of sales
Integra Lifesciences Holdings Corporation	https://www.integralife.c om/de/home	Yes	No	31 st December	Consolidated	Cost of sales
ICU Medical Inc.	https://www.icumed.com /	Yes	No	31 st December	Consolidated	Cost of sales
Masimo Corporation	https://www.masimo.co m/	Yes	No	2 nd January	Consolidated	Cost of sales
NuVasive Inc.	https://www.nuvasive.co m/	Yes	No	31 st December	Consolidated	Cost of sales
Insulet Corporation	https://www.insulet.com/	Yes	No	31 st December	Consolidated	Cost of sales
Abiomed Inc.	https://www.abiomed.co m/	Yes	No	31 st March	Consolidated	Cost of sales
Merit Medical Systems Inc.	https://www.merit.com/	Yes	No	31 st December	Consolidated	Cost of sales

Table B6: Initial sample of companies for the USA

Note: Firms are ranked according to the revenue in the most recent available annual report. Some companies were not included in the initial sample since they deviated from the inclusion criteria. For the companies, for which financial statements were downloaded from the firm websites, sources are included in the reference list. If SEC filings for the U.S. firms were available, they were used for data retrieval from the financial statements.

	1 .	•, •	C C 1	1	•
Table B /: In	clusion	criteria	for final	sample	companies

Criterion	Explanation
Registered office	Headquarter/registered office should be in GER or the USA.
Business model/ segment	Firms with business segments that do not significantly differ in the end-industries are included
	(otherwise segment reporting is necessary).
	Main revenue streams should result from products and services related to MD.
Fiscal year end	Fiscal year should end on 31 st December.
	Certain exceptions for this criterion were made for Siemens Healthineers AG, Carl Zeiss Meditec AG,
	Brainlab AG and Becton, Dickinson and Company. They were included since they represent a
	significant constituent of the market and have a high share of the overall market.
Mergers and initial public	Financial data (for more than one year) after merger of standalone companies or initial public
offerings	offerings is included. <i>Table B8</i> includes the formation years of the sample firms.
Revenue	Revenue of latest available annual report should be above USD/EUR 200 million to ensure that
	mainly large firms are covered in the sample.
Equity	Equity should be nonnegative.
Earnings before interest and	Earnings before interest and taxes should be nonnegative.
taxes	
Operating income	Operating income should be nonnegative.
Net income	Net income should be nonnegative.

Table B8: Formation years of firms

Company	Year	Comment	Source
GER			
Fresenius Medical Care AG & Co. KGaA	1996	-	Company Website
Siemens Healthineers AG	2017	Formerly included as business segment in	Annual Report 2018
		Siemens Group; then initial public offering	Company Website
		on 16/03/2018	
B. Braun SE	1938	-	Company Website
Drägerwerk AG & Co. KGaA	1889	-	Company Website
Paul Hartmann AG	1818	-	Company Website
Karl Storz SE & Co. KG	1945	-	Company Website
Carl Zeiss Meditec AG	2002	Prior business unit of Zeiss Group	Company Website
Otto Bock Holding GmbH & Co. KG (Ottobock	1919	-	Company Website
SE & Co. KGaA)			
Eppendorf AG	1945	-	Company Website
BIOTRONIK SE & Co. KG	1963	-	Company Website
Lohmann & Rauscher International GmbH & Co.	1998	Merger of Lohmann Medical and	Company Website
KG		Rauscher	
Sarstedt AG & Co. KG	1961	-	Company Website
Brainlab AG	1989	-	Company Website
Karl Leibinger GmbH & Co. KG (KLS Martin	1896	-	Company Website
Group)			
C. Erbe GmbH (Erbe Elektromedizin)	1851	-	Company Website
Dürr Dental SE	1941	-	Company Website
Stratec SE	1979	-	Company Website
Bauerfeind AG	1929	-	Company Website
Richard Wolf GmbH	1906	-	Company Website
USA	•		
Abbott Laboratories	1894	-	Company Website
Thermo Fisher Scientific Inc.	2006	Merger of Thermo Electron Corporation	BioSpace (2006)
		and Fisher Scientific International	
Becton, Dickinson and Company	1897	-	Company Website
Stryker Corporation	1941	-	Company Website
Baxter International Inc.	1931	-	Company Website
Boston Scientific Corporation	1979	-	Company Website
Zimmer Biomet Holding Inc.	1927	Zimmer Holdings acquired Biomet in	Company Website
		2015, however it was not a merger.	
Edwards Lifesciences Corporation	1999	-	Orbis and Bloomberg
Intuitive Surgical Inc.	1995	-	Orbis and Bloomberg
Dentsply Sirona Inc.	2016	Merger of Dentsply International and	Company Website
		Sirona Dental Systems	
Teleflex Incorporated	1943	-	Orbis and Bloomberg
Align Technology Inc.	1997	-	Orbis and Bloomberg
Dexcom Inc.	1999	-	Orbis and Bloomberg
Integra Lifesciences Holdings Corporation	1989	-	Orbis and Bloomberg
ICU Medical Inc.	1992	-	Orbis and Bloomberg
NuVasive Inc.	1997	-	Orbis and Bloomberg
Insulet Corporation	2000	-	Orbis and Bloomberg
Merit Medical Systems Inc.	1987	-	Orbis and Bloomberg

Note: For companies, for which formation information was taken from the firm websites, sources are included in the reference list. Year of formation can be also the year of the merger of two standalone companies.

Table B9: Transition from initial to final sample for GER and USA via exclusion

Countries	CED	TICA
Samples and exclusions	GEK	USA
Initial sample:		
# Firms	20 firms	28 firms
Exclusion of firms:		
Business model/segment criterion	1 firm	4 firms
Fiscal year end criterion	0 firms	5 firms
Mergers and initial public offerings criterion	0 firms	1 firm
Intermediate sample:		
# Firms	19 firms	18 firms
# Total firm obs.	82 obs.	90 obs.
Exclusion of firm obs:		
Earnings before interest and taxes, operating income, and net	7 obs.	14 obs.
income criterion		
Final sample:		
# Firms	19 firms	18 firms
# Total firm obs.	75 obs.	76 obs.

Table B10: Firms excluded from final sample for GER and USA

	Countries	GER	USA
Excluded companies			
Business model/segment criterion		Lohmann GmbH & Co. KG	Johnson & Johnson
			Danaher Corporation
			3M Company
			GE Healthcare
Fiscal year end criterion		-	ResMed Inc.
			Hill-Rom Holdings Inc.
			Cooper Companies Inc.
			Masimo Corporation
			Abiomed Inc.
Mergers and initial public offerings crite	erion	-	Envista Holdings Corporation

Table B11: Number of listed and unlisted firms per country and year

Year	2016	2017	2018	2019	2020	Total firms
GER						
0	12	11	11	11	2	47
1	5	5	6	6	6	28
Total	17	16	17	17	8	75
USA						
0	0	0	0	0	0	0
1	16	14	15	18	13	76
Total firms	16	14	15	18	13	76

Table B12: Number of firms with and without IFRS reporting per country and year

Year	2016	2017	2018	2019	2020	Total firms
IFRS						
GER						
0	9	7	7	7	0	30
1	8	9	10	10	8	45
Total	17	16	17	17	8	75
USA						
0	16	14	15	18	13	76
1	0	0	0	0	0	0
Total firms	16	14	15	18	13	76

	Year	2016	2017	2018	2019	2020	Total firms
SIC code							
GER							
2834		2	2	2	2	2	10
2842		1	1	1	1	0	4
3826		1	1	1	1	1	5
3827		0	1	1	1	1	4
3841		6	5	5	5	1	22
3842		2	2	1	1	0	6
3843		1	1	1	1	0	4
3845		4	3	4	4	2	17
8071		0	0	1	1	1	3
Total		17	16	17	17	8	75
USA							
2834		1	1	1	1	1	5
3829		1	1	1	1	1	5
3841		9	8	10	11	8	46
3842		4	4	3	4	3	18
3843		1	0	0	1	0	2
Total firms		16	14	15	18	13	76

Table B13: Number of firms per U.S. SIC code per country and year

Note: SIC codes are industry classifications based on the U.S. Securities and Exchange Commission (2021). The codes were taken from Orbis, Bloomberg and U.S. Securities and Exchange Commission (2017). 2834: Pharmaceutical Preparations; 2842: Speciality Cleaning, Polishing and Sanitation Preparations, 3826: Laboratory Analytical Instruments; 3827: Optical Instruments and Lenses; 3829: Measuring & Controlling Devices; 3841: Surgical & Medical Instruments and Apparatus; 3842: Orthopaedic, Prosthetic & Surgical Appliances & Supplies; 3843: Dental Equipment & Supplies; 3845: Electromedical & Electrotherapeutic Apparatus; 8071: Service-medical Laboratories.

Table B14: Total number of firms per U.S. SIC code per country for all years

Country	Total firms per SIC code for	Total firms per SIC code
SIC Code	GER for all years	for USA for all years
2834	10	5
2842	4	0
3826	5	0
3827	4	0
3829	0	5
3841	22	46
3842	6	18
3843	4	2
3845	17	0
8071	3	0
Total firms	75	76

Note: SIC codes are industry classifications based on the U.S. Securities and Exchange Commission (2021). The codes were taken from Orbis, Bloomberg and U.S. Securities and Exchange Commission (2017). 2834: Pharmaceutical Preparations; 2842: Speciality Cleaning, Polishing and Sanitation Preparations, 3826: Laboratory Analytical Instruments; 3827: Optical Instruments and Lenses; 3829: Measuring & Controlling Devices; 3841: Surgical & Medical Instruments and Apparatus; 3842: Orthopaedic, Prosthetic & Surgical Appliances & Supplies; 3843: Dental Equipment & Supplies; 3845: Electromedical & Electrotherapeutic Apparatus; 8071: Service-medical Laboratories.

Figure B1: Generalized overview of the research model for multivariate analysis

Note: * COUNTRY is also used as condition to split the total sample into the country samples.

Appendix C

Variables	Ν	Mean	Median	SD	Min	Max	p25	p75
GER								
Dependent								
GPM	75	0.5613	0.5687	0.1448	0.3087	0.7692	0.4353	0.7142
Independent								
CCC (days)	75	171.8511	167.0122	55.7363	97.9447	304.4310	128.3097	212.9754
DIO (days)	75	152.2073	145.7881	58.4093	50.2534	276.5034	112.7149	194.8032
DSO (days)	75	65.2820	61.5914	20.4157	15.4568	103.6916	54.4376	80.6100
DPO (days)	75	46.5277	43.2401	21.0197	19.9234	93.2467	27.4236	64.4937
Control								
SIZE (in ln)	75	13.8146	13.4997	1.4096	12.1432	16.6231	12.4630	14.7047
AGE (in ln)	75	4.1296	4.2905	0.8388	2.6391	5.2933	3.3673	4.8442
AGE (years)	75	83.8400	73.0000	58.7096	14.0000	199.0000	29.0000	127.0000
GROW	75	0.0641	0.0557	0.0672	-0.0474	0.2392	0.0234	0.0846
DEBT	75	0.4683	0.4471	0.1711	0.1567	0.7949	0.3315	0.5984
TANG	75	0.2053	0.1780	0.1166	0.0470	0.4975	0.1280	0.2736
GWIA	75	0.1702	0.1343	0.1470	0.0117	0.4912	0.0615	0.2340
CR	75	2.8886	2.4109	1.4088	1.0442	5.6269	1.5026	4.0761
USA								
Dependent								
GPM	76	0.5954	0.6295	0.1177	0.4050	0.7504	0.4796	0.7103
Independent								
CCC (days)	76	167.1295	145.4711	80.4014	82.5301	375.2994	106.6727	196.9336
DIO (days)	76	155.3522	138.9854	74.1783	61.6966	336.0342	98.1925	199.1035
DSO (days)	76	60.6048	61.3709	10.4689	40.9800	81.4843	53.5895	66.1567
DPO (days)	76	48.1790	47.4804	17.3704	13.8655	85.4616	34.3011	58.2712
Control								
SIZE (in ln)	76	15.2672	15.1332	1.1841	13.4979	17.2358	14.1772	16.2905
AGE (in ln)	76	3.6178	3.3673	0.7645	2.3979	4.8122	3.0201	4.3373
AGE (years)	76	49.6579	29.0000	37.7714	11.0000	123.0000	20.5000	76.5000
GROW	76	0.1239	0.1046	0.1051	-0.0312	0.3347	0.0368	0.2001
DEBT	76	0.4829	0.5293	0.1500	0.1477	0.7003	0.4147	0.5782
TANG	76	0.1378	0.1111	0.0719	0.0620	0.2782	0.0826	0.1781
GWIA	76	0.4211	0.4779	0.2533	0.0366	0.7428	0.1638	0.6505
CR	76	2.7559	2.4236	1.3026	0.9657	5.5769	1.8386	3.5103

Table C1: Summary statistics of independent, dependent and control variables per country for 2016-2020)

Common-sized balance sheet GER							
Assets	in %	Equity and Liabilities	in %				
Fixed Assets	17.80%	Total Equity	55.29%				
Goodwill & Intangible Assets	13.43%						
Non-Current Assets	45.74%	Non-Current Liabilities	23.93%				
Inventories	15.47%	Accounts Payable	3.99%				
Accounts Receivable	15.62%	Current Liabilities	20.78%				
Cash	10.27%	Total Liabilities	44.71%				
Current Assets	54.26%						
Total Assets	100%	Total Equity and Liabilities	100%				
	Common-sized	balance sheet USA					
Fixed Assets	11.11%	Total Equity	47.07%				
Goodwill & Intangible Assets	47.79%						
Non-Current Assets	65.02%	Non-Current Liabilities	40.54%				
Inventories	7.45%	Accounts Payable	2.46%				
Accounts Receivable	8.12%	Current Liabilities	12.39%				
Cash	11.34%	Total Liabilities	52.93%				
Current Assets	34.98%						
Total Assets	100%	Total Equity and Liabilities	100%				

Table C2: Common-sized balance sheet	(based on median)	per countr	y for 2016-2020
--------------------------------------	-------------------	------------	-----------------

Note: All items are winsorized at the 5th and 95th percentile to reduce outliers, except for non-current assets, non-current liabilities, and equity. Non-current assets are calculated by deducting current assets from total assets, non-current liabilities by deducting current liabilities from total liabilities, and equity by deducting total liabilities from total assets. Hence, the calculated non-current assets, non-current liabilities and equity slightly differ from their actual median values.

Table C3: Common-sized income statement (based on median) per country for 2016-2020

Common-sized income statement GER		Common-sized income statement USA	
Sales	100%	Sales	100%
Cost of Goods Sold	43.13%	Cost of Goods Sold	37.05%
Gross Profit	56.87%	Gross Profit	62.95%
Operating Expenses	45.02%	Operating Expenses	48.80%
Earnings before Interest, Taxes, Depreciation, and	16.22%	Earnings before Interest, Taxes, Depreciation, and	20.25%
Amortization		Amortization	
Operating Profit	11.85%	Operating Profit	14.15%
Depreciation and Amortization	4.58%	Depreciation and Amortization	7.24%
Earnings before Interest and Taxes	11.64%	Earnings before Interest and Taxes	13.01%
Interest	0.46%	Interest	2.16%
Net Income	8.04%	Net Income	10.20%

Note: All items are winsorized at the 5th and 95th percentile to reduce outliers except for operating expenses and earnings before interest, taxes, depreciation, and amortization. Operating expenses are calculated by deducting operating profit from gross profit and earnings before interest, taxes, depreciation, and amortization are the sum of depreciation and amortization and earnings before interest and taxes. Hence, the calculated operating expenses and earnings before interest, taxes, depreciation, and amortization slightly differ from their actual median values.

, al lubics	- •		un	~~			P=0	P.0
GER								
INV	75	0.1542	0.1547	0.0572	0.0559	0.2546	0.1172	0.2019
RECEIV	75	0.1635	0.1562	0.0633	0.0404	0.2931	0.1198	0.2088
CASH	75	0.1274	0.1027	0.1069	0.0070	0.3820	0.0402	0.1762
CASHR	75	0.7672	0.4792	0.7721	0.0305	3.0435	0.1585	1.1985
QR	75	2.0768	1.7389	1.0991	0.6891	4.2962	1.0467	2.9894
CARAT	75	0.5345	0.5526	0.1453	0.2699	0.7283	0.4154	0.6517
PAY	75	0.0504	0.0399	0.0289	0.0079	0.1252	0.0275	0.0637
CLRAT	75	0.2160	0.2078	0.0884	0.1033	0.4137	0.1352	0.2822
NWC	75	0.3093	0.3202	0.1761	0.0269	0.5842	0.1373	0.4601
COGS	75	0.4387	0.4313	0.1448	0.2308	0.6913	0.2858	0.5647
OPEX	75	0.4390	0.4676	0.1408	0.1684	0.7185	0.3548	0.5406
ОРМ	75	0.1223	0.1185	0.0587	0.0332	0.2251	0.0703	0.1750
DA	75	0.0497	0.0458	0.0186	0.0244	0.0903	0.0356	0.0590
EBIT	75	0.1204	0.1164	0.0582	0.0332	0.2253	0.0704	0.1626
INTEREST	75	0.0066	0.0046	0.0064	-0.0014	0.0219	0.0016	0.0103
NI	75	0.0827	0.0804	0.0451	0.0122	0.1680	0.0456	0.1196
GDPG	75	0.0095	0.0127	0.0217	-0.0490	0.0260	0.0056	0.0223
USA								
INV	76	0.0813	0.0745	0.0361	0.0281	0.1657	0.0526	0.0991
RECEIV	76	0.0855	0.0812	0.0299	0.0453	0.1772	0.0663	0.0976
CASH	76	0.1211	0.1134	0.0938	0.0104	0.3536	0.0457	0.1825
CASHR	76	0.8771	0.7104	0.6771	0.0546	2.7958	0.3971	1.1262
QR	76	2.0948	1.7118	1.2801	0.6412	5.1948	1.2930	2.3912
CARAT	76	0.3613	0.3498	0.1612	0.1529	0.6826	0.2124	0.4900
PAY	76	0.0268	0.0246	0.0130	0.0063	0.0544	0.0174	0.0327
CLRAT	76	0.1396	0.1239	0.0535	0.0755	0.2803	0.1055	0.1596
NWC	76	0.2209	0.1997	0.1505	-0.0055	0.5558	0.1042	0.3449
COGS	76	0.4046	0.3705	0.1177	0.2496	0.5950	0.2897	0.5204
OPEX	75	0.4497	0.4455	0.1088	0.2548	0.6684	0.3664	0.5411
ОРМ	76	0.1458	0.1415	0.0726	0.0454	0.3171	0.0920	0.1834
DA	76	0.0714	0.0724	0.0308	0.0238	0.1260	0.0492	0.0932
EBIT	76	0.1472	0.1301	0.0751	0.0417	0.3221	0.0919	0.1856
INTEREST	76	0.0205	0.0216	0.0153	-0.0044	0.0441	0.0080	0.0337
NI	76	0.1212	0.1020	0.0849	0.0113	0.3085	0.0552	0.1767
GDPG	76	0.0130	0.0216	0.0223	-0.0349	0.0300	0.0171	0.0233

Table C4: Summary statistics of other financial statement items and GDPG per country for 2016-2020VariablesNMeanMedianSDMinMaxn25n75

Note: All items are winsorized at the 5th and 95th percentile to reduce outliers. GDPG data was obtained from World Bank (2021). N: number of obs.; Mean: mean; Median: median; SD: standard deviation; Min: minimum value of sample; Max: maximum value of sample; p25: 25th percentile; p75: 75th percentile.

			Non-parametric median test		Parametric mean test	
Ratios	Shapiro-Wilk test p-value for GER	Shapiro-Wilk test p-value for USA	Fisher´s exact p-value	Statistically different median	P-value	Statistically different mean
SIZE	0.00010***	0.00449***	0.000***	Yes	0.0000***	Yes
AGE	0.00251***	0.00016***	0.001***	Yes	0.0001***	Yes
GROW	0.00019***	0.02785**	0.001***	Yes	0.0001***	Yes
INV	0.29993	0.00284***	0.000***	Yes	0.0000***	Yes
RECEIV	0.78170	0.00000***	0.000***	Yes	0.0000***	Yes
TANG	0.00072***	0.00000***	0.000***	Yes	0.0000***	Yes
GWIA	0.00000***	0.00004***	0.000***	Yes	0.0000***	Yes
CASHR	0.00000***	0.00000***	0.191	No	0.3535	No
CASH	0.00001***	0.00010***	0.744	No	0.6997	No
QR	0.00071***	0.00000***	1.000	No	0.9264	No
CR	0.00041***	0.00019***	1.000	No	0.5486	No
CARAT	0.00281***	0.00201***	0.000***	Yes	0.0000***	Yes
DEBT	0.43093	0.00004***	0.141	No	0.5776	No
PAY	0.00012***	0.00476***	0.000***	Yes	0.0000***	Yes
CLRAT	0.00205***	0.00000***	0.000***	Yes	0.0000***	Yes
NWC	0.00752***	0.03664**	0.000***	Yes	0.0011***	Yes
COGS	0.00171***	0.00018***	0.141	No	0.1141	No
OPEX	0.03070**	0.05482*	0.744	No	0.6036	No
ОРМ	0.00512***	0.00583***	0.253	No	0.0307**	Yes
DA	0.00027***	0.05457*	0.000***	Yes	0.0000***	Yes
EBIT	0.00941***	0.00332***	1.000	No	0.0154**	Yes
INTEREST	0.00001***	0.02201**	0.000***	Yes	0.0000***	Yes
NI	0.14852	0.00160***	0.253	No	0.0007***	Yes
GDPG	0.00000***	0.00000***	0.599	No	0.3364	No

Table C5: Non-parametric median and parametric mean tests for control variables, other financial statement items and *GDPG* for 2016-2020

Note: If p-value of Shapiro-Wilk test is below 10%, the null hypothesis, which implies normality of that variable, is rejected. The non-parametric median test was done with the Stata option "medianties(drop)", which drops values equal to the median from the analysis to run an unbiased analysis (Stata n.d.-b). The splitting option "medianties(split)" was not possible since mainly one value was equal to the median, making the split option (splitting the number of values equally between the group above and the group below the median) impossible. For the median test, p-value of Fisher's exact test is used since it is more reliable than that of Pearson chi-squared test in samples with less than 200 obs. (Fisher 1935; Stata n.d.-b). In case of divergent results for median and mean tests, result of mean test will be focused for a normally distributed variable in both countries and that of the median test for divergent findings for the normality of the variable between both countries. ***: p-value <0.01; **: p-value <0.05; *: p-value <0.1.

Variables	Ν	Mean	Median	SD	Min	Max	p25	p75
GER								
Dependent								
GPM	17	0.5927	0.5908	0.1416	0.3329	0.7692	0.5325	0.7261
Independent								
CCC (days)	17	186.8688	174.7389	61.7532	98.1055	304.4310	133.7965	232.7952
DIO (days)	17	164.8046	154.2655	61.2510	50.2534	276.5034	137.8364	199.2827
DSO (days)	17	65.8421	59.4822	21.2854	15.4568	103.6916	57.8302	81.5161
DPO (days)	17	43.9866	40.8959	16.6986	21.0093	75.9742	30.6274	58.0165
Control								
SIZE (in ln)	17	13.5297	13.3871	1.3225	12.1432	16.6231	12.3152	14.2689
AGE (in ln)	17	4.2294	4.3175	0.7994	2.6391	5.2883	3.9703	4.7875
GROW	17	0.0604	0.0508	0.0621	-0.0326	0.2392	0.0356	0.0696
DEBT	17	0.4663	0.3988	0.1937	0.1567	0.7949	0.3354	0.5667
TANG	17	0.2148	0.1875	0.1158	0.0470	0.4975	0.1404	0.2736
GWIA	17	0.1474	0.0818	0.1565	0.0117	0.4912	0.0486	0.1593
CR	17	2.9939	2.6425	1.5047	1.0442	5.6269	2.0275	4.1098
TIC A								
USA Dependent								
GPM	16	0 5992	0.6060	0 1189	0.4050	0 7504	0 5054	0.7052
Independent	10	0.5772	0.0000	0.110)	0.1050	0.7501	0.5051	0.7052
CCC (days)	16	165.1203	132.8012	83.3698	82.5301	367.8053	107.8014	198.8364
DIO (days)	16	146.2873	119.1110	77.7387	61.6966	316.5735	91.4815	187.7270
DSO (days)	16	59.4743	59.3743	9.7459	45.0138	81.4843	53.5895	63.7321
DPO (days)	16	39.3162	38.4189	12.4936	13.8655	67.3082	30.5560	46.9707
Control								
SIZE (in ln)	16	15.1155	15.0190	1.1960	13.4979	16.8530	13.8500	16.1884
AGE (in ln)	16	3.5711	3.3316	0.8282	2.3979	4.8040	2.9444	4.3801
GROW	16	0.1483	0.1295	0.0934	0.0196	0.3347	0.0938	0.2013
DEBT	16	0.4566	0.4695	0.1650	0.1477	0.7003	0.3581	0.5711
TANG	16	0.1220	0.1119	0.0661	0.0620	0.2782	0.0766	0.1270
GWIA	16	0.4449	0.5091	0.2583	0.0397	0.7428	0.2082	0.6643
CR	16	2.9264	2.5933	1.3632	0.9657	5.5769	2.1148	4.0133

Table C6: Summar	y statistics of independent,	dependent and control	variables per count	ry for 2016
------------------	------------------------------	-----------------------	---------------------	-------------

variables	variables in iviean iviedian		Median	SD	Min	Max	p25	p75
GER								
Dependent								
GPM	16	0.5805	0.5679	0.1416	0.3121	0.7692	0.4999	0.7088
Independent								
CCC (days)	CC (days) 16 170.7758		159.4252	59.3241	97.9447	304.4310	121.0102	224.3448
DIO (days)	ays) 16 149.2841		142.1446	60.7996	50.2534	276.5034	105.9270	197.4838
DSO (days)	16	65.2254	61.3882	22.4892	15.4568	103.6916	53.0188	81.6078
DPO (days)	16	45.9071	40.8786	22.9463	19.9234	93.2467	24.7137	67.8350
Control								
SIZE (in ln)	16	13.5963	13.3766	1.3381	12.1432	16.6231	12.4079	14.4249
AGE (in ln)	16	4.1796	4.3037	0.8269	2.7081	5.2933	3.4849	4.8239
GROW	16	0.0565	0.0562	0.0284	0.0137	0.1220	0.0359	0.0748
DEBT	16	0.4537	0.4023	0.1790	0.1567	0.7949	0.3282	0.5894
TANG	16	0.2060	0.1886	0.1169	0.0470	0.4922	0.1343	0.2725
GWIA	16	0.1584	0.1385	0.1484	0.0117	0.4912	0.0558	0.1727
CR	16	3.0479	3.7303	1.3783	1.0442	5.6269	1.7974	4.0090
TICA								
USA Dependent								
GPM	14	0.6125	0.6454	0.1234	0.4227	0 7504	0 4933	0.7267
Independent		010120	010101	011201	011227	011001	011700	011201
CCC (days)	14	183.1054	150.9488	96.0875	82.5301	375.2994	113.4522	233.7880
DIO (days)	14	168.3231	144.6811	90.3582	61.6966	336.0342	94.5436	231.3932
DSO (days)	14	64.1081	63.4587	9.7061	46.6118	80.3095	58.8195	71.1808
DPO (days)	14	47.7573	46.4567	18.1953	13.8655	78.7534	34.4688	56.5066
Control								
SIZE (in ln)	14	15.3435	15.4598	1.1904	13.4979	17.1257	14.2031	16.3081
AGE (in ln)	14	3.7093	3.5194	0.8006	2.3979	4.8122	2.9957	4.4543
GROW	14	0.1383	0.1468	0.1042	-0.0312	0.3347	0.0671	0.1977
DEBT	14	0.5153	0.5496	0.1383	0.1725	0.7003	0.4672	0.6068
TANG	14	0.1272	0.1029	0.0673	0.0620	0.2681	0.0838	0.1313
GWIA	14	0.4681	0.4891	0.2386	0.0499	0.7428	0.2814	0.6740
CR	14	2.5526	2.3247	1.2043	0.9657	5.5754	1.7952	2.7341

Table C7: Summary statistics of independent, dependent and control variables per country for 2017

variables	IN	Mean	Median	SD	Min	Max	p25	p/5
GER								
Dependent								
GPM	17	0.5650	0.5728	0.1490	0.3087	0.7692	0.4270	0.7142
Independent								
CCC (days)	17	176.7180	168.3460	58.3858	97.9447	304.4310	134.0675	212.9754
DIO (days)	17	155.5275	147.9795	58.7505	50.2534	276.5034	123.5482	181.3182
DSO (days)	17	67.1285	62.8064	22.6259	15.4568	103.6916	58.6202	80.6100
DPO (days)	17	48.2481	43.2401	22.8445	19.9234	93.2467	32.6217	62.4789
Control								
SIZE (in ln)	17	13.7650	13.4511	1.4562	12.1432	16.6217	12.4630	14.5665
AGE (in ln)	17	4.0739	4.2905	0.8610	2.6391	5.2933	3.3673	4.8040
GROW	17	0.0300	0.0221	0.0680	-0.0474	0.2392	-0.0127	0.0563
DEBT	17	0.4613	0.4471	0.1772	0.1567	0.7949	0.3238	0.5609
TANG	17	0.1989	0.1780	0.1139	0.0470	0.4975	0.1435	0.2625
GWIA	17	0.1713	0.1394	0.1489	0.0117	0.4912	0.0615	0.2110
CR	17	2.9414	2.2598	1.5417	1.0442	5.6269	1.6271	4.1726
USA Dependent								
GPM	15	0 5894	0.6110	0.1258	0.4072	0 7477	0 4 4 7 2	0.7136
UI M Independent	15	0.5694	0.0119	0.1258	0.4072	0.7477	0.4472	0.7150
CCC (days)	15	162 0618	156 90/0	76 9151	82 5301	375 2994	99 5559	196 3522
DIO (days)	15	150 4944	136 2984	67 6893	61 6966	320 5244	102 6641	179.0505
DSO (days)	15	58 8101	60 6415	10 1487	40 9800	81 4843	52 9585	65 0965
DPO (days)	15	46 4504	46.3266	15.0975	13.8655	85,4616	40,4087	52.0652
Control	15	10.1501	10.5200	15.0775	15.0055	05.1010	10.1007	52.0052
SIZE (in ln)	15	15.2332	15,1300	1.2637	13,4979	17.2358	14,1520	16.4257
AGE (in ln)	15	3.5957	3.3673	0.7480	2.4849	4.8122	3.0445	4.3175
GROW	15	0.1600	0.1407	0.0900	0.0487	0.3347	0.0837	0.2156
DEBT	15	0.4837	0.5114	0.1495	0.1477	0.7003	0.4101	0.5845
TANG	15	0.1543	0.1126	0.0809	0.0689	0.2782	0.0849	0.2540
GWIA	15	0.4254	0.4763	0.2691	0.0399	0.7428	0.0912	0.6802
CR	15	2.5290	2.1223	1.1744	0.9657	5.2805	1.7285	3.4448
	-							

Table C8: Summary statistics of independent, dependent and control variables per country for 2018VariablesNMeanMedianSDMinMaxp25p75

Variables	Ν	Mean	ean Median SD Min Max		Max	p25	p75	
GER								
Dependent								
GPM	17	0.5618	0.5700	0.1496	0.3087	0.7692	0.4274	0.7049
Independent								
CCC (days)	7s) 17 165.2645 155.8830 17 151.4076 140.2212		49.6381	99.5432	273.0820	127.0715	200.4980	
DIO (days)	17	151.4076	140.2213	62.5527	50.2534	276.5034	112.5158	171.2158
DSO (days)	17	61.6019	60.4809	18.2696	15.4568	88.4846	52.7523	74.7801
DPO (days)	17	46.9294	43.2763	21.3970	20.7532	93.2467	27.4236	64.4937
Control								
SIZE (in ln)	17	13.8558	13.5323	1.4296	12.2745	16.6231	12.6195	14.5979
AGE (in ln)	17	4.0931	4.3041	0.8485	2.6391	5.2933	3.4012	4.8122
GROW	17	0.0996	0.0846	0.0621	0.0298	0.2392	0.0571	0.1091
DEBT	17	0.4753	0.4689	0.1662	0.1567	0.7949	0.3347	0.5984
TANG	17	0.2077	0.1620	0.1232	0.0510	0.4975	0.1272	0.2814
GWIA	17	0.1726	0.1343	0.1438	0.0117	0.4744	0.0665	0.2373
CR	17	2.7452	2.2354	1.3644	1.0442	5.4089	1.5026	3.7891
USA								
Dependent								
GPM	18	0.5962	0.6295	0.1188	0.4050	0.7437	0.4794	0.7097
Independent								

Table C9: Summary	y statistics of inde	ependent, dependent	t and control variables	per country for 2019
-------------------	----------------------	---------------------	-------------------------	----------------------

CCC (days)	18	168.8754	161.1727	87.3809	82.5301	375.2994	100.0755	196.4612
DIO (days)	18	160.2519	146.5381	78.0481	61.6966	336.0342	104.5695	204.2918
DSO (days)	18	61.0502	62.1066	9.8159	40.9800	81.4843	57.0017	66.2137
DPO (days)	18	53.5318	54.2047	18.0096	13.8655	85.4616	44.2768	64.9598
Control								
SIZE (in ln)	18	15.2697	15.2471	1.1865	13.5120	17.2358	14.2049	16.2458
AGE (in ln)	18	3.5748	3.3485	0.7696	2.3979	4.8122	2.9957	4.3307
GROW	18	0.1048	0.0710	0.1040	-0.0312	0.3347	0.0306	0.1679
DEBT	18	0.4876	0.5212	0.1405	0.1488	0.7003	0.4594	0.5711
TANG	18	0.1429	0.1139	0.0757	0.0620	0.2782	0.0843	0.2155
GWIA	18	0.4188	0.4476	0.2581	0.0366	0.7409	0.1434	0.6478
CR	18	2.6173	2.4126	1.2177	0.9657	5.4675	1.6823	3.5505

v ur iubies	1	witan	wituian	50	14111	Max	P25	p/5
GER								
Dependent								
GPM	8	0.4475	0.4330	0.1139	0.3087	0.5859	0.3480	0.5618
Independent								
CCC (days)	8	145.7441	147.3063	40.8258	97.9447	199.9071	104.5556	182.1886
DIO (days)	8	125.9289	127.5013	38.9084	56.1443	177.1744	106.1234	153.4315
DSO (days)	8	68.1017	66.1955	17.3988	49.6567	103.6916	54.4503	75.0868
DPO (days)	8	48.6597	42.0726	25.2284	19.9234	93.2467	30.2262	65.7552
Control								
SIZE (in ln)	8	14.8741	14.8729	1.4329	12.4296	16.6231	13.9435	16.1537
AGE (in ln)	8	4.0132	4.0155	1.0566	2.6391	5.2933	3.0342	5.0368
GROW	8	0.0841	0.0673	0.1061	-0.0474	0.2249	-0.0050	0.1855
DEBT	8	0.5019	0.4908	0.1349	0.2795	0.6873	0.4153	0.6181
TANG	8	0.1922	0.1458	0.1371	0.0672	0.4975	0.1193	0.2212
GWIA	8	0.2346	0.2130	0.1449	0.0856	0.4525	0.1048	0.3517
CR	8	2.5391	2.0140	1.3293	1.1811	4.3818	1.4478	3.9130
USA								
Dependent								
GPM	13	0.5783	0.6203	0.1150	0.4050	0.7504	0.4967	0.6565
Independent								
CCC (days)	13	155.8276	145.2319	59.2880	93.5806	253.7476	106.7763	180.8038
DIO (days)	13	151.3613	141.9984	60.2271	71.7103	270.9971	104.9471	174.8510
DSO (days)	13	59.6773	60.0052	13.6478	40.9800	81.4843	51.1345	67.6465
DPO (days)	13	54.1239	53.7250	20.4133	19.8931	85.4616	38.2692	66.3729
Control								
SIZE (in ln)	13	15.4078	15.2876	1.2340	13.7150	17.2358	14.4713	16.4793
AGE (in ln)	13	3.6619	3.3322	0.7688	2.6391	4.8122	3.0445	4.3438
GROW	13	0.0632	0.0088	0.1198	-0.0312	0.3054	-0.0224	0.0848
DEBT	13	0.4730	0.5451	0.1716	0.1477	0.6777	0.3679	0.5743
TANG	13	0.1423	0.1245	0.0729	0.0620	0.2646	0.0802	0.1928
GWIA	13	0.3396	0.2442	0.2578	0.0366	0.7138	0.1190	0.5340
CR	13	3.2188	2.6340	1.6090	1.3952	5.5769	1.9256	4.7076

Table C10: Summary statistics of independent, dependent and control variables per country for 2020

Note: Figure is based on Tables C6-C10.

Figure C2: Median DSO for GER and USA from 2016-2020

Note: Figure is based on Tables C6-C10.

Figure C3: Median DPO for GER and USA from 2016-2020

Note: Figure is based on Tables C6-C10.

Table C11: P-values for Wilcoxon rank-sum, non-parametric median and parametric mean tests for dependent and independent variables for 2016-2020

	Wilcoxon ra	ank-sum test	Non-parametr	ric median test	Parametric mean test	
Variable	P-value	Exact p-value	Continuity corrected Pearson chi ² p-value	Exact p-value	P-value	Divergence between parametric and non-parametric test
DIO	0.5540	0.5557	0.327	0.327	0.7728	No
DSO	0.1731	0.1739	0.870	1.000	0.0780*	Yes
DPO	0.3096	0.3110	0.253	0.253	0.5993	No
CCC	0.1137	0.1141	0.414	0.414	0.6759	No
GPM	0.2888	0.2902	0.142	0.141	0.1141	No

Note: If p-value is below 10%, then null hypothesis, which implies no statistical difference in the population distribution (Wilcoxon rank-sum test), median (non-parametric median test) or mean (two-sample t-test for mean) of the tested variable between the samples of GER and the USA, is rejected. P-value of Fisher's exact test is used for Wilcoxon rank-sum and non-parametric median test since it is more reliable than the p-value of the Pearson chi-squared test statistic in samples with less than 200 obs. (Fisher 1935; Stata n.d.-b). The non-parametric median test was done with the Stata option "medianties(drop)", which drops values equal to the median from the analysis to run an unbiased analysis (Stata n.d.-b). The splitting option "medianties(split)" was not possible since mainly one value was equal to the median, making the split option (splitting the number of values between the group above and the group below the median) impossible. ***: p-value <0.01; **: p-value <0.05; *: p-value <0.1.

	GPM	DIO	DSO	DPO	CCC	SIZE	AGE	GROW	DEBT	TANG	GWIA	CR	LIST	IFRS
GPM	1.0000	0.7669	-0.3025	0.2503	0.6069	-0.6412	0.3605	0.0465	-0.3507	0.0647	-0.5756	0.3777	-0.6718	-0.6429
		(0.000)	(0.008)	(0.030)	(0.000)	(0.000)	(0.002)	(0.692)	(0.002)	(0.582)	(0.000)	(0.001)	(0.000)	(0.000)
DIO	0.7687	1.0000	-0.1971	0.2575	0.9058	-0.6242	0.3257	0.596	-0.2838	0.1281	-0.5289	0.3634	-0.5444	-0.4832
	(0.000)		(0.090)	(0.026)	(0.000)	(0.000)	(0.004)	(0.611)	(0.014)	(0.274)	(0.000)	(0.001)	(0.000)	(0.000)
DSO	-0.4354	-0.2985	1.0000	0.2815	0.0718	0.1922	-0.2973	-0.0670	0.0854	-0.3240	0.2979	-0.2483	0.4370	0.4019
	(0.000)	(0.009)		(0.014)	(0.540)	(0.099)	(0.010)	(0.568)	(0.466)	(0.005)	(0.009)	(0.032)	(0.000)	(0.000)
DPO	0.1964	0.1611	0.1549	1.0000	0.0325	0.0748	0.0784	-0.0343	0.1464	0.2045	-0.0216	-0.2902	0.1412	-0.0409
	(0.091)	(0.167)	(0.185)		(0.782)	(0.523)	(0.504)	(0.770)	(0.210)	(0.078)	(0.854)	(0.012)	(0.227)	(0.728)
CCC	0.5768	0.8877	-0.0346	-0.0572	1.0000	-0.6291	0.2219	0.0645	-0.2863	-0.0391	-0.4449	0.3701	-0.4767	-0.3559
	(0.000)	(0.000)	(0.768)	(0.626)		(0.000)	(0.056)	(0.582)	(0.013)	(0.739)	(0.000)	(0.001)	(0.000)	(0.002)
SIZE	-0.5849	-0.5598	0.2153	0.1274	-0.5744	1.0000	-0.1575	-0.2305	0.3156	0.1028	0.4048	-0.4603	0.4772	0.4543
	(0.000)	(0.000)	(0.064)	(0.276)	(0.000)		(0.177)	(0.047)	(0.006)	(0.380)	(0.000)	(0.000)	(0.000)	(0.000)
AGE	0.3456	0.1713	-0.2852	0.1650	0.1111	-0.0224	1.0000	0.0428	0.0466	0.5222	-0.4850	-0.0344	-0.3093	-0.1539
	(0.002)	(0.142)	(0.013)	(0.157)	(0.343)	(0.849)		(0.716)	(0.691)	(0.000)	(0.000)	(0.770)	(0.007)	(0.187)
GROW	0.0932	0.0349	-0.0676	-0.1962	0.0547	-0.1888	-0.0141	1.0000	0.1024	-0.1625	0.0554	0.0062	-0.0429	-0.0529
	(0.426)	(0.766)	(0.564)	(0.092)	(0.641)	(0.105)	(0.905)		(0.382)	(0.164)	(0.637)	(0.958)	(0.715)	(0.652)
DEBT	-0.3873	-0.4245	0.1853	0.1010	-0.4039	0.3144	0.0746	-0.0044	1.0000	0.2196	0.2245	-0.5982	-0.0198	-0.0146
	(0.001)	(0.000)	(0.111)	(0.389)	(0.000)	(0.006)	(0.525)	(0.970)		(0.058)	(0.053)	(0.000)	(0.866)	(0.901)
TANG	0.1614	0.1547	-0.3795	0.2900	0.0485	-0.0269	0.5150	-0.2239	0.1690	1.0000	-0.4557	-0.2264	-0.3629	-0.1399
	(0.167)	(0.185)	(0.001)	(0.012)	(0.679)	(0.819)	(0.000)	(0.054)	(0.147)		(0.000)	(0.051)	(0.001)	(0.231)
GWIA	-0.4559	-0.4508	0.3872	-0.0397	-0.4024	0.2330	-0.3336	0.0722	0.2059	-0.5863	1.0000	-0.3784	0.5847	0.4272
	(0.000)	(0.000)	(0.001)	(0.735)	(0.000)	(0.044)	(0.003)	(0.538)	(0.076)	(0.000)		(0.001)	(0.000)	(0.000)
CR	0.3999	0.4567	-0.2756	-0.2336	0.4467	-0.3971	-0.0632	0.0990	-0.6633	-0.1194	-0.3533	1.0000	-0.2623	-0.1838
	(0.000)	(0.000)	(0.017)	(0.044)	(0.000)	(0.000)	(0.590)	(0.398)	(0.000)	(0.308)	(0.002)		(0.023)	(0.115)
LIST	-0.6711	-0.5527	0.4636	0.1197	-0.4757	0.4445	-0.2286	-0.0548	0.0025	-0.3719	0.5909	-0.2426	1.0000	0.6302
	(0.000)	(0.000)	(0.000)	(0.306)	(0.000)	(0.000)	(0.049)	(0.641)	(0.983)	(0.001)	(0.000)	(0.036)		(0.000)
IFRS	-0.6299	-0.5017	0.4847	-0.0050	-0.3558	0.4350	-0.0849	-0.0666	0.0088	-0.2339	0.5382	-0.1653	0.6302	1.0000
1	(0.000)	(0.000)	(0.000)	(0.966)	(0.002)	(0.000)	(0.469)	(0.570)	(0.940)	(0.043)	(0.000)	(0.156)	(0.000)	

Table C12: Spearman's rank and Pearson correlation matrix of dependent, independent and control variables for GER for 2016-2020

Note: Triangle below the diagonal are correlation coefficients of Spearman's rank correlation matrix and above the diagonal are those of Pearson correlation matrix. P-values are inside brackets. Dark grey highlighted cells: p-value <0.01; medium grey highlighted cells: p-value <0.05; light grey highlighted cells: p-value <0.1.

Table C13:	Spearman's rank and	l Pearson	correlation	matrix	of	dependent,	independent	and	control
variables for	r USA for 2016-2020								

	GPM	DIO	DSO	DPO	CCC	SIZE	AGE	GROW	DEBT	TANG	GWIA	CR
GPM	1.0000	0.4896	0.2646	0.0261	0.4763	-0.2210	-0.2654	0.2235	-0.0398	-0.2815	-0.2725	0.1040
		(0.000)	(0.021)	(0.823)	(0.000)	(0.055)	(0.021)	(0.052)	(0.733)	(0.014)	(0.017)	(0.371)
DIO	0.4063	1.0000	-0.0297	-0.1485	0.9741	-0.2184	0.0071	-0.2158	0.1634	-0.1940	0.2004	0.0061
	(0.000)		(0.799)	(0.201)	(0.000)	(0.058)	(0.952)	(0.061)	(0.159)	(0.093)	(0.083)	(0.958)
DSO	0.2883	-0.0881	1.0000	0.1657	0.0569	0.1110	-0.0255	0.1962	0.0675	-0.3053	0.0869	-0.2673
	(0.012)	(0.449)		(0.153)	(0.625)	(0.340)	(0.827)	(0.089)	(0.563)	(0.007)	(0.456)	(0.020)
DPO	0.0089	-0.0208	0.2128	1.0000	-0.3158	0.3480	0.2059	0.0681	0.3423	-0.0045	0.0459	-0.2448
	(0.939)	(0.858)	(0.065)		(0.006)	(0.002)	(0.074)	(0.559)	(0.003)	(0.969)	(0.694)	(0.033)
CCC	0.3768	0.9345	-0.0612	-0.2546	1.0000	-0.2433	-0.0208	-0.2188	0.0904	-0.2346	0.2120	0.0057
	(0.001)	(0.000)	(0.599)	(0.027)		(0.034)	(0.858)	(0.058)	(0.438)	(0.041)	(0.066)	(0.961)
SIZE	-0.1941	-0.2527	0.1444	0.3463	-0.2912	1.0000	0.4851	-0.2132	0.2795	-0.3489	0.4446	-0.4870
	(0.093)	(0.028)	(0.213)	(0.002)	(0.011)		(0.000)	(0.064)	(0.015)	(0.002)	(0.000)	(0.000)
AGE	-0.3216	0.0578	-0.0287	0.1827	-0.0349	0.4098	1.0000	-0.3071	0.3987	-0.0707	0.3562	-0.2934
	(0.005)	(0.620)	(0.806)	(0.114)	(0.765)	(0.000)		(0.007)	(0.000)	(0.544)	(0.002)	(0.010)
GROW	0.2460	-0.1968	0.1285	-0.0212	-0.1936	-0.2152	-0.3496	1.0000	0.0632	-0.0012	-0.2118	0.0638
	(0.032)	(0.088)	(0.269)	(0.856)	(0.094)	(0.062)	(0.002)		(0.587)	(0.992)	(0.066)	(0.584)
DEBT	-0.0914	0.1572	0.0740	0.3714	0.0429	0.2513	0.4015	0.0684	1.0000	-0.1993	0.5063	-0.3972
	(0.432)	(0.175)	(0.526)	(0.001)	(0.713)	(0.029)	(0.000)	(0.557)		(0.084)	(0.000)	(0.000)
TANG	-0.1029	-0.1056	-0.3355	0.0100	-0.2040	-0.3339	-0.0420	-0.0345	-0.3001	1.0000	-0.5207	0.1743
	(0.376)	(0.364)	(0.003)	(0.932)	(0.077)	(0.003)	(0.719)	(0.767)	(0.008)		(0.000)	(0.132)
GWIA	-0.2748	0.1611	0.0920	0.0243	0.1818	0.4277	0.3351	-0.1830	0.3779	-0.5625	1.0000	-0.680
	(0.016)	(0.164)	(0.430)	(0.835)	(0.116)	(0.000)	(0.003)	(0.114)	(0.001)	(0.000)		(0.000)
CR	0.0276	0.1262	-0.3125	-0.3296	0.1794	-0.5612	-0.2910	0.0317	-0.2807	0.2792	-0.6519	1.0000
	(0.813)	(0.277)	(0.006)	(0.004)	(0.121)	(0.000)	(0.011)	(0.786)	(0.014)	(0.015)	(0.000)	

Note: Triangle below the diagonal are correlation coefficients of Spearman's rank correlation matrix and above the diagonal are those of Pearson correlation matrix. P-values are inside brackets. Dark grey highlighted cells: p-value <0.01; medium grey highlighted cells: p-value <0.05; light grey highlighted cells: p-value <0.1.
Appendix D

The following applies for all regression analyses in Appendices D and E:

Pooled OLS regression is based on the Stata command "regress". The FE model is a linear regression model with the option to integrate multiple FE based on the Stata command "reghdfe" (Correia 2016). Moreover, it represents a generalized version of the "xtreg" Stata command for FE models, which is faster and more flexible than "xtreg" for a larger sample size or a higher number of fixed effects (Correia n.d., 2016). The command applies the Correia estimator, which is based on the estimators of Guimarães and Portugal (2010) and Gaure (2010). Company and year effects were fixed to be equivalent to FE models in past research. Clustered SDE were applied in both models with the option "vce(cluster)" to cluster by companies.

Model assumptions are linearity, normality of errors, homoskedasticity, and neither autocorrelation nor multicollinearity (Wooldridge 2012). Linearity was generally assumed based on an initial analysis with scatterplots. The other assumptions were exemplary tested for the OLS model with normal SDE. Test for normality of errors was done with Shapiro-Wilk test (Shapiro and Wilk 1965), test for heteroskedasticity with Breusch-Pagan test (Breusch and Pagan 1979), test for multicollinearity with variation inflation factor (Studenmund 2014) and test for autocorrelation with Wooldridge test (Wooldridge 2002). The null hypothesis of the Shapiro-Wilk test implies normality, the one of the Breusch-Pagan test homoskedasticity and the one of the Wooldridge test no first-order autocorrelation. For each test applies: If the p-value of the test is below 10%, the null hypothesis is rejected. A variance inflation factor above 5 indicates considerable multicollinearity (Studenmund 2014). For all regressions, errors are generally approximately normally distributed since sample sizes exceed 30 obs. (Wooldridge 2012). Furthermore, the partial violation of the assumption of no autocorrelation is not expected to influence the validity of the results of the regression models with normal SDE. Additional robustness is induced by regressions with clustered SDE, which yield findings robust for heteroskedasticity and autocorrelation (Rogers 1993; Correia n.d.; Stata n.d.-c).

The F-test is a joint test with the null hypothesis that the coefficient of each independent, control and dummy variable (except for constant) is equal to zero (Stata n.d.-d). R^2 measures the overall goodness of fit, meaning how much variation in *GPM* is explained by the independent and control variables (Wooldridge 2012). The adjusted R^2 is used to compare the goodness of fit between OLS and FE models (Wooldridge 2012). The within R^2 measures this goodness of fit for the within regression, which is the FE model (Stata n.d.-e). Singleton obs. (group with one observation), which may inflate statistical significance (Correia 2015), were dropped from the sample for the FE models. P-values are inside brackets. ***: p-value <0.01; **: p-value <0.05; *: p-value <0.1.

Variables	Pooled OI S with	Peoled OI S with	FF model with	FF model with
variables	rooled OLS with	Pooled OLS with	r E mouel with	olustored SDE
	(Model 5 A)	(Model 5 A)	(Model 5 B)	(Model 5 B)
Constant B	0.766070***	0.766070***	0.629582**	0.629582*
Constant P ₀	(0,000)	(0,000)	(0.02)332	(0.02)302
Independent variables	(0.000)	(0.000)	(0.042)	(0.000)
$DIO \alpha$.	0 000899***	0.000899***	0.000251**	0.000251**
D10 u ₁	(0,000)	(0,000)	(0.021)	(0.024)
$DSO \alpha_2$	-0.000624	0.000624	-0.000614**	-0.000614*
200 u ₂	(0.166)	(0.381)	(0.013)	(0.062)
$DPO \alpha_2$	0.001686***	0.001686***	0.000280	0.000280
	(0.000)	(0.005)	(0.191)	(0.168)
Control variables				
SIZE β_1	-0.003900	-0.003900	-0.007141	-0.007141
• •	(0.525)	(0.705)	(0.736)	(0.789)
AGE β_2	0.008519	0.008519	0.029409	0.029409
	(0.294)	(0.369)	(0.585)	(0.698)
GROW β ₃	0.146351**	0.146351	0.057356***	0.057356**
	(0.044)	(0.147)	(0.009)	(0.048)
DEBT β_4	-0.139192***	-0.139192*	-0.052386	-0.052386
	(0.002)	(0.057)	(0.185)	(0.235)
TANG β_5	-0.571893***	-0.571893***	-0.285012***	-0.285012*
	(0.000)	(0.000)	(0.000)	(0.051)
GWIA β_6	-0.291431***	-0.291431***	-0.032515	-0.032515
	(0.000)	(0.001)	(0.247)	(0.286)
$CR \beta_7$	-0.021482***	-0.021482***	0.001086	0.001086
	(0.001)	(0.050)	(0.675)	(0.676)
Dummy variables				
COUNTRY β_8	0.122459***	0.122459**		
	(0.000)	(0.022)		
LIST B ₉	-0.120946***	-0.120946***		
IEDC 0	(0.000)	(0.003)		
IF KS β_{10}	-0.02/188	-0.02/188		
VE 4 D2017 0	(0.241)	0.002245		
$IEAK2017 p_{11}$	-0.002345	-0.002345		
VEA P2018 B	0.015960	0.015960*		
$12AR2010 P_{12}$	-0.013900	-0.013900*		
VFAR2019 B	-0.024838	-0.024838**		
1121112017 p ₁₃	(0.153)	(0.019)		
YEAR2020 B.	-0.042423**	-0.042423***		
12/11/2020 P14	(0.043)	(0.003)		
Obs.	151	151	150	150
F-test p-value	0.0000	0.0000	0.0000	0.0220
\mathbb{R}^2	0.7573	0.7573	0.9902	0.9902
Adjusted R ²	0.7263	0.7263	0.9854	0.9852
Within R ²			0.3291	0.3291
Shapiro-Wilk test p-value	0.02099			
Breusch-Pagan test p-value	0.2787			
Variance inflation factor	No			
below 5	(Highest VIF 7.10)			
Wooldridge test p-value	0.0066			

Table D1: Regression analysis of *DIO*, *DPO* and *DSO* (Models 5.A and 5.B) for total sample for 2016-2020

Note: Despite the variation inflation factor is slightly above 5 for a variable, no multicollinearity can be still assumed. Also, the total sample is only initially analysed before a detailed analysis of the country sample follows, on which the main hypotheses of the Work Project are based.

Variables	Pooled OLS with	Pooled OLS with	FE model with	FE model with
	normal SDE	clustered SDE	normal SDE	clustered SDE
	(Model 6.A)	(Model 6.A)	(Model 6.B)	(Model 6.B)
Constant β ₀	0.731616***	0.731616***	0.508846	0.508846
	(0.000)	(0.001)	(0.111)	(0.159)
Dependent variable				
$CCC \alpha_4$	0.000742***	0.000742***	0.000096	0.000096
	(0.000)	(0.000)	(0.367)	(0.374)
Control variables				
SIZE β_1	-0.002966	-0.002966	0.002614	0.002614
-	(0.686)	(0.836)	(0.903)	(0.923)
AGE β_2	0.017803*	0.017803	0.022363	0.022363
	(0.063)	(0.264)	(0.696)	(0.778)
$GROW \beta_3$	0.171164**	0.171164*	0.062755***	0.062755**
	(0.049)	(0.096)	(0.007)	(0.047)
DEBT β_4	-0.113239**	-0.113239	-0.070475*	-0.070475
	(0.032)	(0.159)	(0.090)	(0.206)
TANG β_5	-0.459900***	-0.459900**	-0.241143***	-0.241143*
	(0.000)	(0.013)	(0.002)	(0.078)
GWIA β_6	-0.289347***	-0.289347***	-0.027509	-0.027509
	(0.000)	(0.005)	(0.354)	(0.455)
$CR \beta_7$	-0.021491***	-0.021491*	0.001797	0.001797
• /	(0.004)	(0.054)	(0.503)	(0.574)
Dummy variables				
COUNTRY β_8	0.100870***	0.100870		
	(0.006)	(0.134)		
LIST β_9	-0.100568***	-0.100568*		
	(0.001)	(0.088)		
IFRS β_{10}	-0.074028***	-0.074028		
	(0.005)	(0.128)		
<i>YEAR2017</i> β ₁₁	0.008406	0.008406		
	(0.690)	(0.274)		
<i>YEAR2018</i> β ₁₂	-0.002195	-0.002195		
	(0.916)	(0.812)		
<i>YEAR2019</i> β ₁₃	-0.001354	-0.001354		
	(0.947)	(0.894)		
<i>YEAR2020</i> β ₁₄	-0.014498	-0.014498		
	(0.553)	(0.240)		
Obs.	151	151	150	150
F-test p-value	0.0000	0.0000	0.0005	0.2602
R ²	0.6473	0.6473	0.9888	0.9888
Adjusted R ²	0.6081	0.6081	0.9836	0.9835
Within R ²			0.2331	0.2331
Shapiro-Wilk test p-value	0.02930			
Breusch-Pagan test p-value	0.1503			
Variance inflation factor	No			
below 5	(Highest VIF 7.01)			
Wooldridge test p-value	0.0037			

Table D2: Regression analysis of C	CCC (Models 6.A and 6.B)) for total sample for 2016-2020
------------------------------------	--------------------------	----------------------------------

Note: Despite the variation inflation factor is slightly above 5 for a variable, no multicollinearity can be still assumed. Also, the total sample is only initially analysed before a detailed analysis of the country sample follows, on which the main hypotheses of the Work Project are based.

Variables	Pooled OLS with	Pooled OLS with	FE model with	FE model with
	normal SDE	clustered SDE	normal SDE	clustered SDE
	(Model 5.A)	(Model 5.A)	(Model 5.B)	(Model 5.B)
Constant β_0	0.813975***	0.813975***	-1.344768**	-1.344768
	(0.000)	(0.000)	(0.032)	(0.136)
Independent variables		· · · · ·		· · · · · ·
$DIO \alpha_1$	0.000132	0.000132	0.000432***	0.000432**
-	(0.417)	(0.665)	(0.001)	(0.019)
$DSO \alpha_2$	-0.000893**	-0.000893***	-0.000225	-0.000225
-	(0.015)	(0.004)	(0.284)	(0.160)
DPO α_3	0.003041***	0.003041***	0.000311	0.000311
, s	(0.000)	(0.000)	(0.240)	(0.127)
Control variables		· · · · ·		•
SIZE β_1	-0.011653*	-0.011653	0.097288**	0.097288
	(0.053)	(0.410)	(0.015)	(0.104)
AGE β_2	0.041410***	0.041410***	0.118992**	0.118992*
• -	(0.000)	(0.000)	(0.040)	(0.076)
GROW β ₃	-0.111384	-0.111384	0.072896*	0.072896
• •	(0.247)	(0.225)	(0.058)	(0.145)
DEBT β_4	-0.254446***	-0.254446***	0.017176	0.017176
•••	(0.000)	(0.000)	(0.733)	(0.645)
TANG β ₅	-0.505742***	-0.505742***	-0.164620*	-0.164620*
13	(0.000)	(0.002)	(0.075)	(0.063)
GWIA β_6	-0.092975	-0.092975	0.104951**	0.104951*
	(0.126)	(0.332)	(0.016)	(0.079)
$CR \beta_7$	-0.006934	-0.006934	0.001800	0.001800
	(0.245)	(0.320)	(0.503)	(0.460)
Dummy variables				
LIST β ₈	-0.160586***	-0.160586***		
	(0.000)	(0.000)		
IFRS β ₉	-0.041922**	-0.041922		
	(0.012)	(0.221)		
<i>YEAR2017</i> β ₁₀	-0.013562	-0.013562		
	(0.411)	(0.208)		
<i>YEAR2018</i> β ₁₁	-0.025577	-0.025577**		
	(0.122)	(0.018)		
<i>YEAR2019</i> β ₁₂	-0.014337	-0.014337		
	(0.394)	(0.251)		
YEAR2020 β ₁₃	-0.026993	-0.026993		
	(0.217)	(0.142)		
Obs.	75	75	74	74
F-test p-value	0.0000	0.0000	0.0000	0.0000
\mathbb{R}^2	0.9205	0.9205	0.9971	0.9970
Adjusted R ²	0.8986	0.8986	0.9949	0.9947
Within R ²			0.7295	0.7295
Shapiro-Wilk test p-value	0.45217	-		
Breusch-Pagan test p-value	0.2807			
Variance inflation factor	Yes			
below 5				
Wooldridge test p-value	0.0001			

Table D3: Regression and	alysis of DIO, DSO	and DPO (Models	5.A and 5.B) for C	GER for 2016-2020
Variables	Pooled OLS with	Pooled OLS with	FE model with	FE model with

Variables	Pooled OLS with	Pooled OLS with	FE model with	FE model with
	normal SDE	clustered SDE	normal SDE	clustered SDE
	(Model 6.A)	(Model 6.A)	(Model 6.B)	(Model 6.B)
Constant β ₀	0.895347***	0.895347**	-1.694571**	-1.694571**
	(0.000)	(0.016)	(0.016)	(0.037)
Independent variable	1			
$CCC \alpha_4$	0.000246	0.000246	0.000266*	0.000266**
	(0.286)	(0.534)	(0.058)	(0.042)
Control variables	0.01.40.70	0.01.1070	0.10051 child	0.10051.555
SIZE β_1	-0.014959	-0.014959	0.123516***	0.123516**
4.00.0	(0.133)	(0.587)	(0.008)	(0.019)
$AGE \beta_2$	0.041484***	0.041484	0.1161/2*	0.1161/2*
CDOW 0	(0.004)	(0.131)	(0.078)	(0.085)
$GKOW \beta_3$	-0.091/88	-0.091/88	0.091558**	0.091558**
DEDTO	(0.304)	(0.023)	(0.050)	0.005126
DEBI \$4	-0.257097***	-0.25/09/**	0.005136	0.005136
TANCO	(0.001)	(0.017)	(0.951)	(0.925)
IANG p ₅	-0.290839***	-0.290839	-0.070555	-0.0/0535
CWIA R	0.110127	0.110127	0.101752**	0 101752
GWIA p ₆	-0.110127	-0.110127	(0.043)	0.101732
CPR	0.014656	0.014656	0.003008	0.003008
СК р7	-0.014030 (0.124)	-0.014030	(0.323)	(0.311)
Dummy variables	(0.121)	(0.211)	(0.525)	(0.511)
LIST B ₂	-0.107624***	-0.107624		
	(0.001)	(0.105)		
IFRS Bo	-0.086465***	-0.086465**		
	(0.001)	(0.046)		
YEAR2017 β_{10}	0.000565	0.000565		
110	(0.983)	(0.949)		
<i>YEAR2018</i> β ₁₁	-0.005669	-0.005669		
	(0.834)	(0.768)		
<i>YEAR2019</i> β ₁₂	0.004407	0.004407		
	(0.874)	(0.735)		
<i>YEAR2020</i> β ₁₃	-0.003570	-0.003570		
	(0.920)	(0.827)		
Obs.	75	75	74	74
F-test p-value	0.0000	0.0000	0.0000	0.0008
\mathbb{R}^2	0.7713	0.7713	0.9958	0.9958
Adjusted R ²	0.7180	0.7180	0.9931	0.9929
Within R ²			0.6165	0.6165
Shapiro-Wilk test p-value	0.02257			
Breusch-Pagan test p-value	0.6319			
Variance inflation factor	Yes			
below 5				
Wooldridge test p-value	0.0001			

Table D4: Regression analysis of CCC (Models 6.A and 6.B) for GER for 2016-2020

Table	D5. Inter	pretation	of regression	n coefficients	of control	and dummy	variables	for GER
Table	DJ. Inter	pretation	of regressio	in coefficients	s of control		y variables	IOI OLK

For all	Interpretation of the regression coefficients considers the ceteris paribus effect of the particular
models	variable. Since focus lies on the impact of WCM on GPM, the detailed analysis of the significance
	(1%, 5% or 10% level) was left out for control variables. The mentioned research examples used
	different profitability proxies and regression methods. The reference to them only considers the
	similarity in results (significance and sign of coefficients). In case of consistent findings for pooled
	OLS and FE models, indication is clear. For primary consistent results in terms of coefficient sign
	and significance for pooled OLS and FE models, indication is based on the main outcome. For
	inconsistent results between pooled OLS and FE models, indication is based on the model with the
	significant results, showing a potential tendency. In the following, the coefficients of the control
	variables SIZE, AGE, GROW, DEBT, TANG, GWIA and CR and of the dummy variables LIST,
	IFRS, YEAR2017, YEAR2018, YEAR2019 and YEAR2020 are analysed.
SIZE	SIZE is significantly positively associated with GPM in models 5.B and 6.B and mainly
	insignificantly negatively for the other models except for model 5.A with normal SDE, where the
	negative effect is weakly significant. Findings for models 5.B and 6.B are in line with the initial
	assumption and Hoegerle et al. (2020). On the contrary, the insignificantly influence was
	discovered by Gill et al. (2010) and the significantly negative one by Lin and Wang (2021). Despite
	the inconsistent results, there is indication, that larger MD firms in GER exhibit higher profitability,
	which could be induced by e.g., their market power and scalability in production.
AGE	In all models (except for model 6.A with clustered SDE) higher AGE significantly increases GPM,
	which is consistent with Afrifa and Padachi (2016) and expectations. As a result, there is strong
	evidence that more aged German MD firms are more profitable than younger ones. Reasons could
	be the longer time in market as well as for R&D opportunities, earlier issues of patents and more
	established reputation.
GROW	GROW was only found to have a significantly positive impact in models 5.B and 6.B (except for
	model 5.B with clustered SDE), which was also confirmed by Deloof (2003). In contrast, an
	insignificantly negative effect was measured in models 5.A and 6.A, being consistent with results
	of Hoegerle et al. (2020). Although there is inconsistency among the models, findings show that
	there may be a positive relationship implying that German MD companies with more growth
	opportunities tend to have higher profitability, because they e.g., secure future demand of
	customers and innovation power for new products.
DEBT	As expected, and in line with Hoegerle et al. (2020), a higher DEBT level leads to a significant
	reduction in GPM. However, this finding was only evident in models 5.A and 6.A since in models
	5.B and 6.B <i>DEBT</i> is insignificantly positively associated with <i>GPM</i> (in line with Padachi 2006).
	Hence, there is indication for the negative impact of <i>DEBT</i> , but it was not confirmed in all models.
	The negative effect may result from the pattern that a firm borrows more external capital if it does
	not have enough retained earnings, indicating lower prior innovation power and less available
	growth opportunities, which may be also reflected in the current profitability.

(to be continued)

Table D5 (continued).

TANG	Initial assumption of a negative effect of <i>TANG</i> was confirmed in all models except for model 6.B
	and model 6.A with clustered SDE, where the impact was not significant. Significant results, also
	found by Afrifa and Padachi (2016), suggest lower profitability for firms with higher asset
	tangibility since they may face substantially higher maintenance, depreciation, and impairment
	costs, which may outweigh benefits (sales from produced goods) established with the fixed assets.
GWIA	GWIA shows (in line with expectations) a significantly positive impact in model 5.B, which is only
	confirmed in model 6.B with normal SDE. In model 2.B with clustered SDE, the positive impact is
	insignificant. In models 5.A and 6.A, higher GWIA is contrary to assumptions associated with
	insignificantly lower GPM. Despite the contrary results, there is partial indication that German MD
	firms with higher GWIA may have increased GPM due to higher competitive advantage and
	innovation power, resulting from more valuable patents, trademarks, goodwill, and intangible
	assets from R&D processes and ensuring consistent demand for MD.
	Generally, there is a limitation for the results for TANG and GWIA because the recognition and
	measurement of these variables may differ between German firms applying either IFRS or HGB.
CR	In line with Raheman et al. (2010) and in contrast to initial expectation, CR exhibits insignificant
	and inconsistent coefficients. As a result, higher potential liquidity may be less relevant for
	profitability of MD firms since it is more influenced by factors as TANG or AGE, which are more
	closely related to the MD development and production process.
LIST	The status of being listed has a significantly negative impact on GPM in model 5.A with normal
and IFRS	and clustered SDE and in model 6.A with normal SDE. Against expectation of outweighing
II KS	benefits from more financing and investment opportunities for listed firms, costs from agency
	problems and potentially inflexibility due to stricter disclosure and reporting requirements tend to
	be larger and may lead to the negative effect on profitability (Jensen 1989; Brav 2009; Doidge et
	al. 2017).
	The potential negative influence is also reasonable because listed firms in GER apply IFRS as
	financial reporting standards and IFRS is significantly negatively associated with GPM for German
	MD firms (except for model 5.A with clustered SDE). The negative effect might emerge from e.g.,
	different inventory valuation rules and accounting choice between IFRS and HGB, that will be
	indirectly reflected in cost of goods sold, DIO, DPO and GPM.
Year	Year dummies are insignificantly and mainly negatively related to GPM, except for YEAR2018 in
dummies	model 5.A with clustered SDE. However, the insignificant effect of YEAR2018 on GPM generally
	outweighs due to insignificant coefficients in model 5.A with normal SDE and in model 6.A with
	normal and clustered SDE.

Variables	Pooled OLS with	Pooled OLS with	FE model with	FE model with
	normal SDE	clustered SDE	normal SDE	clustered SDE
<u> </u>	(Model 5.A)	(Nidel 5.A)	(NIOdel 5.B)	(Model 5.B)
Constant β_0	1.032384***	1.032384***	1.102298**	1.102298**
In dan an dant ugnightag	(0.000)	(0.000)	(0.026)	(0.015)
DIO «	0.000008***	0.000008***	0.000202	0.000202
$DIO a_1$	(0,000)	(0,000)	0.000205	0.000205
DSO a	0.000284	0.000284	0.000277	0.000277
$D30 u_2$	(0.741)	(0.781)	(0.727)	(0.627)
DPO α _α	0.000505	0.000505	0.000130	0.000130
$DICu_3$	(0.353)	(0.553)	(0.690)	(0.711)
Control variables	(0.002)	(0.000)	(0.02.0)	
SIZE B ₁	-0.008979	-0.008979	-0.042068	-0.042068
	(0.356)	(0.509)	(0.267)	(0.160)
AGE B ₂	-0.011827	-0.011827	0.050503	0.050503
F2	(0.354)	(0.582)	(0.587)	(0.576)
GROW B ₃	0.071013	0.071013	0.028279	0.028279
	(0.451)	(0.522)	(0.400)	(0.410)
DEBT β_4	0.077520	0.077520	-0.088420	-0.088420
	(0.264)	(0.557)	(0.145)	(0.101)
TANG β_5	-1.023439***	-1.023439***	-0.210718*	-0.210718
	(0.000)	(0.000)	(0.064)	(0.312)
GWIA β ₆	-0.483320***	-0.483320***	-0.072515*	-0.072515*
	(0.000)	(0.000)	(0.057)	(0.060)
$CR \beta_7$	-0.044728***	-0.044728**	-0.001102	-0.001102
	(0.000)	(0.010)	(0.814)	(0.702)
Dummy variables	· · · · · · · · · · · · · · · · · · ·			
<i>YEAR2017</i> β ₈	-0.012578	-0.012578		
	(0.611)	(0.571)		
<i>YEAR2018</i> β ₉	-0.012740	-0.012740		
VE + D2010 0	(0.597)	(0.492)		
<i>YEAR2019</i> β ₁₀	-0.026297	-0.026297		
VE 4 D2020 0	(0.280)	(0.197)		
<i>YEAR2020</i> β ₁₁	-0.041615	-0.041615		
Oba	(0.132)	(0.139)	76	76
UDS. E tast n value	0,0000	0.0000	0.0477	0.0279
F-test p-value	0.000	0.000	0.0477	0.0275
K A directed D ²	0.7342	0.7342	0.9805	0.9805
Aujusicu K Within D ²	0.0770	0.0976	0.3705	0.2704
Willin K Chapiro-Wilk test p-volue	0.47004	L	0.5205	0.5205
Brougeh Degen test p value	0.47004			
Variance inflation factor	0.00/4			
below 5	103			
Wooldridge test n-value	0.1244			

Table D6: Regression anal	vsis of DIO.	DSO and DPO (Models 5.A and 5.B) for USA for 2016-2020
	/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			,

Variables	Pooled OI S with	Pooled OI S with	FF model with	FF model with
variabics	normal SDF	clustered SDF	normal SDF	clustered SDF
	(Model 6.A)	(Model 6.A)	(Model 6 B)	(Model 6.B)
Constant Bo	1.002451***	1 002451***	1.043175**	1.043175**
Constant p ₀	(0.000)	(0,000)	(0.028)	(0.008)
Independent variable	(01000)	(01000)	(01020)	(01000)
$CCC \alpha_{A}$	0.000799***	0.000799***	0.000142	0.000142
-	(0.000)	(0.000)	(0.355)	(0.357)
Control variables				
SIZE β_1	-0.005859	-0.005859	-0.034358	-0.034358
	(0.557)	(0.700)	(0.340)	(0.226)
AGE β_2	-0.011971	-0.011971	0.042397	0.042397
	(0.367)	(0.666)	(0.641)	(0.647)
GROW β ₃	0.086328	0.086328	0.028865	0.028865
	(0.377)	(0.451)	(0.368)	(0.420)
DEBT β_4	0.139901**	0.139901	-0.082467	-0.082467
	(0.043)	(0.232)	(0.141)	(0.118)
TANG β_5	-1.005117***	-1.005117***	-0.217885**	-0.217885
	(0.000)	(0.000)	(0.033)	(0.286)
GWIA β ₆	-0.503218***	-0.503218***	-0.069470*	-0.069470*
	(0.000)	(0.000)	(0.063)	(0.058)
$CR \beta_7$	-0.045825***	-0.045825***	-0.001715	-0.001715
	(0.000)	(0.005)	(0.696)	(0.550)
Dummy variables	1			
<i>YEAR2017</i> β ₈	-0.005604	-0.005604		
	(0.825)	(0.795)		
<i>YEAR2018</i> β ₉	-0.006706	-0.006706		
	(0.789)	(0./14)		
$YEAR2019 \beta_{10}$	-0.011975	-0.011975		
XE + D2020 0	(0.622)	(0.577)		
$YEAR2020 \beta_{11}$	-0.024807	-0.02480/		
Oha	(0.509)	(0.541)	76	76
E test n volue	0,0000	0.0000	0.0292	/0
P-test p-value	0.0000	0.0000	0.0283	0.0132
A diusted D ²	0.7233	0.7233	0.9800	0.9800
Aujusteu K Within D ²	0.0708	0.0708	0.3772	0.9700
Shaning Wills test n volue	0.20107	ן ו	0.2904	0.2904
Brough Degen test p value	0.20107			
breusen-ragan test p-value	0.2709			
Variance inflation factor	Vac			
below 5	105			
Wooldridge test n-value	0 1762			
vooraninge ust p-value	0.1702			

Table D7: Regression analysis of CCC (Models 6.A and 6.B) for USA for 2016-2020

Table	D8 :	Interr	pretation	of reg	pression	coefficient	s of	control	and	dummy	variables	for	USA
1 4010	20.	Incorp	/ otation	01 102		coontenent		001101	unu	<i>additing</i>	, an incore o	101	0011

For all	Interpretation of the regression coefficients considers the ceteris paribus effect of the particular
models	variable. Since focus lies on the impact of WCM on GPM, the detailed analysis of the significance
	(1%, 5% or 10% level) was left out for control variables. The mentioned research examples used
	different profitability proxies and regression methods. The reference to them only considers the
	similarity in results (significance and sign of coefficients). In case of consistent findings for pooled
	OLS and FE models, indication is clear. For primary consistent results in terms of coefficient sign
	and significance for pooled OLS and FE models, indication is based on the main outcome. For
	inconsistent results between pooled OLS and FE models, indication is based on the model with the
	significant results, showing a potential tendency. In the following, the coefficients of the control
	variables SIZE, AGE, GROW, DEBT, TANG, GWIA and CR and of the year dummies (YEAR2017,
	YEAR2018, YEAR2019 and YEAR2020) are analysed.
SIZE	Despite the larger SIZE of U.S. MD firms relative to German ones, SIZE has an insignificantly
	negative effect on GPM, which contrasts the initial assumption, but it is aligned with Gill et al.
	(2010). The result is also partially contrary to GER, where SIZE behaves significantly positively
	with GPM in models 5.A and 6.A. Generally, market power and scalability in production from
	higher SIZE may not be relevant for profitability of U.S. MD firms.
AGE	Although, U.S. MD companies are younger than German ones, AGE and related factors, such as
	time in market and longer used patents, do not play a significant role for GPM, being contrary to
	expectations, outcomes for GER and findings of Usman, Shaikh, and Khan (2017). Moreover, the
	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B.
GROW	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as
GROW	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar
GROW	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher
GROW	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher innovation power may not lead to higher profitability, because product innovations probably need
GROW	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher innovation power may not lead to higher profitability, because product innovations probably need longer time to be reflected in significantly higher demand of customers.
GROW DEBT	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher innovation power may not lead to higher profitability, because product innovations probably need longer time to be reflected in significantly higher demand of customers. <i>DEBT</i> mainly exhibits an insignificant effect on <i>GPM</i> . Moreover, the effect is not consistent
GROW DEBT	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher innovation power may not lead to higher profitability, because product innovations probably need longer time to be reflected in significantly higher demand of customers. <i>DEBT</i> mainly exhibits an insignificant effect on <i>GPM</i> . Moreover, the effect is not consistent between the models: Models 5.A and 6.A show a positive effect with a significant influence for
GROW DEBT	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher innovation power may not lead to higher profitability, because product innovations probably need longer time to be reflected in significantly higher demand of customers. <i>DEBT</i> mainly exhibits an insignificant effect on <i>GPM</i> . Moreover, the effect is not consistent between the models: Models 5.A and 6.A show a positive effect with a significant influence for model 6.A with normal SDE and models 5.B and 6.B a negative one. The insignificant effect,
GROW DEBT	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher innovation power may not lead to higher profitability, because product innovations probably need longer time to be reflected in significantly higher demand of customers. <i>DEBT</i> mainly exhibits an insignificant effect on <i>GPM</i> . Moreover, the effect is not consistent between the models: Models 5.A and 6.A show a positive effect with a significant influence for model 6.A with normal SDE and models 5.B and 6.B a negative one. The insignificant effect, which is partially in contrast to results for German MD firms, was also analysed by Padachi (2006),
GROW DEBT	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher innovation power may not lead to higher profitability, because product innovations probably need longer time to be reflected in significantly higher demand of customers. <i>DEBT</i> mainly exhibits an insignificant effect on <i>GPM</i> . Moreover, the effect is not consistent between the models: Models 5.A and 6.A show a positive effect with a significant effect, which is partially in contrast to results for German MD firms, was also analysed by Padachi (2006), but not initially expected. In conclusion, U.S. firms with higher financial leverage do not
GROW DEBT	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher innovation power may not lead to higher profitability, because product innovations probably need longer time to be reflected in significantly higher demand of customers. <i>DEBT</i> mainly exhibits an insignificant effect on <i>GPM</i> . Moreover, the effect is not consistent between the models: Models 5.A and 6.A show a positive effect with a significant influence for model 6.A with normal SDE and models 5.B and 6.B a negative one. The insignificant effect, which is partially in contrast to results for German MD firms, was also analysed by Padachi (2006), but not initially expected. In conclusion, U.S. firms with higher financial leverage do not necessarily have lower profitability because they e.g., use leverage to finance their continuing
GROW DEBT	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher innovation power may not lead to higher profitability, because product innovations probably need longer time to be reflected in significantly higher demand of customers. <i>DEBT</i> mainly exhibits an insignificant effect on <i>GPM</i> . Moreover, the effect is not consistent between the models: Models 5.A and 6.A show a positive effect with a significant effect, which is partially in contrast to results for German MD firms, was also analysed by Padachi (2006), but not initially expected. In conclusion, U.S. firms with higher financial leverage do not necessarily have lower profitability because they e.g., use leverage to finance their continuing innovation activity with which they secure future demand, sales growth, and products' life.
GROW DEBT	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher innovation power may not lead to higher profitability, because product innovations probably need longer time to be reflected in significantly higher demand of customers. <i>DEBT</i> mainly exhibits an insignificant effect on <i>GPM</i> . Moreover, the effect is not consistent between the models: Models 5.A and 6.A show a positive effect with a significant effect, which is partially in contrast to results for German MD firms, was also analysed by Padachi (2006), but not initially expected. In conclusion, U.S. firms with higher financial leverage do not necessarily have lower profitability because they e.g., use leverage to finance their continuing innovation activity with which they secure future demand, sales growth, and products' life. Additionally, U.S. firms may have more favourably debt conditions due to country factors (e.g.,
GROW DEBT	signs of the coefficients in models 5.A and 6.A differ from those in models 5.B and 6.B. Despite the higher <i>GROW</i> among U.S. MD firms, <i>GROW</i> seems to be positively related to <i>GPM</i> as priorly assumed, but the effect is insignificant in all models, like outcomes of Sharma and Kumar (2011), but not like those for GER. As a result, more growth opportunities and the related higher innovation power may not lead to higher profitability, because product innovations probably need longer time to be reflected in significantly higher demand of customers. <i>DEBT</i> mainly exhibits an insignificant effect on <i>GPM</i> . Moreover, the effect is not consistent between the models: Models 5.A and 6.A show a positive effect with a significant influence for model 6.A with normal SDE and models 5.B and 6.B a negative one. The insignificant effect, which is partially in contrast to results for German MD firms, was also analysed by Padachi (2006), but not initially expected. In conclusion, U.S. firms with higher financial leverage do not necessarily have lower profitability because they e.g., use leverage to finance their continuing innovation activity with which they secure future demand, sales growth, and products' life. Additionally, U.S. firms may have more favourably debt conditions due to country factors (e.g., higher investor protection) or company factors (e.g., higher negotiation power due to larger <i>SIZE</i>)

(to be continued)

Table D8 (continued).

TANG	In line with initial expectation, Afrifa and Padachi (2016) and with GER, TANG is mainly			
	negatively associated with GPM (except for an insignificantly negative impact in models 6.A and			
	6.B with clustered SDE). As a result, U.S. MD firms face as their German competitors outweighing			
	maintenance, depreciation, and impairment costs of fixed assets for increased asset tangibility.			
	Also, there may not be a substantial influence of financial reporting standards on the effect of			
	TANG on GPM between GER and the USA. Hence, the subsequent valuation of fixed assets with			
	either fair value or initial cost, both less accumulated depreciation, may not lead to a distraction in			
	the TANG impact between GER and the USA.			
GWIA	Contrary to assumptions, higher GWIA levels induce significantly lower GPM levels in the U.S.			
	MD industry. Thus, U.S. MD firms with more valuable patents, goodwill, brands, trademarks, and			
	intangible assets from R&D (overall higher innovation power) processes do not necessarily have			
	higher profitability since they might also face e.g., higher production, maintenance or amortization			
	costs that may outweigh benefits from competitive advantage and innovation power, reducing			
	operating profitability. Also, innovation power might need more time to be trigger customer			
	demand and thus, to be reflected in profitability. Apart from this, the analysed relationship is			
	mainly different from that discovered for GER, which results probably from deviating financial			
	reporting standards.			
CR	CR's negative impact was proved to be significant only in models 5.A and 6.A, being consistent			
	with initial assumption and Raheman and Nasr (2007) but primary contrary to GER. In contrast to			
	German MD firms, U.S. firms with higher potential liquidity levels may have lower profitability,			
	because holding too much liquidity is costly and does not lead to profitable investments.			
Year	In addition, all year dummies have an insignificant and negative influence on GPM, indicating no			
dummies	major year events affecting GPM.			
In conclusi	on, there are several divergences regarding the relevance of the control variables for GPM between			
GER and	USA, indicating diversity in the MD industry itself and probably occurring due to substantial			
differences	in the size of the control variables between German and U.S. MD companies. The deviations in the			
size of the	control variables may result from the outlined differences between GER and the USA in the MD			
market (ma	arket size, growth and MD portfolio), the healthcare system, the investor protection law and other			
country factors (e.g., GPDG or interest and tax rate).				

Appendix E

The robustness test was used as general check of the findings in the Work Project. Thus, difference testing for dependent and independent variables does not include Wilcoxon test. Also, only the relevant correlation coefficients for the hypotheses are listed below.

Table E1: Non-parametric median and parametric mean tests for dependent and independent variables

 for 2016-2019

		Non-parameti	ric median test	Parametric mean test		
Variables	Normality GER	Normality USA	Fisher´s exact p-value	Statistically different median	P-value	Statistically different mean
DIO	0.47475	0.00005***	0.292	No	0.9452	No
DSO	0.00630***	0.41859	1.000	No	0.1616	No
DPO	0.00451***	0.38585	0.292	No	0.8535	No
CCC	0.01080**	0.00000***	0.483	No	0.6607	No
GPM	0.00230***	0.00019***	0.160	No	0.2902	No

Note: Procedure similar to Table C11 (except for the exclusion of the year 2020 and the population distribution test). Normality and statistical indifference are fulfilled if p-values are above 10%. The non-parametric median test was done with the Stata option "medianties(drop)" and with "medianties(split)" (Stata n.d.-b). Both options yielded the same p-values. For the median test, p-value of Fisher's exact test is used since it is more reliable than that of Pearson chi-squared test in samples with less than 200 obs. (Fisher 1935; Stata n.d.-b). In case of divergent results for median and mean tests, result of mean test will be focused for a normally distributed variable in both countries and that of the median test for divergent findings for the normality of the variable between both countries. ***: p-value <0.01; **: p-value <0.05; *: p-value <0.1.

Table E2: Correlation coefficients of independent variables with *GPM* in GER and USA for Spearman's rank and Pearson correlation matrix for 2016-2019

Varia- bles	GER - Spearman	USA – Spearman	GER – Pearson	USA – Pearson	Consistency of results for GER	Consistency of results for USA	Consistency of results overall
DIO	0.7531***	0.4125***	0.7656***	0.4964***	Yes	Yes	Yes
	(0.0000)	(0.0008)	(0.0000)	(0.0000)			
DSO	-0.4768***	0.3213**	-0.3210***	0.2905**	Yes	Yes	No
	(0.0000)	(0.0102)	(0.0081)	(0.0209)			
DPO	0.1704	-0.0594	0.2554**	-0.0337	No	Yes	No
	(0.1679)	(0.6437)	(0.0370)	(0.7932)			
CCC	0.5718***	0.3865***	0.6031***	0.4852***	Yes	Yes	Yes
	(0.0000)	(0.0018)	(0.0000)	(0.0001)			

*Note: Procedure similar as in Tables C12-C13 (except for the exclusion of the year 2020). P-values are inside brackets. ***: p-value <0.01; **: p-value <0.05; *: p-value <0.1.*

Variables	Pooled OLS with	Pooled OLS with	FE model with	FE model with
	normal SDE	clustered SDE	normal SDE	clustered SDE
	(Model 5.A)	(Model 5.A)	(Model 5.B)	(Model 5.B)
Constant β ₀	0.807641***	0.807641***	-2.150651***	-2.150651**
	(0.000)	(0.000)	(0.008)	(0.027)
Independent variables				
DIO α_1	0.000123	0.000123	0.000447***	0.000447***
	(0.444)	(0.650)	(0.001)	(0.007)
$DSO \alpha_2$	-0.000698*	-0.000698**	-0.000032	-0.000032
	(0.059)	(0.012)	(0.891)	(0.823)
DPO α_3	0.003188***	0.003188***	0.000276	0.000276
	(0.000)	(0.000)	(0.338)	(0.242)
Control variables				
SIZE β_1	-0.012588**	-0.012588	0.156048***	0.156048**
	(0.043)	(0.381)	(0.003)	(0.013)
AGE β_2	0.039504***	0.039504***	0.119075	0.119075
	(0.000)	(0.001)	(0.127)	(0.247)
GROW β ₃	-0.136046	-0.136046	0.080033*	0.080033
	(0.224)	(0.234)	(0.056)	(0.130)
DEBT β_4	-0.265776***	-0.265776***	0.042525	0.042525
	(0.000)	(0.000)	(0.498)	(0.317)
TANG β_5	-0.463634***	-0.463634***	-0.138494	-0.138494
	(0.000)	(0.003)	(0.157)	(0.161)
GWIA β ₆	-0.040219	-0.040219	0.081198	0.081198
	(0.524)	(0.675)	(0.116)	(0.220)
$CR \beta_7$	-0.005777	-0.005777	0.000690	0.000690
	(0.333)	(0.410)	(0.807)	(0.801)
Dummy variables				
LIST β_8	-0.173011***	-0.173011***		
	(0.000)	(0.000)		
IFRS β ₉	-0.044365***	-0.044365		
	(0.008)	(0.188)		
$YEAR2017 \beta_{10}$	-0.012730	-0.012730		
	(0.433)	(0.228)		
$YEAR2018 \beta_{11}$	-0.025711	-0.025711**		
	(0.117)	(0.032)		
$YEAR2019 \beta_{12}$	-0.011277	-0.011277		
	(0.500)	(0.351)		
Obs.	67	67	66	66
F-test p-value	0.0000	0.0000	0.0000	0.0000
<u>R</u> ²	0.9218	0.9218	0.9972	0.9972
Adjusted R ²	0.8988	0.8988	0.9948	0.9946
Within R ²			0.7399	0.7399
Shapiro-Wilk test p-value	0.35548			
Breusch-Pagan test p-value	0.2220			
Variance inflation factor	Yes			
below 5				
Wooldridge test p-value	0.0001			

Note: Procedure is similar as in Table D3 (except for the exclusion of the year 2020). Focus lies on the robustness of the impact of independent variables on GPM. Hence, interpretation of coefficients of control and dummy variables was not done.

Variables	Pooled OI S with	Pooled OI S with	FF model with	FF model with
v ar labits	normal SDF	clustered SDF	normal SDF	clustered SDF
	(Model 6 A)	(Model 6 A)	(Model 6 B)	(Model 6 B)
Constant B.	0.892796***	0.892796**	-2 469520***	-2 469520***
Constant p_0	(0.000)	(0.027)0	-2.40/520	(0.003)
Independent variable	(0.000)	(0.020)	(0.005)	(0.005)
	0.0002.62	0.000262	0.000332**	0.000332**
000 u4	(0.260)	(0.476)	(0.022)	(0.015)
Control variables				
SIZE B ₁	-0.017681*	-0.017681	0.190258***	0.190258***
FI FI	(0.089)	(0.539)	(0.001)	(0.000)
$AGE \beta_2$	0.040249***	0.040249	0.083473	0.083473
• 2	(0.006)	(0.131)	(0.324)	(0.330)
GROW β ₃	-0.085554	-0.085554	0.086534*	0.086534*
	(0.647)	(0.730)	(0.058)	(0.070)
DEBT β_4	-0.239644***	-0.239644**	0.031598	0.031598
	(0.002)	(0.015)	(0.652)	(0.504)
TANG β_5	-0.228128*	-0.228128	-0.041442	-0.041442
	(0.064)	(0.372)	(0.682)	(0.607)
GWIA β ₆	-0.059913	-0.059913	0.087739	0.087739
	(0.566)	(0.786)	(0.121)	(0.272)
$CR \beta_7$	-0.011305	-0.011305	0.001550	0.001550
	(0.246)	(0.357)	(0.618)	(0.559)
Dummy variables				
LIST β_8	-0.112961***	-0.112961		
	(0.001)	(0.117)		
IFRS β ₉	-0.081851***	-0.081851**		
	(0.002)	(0.048)		
<i>YEAR2017</i> β ₁₀	0.000979	0.000979		
	(0.971)	(0.907)		
<i>YEAR2018</i> β ₁₁	-0.004542	-0.004542		
	(0.866)	(0.811)		
YEAR2019 β_{12}	0.005246	0.005246		
	(0.850)	(0.666)		
Obs.	67	67	66	66
F-test p-value	0.0000	0.0000	0.000	0.0000
\mathbf{R}^2	0.7692	0.7692	0.9964	0.9964
Adjusted K [*]	0.7126	0.7126	0.9937	0.9935
Within R ²	0.00.650		0.6670	0.6670
Shapiro-Wilk test p-value	0.00658			
Breusch-Pagan test p-value	0.2566			
Variance inflation factor	Yes			
below 5	0.0000			
Wooldridge test p-value	0.0002			

TADIE E4. REGRESSION ANALYSIS OF CCC (IVIOUEIS 0.A AND 0.D) TOT GER TOT 2010-20	Table E4	1: Regressio	n analysis of CCC	(Models 6.A and 6.B)) for GER for 2016-201
--	----------	--------------	-------------------	----------------------	------------------------

Note: Procedure is similar as in Table D4 (except for the exclusion of the year 2020). Focus lies on the robustness of the impact of independent variables on GPM. Hence, interpretation of coefficients of control and dummy variables was not done.

Variables	Pooled OLS with	Pooled OLS with	FE model with	FE model with
	normal SDE	clustered SDE	normal SDE	clustered SDE
Constant 0	(Model 5.A)	(NIOdel 5.A)	(Model 5.B)	(Model 5.B)
Constant p ₀	0.9/616/****	$(0.9/010)^{****}$	1.51251/****	1.51231/****
Independent variables	(0.000)	(0.001)	(0.003)	(0.008)
DIO a.	0.000863***	0.000863***	0.000088	0.000088
	(0,000)	(0,000)	(0.565)	(0.562)
$DSO \alpha_2$	0.001181	0.001181	-0.000340	-0.000340
250 u ₂	(0.230)	(0.262)	(0.644)	(0.362)
$DPO \alpha_2$	0.000557	0.000557	-0.000211	-0.000211
3	(0.377)	(0.515)	(0.508)	(0.452)
Control variables				
SIZE β_1	-0.009463	-0.009463	-0.057753	-0.057753
• •	(0.407)	(0.535)	(0.122)	(0.112)
AGE β_2	-0.009958	-0.009958	0.009941	0.009941
	(0.464)	(0.649)	(0.912)	(0.887)
GROW β ₃	0.070208	0.070208	-0.036072	-0.036072*
	(0.522)	(0.598)	(0.319)	(0.082)
$DEBT \beta_4$	0.102509	0.102509	-0.018433	-0.018433
	(0.183)	(0.435)	(0.735)	(0.733)
TANG β_5	-1.017631***	-1.017631***	-0.212807*	-0.212807
	(0.000)	(0.000)	(0.076)	(0.281)
GWIA β ₆	-0.487111***	-0.487111***	-0.009323	-0.009323
	(0.000)	(0.000)	(0.782)	(0.765)
$CR \beta_7$	-0.045256***	-0.045256**	-0.001845	-0.001845
	(0.000)	(0.014)	(0.665)	(0.340)
Dummy variables				
<i>YEAR2017</i> β ₈	-0.018930	-0.018930		
	(0.448)	(0.420)		
<i>YEAR2018</i> β ₉	-0.013348	-0.013348		
NE + D2010 0	(0.581)	(0.513)		
YEAR2019 β_{10}	-0.028520	-0.028520		
	(0.250)	(0.208)	()	()
UDS.	0.0000	0.0000	62	62
F-test p-value	0.0000	0.0000	0.0183	0.0009
K ⁻ A divised D ²	0.7638	0.7038	0.9923	0.9923
Adjusted K	0.7012	0.7012	0.9853	0.9848
Shapina Wills test p value	0.22200	l	0.4515	0.4515
Snapiro-wilk test p-value	0.32309			
Prougeh Pagan test n value	0.5522			
Variance inflation factor	0.5525 Vac			
below 5	105			
Wooldridge test p-value	0.0137			

|--|

Note: Procedure is similar as in Table D6 (except for the exclusion of the year 2020). Focus lies on the robustness of the impact of independent variables on GPM. Hence, interpretation of coefficients of control and dummy variables was not done.

Variables	Pooled OLS with normal SDE (Model 6.A)	Pooled OLS with clustered SDE (Model 6.A)	FE model with normal SDE (Model 6.B)	FE model with clustered SDE (Model 6.B)
Constant β ₀	1.052078***	1.052078***	1.512751***	1.512751***
	(0.000)	(0.001)	(0.004)	(0.008)
Independent variable				
$CCC \alpha_4$	0.000754***	0.000754***	0.000107	0.000107
	(0.000)	(0.000)	(0.415)	(0.348)
Control variables				
SIZE β_1	-0.008078	-0.008078	-0.060074*	-0.060074*
	(0.490)	(0.623)	(0.096)	(0.094)
$AGE \beta_2$	-0.009693	-0.009693	0.011566	0.011566
	(0.493)	(0.723)	(0.895)	(0.852)
GROW β ₃	0.088256	0.088256	-0.037289	-0.037289*
	(0.434)	(0.527)	(0.291)	(0.095)
DEBT β_4	0.153536**	0.153536	-0.034699	-0.034699
	(0.048)	(0.180)	(0.475)	(0.405)
TANG β_5	-1.051495***	-1.051495***	-0.190525*	-0.190525
	(0.000)	(0.000)	(0.076)	(0.339)
GWIA β ₆	-0.512669***	-0.512669***	-0.012171	-0.012171
	(0.000)	(0.000)	(0.706)	(0.650)
$CR \beta_7$	-0.050244***	-0.050244**	-0.001687	-0.001687
	(0.000)	(0.010)	(0.667)	(0.468)
Dummy variables				
<i>YEAR2017</i> β ₈	-0.007599	-0.007599		
	(0.763)	(0.751)		
<i>YEAR2018</i> β ₉	-0.007305	-0.007305		
	(0.770)	(0.727)		
<i>YEAR2019</i> β ₁₀	-0.012011	-0.012011		
	(0.620)	(0.598)		
Obs.	63	63	62	62
	0.0000	0.0000	0.0067	0.0637
\mathbf{R}^2	0.7334	0.7334	0.9921	0.9921
Adjusted R ²	0.6759	0.6759	0.9858	0.9854
Within R ²			0.4376	0.4376
Shapiro-Wilk test p-value	0.06930			
Breusch-Pagan test p-value	0.1922			
Variance inflation factor	Yes			
below 5				
Wooldridge test p-value	0.0071			

Table ED . Regression analysis of CCC (models 0.A and 0.D) for USA for 2010-20	egression analysis of CCC (Models 6.A and 6.B) for USA for 20	16-2019
---	---	---------

Note: Procedure is similar as in Table D7 (except for the exclusion of the year 2020). Focus lies on the robustness of the impact of independent variables on GPM. Hence, interpretation of coefficients of control and dummy variables was not done.

Appendix F

Below is the Stata code for the analysis of the Work Project. Rows starting with "*" are no commands but indicate what the subsequent command will do. The code does not include the robustness test. For the robustness test, observations from 2020 were excluded from the dataset. Then, the summary statistics for 2020 and the dummy *YEAR2020* were excluded from the code. Afterwards, the code was run again.

Stata code

* 1) Clearing of previous analysis settings clear all set more off

* 2) Opening of dataset (Selection of destination) import excel "SELECT YOUR OWN DESTINATION", sheet("DATA") firstrow

* 3) Managing outliers and checking normality of variables * Shapiro-Wilk Test for normal distribution of variables before winsorization bys COUNTRY: swilk GPM DIO DSO DPO CCC SIZE AGE GROW DEBT TANG GWIA CR * Skewness and kurtosis test for normal distribution of variables before winsorization sktest GPM DIO DSO DPO CCC SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==0 sktest GPM DIO DSO DPO CCC SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==1 * Winsorizing independent, dependent and control variables at 5th and 95th percentile winsor2 GPM, replace cuts(5 95) by (COUNTRY) winsor2 DIO, replace cuts(5 95) by (COUNTRY) winsor2 DSO, replace cuts(5 95) by (COUNTRY) winsor2 DPO, replace cuts(5 95) by (COUNTRY) winsor2 CCC, replace cuts(5 95) by (COUNTRY) winsor2 SIZE, replace cuts(5 95) by (COUNTRY) winsor2 AGE, replace cuts(5 95) by (COUNTRY) winsor2 AGE_ABS, replace cuts(5 95) by (COUNTRY) winsor2 GROW, replace cuts(5 95) by (COUNTRY) winsor2 DEBT, replace cuts(5 95) by (COUNTRY) winsor2 TANG, replace cuts(5 95) by (COUNTRY) winsor2 GWIA, replace cuts(5 95) by (COUNTRY) winsor2 CR, replace cuts(5 95) by (COUNTRY) * Shapiro-Wilk Test for normal distribution of variables after winsorization bys COUNTRY: swilk GPM DIO DSO DPO CCC SIZE AGE GROW DEBT TANG GWIA CR * Skewness and kurtosis test for normal distribution of variables after winsorization sktest GPM DIO DSO DPO CCC SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==0 sktest GPM DIO DSO DPO CCC SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==1 * 4) Analysing sample data * Number of listed firms per country and year bys COUNTRY: tab LIST YEAR * Number of firms with IFRS per country and year bys COUNTRY: tab IFRS YEAR * Number of firms per SIC code per country and year bys COUNTRY: tab SICCODE YEAR

* 5) Summary statistics of dependent, independent and control variables * Summary statistics of dependent, independent and control variables per country for all years

bys COUNTRY: tabstat GPM CCC DIO DSO DPO SIZE AGE AGE_ABS GROW DEBT TANG GWIA CR, statistics(N mean median sd min max p25 p75)

* Summary statistics of dependent, independent and control variables in 2016 per country

bys COUNTRY: tabstat GPM CCC DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR if YEAR==2016, statistics(N mean median sd min max p25 p75)

* Summary statistics of dependent, independent and control variables in 2017 per country bys COUNTRY: tabstat GPM CCC DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR if YEAR==2017, statistics(N mean

median sd min max p25 p75)

* Summary statistics of dependent, independent and control variables in 2018 per country

bys COUNTRY: tabstat GPM CCC DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR if YEAR=2018, statistics(N mean median sd min max p25 p75)

* Summary statistics of dependent, independent and control variables in 2019 per country

bys COUNTRY: tabstat GPM CCC DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR if YEAR=2019, statistics(N mean median sd min max p25 p75)

* Summary statistics of dependent, independent and control variables in 2020 per country

bys COUNTRY: tabstat GPM CCC DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR if YEAR=2020, statistics(N mean median sd min max p25 p75)

* 6) Managing outliers of other variables * Winsorizing other variables

winsor2 INV, replace cuts(5 95) by (COUNTRY) winsor2 RECEIV, replace cuts(5 95) by (COUNTRY) winsor2 CASHR, replace cuts(5 95) by (COUNTRY) winsor2 CASH, replace cuts(5 95) by (COUNTRY) winsor2 QR, replace cuts(5 95) by (COUNTRY) winsor2 CARAT, replace cuts(5 95) by (COUNTRY) winsor2 CARAT, replace cuts(5 95) by (COUNTRY) winsor2 CLRAT, replace cuts(5 95) by (COUNTRY) winsor2 COGS, replace cuts(5 95) by (COUNTRY) winsor2 OPM, replace cuts(5 95) by (COUNTRY) winsor2 DA, replace cuts(5 95) by (COUNTRY) winsor2 EBIT, replace cuts(5 95) by (COUNTRY) winsor2 INTEREST, replace cuts(5 95) by (COUNTRY) winsor2 NI, replace cuts(5 95) by (COUNTRY) winsor2 GDPG, replace cuts(5 95) by (COUNTRY) winsor2 GDPG, replace cuts(5 95) by (COUNTRY)

* 7) *Generating of OPEX variable* generate OPEX=GPM-OPM

* 8) Summary statistics of other variables per country for all years

bys COUNTRY: tabstat INV RECEIV CASH CASHR QR CARAT PAY CLRAT NWC COGS OPEX OPM DA EBIT INTEREST NI GDPG, statistics(N mean median sd min max p25 p75)

* 9) Checking normality of other variables

* Shapiro-Wilk Test for normal distribution of variables bys COUNTRY: swilk INV RECEIV CASH CASHR QR CARAT PAY CLRAT NWC COGS OPEX OPM DA EBIT INTEREST NI GDPG

* 10) Non-parametric median (1) and parametric mean (2) testing for control and other variables * SIZE median SIZE, by(COUNTRY) exact medianties(drop) ttest SIZE, by(COUNTRY) * AGE median AGE, by(COUNTRY) exact medianties(drop) ttest AGE, by(COUNTRY) * GROW median GROW, by(COUNTRY) exact medianties(drop) ttest GROW, by(COUNTRY) * INV median INV, by(COUNTRY) exact medianties(drop) ttest INV, by(COUNTRY) *** RECEIV** median RECEIV, by(COUNTRY) exact medianties(drop) ttest RECEIV, by(COUNTRY) * TANG median TANG, by(COUNTRY) exact medianties(drop) ttest TANG, by(COUNTRY) * GWIA median GWIA, by(COUNTRY) exact medianties(drop) ttest GWIA, by(COUNTRY) * CASHR median CASHR, by(COUNTRY) exact medianties(drop) ttest CASHR, by(COUNTRY) * CASH median CASH, by(COUNTRY) exact medianties(drop) ttest CASH, by(COUNTRY) * OR median QR, by(COUNTRY) exact medianties(drop) ttest QR, by(COUNTRY) * CR median CR, by(COUNTRY) exact medianties(drop) ttest CR, by(COUNTRY) * CARAT median CARAT, by(COUNTRY) exact medianties(drop) ttest CARAT, by(COUNTRY) * DEBT median DEBT, by(COUNTRY) exact medianties(drop) ttest DEBT, by(COUNTRY) * PAY median PAY, by(COUNTRY) exact medianties(drop) ttest PAY, by(COUNTRY) * CLRAT median CLRAT, by(COUNTRY) exact medianties(drop) ttest CLRAT, by(COUNTRY)

* NWC median NWC, by(COUNTRY) exact medianties(drop) ttest NWC, by(COUNTRY) * COGS median COGS, by(COUNTRY) exact medianties(drop) ttest COGS, by(COUNTRY) * OPEX median OPEX, by(COUNTRY) exact medianties(drop) ttest OPEX, by(COUNTRY) * OPM median OPM, by(COUNTRY) exact medianties(drop) ttest OPM, by(COUNTRY) * DA median DA, by(COUNTRY) exact medianties(drop) ttest DA, by(COUNTRY) * EBIT median EBIT, by(COUNTRY) exact medianties(drop) ttest EBIT, by(COUNTRY) * INTEREST median INTEREST, by(COUNTRY) exact medianties(drop) ttest INTEREST, by(COUNTRY) * NI median NI, by(COUNTRY) exact medianties(drop) ttest NI, by(COUNTRY) * GDPG median GDPG, by(COUNTRY) exact medianties(drop) ttest GDPG, by(COUNTRY) * 11) Graph of median evolution of DIO, DSO, DPO, CCC and GPM per country and year * DIO * Generating median DIO per year for GER bys YEAR: egen mdDIO_GER= median(DIO) if COUNTRY==0 * Generating variable name label variable mdDIO GER "Median DIO in GER" * Generating median DIO per year for USA bys YEAR: egen mdDIO_USA= median(DIO) if COUNTRY==1 * Generating variable name label variable mdDIO_USA "Median DIO in USA" * Generating graph line mdDIO_GER mdDIO_USA YEAR, sort * DSO * Generating median DSO per year for GER bys YEAR: egen mdDSO_GER= median(DSO) if COUNTRY==0 * Generating variable name label variable mdDSO GER "Median DSO in GER" * Generating median DSO per year for USA bys YEAR: egen mdDSO_USA= median(DSO) if COUNTRY==1 * Generating variable name label variable mdDSO_USA "Median DSO in USA" * Generating graph line mdDSO_GER mdDSO_USA YEAR, sort * DPO * Generating median DPO per year for GER bys YEAR: egen mdDPO_GER= median(DPO) if COUNTRY==0 * Generating variable name label variable mdDPO GER "Median DPO in GER" * Generating median DPO per year for USA bys YEAR: egen mdDPO_USA= median(DPO) if COUNTRY==1 * Generating variable name label variable mdDPO_USA "Median DPO in USA" * Generating line mdDPO_GER mdDPO_USA YEAR, sort * CCC * Generating median CCC per year for GER bys YEAR: egen mdCCC_GER= median(CCC) if COUNTRY==0 * Generating variable name label variable mdCCC_GER "Median CCC in GER" * Generating median CCC per year for USA bys YEAR: egen mdCCC_USA= median(CCC) if COUNTRY==1 * Generating variable name label variable mdCCC_USA "Median CCC in USA" * Generating graph line mdCCC_GER mdCCC_USA YEAR, sort

* GPM

* Generating median GPM per year for GER bys YEAR: egen mdGPM_GER= median(GPM) if COUNTRY==0 * Generating variable name label variable mdGPM_GER "Median GPM in GER" * Generating median GPM per year for USA bys YEAR: egen mdGPM_USA= median(GPM) if COUNTRY==1 * Generating variable name label variable mdGPM_USA "Median GPM in USA" * Generating graph line mdGPM_GER mdGPM_USA YEAR, sort

* 12) Testing statistical difference in population distribution, median and mean for DIO, DSO, DPO, CCC and GPM * DIO * Non-parametric method * Test for equal population distribution ranksum DIO, by(COUNTRY) exact * Test for equal median median DIO, by(COUNTRY) exact medianties(drop) * Parametric method * Test for equal mean ttest DIO, by(COUNTRY) * DSO * Non-parametric method * Test for equal population distribution ranksum DSO, by(COUNTRY) exact * Test for equal median median DSO, by(COUNTRY) exact medianties(drop) * Parametric method * Test for equal mean ttest DSO, by(COUNTRY) * DPO * Non-parametric method * Test for equal population distribution ranksum DPO, by(COUNTRY) exact * Test for equal median median DPO, by(COUNTRY) exact medianties(drop) * Parametric method * Test for equal mean ttest DPO, by(COUNTRY) * CCC * Non-parametric method * Test for equal population distribution ranksum CCC, by(COUNTRY) exact * Test for equal median median CCC, by(COUNTRY) exact medianties(drop) * Parametric method * Test for equal mean ttest CCC, by(COUNTRY) * GPM * Non-parametric method * Test for equal population distribution ranksum GPM, by(COUNTRY) exact * Test for equal median median GPM, by(COUNTRY) exact medianties(drop) * Parametric method * Test for equal mean ttest GPM, by(COUNTRY) * 13) Constructing correlation matrices * Nonparametric correlation matrix - Spearman

spearman GPM DIO DSO DPO CCC SIZE AGE GROW DEBT TANG GWIA CR LIST IFRS if COUNTRY==0, stats(rho p) * USA

spearman GPM DIO DSO DPO CCC SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==1, stats(rho p) * Parametric correlation matrix - Pearson

* GER

pwcorr GPM DIO DSO DPO CCC SIZE AGE GROW DEBT TANG GWIA CR LIST IFRS if COUNTRY==0, sig * USA

pwcorr GPM DIO DSO DPO CCC SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==1, sig

* 14) Running multivariate analysis * Preparation * Generation of firm ID egen ID=group(COMPANY) * Declaration of time and cross section dimensions xtset ID YEAR, yearly * Woolridge test (xtserial) installation for autocorrelation net from http://www.stata-journal.com/software/sj3-2/ net describe st0039 net install st0039 * Installation reghdfe command for FE regression ssc install reghdfe ssc install ftools * Regressions * Total sample * Model 5.A with normal SDE reg GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR COUNTRY LIST IFRS YEAR2017 YEAR2018 YEAR2019 YEAR2020 * Prediction of residuals predict residual, resid * Shapiro Wilk test for normality of errors swilk(residual) * Homoskedasticity test estat hettest * Multicollinearity test vif * Drop of residuals drop residual * Autocorrelation test xtserial GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR COUNTRY LIST IFRS YEAR2017 YEAR2018 YEAR2019 **YEAR2020** * Model 5.A with clustered SE reg GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR COUNTRY LIST IFRS YEAR2017 YEAR2018 YEAR2019 YEAR2020, vce(cl ID) * Model 5.B with normal SDE reghdfe GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR, abs(YEAR ID) * Model 5.B with clustered SDE reghdfe GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR, abs(YEAR ID) vce(cl ID) * Model 6.A with normal SDE reg GPM CCC SIZE AGE GROW DEBT TANG GWIA CR COUNTRY LIST IFRS YEAR2017 YEAR2018 YEAR2019 YEAR2020 * Prediction of residuals predict residual, resid * Shapiro Wilk test for normality of errors swilk(residual) * Homoskedasticity test estat hettest * Multicollinearity test vif * Drop of residuals drop residual * Autocorrelation test xtserial GPM CCC SIZE AGE GROW DEBT TANG GWIA CR COUNTRY LIST IFRS YEAR2017 YEAR2018 YEAR2019 YEAR2020 * Model 6.A with clustered SDE reg GPM CCC SIZE AGE GROW DEBT TANG GWIA CR COUNTRY LIST IFRS YEAR2017 YEAR2018 YEAR2019 YEAR2020, vce(cl ID) * Model 6.B with normal SDE reghdfe GPM CCC SIZE AGE GROW DEBT TANG GWIA CR, abs(YEAR ID)

* Model 6.B with clustered SDE

reghdfe GPM CCC SIZE AGE GROW DEBT TANG GWIA CR, abs(YEAR ID) vce(cl ID)

* GER * * Model 5.A with normal SDE reg GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR LIST IFRS YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY==0 * Prediction of residuals predict residual, resid * Shapiro Wilk test for normality of errors swilk(residual) if COUNTRY==0 * Homoskedasticity test estat hettest * Multicollinearity test vif * Drop of residuals drop residual * Autocorrelation test xtserial GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR LIST IFRS YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY==0 * Model 5.A with clustered SDE reg GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR LIST IFRS YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY==0, vce(cl ID) * Model 5.B with normal SDE reghdfe GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==0, abs(YEAR ID) * Model 5.B with clustered SDE reghdfe GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==0, abs(YEAR ID) vce(cl ID) * Model 6.A with normal SDE reg GPM CCC SIZE AGE GROW DEBT TANG GWIA CR LIST IFRS YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY==0 * Prediction of residuals predict residual, resid * Shapiro Wilk test for normality of errors swilk(residual) if COUNTRY==0 * Homoskedasticity test estat hettest * Multicollinearity test vif * Drop of residuals drop residual * Autocorrelation test xtserial GPM CCC SIZE AGE GROW DEBT TANG GWIA CR LIST IFRS YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY==0 * Model 6.A with clustered SDE reg GPM CCC SIZE AGE GROW DEBT TANG GWIA CR LIST IFRS YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY==0, vce(cl ID) * Model 6.B with normal SDE reghdfe GPM CCC SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==0, abs(YEAR ID) * Model 6.B with clustered SDE reghdfe GPM CCC SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==0, abs(YEAR ID) vce(cl ID) * USA * Model 5.A with normal SDE reg GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY==1 * Prediction of residuals predict residual, resid * Shapiro Wilk test for normality of errors swilk(residual) if COUNTRY==1 * Homoskedasticity test estat hettest * Multicollinearity test vif * Drop of residuals drop residual * Autocorrelation test xtserial GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY--1 * Model 5.A with clustered SDE reg GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY==1, vce(cl ID) * Model 5.B with normal SDE reghdfe GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==1, abs(YEAR ID) * Model 5.B with clustered SDE

reghdfe GPM DIO DSO DPO SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==1, abs(YEAR ID) vce(cl ID)

* Model 6.A with normal SDE reg GPM CCC SIZE AGE GROW DEBT TANG GWIA CR YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY==1 * Prediction of residuals predict residual, resid * Shapiro Wilk test for normality of errors swilk(residual) if COUNTRY==1 * Homoskedasticity test estat hettest * Multicollinearity test vif * Drop of residuals drop residual * Autocorrelation test xtserial GPM CCC SIZE AGE GROW DEBT TANG GWIA CR YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY==1 * Model 6.A with clustered SDE reg GPM CCC SIZE AGE GROW DEBT TANG GWIA CR YEAR2017 YEAR2018 YEAR2019 YEAR2020 if COUNTRY==1, vce(cl ID) * Model 6.B with normal SDE reghdfe GPM CCC SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==1, abs(YEAR ID) * Model 6.B with clustered SDE

reghdfe GPM CCC SIZE AGE GROW DEBT TANG GWIA CR if COUNTRY==1, abs(YEAR ID) vce(cl ID)