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Abstract

When designing a superconducting device one of the main obstacles is the AC losses.

These losses created numerous difficulties, particularly in the design of the cryogenic sys-

tem: the heat created from these losses must be removed in such a way that the cryogenic

temperature is not affected, as to not change the materials state from superconductor

to normal. Currently, most simulations of AC losses in superconductors are done using

numerical methods, such as the finite element method. This type of simulation requires

a significant amount of time and computational power.

A data-driven model is proposed in this work to make determining AC losses in

a superconducting device easier. A lock-in amplifier method of AC loss measuring is

applied to superconducting coils and transformers, as well as a direct V–I method. With

these results, an artificial neural network is constructed, trained and optimized in order

to accurately predict AC losses in such devices.

This approach is meant to determine AC losses quickly and without the requirement

for significant computational power by using only a macro description of a device, such

as the number of turns in a coil and the core size of the transformer.

This work was developed in the ambit of the tLOSS project “Transforming Losses

Calculation in High Temperature Superconducting Power Systems” (reference PTDC/EEI-

EEE/32508/2017_LISBOA-01-0145- FEDER-032508).

Keywords: AC Losses, Superconductor, Cryogenics, Neural Network, Data-Driven

Model, Transformer
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Resumo

Ao conceber um dispositivo supercondutor, um dos principais obstáculos são as per-

das AC. Estas perdas criam numerosas dificuldades, particularmente na conceção do

sistema criogénico: o calor devido a estas perdas deve ser removido de forma que as

temperaturas criogénicas não sejam afetadas, para não alterar o estado do material de

supercondutor para normal. Atualmente, a maioria das simulações de perdas de AC em

supercondutores são feitas utilizando métodos numéricos, nomeadamente o método dos

elementos finitos. Este tipo de simulação requer uma quantidade significativa de tempo

e poder computacional.

Um modelo orientado por dados é proposto neste trabalho para facilitar a determi-

nação de perdas AC num dispositivo supercondutor. Um método de amplificador lock-in
para medição de perdas AC é aplicado a bobinas supercondutoras e transformadores,

bem como um método direto V–I. Com estes resultados, uma rede neural artificial é

construída, treinada e otimizada de modo a prever com precisão as perdas AC em tais

dispositivos.

Esta abordagem destina-se a determinar perdas AC rapidamente e sem necessidade de

poder computacional significativo, utilizando apenas uma descrição macro de um disposi-

tivo, tal como o número de voltas numa bobina e o tamanho do núcleo do transformador.

Este trabalho foi desenvolvido no âmbito do projeto tLOSS “Transformando o Cálculo

de Perdas em Sistemas de Potência com Supercondutores de Alta Temperatura” (referên-

cia PTDC/EEI-EEE/32508/2017_LISBOA-01-0145- FEDER-032508).

Palavras-chave: Perdas AC, Supercondutor, Criogenia, Rede Neuronal, Modelo Orien-

tado Por Dados, Transformador
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1
Introduction

This chapter sets out the motivation behind this work and its objectives. The original

contribution is also laid out, and the dissertation structure is provided in the end.

1.1 Motivation

AC losses have long been one of the biggest challenges in designing a superconducting

device. The heat produced by said losses in the superconductor material must be removed

in such a fashion that the cryogenic temperatures are not affected, as to reduce coolant

evaporation and stop a transition from the superconducting state to normal state. This

loss is of great importance when designing the cryogenic component of the device.

Simulations of AC loss in superconducting devices are generally made by using nu-

merical solving methods, such as the Finite Element Method (FEM). When using such

methods, both computational power and time are normally sizeable. Due to the crescent

usage of superconductors, a faster way of obtaining AC loss is of great interest.

1.2 Objectives

In this work, a data driven methodology will be experimented to predict AC losses in

superconducting devices. An artificial neural network will be fed experimental results of

AC losses in superconducting coils, both alone and inserted in a ferromagnetic core, as to

create a superconducting transformer. Using only a macro description of the components

of the device, such as numbers of coils and the core dimensions, it will be attempted to

predict AC losses in the superconductor, reducing the need for high computational power

and cutting time in obtaining results.

1



CHAPTER 1. INTRODUCTION

1.3 Original Contribution

This work will contribute with a functional neural network capable of providing

AC loss in superconducting coils and transformers with superconducting coils depend-

ing on only easily measured parameters, such as core size or number of turns in a coil.

This work is carried out in the framework of the tLoss project (reference PTDC/EEI-

EEE/32508/2017_LISBOA-01-0145-FEDER-032508), which intends to use different

methodologies of calculating the losses of superconducting devices, making them avail-

able for the projection or optimization of these devices.

1.4 Structure

This work is divided in four chapters, an introduction, followed by the literature

review, the currently developed work and the scheduling, in the following manner:

• Literature Review. A review of the concepts of a transformer are given, follow

by a presentation of superconductivity in a macro view. Finally, a small chapter

regarding cryogenics is followed by data modelling and neural networks.

• Experimental Apparatus and Results. The assembly of the experiment is pre-

sented, as well as the measuring methods used are firstly shown in this chapter. In

the end, the experimental results are presented.

• ANN Modelling. The training and results for both the global network as well as for

a series network are presented in this chapter.

• Conclusions and Future Work. A conclusion of the work is done, followed by

possible future work.

2
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2
Literature Review

This chapter will introduce and discuss various concepts and issues that are necessary

for a better comprehension of the work offered in this dissertation.

Following a brief discussion of the transformer, an explanation and description of

superconductivity and cryogenics are offered. Finally, data-driven models, particularly

artificial neural networks, are introduced.

2.1 Transformer

A transformer is a fundamental component of any power system, enabling the trans-

formation of electric tension. It’s main components are a core, normally ferromagnetic

with high magnetic permeability, and two or more coils around it.

In the case of a single-phase transformer only two coils are needed. The primary,

which is connected to a source, will produce an alternating flux. A portion of this flux

will link with the secondary, inducing a voltage that depends on the relationship between

the number of turns of both coils.

The working principle of a transformer is Faraday’s Law, as in the mutual induction

between two magnetic circuits magnetically connected thru a simple mutual flux, φm,

whose lines mainly run through the core. The coils of both the primary and the secondary

are made of an electrical resistance r, a mutual self-induction coefficient l and a leakage

self-induction coefficient λ. The total coupled flux of each coil Ψt is composed by two

parts (Equation 2.1): the mutual flux linkage Ψm, coupled to both coils, and the coupled

leakage flux Ψl, coupled to each of the coils and with field lines mainly thru the air.

Ψt = Ψm +Ψl (2.1)

Consequently, the total self-inductance coefficient Lt is
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Lt =
Ψt

i
=
Ψm +Ψl

i
=
Nφm

i
+
Ψl

i
= l+λ (2.2)

with the self-induction coefficient given by

l=
N2

R
(2.3)

where R is the magnetic reluctance. A schematic for a single-phase transformer is

presented in Figure 2.1.

ϕm

+

−

i1(t)

+

−

Ψ1l

N1
r1

λ11

l11

N2
r2

λ22

l22

Ψ2l

i2(t)

u1(t) u2(t)

Figure 2.1: Schematic of a single-phase transformer where r1 and r2 are the electrical
resistances of the primary and secondary, λ11 and λ22 the leakage self-inductance coeffi-
cients, l11 and l22 the main self-induction coefficients and Ψ1l and Ψ2l the leakage fluxes.

2.1.1 Hysteresis Loss

The relation between H and B, in most materials and within certain bounds, is given

by

B = µH (2.4)

where µ is the magnetic permeability of the material in Hm−2. This relationship is

however limited by the magnetic saturation in the ferromagnetic material, i.e. by the

saturation of B, and also by the increase or decrease of H .

Consider a demagnetized magnetic material, in other words, with H = 0 and B = 0,

such as in (1) of Figure 2.2. When first applying a magnetic field the relationship between

H and B will be given by an ascending curve, saturating at Bm, called first magnetization

curve. When reaching (2) the domains’ magnetic moments align with the applied field
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and the material is said to be saturated, having its permeability close to the value of free

space and losing its magnetic properties.

B

H0 Hcoe

Bm

Hm

Br

-Hcoe

-Br

-Hm

-Bm

(1)

(2)

(3)

(4)

Figure 2.2: Representation of an hysteresis loop

By reducing the external field the curve will not decrease with the same slope as it

increased, as shown from (2) to (3). While reducing the external field to zero will relax the

magnetic dipoles towards their initial orientation, they will retain a net magnetization

component along the applied field direction (Guru & Hiziroglu, 2001). This effect is

called magnetic hysteresis, and it’s the reason for the nonlinear and multivalued nature

of the relationship between H and B. When H = 0 the magnetic flux density is not null:

this value is called residual flux density Br and the lower it is the lower the hysteresis

losses will be. To bring B to zero, H is reduced to Hcoe, known as coercive force. Increasing

any more H in the reverse direction causes magnetization with reversed polarity, shown

along the section from (3) to (4), reaching saturation once again. Reducing the applied

field to zero and then applying the original direction, from (4) back to (2), a cycle appears

and is referred to as an hysteresis loop.

For each hysteresis cycle a power loss exists, referred to as hysteresis loss and is the

first of two loss mechanisms associated with magnetic loss. This loss stems from a molec-

ular friction when the magnetic domains reverse their directions, due to the applied

magnetomotive force (mmf) (Guru & Hiziroglu, 2001). Hysteresis losses are proportional

to the area of the hysteresis loop in a ferromagnetic material. Equation 2.5 shows the

hysteresis losses Qh for a certain volume V ol and for the frequency of the hysteresis loops.

Qh = V ol ·
∮

HdB · f (2.5)
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An empirical formula was proposed by Charles Steinmetz in (Steinmetz, 1892) that

allowed to obtain hysteresis losses based on the maximum flux density Bm, given by

Qh = khf B
α
m (2.6)

where kh is the hysteresis loss constant, dependent on the material, and α is the

Steinmetz exponent.

2.1.2 Classical Foucault’s Current Loss

The second magnetic loss mechanism is due to Foucault’s currents. From the time-

varying magnetic field applied to a coil an induced electromotive force (emf) results,

complying with Faraday’s law. If the coil is wrapped around a magnetic material, as is the

case with the transformer, the induced emf will generate an electrical current inside that

material, such that the magnetic flux producing it will be enclosed. Commonly referred

to as eddy currents, they circulate in the core of a transformer, forming a swirling pattern

and opposing changes in flux density in the material.

Due to this currents, energy is converted into heat, and by summing the power loss

in each loop within the magnetic material, one can obtain the total power loss causes by

Foucault’s currents (Guru & Hiziroglu, 2001).

To reduce its effects, the magnetic material is built with multiple sheets insulated

from each other and aligned with the direction of the field lines. The insulation of each

lamination interrupts the current path, and smaller losses appear with thinner sheets and

with increased resistivity of the ferromagnetic material (Pronto, 2010).

For a sinusoidal flux density, the average classical Foucault’s current loss is

Qcl = kf f
2δ2B2

mV ol (2.7)

where Qcl if given in Wkg−1, kf is a constant dependent on the material’s conductivity,

δ is the lamination’s thickness in m, Bm is the maximum flux density in T and V ol is the

volume of the magnetic material in m3. From this equation it is also possible to see the

relationship with frequency, increasing the losses derived from Foucault’s currents with

the increase of operating frequencies.

2.1.3 Excess Foucault’s Current Loss

The sum of the hysteresis losses and classical Foucault’s losses doesn’t match the real

loss value measured. Another phenomena must be causing it, and is referred to as excess

Foucault’s current loss Qexc, with its value being

Qexc = Qt −Qh −Qcl (2.8)

where Qt are the total magnetic losses. When applying an external magnetic field to a

ferromagnetic material, small areas referred to as magnetic domains, reorient themselves
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to the same direction until magnetization is achieved. The transition between two do-

mains unaligned is gradual, taking place along a border referred to as wall of the domain.

Foucault’s excess losses are associated with the large scale movement of this walls and its

respective rotation (Pronto, 2010).

2.2 Superconductivity

In the year of 1908, physicist Heike Kamerlingh Onnes was able to liquefy helium,

opening the door for research in the field of low temperature physics. With continuous

experiments, Onnes and his team produced the plot shown in Figure 2.3, demonstrating

the abrupt change in the resistance of mercury at 4.20K (Rogalla & Kes, 2012). With this

experiment, the state of superconductivity was discovered.

Figure 2.3: Historic plot of resistance (Ω) versus temperature (K) from Onnes’ 1911
experiment (Onnes, Gavroglu, & Goudaroulis, 1991)

Throughout the years, many pieces of research were dedicated to superconductors,

intending to understand its unusual behaviours, such as Walter Meissner and Robert

Ochsenfeld, with their discovery of perfect diamagnetism in superconductor materials

in 1933; the brothers Fritz and Heinz London, with their macroscopic description of

the superconducting state and the London equations (London & London, 1935); John

Bardeen, Leon Cooper and John Schrieffer with their microscopic theory on superconduc-

tivity and Cooper pairs; and Georg Bednorz and Alexander Müller with the discovery of

High-Temperature Superconductor (HTS) (Bednorz & Müller, 1986). This last discovery

will be of great interest in this report and will be further elaborated in this section.

Three critical values can be defined for the superconducting state1:

1In reality, pressure can also influence superconductivity (Pina, 2010), but it’s out of the scope of this
report.
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• Critical temperature. Under a certain critical temperature TC , superconductors

show virtually zero resistance (Onnes, Gavroglu, & Goudaroulis, 1991).

• Critical magnetic field. Applying a magnetic field superior to the critical magnetic

field HC will destroy the superconductivity (Tuyn & Onnes, 1926).

• Critical current density. Only under a critical current density JC can the supercon-

ducting state exist. This value depends on the temperature and the magnetic field

(Silsbee, 1916).

Those three values are not independent from each other, forming a well defined bound-

ary where superconductivity exists, normally represented in a T −J−H diagram, as shown

in Figure 2.4. A material is superconductor when inside those boundaries.

TC HC

JC

J

T H

Figure 2.4: Typical T − J −H diagram of a superconductor

2.2.1 Perfect Conductivity

When a material is in a superconductivity state, complying with the critical limits,

and in a DC regime, the resistivity will be null and, consequently, the losses will be non-

existent. In the AC regime, such phenomena will not happen. The reasons for dissipation

with AC currents will be exposed in Section 2.2.3.

2.2.2 Meissner Effect

The expulsion of all magnetic field by a superconductor is known as the Meissner

effect, or perfect diamagnetism. This effect is based on the expulsion of the magnetic flux

lines from inside the superconductor when T < TC . With an applied field smaller than

HC , the magnetic induction inside the superconductor is null (Meissner & Ochsenfeld,

1933). Inside a superconductor the flux density is given by

B⃗ = µ0(H⃗ + M⃗) (2.9)
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where M⃗ is the materials magnetization vector. With B⃗ = 0 one gets M⃗ = −H⃗ . From

this observation, the Meissner effect results in a magnetization with equal modulus and

opposite direction to the applied field, or, in other words, to a perfect diamagnetism.

2.2.3 Types of Superconductors

Superconductors are classified into two types based on their behavior: Type I and

Type II. The magnetic response of a Type I material is presented in Figure 2.5(a), where

one can see the compliance with the Meissner effect and Equation 2.9. This type of

superconductor has little practical use in power applications due to the low value of

critical flux density, typically under 0.1T.

A Type II superconductor has two critical magnetic fields, HC1, and a much higher

HC2. Up until HC1 perfect diamagnetism is present, but between HC1 and HC2 it is said

to be in a mixed state, where the material is still a diamagnet but not perfect with some

magnetic flux penetrating. A general magnetic response for Type II superconductor is

presented in Figure 2.5(b).

Normal stateMeissner state-M

HC H

(a)

Mixed stateMeissner state-M

HC1 H

Normal state

HC2

(b)

Figure 2.5: Magnetization curve in function of the applied field for a (a) Type I supercon-
ductor, and (b) Type II superconductor

In the mixed state flux penetrates the material trough fluxons, which are threaded

trough vortices. With an applied current, a resultant emf exists and is perpendicular to

the vortices, moving them around the material and causing dissipation (Melhem, 2012).

2.2.4 High-Temperature Superconductors

High-temperature superconductors (HTS), have a much higher critical temperature

than other materials. In this report, a critical temperature over 77K, the boiling point

of nitrogen, will be the cutoff for a material to be considered an HTS. This decision is

based on the low cost of cooling a superconductor with the use of liquid nitrogen. Some

HTS and its corresponding critical temperature are presented in Table 2.1, as well as two

non-HTS, namelly BLCO and MgB2.
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Material Acronym TC [K]

BaxLa5−xCu5O5(3−y) BLCO 30
MgB2 MgB2 40

Y1,2Ba0,8CuO4−δ YBCO 93
BiSrCaCu2Ox BSCCO 105

TlBa2Ca3Cu4O11 TBCCO 128
HgBa2Ca2Cu3O1+x HBCCO 133

Table 2.1: Critical temperatures of superconducting materials (adapted from (Pina, 2010)
and (Buzea & Yamashita, 2001))

The most common commercially available compounds are YBCO with chemical for-

mula YBa2Cu3O7−δ where δ is the oxygen content, defining the superconducting prop-

erties of the material, and BSCCO with chemical formula Bi2Sr2CanCun+1O6+2n where

n = 0,1,2. Both of this materials are available in bulk, cable or tape forms. Only the tape

form will be discussed, since other forms are out of the scope of this work.

2.2.5 Superconducting Tapes

Superconducting tapes are divided in first and second generation tapes, 1G and 2G,

respectively.

First generation tapes use BSCCO, with critical temperatures of 90K or 110K, depend-

ing on the chemical constitution of the BSCCO. The BSCCO is encompassed in silver, to

assure flexibility and mechanical robustness. Even with the silver, the tape has a mini-

mum bending radius before the superconducting properties are lost. This type of tapes

are sensitive to applied magnetic fields, mainly perpendicular ones (Pina, 2010).

In a 2G tape, a small layer of YBCO is laid on a flexible metal substrate, such as

Ni-W, as shown in Figure 2.6. With this technology its possible to operate in higher

temperatures and fields, and with higher critical current density, in relation to 1G tapes

(Pina, 2010). Besides that, 2G tapes present better mechanical properties and material

homogeneity. Despite the higher price of 2G tapes at this time, the advantages outweigh

the costs.

2.2.6 Superconductor Modelling

Even though there is not a consensus relatively to the model that should be used

to describe a Type II superconductor, some theories, with the right assumptions, can

characterize a material’s behaviour to an acceptable degree.

2.2.6.1 Bean’s Critical State Model

One of the most widely accepted models is Bean’s Critical State Model, introduced in

1962 (Bean, 1962) by Charles P. Bean, and updated in 1964 (Bean, 1964). A critical state
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Figure 2.6: Structure of a 2G superconducting tape (Xu, Dai, Ma, & Wang, 2021)

model makes assumptions based on Ampère’s Law shown in Equation 2.10, where B is

the magnetic field and J the current density (Poole, 1999).

∇×B = µ0J (2.10)

Bean’s Critical State Model makes the assumptions that J = const = JC , and that the

current density can only take the values of ±JC or 0. It’s proposal is the penetration of

the magnetic field in a linear fashion. Even though it does not correspond to reality,

this simplification yields valid approximations for certain conditions, such as in AC loss

calculation in a tape (Oomen, 2000).

2.2.6.2 E–J Power Law

In a superconductor, the assumption that the current density will always be its critical

value or 0 is not true: an abrupt transition between the superconducting state and the

normal state does not exist. The E–J Power Law takes in to account this reality, and is

translated as

ρ(J) =
EC

JC

∣∣∣∣∣ J
JC

∣∣∣∣∣n−1
(2.11)

where ρ is a non-linear resistance, and the critical current density JC is the current

that produces a predefined value of the electrical field EC (Brambilla, Grilli, & Martini,

2006; Seidel, 2015). The value of EC is usually 1µVcm−1 (Oomen, 2000). The n parameter

is used to define the curves shape where the higher the value of n, the more pronounced

the transition to the normal state is. Two specific cases are of note: n = 1 is Ohm’s Law

and n = ∞ is Bean’s Model. For HTS a value of n between 5 and 20 is the norm (Pina,

2010).
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2.2.7 AC Losses in Superconducting Materials

In a superconducting material with an AC current applied, losses will appear. This

is in contrast to the case where DC current is passing trough the superconductor, where

virtually zero losses exist. Two types of losses exist in a Type II HTS:

• Magnetization loss Qmag , due to variations of the magnetic field. The magnetic

field variation inside the material induces an electrical field according to Faraday’s

law ∇×E = −dB/dt (Oomen, 2000). They are composed by hysteresis loss in both

the superconductor and the ferromagnetic substrate, and Foucault’s currents.

• Transport current loss Qtrs, composed of self-field loss, flux-flow loss and resistive

loss (Martínez, 2010; Oomen, 2000).

The total loss is therefore given by Qtotal = Qmag +Qtrs.

2.2.7.1 Superconducting Hysteresis Loss

Applying a variable external field to a superconductor leads to an hysteresis loop as

shown in Figure 2.7.

M

Ba

Figure 2.7: Representation of a hysteresis loop of a superconductor

For each cycle, the material will cover the loop and return to its initial state, thus, the

loss of energy of this process is given by

QH =
∮

MdB (2.12)

and is referred to as superconducting hysteresis loss.

2.2.7.2 Ferromagnetic Loss in Superconducting Tapes

As referred in Section 2.2.5, the substrate of a 2G tape is typically made of a ferromag-

netic material, such as Alloy composed by a mixture of nickel and tungsten (Ni-W). The

losses present in this materials are generally the same as in any ferromagnetic materials,
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namely hysteresis loss (see Section 2.1.1) and Foucault’s current loss (see Sections 2.1.2

and 2.1.3).

Using a Ni-W alloy for the substrate in a YBCO tape, it’s shown in (Ijaduola, Thomp-

son, Goyal, Thieme, & Marken, 2004) that the dissipated power is larger with larger

operating frequencies, and with cut, deformed or damaged materials. It’s also described

that, for a realistic level of operating currents, ferromagnetic losses are relatively smaller

when compared with the loss in the superconductor itself.

2.2.7.3 Self-field Loss

Associated with an AC current flowing in the superconductor is a magnetic field,

called self-field, which produces superconducting hysteresis losses (Martínez, 2010). Due

to this field, even with zero external field, the critical current density is limited.

2.2.7.4 Flux-flow Loss

As talked about in Section 2.2.3, vortices form in the mixed state. Those vortices

are anchored by defects, such as impurities, in pinning centres and are distributed in an

Abrikosov’s network. When a current passes these flux, a Lorentz force is produced in

each vortex, and, with a sufficiently high current, the vortices are de-anchored from their

positions and move through the superconductor (Sjöström, 2001). The loss associated

with this effect is called flux-flow loss.

2.2.7.5 Resistive Loss

When the current exceeds IC of the superconductor, a new path is taken by the excess

current via the conducting layers (Martínez, 2010), resulting in a resistive loss.

2.2.8 AC Loss Measuring Methods

AC losses can be measured based on two main categories: calorimetric or electro-

magnetic. The calorimetric category has a main method, the boil-off method, while

the electromagnetic category has two, the lock-in amplifier method and the pick-up coil

method. All three are briefly presented below.

2.2.8.1 Boil-Off Method

The boil-off method is based on measuring the amount of cryogenic liquid evaporating

owing to heat created by the superconductor (J.-H. Kim, Kim, Iyyani, Kvitkovic, & Pamidi,

2011; Okamoto, Sumiyoshi, Miyoshi, & Suzuki, 2006). Since there is a need to measure

the emitted gas flow, the cryostat must be a closed one. This method does not have a

high sensibility, but performs well for large superconducting systems, since the amount

of heat generated by the AC losses is high.
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2.2.8.2 Pick-Up Coil Method

The first method of the electromagnetic category, the pick-up coil method uses the

variation in magnetic field to obtain the AC loss. By placing coils that are sensible to

magnetic field variations in certain locations (which depend based on the device or appli-

cation), the variation can be measured, and thus the AC losses can be calculated (Kajikawa,

Iwakuma, Funaki, Wada, & Takenaka, 1999; Yang, Martinez, & Norris, 2004).

2.2.8.3 Lock-In Amplifier Method

The most common AC loss measuring method is LIA method. Using a LIA it is possible

to obtain both the resistive and inductive components of the loss, where the inductive

part corresponds to the self-inductance. A more in-depth description of this method is

given in Section 3.3.2.

2.2.9 Example of AC Loss Measurement Experiment

In (Friedman, Wolfus, Kopansky, & Yeshurun, 2012), a YBCO pancake coil with the

parameters shown in Table 2.2 was tested, using both calorimetric and electromagnetic

methods. The schematic of the device used to measure the I-V curves of a single pancake

coil is shown in Figure 2.8.

Parameter Value Unit

Inner diameter 10 mm
Outer diameter 11 mm
Number of turns 20 –
Length of wire 6 m
Inductance 76 - 81 µH
Critical current @ 77K 70 A

Table 2.2: Parameters of the YBCO pancake coil used in (Friedman, Wolfus, Kopansky, &
Yeshurun, 2012)

Figure 2.8: I-V measuring setup used in (Friedman, Wolfus, Kopansky, & Yeshurun, 2012)
for single pancake coils in external magnetic field, where 1 are copper coils and 2 is a
HTS pancake coil

Using a power analyzer, the AC losses were measured in the coils using an electro-

magnetic method. To confirm the values, the authors also used a calorimetric method

simultaneously, and the results are presented in Figure 2.9.
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(a) (b)

Figure 2.9: (a) AC losses measured by electric method in liquid nitrogen and in the
cryogen-free system: 1, 2 - double pancake; 3,4 - single pancake with adjacent pancake;
5 - single pancake. (b) Results of AC losses measurements by: 1 - electric method; 2 -
calorimetric method.

The expected function form in a linear scale can be seen in Figure 2.9(a). In most

cases, a logarithmic scale is employed to illustrate these data, and a logarithm function-

like form is expected. Also of note is the units used to represent the AC loss, J/cycle.

2.3 Cryogenics

Cryogenics is the application and study of materials at low temperatures, normally

under 120K (Melhem, 2012). For HTS applications liquid nitrogen is typically used, so a

temperature under 77K, the boiling point of nitrogen, is of most interest.

2.3.1 Fluid Cooling

Fluid cooling uses a coolant, normally either helium or nitrogen, to cool the supercon-

ducting device. Three broad categories of fluid cooling methods can be described (Seidel,

2015):

• Direct cooling. The coolant comes into direct touch with the superconductor, and

it fills or flows through channels built within the system. Convection is the most

common mode of heat transfer. It has two different modes: bath cooling and internal
cooling.

• Fluid-mediated cooling. A fluid loop transports heat from a cold source to a ther-

mal anchor that transmits heat cools the superconducting system. Conduction and

convection in the fluid loop are the primary heat mechanisms.
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• Conduction cooling. Thermal linkages connect the cold supply to the system, and

heat is eliminated through pure conduction.

In this work, only direct cooling will be considered. It is also possible to differentiate

between coolant conditions. There are three different conditions which can be applied to

both methods of direct cooling:

• Saturated liquid. The fluid is at equilibrium conditions of pressure and tempera-

ture, with evaporation and/or boiling being a part of the heat transfer.

• Single-phase subcooled liquid. The pressure is lower than the critical pressure,

and the temperature is lower than the value on the saturation line. With increased

temperature evaporation or boiling may take place.

• Single-phase supercritical fluid. The pressure is higher than the critical pressure,

with the fluid remaining in a single-phase, and no evaporation or boiling can hap-

pen.

2.3.2 Bath Cooling

Bath cooling is a method of direct cooling in which the superconducting device is

immersed in, or permeated by, a pool of fluid (Seidel, 2015). The heat generated by the

device or entering the cryostat is collected in the bath. The bath may be a saturated bath,

where there is a free surface, liquid and vapour phases are in equilibrium, and the heat is

removed by evaporation at the free surface; or a subcooled bath, where the liquid is not

close to saturation and fills the cooling vessel, requiring a heat exchanger to provide the

cold source.

For small systems, this form of cooling is very easy and relatively inexpensive, but

it has the disadvantages of a fixed temperature, the limited size of the superconducting

device due to cryostat size, and a large amount of coolant required.

2.3.3 Internal Cooling

When using internal cooling, the flow of the coolant is within the superconducting

device and can be driven by either natural convection (buoyancy) or by forced convection

(pumps or compressors) (Seidel, 2015). The main heat transport mechanism is convection,

caused by the flow itself. The flow can be either proximal, where the coolant is in direct

contact with the superconductor, or indirect, cooling the superconductor by conduction.

Internally cooled devices are capable of large predictable heat transfers due to the

ability to control mass flow and have a smaller coolant quantity needed compared to bath

cooling. The downsides are the need of leak tight circuits for the flow, and the need to

sustain the mass flow, which has consequences on the thermodynamic efficiency of the

cryogenic system.
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2.3.4 Cryocoolers

For cases where obtaining the coolant for fluid cooling is difficult, a cryocooler can

be used. The main advantage is the consumption of electricity instead of, for example,

liquid nitrogen. On the other hand, a typical cryocooler has vibrations, electromagnetic

interferences and temperature variations (for regenerative cryocoolers) (Seidel, 2015).

Two main types of classical cryocoolers are used at this time: the higher frequency

Stirling, and the lower frequency Gifford-McMahon. Both the design and the common

principle of these cryocoolers are shown in Figure 2.10.

Figure 2.10: Design principle of the Stirling and Giffor-McMahon cryocoolers (from
(Seidel, 2015))

A Stirling cryocooler consists in a pressure wave generator and a cold head. If they

are connected directly, it’s referred to as an integral cryocooler, else it’s referred to as a

split cryocooler. Normally, a Stirling cryocooler operates in frequencies between 30 and

100Hz, but in most cases operates in an equal frequency to the electric line, such as 50 or

60 Hz.

On the other hand, Gifford-McMahon cryocoolers are always split cryocoolers, con-

sisting of a compressor package and a cold head package. They operate at much lower

frequencies, in the range of 1 to 5 Hz.

Other types of cryocoolers exist, such as pulse tube cryocoolers and mixture Joule-

Thomson cryocoolers.

2.4 Data Driven Models and Machine Learning

A data-driven model is based on the analysis of data about a specific system with the

goal of discovering correlations between its input and output without understanding of
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the system’s actual behavior. Machine learning is one of the most popular data-driven

model.

Machine Learning (ML), in its most basic form, is a technique to get a model from

data, where the model is the final product (P. Kim, 2017). By training with the data, the

ML process learns until a solution is reached.

ML have been successfully applied to areas where employing mathematical models

would prove to be extremely difficult or even impossible, such as the identification of

images or speech recognition.

2.4.1 Artificial Neural Networks

One of the most widely implemented algorithms in ML is the Artificial Neural Net-

work (ANN). Intended to copy a real brains architecture, its fundamental component is

the neuron, analogous to its biological counterpart, which interacts with other neurons

to form layers and solve the problem at hand. Each connection will have a corresponding

weight that will be optimized until the best solution is reached.

2.4.2 Advantages of Artificial Neural Networks

Currently, FEM is the most widely used form of simulation of superconducting equip-

ment. When using this method, one can expect a long computational time, increasing

with the size of the simulation desired (Brambilla, Grilli, Martini, & Sirois, 2008). On

the contrary, by using an ML approach, one can describe the system in a macro way and

predict results with an arbitrarily precision in a much quicker manner.

Some of the most important properties and capabilities of an ANN are (Haykin, 2009):

• Non linearity. Each neuron can be linear or, most importantly, non linear, enabling

the network to solve extremely complex problems.

• Adaptability. If the environment of a neural network is changed it can be rapidly

retrained to adapt to the new circumstances. In the case of a dynamic environment,

it is possible to change the weights in real time.

• Fault tolerance. In a case which a neuron or a connection is damaged, the neural

network suffers little degradation. For a large degradation effect to be felt on the

response, the network must be broadly affected.

• Input-Output Mapping. Applying supervised learning (see Section 2.4.6) a neural

network is capable of obtaining a general function for a problem and predict outputs

for previously unknown inputs.

Currently, ANN are currently used in a multitude of fields, from electronics to speech

recognition2.

2For a broad list of applications see pages 1-5 to 1-7 of (Hagan, Demuth, Beale, & Jesús, 2014)
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2.4.3 Neuron

The neuron is the basis of a neural network. A simple single input neuron is shown in

Figure 2.11. The input x multiplies by the weight scalar w, forming the weight function

wx. The value of wx is then summed3 with a bias b, originating a net input v = wx + b.

Finally, the net input goes into an activation function ϕ, producing the output y (Haykin,

1999). This output is therefore calculated as

y = ϕ(v) = ϕ(wx+ b) (2.13)

x Σ
w

1

b

φv y

Neuron

Figure 2.11: Single input neuron

The case where a neuron only has one input is not the norm: in a neural network, a

neuron will most likely have multiple inputs, such as is shown in Figure 2.12(a). Each

input x1,x2, ...,xR of the input matrix x has a corresponding weight w11,w12, ...,w1R, stored

in the weight matrix W. The output is rewritten as

y = ϕ(v) = ϕ(Wx + b) (2.14)

x1

x2

Σ

w11

1

b

φv y

Neuron

x3

xR w1R

(a)

R

Σ φv y

Neuron

W

b

1×R

1×1

1

x
R×1

1×1 1×1
1

(b)

Figure 2.12: Multiple input neuron in (a) extensive notation (b) abbreviated notation

When using many neurons, the current notation can be problematic. For this reason

an abbreviated notation is used. In Figure 2.12(b) a neuron with R inputs is presented,

where the dimensions of x are displayed as R×1 below the symbol. The W matrix, on the

other hand, has 1×R as its dimension, which is also shown below the variable box.
3Normally a sum is used, but a multiplication can also be applied
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In Figure 2.12(b) one can also see the activation function ϕ represented. The most

used functions are the linear function and the log-sigmoid function, both of which are

presented in Figure 2.13.

y

x

(a)

y

x

1

0

(b)

Figure 2.13: Representation of a (a) linear function (b) log-sigmoid function

Neurons with linear activation function have its output equal to the net input, as

shown in Equation 2.15, and are often used in the output layer (Aggarwal, 2018). On the

other hand, neurons with log-sigmoid activation functions (Equation 2.16) are used in

hidden layers for back-propagation (see Section 2.4.8) due to their differentiability. This

function flattens the outputs in the range of 1 to 0.

y = v (2.15)

y =
1

1 + e−v
(2.16)

2.4.4 Layers

By placing several neurons working in parallel, a layer is obtained. For R inputs and

S neurons, the weight matrix will now have an S ×R size. Each layer has a bias vector

b, containing all of the bias values for each of the S neurons, and will output an output

vector y, also with size S (Aggarwal, 2018). The abbreviated notation for one layer is

shown in Figure 2.14.

R

Σ φv y

Layer of
S neuronsW

b

S×R

S×1

1

x
R×1

S×1 S×1
S

Figure 2.14: Abbreviated notation of a layer with S neurons and R inputs
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When using multiple layers, the same notation is used. An example of a three layer

neural network is shown in Figure 2.15. The inputs are not considered as a layer in the

sense here discussed: they are a separate entity to the other layers, and therefore are not

counted as one.

R

Σ φ(1)v(1)
y(1)

W(1)

b(1)

S(1)×R

S(1)×1

1

x
R×1

S(1)×1
S(1)×1

S(1)

Σ φ(2)v(2)

W(2)

b(2)

S(2)×S(1)

S(2)×1

1

S(2)×1
S(2)

y(2)

S(2)×1 Σ φ(3)v(3) y(3)
W(3)

b(3)

S(3)×S(2)

S(3)×1

1

S(3)×1 S(3)×1
S(3)

Inputs First Layer Second Layer Third/Output Layer

Figure 2.15: Three layer neural network example

To differentiate the matrices, a superscript is used identifying the layer number. For

example, the weight matrix of layer 1 is represented as W(1), and the number of neurons

in layer 2 as S(2). In this case, the third layer is also the last layer, so it is referred to as

output layer. The layers in-between the input and the output layer, in this case the first

and second, are called hidden layers.

Using a multi-layer neural network, one can approximate most functions with an

arbitrarily precision (Hagan et al., 2014). If a multi-layer network has only two layers,

one hidden and one output layer, it is referred to as a shallow neural network. For more

than two layers, it is reffered to as a deep neural network (P. Kim, 2017).

2.4.5 Data Set Split

When training a neural network, the division of the data set is of great importance,

since an incorrect division of data can yield overfitted networks, or poor performance

(Aggarwal, 2018; Haykin, 2009). When the data is split it must be done so in a way that

is at the same time random but has a representation of all types of data, as to avoid the

previously referred problems. Typically, the original data is separated into three sets:

• Training set. Most of the data goes to this subset, and is used to train the neural net-

work. Using this set, the network will train itself applying the algorithms discussed

in the following sections.

• Validation set. This set is used to monitor the performance of the network after the

training process has finished. If the network doesn’t yeild a good performance, one

returns to the train process with altered values of the network.
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• Test set. When the netowrk has finished its training, and a suficiently good per-

formance is achived, the test set is used to verifiy the performance with new data.

With this last set one can easily see problems such as overfitting.

One of the most common ratios of set splitting is 0.7:0.15:0.15, for training, validation

and testing, respectively (Haykin, 2009).

2.4.6 Training a Neural Network

To train a network a learning rule is used. There are three types of learning (Hagan

et al., 2014) (P. Kim, 2017):

• Supervised learning. Providing a combination of inputs and target outputs, the

network is trained by comparing its response to an input to the corresponding

target, changing weights, until an adequate level of performance is fulfilled.

• Reinforcement learning. Similar to supervised learning, but instead of a target

output being provided, the network is given a grade over its performance over

certain inputs. This type of learning is more suited to control system applications.

• Unsupervised learning. Only inputs are given, with no targets available. Most

algorithms of this type are used in clustering, such as pattern recognition.

Due to the nature of this work, only supervised learning is discussed, since a data set

with both inputs and outputs will be used. The iterative weight modification according

to some information is called the learning rule (P. Kim, 2017). In the case of supervised

learning, the changes occur based on the error in relation with the target output. Multiple

learning rules exist, and will be discussed in the following sections.

2.4.7 Delta Learning Rule

In 1960, Bernard Widrow and Marcian Hoff introduced the ADAptive LInear NEuron

(ADALINE) network as well as the delta rule (Widrow & Hoff, 1960). Even though the

delta rule is not capable of dealing with multi-layer networks, since it uses a linear acti-

vation function4, it is still the best introduction to the subject of learning rules. Consider

the network presented in Figure 2.16.

In expression form, the delta rule is given by the sum of the weight with the weight

adjustment ∆wij , such as

wij ← wij +αeixj = wij +∆wij (2.17)

where wij is the weight between the output neuron i and input neuron j, α the learn-

ing rate, xj the output from input neuron j, and ei the error of the output neuron i,

4A multi layer network using only linear activation functions can be reduced to a single layer network
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xj
yi

i

wij

Figure 2.16: Single layer network

defined as the difference between the correct output (also called target) ti and the real

output yi , such as

ei ≜ ti − yi (2.18)

The learning rate α determines the weight change per iteration. If α is too high the

network fails to converge, and if it is too low, the conversion will be slow.

The process of training a network with the delta rule is presented in Figure 2.17,

where i is the subscript representing the number of the output node, and j represents

the number of the input node. The weights are randomly initialized, so training multiple

networks with the same training data yields different resulting networks. Every time all

the weights are adjusted, an epoch passes, representing the number of iterations passed.

The previously presented delta rule is in fact only a particular case of the generalized

delta rule, presented in Equation 2.19, which allows any activation function to be used.

wij ← wij +αδixj (2.19)

In this equation, the error is replaced by δi , given by

δi = ϕ′(vi)ei (2.20)

where ϕ′ is the derivative of the activation function, vi the weighted sum, and ei the

error. By using a linear activation function ϕ(v) = v, the same result as before is achieved,

since ϕ′(v) = 1.

The generalized delta rule still cannot train a multi layered network, since the error is

the difference between the correct output and the networks output, which is not defined in

the hidden layers of a multi layer network. It will however be used in the back propagation

algorithm, which permits multi layered networks, and is presented in Section 2.4.8.

2.4.8 Back Propagation Algorithm

One of the most widely used learning rules, the back propagation algorithm is based

on the generalized delta rule discussed in Section 2.4.7. With this approach, the error is

propagated backwards throughout all the hidden layers, which then apply the delta rule

to adjust the weights (Aggarwal, 2018; Haykin, 2009; P. Kim, 2017).
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Start

Initialize weights

j = 1

i = 1

Calculate ei

Obtain ∆wij

Adjust
weights with

wij ← wij +∆wij
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input nodes ?
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level of error?
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Figure 2.17: Single layer neural network training using delta rule, where i is the number
of the output node and j is the number of the input node

Consider the two layer network presented in Figure 2.18. Firstly, the weighted sum

of the hidden layer is calculated by using the weight matrix W(1), such as

v(1)
1

v
(1)
2

 =

w(1)
11 w

(1)
12

w
(1)
21 w

(1)
22


x1

x2

 ≜W(1)x (2.21)

Applying the activation function to the previous weight sum yields the outputs of the

hidden neurons, in this case y
(1)
1 and y

(1)
2 .

y(1)
1

y
(1)
2

 =

ϕ(v(1)
1 )

ϕ(v(1)
2 )

 (2.22)
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x1
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w(1)11
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w(2)22

w(2)11

w(2)12

w(2)21

y1
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Figure 2.18: Shallow neural network, with one hidden layer and one output layer (adapted
from P. Kim, 2017)

Similarly, the weighted sum of the output neurons is calculated, and by applying the

activation function, the neural network output is given in Equation 2.23.

v1

v2

 ≜W(2)y(1)

y1

y2

 =

ϕ(v1)

ϕ(v2)

 (2.23)

After the previous calculations have been completed, the back-propagation algorithm

can be used. To begin, the generalized delta rule is used to calculate the delta of each

output neuron using Equation 2.18. For the current example, δ1 and δ2 must be attained.

Secondly, one moves to the left, finding the hidden nodes layer, and computes their

delta. This backwards movement is what gives this algorithm its name. The error of

a hidden neuron is defined in the back-propagation algorithm as the weighted sum of

the back-propagated deltas from the immediate right layer. In the example at hand, the

errors are given by

e
(1)
1 = w

(2)
11 δ1 +w

(2)
21 δ2

e
(1)
2 = w

(2)
12 δ1 +w

(2)
22 δ2

(2.24)

With the error obtained, the generalized delta rule is once again applied and the delta

values are calculated for the hidden nodes.

δ
(1)
1 = ϕ′(v(1)

1 )e(1)
1

δ
(1)
2 = ϕ′(v(1)

2 )e(1)
2

(2.25)

The process of obtaining the hidden layer errors can be presented in a matrix form,

shown in Equation 2.26. It is therefore possible to obtain the error as the product of the

transposed weight matrix and delta vector.
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e
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2
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11 w

(2)
21

w
(2)
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22
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 = W(2)T

δ1

δ2

 (2.26)
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After all the deltas are obtained, the network is trained using the generalized delta

rule (Equation 2.19). The only difference is the calculation of the error for the hidden

neurons.

The process of training a neural network using the back-propagation algorithm is

presented in Figure 2.19.
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Figure 2.19: Neural network training using the back-propagation algorithm

2.4.9 Weight Adjustment Calculation

When training a neural network, one tries to minimize the cost functions (see Section

2.4.10). To do this, the weights need to be adjusted. There are several methods for

calculating the weight adjustment ∆wij , typically three (Aggarwal, 2018; P. Kim, 2017):

• Stochastic Gradient Descent (SGD). The error is calculated for each training data

and the weight is instantly updated. In other words, the number of times the weights

are updated is the number of training data points. The delta rule presented in

Section 2.4.7 is, therefore, a type of SGD.

• Batch. For each training data set, all weight updates are gathered, and the associated

average is determined. All of the weights are only modified once, using the average.

Due to the average calculation, this method consumes needs significantly more

training time.
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• Mini-batch. The mini-batch method, a hybrid of SGD and batch methods, selects a

subset of the training set and applies the batch method to it. This method combines

the speed of SGD with the stability of the batch method when using an appropriate

number of data points.

2.4.10 Cost Function

In both the generalized delta rule and the back-propagation algorithm, the last and

arguably most important decision has been the satisfaction of a certain level of error. The

measurement of the error is made by the cost function. One of the most common cost

functions is the sum of the MSE, given by

J =
S∑
i=1

1
2

(ti − yi)2 (2.27)

where yi is the output from the output neuron, ti the correct output, and S the number

of neurons on the output layer. From the general representation of a MSE in Figure 2.20

it is easy to see that for a greater difference between the target and the networks output,

a greater cost value is obtained.

J

t ‐ y

Figure 2.20: General representation of a MSE function

2.4.11 Levenberg-Marquardt Optimization Algorithm

A common training algorithm to train an ANN is the Levenberg-Marquardt (LM) opti-

mization algorithm. A mixture of Gradient Descent (GD) and Gauss-Newton algorithms,

the LM algorithm solves non linear squares minimization, so the cost function must have

the form presented in Equation 2.28, where S is the number of neurons in the output

layer and r a residual function. Representing r in vector form Equation 2.28 simplifies to

Equation 2.29.

f (x) =
1
2

S∑
j=1

r2
j (2.28)

f (x) =
1
2
∥r(x)∥2 (2.29)
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For linear rj the Jacobian matrix is constant, so the gradient and the Hessian matrix

are given by

∇f (x) = JT(Jx+ r) (2.30)

∇2f (x) = JTJ (2.31)

For the general case, the Jacobian matrix gives all the first order partial derivatives, so

the gradient can be simplified to Equation 2.32 and the Hessian matrix to Equation 2.33.

∇f (x) = J(x)Tr(x) (2.32)

∇2f (x) = J(x)TJ(x) +
S∑
j=1

rj(x)∇2rj(x) (2.33)

With small values of ∇2rj(x) or small residuals rj(x), a sufficiently good approximation

for the Hessian matrix is given by ∇2f (x) = J(x)TJ(x) which is the same as in the linear

case.

The GD algorithm updates it’s parameters using the scaled gradient, such as

xi+1 = xi −λ∇f (2.34)

A simple GD suffers from convergence problems, since it takes big steps for large

gradient and small steps for a small gradient, and it does not have in consideration the

curvature. Using the 2nd derivatives, the Gauss-Newton algorithm uses information given

by the curvature and better gradient information. Expanding the gradient in a Taylor

series around x0 and assuming f quadratic around x0, the Gauss-Newton update rule is

xi+1 = xi − (∇2f (xi))
−1∇f (xi) (2.35)

This expression implicitly assumes f quadratic, so there is no need to evaluate the

Hessian matrix. Using both these algorithms, the LM algorithm’s rule of update is given

by

xi+1 = xi − (H +λdiag[H])−1∇f (xi) (2.36)

If the error decreases it means that the quadratic assumption of f is correct, so the

factor λ is decreased by a certain factor as to reduce the effect of GD. If the error increases,

the gradient must be followed, so λ is increased by the same factor. Since the Hessian

matrix is proportional to the curvature of f , using it’s diagonal gives a bigger movement

for a smaller gradient and vice-versa.
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2.4.12 Examples of Prediction of AC Loss Using ANN

In this section some works in which artificial intelligence models are used to estimate

AC losses are discussed. It is worth noting that there have not been many research pub-

lished that can be applicable to the topic of this work. As a result, only two works with a

significant connection to the theme are presented.

2.4.12.1 Prediction of Non-sinusoidal AC Loss of Superconducting Tapes

In (Yazdani-Asrami, Taghipour-Gorjikolaie, Song, Zhang, & Yuan, 2020), a compari-

son between the performance of different Artificial Intelligence (AI) models is conducted

using four measurements: Theil’s U Coefficients (U_Accuracy and U_Quality), Root Mean

Squared Error (RMSE) and Regression value (R-value). These models predict AC loss in

HTS tape under non-sinusoidal currents.

Using H formulation FEM modelling method in COMSOL Multi-physics, the AC

losses under different Total Harmonic Distortion (THD) are calculated, and later used as

inputs to train the AI based models. Three order of harmonics were used: 3rd, 5th and

7th.

The models used in this paper are Support Vector Machine Regression Model (SVM),

Generalized Linear Regression Model (GL), Decision Tree Model (DT), Feed Forward

Neural Network (FFNN), Adaptive Neuro Fuzzy Interference System (ANFIS) and RBFNN.

It is worth to note that while GL and DT are mathematical based regression model, SVM,

FFNN, ANFIS and RBFNN are Computer Intelligence (CI) based models.

For each order of harmonics, 1110 experimental data were extracted, leading to a total

of 3330 experimental data available. From these results the authors conclude that ANFIS

and RBFNN present the better performance, with RBFNN showing better performance.

Results for a RBFNN with spread value of 0.5 are shown in Figure 2.3, showing values

close to zero for U_Accuracy, U_Quality and RMSE, and one for R-value. In this paper

the results for DT, FFNN and ANFIS are also considered promising.

Training Data

Model U_Accuracy U_Quality RMSE R_Value
RBF 0.0006±0.0004 0.0003±0.0002 0.0000±0.0000 1.0000±0.0000

Testing Data

Model U_Accuracy U_Quality RMSE R_Value
RBF 0.0034±0.0003 0.0017±0.0001 0.0003±0.0000 1.0000±0.0000

Table 2.3: Results of RBFNN models for all experimental testing data (Yazdani-Asrami,
Taghipour-Gorjikolaie, Song, Zhang, & Yuan, 2020)
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2.4.12.2 Prediction of AC Loss in Superconducting Round Filaments

In (Leclerc, Makong, Lorin, & Masson, 2016), a hybrid model combining an analytical

scaling law and two ANNs is used to predict AC loss in superconducting round filaments.

This model estimates hysteresis losses in a round filament of radius r carrying an AC

transport current and on which an external elliptical magnetic field is applied. The

electromagnetic behaviour of the superconductor is represented by the E–J power law.

Nine parameters are used to describe the system and calculate the losses Q: Bm, α, θ,

f , k, Im, Jc, n and r, where k is the applied field ellipticity. The critical electrical field is

considered to be 1µV/cm.

The analytical scaling law model is a semi-analytical model that estimates numerical

data generated by finite element analysis using COMSOL, and is used to predict losses

when the superconducting filament is subjected to an elliptical magnetic field transverse

to its cross-section with no transport current. A more detailed presentation of this model

is made in (Lorin & Masson, 2013; Lorin, Netter, & Masson, 2015).

The first ANN estimated AC losses generated by any elliptical magnetic field and a

transport current equal to the full penetration current of the filament. On the other hand,

the second ANN uses as inputs the outputs of the first ANN and of the analytical scaling

law model, and outputs the final prediction of the AC loss.

Each neural network is trained using the back propagation algorithm. The first ANN

used 2400 data points for training and 200 for validation, and has three hidden layers

with 35, 28 and 18 neurons, while the second ANN had 255 data points for the training

process ans 200 validation points, with only two hidden layers of 4 neurons each.

The final output of this hybrid model presented an average absolute error of 3.12% in

the validation set, allowing for a much faster estimation of AC losses in a superconducting

filament when compared to FEM, with a low error.
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3
Experimental Apparatus and Results

The entire assembly of the experimental apparatus is given in this chapter, from the

creation of the coils and cryostats to the loss measurement methods used. Both theoretical

values derived from Norris’ model and experimental values obtained via experience are

presented at the end of the chapter.

3.1 Coil Assembly

The design of the coil molds was the initial stage in obtaining experimental results.

Shown in Figure 3.2 are the previously utilized mould, used as a building foundation,

and the improved upon one. The main difference is an accommodation space at the top

for two pieces of copper for power supply purposes, as seen in (2). Unnecessary parts

were also cut off to reduce material usage, as well as reduced height, shown in (1) and (3),

respectively. The 3D printer used was the Creality Ender-3.

Copper pieces were also required for the coil’s assembly in order to provide power

to the superconductor. Each coil required four pieces, as shown in Figure 3.2, with the

accompanying dimensions and a thickness of 5mm. The bigger component features a hole

through which a wire can be inserted to supply current to the coil. Since all of the pieces

were cut by hand, the real dimensions were only estimates. As seen in Figure 3.2(b), the

copper pieces used in this work were repurposed from another experiment, thus many of

them contain extra holes that are not necessary.

In addition, four screws and four nuts were employed to secure the superconduct-

ing tape and copper pieces, as shown in Figure 3.3. The screws on the underside hold

a 3D printed plate in place, as well as two copper pieces that press the wire against

them. The screws on the upper side press two copper components together, holding the

superconductor in the middle in a mechanical fashion.

31



CHAPTER 3. EXPERIMENTAL APPARATUS AND RESULTS

1

(a)

2

3

(b)

Figure 3.1: Coil mould (a) before improvements (b) after improvements. (1) extra material
discarded, thus saving costs (2) accommodation for two copper pieces for power supply
purposes (3) smaller height in comparison with the older model

5.1 cm
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Figure 3.2: Copper parts (a) in a schematic (b) used in a coil
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3.1. COIL ASSEMBLY

(a) (b)

Figure 3.3: Screws (a) at the top of the mould (b) at the bottom of the mould

For the assembly, the tape is first inserted into the underside and secured with screws

and copper pieces. Following that, half of the desired turns are completed. At this point, a

4cm copper wire is tapped to the superconducting tape (for details of the tape see Section

3.4), which will later be used to measure loss. Following the completion of the second half

of the turns, the tape is locked in the upper side between two pieces of copper, finishing

the coil assembly, as illustrated in Figure 3.4.

Figure 3.4: Finished coil

To ensure the length of the wire, the usage of a flex PCB board, as shown in Figure 3.5,

was proposed instead of a copper wire. It was also intended to try to insert the PCB board

after the coil was wound, since it would facilitate the winding of the coils and reduce

man-hours. This solution could not be attempted due to the high cost of flex PCB, but

this idea could be tried in a future work.
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Figure 3.5: Flex PCB Fusion 360 model

3.2 Cryostat Building

A bath cooling cryostat, with styrofoam as the building material, was chosen, due to

the low cost associated. From a block of 30x30x30cm it is possible to build two cryostats

that fit the ferromagnetic core.

To build the cryostat, the tool presented in Figure 3.6 was used, from (Vilhena, 2012).

By placing the block in the center of the tool and defining the radius, one can cut in

a circular fashion with the desired depth, allowing to create the coveted shape for the

cryostat.

Figure 3.6: Tool utilized to cut the styrofoam (Vilhena, 2012)

Due to the low precision of the styrofoam cutting tool, some adjustments had to be

made while cutting, resulting in an imperfect cryostat. Many times, instead of a clean

cut in the walls, bubbles of styrofoam would pop creating irregularities in the walls. This

irregularities are pointed in Figure 3.7, where a finished cryostat is presented.
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Irregularities

Figure 3.7: Finished cryostat with drawn contour for easy viewing.

3.3 AC Loss Measurement Methods

The most common methods of measuring losses in superconducting systems are pre-

sented in a brief manner in Section 2.2.8. For this work, two methods were used: the LIA

method, and a direct method using an oscilloscope. A presentation of both methods is

given, followed by the real test bench.

3.3.1 Lock-In Amplifier (LIA)

In a simplistic way, a LIA supplies a fixed frequency to the experiment and detects the

experiments response at that frequency. A general block diagram is presented in Figure

3.8.

Vin(t) GAC

VAC(t)

Vref(t) PLL
VL(t)Internal

Oscilator

PSD

AC Amplifier

VPSD(t) Low Pass
Filter

GDC

DC Amplifier

Vout(t)

Figure 3.8: LIA block diagram (adapted from (Scofield, 1994))
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Consider a sinusoidal input signal Vin(t) = V0 cos(ω0t + θsig ). The input signal is

amplified in the AC amplifier with a gain of GAC , resulting in Equation 3.1, where V0 is

the input signal amplitude, ω0 = 2πf0 the angular frequency, and θsig the phase of the

signal.

VAC(t) = GACV0 cos(ω0t +θsig ) (3.1)

The reference signal is produced either by an external source or using the LIA’s inter-

nal oscillator. This reference needs to be both phase and frequency locked with the input

signal, so a Phase-Locked Loop (PLL) is utilized. The LIA reference signal is

VL(t) = E0 cos(ω0t +θL) (3.2)

where E0 is the amplitude of the reference signal and θL its phase. Both the input and

the reference signals pass through a Phase-Sensitive Detector (PSD), taking both signals

and calculating the product between them, leading to Equation 3.3.

VP SD(t) = GACV0E0 cos(ω0t +θsig )cos(ω0t +θL) (3.3)

The relevance of the phase and frequency lock becomes clear at this point: with

θsig − θL constant, and taking in to consideration that both signals also have the same

frequency ω0, Equation 3.3 can be rewritten to

VP SD(t) =
1
2
GACV0E0

[
cos(2ω0t +θsig +θL) + cos(θsig −θL)

]
(3.4)

which only has components at the second harmonic and at DC, both proportional

to V0. By passing the output of the PSD through a low-pass filter, the second harmonic

can be significantly attenuated and the filtered DC signal obtained. Finally, the signal is

amplified by passing it through a DC amplifier with GDC gain. The final voltage is a DC

signal proportional to V0, as shown in Equation 3.5.

Vout =
1
2
GDCGACV0E0 cos(θsig −θL) (3.5)

To maximize Vout, θL should be adjusted as to get θsig − θL ≈ 0. This is arranged by

the PLL which adapts to changes in phase.

A single phase lock-in has only one PSD and gives the previous output. This type of

LIA creates a scenario where if θ = θsig −θL = 90° the output measured will be 0.

To solve the phase dependency problem, dual-phase LIA add a second PSD. The

second PSD multiples the signal with the reference in quadrature, in other words, shifted

by 90°. Consider for simplicity the in-phase component X = Vsig cos(θ) and quadrature

component Y = Vsig sin(θ). When computing the magnitude R the phase dependency is

removed, measuring the signal amplitude directly (Equation 3.6).

R =
√
X2 +Y 2 = Vsig (3.6)
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3.3. AC LOSS MEASUREMENT METHODS

3.3.2 LIA Measurement Method

Using the oscillator of the LIA, a signal can be generated with multiple frequencies

and amplitudes. With the use of LabVIEW this signal is easily manipulated. The signal

from the oscillator goes through both a power amplifier and a transformer as a means of

amplification, and the amplified signal powers the superconducting coil. Between the

power amplifier and the transformer a resistance bank is placed to get a closer impedance

match. A Rogowski coil is placed between the transformer and the coil, serving as the

first reference signal for the LIA. This signal will be purely inductive, so on the other

channel of the LIA the resistive and inductive components of the AC loss are measured.

This is accomplished by connecting the copper wire from the coil to the second channel

of the LIA. This method is shown in Figure 3.9.

B A Osc

Lock-In Amplifier

Power Amplifier

OutIn

Resistance
Bank

Transformer

Rogowski
Coil

Wire Out
Power +

Power -

Figure 3.9: Schematic of the LIA measurement method

The transformer is only used during measurements of a single coil because it was not

necessary to increase the signal during tests with coils inserted in a ferromagnetic coil.

The LIA used was the Signal Recovery 7265 DSP Lock-in Amplifier, connected to a PC

and controlled via LabVIEW. An improved version of the LabVIEW software provided

by the manufacturer was used, with the main difference being the automatic return of

the losses in J/cycle/m. A QSC RMX 5050 audio amplifier was utilized as the power

amplifier, with a maximum amplification at ≈ 4Ω, and the transformer was a toroidal

transformer with a 1:6 ratio. The resistance bank had 3Ω, since the transformer had a

resistive load of around 1.3Ω. The experimental setup used is shown in Figure 3.10.
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1

2

3

4

5

6

7

8

Figure 3.10: Experimental setup for AC loss measurement using a LIA. (1) Toroidal
transformer (2) Resistance bank (3) Lock-In amplifier (4) Computer (5) Oscilloscope (6)
Power amplifier (7) Rogowski coil (8) Superconducting coil

3.3.3 V–I Measurement Method

To acquire the AC losses in the transformer’s secondary, a direct loss measuring

method due to induced currents was used, in which both current and voltage are mea-

sured using an oscilloscope. The corresponding waveforms are passed through a CPU,

where a point-to-point multiplication is made, yielding the instantaneous power in watts.

Integrating for time and using the frequency of operation, the AC loss is obtained in the

desired unit, J/cycle. A schematic for this method is shown in Figure 3.11.

3.3.4 Differences between measuring methods

Both the V–I and the LIA measuring methods have advantages and disadvantages. If

using the LIA method the measurements are made much more easily, since that voltage

variation is dealt with by the LIA, and the LIA allows for frequency variation. This

method also has more possibilities of wrong measurements and invalid values due to the

amplification needed and the impedance matching.

On the other hand, the V–I method provides higher reliability, since both the current
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Oscilloscope

A B

CPU Post processing

R1

Current
Probe

R2

Figure 3.11: Schematic of the V–I measurement method

and voltage are measured directly using an oscilloscope. This method also enables the

measurement of the secondary in a transformer. It has the drawback that when used

alone, the voltage needs to be manually changed, and the AC loss needs to be calculated

after the measurements are done, from the waveforms of the current and the voltage.

An ideal case uses both methods in tandem, especially for measures of AC loss in a

superconducting transformer. The LIA method supplies the reference signal and mea-

sures the loss of the primary, while the V–I method measures the loss of the secondary

due to induced currents. With this approach, the AC loss of both coils can be obtained

simultaneously.

3.4 Tape and Coils’ Properties

Only one type of superconducting tape was used, from Shanghai Superconductors,

with its properties presented in Table 3.1.

Property Shanghai Superconductor

Width (mm) 10± 0.1
Total Thickness (µm) 155± 5
Avg. IC at 77K s.f. (A) 498

Substrate Thickness (µm) 50
Substrate Property Hastelloy

Table 3.1: Shanghai Superconductor HTS tape properties

Various coils were built and numbered, using the following methodology: the first

letter will always be C, as to distinguish from other superconducting coils in the lab; the
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second letter indicates the tape type, with B being Shanghai Superconductor; the last

element is a number simply to distinguish the coils with the same tape. All coils with the

respective dimensions are shown in Annex I.

3.5 Tape Coefficients

A HTS tape can be described approximately by the following expression:

Q = a ·
(
I
Ic

)b
(3.7)

where Q is the loss in Hm−1, I/Ic the quotient between the current I and the critical

current Ic, and a and b two coefficients to be found via least squares fitting.

Using Norris model (Norris, 1970), given in Equation 3.8, it is possible to analytically

obtain an accurate representation of the AC loss in the tape using only its critical current

(Gu & Han, 2005; Wang et al., 2018).

QNorris =
I2
c µ0

π

(1− I
Ic

)
ln

(
1− I

Ic

)
+
(
1 +

I
Ic

)
ln

(
1 +

I
Ic

)
−
(
I
Ic

)2 (3.8)

Firstly multiple points are defined for I/Ic, for which the corresponding AC losses

are calculated using Norris equation and shown in Figure 3.12. From these values, the

coefficients a and b can be obtained via least square fitting. The a and b coefficients

for the Shanghai Superconductor tape are 0.023834476341953 and 4.225648812595794,

respectively. With this coefficients it is possible to get the AC loss analytically from

Equation 3.7, which are also plotted in Figure 3.12. As it is possible to see, using the

coefficients is a good description of a HTS tapes AC loss in self field.

10−1 100

10−6

10−5

10−4

10−3

10−2

I/Ic

Q
[J
/c

yc
le
/m

]

QNorris
QAnalytical

Figure 3.12: AC loss in the Shanghai Superconductor HTS tape using the Norris model
(QNorris) and the analytical model (QAnalytical)
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3.6 Experimental Data

Due to problems with the experimental material it was not possible to use the LIA

method. It was suspected that the power amplifier was working incorrectly, but since no

other amplifier existed it cannot be confirmed which part of the apparatus was malfunc-

tioning. As such, only values at 50Hz were obtained and the V–I measuring method the

only one used. Figure 3.13 shows the coil test results at 50Hz. Since the experimental

data for the coils was obtained after they were used in the transformer assembly, and the

CB2 coil showed structural problem in the tape, it was not possible to test it alone.
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I/IC [A]

Q
[J
/c
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]
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CB3
CB4

Figure 3.13: AC loss in coils at 50Hz with YBCO tape, where CB1 has 40 turns, CB3 60
turns, and CB4 50 turns.

The AC loss in the coils inserted in a ferromagnetic core is illustrated in Figure 3.14

for various coil configurations. The testing results were taken using the V–I method

presented in Section 3.3.3.
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Figure 3.14: AC loss measured in (a) the primary; (b) the secondary; both at 50Hz, where
the first coil in the label is the primary and the second the secondary (primary/secondary).
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4
ANN Modelling

In this chapter, multiple networks are trained and validated to predict AC loss. All

of the networks are implemented in MATLAB using the Deep Learning Toolbox library,

due to the implementation simplicity. The building process of the networks is presented,

namely the training, validation and testing. All the results of the networks are presented,

both from a global network and a series network.

4.1 Data Import

Firstly, the data is imported to the script and the unused information is dropped,

while the current is changed to I/Ic based on the critical current of the tapes.

After the data has been cleared, a division is made between inputs and targets. An

example of an input for the coils’ network is given in Table 4.1, while the target will be

the corresponding loss Q.

Characteristic Value

I/Ic 0.1
Frequency [Hz] 50
Turns 60
Internal diam. [mm] 118
a 0.023834476341953
b 4.225648812595794

Table 4.1: Example of an input received by the coil neural network
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4.2 Global Network

Figure 4.1 depicts a schematic of a global network for estimating AC loss in an HTS

transformer. The inputs used for this network are frequency (f in Hz), current of the

primary (Ip/Ic), current of the secondary (Is/Ic), number of turns of the primary (Np),

number of turns in the secondary (Ns), a and b coefficients, internal diameter of the coil

(Int. Diam.) and the core characteristics (Core Ch.). The core characteristics are: core

height, core diameter, window size, core grain and lamination width, all in mm. On the

other hand, the outputs of the ANN are the AC loss in the primary (Qp in J/cycle) and

and in the secondary (Qs in J/cycle).

Global
ANN

Ip/Ic

Np

Ns

a

b

Qp

Qs

Int. Diam.

f

Core Ch.

Is/Ic

Figure 4.1: Global ANN schematic for prediction of AC loss.

Figure 4.2 illustrates the best performing network, a three hidden layer neural net-

work. The first layer is made up of 15 neurons using the tansig function, the second of 12

neurons that use the Elliot sigmoid function, and the third of 13 neurons that utilize the

log-sigmoid activation function.

InputInput

18
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W

Hidden 1Hidden 1

15

b
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Hidden 2Hidden 2

12

b

W

Hidden 3Hidden 3

13

b

W

OutputOutput

2

OutputOutput

2

Figure 4.2: Global neural network with three hidden layers. The first layer has 15 neu-
rons using the tansig function, the second layer has 12 neurons using the Elliot sigmoid
function, and the third layer has 13 neurons using the log-sigmoid function.

This network presented a validation performance of 2.6879× 10−6 at the 155th epoch,

and had an R-value of 0.99999 for training, validation and testing. All three of the regres-

sion plots are shown in Figure 4.3. From this values it is possible to see that the network

provides an extremely good performance.
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Figure 4.3: FFNN regression plots for the transformer device. (a) Training (b) Validation
(c) Testing

4.3 Coil ANN in Series with Transformer ANN

When the need to retrain the global network presented in 4.2 arises, due to additional

data being collected, every data point must be used, regardless of the type of new input.

For example, if new measurements are taken on a different core but with previously used

coils, the network cannot be trained solely with transformer data points; the coil data

points must also be inputted. This necessity to retrain with every type of input leads to

lesser flexibility of the network, and a higher training time when new data is obtained.

For this reason, a series-like montage of two different ANNs if proposed, differentiating

between measurements made on coils alone, and on the HTS transformer.

In Figure 4.4 the schematic for this assembly is presented. Certain inputs must be

entered in both networks, namely the frequency, currents, number of turns and the a and

b coefficients. The first network is the coil network, and has as its inputs the frequency,

current, number of turns, and the a and b coefficients. This network provides as its output

44



4.3. COIL ANN IN SERIES WITH TRANSFORMER ANN

the AC loss in an independent coil. Two coil networks must be used, one for the primary

and another for the secondary. In the transformer network, the outputs of both the coil

networks serve as inputs, as well as the core characteristics.

Coil
ANN

Transformer
ANN

Qp

Qs
Core Ch.

Ip/Ic

a

b
Coil Ch.

Np

Q*p

Coil
ANN

Is/Ic

a

b
Coil Ch.

Ns

Q*s

f

Figure 4.4: Series-like schematic of the two different networks.

Represented in Figure 4.5 is the best performing coil network, which has 12 neurons

in the first layer, 15 in the second, and 13 in the third. An Elliot sigmoid activation

function was used in the first two hidden layers, a radbas function in the third and a

linear function in the output layer.
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Figure 4.5: Feed forward network for the coils, with 12 neurons in the first layer, 15 in the
second, and 13 in the third. The activation functions used are the Elliot sigmoid function
in the first two layers, and the radbas function in the third layer.
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The networks results are plotted in Figure 4.6 with a regression line. Both the train-

ing and the validation steps resulted in R-values higher than 0.99, and the testing step

resulted in a R-value of 0.99801. This results are especially promising considering the

low amount of inputs available to train the network.
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Figure 4.6: FFNN regression plots for the coils. (a) Training (b) Validation (c) Testing

The completed coil network can now be used to train the transformer network. To

begin, several inputs are provided to the coil network, yielding AC loss values for the pri-

mary and secondary, which are now used as inputs for the transformer network, together

with the core and coil parameters. In this approach, a series network is built that matches

the outcomes of the global network of Section 4.2 while providing greater training flexi-

bility. The number of turns of the primary and secondary coils, internal diameter of both

coils, a and b coefficients, frequency, current over critical current, core characteristics and

AC loss of both coils generated by the coil network are the inputs to this network.

The best performing transformer network is presented in Figure 4.7, having two

layers. Training with three layers caused overfitting, so it was discarded. Both the first
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and second layer use a radbas activation function, having 21 and 20 neurons respectively.
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Figure 4.7: Two layered transformer network with radbas activation function in the hid-
den layers

With a validation performance of 0.0015729 at the 22nd epoch, this ANN has an

R-value of 0.99997 for training, 0.99998 for validation and 0.99996 for testing. The

regression plots are presented in Figure 4.8.
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Figure 4.8: Regression plots of the transformer network trained with a series configura-
tion. (a) Training (b) Validation (c) Testing
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This values are very close approximation to the global network, but the series assembly

of the networks provides a higher flexibility of training and usage. Of note is that even

tough the CB2 coil was not used to train the coil network, its characteristics were still

used to generate data for the transformer network.

4.4 Discussion

With this prediction technique, the AC loss for a transformer with HTS coils was

obtained with very good results. Having low simulation time, an ANN shows high ro-

bustness against parameters changes, such as number of turns, and provides fast approx-

imations of the loss. With a fast prediction it is possible to use the AC loss in the design

process of a HTS device, namely in the cryogenic system.

On the other hand, a neural network needs multiple data points to be trained for

higher precision and generalization. These data points must be taken either experimen-

tally or by the use of FEM, which proves to be expensive and time-consuming. Another

drawback is that when feeding inputs to the network, one must be sure that the measure-

ments were taken correctly because if not, the network will be trained for wrong values

and will not be able to provide trustworthy loss values.

It was not possible to achieve high current levels relative to the critical current in this

work. As a result, the networks do not function adequately at higher current levels since

no training for such values happened.

When compared to FEM, it shows tremendous promise because it requires signifi-

cantly less time and computational resources, with the main time investment being the

acquisition of data values, and in the future this time can be reduced with other method

of generating data, including using ANN for creating data points.
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5
Conclusions and Future Work

A conclusion is presented in this chapter. Due to the research nature of this work, it

is necessary to identify future work to continue the investigation of the theme.

5.1 Conclusions

The presented work shows experimental results of AC loss in superconducting devices,

namely HTS transformers with ferromagnetic cores. With those results, neural networks

were developed as to be able to predict the AC loss without the need of measurements or

simulations using FEM.

The experimental results from the primary show the expected result that for a higher

number of turns, a bigger AC loss exists. On the other hand, the secondary, which was

connected to a resistive load, has approximately the same loss independent of the number

of turns of each coil. As for the coils’ losses, the results were more erratic, and one of

the coils could not be tested. Of note is that the values of the a and b coefficients used to

describe the tape should have been obtained experimentally, but such was not possible

due to lack of equipment.

The global network, which has as inputs all information about the device’s description,

shows promising results for predicting AC loss in HTS devices, with R-values near to 1

for training, validation, and testing. The series network provided extremely close results,

while adding flexibility and robustness, even with a low number of data points.

The computational time and power necessary for the neural networks presented is

much lower than what would be needed for a FEM simulation, and a change of one

parameter does not imply a whole new simulation. With accurate calculations of AC loss,

the cryogenic system can be optimized, lowering the costs for both new systems in the

design phase as well as existing systems, which can be improved.
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5.2 Future Work

Due to the good performance of the neural networks with limitations in terms of the

availability of data, future work with more data points and for different devices is of

interest. Multiple suggestions and improvements that were not able to be performed in

this work are now proposed:

• Application to different types of devices, such as HTS motors or HTS current lim-

iters.

• Expansion to different frequencies and other types of superconducting tape.

• Conduct the experimental procedure in a three phase transformer.

• Design a cryogenic system based in the losses given by the networks.

• Winding of the coils in a more streamlined manner, to guarantee a more uniform

result.

• Use of closed cryostats, for less evaporation of liquid nitrogen.

• Use of a flex PCB with a copper wire to measure using the LIA method, ensuring

the size of the copper wire.

• Try a non-invasive measurement using a claw method, with two copper wires, one

at the top and another at the bottom of the coil. In this way, it is possible to crate a

plier like mechanism to measure the AC loss in coils with the system still working.
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I
Coil Table

Coil name N (turns) Internal Diameter (mm)

CB1 40 122
CB2 20 118
CB3 60 118
CB4 50 122

Table I.1: Coils dimensions, where the second letter represents the tape type: A for S-
Innovations and B for Shanghai Superconductor
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II
MATLAB Code for the Global ANN

% Import table

T = readtable('global.xlsx');

% Drop coil names

T = removevars(T,{'primary', 'secondary'});

% Find groups

T.core_material = findgroups(T.core_material);

T.core_grain = findgroups(T.core_grain);

% Normalize

T = normalize(T, 'range', [0 1]);

% Separate inputs and targets

Inputs = removevars(T, {'Qp', 'Qs'});

Targets = [T.Qp, T.Qs];

Inputs = table2array(Inputs);

Inputs = Inputs.';

Targets = Targets.';

% Transfer function

transferFunc = ["elliotsig", "logsig", "radbasn", "tansig"];

% Minimum and maximum number of hidden neurons

minH = 5;
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maxH = 20;

% Number of NN to train

numNN = 20;

bestNetOne = cell(1, 3);

bestNetTwo = cell(1, 3);

bestNetThree = cell(1, 3);

best_perf = 10000;

best_perf2 = 10000;

best_perf3 = 10000;

j = 0;

global_start = tic;

for idxTF = 1:1:length(transferFunc)

for k1 = minH:1:maxH

net = feedforwardnet(k1);

net.trainFcn = 'trainlm'; % Levenberg-Marquardt algorithm

transfer1 = transferFunc(idxTF);

net.layers{1}.transferFcn = transfer1;

[best_perf, auxNet] = trainNetwork(net, best_perf, Inputs, ...

Targets);

if isa(auxNet, 'cell')

bestNetOne = auxNet;

end

for idxTF2 = 1:1:length(transferFunc)

for k2 = minH:1:maxH

net = feedforwardnet([k1 k2]);

net.trainFcn = 'trainlm';

transfer2 = transferFunc(idxTF2);

net.layers{1}.transferFcn = transfer1;

net.layers{2}.transferFcn = transfer2;

[best_perf2, auxNet] = trainNetwork(net, best_perf2, ...

Inputs, Targets);

if isa(auxNet, 'cell')

bestNetTwo = auxNet;

end

for idxTF3 = 1:1:length(transferFunc)

for k3 = minH:1:maxH

net = feedforwardnet([k1 k2 k3]);
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ANNEX II. MATLAB CODE FOR THE GLOBAL ANN

net.trainFcn = 'trainlm';

transfer3 = transferFunc(idxTF3);

net.layers{1}.transferFcn = transfer1;

net.layers{2}.transferFcn = transfer2;

net.layers{3}.transferFcn = transfer3;

[best_perf3, auxNet] = trainNetwork(net, ...

best_perf3, Inputs, Targets);

if isa(auxNet, 'cell')

bestNetThree = auxNet;

end

end

end

end

end

end

end

global_time = toc(global_start);

clear i k1;

% Get best performing NN with one layer

net = bestNetOne{1, 1};

tr = bestNetOne{1, 2};

% Get best performing NN with two layers

net2 = bestNetTwo{1, 1};

tr2 = bestNetTwo{1, 2};

% Get best performing NN with 3 layers

net3 = bestNetThree{1, 1};

tr3 = bestNetThree{1, 2};

% Save networks

save('global_net_1_layer.mat', 'net');

save('global_net_2_layers.mat', 'net2');

save('global_net_3_layers.mat', 'net3');

function [best_perf, bestNet] = trainNetwork(net, best_perf, ...

Inputs, Targets)
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net.trainParam.showWindow = false;

net = init(net);

[net, tr] = train(net, Inputs, Targets);

% Get outputs

Outputs = net(Inputs);

% Calculate performance

perf = perform(net, Targets, Outputs);

% Store best performing network

if best_perf > perf

best_perf = perf;

bestNet{1, 1} = net;

bestNet{1, 2} = tr;

bestNet{1, 3} = perf;

else

bestNet = 0;

end

end
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III
MATLAB Code for the Coil ANN

% Import table

T = readtable('coils.xlsx');

% Drop coil names

T = removevars(T,{'coil'});

% Separate inputs and targets

Inputs = removevars(T, {'Q'});

Targets = [T.Q];

Inputs = table2array(Inputs);

Inputs = Inputs.';

Targets = Targets.';

% Network variables

transferFunc = ["elliotsig", "logsig", "radbasn", "tansig"];

% Minimum and maximum number of hidden neurons

minH = 5;

maxH = 20;

% Number of NN to train

numNN = 20;

bestNetOne = cell(1, 3);

bestNetTwo = cell(1, 3);
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bestNetThree = cell(1, 3);

best_perf = 10000;

best_perf2 = 10000;

best_perf3 = 10000;

j = 0;

global_start = tic;

len_transfer_function = length(transferFunc);

for nnn = 1:1:numNN

for idxTF = 1:1:len_transfer_function

for k1 = minH:1:maxH

loop_start = tic;

net = feedforwardnet(k1);

net.trainFcn = 'trainlm'; % Levenberg-Marquardt algorithm

net.layers{1}.transferFcn = transferFunc(idxTF);

[best_perf, auxNet] = trainNetwork(net, best_perf, ...

Inputs, Targets);

if isa(auxNet, 'cell')

bestNetOne = auxNet;

end

for idxTF2 = 1:1:len_transfer_function

for k2 = minH:1:maxH

net = feedforwardnet([k1 k2]);

net.trainFcn = 'trainlm';

net.layers{1}.transferFcn = transferFunc(idxTF);

net.layers{2}.transferFcn = transferFunc(idxTF2);

[best_perf2, auxNet] = trainNetwork(net, ...

best_perf2, Inputs, Targets);

if isa(auxNet, 'cell')

bestNetTwo = auxNet;

end

for idxTF3 = 1:1:len_transfer_function

for k3 = minH:1:maxH

net = feedforwardnet([k1 k2 k3]);

net.trainFcn = 'trainlm';

net.layers{1}.transferFcn = ...

transferFunc(idxTF);

net.layers{2}.transferFcn = ...

transferFunc(idxTF2);
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ANNEX III . MATLAB CODE FOR THE COIL ANN

net.layers{3}.transferFcn = ...

transferFunc(idxTF3);

[best_perf3, auxNet] = trainNetwork(net, ...

best_perf3, Inputs, Targets);

if isa(auxNet, 'cell')

bestNetThree = auxNet;

end

end

end

end

end

end

end

end

global_time = toc(global_start);

clear i k1;

% Get best performing NN

net = bestNetOne{1, 1};

tr = bestNetOne{1, 2};

% Get best performing NN with two layers

net2 = bestNetTwo{1, 1};

tr2 = bestNetTwo{1, 2};

% Get best performing NN with 3 layers

net3 = bestNetThree{1, 1};

tr3 = bestNetThree{1, 2};

% Save networks

save('coil_net_1_layer.mat', 'net');

save('coil_net_2_layers.mat', 'net2');

save('coil_net_3_layers.mat', 'net3');

function [best_perf, bestNet] = trainNetwork(net, best_perf, ...

Inputs, Targets)

net.trainParam.showWindow = false;

net = init(net);
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[net, tr] = train(net, Inputs, Targets);

% Get outputs

Outputs = net(Inputs);

% Calculate performance

perf = perform(net, Targets, Outputs);

% Store best performing network

if best_perf > perf

best_perf = perf;

bestNet{1, 1} = net;

bestNet{1, 2} = tr;

bestNet{1, 3} = perf;

else

bestNet = 0;

end

end
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IV
MATLAB Code for the Transformer ANN

% Import coil ANN

load coil_net_3_layer;

cc = net3;

transformer_info = [400;100;100;2;0;0;0.5];

transformer_table = readtable('transformer.xlsx');

input_coil_nn = removevars(transformer_table, {'primary', 'secondary', ...

'core_height', 'core_diam', 'core_window', 'core_num_win', ...

'core_material', 'core_grain', 'core_lamination'});

input_coil_prim = removevars(input_coil_nn, {'Ns', 'int_diam_p', 'as', ...

'bs', 'I_Ic_s', 'Qp', 'Qs'});

input_coil_sec = removevars(input_coil_nn, {'Np', 'int_diam_p', 'ap', ...

'bp', 'I_Ic_p', 'Qp', 'Qs'});

input_coil_prim = table2array(input_coil_prim);

input_coil_sec = table2array(input_coil_sec);

input_coil_prim = input_coil_prim.';

input_coil_sec = input_coil_sec.';

output_coil_prim = cc(input_coil_prim);

output_coil_sec = cc(input_coil_sec);

total_coil_prim = vertcat(input_coil_prim, output_coil_prim);

total_coil_sec = vertcat(input_coil_sec, output_coil_sec);
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% Order: Np Ns diam_p diam_s ap as bp bs f I_Ic_p I_Ic_s Qp Qs

total_coil = vertcat(total_coil_prim, total_coil_sec);

total_coil = total_coil([1 8 2 9 3 10 4 11 5 6 13 7 14],:);

Inputs = zeros(7, length(total_coil)) + transformer_info;

Inputs = vertcat(total_coil, Inputs);

Targets = [transformer_table.Qp transformer_table.Qs].';

% Network variables

transferFunc = ["elliotsig", "logsig", "radbasn", "tansig"];

% Minimum and maximum number of hidden neurons

minH = 20;

maxH = 22;

% Number of NN to train

numNN = 20;

bestNetOne = cell(1, 3);

bestNetTwo = cell(1, 3);

bestNetThree = cell(1, 3);

best_perf = 10000;

best_perf2 = 10000;

best_perf3 = 10000;

j = 0;

global_start = tic;

len_transfer_function = length(transferFunc);

for nnn = 1:1:numNN

for idxTF = 1:1:len_transfer_function

for k1 = minH:1:maxH

net = feedforwardnet(k1);

net.trainFcn = 'trainlm'; % Levenberg-Marquardt algorithm

net.layers{1}.transferFcn = transferFunc(idxTF);

[best_perf, auxNet] = trainNetwork(net, best_perf, ...

Inputs, Targets);

if isa(auxNet, 'cell')

bestNetOne = auxNet;

end
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ANNEX IV. MATLAB CODE FOR THE TRANSFORMER ANN

for idxTF2 = 1:1:len_transfer_function

for k2 = minH:1:maxH

net = feedforwardnet([k1 k2]);

net.trainFcn = 'trainlm';

net.layers{1}.transferFcn = transferFunc(idxTF);

net.layers{2}.transferFcn = transferFunc(idxTF2);

[best_perf2, auxNet] = trainNetwork(net, ...

best_perf2, Inputs, Targets);

if isa(auxNet, 'cell')

bestNetTwo = auxNet;

end

for idxTF3 = 1:1:len_transfer_function

net = feedforwardnet([k1 k2 k3]);

net.trainFcn = 'trainlm';

net.layers{1}.transferFcn = transferFunc(idxTF);

net.layers{2}.transferFcn = transferFunc(idxTF2);

net.layers{3}.transferFcn = transferFunc(idxTF3);

[best_perf, auxNet] = trainNetwork(net, ...

best_perf, Inputs, Targets);

if isa(auxNet, 'cell')

bestNet = auxNet;

end

end

end

end

end

end

end

global_time = toc(global_start);

clear i k1;

% Get best performing NN with 1 layer

net = bestNetOne{1, 1};

tr = bestNetOne{1, 2};

% Get best performing NN with 2 layers

net2 = bestNetTwo{1, 1};

tr2 = bestNetTwo{1, 2};
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% Get best performing NN with 3 layers

net3 = bestNetThree{1, 1};

tr3 = bestNetThree{1, 2};

% Save networks

save('series_net_1_layer.mat', 'net');

save('series_net_2_layer.mat', 'net2');

save('series_net_3_layer.mat', 'net3');

function [best_perf, bestNet] = trainNetwork(net, best_perf, Inputs, Targets)

net.trainParam.showWindow = false;

net = init(net);

[net, tr] = train(net, Inputs, Targets);

% Get outputs

Outputs = net(Inputs);

% Calculate performance

perf = perform(net, Targets, Outputs);

% Store best performing network

if best_perf > perf

best_perf = perf;

bestNet{1, 1} = net;

bestNet{1, 2} = tr;

bestNet{1, 3} = perf;

else

bestNet = 0;

end

end
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