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Due to the difculties inherent in diagnostics and prognostics, maintaining machine health remains a substantial issue in in-
dustrial production. Current approaches rely substantially on human engagement, making them costly and unsustainable,
especially in high-volume industrial complexes like fulfllment centers. Te length of time that fulfllment center equipment
failures last is particularly important because it afects operational costs dramatically. Amachine learning approach for identifying
long and short equipment failures is presented using historical equipment failure and fault data. Under a variety of hyper-
parameter confgurations, we test and compare the outcomes of eight diferent machine learning classifcation algorithms, seven
individual classifers, and a stacked ensemble. Te gradient boosting classifer (GBC) produces state-of-the-art results in this
setting, with precision of 0.76, recall of 0.82, and false positive rate (FPR) of 0.002.Tismodel has since been applied successfully to
automate the detection of long- and short-term defects, which has improved equipment maintenance schedules and personnel
allocation towards fulfllment operations. Since its launch, this system has contributed to saving over $500 million in fulfllment
expenses. It has also resulted in a better understanding of the faws that cause long-term failures, which is now being used to build
more sophisticated failure prediction and risk-mitigation systems for fulfllment equipment.

1. Introduction

Artifcial intelligence advancements have resulted in smart
devices that are now widely used in a variety of industries.Tese
smart technologies, which range from robots to cameras to
medical equipment to low-cost smart sensors, could help
companies and industries achieve higher efciency and efec-
tiveness. AI is nowbeing implemented outside of the data center,
in various devices and machines, with processors designed to
capture and process data at lightning rates while using minimal
power and computing resources. Because of the growth of AI-
powered smart gadgets that can detect and react to sights,
sounds, and other patterns, pervasive intelligence is now being
integrated into a wide range of practical applications. Machines
are increasingly attaining high levels of performance through
learning from their experiences, adjusting to changing settings,
and forecasting events.While certain industries, such as aviation,

have embraced these advancements, others are still catching up.
Scaling fulfllment operations, for example, is a concern as the e-
commerce business grows rapidly around the world. Te
overreliance on human input in decision-making is a major
stumbling block to scale. Te ability of humans to make rapid
and efcient decisions is hampered by “information overload,”
which includes too many tools to monitor and too many pages
of best practices documentation to examine as input for
maintenance decision support. Furthermore, the sheer magni-
tude of the equipment and structure thatmake up the fulfllment
center complicates the implementation of these decisions. A
modern Amazon warehouse, for example, is on average 800,000
square feet [1], with various forms of fulfllment equipment
taking up more than half of that space.

A fulfllment sortation system (Figure1) is an automated
warehouse sorting system meant to improve order picking,
packing, consolidation, and shipping efciency and
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accuracy. Tis equipment set is distinguished by several
components that aid in the performance of its functions.
Even with advanced maintenance practices, the sortation
equipment will fail due to ongoing degradation from con-
tinuous operation due to its complexity. In these cases, the
ability to quickly restore equipment makes all the diference
in meeting customer orders as promised. As a result, the
ability to swiftly identify and pinpoint failure causes (faults)
in this crucial piece of fulfllment equipment is critical for
ensuring a steady fow of order units. Furthermore, the
ability to predict failure lengths at various levels is important
for risk mitigation and cost reduction because such signals
are crucial inputs.

Te goal of this research is to create a machine learning
framework for making maintenance choices and resolving
faults on fulfllment sortation equipment. We do this by
combining past failure and fault data from condition-
monitoring systems with AI-powered sensors put along
the equipment’s length. Te sensors continuously monitor
the functioning of numerous components that make up the
equipment system by recording data such as vibration,
current, order trafc, weight, acoustic signals, temperature,
and moving component speeds, among other signals. Te
machine learning framework uses these data to fnd a clas-
sifer that can distinguish between long and short duration
failures while also fnding factors that are strongly linked to
those failures. Long failures are defned as those that last
longer than 15minutes and are assumed to be more essential
fulfllment operations in terms of cost of operations.

By incorporating machine learning into traditional
condition-based or time-based maintenance decision sys-
tems, equipment maintenance and reliability teams may be
able to optimize and scale maintenance routines by precisely
targeting fault resolution. Tese activities have the potential

to greatly reduce unplanned downtime, which has direct
costs associated with maintenance procedures and indirect
costs associated with missed output, shipping, and labor [3].
Maintenance costs have risen steadily over time; depending
on the industry, maintenance costs account for 15–70
percent of total production costs [4]. It could also help with
a better knowledge of the faws associated with protracted
failures, which could lead to better fulfllment sortation
designs in the future.

When sortation equipment malfunctions in the existing
state, it afects the fow of orders, resulting in a cascade of cost
overruns in both upstream and downstream operations. Iden-
tifying and isolating defects linked with a failure is a time-
consuming process. An operator must wander around the
apparatus to discover and repair faws that have caused or will
cause a failure.When there aremany problems present, the issue
becomesmuchmore complicated, and the operatormust decide
which defect is the most vital to correct frst. In this case, the
proposed approach wins on two counts: (i) the operator receives
a prioritized list of faults to rectify thanks to automatic iden-
tifcation of the most critical defects related with the present
failure.Tis essentially contributes to labor cost savings; (ii) with
the directed workfow, the operator can quickly fx the fault and
get the equipment back up and running with minimal latency,
while maintaining the fow of both upstream and downstream
processes to minimize the efects of unplanned downtime.

When long-term failures are unavoidable, the model
predicts them, and the company can take risk-mitigation
measures like rerouting orders to other equipment or
facilities.

Te envisioning takes on a basic maintenance decision
support system and incorporates a machine learning ap-
plication layer that creates the capability to simplify, stan-
dardize, direct, or automate maintenance decisions, while

Figure 1: Material fow from upstream order picking processes to downstream order packing and shipping on a fulfllment sorter (source:
dematic sorters [2]).
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the integration of machine learning solutions takes place in
a broader context outside the scope of this paper. We see the
system as having three key components: (i) the environment,
(ii) the brain, and (ii) the body.

Te environment is a collection of infrastructure that
includes a data historian and an event stream processor, with
the goal of storing, normalizing, and providing machine
operating data from sortation equipment.

Te brain is the machine learning program that rec-
ognizes, learns, and predicts defects and failure patterns
captured in the environment. Te brain’s purpose is to
eliminate the operator’s responsibility for identifying and
prioritizing errors and failure problems.

Te body is the user interface that allows the operator to
interact with the system directly, obtain insights, and take
maintenance actions. Te body’s purpose is to reduce clutter
and labor strain by only displaying high-priority failures that
have a major infuence on sortation operations.

Te experiments in this study support the environment
and brain activity by drawing data for machine learning
algorithms using developments in AI sensors and smart
devices. Sensor readings from sensors throughout the length
of the equipment are used to provide input signals for defect
and failure instances to the historian and event stream
processor, which are then employed in the machine learning
context to anticipate failure outcomes. Te data are fed into
body applications, which I immediately inform the opera-
tor’s decision to prioritize and repair the most critical faults
and (ii) integrate with more complex equipment health
decision support systems. A reliability maintenance operator
eats the brain’s output in the form of alerts in the grand
scheme of things. Each alert comes with a step-by-step
workfow for quickly mitigating the danger of a potential
failure or resolving the problem if self-healing isn’t possible.

Te peculiarity of this technique is that it takes
a labor-intensive equipment maintenance strategy like
the CBM and reduces the strain on labor by using ma-
chine learning to produce efciencies that can improve
fulfllment operations. Tis issue has not been solved in
fulfllment sortation equipment to the best of our
knowledge. Similar methodologies have, however, been
used in other practical domains, such as the aviation
industry [5], to investigate the failure of aircraft com-
ponents. Other researchers have investigated the use of
machine learning algorithms for defect diagnosis, par-
ticularly for individual components like bearings ([6–8]
and [9]).

Te other portions of the paper are divided as follows:
Section 2 provides an overview of background and relevant
work, Section 3 provides the methodology, Section 4 pro-
vides the results and discussion, and Section 5 concludes
the paper.

2. Associated Work

2.1. Maintenance Strategies for Equipment. Te term
maintenance is well defned in the literature; nevertheless,
several maintenance-related phrases have ambiguous def-
nitions, and thus, we use the following defnitions:

Maintenance is defned as “the combination of technical
and associated administrative actions intended to retain an
item or a system in, or restore it to, a state in which it can
perform its required function,” according to ISO 14224,
2006 [10]. Another variation of this defnition is “all actions
appropriate for retaining an item/part/equipment in, or
restoring it to, a given condition,” according to
literature [11].

In Figure 2, we present a list of the important termi-
nology used in the equipment maintenance context, as well
as a brief description of what each one includes.

Corrective and preventive maintenance are the twomain
types of equipment maintenance [12]. Corrective mainte-
nance helps manage repair actions and unscheduled fault
events, such as equipment and machine failures. When
sortation equipment components fail in use, they are
repaired or replaced. Preventive maintenance involves pe-
riodic maintenance protocols to avoid equipment failures or
machinery breakdowns [13].

Condition-based maintenance (CBM) and time-based
maintenance are two types of preventive maintenance
(TBM). TBM is defned as a traditional preventive main-
tenance approach that involves time-based execution of
maintenance protocols sourced from failure time analysis
[14], whereas CBM is defned as a preventive maintenance
approach based on performance and/or parameter moni-
toring and subsequent actions [15, 16].

CBM can be carried out at various levels of technology,
with the goal of gathering condition data being to detect
incipient failure so that maintenance operations can be
scheduled or carried out continually. CBM can also be
broken down into three basic steps: data collection, data
processing, and maintenance decision-making as shown in
Figure 3.

Diagnostics and prognostics are two further classifca-
tions within CBM, with the former dealing with fault de-
tection, isolation, and identifcation after it occurs and the
latter with fault prediction before it occurs. Because there is
a large and diverse literature on machinery diagnostics and
prognostics due to the wide variety of systems, components,
and parts, rather than going through the litany of articles
published in this area, we will limit our review to fault
diagnostics because it is relevant to this work, but frst we
will highlight the three main steps mentioned above.

For the purposes of CBM, data acquisition is the act of
gathering and storing relevant information from specifed
physical assets. Obtaining these data can be difcult; for
example, obtaining failure data and labeling it in practice can
be tough. Another issue is that the volume of data to be
handled is frequently vast, necessitating specialized in-
frastructure, specialist knowledge, and, in certain circum-
stances, unique software [17]. A third issue is that equipment
makers are very protective of their raw data and will only
give postprocessed aggregates in limited quantities. As
a result, researchers must deal with these difculties. Te
primary goal of CBM data collecting is to gather information
on events that occur around the equipment. Tese could
involve a variety of repairs, breakdowns, health issues, and
maintenance procedures. Sensors such as microsensors,
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acoustic emission sensors, ultrasonic sensors, and others
acquire condition monitoring data such as vibration data,
motor temperature, acoustic data, pressure, moisture, hu-
midity, and weather, while events data are collected in both
manual and automatic mechanisms [16].

Because data acquired through any system is prone to
errors, the frst stage in this procedure is to cleanse the data
to remove various forms of errors (for example, data entry
errors for manual processes and sensor faults for automated
processes). Several ways to cleaning sensor data are dis-
cussed in [18, 19]. Tese actions are referred to as data
processing.

Processing sensor readings into conditions/states is also
an important part of this stage. Typically, the data belong
into the following types: (i) value type: single value data
collected at a specifc time epoch for a condition monitoring
variable, e.g., temperature, pressure, (ii) waveform: time
series data collected at a specifc time epoch for a condition
monitoring variable, e.g., vibration, acoustic, and (iii)
multidimensional type: multidimensional data collected at
a specifc time epoch for a condition monitoring variable,
e.g., image data such as thermographs, X-ray image, and
visual images.

Signal processing is the technical term for waveform and
multidimensional data processing, as well as the numerous
approaches that analyze and interpret these data types to
extract usable features for diagnostic and prognostic pur-
poses. Image processing techniques are an important part of
data preprocessing since photographs of equipment com-
ponents, as well as images from some waveform processing,
such as time-frequency analysis, can be a signifcant source
of condition monitoring data. Wang and McFadden [20],
Utsumi et al. [21], Heger and Pandit [22], and Ellwein et al.
[23] are some examples of using image processing tech-
niques in condition monitoring. Nixon and Aguado [19], as
well as Xu and Kwan [18], have applied complicated imaging
algorithms to extract characteristics in this area. Tere are
numerous signal processing algorithms for mechanical
systems in the literature, and the best one depends on the
application area [16].

2.2. Decision-Making Assistance. Any equipment mainte-
nance strategy must include maintenance decision assis-
tance. In this step, the data have been collected, and
preprocessed is transformed into insights that guide
decision-making and maintenance. Diagnostics and prog-
nostics are the two primary types of decision assistance in
the CBM maintenance strategy [11].

2.2.1. Diagnostics. Diagnostics is the process of converting
data from the measurement space into machine faults in the
fault space [16]. Tis mapping procedure, also known as
pattern recognition, is usually done manually using data
analysis techniques such as power spectrum, phase spectrum
graph, cepstrum graph, AR spectrum graph, spectrogram,
wavelet scalogram, and wavelet phase graph, according to
these authors.Tey also advocate for automating the process
due to the increased demand for highly skilled workers.
According to Williams et al. [24] and Korbicz et al. [25],
automatic pattern recognition can be accomplished through
classifcation of data using statistical learning techniques
(e.g., machine learning) or artifcial intelligence (AI)
methodologies.

(1) Statistical Methods. Fault diagnostics entails determining
whether a certain fault exists based on condition monitoring
data. Te frst statistical approach is to formulate the de-
tection problem as a hypothesis test. Te null hypothesis
may be written as “fault is not present,” and it would be
evaluated against the alternative hypothesis of “fault is
present.” Test statistics are used to summarize condition
monitoring data to determine whether the null hypothesis
should be rejected or not.Tis method is covered in depth by
Ma and Li [26], Sohn et al. [27], and Kim et al. [28].

Statistical process control (SPC) is a second statistical
method that originated in control theory and has since
become extensively accepted and used in fault detection and
diagnostics. Its principle is to evaluate whether a current
signal is within control limits by measuring its deviation
from a reference signal indicating the normal situation [29].

Maintenance strategy

Preventive maintenance Corrective maintenance

Scheduled Continuous Scheduled Deferred Immediate

Approach

Decision

Condition-based
maintenance (CBM)

Time-based maintenance
(TBM)

Figure 2: Common concepts and procedures in reliability maintenance.

Data acquisition Data pre-processing Decision support

Figure 3: Condition based maintenance processes.
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Cluster analysis, for example, is a univariate or multi-
variate method that clusters signals into distinct fault cat-
egories based on their similarity of feature properties. It fnds
natural clusters of signals that can be utilized to infer
a malfunction using distance or similarity measurements.
Euclidean distance, Mahalanobis distance, Kullback–Leibler
distance, and Bayesian distance are all common distance
approaches. Artes et al. [30] and Schurmann [31] in-
vestigated the use of cluster analysis methodologies. Goumas
et al. [32] and Lou and Loparo [33] are two papers that
investigate the usage of distancemeasures for fault diagnosis.

(2) Approaches to Machine Learning. SVMs (support vector
machine) are supervised learning models that analyze data
for classifcation or regression analysis [34]. Te algorithm’s
goal is to fnd a hyperplane in an n-dimensional space that
categorizes the data points clearly. Support vectors are data
points that are close to the hyperplane and have an infuence
on the hyperplane’s orientation and location. Tese support
vectors are utilized to increase the classifer’s margin.Te use
of SVM in this feld has been discussed in [35, 36]. Machine
learning algorithms have been used in fault diagnostics to
determine whether an item should be repaired or replaced
[17]. By learning patterns from torque sensors, Elliot et al.
[37] employ a random forest classifer to identify the failures
of a robotic arm. A random forest, also known as random
choice forests, is a classifcation and regression ensemble
learning method that works by generating many decision
trees during training. For classifcation tasks, the random
forest’s output is the class chosen by most trees. Individual
trees’ mean predictions are returned for regression [38].

Another often used approach in this feld for fault
classifcation and diagnostics is the hidden Markov model
(HMM) [37, 39]. In the HMM’s early applications, the real
machine defective states and normal machine states were
treated as hidden states. In hidden states of the HMM, other
versions have no physical meaning. Te trained HMMs are
then utilized to decode an observation with an unknown
machine condition to classify faults.

(3) Approaches to AI. Artifcial intelligence is referred to by
the abbreviation AI. It refers to the realm of “intelligent
agents,” which includes any system that detects its sur-
roundings and takes activities to increase its chances of
achieving its objectives [40]. Artifcial neural networks
(ANNs) and expert systems (ESs) are two common AI
approaches for machine diagnosis [16]. Fuzzy logic systems,
fuzzy neural networks (FNNs), neural-fuzzy systems, and
evolutionary algorithms are some of the other AI meth-
odologies used (EAs). Siddique et al. [41] provide an
overview of recent breakthroughs in AI applications.

2.2.2. Prognostics. Te goal of prognostics is to forecast
when a system or component will no longer perform its
intended function [42]. Te most common prognostics are
used to estimate how much time is left before a failure (one
or more defects) occurs, based on the present machine
condition and previous operating profle, also known as

remaining usable life (RUL). Prognostics, according to some
academics, are superior to diagnostics since it prevents
defects or failures from developing. However, not all failures
are preventable or anticipated in practice, therefore, prog-
nostics cannot fully replace diagnostics. A diagnostics tool is
useful in the event of a faulty prediction, in addition to giving
maintenance decision support. Furthermore, diagnostic data
can be used to provide feedback for system redesign. We do
not go into detail about prognostics because it is not im-
portant to this paper.

3. Methodology

Te data, evaluation metrics, machine learning techniques,
experimental procedure, and software implementation are
all described in this part. Te fow of these processes is
depicted in Figure 4.

3.1. Data from the Fulfllment Sorter. Te sortation data are
a collection of failure events and current sorter component
fault states from the past. Te failure events are stated in
terms of the duration of the failure, and that is, the amount
of time the sorter was down. Te defects data are pre-
processed sensor readings that show the state of several
sorter subcomponents that are critical to the sortation
equipment’s proper operation.

Data are collected from several sensor devices mounted
along the primary sortation equipment system by a data
collection system.Te sensors provide real-time information
on the state of the sorter system and its components. A
preprocessor is applied to the raw sensor readings in each
case to generate fault features, with the process’ output being
a binary feature indicating whether a specifc component of
the sorter is faulty. Another system collects data on all
primary sorter failure events, and a preprocess builds a bi-
nary feature for short vs. long downtime occurrences. Te
two streams are then matched, resulting in a fnal data set
that is pushed to the simple storage service (s3) for machine
learning applications.

As mentioned in [43], we defne an interval P-F as the
time interval between a possible failure (P) recognized by
a fault condition indicator and a functional failure (F) of
sortation equipment. For the investigation, this procedure
generated roughly 22,300 failure events with failure lengths
ranging from 1minute to 2000minutes and 59 sorter sub-
component fault states (features). Te complete data set
contains 211 minority class cases and little over 22,000
majority class cases, with our interest in forecasting failure
events lasting more than 15minutes.

3.2. Selection of Features. Given the large number of cate-
gorical variables in this data collection, the “curse of di-
mensionality” problem is likely. As a result, we use a flter
strategy to fnd the optimum combination of features that
gives us the best classifer results. Tis reduces the efects of
overftting and long training cycles. Tis set was chosen
using the relief method. It is a feature selection approach that
calculates feature weights using a random selection of
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examples [44, 45]. It iteratively calculates feature weights
based on their ability to distinguish between neighboring
models.

3.3. Algorithms for Machine Learning. We chose 7 machine
learning methods for our application from similar work in
this area. On our data set, we want to tune each algorithm for
the optimum hyperparameter combination. We also use
ensemble techniques to see if they boost performance be-
yond what individual classifers can achieve. Evaluation of
each classifer’s performance using the evaluation metrics is
listed as follows.

We use logistic regression [46], k-nearest neighbors [47],
support vector machines [34], decision trees [48], random
forest [49], Naive bayes [50], and gradient boosting classifer
[51] to train our classifers. Tese methods are all suitable for
binary classifcation and are extensively used in machine
diagnosis and prognosis.

3.4. Measures of Evaluation. In this area, we apply standard
evaluation metrics [52]. Accuracy, precision, recall, and the
F-score are among them. A sample of metrics and their
equations are shown in Table 1.

We also present the false positive rate (FPR), often
known as the fall out rate, which is an important indicator in
this context. It shows the likelihood of a false alarm, which is
crucial in the commercial world. Because a false alert has
a cost, if our classifer creates many false alarms, it would be
inappropriate for use in the production system.

3.5. Setups for Experiments. Our experiment is divided into
two halves. Te frst section employs a grid search strategy
and a repeated stratifed k-fold cross-validation design, as
well as a hyperparameter tweaking approach. Te data are
divided into k-groups for each of the seven classifers listed
in Table 2, k� 5 in our example, with the value of k de-
termined by the literature in the feld.

k− 1 sets of data are used for training in each training
iteration, while the rest is used for validation. For our binary
problem setting, the groups are created while maintaining
the composition of the classes, and each classifer is trained
k times.

We have a 5-fold cross-validation with k� 5. Set 1, set 2,
set 3, set 4, and set 5 are the fve groups of data (see Figure 5):
set 1, set 2, set 3, set 4, and set 5. Te algorithm is trained
a total of fve times. Sets 1 through 4 are used as the training
set, and set 5 is used as the validation set in the frst iteration,
whereas sets 1, 2, 3, and 5 are used as the training set, and set
5 is used as the test set in the second iteration. Tis approach
is repeated until all the training and testing sets have been
used. To reduce sample selection error, the data are shufed
at random before each split. A voting method is used to total
up the skill of each algorithm across all iterations, as eval-
uated by their separate validation scores on the
validation set.

Te test set is then used to evaluate the trained classifer’s
performance in a production-like environment, as seen as
follows.

Te experiment’s second phase employs an ensemble
technique, stacking the seven classifers mentioned pre-
viously. We use layered generalization, which includes
merging predictions from diferent machine learning
models on the same data set, such as bagging and boosting.
We do this to answer the question of how to choose from
various machine learning models that are skilled at solving
a problem in diferent ways. A stacking model’s architecture
consists of two or more base models, also known as level-
0 models, and a meta-model that combines the predictions
of the basemodels, also known as level-1models. In our case,
the meta-model is trained using predictions from the basis
models on the hold out data set. Te input and out pairs of
training data set used to ft the meta-model are the pre-
dictions and expected outputs. We use k-fold cross-
validation of the basic models, with the out-of-fold pre-
dictions serving as the foundation for the training data set.
Figure 6 illustrates this architecture.

Sensor data

Sorter failure
events

Fault diagnostics

Sorter down-
time definition

Faults
+

failures S3-cloud
storage

Maintenance
decision
support

Performance
evaluation

Training
classifiers

Figure 4: Machine learning architecture for fulfllment sorter equipment showing the data fow from acquisition to decision support
predictions.
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3.6. Implementationof Software. We use Scikit–Learn [53] in
conjunction with other common Python libraries such as
NumPy, Pandas, matplotlib, seaborn, and SciPy to build the
experimental approach in Python.

4. Discussions and Findings

Te performance of the various classifers is presented in this
section. First, we will go over the frst half of the experiment’s
fndings. Table 3 summarizes the results, which show that all
of the classifers achieve good accuracy, precision, recall, and

F1 values. In conclusion, precision scores vary between 0.72
and 0.76, recall scores between 0.77 and 0.82, and accuracy
scores between 0.77 and 0.82. Te cross-validation ratings
for each classifer are summarized in Table 3.

We employ stacking in the second half of the experiment
because all of our base classifers have skill on our data set,
but they make distinct assumptions about how to handle the
predictive modelling assignment in various ways. We choose
a basic meta-model (logistic regression) to aggregate the
predictions of the other models, even though some of the
basis models are quite sophisticated. Te accuracies of the

Table 1: Common classifcation model evaluation metrics in the equipment reliability context.

Metric Formula Description
Accuracy (acc) acc � (tp + tn/tp + tn + fp + fn) Te ratio of correct predictions by all predictions made
Precision (p) p � (tp/tp + fp) Te ratio of correct positive predictions by all positively predicted classes
Recall (r) r � (tp/tp + fn) Te ratio of correct positive predictions by all true positive classes
f1-score (f1) f � 2∗ (p∗ r/p + r) Te harmonic mean between precision and recall
Fall out rate (fpr) fpr � (tp/tp + tn) Te probability of a false alarm
Error rate (err) err � (fp + fn/tp + fp + tn + fn) Te ratio of incorrect predictions by all predictions made

Table 2: Common classifers in machines and equipment failure modelling.

Classifers Hyperparameters Values

Logistic regression (LR)

max_iter 500
Classifer penalty [None, l1, l2, “elastic net”]

Classifer c [100, 10, 1.0, 0.1, 0.01]
Classifer solver [“Liblinear,” “newton_cg,” “libfgs”]

k-Nearest neighbor (KNN)
Number of neighbors [1, 22]

Metric [“Euclidean,” “manhattan,” “minkowski”]
Weights [“Uniform,” “distance”]

Support vector machines (SVM)
Kernels [“Linear,” “poly,” “rbf,” “sigmoid”]
Classifer [0.05, 0.1, 0.5, 0.7, 1]
Gamma [0.05, 0.1, 0.5, 0.7, 1]

Decision trees (cart) Criterion [“gini”]
max_depth [2, 3, 4, 5]

Random forest (RF) max_features [1 to 20]
n_estimators [10, 100, 1000]

Naı̈ve bayes (GNB) Cv [n_splits� 5]

Gradient boosting (GBC)
n_estimators [1, 2, 4, 8, 16, 32, 64, 100, 200, 300, 500,1000,10000]
max_depth [1, 40]
learning_rate [1, 0.5, 0.25, 0.1, 0.05, 0.01]

Performance 1

Performance 2

Performance 3

Performance 4

Performance 5

Training
data

Test data Trained model endpoint

K-folds

1st

2nd

3rd

4th

5th

Overall
performance
based on
majority vote

Figure 5: Five fold cross-validation process and a holdout set.
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seven classifers are plotted in a Box–Whisker plot in Fig-
ure 7. Te outcomes are consistent with what we have seen
thus far.

After that, we use a stacked ensemble to see whether it
can increase learning on our data beyond what individual
classifers can do. In Figure 8, we compare the ensemble’s
performance to that of the other classifers. Stacked gen-
eralization’s accuracy is equivalent to that of the gradient
boosting classifer (GBC), which is not surprising given that
GBC is another ensemble that uses a boosting method. All
the other classifers continue to work as expected. Tere is
a notable gap in performance between the Näıve bayes
classifer and the rest of the classifers. We argue that this gap
is as a result of several factors that distinctly afect this
classifer compared to the rest in the group. First, Näıve
bayes assumes that features are independent of each other,
which might be violated given the nature of the condition
monitoring. Second, failure events last between 1minute
and 2000minutes creating an opportunity for outliers to
adversely afect the performance of the classifer, and fnally,
the class imbalance within our data may also be afecting its
performance. Te Näıve bayes classifer is more sensitive to
imbalanced data sets compared to the other classifer in
this group.

Tis experiment’s potential to guide practical business
decisions is a signifcant outcome. Te false positive rate is
one statistic that aids in achieving this goal. In machine
operations and the business at large, this statistic has a cost
meaning. It ofers us an idea of how often our machine
learning solution generates false alarms. Te implication is

that the system warns that the equipment will be down for
more than 15minutes, even when this is not the case. If
a response is taken in response to such an alert, it merely
means that the company is spending an unjustifed ex-
penditure. In resource-constrained contexts, such judg-
ments can be extremely costly, especially if the rate is high.

Support vector machine (SVM)

Logistic regression (LR)

Decision tree (CART)

Random forest (RF)

Naїve Bayes (GNB)

Gradient boosting (GBC)

Meta model

1st prediction

2nd prediction

3rd prediction

4th prediction

5th prediction

6th prediction

7th prediction
Last prediction

7 weak learners

Training
data

K-nearest neighbor (KNN)

Figure 6: Stacked generalization architecture with 7 weak learners and one fnal metal-model.

Table 3: Overall cross-validation scores from the seven classifers.

Classifer Precision Recall Fpr
Logistic regression 0.73 0.82 0.003
K-Nearest neighbor 0.75 0.81 0.021
Support vector machine 0.74 0.82 0.0008
Decision tree (CART) 0.76 0.82 0.012
Random forest (RF) 0.76 0.82 0.0009
Naı̈ve bayes (GNB) 0.72 0.77 0.086
Gradient boosting 0.76 0.82 0.002

lr knn cart RF GBC svm bayes
classifiers

0.72

0.74

0.76

0.78

0.80
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Figure 7: Box–Whisker plots comparing the performance of the
classifers.
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Figure 8: Comparing the performance of the seven classifers and
the stacked generalizer.
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Te FPR rates produced by all of our classifers are modest,
ranging between 0.0008 and 0.08, though no false alarms are
desirable.

In conclusion, tree-based algorithms and stacked en-
semble outperform their equivalents. Given the tight
competition for frst place in terms of performance among
six of the eight classifers (lr, cart, RF, GBC, SVM, and
Stacking), production decisions must be made on more than
just accuracy, precision, and recall. Other factors, such as
compute resource demand and prediction latency, must be
considered when determining which classifer to advance to
production in our machine operations management de-
cision support system.

Finally, SVM stood out as a regularly used classifer in
this context in the literature [35], and perhaps, the reason
behind its preference in this context lies in its ability to
model failure data efectively. It has an extremely low rate of
false positives. Its precision and recall numbers compare
favorably to those of the other high-performing algorithms
in this group.

5. Conclusion and Work in the Future

We developed a data-driven machine learning approach
for recognizing, isolating, and alerting on sortation
equipment failures caused by malfunctioning sorter
subcomponents in this paper. On the data set, our ex-
periment examines the performance of seven classifers,
various hyperparameter combinations, and ensembles.
We draw some key inferences from the fndings which
have theoretical and practical commercial implications.

Te frst discovery has far-reaching business conse-
quences. Six of the eight trained classifers achieve good
overall scores, and any of themmight be put into production
to generate alerts that help with equipment maintenance
choices. Tese fndings are extremely benefcial to the
company since they have a high potential for distinguishing
between long- and short-term failures, which translates to
making the right judgments most of the time. As a result,
signifcant cost savings in terms of labor, material, parts, and
other costs connected with equipment failure (about $500
million in savings) are realized.

Second, we fnd that six out of the eight classifers
achieve good performance. Te six include the linear
regression, cart (decision tree), random forest, gradient
boosted trees, support vector machine and the stacked
ensemble. In literature, SVM is touted as a good per-
former in this context and our results confrm that
fnding.

Finally, we fnd that diferent fault combinations result in
diverse failure durations, with long duration failures being
less common than short duration failures, posing a class
asymmetry concern. Based on this discovery, we believe that
the asymmetry issue is likely afecting the performance of
some of our current classifers, particularly the naı̈ve Bayes
classifer which starkly performs lower than the rest of the
classifers in our research. As such, future research and
implementation should incorporate imbalanced learning
techniques.

Data Availability
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available and can be made available upon request and
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