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Abstract

Software Automation Platforms (SAPs) enable faster development and reduce the need

to use code to construct applications. SAPs provide abstraction and automation, result-

ing in a low-entry barrier for users with less programming skills to become proficient

developers. An unfortunate consequence of using SAPs is the production of code with a

higher technical debt since such developers are less familiar with the software develop-

ment best practices. Hence, SAPs should aim to produce a simpler software construction

and evolution pipeline beyond providing a rapid software development environment.

One simple example of such high technical debt is the Unlimited Records anti-pattern,

which occurs whenever queries are unbounded, i.e. the maximum number of records to be

fetched is not explicitly limited. Limiting the number of records retrieved may, in many

cases, improve the performance of applications by reducing screen-loading time, thus

making applications faster and more responsive, which is a top priority for developers. A

second example is the Duplicated Code anti-pattern that severely affects code readability

and maintainability, and can even be the cause of bug propagation. To overcome this

problem we will resort to automated refactoring as it accelerates the refactoring process

and provides provably correct modifications.

This dissertation aims to study and develop a solution for automated refactorings in

the context of OutSystems (an industry-leading SAP). This was carried out by implement-

ing automated techniques for automatically refactoring a set of selected anti-patterns in

OutSystems logic that are currently detected by the OutSystems technical debt monitor-

ing tool.

Keywords: Automated Refactoring, Anti-Pattern, Duplicated Code, Technical Debt,

OutSystems
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Resumo

As Plataformas de Automação de Software (PAS) habilitam os seus utilizadores a desen-

volver aplicações de forma mais rápida e reduzem a necessidade de escrever código. Estas

fornecem abstração e automação, o que auxilia utilizadores com menos formação técnica a

tornarem-se programadores proficientes. No entanto, a integração de programadores com

menos formação técnica também contribui para a produção de código com alta dívida

técnica, uma vez que os mesmos estão menos familiarizados com as melhores práticas

de desenvolvimento de software. Desta forma, as PAS devem ter como objetivo a cons-

trução e evolução de software de forma simples para além de fornecer um ambiente de

desenvolvimento de software rápido.

Um exemplo de alta dívida técnica é o anti-padrão Unlimited Records, que ocorre

sempre que o número máximo de registos a ser retornado por uma consulta à base de

dados não é explicitamente limitado. Limitar o número de registos devolvidos pode, em

muitos casos, melhorar o desempenho das aplicações, reduzindo o tempo que demora a

carregar o ecrã, tornando assim as aplicações mais rápidas e responsivas, sendo esta uma

das principais prioridades dos programadores. Um segundo exemplo é o anti-padrão

Código Duplicado que afeta gravemente a legibilidade e manutenção do código, e que

pode causar a propagação de erros. Para superar este problema, recorreremos à reestru-

turação automatizada, pois acelera o processo de reestruturação através de modificações

comprovadamente corretas.

O objetivo desta dissertação é estudar e desenvolver uma solução para reestruturação

automatizada no contexto da OutSystems (uma PAS líder neste setor). Tal foi realizado

através da implementação de técnicas automatizadas para reestruturar um conjunto de

anti-padrões que são atualmente detetados pela ferramenta de monitorização de dívida

técnica da OutSystems.

Palavras-chave: Reestruturação Automatizada, Anti-Padrão, Código Duplicado,

Dívida Técnica, OutSystems
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1

Introduction

This dissertation starts by providing context and motivation for Automated Refactoring

in Software Automation Platforms. Next, the main objectives of the work are identified

along with the contributions to the state of the art. Finally, an overview of the document’s

global structure is presented.

1.1 Context

Information Technology teams currently need to deliver an increasing number of appli-

cations faster, while faced with pressures to respect budget costs and work with limited

resources [31]. To address the scarcity of skillful developers, Software Automation Plat-

forms (SAPs) have been pushed to the cutting edge. Low-Code is a software development

approach used in some SAPs that enables the visual development of applications, allow-

ing faster delivery and with minimal coding [32]. It provides abstraction and manual

automation on every step of an application’s lifecycle, resulting in a low-entry barrier

that enables users with a less technical background to become proficient programmers.

As companies aim to expedite time-to-market and empower non-professional devel-

opers with the ability to become proficient programmers, a fast development process

becomes the priority instead of high-quality code. With the emergence of SAPs, it has

never been easier for one to become a productive software developer, even with very little

coding knowledge. However, such users are more likely to write code with higher tech-

nical debt, since they are less familiar with the best practices of software development.

Consequently, managing technical debt quickly becomes a top concern. Technical debt

measures the amount of effort required to add new features to a system or to modify the

current solution [33].

Refactoring is a foundational technique for improving software design and aiding

in code evolution. The problem with finishing software design and architecture before

coding is that it relies on having software requirements established in advance and this is

generally not feasible [1]. As the software is modified and adapted to new requirements,

the quality of the code decreases due to its increasing entropy. Consequently, the major

1



CHAPTER 1. INTRODUCTION

part of the total software development cost is devoted to software maintenance [2]. Refac-

toring ensures that it is possible to continue to add new features to the software easily,

even when customers’ needs change, by incrementally improving the internal software

quality. In sum, refactoring improves the quality of code by enabling better internal

design, readability, maintainability, and reducing bugs [1].

Anti-patterns are structures in code that suggest the possibility of refactoring and

contribute to higher technical debt. These should be rigorously prevented, found, and

fixed during the software lifecycle since they often lead to bugs, runtime errors, and

software that is hard to maintain [3]. In this dissertation we target two anti-patterns,

the first is the Unlimited Records anti-pattern that is predominant in OutSystems and

that occurs whenever queries are unbounded, i.e. the maximum number of records to be

fetched is not explicitly limited, resulting in the return of all records and contributing

to higher technical debt. The process of fetching data from databases in OutSystems is

simplified through Aggregates [4], visual elements defined to easily create and maintain

queries. When defining an Aggregate, it is possible to limit the maximum number of

records to be returned by the Aggregate. If there are limitations to the number of records

that are fetched by a query, it is considered to be a good practice to define the maximum

number of records to be returned by the query, to optimize the query execution time.

The second anti-pattern we address is the Duplicated Code anti-pattern that is com-

monplace in large software projects and can have a serious impact on their maintain-

ability, readability and even contribute to bug propagation [5]. The more code there

is, the harder it is to understand and modify correctly. Additionally, when adding new

features, if there is duplication in the code, it is likely necessary to change the replicas by

hand. This process makes software harder to evolve and maintain. By eliminating dupli-

cated code, one can be confident that when changing a piece of code, it is only needed to

apply the change once, and if this change fixed a bug, it is no longer present anywhere

else. Thus, an important aspect of improving software design is to eliminate duplicated

code [1].

1.2 Motivation

The first step before manual-refactoring is to ensure that there is a solid set of tests for

that section of code, as tests are essential to avoid introducing bugs [1]. Writing a test

suite consists of a lot of extra code and takes time, requiring a significant amount of labor.

Although this test suite increases confidence, it is not enough to ensure correctness, as

one cannot prove that a program has no bugs by testing. This level of confidence is also

dependent on the quality of the test suite. Automated refactoring has come to solve this

issue and accelerate the refactoring process, by providing provably correct modifications

that, being done by machines, are not error-prone like humans.

SAPs must rely on the proficiency of less-skilled developers at fixing technical debt ef-

fectively. Furthermore, SAPs are auto-proclaimed automation tools that besides enabling

2



1.3. OBJECTIVES

rapid software development should also contribute to simplifying software evolvement

and improvement. To develop applications with quality that meet the expectations of soft-

ware automation users, the resulting applications must not only be as efficient as possible

but should also aim to be easy to maintain. The software automation development process

is negatively affected by the increasing technical debt in SAPs. The current solution for

solving the anti-patterns causing technical debt at OutSystems requires users to follow

a set of guided instructions and instrumentalize the changes themselves. Considering

the presence of less-skilled developers using SAPs, this solution carries inherent flaws.

Challenges include, but are not limited to, the necessity of hiring skilled developers than

can keep the levels of technical debt at a minimum or, in the case that this is not possible,

having efficient ways of refactoring these applications to minimize the current technical

debt.

The Architecture Dashboard is a static analysis tool for OutSystems code that iden-

tifies the anti-patterns that can lead to high technical debt problems. One of the anti-

patterns returned by the tool is the Unlimited Records anti-pattern. These findings can

easily escalate and become time-consuming to fix, as each application usually has several

Aggregates (737,443 Aggregates in total across 45,405 application modules analyzed).

Furthermore, there are scenarios where the limit was not defined because the query re-

turns only one record by construction (e.g. get by primary key). These are still flagged

by the Architecture Dashboard but could be easily fixed just by setting the value to one.

Such scenarios should be solved automatically so that the developer can focus on the

less trivial scenarios that require their attention. Therefore, developing techniques for

automatically refactoring this anti-pattern is highly desired.

One important example of technical debt is the Duplicated Code Anti-pattern, iden-

tified in OutSystems as the most common anti-pattern, reaching as high as 39% in some

code-bases [6]. The amount of duplication becomes especially concerning when we

take into account that each application developed in OutSystems has several logic flows

(724,820 flows and 5,382,011 nodes in total for the modules analyzed), highlighting the

importance of reducing code duplication in OutSystems. Additionally, the type of clones

detected can correspond to exact clones that are often due to “copy-paste” code which is

a poor form of code reuse and regarded as a bad practice among developers.

Considering all the reasons mentioned above, it should be fairly evident that the

automation of refactoring techniques in SAPs is a relevant topic to the industry nowadays.

Therefore, the motivation behind this dissertation lies in the necessity of an automated

approach that while improving software design using refactoring techniques, will also

contribute to minimizing the current technical debt problem.

1.3 Objectives

The goal of this dissertation is to study and develop a solution for automated refactorings

in the context of SAPs. This was achieved by exploring, designing, and implementing
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automated techniques for automatically refactoring a set of selected high-impact anti-

patterns that are currently detected by the OutSystems technical debt monitoring tool,

Architecture Dashboard.

OutSystems is a state-of-the-art SAP that covers every stage of an application devel-

opment process and in compliance with best practices of software development. The set

of selected patterns includes the Duplicated Code anti-pattern, namely the refactoring

of Type I duplicates. We aim that our solution contributes to lowering the high techni-

cal debt problem in SAPs, by correcting a set of anti-patterns whose presence increases

technical debt. While the effectiveness of the developed techniques was evaluated in the

context of the OutSystems ecosystem, their design allows them to be applied in other

contexts.

1.4 Contribution

This project’s initial contribution is an extended analysis of some of the anti-patterns

detected by Architecture Dashboard, and possible automated solutions to solve them.

Alongside that analysis, this dissertation provides an overview of the topic’s Background

and the current Related Work on automated refactoring techniques.

The main contribution of this work is the introduction and evaluation of a novel

automated solution for refactoring two anti-patterns in OutSystems logic. The proto-

type developed in this dissertation aids in solving the current problem of increasing

technical debt in SAPs. Being OutSystems a SAP, an automated solution for refactoring

anti-patterns adds value to OutSystems’ current capabilities and aids the less experi-

enced users in developing projects with low technical debt. The techniques developed

for our tool solve subcases of the selected anti-patterns from Architecture Dashboard in

an automated way, with the intention that in the future OutSystems users no longer have

to solve the technical debt problems by hand. The automated techniques proposed are

expected to bring value in the automated-refactoring field, making the work contribution

not limited to the OutSystems ecosystem.

The results accomplished during this dissertation motivated the writing of an article,

which has been accepted for publication, for the Models and Evolution (ME) Workshop of

the ACM/IEEE 24th International Conference on Model Driven Engineering Languages

and Systems (MODELS), named “Automated Refactoring of Unbounded Queries in Soft-

ware Automation Platforms” [7]. The publication was developed under the topic of

transformation techniques for evolving models and targets the identification of subcases

within the Unlimited Records Anti-pattern, including the automated refactoring of the

detections. Furthermore, we intend to submit our latest efforts for the theme section on

“Models and Evolution” for the Journal of Software and Systems Modeling (SoSyM).
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1.5 Document structure

The remainder of this thesis is structured as follows:

• Chapter 2 - The OutSystems Platform provides an overview of the OutSystems’

components and tools relevant for this work.

• Chapter 3 - Problem Statement defines and justifies the problem to be tackled by

this work.

• Chapter 4 - Background presents the research performed regarding this disserta-

tion’s fundamental concepts, including the relational model, methods for estimating

the cost of operations, refactoring definitions and methodologies, graph fundamen-

tals, and an overview of Duplicated Code which this document relies on for full

comprehension.

• Chapter 5 - Related Work presents the result of an extensive literature review of sim-

ilar problems that are relevant in the context of this thesis, as they reveal important

strategies to be used as a reference for future investigation.

• Chapter 6 - Technical Approach presents an overview of the solution implemented

for the identified problem based on an analysis of the anti-patterns that contribute

to technical debt and considering the background and related work.

• Chapter 7 - Unlimited Records Anti-Pattern outlines the approach to solve this anti-

pattern concerning detection rules and algorithms, refactoring algorithms, and an

extensive evaluation of the tool.

• Chapter 8 - Duplicated Code Anti-Pattern presents the approach to solve this anti-

pattern concerning the detection of Type I Duplicates and its refactoring.

• Chapter 9 - Conclusion And Future Work covers the concluding reflections and

future work.
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2

The OutSystems Platform

This thesis is being developed in collaboration with NOVA Laboratory for Computer

Science and Informatics (NOVA LINCS) and OutSystems, in particular, the Artificial

Intelligence Team. In this chapter, we briefly describe the OutSystems platform’s main

components as well as the Architecture Dashboard tool for managing technical debt.

2.1 Overview

OutSystems is a pioneer Software Automation Platform (SAP) that empowers its users

with the ability to develop enterprise-level Mobile and Web applications faster and eas-

ier than with traditional programming languages. OutSystems covers every stage of an

application development process, providing a visual development environment and gen-

erating code that will be deployed to an enterprise-grade, full-stack system. OutSystems

seeks to lower the skillset necessary for developing professional applications by requiring

minimal coding and in compliance with best practices of software development.

2.2 Components and Tools

The OutSystems platform components cover all steps of an application lifecycle. To

support the creation of applications and their integration, OutSystems offers Integrated

Development Environments (IDEs), such as Service Studio and Integration Studio. On

the other hand for administrating and managing applications, OutSystems offers admin-

istration and operations tools like Service Center and Lifetime. An overview of these

components can be seen in Figure 2.1, below follows a brief description of each compo-

nent.

• Service Studio is the OutSystems IDE for Web and Mobile Applications. It is a

visual development tool for creating, changing, and deploying applications. In a

single environment, it is possible to perform different actions, such as design the

data model, implement business logic and processes and build User Interfaces.
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Figure 2.1: OutSystems Components in [34]

• Integration Studio is an IDE for implementing connectors to integrate OutSys-

tems applications with other enterprise systems. This tool makes it possible to

create extensions to the platform itself by taking external resources (e.g. C code

and databases) and creating representations of them inside the OutSystems devel-

opment environment. These can then be published to the server and used inside

Service Studio as regular OutSystems resources.

• Platform server is the component where OutSystems applications run and is com-

posed of a set of servers. It orchestrates all compilation, runtime, deployment, and

management activities for all applications. A developer can connect to the platform

server by pressing the 1-Click Publish button in Service Studio after creating an

application. This button publishes the application to the platform server. The plat-

form server then compiles and generates optimized code for the application and

deploys it to a standard application server.

• Service Center is a platform server management and administration console. This

tool makes it possible to see and configure the platform server from an administra-

tion and operational standpoint.

• LifeTime is a centralized console for managing the infrastructure, environments,

applications, IT users, and security. LifeTime allows the users to manage the full

application lifecycle across multiple environments.
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Figure 2.2: Service Studio Interface in [35]

2.3 Visual Language

The Service Studio IDE allows access to a variety of elements from business processes

and timers, to user interface elements, business logic flows, and data-related elements. It

is in Service Studio that the developer builds the user interface, the business logic, and

creates the data model for an application.

Figure 2.2 illustrates the Service Studio interface. At the top right corner of Service

Studio, there are four tabs, each tab corresponds to one of the following layers: Processes,

Interface, Logic, and Data.

The first layer is the Processes layer, which includes business processes and human

and automated tasks and their respective decisions and events. This layer has information

on the logic and tasks that occur at the highest level. It is also possible to define scheduled

actions, such as Timers.

The second layer is the Interface layer and focuses on the different components that

will make up the user interface. In this layer groups of screens and blocks can be com-

posed using widgets such as images, graphics, and icons.

In the third layer, there is the Logic of the application. The logic part of an application

is implemented through Actions, such as Client Actions (that run on the client-side) and

Server Actions (that run on the server). Roles can also be defined and assigned to users

to secure and limit who has access to certain types of logic and components. It is also

possible to define actions for data retrieval.

Finally, the fourth layer is the Data layer and is where one can define the data model

of the application. Inside the data layer, we can model and define different Entities that

hold data that can be stored in, and then retrieved from, a database.
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Figure 2.3: Primary Key Constraint Violation in Entity

2.4 Data Modeling

An Entity in OutSystems is an element used to persist information in the database and to

implement the database model [36]. It is defined through attributes just like a database

table. The Entity Identifier denominates the Entity’s primary key. Once an Entity is

created, an attribute named Id is automatically added as the Entity Identifier and by de-

fault, its value is a Long Integer and is automatically incremented. The Entity Identifier’s

attribute can be switched to a different attribute, its data type can also be changed as

well as disabling its auto-increment behavior. If the Entity Identifier is automatically

incremented, OutSystems signals that it is necessary to add one more attribute to the

Entity. In OutSystems, it is not possible to define composite keys, as only one attribute

can be the Entity Identifier.

When defining an Entity, it is possible to specify the relationships it has with other

entities, through Reference Attributes that correspond to foreign keys [37]. OutSystems

automatically creates the necessary database constraints for primary keys and foreign

keys. When adding a new row to an Entity, if the uniqueness of the primary key is not

respected, OutSystems signals this behavior as a primary key violation, and the row with

the duplicated primary key can not be added to the Entity (as seen in Figure 2.3).

2.5 Querying

Most applications need to fetch data from a database, for this purpose OutSystems offers

two different ways to fetch data. The first is the usual definition of SQL statements that

retrieve information from an attributed database. The second is a visual user interface to

perform queries which makes it possible for users with no background in SQL databases
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Figure 2.4: Preview of an Aggregate for getting the top 10 rated products

to implement database accesses in their applications.

Aggregates are visual elements of the OutSystems language that make it possible

to query data in a relational database. Within an Aggregate, it is possible to define the

source Entities, filter the data according to some criteria, sort the desired data and per-

form grouping/aggregation operations. Aggregates allow the developer to easily create

and maintain queries, thus SQL knowledge is not required. The editor for Aggregates

resembles a spreadsheet and can be used to preview the data being fetched (as seen in

Figure 2.4). The Aggregate sources can be defined by simply dragging one or more previ-

ously defined Entities from the data tab into the Service Studio’s flow editor. During the

compilation step, optimized SQL is generated from the aggregate’s definition. Regard-

ing the Select part of the query, the OutSystems compiler automatically detects which

attributes need to be fetched by performing code analysis.

Aggregates can be used to display a single aggregated value. Figure 2.5 shows the

before and after of aggregating a column into a single value, resulting in an Aggregate

(query) that returns the average price of phones in an application. The list of available

aggregate functions depend on the column type. These functions are [38]:

• Sum: sums all the values in the column;

• Average: calculates the average of the values in the column;

• Max: finds the maximum value in the column;

• Min: finds the minimum value in the column;

• Count: counts how many rows there are in the column.

Aggregate functions are used to calculate values based on groups of identical data [39].

The Group By option is used to aggregate values into groups of rows that have the same
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(a) Before Average aggregate function (b) After Average aggregate function

Figure 2.5: Aggregate definition to get the average price of a phone

(a) Before Group By (b) After Group By

Figure 2.6: Group products by id using an Aggregate

values, this can be done by selecting a column. After grouping or using aggregate func-

tions on attributes, those attributes become the only output of the Aggregate. Figure 2.6

shows how to define an Aggregate that groups products by their category. It is then

possible to calculate the average price of products per category as shown in Figure 2.7.

Calculated Attributes allow for records to be extended with additional information

that can be computed from the data. This can be done by adding new attributes to
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(a) Before Average aggregate function (b) After Average aggregate function

Figure 2.7: Get the Average price of a product by category using an Aggregate

Figure 2.8: Aggregate for getting Employees and their Full Names

the records returned by the Aggregate based on the value of the other attributes [40].

Figure 2.8 shows the result of creating a New Attribute and defining an expression to

concatenate the names of each employee (using the + operator).

2.6 Code Reuse and Refactor

Concerns over maintainability and scalability of programs rise as applications grow, this

can be addressed by centralizing the logic in a reusable, modular way [41]. In OutSystems

it is possible to define different types of modules in an environment and reference them

as producer modules. The consumer modules use the elements of logic that the producer
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modules expose.

Application modules built with OutSystems can share and reuse code that is made

available for discovery and usage. Reusability is available at all application layers: UI,

business logic, and database [42]. The reuse in each layer is described as follows:

• At the UI level developers can expose a variety of artifacts to be reused in any other

OutSystems applications, such as web blocks, themes (that expose CSS), and web

screens;

• Developers can expose any block of business logic to be reused in another busi-

ness logic function, business process orchestration, web screen, mobile screen, or

asynchronous job;

• Roles are frequently used in logic to control user interface elements (like screens)

and business rules and can also be shared across multiple applications;

• Database tables (entities) designed and deployed using OutSystems when marked

as public, can be reused by other applications.

When implementing the logic of an application, it is possible to create actions in

a module to invoke in other action flows through Execute Action nodes (for Client or

Server Actions). This allows for the logic of an application to be centralized and makes

the module easier to maintain, as a change in this logic will reverberate throughout the

modules that reference it. If the logic is already implemented in a Client or Server action,

it is possible to use the Extract to Action functionality to automatically create a new

Action with that piece of logic. Figure 2.9 shows the before and after selecting the Extract

to Action functionality in a logic flow of a Server Action.

More than just simplifying code reuse, OutSystems offers governance, i.e. the pos-

sibility to manage role capabilities, reports helping users understand the network of

dependencies between modules/applications, and analysis of the impact of the changes

made.

2.7 Architecture Dashboard

Technical debt is a measure of the cost of making changes to a piece of software. This

can be caused by choosing an easy and limited solution, where any future changes to the

software will become increasingly harder to perform. The time spent in carefully making

these changes so that the system is not compromised may lead to a point where it might

compensate to completely replace the solution with a new one [43] .

The Architecture Dashboard is the OutSystems technical debt monitoring tool. It

is a static analysis tool for OutSystems code that identifies the anti-patterns that can

lead to high technical debt problems. It allows Information Technology (IT) leaders to
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(a) Before extract to action (b) After extract to action

Figure 2.9: Extract logic to action in OutSystems

visualize complex cross-portfolio architectures and identify problems, while also helping

developers follow best practices and avoid common pitfalls.

The goal of this tool is to effectively manage technical debt during every stage of de-

velopment. This is accomplished by supplying a heat map visualization of mild-to-severe

problem areas, IT leaders can quickly identify problem areas and prioritize accordingly.

The Architecture Dashboard uses Artificial Intelligence (AI) to perform automated mod-

ule classification and categorize the modules in an infrastructure. It is also possible to

drill down into individual modules to view detailed reports on what best practices are

being violated and their impact.

With Architecture Dashboard there is no longer the need to rewrite an application

from scratch, as one can start managing the technical debt of OutSystems applications

from the start [44].

2.7.1 Analysis

Architecture Dashboard performs two different types of analysis which are combined to

provide context and greater relevance in findings: Code Analysis and Runtime Perfor-

mance Analysis [45]. Additionally, the Architecture Dashboard uses AI for duplicated

code detection.
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Figure 2.10: Architecture Dashboard Heat Map in [48]

In regards to Code Analysis, to analyze the produced low-code, Architecture Dash-

board runs a set of predefined rules through probes connected with Modules, to uncover

code patterns in the following categories: Performance, Architecture, Maintainability,

and Security.

Regarding Runtime Performance Analysis, Architecture Dashboard uses the analyt-

ics data from LifeTime, which is crossed with the code analysis findings to display the

most relevant and urgent targets for improvement, effectively helping address runtime

performance issues.

2.7.2 Patterns

The patterns detected by Architecture Dashboard [46] are based on violations of the best

practices from both the software development industry standards and development in

OutSystems [47]. Therefore, each anti-pattern detected in an application adds technical

debt [43].

Figure 2.10 shows an overview of all the applications in a user’s infrastructure dis-

played by Architecture Dashboard. Each square is an application and the color of each

square shows how high the technical debt is in that application. This measure of technical

debt tells the user how difficult it is to change and maintain that application or module.

By selecting an application, one opens a detailed report that can be used to can find and

understand the causes of technical debt in that application.
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Problem Statement

This chapter presents the methodology followed to identify and define the problem to be

tackled in this thesis context.

3.1 Problem

SAPs enable the rapid development and delivery of applications and with minimal cod-

ing. Since OutSystems is an easy-to-use automation platform, it allows even the less

skilled users to quickly build great and secure apps. Such users are more likely to not

adhere to best practices of software development, producing applications with higher

technical debt and that, consequently, are difficult to interpret, maintain, and/or have

severe performance issues. The refactoring activity consists of applying changes that

contribute to making software easier to understand and cheaper to modify. Duplicated

code is commonplace in large software projects and is an anti-pattern that negatively

influences technical debt, having a serious impact on maintainability.

Software systems are susceptible to be improved even in the presence of deficiencies

in their internal quality that makes it harder to modify and extend them any further [33].

The increase in effort is a result of design and development decisions about the software

that negatively affect its future [8].

Developers are often faced with issues such as changes in the requirements, interfaces,

or functionality; time-to-market pressures that result in choosing the fastest and easiest

approach and working with legacy systems of which they have insufficient knowledge [49].

Frequently, their response to these issues introduces technical debt.

As organizations strive to expedite time-to-market and empower non-professional de-

velopers to create business apps themselves, controlling technical debt naturally becomes

a top concern. The Architecture Dashboard provides architects and OutSystems develop-

ment teams with a high-level view of their modules’ technical debt to identify problem

areas and prioritize accordingly. It also points developers to occurrences of certain anti-

patterns or lack of adherence to good software development practices, therefore avoiding

code smells. With the Architecture Dashboard, technical debt can be effectively managed
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Figure 3.1: Architecture Dashboard Interface Details in [48]

at every stage of the development lifecycle so that when departmental applications evolve

to become enterprise-wide solutions, nothing needs to be rewritten. Furthermore, devel-

opers can view detailed reports on what best practices are being violated, the impact of

these violations, and how to fix them [45].

Figure 3.1 displays a snippet of the Architecture Dashboard Interface when analyzing

the technical debt causes in an application. In this report, the user can visualize The Im-

pact, which details why a code pattern creates technical debt, and the How to fix section,

which explains how the user can fix that pattern. Findings shows all the occurrences of

the code pattern, including the module and element in which it occurs. Nonetheless, the

actual fixing of the causes of technical debt still needs to be performed by the developers.

The entire list of code analysis patterns detected by the Architecture Dashboard can be

found in the OutSystems’ documentation [46]. Currently, the list consists of 54 patterns

affecting the following aspects of applications developed in OutSystems: Architecture,

Maintainability, Performance, and Security. Figure 3.2 depicts the evolution of techni-

cal debt in OutSystems between January 2020 and January 2021. It is possible to deduce

that, as the number of infrastructures increases, so does the amount of technical debt

found. The tool automatically processes each registered infrastructure twice a day but

also answers to manual synchronization requests. The small positive/negative variations
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Figure 3.2: Architecture Dashboard - Technical Debt Evolution

between consecutive days correlate to these requests. The accentuated negative dips cor-

respond to days where the tool has synchronization problems and is not able to process

as many requests. As of 10/01/2021, 611 customers were using Architecture Dashboard,

with a total of 6,726 registered users and 573 infrastructures. The previous statistics are

the result of internal analysis.

3.2 Problem Statement

In most companies, different people need to work on the same project and might not

be familiar with the code base. If the code base contains defective code, evolving it by

adding new features may contribute to the propagation of bugs to the point that fixing a

problem might trigger many others. Consequently, the effort it takes to correct software

defects and maintain the existing code base might make such tasks unfeasible, and thus

rewriting the code might become the developers’ only reasonable option. The scale of the

technical debt problem deepens in severity for SAPs since these platforms enable users

with a less technical background to become proficient developers. As increasing technical

debt is a reality of applications built with SAPs, and has been identified as also the case

for the OutSystems platform, it appears as a relevant problem to be addressed by this

thesis.

Regarding the OutSystems context, the Architecture Dashboard identifies with high

precision where the technical debt is present in OutSystems applications, providing a link

between the problem identified and the code from which it arose. The current solution

relies on the competence of the developers in following a set of guided instructions to fix
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the detected anti-patterns. As previously mentioned, these developers do not need to be

the most experienced in software development, thus correcting the technical debt causes

might prove to be an arduous task. The problem derives from the lack of instrumentation

currently available to obtain a reliable and provably correct resolution. With this in mind,

the need to introduce an automated resolution to solve the problem of high technical debt

in SAPs was identified. The main research question that is being addressed in this work

is:

Can we lower the high technical debt problem in Software Automation Plat-

forms with automated refactoring techniques?

The Architecture Dashboard tool successfully identifies the causes of high technical

debt in OutSystems logic. Therefore, this work shall focus on the resolution of issues

that cause high technical debt, including a severe problem that gravely influences code

maintainability, that is the Duplicated Code anti-pattern. Nonetheless, the study of this

problem domain as well as detection techniques are addressed in the following chapters:

Background and Related Work. It would be unfeasible for this work to automatically solve

all the causes of high technical debt in an application, because of their quantity and due

to a lack of information required to fix some of these anti-patterns (e.g. knowledge of the

application’s high-level semantics for missing documentation). It was thus necessary to

select a set of relevant high-impact anti-patterns to be tackled in this work. Furthermore,

this observation will be extended in Technical Approach.

Decreasing the effort required from SAPs developers to resolve high technical debt

problems is of utmost importance. This means that modifying OutSystems logic by hand,

to solve a detected anti-pattern, should not be required from the developer, which is the

current state of the art in OutSystems. The necessary changes may easily be discarded,

forgotten, or badly executed. Such a scenario might endanger the overall sanity of the

system, as it can lead to the introduction of new bugs, or even promote the increase of

technical debt in some other area. This highlights the need for introducing an automated

solution for resolving technical debt problems and is thus the focus of this thesis.

The goal of this work is to devise techniques for automated refactoring in SAPs, focus-

ing on OutSystems as a case study.
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Background

This chapter introduces the fundamental concepts necessary for a complete understand-

ing of our work. To that end, we start by describing the fundamental concepts of Database

Systems and query size estimation followed by an in-depth discussion on the subject of

Refactoring. Lastly, we discuss the fundamentals of Graphs and present the state of the

art on duplicated code detection including detection in visual programming languages.

4.1 Database Systems

A Database-Management System (DBMS) is a collection of interrelated data and a set of

programs that allow users to access and modify these data [9]. DBMS are used to manage

collections of data and contain information relevant to an enterprise. The primary goal

of a DBMS is to provide a way to store and retrieve database information conveniently

and efficiently.

To manage the data it is necessary to: define structures for the storage of informa-

tion and to provide mechanisms for the manipulation of information. Additionally, the

database system must ensure the safety of the information being stored, even in the event

of system crashes or attempts at unauthorized access.

Underlying the structure of a database is the data model which is a collection of

conceptual tools for describing data, data relationships, data semantics, and consistency

constraints. The data models can be classified into four different categories [9]:

• Relational Model - The relational data model is the most widely used and a vast

majority of current database systems are based on the relational model. In the

relational model, a collection of tables is used to represent both the data and the

relationships between the data. Each table can have multiple columns, and each

column has a unique name. Tables are also known as relations. The relational model

is a record-based model, i.e. the database is structured in fixed-format records of

several types. Each table contains records of a particular type. Each record type

defines a fixed number of fields or attributes. The columns of the table correspond

to the attributes of the record type.
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• Entity-Relationship Model - The entity-relationship data model (ER model) is

widely used in database design. It uses a collection of basic objects, called entities

that are distinguishable from other objects, and relationships among these objects.

• Semi-structured Data Model - The semi-structured data model allows for the spec-

ification of data where individual data items of the same type may have different

sets of attributes. This is in contrast to the data models mentioned earlier, where

every data item of a particular type must have the same set of attributes. JSON and

Extensible Markup Language (XML) are widely used semi-structured data repre-

sentations.

• Object-Based Data Model - The object-oriented data model extends the relational

model with notions of encapsulation, methods, and object identity. The concept

of objects is well integrated into relational databases thus, there are standards to

store objects in relational tables and to store and execute procedures in the database

system.

We will now focus on the relational model as it serves as the foundation for Entities

in the OutSystems data model.

4.1.1 Relational Model

A relational database consists of a collection of tables and each table has a unique name. A

row in a table represents a relationship between a set of values. A relational database takes

its name because a table is a collection of such relationships having a correspondence

between the concept of table and the mathematical concept of relation. In the relational

model, the term relation is used to refer to a table, the term tuple is used to refer to a

row and the term attribute refers to a column of a table. Since a relation is a set of tuples,

the order in which tuples appear in a relation is irrelevant.

4.1.1.1 Database Schema

The database schema is the logical design of the database whereas the database instance

is a snapshot of the data in the database at a given instant in time. The concept of relation

schema corresponds to the programming language notion of type definition whilst the

concept of relation corresponds to the notion of a variable. A relation schema consists of

a list of attributes and their corresponding domains.

4.1.1.2 Keys

Two tuples in a relation cannot have the same value for all attributes. Tuples can then

be distinguished because their attribute values uniquely identify them. The conception

of keys poses as the means to identify these tuples, their different types are described as

follows:
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• A superkey is a set of one or more attributes that identify uniquely a tuple in the

relation. Some attributes can be considered extraneous if they can be removed

without changing the closure of the set of functional dependencies.

• A candidate key is a superkey for each no subset is also a superkey. There can be

distinct sets of attributes that serve as a candidate key.

• The primary key is the candidate key that is chosen as the principal means to

uniquely identify a record within a relation. The designation of a key represents a

constraint in the real-world enterprise being modeled. Thus, primary keys are also

referred to as primary key constraints.

• A foreign key constraint from attribute(s) a of relation R1 to the primary key b of

relation R2 means that on any database instance, the value of a for each tuple in

R1 must also be the value of b for some tuple in R2. The attribute set a is a foreign

key from R1, referencing R2. In a foreign key constraint, the referenced attribute(s)

must necessarily be the primary key of the referenced relation.

4.1.2 Relational Query Languages

A query is a computation upon relations that produces other relations whilst a query

system, such as relational algebra, is a formal system for expressing queries. Query

languages are programming languages used in database systems to formulate commands

[10]. A query can also be defined as a “question about the data” [11].

Query languages can be categorized as [9]:

• Imperative, the user instructs the system to perform a sequence of operations on

the database to compute the result.

• Functional, the computation is expressed as the evaluation of functions that operate

on data in the database or on results of other functions.

• Declarative, the user describes the desired information without giving a specific

sequence of steps or function calls for obtaining that information. It is the job of

the database system to reason how to obtain the desired information.

The relational algebra is a functional query language and forms the theoretical basis

of the SQL query language. The SQL query language, includes elements of the impera-

tive, functional, and declarative definitions.

4.1.3 Relational Algebra

The relational algebra consists of a set of operations that take one or two relations as

input and produce a new relation as their result. Unary operations operate on one
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relation (select, project, rename, etc) whilst binary operations operate on two relations

(union, Cartesian product, set difference, etc).

Since a relation is a set of tuples, relations cannot contain duplicate tuples. However,

tables in database systems are permitted to contain duplicates unless a specific constraint

prohibits it (e.g. primary key constraint).

Relational algebra supports only a small number of predefined functions, which define

an algebra on relations. Next, we will describe the available operations in relational alge-

bra [9] followed by a description of some of the extended operators of relational algebra

(duplicate elimination, aggregation operators, grouping of tuples, extended projection,

and sorting operator) [11].

4.1.3.1 The Select Operation

The select operation selects tuples that satisfy a given predicate. Selecting the tuples of

relation R where attribute a of R is equal to some constant c is represented by:

σa=c(R)

The selection predicate may include comparisons between two attributes using the

operators =, ,, <, ≤, >, and ≥, as well as the combinations of several predicates using the

connectives and (∧), or (∨), and not (¬). Selecting the tuples of relation R where attribute

a of R is equal to some constant c and attribute b of R is greater than a is represented by:

σa=c∧b>d(R)

4.1.3.2 The Project Operation

The project operation is a unary operation and results in displaying only the attributes

specified in the argument. Duplicate rows are eliminated because a relation is a set.

Projecting attribute b of relation R is represented by:

Πb(R)

4.1.3.3 Composition of Relational Operations

The result of a relational operation is also a relation. Thus, relational-algebra operations

can mainly be composed together into a relational-algebra expression. Selecting the

tuples of relation R where attribute a of R is equal to some constant c and projecting only

attribute b of R is represented by:

Πb(σa=c(R))

4.1.3.4 The Cartesian-Product Operation

The Cartesian-product operation combines information from two relations and results

in a tuple for each possible pair of tuples, one from the first relation and one from the
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second. The Cartesian product of relations R1 and R2 is represented by:

R1 ×R2

4.1.3.5 The Join Operation

The join operation is the combination of a selection and a Cartesian product in one

operation. Consider relations R1 and R2, and let θ be a predicate on attributes in the

schema R∪ S. The join operation between R1 and R2 and is defined as follows:

R1 ./θ R2 = σθ(R1 ×R2)

4.1.3.6 The Natural Join Operation

The natural join operation uses an implicit predicate to replace the predicate θ in ./ θ that

requires equality between the attributes that are common to both relations being joined.

The natural join operation between R1(a,b) and R2(b,c), having b as the only common

attribute between R1 and R2, is defined as follows:

R1 ./ R2 = R1 ./R1.b=R2.b R2

4.1.3.7 The Duplicate-Elimination Operation

The duplicate-elimination operation δ turns a bag into a set by eliminating all but one

copy of each tuple. Thus, to return the set consisting of one copy of every tuple that

appears one or more times in relation R we use the following:

δ(R)

4.1.3.8 The Aggregation Operation

The aggregation operation takes a collection of values and returns a single value as a

result. It allows a function to be computed over the set of values returned by a query by

applying a function to the attributes (columns) of a relation. The standard operators of

this type are:

• AVG: produces the average of a column with numerical values.

• MIN: produces the smallest value (when applied to a column with numerical values)

or the first lexicographically value (when applied to character-string values).

• MAX: produces the largest value (when applied to a column with numerical values)

or the last lexicographically value (when applied to character-string values).

• SUM: produces the sum of a column with numerical values.
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• COUNT: produces the number of values in a column (these are not necessarily

distinct). Equivalently, COUNT applied to any attribute of a relation produces the

number of tuples of that relation, including duplicates.

It is also possible for these aggregations to be performed after splitting the set of

values into groups (Group By operation). Having E as a relational-algebra expression,

F1,F2, ...,Fi as the set of aggregation operations to perform and a1, a2, ..., ai as attributes

each having a collection of values to pass to the functions, the general formula for the

aggregate operation in relational algebra if the set of attributes on which to group is

empty, is defined as follows:

GF1(a1),F2(a2), ...,Fi(ai)(E)

4.1.3.9 The Grouping Operation

Grouping of tuples according to their value in one or more attributes has the effect of

partitioning the tuples of a relation into “groups”. Aggregation can then be applied to

columns within each group. The grouping operator G (γ in some books) is an operator

that combines the effect of grouping and aggregation.

Having E as a relational-algebra expression, g1, g2, . . . , gk as attributes on which to

group (can be empty), F1,F2, ...,Fi as the set of aggregation operations to perform and

a1, a2, ..., ai as attributes each having a collection of values to pass to the functions, the

general formula for the group by operation in relational algebra is defined as follows:

g1, g2, . . . , gkGF1(a1),F2(a2), ...,Fi(ai)(E)

The grouping operation groups the result relation E into sets whose values are equal

in the attributes g1, g2, . . . , gk (if k = 0, E is the sole group). For each group, it returns a

tuple with the values of g1, g2, . . . , gk and the result of applying the functions F1,F2, ...,Fi
in the set of values of that group. The result of the aggregate operation will be a single

tuple if the set of attributes to group is empty (k = 0) because one tuple is returned for

each group and only one group was formed.

4.1.3.10 The Extended Projection Operation

In addition to the Π operator projecting some designated columns, the extended projec-

tion can perform computations involving the columns of its argument relation to produce

new columns. Considering two numeric attributes a and b of relation R, in an extended

projection we can produce a new column as the sum of the two elements as follows:

Πa+b(R)
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4.1.3.11 The Sorting Operation

The sorting operator τ turns a relation into a list of tuples, sorted according to one or

more attributes. Getting the results of relation R sorted according to attributes a1, a2, ..., an
of R in the order they are indicated, is defined as follows:

τa1,a2,...,an(R)

4.1.4 SQL

The SQL language can be used to define the structure of the data, modify data in the

database, and specify security constraints. In this analysis, we will focus on the definition

of SQL queries.

4.1.4.1 Query Structure

The basic structure of an SQL query consists of three clauses: SELECT, FROM, and

WHERE. A query takes as its input the relations listed in the FROM clause, operates on

them as specified in the WHERE and SELECT clauses, and then produces a relation as

the result. The role of each clause is as follows:

• The SELECT clause is used to list the attributes desired in the result of a query.

• The FROM clause is a list of the relations to be accessed in the evaluation of the

query.

• The WHERE clause is a predicate involving attributes of the relation in the FROM

clause.

The typical SQL query has the following form:

SELECT $a_1, a_2,..., a_i$

FROM $R_1, R_2,..., R_n$

WHERE $P$;

Each ai represents an attribute, each R a relation, and P is a predicate. If the where

clause is omitted, the predicate is true. The FROM clause by itself defines a Cartesian

product of the relations listed in the clause and the result relation has all attributes from

all the relations in the FROM clause. When the same attribute name may appear in the

relations of the FROM clause, the name of the relation from which the attribute originally

came is prefixed before the attribute name (e.g. R.a). Some relevant basic operations

supported in SQL include:

• Attribute specification - The asterisk symbol * can be used in the SELECT clause

to denote the inclusion of all the attributes of a relation (e.g. if R is a relation,

SELECT R.* FROM R(a,b), selects all the attributes of relation R). A SELECT clause
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of the form: SELECT *, indicates that all attributes of the result relation of the from

clause are selected.

• Ordering the display of tuples - The ORDER BY clause causes the tuples in the

result of a query to appear in sorted order.

4.1.4.2 Aggregation

Aggregate functions are functions that take a collection (a set or multiset) of values as

input and return a single value. SQL offers five built-in aggregate functions: AVG, MIN,

MAX, SUM, and COUNT (see Section 4.1.3.8). These operators are used by applying them

to a “scalar-valued expression” in a SELECT clause with the exception of the expression

COUNT(*), which counts all the tuples in the relation that is constructed from the FROM

clause and WHERE clause of the query [11]. The input to “SUM” and “AVG” must be a col-

lection of numbers, whilst the other operators can operate on collections of non-numeric

data types (e.g. strings). Additionally, we have the option of eliminating duplicates from

the column before applying the aggregation operator by using the keyword DISTINCT

(e.g. an expression such as COUNT(DISTINCT a) counts the number of distinct values in

column a). As an example, suppose we wanted to count the number of tuples in relation

R, a query defined for this purpose would be:

SELECT COUNT(*)

FROM $R$;

4.1.4.3 Grouping

We can split the tuples of a relation in groups, according to the value of one or more

other columns, when we do not want the result of the aggregate function to be computed

over an entire column but rather, we want to aggregate only within each group. The

attribute(s) given in the GROUP BY clause are used to form groups. Tuples with the same

value on all attributes in the GROUP BY clause are placed in one group.

As an example, consider relation R and two attributes a (string) and b (integer), sup-

pose we wanted to compute the average of b according to each a, a query defined for this

purpose would be:

SELECT $a$, AVG($b$)

FROM $R$

GROUP BY $a$;

When an SQL query uses grouping, it is important to ensure that the only attributes

that appear in the SELECT clause without being aggregated are those that are present in

the GROUP BY clause, i.e. any attribute that is not present in the GROUP BY clause may

appear in the SELECT clause only as an argument to an aggregate function. If we select

a column, not in the GROUP BY clause, there is no way of choosing which column value
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to output since we will have to display only one value for column, which is either being

grouped or aggregated. Thus, such cases are disallowed by SQL [9].

4.1.5 Estimating the Cost of Operations

Garcia-Molina et al. proposed a methodology for estimating the cost of operations in

relational databases (query plans) [11]. In the cost estimation methodology, the parsed

query is transformed into an abstract, i.e. logical, query plan before being turned into a

physical plan. Different physical plans can be derived from the abstract plan, these are

then evaluated to estimate their cost. Cost-based enumeration consists of choosing the

physical query plan with the least estimated cost.

In our work, we are concerned with estimating the number of tuples in the result

relations after performing relational algebra operations, so we can define rules according

to the size of query results. In this section, we will show estimated statistics on the results

of various relational operations following the work by Garcia-Molina et al. [11] and by

Silberschatz et al. [9].

To estimate costs of plans accurately, Garcia-Molina et al. used parameters that are

computed from the data or “estimated by a process of statistics gathering”. We use the

same notation as in the book for the parameters that define the number of tuples in a

relation:

• T(R) is the number of tuples of relation R.

• V(R, a) is the value count for attribute a of relation R, that is, the number of distinct

values relation R has for attribute a [11]. This value is the same as the size of Πa(R)

if a is a key for relation R, V(R, a) = T(R) [9].

4.1.5.1 Estimating the Size of a Selection

When we perform a selection, we generally reduce the number of tuples, although the

sizes of tuples remain the same. In the simplest kind of selection, where an attribute

is equated to a constant, there is a way to estimate the size of the result if we know the

number of different values the attribute has. Given the following selection operation on

an equality condition: σa=c(R)

Having c as a constant and a as an attribute of R, an estimate would be [11]:

T (σa=c(R)) =
T (R)
V (R,a)

A conjunctive selection is a selection of the form [9]: σθ1∧θ2∧···∧θn(R)

We can estimate the result size of such a selection by estimating the size of the selec-

tion for each θi . The probability that a tuple in the relation satisfies selection condition

θi is
T (σθi )
T (R)

and is called the selectivity of the selection σθi . Assuming that the conditions
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are independent of each other, the probability that a tuple satisfies all the conditions is

the product of all these probabilities, as follows:

T (σθ1∧θ2∧···∧θn(R)) = T (R)×
T (σθ1

)× T (σθ2
)× · · · × T (σθn)

T (R)n

4.1.5.2 Estimating the Size of a Join

A natural join of two relations pairs tuples that share the same values for the attributes

that are common to both tables. Considering a natural join of two relations R and S that

share a single attribute a:

1. If R and S have disjoint sets of values for the common attribute, the size of the query

result is:

T (R ./ S) = 0

2. If a is a key in R and a foreign key in S, then each tuple of S joins with exactly one

tuple of R and thus the size of the final query result is:

T (R ./ S) = T (S)

3. If almost all tuples of R and S could have the same value for a, therefore pairing

almost every tuple of R with each tuple of S, the estimated query size is:

T (R ./ S) = T (R)× T (S)

Having a1, a2, ..., an as the set of common attributes between R and S, the size of the

query result is:

T (R ./ S) = T (R)× T (S)×
n∏
i=1

1
max(V (R,ai),V (S,ai))

Regarding other types of joins:

1. For an equijoin the number of tuples in the result can be computed like the natural

join, after accounting for the change in variable names.

2. For a cartesian product (cross join) the number of tuples in the result is the product

of the number of tuples in the relations involved, as follows:

T (R× S) = T (R)× T (S)

3. For theta-joins the number of tuples in the result can be estimated as if it is a

selection following a product.

T (R1 ./θ R2) = T (σθ(R1 ×R2))
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For multiple joins the estimate we can assume, as the upper bound value, it being the

product of the number of tuples in each relation. In this estimate we use ./θ but it could

be any type of join, as follows:

T (R1 ./θ R2 ./θ . . . ./θ Rn) = T (R1)× T (R2)× · · · × T (Rn)

Then, for each attribute a appearing at least twice, we can divide by all but the least

of the V (R,a)’s. Likewise, we can estimate the number of values that will remain for

attribute a after the join. By the “preservation-of-value-sets assumption”, the estimate is

the least of these V (R,a)’s [11].

4.1.5.3 Estimating the Size of a Projection

The estimated number of tuples of a projection of the form Πa(R) will be equal to V (R,a),

since the projection eliminates duplicates [9]. If a is the primary key of R, and thus, and

no duplicate tuples are allowed in the primary key, the projection operator will leave the

number of tuples in the result unchanged, as follows:

T (Πa(R)) = V (R,a) ≤ T (R)

Usually, tuples shrink during a projection, as some attributes are excluded. However,

the projection allows for the creation of new attributes as combinations of attributes, and

in these cases, the projection can increase the size of the relation but not the number of

tuples.

4.1.5.4 Estimating the Size of a Grouping and Aggregation

The number of tuples returned by the group by operation is the same as the number of

groups [11]. The lower bound would be one group in the result or as many groups as

there are tuples in the relational algebra expression. Considering the general formula for

the group by operation including aggregation functions:

g1, g2, . . . , gkGF1(a1),F2(a2), . . . ,Fi(ai)(E)

Having E as a relational algebra expression and g1, g2, . . . , gk as the attributes on which

to group by, an estimate would be:

T (g1, g2, ..., gkGF1(a1),F2(a2), ...,Fi(ai)(E)) = V (E, [g1, g2, . . . , gk])

In this estimate we consider that the value of V (E, [g1, g2, . . . , gk]) is obtainable.

4.2 Refactoring

Refactoring is the designation given to both “a change made to the internal structure

of software to make it easier to understand and cheaper to modify without changing its
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observable behavior” and also to “restructure software by applying a series of refactor-

ings” [1].

When refactoring, the code’s intentions should remain the same, it should do exactly

what it did before. This does not mean it will work exactly in the same way (as perfor-

mance characteristics might change) but nothing should change that the user should care

about.

Software design and architecture used to be fixed and completed before writing the

code. Refactoring has changed this perspective and allows to significantly alter the soft-

ware architecture that has been running for years, therefore it is possible to say that

“refactoring can improve the design of existing code” [12].

This section starts by describing refactoring concerning other important aspects of

software and what drives us to perform it. Next, we present the work methodologies

to perform refactoring by presenting different relevant patterns and some of the most

relevant refactoring techniques regarding this work will be explained. Finally, we give an

overview of Duplicated Code and how it is currently detected in OutSystems.

4.2.1 Refactoring and Architecture Design

The impact of refactoring on architecture is how it can be used to form a well-designed

code base that can respond gracefully to changing needs. It is very difficult to finish

the architecture before coding because the requirements for the software may not be

finished or well understood. One approach to deal with future changes is to make the

software flexible but anticipating the change can slow down the process of reacting to the

change [12].

Refactoring permits a different strategy, by focusing on building software that solves

the current requirements with the best design possible. As the understanding of users’

needs changes, refactoring makes it possible to adapt the architecture to these demands

without increasing complexity. This approach is commonly known as Incremental Design

and is one of the practices used in Extreme Programming. It allows developers to keep

investing in the design of the system even after implementation and in proportion to the

needs of the system [13].

4.2.2 Refactoring and Performance

Refactoring is very similar to performance optimization, as both involve carrying out code

manipulations that do not change the overall functionality of the program. The difference

between refactoring and performance optimizations lies in the purpose. Refactoring is

done to make the code "easier to understand and cheaper to modify"(which might make

the program faster or slower), performance optimization concerns are only to make the

program faster (which might lead to code that is harder to understand) [1].

A common concern with refactoring is the effect it has on the performance of a pro-

gram. Making the software easier to understand often leads to changes that will cause
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the program to run slower. These refactoring steps are still necessary because even if

they make the program slower, they also make the software more amenable to perfor-

mance tuning. On the other hand, the performance of software usually depends on just

a few parts of the code, so most of the changes introduced in refactoring won’t make an

appreciable difference [12].

4.2.3 Testing

The first foundation for hand refactoring is to have self-testing code. It is necessary to have

a suite of automated tests to be run regularly so that if there was an error made while

programming, some test will fail. These tests will help find the mistakes that a developer

will inevitably do, the larger the program, the more likely the affected changes will cause

some undesirable effect in the software. If refactoring is done in small steps, it is easy

to find where and when the bug was introduced. These tests should be self-checking to

avoid spending time hand-checking values from the test against the desired values [1].

Automated Refactoring allows the introduction of modifications to the code base that

are provenly correct. But even with automated refactoring tools, some of the refactorings

will still need checking via a test suite. Even without refactoring, writing good tests

increases the effectiveness of a programmer. Because programmers end up spending

most of their time debugging, a suite of tests is a powerful bug detector that reduces the

time it takes to find bugs [12].

4.2.4 Advantages

A poorly designed system is hard to change because it is difficult to understand what

needs to be changed and how these changes will affect the existing code. This difficulty

will also make the developer more prone to make mistakes and may end up introducing

bugs. This process tends to be slower than simply working with a well-structured pro-

gram. The aforementioned reasons, highlight the importance of the following conclusion.

When it is necessary to add a feature to a program, if the code is not structured conve-

niently, refactoring the program first will make it easier to add the feature. In this section,

we present the many reasons to make refactoring a priority [1, 12].

4.2.4.1 Improves the Design of Software

Software architecture tends to decay as changes in code are introduced without regard

for maintaining structure. The harder it is to see the design in the code, the harder it is to

preserve it, and the more rapidly it decays. Regular refactoring will aid in avoiding this

loss of structure and help improve software design.
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4.2.4.2 Makes Software Easier to Understand

The importance of making software easier to understand comes from the necessity of

having different users (or even the same user at a different time) reading the source

code produced and eventually having to change it. When developing we often only

think about getting the program to work and making code easier to understand will

naturally affect this rhythm. Nonetheless, refactoring helps make the code more readable,

as developing often leads to code that works but is not ideally structured. Because one

easily forgets what was the intention of the code produced, the moment it was written,

these considerations should be put into the code.

"Any fool can write code that a computer can understand. Good programmers

write code that humans can understand."

— Martin Fowler

4.2.4.3 Helps In Finding Bugs

Refactoring helps at being more effective at writing robust code. When refactoring, there

is time spent understanding the code. By putting that understanding into the code and

by clarifying the structure of the program, it is much easier to find bugs.

4.2.4.4 Helps In Programming Faster

Refactoring does not only improve quality (better internal design, readability and reduces

bugs) but also makes it easier to find how and where to make the necessary changes to

add a new feature in software with a good internal design. Good modularity allows one

to only need to understand a small subset of the code base to make a change. If the code

is clear, the probability of introducing bugs or having to spend a lot of time debugging

drops.

4.2.5 Disadvantages

Like all good engineering practices, refactoring is a valuable technique, but it comes with

its tradeoffs and there is a need to know when and where to apply it. In this section, we

will get into detail about some of the problems that emerge because of refactoring [12].

4.2.5.1 Slowing Down New Features

Refactoring intends to make the development of new features faster and not the contrary.

The whole purpose of refactoring is to make developers program faster, producing more

value with less effort. The tradeoff between the time it takes to add the new feature and

the time needed to refactor should pose as a guideline.

It is dangerous to justify refactoring in terms of “clean code” or as a “good engineering

practice” because the point of refactoring is not to show “pretty code” but it is purely
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economic. Refactor makes the developer faster at developing new features and at fixing

bugs. The economic benefits of refactoring should always be the driving factor.

4.2.5.2 Introducing Bugs

One of the most important characteristics of refactoring is that it does not change the

observable behavior of the program. Even by taking the greatest care in each refactoring

step, when refactoring manually mistakes can still be introduced. This explains why

some are concerned that refactoring carries too much risk of introducing bugs. This step

back can be solved by having a solid set of tests. If these tests are run quickly and often,

finding bugs is extremely easy.

Another way of dealing with this problem is by using an environment with automated

refactorings that can be trusted without running tests. Automated refactoring was a

revolutionary introduction to refactoring by enabling the performance of refactorings

with a lot of confidence.

4.2.6 Automated Refactoring

Automated Refactoring is "perhaps the biggest change to refactoring in the last decade or

so is the availability of tools that support automated refactoring"(Fowler, 2018). The first

tool to appear with automated refactoring functionalities was the Smalltalk Refactoring

Browser [50]. Since then, the availability of automated refactorings in environments

like the IntelliJ IDEA [51] or Eclipse [52] have allowed doing refactorings like renaming

variables, methods, or classes in a most simplistic way. Automated tools often go further

by suggesting changes in reaction to others, such as prompting to change comments after

renaming a variable.

To do refactoring properly, an automated tool has to operate on the syntax tree of the

code, not only on the text. Manipulating the syntax tree is much more reliable to preserve

what the code is doing. Therefore, at the moment, most refactoring capabilities are part

of powerful IDEs, because these use the syntax tree not just for refactoring but also for

code navigation [12].

On the other hand, many refactorings are made much safer when applied in a lan-

guage with static typing. For example, when renaming a method of a class that exists

with the same name in another class, without static typing, the tool will find it difficult

to tell whether any call to that method is intended for each of the classes.

4.2.7 Code Smells

To understand when to refactor it is useful to look for certain structures in the code that

suggest the possibility of refactoring. This is not a precise criterion but an indication

that there might be a problem in the code that can be solved by refactoring [12]. These

structures go by different names including code smells, bad smells, and anti-patterns.
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Code smells often lead to bugs, runtime errors, and software maintenance difficulties.

Consequently, they should be systematically prevented and fixed all along the software

lifecycle.

Below we present a list with some code smells. This list is not exhaustive and the

problems detected may not look exactly like the ones referenced here, this list serves as

a guide for what to start looking for or what might be possible to do to solve it [1, 12].

We also provide a description of the relationship between the code smells and patterns

analyzed with the Architecture Dashboard tool.

1. Duplicated Code consists of a repetition of the same code structure in more than

one place in the program. A refactoring will present itself in finding a way to

unify the structures. Having duplicated code can become a problem for long-lived

programs as any changes to the logic of that code must be performed everywhere it

is present. It is also necessary to ensure that everything was updated consistently.

Fixing: A duplicated code problem can consist of the same expression in two meth-

ods of the same class, this problem can be solved by applying Extract Function and

then invoking the code from both places. Similar code (and not identical) may be

solved by using Slide Statements to arrange the code in a way that similar items are

all together for extraction.

OutSystems context: This pattern can also be identified in OutSystems Logic. The

Visual Language allows for building logic flows that are comprised of nodes, such

as actions and data-related elements. Equivalent flows can be found in OutSystems’

applications as explained in Section 4.4.2.

2. Long Function proves to be a problem because the longer a function is, the more

difficult it is to understand it. When broken down into small functions it is impor-

tant to give them good names so that there is almost no need to check the function’s

body to understand it.

Fixing: Most of the time, it is simply needed to use Extract Function to shorten the

function, by finding parts of the function that make sense together. If the function

has many temporary variables, it is useful to use Replace Temp With Query to avoid

passing as parameters. Long lists of parameters can be reduced using Introduce
Parameter Object [12] and Preserve Whole Object [12].

OutSystems context: The equivalent to this pattern has been identified by Di-

jkink as a Long Undocumented Flow [46] and affects the maintainability of appli-

cations [49].

3. Global Data is a problem that leads to many bugs because this data can be modified

from anywhere in the code base and there’s no mechanism to find the code that

changed it. The solution passes by wrapping this global data by a function and

trying to see where it is modified and controlling its access. Finally, the scope of the
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data should be limited as much as possible by moving it within a class or module

where only that module’s code can see it.

Fixing: When confronted with this problem, the first step is to use Encapsulate
Variable [12], so that by having it wrapped by a function, it is possible to visualize

where it is modified to control its access. The final step is to limit the scope of the

variable as much as possible by moving it to a class or module.

OutSystems context: Public Entities aren’t read-only is a pattern identified in the

OutSystems environment that affects the architecture of applications. This pattern

allows for operations to be performed by any consumer on entity actions 2.3, which

may lead to bugs as any consumer may perform inconsistent and even destructive

changes [46]. It strongly relates to the code smell above, as both concern the lack of

control over information, when it is out of limited scope.

4. Large Class consists of a class, with a lot of fields, that probably is doing a lot of

computation that can be split into smaller units. If a class does not use all its fields

all of the time, choosing a useful subset of these fields may lead to a separate class.

As for a class with too much code, the problem with duplicated code may eventually

rise. The solution is to eliminate redundancy in the class itself by finding the code

in common and sharing it in only one place.

Fixing: A Large Class problem can be solved with Extract Class [12] by grouping a

set of variables that are logically intertwined.

OutSystems context: The Monolithic mobile UI module pattern and the Monolithic
Service Module pattern affect the architecture of Outsystems’ applications [46].

These patterns are the counterpart to the code smell above when applied to the Out-

Systems code (as OutSystems is not an Object-Oriented programming language).

This relation has been identified by Dijkink [49].

4.2.8 Refactoring Mechanisms

In this section, we present some commonly used refactoring mechanisms which are worth-

while to name and describe in the context of this thesis. These mechanisms are based on

Fowler’s catalog of refactorings [1, 12].

4.2.8.1 Extract Function

Motivation: Some guidelines for extracting code are based on its length or the possibility

of code reuse. For Fowler, the biggest motivation appears when it is necessary to provide

clarification on what the code is doing. This clarification can be given by extracting the

code and naming it after its purpose.

Mechanics: 1. Copy the code to be extracted from the source function into the new

target function; 2. Scan the extracted code for references to any local variables that will
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not be in scope for the extracted function and pass them as parameters. If a variable is

only used inside the extracted code but is declared outside, move the declaration into

the extracted code; 3. Scan the extracted code for variables that are assigned. If it is only

one, treat the extracted code as a query and assign the result to the variable concerned.

Otherwise, it might be better to abandon the procedure and consider Replace Temp With

Query or Split Variable [12] before revisiting the extraction; 4. Compile; 5. Replace the

extracted code in the source function with a call to the target function; 6. Test.

Example: Listings I.1 and I.2 are Javascript code examples of the before and after

execution of three Extract Function operations. Extracting the function recordDueDate
requires passing the invoice variable as a parameter because it will be out of scope. Ex-

tracting the function calculateOwing also requires invoice to be passed as a parameter.

Additionally, this function has to return the result of the computation which is assigned

to the owing variable in the original function. This variable was also turned into a con-

stant because it will not be reassigned. Lastly, the printDetails function requires both

variables, invoice and owing, to be passed as parameters.

4.2.8.2 Slide Statements

Motivation: Code is easier to understand when pieces of code that are related to each

other are shown together. If there are several lines of code accessing the same data

structure, they should appear rather than mixed with unrelated code.

Mechanics: 1. Identify the target position to move the fragment to. Proceed if chang-

ing the statements will not change the program’s behavior. 2. Cut the fragment from the

source and paste it into the target position; 3. Test.

Note: Regarding the Duplicated Code Smell and the detection of near-duplicates,

applying this mechanism to the code might easily lead to side effects. Changing the order

of operations in code to achieve similarity can change the behavior of the code. The Slide

Statements operation is an arduous task, especially when prompted to be resolved and

validated with automated refactoring mechanisms.

4.2.8.3 Replace Temp With Query

Motivation: When splitting a large function, turning variables into their own functions

makes it easier to extract parts of the function without needing to pass variables as

parameters. Using functions instead of variables also contributes to avoiding duplication

of the calculation logic in similar functions, which can then be extracted and reused.

Mechanics: 1. Verify that the variable is entirely determined before it is used and

that the code that calculates it does not yield a different value when it is used. Make

the variable read-only if possible. 2. Test. 3. Extract the assignment of the variable into

a function. 4. Ensure that the extracted function is free of side effects. Otherwise, use

Separate Query from Modifier [12]. 5. Test Again. 6. Use Inline Variable [12] to remove the

temporary variable.
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4.3 Graphs

In this section, we describe the necessary concepts for a better understanding of the

problems involving graphs that will be presented throughout this work.

4.3.1 Definitions

A graph G = (V ,E) consists of a set of elements V called vertices and a set of elements E

called edges. In this work, we use the same notation for graphs as in the work by Terra-

Neves et al. [6]. Each edge joins two vertices and is denoted by specifying its two vertices,

e.g. (u,v). In a graph, two or more edges joining the same pair of vertices are multiple

edges and an edge joining a vertex to itself is a loop [14]. A simple graph is a graph with

no multiple edges or loops. G is a finite graph if the sets V and E are both finite, and a

null graph if they are both null. We use the symbol ∅ to denote a null graph [15].

The vertices v and w of a graph are adjacent vertices if they are joined by an edge

e [14]. The vertices v and w are defined as incident with the edge e, and the edge e

is incident with the vertices v and w. The degree of a vertex v is the number of edges

incident with v. Each loop is counted twice. A graph is completely determined when

its vertices and edges are known. Two graphs are the same if they have the same vertices

and edges. Two graphs G and H are isomorphic if H can be obtained by relabelling the

vertices of G, i.e. if there is a one-one correspondence between the vertices of G and

those of H , such that the number of edges joining each pair of vertices in G is equal to

the number of edges joining the corresponding pair of vertices in H . A sub-graph S of a

graph G is a graph all of whose vertices are vertices of G and all of whose edges are edges

of G.

A walk of length k in a graph is a succession of k edges of the form uv,vw,wx, . . . ,yz

and is referred to as a walk between u and z. It is not required for all the edges or vertices

in a walk to be different. A path is a walk in which all the edges and vertices are different.

A graph is connected if there is a path between each pair of vertices. Every disconnected

graph can be split up into a number of connected sub-graphs, named components. A

closed walk in a graph is a succession of edges of the form uv,vw,wx, . . . , zu that starts

and ends at the same vertex u. A cycle is a closed walk in which all the edges are different

and all the intermediate vertices are different.

4.3.2 Digraphs

A digraph G = (V ,E) consists of a set of elements called V vertices and a set of elements

E called arcs [14]. Arcs are edges with a distinguishable origin and destination, each arc

joins two vertices in a specified direction and the arc is denoted by specifying its two

vertices in order, e.g. in a digraph (u,v) differs from (v,u).

Two or more arcs joining the same pair of vertices in the same direction are multiple

arcs and an arc joining a vertex to itself is a loop. Just like in an undirected graph, a
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digraph with no multiple arcs or loops is a simple digraph. In a digraph, the out-degree

of a vertex v is the number of arcs incident from v and the in-degree of v is the number

of arcs incident to v.

The digraph analogs of adjacency, incidence, and isomorphism are similar to the

corresponding definitions for graphs, except that we take account the direction of the

arcs. Similarly, the terms walk, path and cycle also apply to digraphs.

A digraph is connected if its underlying graph is a connected graph otherwise, it is

disconnected. A digraph is strongly connected if there is a path between each pair of

vertices. Similarly, every disconnected graph can be split up into a number of connected

sub-graphs, named components.

4.4 Duplicated Code

An important aspect of improving design is to eliminate duplicated code. Reducing the

amount of code by eliminating its’ repetition, does not make the program run faster but

it makes a big difference when modifying the code. The more code there is to understand,

the harder it is to modify it correctly. By eliminating duplication we ensure that the code

is not repetitive resulting in better readability and maintainability, which is the essence

of good design [12].

Software clones are often introduced due to copying code that already solves a similar

problem somewhere in the code base [16] and adjusting it to the current context. The term

“clone” is often used to identify duplicated code [17]. However, this “shortcut” to reusing

an existing design carries the risk of reducing code readability, maintainability [16] and

promoting bug propagation [5].

Removing duplication associated with the clones results in a single copy of the origi-

nally duplicated sections of code, which leads to increasing modularity [5]. Furthermore,

this activity limits the possibility of carrying bugs to the repetitive code snippets, which

contributes to code robustness. In conclusion, avoiding repetition is a concept that leads

to good design [18].

4.4.1 Code Clone Types

Code fragments can be similar due to the similarity of their program text or due to their

functionalities [19]. Based on the kind of similarity between clones, they can be classified

into different types.

Textual Similarity clones can be classified as follows:

• Type I. The code fragments are identical except for whitespace, layout, and com-

ments.

• Type II. The code fragments structure/ syntax is identical except for variations in

identifiers, literals, types, layout, and comments.
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Figure 4.1: Type I Duplicate Code Fragments in OutSystems

• Type III. The code fragments are identical but can have additional/ missing state-

ments in addition to variations in identifiers, literals, types, layout, and comments.

Functional Similarity clones occur if the functionalities of the two code fragments

are identical or similar, leading to the following classification:

• Type IV. The code fragments perform the same computation but implemented

through different syntactic variants.

The analytical complexity and sophistication in detecting clones increases from Type

I through Type IV and is not related to the automation of this process, we will get into

detail about each type of clone with examples of duplicated flows in OutSystems. In

this analysis, the examples for duplicated code fragments in A Survey on Software Clone

Detection Research [19] were translated/ amended into OutSystems code.

4.4.1.1 Type I

Type I clones are also known as exact clones and are often due to “copy-paste” code. The

copied code fragment is the same as the original except for some possible variations in

whitespace (blanks, newlines, tabs, etc.), comments, and/or layouts. Figure 4.1 shows

an example of Type I duplicated flows in OutSystems. These two flows are textually

similar, as each element has an exact correspondence in the other flow, after removing

the whitespace and comments.

Type I clones may also include changes in layout for languages where curly brackets

(“{” and “}”) can be positioned to enclose groups of statements and define the scope. Thus,
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Figure 4.2: Type II Duplicate Code Fragments in OutSystems

a typical “line-by-line” technique may fail to detect such clones that vary in layout. This is

not a problem in OutSystems due to the inherent structure of its’ visual language. There

can be changes in the placement of elements throughout the canvas but these do not affect

duplicated code detection.

4.4.1.2 Type II

A Type II clone is a code fragment that is the same as the original except for some possible

variations in the corresponding names of identifiers (name of variables, constants, class,

methods, etc.), types, layout, and comments. Figure 4.2 shows an example of Type II

duplicated flows in OutSystems. Although the two flows change a lot in variable names

and value assignments, the syntactic structure is still similar in both flows as the elements’

structure is essentially the same in the duplicated flows.

4.4.1.3 Type III

In Type III clones, statements of the copied fragment can be changed, added, and/or

deleted. Figure 4.3 shows an example of Type III duplicated flows in OutSystems. The

two flows are textually similar but in addition to differences in comments, assignments,

and variable names, one extra statement was inserted in the flow. Without the added

assignment (“e = 1”), these duplicated flows would be considered Type II clones.
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Figure 4.3: Type III Duplicate Code Fragments in OutSystems

4.4.1.4 Type IV

Type IV clones result from the semantic similarity between code fragments. In this type

of clone, the cloned fragment is not necessarily copied from the original. An example of

when this type of clone could emerge is when two different programmers implement the

same kind of logic and the code fragments end up similar in their functionality but not

necessarily textually similar.

Functional similarity reflects the degree to which the fragments act alike, i.e., cap-

tures similar functional properties, and similarity assessment methods rely on matching

of pre/post-conditions. If the clones have similar pre and post conditions they are consid-

ered semantic clones.

Figure 4.4 shows an example of Type IV duplicated flows in OutSystems. In the

first flow (Figure 4.4a), the final value of the output parameter “j” is the result of the

factorial value of the input parameter “VALUE” and is computed iteratively. However,

in the second flow (Figure 4.4b) the factorial value of input parameter “n” is computed

recursively and the final value is stored in output parameter “r”. From the semantics point

of view, both flows are similar in their functionality and considered Type IV semantic

clones even though there are no lexical/ syntactic/ structural similarities between the

elements of the duplicated flows.

4.4.2 Detection in Visual Programming Languages

Duplicated Code affects the maintainability and readability of evolving software. It also

comes with the risk of propagating bugs since that a certain bug will be present in every
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(a) Iterative Factorial Flow

(b) Recursive Factorial Flow

Figure 4.4: Type IV Duplicate Code Fragments in OutSystems

copy made of a given code snippet. Having such a strong implication on good software

design, Terra-Neves et al. developed a duplicated code detector that takes leverages on

the visual facet of SAPs to highlight the duplicated code patterns [6].

The functional requirements for this detector included that the duplicated structure

needed to be visually highlighted to the user, so that the duplicates were easier to analyze

and understand, and thus the duplicated code detector returns the mappings of flow

nodes to the duplicated code pattern nodes. This duplicated code detector also needed to

be highly efficient and scalable, optimizing operation costs, as it had to be integrated into

Architecture Dashboard and perform static analyses for hundreds of OutSystems code

bases every 12 hours.

The proposed duplicated code detector for OutSystems addresses these issues by it-

eratively mining Maximum Common Sub-graphs (MCS) of graph representations of

OutSystems code. In OutSystems, logic is implemented through logic flows. The ap-

proach uses MaxSAT encoding [20] for finding a single maximal duplicated code pattern

and the pattern mining algorithm uses a lazy greedy approach with further optimizations

for achieving the same results in less time.
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4.4.2.1 Maximum Common Sub-graph

Logic flows are represented as graphs, thus a duplicated code pattern is a common sub-

graph that occurs across multiple flows. The largest common pattern in those flows

corresponds to an Maximum Common Sub-graph (MCS). Let G1 = (V1,E1) and G2 =

(V2,E2) be a pair of graphs with labeled nodes/edges. In this work, it is assumed that

graphs are directed. Next, we describe the notation used to define an MCS [6]:

• L(v) denotes the label of some node v

• V li denotes the subset of nodes v ∈ Vi such that L(v) = l

• L(u,v) denotes the label of some edge (u,v)

• Eli the subset of edges (u,v) ∈ Ei such that L(u,v) = l

• Lcomb(u,v) is equal to (L(u),L(u,v),L(v)) and denotes the combined label of (u,v)

• Ecomb/l
i denotes the subset of edges (u,v) ∈ Ei such that Lcomb(u,v) = l

• Lcomb(Ei) is used to denote the set of combined labels that occur in Ei

A graph GC = (VC ,EC) is a common sub-graph of G1 and G2 if there exist mappings

f1 : VC → V1 and f2 : VC → V2 such that L(v) = L(f1(v)) = L(f2(v)) for all v ∈ VC and

L(u,v) = L(f1(u), f1(v)) = L(f2(u), f2(v)) for all (u,v) ∈ EC . GC is said to be an MCS if and

only if no common sub-graph G′C = (V ′C ,E
′
C) of G1 and G1 exists containing more nodes

or edges than GC , i.e. such that |V ′C | > |VC | or |E′C | > |EC |. Given a node v ∈ Vi , v ∈ VC
is used to denote that there exists v′ ∈ VC such that v′ is mapped to v, i.e. fi(v′) = v.

Similarly, given (u,v) ∈ Ei , (u,v) ∈ EC is used to denote that there exists (u′ ,v′) ∈ EC such

that fi(u′) = u and fi(v′) = v.

4.4.2.2 MaxSAT Encoding

Let G1 = (V1,E1) and G2 = (V2,E2) be a pair of graphs with labeled nodes and edges. The

MaxSAT formulation extracts an MCS by mapping the nodes of graph G2 into the nodes

of the graph to compare G1. To specify these constraints, Terra-Neves et al. used node

and edge labels and parameterized them with the node/edge with their types as well as

the necessary attributes to match the duplicates. In this approach, the labels were tuned

with the goal of maximizing the detection of Type III Duplicates that share the same

graph structure. The inclusion of isolated nodes is forbidden because such nodes are

not desirable for the duplicated code pattern mining use case. The following constraints

apply [6]:

• Inclusion clauses: A node v ∈ V1 is in the MCS if and only if at least one node in V2

is mapped to v.

• One-to-one clauses: At most one node in V2 can be mapped to each node v ∈ V1.
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• Function property clauses: Each node v′ ∈ V2 cannot be mapped to more than one

node in V1.

• Label consistency clauses: A node v′ ∈ V2 cannot be mapped to v ∈ V1 if v and v′

do not share the same label.

• Control-flow consistency clauses: Consider some edge (u,v) ∈ E1 and a pair of

nodes u′ ,v′ ∈ V2. If u′ and v′ are mapped to u and v respectively, and (u′ ,v′) is not

an edge of G2 or does not share the same label as (u,v), then (u,v) cannot be in the

MCS.

• No spurious edge clauses: An edge (u,v) ∈ E1 can be part of the MCS only if both u

and v are as well.

• No isolated node clauses: A node v ∈ V1 can be part of the MCS only if at least one

of its incoming/outgoing edges is in the MCS.

4.4.2.3 Refactor Weight

For mining duplicated code patterns the algorithm of picks pairs of graphs with the

highest priority, according to some custom priority function [6]. For the duplicated code

use case, the priority function is based on the notion of refactor weight of a graph. The

algorithm receives as input a minimum refactor weight threshold β and discards graphs

with a refactor weight lower than β.

Given a graph G = (V ,E), each node v ∈ V has an associated refactor weight wv , that

depends on its type and on the kind of operations it performs. For all nodes, except In-

struction nodes that correspond to database accesses, a refactor weight of 1 is considered.

The weight of the remaining nodes is given by the respective number of database tables,

filter conditions, and sort conditions. For all edges (u,v) ∈ E, a refactor weight of 1 is also

considered.

Let GW1 = (EW1,VW1),GW2 = (VW2,EW2), . . . ,GWp = (VWp,VWp) denote the p weakly

connected components of G. A weakly connected component GWi is a maximal sub-

graph of G such that, for all node pairs u,v ∈ VWi , v is reachable from u in the undirected

counterpart of G. The refactor weight wG of G is given by the maximum weight across G’s

components. The weight of each component is given by the sum of its nodes and edges

refactor weight.
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Related Work

The development of automated refactoring techniques is the goal of this work. This chap-

ter provides an overview of multiple solutions and tools that are already implemented

for automated refactoring. Baqais and Alshayeb [21] conducted a thorough literature

review of papers that suggest, propose, or implement an automated refactoring process

and classified them according to several quality measures. This work was carefully ana-

lyzed during the elaboration of this thesis. We have categorized our research according to

the method followed in each study to either propose the detection of refactoring oppor-

tunities or the correction of problems using refactoring techniques. The most relevant

findings are presented and discussed in the following sections.

5.1 Clone Management

Many authors have analyzed and studied the problem of having software clones in the

code base. These are code snippets that are strongly similar to each other and are equiva-

lent to Duplicated Code, the bad smell captured by Fowler [1].

Research by Wang and Godfrey is based on the observation that even with the current

availability of tools that detect code clones with high accuracy and scalability, manag-

ing the clones remains challenging. Regarding clone management, fixing the clones

involves applying refactoring techniques, namely merging the code snippets into one,

while preserving the original functionality. This process reduces the risk of introducing

or propagating bugs as well as, improve the maintainability of the code and readability.

In Recommending Clones for Refactoring Using Design, Context, and History [16] the

authors propose an automated approach to recommend clones for refactoring taking into

account benefits, costs, and risks and by training a decision tree-based classifier. In this

work, the iClones tool is used for clone detection, which is a token based-clone detector.

The detection includes clones with minor differences in identifiers, literals and types,

white spaces, and gaps among clone fragments. Before refactoring a developer considers

the costs and risks of the operations to be performed. The developer may also weigh the

benefits of performing the refactoring. In this work, clone refactoring recommendations
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is considered a classification problem. A supervised machine learning approach is used

to process features of clones and to capture the essence of the developers’ analysis. There-

fore, a decision tree-based classifier is trained to learn from features of both refactored

and “unrefactored” clone instances found in clone evolution history. The dimensions

for feature selection are the following: 1. the cloning relationship (e.g. whether clone

fragments are located in the same file); 2. the cloned code snippets (e.g. proportion of

method invocation statements of a cloned code snippet); 3. the context of cloned code

snippets (e.g. lines of code of methods that contain the cloned code snippets).

Regarding the identification and choice of the refactoring clones, the authors generate

candidate sets of clones based on a combination of metrics associated with refactoring

and manual inspection is required to filter out clones that are not refactoring instances

(false positives). This work presents an interesting solution because due to the amount

of duplicated code found in OutSystems applications, and even though the code detector

can discard duplicates with a refactor weight lower than a given threshold, it might be

necessary to further analyze the refactoring costs and benefits before refactoring code

clones so that the duplicated snippets are proven worthwhile to refactor.

Tairas and Gray developed CeDAR (Clone Detection, Analysis, and Refactoring) [22]

an Eclipse [52] plug-in for Java that incorporates the results of various clone detection

tools and displays the clone properties within the IDE. With this tool, it is possible to

perform simultaneous refactoring of the clones to remove the duplicated code associated,

instead of performing multiple refactoring steps separately on the same clone group. The

improvements in this work consist in the information about clones from the detection

phase serving as input to the refactoring engine as well as CeDAR evaluating clone proper-

ties that are provided to the user (such as the parameterized elements of the clones) when

a group of clones is selected to be refactored. This information is useful to determine

which identifiers need to be passed to the new method if an Extract Method refactoring

was performed.

In Increasing clone maintenance support by unifying clone detection and refac-

toring activities [5] the authors have identified the gap between the process of clone

detection and refactoring, this is also the current situation at OutSystems, and this the-

sis addresses this issue. The process of removing duplicated code can be considered in

three phases: detection, analysis, and refactoring [5]. Tairas and Gray utilize CeDAR [22]

to streamline the clone maintenance process, allowing for programmers to delegate the

code structure changes to a refactoring engine, which reduces the number of errors that

may occur when compared to changing the code manually. Figure 5.1a depicts the pro-

cess of using the Extract Method refactoring within Eclipse. The Abstract syntax tree

(AST) of the selected code is determined and, using subtree matching on the AST of the

class where the code is located, matching sub-trees are identified. In this scenario, the

programmer does not know before selecting the code to refactor if there are clones of

the specified code. Figure 5.1b incorporates the results from a clone detection tool that

are displayed and accessible within the IDE. The CeDAR plugin displays the location of
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Figure 5.1: Clone maintenance processes in [5]

the clones and allows connection directly to the source code associated. Therefore, the

developer acknowledges the clones before initiating the refactoring. Additionally, the

parameterized differences between the clones are represented.

Although the streamline of the clone maintenance process is desired and relevant for

this thesis, in [5], the developers still have to instrumentalize the refactoring and not

only decide on refactoring the presented clones. As previously mentioned, this cannot

be the solution for OutSystems as the goal of this work is to automate the process so

that OutSystems developers do not have to make the changes for resolving technical debt

issues caused by anti-patterns.

5.2 Search-based Refactoring

The need for an automatic refactoring approach is also present when it comes to databases.

Related work on this subject includes the MIGRATOR [23] prototype tool for automati-

cally migrating database programs to a new schema by Wang et al.. The necessary evolu-

tion of database applications leads to schema refactorings, which involve changes to the

database schema, intended to improve the design and/or performance of the application

without changing its semantics. This task is nontrivial and error-prone because changes

to the database schema often require re-implementing parts of the database program to

make the program logic consistent with the underlying schema. The database transac-

tions in the original program P are then performed over a schema S so given the new

schema S’ it is necessary to generate a new version of the program P’ that operates over

S’ and so that P and P’ are semantically equivalent. The methodology for automatically

Synthesizing Database Programs for Schema Refactoring is subdivided into three tasks

identified and briefly described as follows:
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• Value Correspondence Generation consists of lazily enumerating possible value

correspondences (VC) between the source and target schemas (S and S’ respec-

tively) in decreasing order of likelihood using a partial weighted MaxSAT encoding

(MaxSAT is a generalization of the boolean satisfiability problem and aims to de-

termine the maximum number of clauses that can be satisfied by an assignment of

truth values [20]).

• Sketch Generation is the procedure to generate a sketch Ω that represents all

programs that may be equivalent to P under a given value correspondence φ. This

phase starts with join correspondence done by mapping each join chain used in P to

a set of possible join chains over the target schema. A join correspondence (J , J’) is

valid with respect to φ if φ can map all attributes used in J to attributes in J’.

• Sketch Solver performs a symbolic search (using SAT) over the space of programs

encoded by the sketch Ω and then subsequently check for equivalence. If the two

programs are not equivalent, minimum failing inputs are employed to minimize

the search space. This is achieved by identifying programs that are incorrect for

the same reasons as P’ which in practice involves checking for function invocations

where the query results in P differ from those of P’. Sketch Completion is achieved

if given a sketch Ω and the original program P, it is possible to find an instantiation

P’ of Ω such that P’ is equivalent to P.

This work proves to be relevant in the context of this thesis as program synthesis

is a technique that can generally be applied for finding programs that satisfy a given

specification. The symbolic search performed is especially interesting because of the

possibility of minimizing the search space by discarding programs where the results

after refactoring are not the same. Furthermore, we can consider the target program as

the specification for the search phase, making this specification implicit. Raychev et al.
presented a work [24] that uses program syntheses on the refactoring domain and is in

compliance with the assessment made above.

In Improving multi-objective code-smells correction using development history [25]

the authors use the development history collected from existing software projects to pro-

pose refactorings taking into account the similarity with past situations. The general idea

is to maximize and encourage the use of new refactorings that are similar to those applied

to different software projects in similar contexts. Ouni et al. propose a multi-objective

optimization-based approach to find meaningful sequences of refactoring. The fitness

function comprises the following objectives: 1. minimize the number of code-smells;

2. maximize the use of development history and 3. preserve the construct semantics (how

code elements are semantically grouped and connected).

The non-dominated sorting genetic algorithm (NSGA-II) is used to find the best

trade-offs between the goals mentioned above. The basic idea of NSGA-II is to make

a population of candidate solutions evolve toward the near-optimal solution to solve a
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multi-objective optimization problem [25]. A non-dominated solution provides a suitable

compromise between all the objectives mentioned above, without degrading any of them.

The search-based process takes as inputs: 1. the source code, 2. code smells detection

rules, 3. a set of refactoring operations, and 4. a call graph for the whole program. A

solution consists of a sequence of refactoring operations that should be applied to improve

the quality of the input code. In their approach, they have considered the following code-

smells [25]:

• Blob: One large class that monopolizes the behavior of a system, while other classes

primarily encapsulate data.

• Dataclass: A class that contains only data and performs no processing on the data.

• Spaghetti code: Code with a complex and tangled control structure.

• Functional decomposition: A class designed to perform a single function.

The performance of this refactoring approach is evaluated by accessing if it could

generate meaningful sequences of refactorings that fix code smells while preserving the

construct semantics of the original design and reusing as much as possible the develop-

ment history applied to similar contexts.

The related work mentioned above is used to introduce the use of genetic algorithms

(GAs), as these are the most commonly used algorithms for automatic refactoring found

in the study by Baqais and Alshayeb [21]. The solution presented by Ouni et al. is an

interesting approach to find sequences of refactoring steps. Nonetheless, instruction on

how to implement the automatization of these steps was not presented.

5.3 Other Methods

In Identifying Extract Class refactoring opportunities using structural and seman-

tic cohesion measures [26], Bavota et al. propose an Extract Class refactoring method,

a technique to split a class with many responsibilities into different classes, based on

graph theory and that exploits structural and semantic relationships between methods.

This approach takes a class, identified by a software engineer, as a candidate for refactor-

ing, which is parsed to extract a weighted graph representation. A Max-Flow Min-Cut

algorithm is used to obtain a partition of the original graph (class) in two subsets of

nodes (methods). The partition is obtained by cutting the minimum number of edges

with a low weight. The process results in two sub-graphs that can be used to build two

new classes that have cohesion higher than the original class and without increasing too

much coupling. The attributes of the original class are distributed among the extracted

classes according to how they are used by methods in the new classes. The selected graph

algorithm allows splitting a class into two classes while ensuring that the number of
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dependencies between the two extracted classes is low (because of the min-cut). The oper-

ations are likely performed on classes with low cohesion, splitting into two classes helps

increase the cohesion of the original class and produces a low increment of coupling.

Bavota et al. defined a semi-automatic approach, as the extracted classes are analyzed

by developers who can accept the proposed refactoring or change it by moving methods

and attributes from one class to another. The developer can analyze the cohesion of the

two new classes and possibly re-apply the operation. This is an interesting solution for

allowing governance over automated refactorings in OutSystems as well as displaying

the changes in technical debt that result in resolving an anti-pattern automatically.

Ganea et al. [27] developed INCODE, an Eclipse [52] plugin for continuous quality

assessment and code inspections of Java systems. INCODE also assists developers in per-

forming refactoring operations. It provides concrete refactoring advice on how to solve a

particular problem or how an instance can be corrected, by taking into account the entire

context of dependencies of a class/method. Furthermore, if the plugin detects that in the

given context, a predefined Eclipse refactoring, or a composed restructuring (defined by

the plugin) can be applied, the suggested code transformation can be triggered directly

from the INCODE interface and performed by the IDE. This work manifests a step for-

ward for minimizing the gap between the detection of anti-patterns and their resolution

with automated refactoring techniques.

5.4 Final Discussion

In this chapter different solutions for automated refactoring were presented and analyzed

to understand the different approaches in the current state of the art. With the emergence

of new methods to automate the software refactoring process to reduce the time and

effort required for refactoring [21], automated refactoring proves to be a field at the

vanguard. In our studies, we have observed an increasing interest in applying search-

based methods for detecting refactoring opportunities [28, 29]; for finding the operations

needed to achieve a desired refactored program [23], and the for suggestion of refactoring

opportunities [25, 30]. Several solutions to aid in clone management have also been

addressed in the literature. We have found that most state-of-the-art solutions tend to

exemplarily describe the detection of automated refactoring opportunities but lack in

giving clear solutions on how to solve the detections in an automated way. Although

there are already several tools and plugins integrated into IDEs (such as Eclipse [52]), to

the best of our knowledge, the use of automated refactoring techniques in the context of

SAPs is not yet explored.
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Technical Approach

In this chapter, we present context information about the solution delivered by this disser-

tation as well as our approach for tackling the problem identified in Problem Statement.

We start by presenting the architecture for our automated refactoring tool. Then, we

present the set of anti-patterns that were selected to be tackled in this work. Next, we

present the execution pipeline of the proposed solution. Lastly, we describe the represen-

tation of the programs that we will refactor.

6.1 Solution Architecture

As explored in the previous chapters, the OutSystems refactoring process comprises inef-

ficient and challenging tasks. This process begins when a developer observes a warning

from Architecture Dashboard of an anti-pattern that has been found in the code-base and

suggests that the developer solves this finding by hand. This process becomes inefficient

when we consider the number of findings that Architecture Dashboard detects daily. In

the OutSystems context, there is no tool or mechanism to guide and ease the refactoring

process. Taking this into account, the proposed solution is going to cover the automated

refactoring process in OutSystems.

The solution expected as a result of this dissertation automatically refactors a set of se-

lected high-impact anti-patterns that contribute to high technical debt. For this purpose,

we developed a prototype tool with automated refactoring techniques for OutSystems

logic. The logical architecture of the proposed solution is illustrated in Figure 6.1. The

solution is based on a unidirectional transformation of the source program given as input

of the prototype tool as well as the detection mechanisms to find the anti-patterns in

those flows. The prototype tool has two components, the detection of subcases within the

findings given by the detection component and the Automated Refactoring component

that executes the refactorings. The Subcase detection component operates on the results

of the Detection component that detects anti-patterns in the source program, whilst the

Automated Refactoring component operates on snippets of the program that match sub-

cases of the detected anti-patterns. The Target Program is the result of this process and
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Figure 6.1: Logical Solution Architecture

is a program where the anti-patterns have been refactored. In the thesis context, the

Source Program comprises the logic flows where the detection component will look for

anti-patterns and the Target Program comprises the refactored OutSystems logic flows.

The solution architecture proposed is designed to be generic as possible and not depen-

dent on a specific programming language. This way, in the future it will be easy to extend

with the refactoring of other anti-patterns and generalize for other technologies.

6.2 Anti-Pattern Selection

Considering the high technical debt problem and its identification by the OutSystems’

technical debt monitoring tool and that this work is being developed in an industrial

environment. It was important to take into consideration all of the project’s stakeholder’s

insights on the existing inefficiencies and their suggestions considering the real-world

problems related to the subject. Table 6.1 displays the top ten patterns with the most find-

ings in Architecture Dashboard according to their respective categories as of 10/01/2021.

An internal analysis, conducted at OutSystems on a large set of real-world code bases,

has observed that the amount of duplication is at least 0.7% in the analyzed benchmarks

and reaches as high as 39% in the worst case [6].

After studying and analyzing the complete set of anti-patterns detected by Archi-

tecture Dashboard [46] and with the aforementioned stakeholder’s experience to better

understand their cause, we aimed to establish which patterns would have the most signif-

icant impact and were more urgent to solve. Taking all the above into consideration, the

selected patterns for analysis are the following: 1. Unlimited Records in Aggregate and

2. Duplicated Code.

6.3 Proposed Solution

In the first phase, and for each anti-pattern, we defined rules for syntactic transforma-

tions that solve the patterns correctly. Next, we refactor the patterns according to these
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Table 6.1: Top ten patterns with the most findings in Architecture Dashboard

Category Pattern Findings
Maintainability Missing description on public element 3,122,423

Performance
Unlimited records in Aggregate 1,373,897
Inline CSS style 1,057,730
Large Local Variable in ViewState 599,299

Security Avoid Anonymous/Registered access Screens 540,455
Maintainability Long undocumented flow 405,665

Performance

Long Server Requests Timeout 248,827
Unlimited records in SQL query 221,281
Image widgets without width 154,987
Query data in ViewState 131,204

rules. As for the case of Duplicated Code, performing the Extract to Action operation in

OutSystems (equivalent to Extract Function) and reusing the newly created action solves

the problem of Type I Duplicates. Lastly, we evaluate each refactored pattern accord-

ing to the number of detections/ refactorings performed and to the elapsed time of the

algorithms.

The proof of concept consists of an offline tool that detects and refactors the anti-

patterns currently present in a snapshot of OutSystems code bases. The execution process

of the proposed solution is illustrated in Figure 6.2. The execution pipeline starts with the

input program being analyzed, followed by the detection of the anti-patterns currently

integrated, either by running algorithms developed by us or from previous work that is

taken as input of the prototype tool (see Figure 6.1). Then, if the anti-patterns are found,

we check if they match any subcase that we have identified within this work, if so the

input program is automatically refactored in the next step and is presented at the result

of our process.

In the future, the tool could be integrated into Architecture Dashboard receiving

as input the already detected anti-patterns and automatically refactoring them. It may

be interesting to provide the developer with a warning link to the code and a button

that would perform the automated refactoring. Moreover, the developer would have the

possibility to visualize the changes made to the code base before accepting them.

6.4 Logic Flows

In OutSystems, logic is implemented through logic flows. These flows can correspond

to Client Actions, Server Actions, Screen Actions, Preparation Flows, etc. A Preparation

Flow is a flow that runs during the loading of a screen to retrieve the data that is going to

be displayed in it. In our work we use the same definition/notation for logic flows as in

previous work by Terra-Neves et al. [6].
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A logic flow is a directed weakly connected graph G = (V ,E) where the type of each

node in V is one of the following: Start, End, Instruction, ForEach, If, or Switch. The type

of each edge in E is one of the following: Connector, True, False, Cycle, Condition, or

Otherwise. We refer to the outgoing edges of a node as branches. G satisfies the following

properties:

• G does not contain self-loops or parallel edges.

• V contains only one Start node v and no edge (u′ ,v′) ∈ E exists such that v = v′, i.e.

no branch exists in E for v.

• Given an End node v ∈ V , no branch exists in E for v and there exists at least one

edge (u′ ,v′) ∈ E such that v = v′, i.e. there exists at least one edge in E for v.

• A Start or Instruction node u ∈ V has exactly one Connector branch (u,v) ∈ E.

• An If node u ∈ V has exactly one True branch (u,v) ∈ E and one False branch

(u,v′) ∈ E.

• A ForEach node u ∈ V has exactly one Connector branch (u,v) ∈ E and one Cycle

branch (u′ ,v′) ∈ E such that there exists a path from u to itself through (u′ ,v′).

• A Switch node u ∈ V has at least one Condition branch (u,v) ∈ E and exactly one

Otherwise branch (u′ ,v′) ∈ E.
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The logic flow is similar to the control flow graph of a program written in a traditional

programming language. The execution of the logic flow starts in its Start node and ends in

one of its End nodes. Logic flows can have input and output parameters. The nodes/edges

can have different attributes besides their types, as follows:

• An If node contains a Boolean expression to be evaluated in execution. If the

expression is evaluated to true it continues through its True branch otherwise, it

continues through its False branch. An If node can be used to create cycles over

the value of the given Boolean expression, as there can exist more than one branch

towards the node (e.g. when the expression of an If node v ∈ V is evaluated to

true and as it continues through its True branch to another node u ∈ V , if there

exists (u,v′) ∈ E such that v = v′, there exists a cycle around the If node v while its

expression evaluates to true).

• A ForEach node contains reference to a variable of an iterable type (e.g. list), and

optionally, the start index to iterate through that list and the maximum number of

iterations to be performed. While the variable can be iterated (i.e. the last position

is not reached or the maximum number of iterations, if given, is not surpassed) the

execution continues through its Cycle branch, and this condition is evaluated again

when the path from the node to itself circles black. When the variable can no longer

be iterated, it continues through its Connector branch.

• A Condition branch of a Switch node contains a Boolean expression to be evaluated

in execution. If the expression is evaluated to true, then the execution continues

through that branch otherwise, it continues through the evaluation of the next

branch. Condition branches have a pre-specified order of evaluation. If none of the

branches of the Switch node evaluates to true, the execution continues through its

Otherwise branch.

Instruction nodes can be of various kinds, such as Assign nodes for variable assign-

ments, Aggregate or SQL nodes for database accesses, Execution nodes for calls to other

logic flows, etc. These nodes have different attributes according to their types, some of

the relevant Instruction nodes in our analysis are defined as follows:

• An Assign node can be used to assign values to as many variables as required. For

each of these assignments, it contains an expression for the variable to be assigned

and an expression for its value.

• An Aggregate node contains reference to its sources (the Entities), the joins it per-

forms over the sources, the expressions for the sorts it performs, the expressions for

the filters it applies to the data (e.g. select only columns where the value is above x),

the expressions for attributes it calculates (e.g. repeat the attribute of a column but

multiplied by x), the expressions for the attributes being grouped by (e.g. group

by the id of table store), the expressions for attributes it aggregates (e.g. given the
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group by of the id of the store, sum the revenue of the store) and the expression for

its Max Records value (if given).

• An Execution Action node contains reference to the action to be executed (the logic

flow) and to the arguments required to execute that action. Each argument contains

a reference to the expression to use as value and a reference to the input parameter

of the action that its value will fill.

The kind of expressions in the logic flow that can be evaluated in If nodes, attributed

in Assign nodes, etc., are the following:

• Basic, for an expression with a value of a basic type (e.g. Boolean, Text, Integer,

Date, etc).

• Operation, unary if performed over only one expression (e.g. the negation of a

Basic Boolean expression) or binary if performed over two expressions (e.g. the sum

of two Basic Integer expressions).

• Identifier, for an expression that refers an attribute of a node/ structure (e.g. the

input parameter of an Execution node).

• Compound Identifier, for an expression that refers: 1) another node/ structure in

the flow and 2) an Identifier that specifies an attribute of that node/ structure (e.g.

an Execution node and an Identifier for one of its input parameters, or an Aggregate

node and an Identifier for its Count runtime property).

• Call, for an expression that is the result of a function (e.g. the concatenation of two

Text expressions).

In our analysis, we consider two types of graph representations for flows: logic flow

and extended flow. A logic flow in OutSystems contains only the nodes and edges that

are visible in the Logic layer of the OutSystems’ IDE.

An extended flow is a directed weakly connected graph G′ = (V ′ ,E′) that contains ad-

ditional nodes and edges for connecting the nodes in V to their attributes and expressions.

We use the extended flow representation of the graph to find paths between the nodes in

V that emerge from accessing/modifying the same attributes, that here are represented

by nodes/edges. Since the types for each node in V ′ and each edge in E′ belong to an

extensive set, we will define the relevant types as needed, throughout the explanation of

the detection/refactoring of the anti-patterns.
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Unlimited Records Anti-pattern

In this chapter, we start by defining the Unlimited Records Anti-pattern and providing

further detail on the Aggregate’s structure in OutSystems. Then, we present our approach

for detecting and solving two subcases of the Unlimited Records anti-pattern: the Filter

by Id Subcase and the Count Subcase. Lastly, the results of an experimental evaluation

showing the merits of the proposed techniques are explained followed by a discussion of

the limitations to our approach.

7.1 Definition

Unlimited Records is an anti-pattern found in OutSystems applications which occurs

whenever queries are unbounded, i.e. the maximum number of records to be fetched is

not explicitly limited, resulting in the return of all records and contributing to higher

technical debt. When defining an Aggregate in OutSystems, it is possible to limit the max-

imum number of records to be returned by the Aggregate by defining the Max Records

property. If there are limitations to the number of records that are fetched by a query, it

is considered to be a good practice to define the Max Records property accordingly, to

optimize the query execution time [53]. It is also possible to visualize the Executed SQL

property which contains the SQL statement produced from the Aggregate. This query is

changed to match the given definitions, including the limitation imposed by defining the

Max Records property.

One of the anti-patterns returned by the Architecture Dashboard tool is the Unlimited

Records anti-pattern. These findings can easily escalate and become time-consuming to

fix, as each application usually has several Aggregates (737,443 Aggregates in total across

45,405 modules). Furthermore, there are scenarios where the Max Records limit was not

defined because the query returns only one record by construction (e.g. get by primary

key). These are still flagged by the Architecture Dashboard but could be easily fixed

just by setting the Max Records property to one. The profusion of false positives in this

analysis hinders the handling of truly problematic scenarios. Such scenarios should be

solved automatically so that the developer can focus on the less trivial scenarios and that
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Figure 7.1: Unlimited Records In Aggregate Pie Chart

actually require their attention. Thus, we focus on the identification of such spurious

warnings and automatically fixing some straightforward occurrences, thus contributing

to a more effective software evolution process.

The total number of real-world findings reported in the OutSystems analysis tools, as

of January 2021, consists of +1,3M unbounded queries as displayed in Figure 7.1. The

state-of-the-art solution reports and recommends that developers solve these findings by

hand. However, up to this day, developers only solved 15% (≈ 200K) of the reports.

7.2 Aggregate’s Structure

The Aggregate’s structure was proposed in previous work by Seco et al. [4] which in-

troduced the CombineSources node to allow the use of nested collections and the or-

chestration of several remotely located data sources. This work is also the base for the

OutSystems data layer, allowing for gradual construction of queries and with immediate

feedback to the developers. Figure 7.2 illustrates the Aggregate’s structure. Considering

the extended representation of the graph, an Aggregate can be directly connected to a

Source (if it only has one source) or to a GroupBy node (if it performs any group bys/

has any aggregated attributes) or to a CombineSources node (if it performs any joins

or filters, or contains any calculated attributes). The Max Records value is set if there is

an edge from the Aggregate to an Expression, whose type is MaxRecords. We detect

the Unlimited Records anti-pattern by evaluating the preceding condition.

Aggregates have a Count runtime property that specifies the total number of records

that match the query criteria. Changing the Max Records value does not change this

property, as it consists of an extra query for counting all the records. Usually, there is no
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Figure 7.2: Graph structure example of an Aggregate

need to display all the records on a single screen, and thus it is not necessary to fetch all of

these tuples from the database. The tuples that are fetched can be accessed by referencing

the Aggregate’s List runtime property. SQL knowledge is not required to use Aggregates,

hence concerns such as query time optimization, strongly correlated to the amount of

data fetched from the database, are usually overlooked by OutSystems users. Limiting

the number of records retrieved, when possible, will improve the screen loading time,

making applications faster and more responsive, which is a top priority for OutSystems

users.

7.3 Filter By Id Subcase

When defining an Aggregate in OutSystems, the developer can define: sources (tables)

for the data to be fetched, joins between sources, filters that are equivalent to where

conditions in SQL, etc. The Filter By Id subcase consists of an Aggregate that has one

or more filters, and at least one of them is an equality condition involving the primary

key of one of the sources. Considering that an Aggregate has sources that correspond to

relational databases and that each source (table) has a primary key and may have foreign

keys to other sources (tables). If we were to define a SQL query as shown in Query 1), with

a SELECT clause on only one table R and with a WHERE clause checking if the primary key

id is equal to some value c. Then, at most one record would satisfy the where condition

otherwise, the attribute would not be a primary key. We can extend this rule to a query
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Figure 7.3: Example of an ERD representing a simplified Store

selecting more than one table, as long as enough filters are applied to ensure that at most

one record would satisfy the query.

Query 1) SELECT * FROM R WHERE R.id = c;

The primary identification of this subcase came from one of the project’s stakeholder’s

insights, that besides already having identified the Unlimited Records anti-pattern as

a predominant anti-pattern, also distinguished the most common case that was being

flagged, it being the Filter By Id Subcase. In our analysis, we observed that the Filter

By Id subcase is fairly frequent in practice, contributing to 28% of the occurrences of

the Unlimited Records anti-pattern. The goal of this analysis is to be able to limit the

Max Records property, by setting it to one and therefore solving these straightforward

occurrences.

This section presents our approach for solving the problem of finding Aggregates that

match the Filter By Id subcase of the Unlimited Records anti-pattern among a given set of

aggregatesA1,A2, ...,An and how to fix them. We start by presenting a concrete example of

Filter By Id subcase and the sound rules following Relational Databases query size rules

that make an Aggregate fall into this subcase in Section 7.3.1, followed by an example in

SQL and OutSystems and a description of the detection algorithm. In Section 7.3.2 we

present the solution and the refactoring algorithm for the Filter By Id subcase.
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Figure 7.4: Filter By Id Service Studio

7.3.1 Detection

For detecting the Filter By Id Subcase we consider the extended representation of the

flow to check if the expressions for the Aggregate’s filters reference the primary keys of

the sources and to analyze the data model, namely the relations between the Aggregate’s

sources. In this chapter, when giving examples of each subcase we will refer to the data

model displayed in the Entity Relationship Diagram (ERD) in Figure 7.3 representing a

simplified Store. Figure 7.4 illustrates a logic flow in OutSystems for getting the name

of the category of a given product. To verify the necessary conditions, we look at the

representation in Figure 7.5 that shows a simplified example of the extended flow repre-

sentation of the same logic flow, used for assigning to a local variable ProductCategory,

the name of the Category that a given Product belongs to. Considering two database ta-

bles Product and Category and that Product has an attribute CategoryId, i.e. the foreign

key reference to the primary key of Category, then each Product has only one Category. If

the Aggregate definition contains an inner join over tables Product and Category and the

join condition is the equality of the foreign key CategoryId with Id, the primary key of the

Category. Then each Product will match exactly one Category and the size of the results

after the join would be the same size as the Product table. If we further define a filter that

checks if Id, the primary key of Product, is equal to some local variable ProductId, the

local variable will match with at most one Product otherwise, it would not be a primary

key. When assigning the name of the Category to the local variable ProductCategory, the

List property of the Aggregate would have at most one row matching the Product with

the Id in the local variable ProductId, together with the information of its Category. This
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Figure 7.5: Graph structure example of an Aggregate used to filter by primary key

example matches the Filter By Id subcase of the Unlimited Records anti-pattern.

To detect that an Unlimited Records in Aggregated occurrence falls into the Filter By

Id subcase, we start by defining sound rules that follow Relational Databases query size

rules. Then, we propose an algorithm that evaluates these rules given a set of Aggregates

and that, if these are respected, classifies them as Filter By Id subcase occurrences.

7.3.1.1 Rules

The following rules are considered for estimating the number of tuples resulting from a

relational algebra expression over n relations:

• One Relation. Consider a relation R (n = 1), if a filter by id is performed over the

primary key a of R, then the query will return at most a single record. Having c as

a constant, and since there exist T(R) distinct values for a in R, the estimate for the

number of tuples in the query result is:

T (σR.a=c(R)) =
T (R)
V (R,a)

=
T (R)
T (R)

= 1 (7.1)

• N Relations. Consider relations R1,R2, . . . ,Rn (n > 1), joined in pairs using any type

of join (./, ./, ./ , ./ and ×) and that the same relation may be joined more than

once. In the case of theta-joins, the join condition can be combined with any other

condition C1,C2, . . . ,Cn, as long as it uses the conjunction operator (∧), as follows:

R1 ./C1∧C2∧···∧Cn (R2)

If we can estimate that every result relation Ei being joined will have at most a single

record, and because in the worst-case estimate the size of intermediate relations are

multiplied (see Section 4.1.5.2), the estimate for the number of tuples in the query

result is:

T (E1 ./θ E2 ./θ . . . ./θ En) = 1× 1× · · · × 1 = 1 (7.2)

63



CHAPTER 7. UNLIMITED RECORDS ANTI-PATTERN

For every join performed between two relations one of the following rules need to

be satisfied:

– One-To-One Relationship. Consider two relations R and S such that the pri-

mary key a of R is both a foreign key and the primary key of S. Given any join,

except the cross join, over a, due to a being both the primary key of R and of S

and a foreign key in S (one-to-one relationship), T (S) = T (R) and the number

of tuples returned by the join is:

T (R ./R.a=S.a (S)) = T (S) = T (R)

If a filter by id is performed over the primary key of any of the tables R or S,

then the query will return at most a single record. Having c as a constant, and

since there exist T(R) distinct values for a in R, the estimate for the number of

tuples in the query result is:

T (σR.a=c(R ./R.a=S.a (S))) =
T (R)
V (R,a)

=
T (R)
T (R)

= 1 (7.3)

– One-To-Many Relationship. Consider two relations R and S such that the

primary key a of R is a foreign key of S (one-to-many relationship) and b is the

primary key of S. Given any join, except the cross join, over a, due to a being

the primary key of R and a foreign key in S, the size of the join is:

T (R ./R.a=S.a (S)) = T (S)

If a filter by id is performed over b, then the query will return at most a single

record. Having c as a constant, and since there exist T(S) distinct values for b

in S, the estimate for the number of tuples in the query result is:

T (σS.b=c(R ./R.a=S.a (S))) =
T (S)
V (S,b)

=
T (S)
T (S)

= 1 (7.4)

– Other relationships. Consider two relations R and S such that a is the primary

key of R, and b is the primary keys of S. Given any of the following cases: 1)

R and S are joined with a cross join (×) or 2) R and S are joined with any join,

except the cross join, and the join condition does not relate a primary key with

a foreign key or 3) R and S have no foreign keys to each other, if a filter by id

is performed over the primary keys of both tables being joined, then the query

will return a single record. Given a cross join between R and S, the query size

estimation for the cross join operation would be:

T (R× S) = T (R)× T (S)

If two filters by id are performed, over a and over b, then the query will return

at most a single record. Having c and d as constants, and since there exist T(R)
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(a) Product Source (b) Filter By Id over Product

Figure 7.6: Filter By Id on one Source Example in OutSystems

distinct values for a in R and T(S) distinct values for b in S. The estimate for

the number of tuples in the query result is:

T (σR.s=c∧S.b=d(R× S)) =
T (R)
V (R,s)

× T (S)
V (S,b)

=
T (R)
T (R)

× T (S)
T (S)

= 1× 1 = 1 (7.5)

• Filters. Consider m selections F1,F2, . . . ,Fm (m ≥ 0) over E a result relation of an

expression that performs operations over n relations (n > 0). The number of tuples

returned by the expression will be at most the number of tuples in E as the selection

operand only restricts the data (Section 4.1.5.1). Since we are considering arbitrary

filters and not only filters on equality conditions, the estimate for the number of

tuples in the query result is:

T (σF1,F2,...,Fm(E)) = T (E)

If we can estimate that the number of records in E will be at most a single record,

and because if the filters are combined through the conjunction operator (∧), then

the query will return at most a single record.

T (σF1,F2,...,Fm(E)) = T (E) = 1 (7.6)

7.3.1.2 SQL and OutSystems Example

Considering each of the rules defined in Section 7.3.1.1 in Relational Algebra, we will

now give concrete examples of scenarios in OutSystems and SQL where these rules apply.

Figure 7.6 illustrates an Aggregate in OutSystems for getting a product by its primary

key id. We can verify that only one source is being queried (Figure 7.6a), the Product

table in the ERD (Figure 7.3), and in that the only filter being applied is a filter by id
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(a) Join of Employee with ContactInfo
(b) Filter By Id over Employee or Con-
tactInfo

Figure 7.7: Join of two Sources with a One-To-One Relationship Example in OutSystems

(Figure 7.6b), matching the id of Product with a local variable ProductId (Rule 7.1).

Lastly, we can verify that only one row is returned for this definition. Query 2) matches

this Aggregate’s definition.

Query 2) SELECT * FROM Product

WHERE Product.Id = ProductId;

Figure 7.7 illustrates an Aggregate in OutSystems for getting the contact information

of an employee. We can verify that two sources are being joined (Figure 7.7a), the Con-

tactInfo table and the Employee table. Additionally, the join condition matches the

id of ContactInfo with the id of Employee (Figure 7.3). These two tables share a

one-to-one relationship, one row of table Employee matches one row of table Contact-

Info as they share the same primary key. Thus, when we perform a filter by id matching

the id of Employee with a local variable EmployeeId (Figure 7.7b), we can verify that

only one row is returned (Rule 7.3). Query 3) matches this Aggregate’s definition.

Query 3) SELECT * FROM ContactInfo INNER JOIN Employee

ON ContactInfo.Id = Employee.Id

WHERE Employee.Id = EmployeeId;

Figure 7.8 illustrates an Aggregate in OutSystems for getting the category of a given

product. We can verify that two sources are being joined (Figure 7.8a), the Product table

and the Category table, additionally the join condition matches the id of Product

with the id of Category (Figure 7.3). These two tables share a one-to-many relationship,

since one row of table Product matches one row of table Category and one category

can be matched by many products, the size of joining these two tables will be at most
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(a) Join of Product with Category (b) Filter By Id over Product

Figure 7.8: Join of two Sources with a One-To-Many Relationship Example in OutSystems

(a) Cross Join of Employee with Contact
Info (b) Filters By Id over Employee and Contact Info

Figure 7.9: Cross Join of two Sources with two Filters By Id Example in OutSystems

the size of table Product. Thus, when we perform a filter by id matching the id of

Product with a local variable ProductId (Figure 7.8b), we can verify that only one

row is returned (Rule 7.4). Query 4) matches this Aggregate’s definition.

Query 4) SELECT * FROM Product INNER JOIN Category

ON Product.CategoryId = Category.Id

WHERE Product.Id = ProductId;

Figure 7.9 illustrates an Aggregate in OutSystems for getting the contact information

of an employee. We can verify that two sources are being joined with a cross join (Fig-

ure 7.9a), the Employee table and the ContactInfo table, as this is a cross join no join
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(a) Product Source
(b) Two Filters: Filter By Product Id and Filter By
Price

Figure 7.10: More than one Filter Example in OutSystems

condition is defined even though the tables share a primary key. Figure 7.9b shows how

performing two filters by id, one matching the id of Employee with a local variable

EmployeeId and the other matching the id of ContactInfo with a local variable

ContactInfoId, restricts the data leading to a result of only one row (Rule 7.5). Query

5) matches this Aggregate’s definition.

Query 5) SELECT * FROM ContactInfo, Employee

WHERE Employee.Id = EmployeeId

AND ContactInfo.Id = ContactInfoId;

Figure 7.10 illustrates an Aggregate in OutSystems for getting a product by its primary

key id if its price is above 150. We can verify the source being queried (Figure 7.10a),

the Product table, and that two filters are being applied (Figure 7.10b), namely: one

filter by id, matching the id of Product with a local variable ProductId and a filter

for selecting the product if its P rice > 150 (Rule 7.6). Lastly, we can verify that only one

row is returned for this definition. Query 6) matches this Aggregate.

Query 6) SELECT * FROM Product

WHERE Product.Id = ProductId AND Product.Price > 150;

7.3.1.3 Algorithm

Algorithm 1 detects Aggregates used to filter by primary key. It receives as input a set

of n Aggregate nodes A1,A2, ...,An and returns a set R of Aggregate nodes that match the

Filter By Id subcase. For the n Aggregate nodes to analyze, it checks if the number of
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Algorithm 1: Detecting Aggregates used to filter by primary key algorithm.
Input: A1, A2,. . . ,An

1 R←∅;
2 for i← 1 to n do
3 if |Filters(Ai)| > 0 then
4 if |Sources(Ai)| = 1 then
5 s← Pop(Sources(Ai));
6 foreach f ∈ Filters(Ai) do
7 if IsFilterById(f, s) then
8 R← R ∪ Ai ;
9 break

10 else
11 v← T rue;
12 foreach j ∈ Joins(Ai) do
13 vj← False ;
14 ls, rs← LeftSource(j), RightSource(j);
15 if ¬ IsCrossJoin(j) then
16 if HasForeignKey(ls, rs) then
17 vj←IsSafeJoin(ls, rs, Condition(j), Filters(Ai));
18 if ¬vj ∧ HasForeignKey(rs, ls) then
19 vj←IsSafeJoin(rs, ls, Condition(j), Filters(Ai));
20 if ¬vj then
21 l, r← False,False;
22 foreach f ∈ Filters(Ai) do
23 if ¬l then
24 l← IsFilterById(f, ls)
25 if ¬r then
26 r← IsFilterById(f, rs)
27 vj← l ∧ r;
28 if ¬vj then
29 v← False;
30 break
31 if v then
32 R← R ∪ Ai ;
33 return R

filters is at least one (line 3) otherwise, there is no filter by id and this Aggregate does

not match the subcase. If the Aggregate Ai only has one source (line 4), for each of the

filters in Ai (line 6), it calls the auxiliary function IsFilterById (line 7). The auxiliary

function IsFilterById receives as parameters a filter f and a source s, and returns true

if f is a filter by id, i.e. it is an equality condition with the left operand being the primary

key of s. If f contains a conjunction operator, it returns true if either the left operand

or the right operand of the condition are filters by id, so the function IsFilterById is

called recursively for every conjunction in the filter. If f is a filter by id, Ai matches the

Filter By Id subcase because only one filter by id is needed for the one source (Rule 7.1)
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Function 1: IsSafeJoin(sfk, spk, c, F)

1 v← f alse;
2 f k← ForeignKey(sfk, spk);
3 if IsSafeCondition(c, PrimaryKey(spk), fk) then
4 if PrimaryKey(spk) = PrimaryKey(sfk) then

// One-To-One

5 foreach f in F do
6 v← IsFilterById(f, sfk) ∨ IsFilterById(f, spk);
7 if v then
8 break
9 else

// One-To-Many

10 foreach f in F do
11 v← IsFilterById(f, sfk);
12 if v then
13 break
14 return v;

and separate filters in Aggregates are combined using conjunctions (Rule 7.6).

Otherwise, if Ai has more than one source, for each of the joins j defined in the

Aggregate (line 12) it will check if j is a safe join, i.e. the Aggregate has the necessary

filters by id (one or two depending on the join definition) for that join’s result to be at

most one record. If the join is not a cross join (line 15), it checks if the left source ls has a

foreign key to the right source rs or the opposite, since if there is a foreign key, there is a

possibility that this join only needs one filter by id and so it calls function IsSafeJoin

(line 17).

The auxiliary function IsSafeJoin receives as parameters the source that has the for-

eign key sfk, the source with the primary key spk, the join condition c and the Aggregate’s

filters F, and returns a value v that is true if: 1) the foreign key fk is also the primary

key of sfk and one filter by id is found on the primary key of source with the foreign key

sfk or on the source with the primary key spk (Rule 7.3), or 2) one filter by id is found

on the primary key of the source with the foreign key sfk (Rule 7.4). Initially, it checks

if c is a safe join condition (line 3), i.e. it is an equality condition on the foreign key fk
with the key of spk. Next, it checks if the foreign key fk is equal to the primary key of the

source sfk (line 4), if so, the relationship between the sources is a one-to-one relationship

as they share the same primary key, thus the filter by id can be performed on either one

of the sources (Rule 7.3). Thus, it iterates through each filter f in F (line 5) and checks

if f is a filter by id for any of the sources sfk or spk (line 6). If a filter by id is found, the

iteration stops due to 1) only one filter by id is needed (Rule 7.3) and 2) separate filters

are combined with the conjunction operator (Rule 7.1). Otherwise, if the foreign key fk
is not the primary key of the source with the foreign key sfk, the relationship between

the sources is a one-to-many relationship and thus the filter by id has to be performed on
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(a) Graph structure example of an Aggregate used
to filter by primary key after refactoring
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Figure 7.11: Aggregate with Max Records set to 1

the “many” side, i.e. on the source with the foreign key (Rule 7.4). Similarly, it iterates

through each filter f in F (line 10), but only checks if f is a filter by id for sfk (line 11),

the source with the foreign key. If a filter by id is found, it stops the iteration due to: 1)

only one filter by id is needed (Rule 7.4) and 2) separate filters are combined with the

conjunction operator (Rule 7.6).

In Algorithm 1, if vj is false (line 20), i.e. the join is not valid, one of the following

cases is present: 1) the join is a cross join or 2) there are no foreign keys relating the tables

or 3) the join condition was not on the equality of the foreign key with the primary key of

the sources, and thus the Aggregate needs two filters by id over the primary key of each

source (Rule 7.5). Thus, it iterates through each filter f in Ai and, if the two filters have

not been found, checks if f is a filter by id for either of the sources being joined ls or rs

(lines 24 and 26). The join is valid if both filters are found (line 27). If the join is not valid,

the iteration through the joins can stop as all the joins needed to be valid (Rule 7.2).

7.3.2 Refactoring

Automatically refactoring the Filter By Id subcase consists of setting the Max Records

value to 1. This refactoring arguably preserves the behavior of the program as the sound-

ness of the rules can be checked in a straightforward fashion (see Section 7.3.1). This

process varies depending on the SAP logic. Figure 7.11a shows the graph representa-

tion of fixing the Filter By Id subcase by setting the Max Records to 1 in OutSystems

following the example in Figure 7.5. As the rest of the graph remains unchanged, it is

omitted for simplification purposes. Figure 7.11b shows the result of this refactoring in

the OutSystems environment.
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7.4 Count Subcase

Aggregates can be used to discover how many records match a certain query. The Count

subcase occurs when the developer defines an Aggregate with as many sources, joins,

and filters as necessary, but then only uses the Count property of the Aggregate, never

accessing the resulting list returned by the query. To match the Count subcase this

Aggregate can not be referenced in a Preparation Flow since these flows are used to

load screen data and thus the Aggregate’s results are implicitly accessed. Figure 7.12

illustrates a logic flow defined for getting the number of products that match a given

category. During runtime, after executing a query to get all the Products that match this

condition, when the variable NProducts is assigned the Count value of the Aggregate,

another query will run to count these records. In this flow, the list returned from the

Aggregate’s definition is never referenced because we are only interested in finding out

the number of products that match the category and not in reasoning about the products’

data.

The identification of this subcase came from analyzing the structure/ attributes of

the Aggregate as well as inspecting real-world code bases written in OutSystems and

observing their logic flows. Although not as common, ≈1% of the occurrences of the

Unlimited Records anti-pattern, this subcase proved to be relevant to refactor due to it

leading to a visible improvement in the code’s structure.

This section presents our approach for solving the problem of finding Aggregates that

match the Count subcase of the Unlimited Records anti-pattern among a given set of

aggregates A1,A2, ...,An and how to fix them. We start by presenting an example of the

Count subcase of the Unlimited Records anti-pattern and the respective algorithm for

detecting Aggregates used to count the number of records that match the query in Sec-

tion 7.4.1. Lastly, the automated refactoring algorithm for the Count subcase is described

in Section 7.4.2.

7.4.1 Detection

The process of detecting the Count Subcase depends on the programming language. For

detecting the Count Subcase in logic flows, we have to consider the extended represen-

tation of the flow to verify if the nodes in a flow reference the Aggregate’s runtimes

properties. Figure 7.13 shows an example of the extended representation of the logic

flow presented in Figure 7.12 used for assigning the number of products that belong to

a given Category to a local variable NProducts. In this example, the filter is defined

as the equality of Id, the primary key of the source Category, with a local variable

CategoryId, and we expect that the local variable will match with all the products that

belong to that category. When assigning to NProducts the result of the Count property,

the program executes the same query defined in the Aggregate but this time for counting

the records instead of returning them. The result of the query performed by the Count
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Figure 7.12: Count Runtime Property of an Aggregate
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Figure 7.13: Graph structure example of an Aggregate used to count the number of
records that match the query

property will have only one record: the number of products that belong to that category.

This example matches the Count subcase of the Unlimited Records anti-pattern.

Algorithm 2 detects Aggregates used to count the number of records that match the

query. It receives as input a set of n Aggregate nodes A1,A2, ...,An and returns a set R

of Aggregate nodes that match the Count subcase. It starts by iterating through the

predecessors of the Aggregate (line 10), and then their predecessors recursively. The

iteration stops if the Aggregate is referenced in a Preparation Flow or when the algorithm

reaches the root of the graph. This process is done to analyze all direct and indirect

predecessors of Ai to guarantee that Ai can be refactored safely. Next, it iterates through

the Aggregate’s successors (line 18) and checks if the successor is one of the Aggregate’s

runtime properties (line 19). The references to a runtime property will correspond to

edges starting in any node and leading to the runtime property through reference edges.

73



CHAPTER 7. UNLIMITED RECORDS ANTI-PATTERN

Algorithm 2: Detecting Aggregates used to count the number of records that
match the query algorithm.

Input: A1, A2,. . . ,An

1 R←∅;
2 for i← 1 to n do
3 N,V ← {Ai}, ∅;
4 v← T rue;
5 while v ∧ |N | > 0 do
6 n← Pop(N);
7 if n < V then
8 V ← V ∪n ;
9 P ← Predecessors(n);

10 foreach p in P do
11 if IsPreparation(p) then
12 v← False;
13 break
14 else
15 N ←N ∪ p ;
16 if v then
17 c← False;
18 foreach s in Successors(Ai) do
19 if IsRuntimeProperty(s) then
20 foreach ie in InEdges(s) do
21 if IsReferred(ie) then
22 if IsList(s) then
23 v← False;
24 break
25 else if IsCount(s) then
26 c← T rue;

27 if v ∧ c then
28 R← R ∪ Ai ;
29 return R

Thus, the algorithm iterates through the “in edges” of the runtime property node (line 20)

and checks if the edge corresponds to a reference (line 21). If the runtime property that

was referenced was the List property (line 22), then the Aggregate’s records are accessed

and this Aggregate can not be refactored as a Count subcase. Otherwise, if the runtime

property that was referenced was the Count property (line 25), then there is a possibility

that this Aggregate corresponds to the Count subcase as long as the other conditions are

satisfied. If v and c are both true at the end of the algorithm (line 27), then the Aggregate

was not referenced in a Preparation Flow, the List property was not referenced and the

Count property was referenced at least once, thus Ai matches the Count subcase.
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Figure 7.14: Graph structure example of an Aggregate used to count the number of
records that match the query after refactoring

7.4.2 Refactoring

Our solution for automatically refactoring the Count subcase consists in replacing the

references to the Count property with references to an additional aggregated attribute

for counting, defined in the Aggregate. Thus, leading to only one query being performed

instead of n queries, corresponding to the n accesses in a flow to the Count property. How-

ever, this process in OutSystems is not as straightforward, since Aggregates do not have

mechanisms for 1) counting all rows (COUNT(*) or COUNT(1)), 2) counting more than one

attribute (COUNT(a,b)), and 3) counting Group By attributes (COUNT(b)... GROUP BY b).

Hence, for counting all rows, we add a calculated attribute to the query consisting of the

concatenation of the primary keys of all the sources being queried and count the distinct

values of this attribute instead of doing a count over all the attributes. Aggregates can

have several joins, the join type that leads to the most results is the cross join. As shown

in Section 4.1.3, for two tables R and S, the number of tuples resulting from the cross

join operation is equal to the product between the number of tuples of the first table and

the second table (T (R)× T (S)), because each tuple in R (each distinct key of R) is paired

with each tuple S (each distinct key of S). Thus, if we create a calculated attribute as the

concatenation of the primary key of Rwith the primary key of S, we have a different value

for this attribute per row as each distinct value for the primary key of R was paired with

each distinct value for the primary key of S. These conditions can be extended to any

type of join and as many joins as defined in the Aggregate. The number and type of filters

performed do not affect the calculated attribute, as filters only restrict the data, leaving

the size and the number of tuples in a query as at most the same as before applying them.

Figure 7.14 shows the transformations performed to the OutSystems extended flow

following the example in Figure 7.13. In this example, besides adding the Max Records

value the same way as performed for the Filter By Id subcase in Section 7.3.2, it is nec-

essary to add the calculated attribute ConcatIds as the concatenation of the Ids of the

Product and the Category tables. Next, the Count aggregate attribute is defined over
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(a) Aggregate’s added attributes: Count and ConcatIds

(b) Replace extra query with access to the Count attribute

Figure 7.15: Count Subcase Refactoring in OutSystems

this calculated attribute. In Figure 7.15a it is possible to verify that the output of the Ag-

gregate will only be the Count attribute after adding the two attributes in OutSystems.

Finally, the right side of the assignment to NProducts is replaced to use the Count

attribute present in the List property returned by the Aggregate instead of the Count

property. Figure 7.15b illustrates the process in OutSystems of replacing the value side of

the assignment. These transformations lead to only one query being performed and only

one record is returned by the query. Limitations to this process are discussed in Section

7.6.
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7.4.2.1 Rules

The following rules are considered for estimating the number of tuples resulting from a

relational algebra expression over n relations:

• One Relation. Consider a relation R (n = 1) and the primary key a of R. Let E be the

result relation of performing operations overR. If we define a COUNT function over

a, because the COUNT produces the number of values in a column (Section 4.1.3.8)

and because the selected column is a primary key, and so is unique for every single

tuple, there exist T(R) distinct values for a in R. Thus, the COUNT value will hold

exactly the number of tuples of relation R. Because no group by attributes were

defined (nor other aggregated attributes), the COUNT computes one single result

for the whole group (all the tuples of relation R). If we project only c, the result of

the COUNT computation, as the projection operator leaves the number of tuples in

the result unchanged, the query will return a single record.

T (Πc(G COUNT(a)→ c (E))) = 1 (7.7)

• N Relations. Consider n relations R1,R2, . . . ,Rn (n > 1), and that a1, a2, . . . , an are the

primary keys for each of the n relations, respectively. The relations can be joined

in pairs using any type of join (./, ./, ./ , ./ and ×) and the join condition can be a

combination of conditions C1,C2, . . . ,Cn. The estimate for the size of the result of

joining the n relations will be at most the product of the number of tuples in each

relation (see Section 4.1.5.2), as follows:

T (R1 ./θ R2 ./θ . . . ./θ Rn) = T (R1)× T (R2)× · · · × T (Rn)

To distinguish the tuples in the relations we resort to the primary keys that can

uniquely identify them in a relation (Section 4.1.1.2). Let E be the result relation

of performing operations over the n relations, if we define a COUNT function over

a1, a2, . . . , an, because the COUNT produces the number of value combinations for

the given columns (Section 4.1.3.8) and because the selected columns are primary

keys, and so they uniquely identify every single tuple, there exist T (R1×R2×· · ·×Rn)

distinct values in the result relations. Thus, no matter the number of joins per-

formed the COUNT value will hold exactly the number of tuples in the result rela-

tion. Because no group by attributes were defined (nor other aggregated attributes),

the COUNT computes one single result for the whole group (all the tuples of result

relation E). If we project only c, the result of the COUNT computation, as the pro-

jection operator leaves the number of tuples in the result unchanged, the query will

return a single record, as follows:

T (Πc(G COUNT(a1, a2, . . . , an)→ c (E))) = 1
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Algorithm 3: Refactoring Aggregates used to count the number of records that
match the query algorithm.

Input: A1, A2,. . . ,An

1 for i← 1 to n do
2 S,T ← Sources(Ai), AggregateAttributes(Ai);
3 if |GroupBys(Ai)| = 0∧ |T | = 0 then
4 c← null;
5 if |S | = 1 then
6 c←AddCount(PrimaryKey(Pop(S)), Ai);
7 else
8 k← ε;
9 foreach s ∈ S do

10 k← k· PrimaryKey(s);
11 c← AddCount(k, Ai);
12 ReplaceCountReferences(c, Ai);
13 AddMaxRecords(1, Ai);

If instead of defining the COUNT function over the primary key attributes a1, a2, . . . , an
we define an extended projection (Section 4.1.3.10) with a calculated attribute re-

sulting from the concatenation of a1, a2, . . . , an, the primary keys of all the sources

being joined, we will produce a new column c with a value for every row (leaving

the number of tuples intact even though the size of the relation increased). Since

each expression has as many different tuples as the unique keys in the result re-

lation, the COUNT function produces the number of value combinations for the

given columns (Section 4.1.3.8) and the because new column k is the concatenation

(“·”) of the primary keys, they still uniquely identify every single tuple, there exist

T (R1 ×R2 × · · · ×Rn) distinct values in the result relations. If we project only c, the

result of the COUNT computation, as the projection operator leaves the number of

tuples in the result unchanged, the query will return a single record, as follows:

T (Πc(G COUNT(k)→ c (Πa1·a2·...·an→k(E)))) = 1 (7.8)

7.4.2.2 Algorithm

Algorithm 3 is used for automatically refactoring the Count subcase. It receives as input

a set of n Aggregate nodes A1,A2, ...,An and for each Aggregate Ai , the algorithm checks

if the Aggregate does not perform any group bys and does not have any aggregated

attributes (line 3). If the Aggregate only has one source (line 5), it adds a count attribute

c as the count of the primary key of the only source (line 6), which will hold exactly the

number of tuples in the result relation (Rule 7.7). Otherwise, for each source S defined

in the Aggregate, it concatenates the key k with the primary key of the current source S

(line 10). After the iteration, it sets c as the count of the concatenated key (line 11), that

will match the number of tuples in the result relation (Rule 7.8). Lastly, it replaces the
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Table 7.1: Missing Max Records statis-
tics.

Parameter Total %
Aggregates 737,443 -
Missing Max Records 514,826 69.8%

Table 7.2: Unlimited Records statistics
matching subcase.

Parameter Total %
Aggregates 737,443 -
Filter By Id 234,564 31.8%
Count 4,532 0.6%

references of the Count runtime property with references to the count attribute c (line 12)

and adds the Max Records edge to the Aggregate setting this value to one (line 13).

7.5 Experimental Evaluation

In this section, we evaluate the performance of the algorithms for detecting and au-

tomatically refactoring the Filter By Id and Count subcases of the Unlimited Records

anti-pattern proposed in Section 7.3 and Section 7.4, respectively. All experiments were

run on a Windows 10 Enterprise instance with 16 GB of RAM and an Intel® Core™ i5-

8350U CPU@1.70GHz. The algorithms were executed on benchmark sets of graphs from

a random sample of 500 real-world code bases written in OutSystems. The code bases

were sampled from the total of 1481 code bases that existed at data collection time. Only

benchmarks for which there exists at least one Aggregate are considered in the evalu-

ation. In this analysis, two performance indicators are considered: the percentage of

missing max records findings by subcase that can be solved with our algorithms and, the

detection and refactoring time, i.e. the elapsed time since the start of the algorithm until

termination.

Even though the Unlimited Records anti-pattern is already detected in Architecture

Dashboard, because this is an offline proof of concept tool, we evaluated the presence of

the anti-pattern in our sample by checking a simple rule to collect the necessary statistics

without running it through Architecture Dashboard. As mentioned earlier, detecting an

Unlimited Records occurrence is equivalent to checking if the Max Records value is set.

In our analysis, we refer to Unlimited Records anti-pattern occurrences as Missing Max

Records occurrences as the two concepts are akin. Statistics regarding the number of

Aggregate nodes and Missing Max Records occurrences are summarized in Table 7.1. In

the analyzed sample, 69.8% of Aggregates were Missing Max Records and each one of

them leads to an unbounded query.

Table 7.2 presents the number of Aggregates that match each of the two subcases

found in the benchmark sets, regardless of the value of their Max Records property. These

statistics show that 31.8% of Aggregates match the Filter by Id subcase and that 0.6% of

Aggregates match the Count subcase.

Table 7.3 shows that, for the Filter By Id subcase, 60.2% of the findings are missing

the Max Records property and this is a substantial amount of findings to be resolved with

our automated refactoring techniques. Table 7.4 is similar to the previous table except
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Table 7.3: Filter By Id subcase statistics.

Parameter Total %
Filter By Id 234,564 -
Missing Max Records 141,324 60.2%
Max Records != 1 5,232 2.2%

Table 7.4: Count subcase statistics.

Parameter Total %
Count 4,532 -
Missing Max Records 3,981 87.8%
Max Records != 1 253 5.6%

Table 7.5: Maximum and total elapsed time for executing algorithms.

Algorithm Max Total
Detecting Missing Max Records < 0s 10s
Detecting Filter By Id 5s 2m18s
Detecting Count 4s 58s
Refactoring Filter By Id 29s 5m18s
Refactoring Count < 0s 1s
Benchmark Analysis 33m14s 13h59m0s

Table 7.6: Unlimited Records per subcase and Missing Max Records statistics.

Parameter Min ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.90 ρ = 0.95 ρ = 0.99 Max
Missing Max Records 0.0% 57.5% 76.2% 89.1% 95.1% 98.7% 100.0% 100.0%
Filter By Id 0.0% 17.5% 24.8% 31.8% 39.7% 44.8% 59.5% 100.0%
Count 0.0% 0.0% 0.2% 0.8% 2.2% 3.7% 7.9% 10.0%

for the fact that it shows information regarding the Count subcase. Even though it is

not as common for an Aggregate to fall into the Count subcase, 0.6% of Aggregates, the

number of findings missing the Max Records property, 87.8% of occurrences, justifies

the relevance of refactoring this subcase as this proves that developers find it difficult to

reason about the number of records the Aggregate returns.

The percentage value for the ‘Max Records != 1’ parameter shows the number of

findings that have the Max Records set to a value other than one. For the Filter By Id case

only a small number of findings match this condition, 2.2% (Table 7.3). We can calculate

that, for the Filter By Id subcase, a considerable amount of findings, 37.5%, have the

Max Records property set to the correct value (based on our rules). Even though, only a

small number of findings matching the Count subcase have the Max Records property

set, the percentage of findings with the Max Records set to a value other than one, 5.6%

(Table 7.4), is still lower than the number of findings set to the value we would expect,

6.6% (’= 1’).

Table 7.5 shows the elapsed time for this experimental evaluation. It is possible to see

that the time spent in detecting and refactoring the subcases of the Unlimited Records

anti-pattern is considerably fast, less than 9 minutes, considering that the elapsed time

for the total benchmark analysis amounts to 13 hours due to the process of loading and

caching the data.

Table 7.6 shows the number of Missing Max Records per Unlimited Records subcase.

These statistics represent the percentage of Missing Max Records that can be solved

through our automated refactoring techniques. The ρ = x columns show the result from
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Table 7.7: Automated Refactoring statistics.

Parameter Total
% From
Subcase

% From
Total

Refactored Filter By Id 140,175 99.2% 27.2%
Refactored Count 2,390 60.0% 0.5%
Total 142,565 98.1% 27.7%

the analysis of the x percentage of the benchmarks for each parameter. For example, a

value of 24.8% in the ρ = 0.5 column of the ‘Filter By Id’ parameter represents that, in

50% of the benchmarks, 24.8% or less of the Aggregates match the Filter By Id subcase. A

value of 0% in the ‘Min’ column represents benchmarks where every Aggregate matching

that subcase has the Max Records property defined. Similarly, a value of 100% in the

‘Max’ column represents benchmarks where every Aggregate matching that subcase is

missing the Max Records property.

Figure 7.16 shows a distribution plot comparing the percentage of Unlimited Records

anti-pattern occurrences, Aggregates that are missing max records, with the percentage

of these occurrences matching the identified subcases. We can see that a relevant amount

of missing max records occurences are covered by the Filter By Id, subcase proving the

relevance of its refactoring. Figure 7.17 shows a distribution plot comparing the times

the detecting times of Missing Max Records detections per subcase. For a given subcase,

each (x,y) point indicates that, for x benchmarks, the detection time of that subcase is

at most y. For example, the (400,0.4) point in the line that corresponds to detecting the

Filter By Id subcase indicates that 400 of the benchmarks are processed in 0.4 seconds or

less by the Filter By Id detection algorithm. Overall, we can see that the detection process

takes less than 5 seconds per subcase for each benchmark.

Table 7.7 presents statistics concerning the cases that were automatically refactored,

taking into account the limitations presented in Section 7.6. For the Filter By Id subcase,
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99.2% of the findings were automatically refactored, having only dismissed the intercep-

tion cases, which amounts to 27.2% of the total Missing Max Records. As for the Count

subcase, 60% were automatically refactored, dismissing both the interception cases and

the invalid cases, which amounts to 0.5% of the total Missing Max Records. Lastly, it is

shown that 27.7% of the total Missing Max Records found in the analyzed benchmarks

were solved with our automated refactoring techniques. Figure 7.18 illustrates these

refactoring efforts.

Lastly, Figure 7.18 illustrates the ratio between the number of Aggregates Missing

Max Records (Unlimited Records) that we were able to classify in our work versus the

amount that remains unclassified. We managed to classify 28% of Missing Max Records

occurences (144,156 Aggregates in total). We do not count the interception cases as

classified Unlimited Records. As 72% of the Unlimited Records occurrences remain

unclassified, some analysis can still be done to continue to identify different subcases in

future work.
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7.6 Limitations and Discussion

While executing the algorithm for detecting Aggregates that match the Filter By Id sub-

case, some Aggregates were considered invalid as the information about their sources

and respective keys is not accessible and therefore cannot be evaluated by the algorithm.

This amounts to a total of 2368 invalid Aggregates present in the analyzed benchmarks.

Nonetheless, these Aggregates are included in our evaluation.

After executing both the algorithms for detecting Aggregates that match the Filter

By Id subcase and the Count subcase we computed the interception of these results.

Developers can define a flow with an Aggregate that filters by primary key and that

accesses the Count property to find out how many records were returned. This situation

is different from the previous subcases since it logically corresponds to checking if the list

returned was empty or not, as the Count property value will always be zero or one. A total

of 1149 interception cases were found, which correspond to ≈29% of the Count subcase

occurrences and to ≈0.8% of the Filter By Id subcase occurrences. We left this resolution

for future work deciding to further analyze these occurrences before refactoring.

Our approach for automatically refactoring the Count subcase considers that the SAP

does not have a mechanism for 1) counting all rows, 2) counting more than one attribute,

and 3) counting group by attributes; as is the case in OutSystems. However, the proposed

detection algorithm for the Count Subcase does not capture these constraints. Thus,

our refactoring algorithm evaluates these conditions to discard occurrences of the Count

subcase that we cannot refactor. Another option would be to sacrifice the generality of

the detecting algorithm by adding rules that would enforce these constraints. We chose

the generality of the subcase detection over the generality of the refactoring as the latter

strongly depends on the programming language. For counting all rows, Algorithm 3

adds a calculated attribute to the query consisting of the concatenation of the primary

keys of all the sources being queried. Although the time for creating this extra attribute

for counting is considered in our analysis, the performance of this step in run time is not

yet evaluated as this is a prototype tool. This evaluation will have to be considered in

future work. Nonetheless, if the SAP has mechanisms for counting all the attributes in

the query, the algorithm can simply create a count attribute over all the attributes, thus

counting all the rows that match the query. Regarding the problem of counting group by

attributes, this limitation could not be overcome in OutSystems leading to verification

of no group bys in line 3 of the same algorithm. Additionally, Aggregates that have

aggregated attributes previous to adding the count attribute are also considered invalid

for refactoring, as it is not possible to predict that these queries would also return at

most one record when considering that group bys compute one result per group for each

aggregate attribute. Although presented as a limitation, we consider that it would not

be of much interest for developers to define other aggregated attributes and then only

count the number of rows. These limitations, together with the interception cases, lead

to the fact that it was only possible to refactor 2390 (60%) out of the 3981 count cases,
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dismissing a total of 1149 (≈29%) interception cases and a total of 442 (≈11%) invalid

cases.

In our analysis besides collecting statistics on how many findings of the Unlimited

Records anti-pattern could be automatically refactored with our algorithms, we also col-

lected statistics on the Filter By Id and Only Use Count subcases whose Max Records

was set to a value different than one. These findings are not being solved automatically

because we do not know the reasons that led the developers to set the Max Records to

those values. However, we have developed algorithms for fixing these findings and, once

we have a more complete study, we can apply them to solving this form of technical debt.

Solving this issue will be left for future work.

Our main contribution is the definition of rules for finding different subcases within

the Unlimited Records anti-pattern that occurs, even though it might not be detected,

in both SAPs and programs that query data and do not mandatorily limit the number

of records returned. The general anti-pattern detection and the refactoring solution are

adaptable, in principle, even to textual programs such as SQL.

The immediate alternatives to our approach are 1) to define the max records property

by construction, which presents no choice to users and is not backward compatible, or

2) to extend the current anti-pattern detecting system with the presented rules and still

signaling the cases where the refactoring cannot be automatic. The latter seems to be the

more natural evolution of our work.
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8

Duplicated Code Anti-pattern

The Duplicated Code Anti-pattern was identified in OutSystems as the most common

anti-pattern, reaching as high as 39% in some code-bases [6]. Terra-Neves et al. proposed

a duplicated code pattern mining algorithm that leverages the visual structure of VPLs

to not only detect duplicated code but also highlight the duplicated code patterns.

In this chapter, we start by explaining how we parameterized the labels used in the

duplicated code detector to detect Type I Duplicates. Then, we explain how we processed

the detections in order to find a maximal refactorable sub-graph for each pattern. Next,

we explain the steps followed to perform automated refactoring on the duplicated logic

flows. Lastly, we will present how we evaluated our approach and its limitations.

8.1 Detection

For detecting duplicates, we used a duplicated code detector for OutSystems proposed

by Terra-Neves et al. [6] that maximizes the detection of Type III Duplicates, where near-

misses are allowed for node expressions as long as the graph structure of the duplicated

part is the same.

The type of duplicates detected in this approach depends on the node and edge labels.

The edge labels are set to their respective types in the logic flows. On the other hand, node

labels can be complex depending on their type, e.g. an If node label has to consider the

kind of condition being checked in addition to the respective variable types and function

calls.

The first step in our analysis before detecting duplicated sub-flows was to define the

kind of duplicates we were looking for. We can customize the detection by parameterizing

the node and edge labels that will be used to match the graphs. The inclusion of different

node attributes further refines the search, leading to the detection of Type I Duplicates.

According to each type of node/edge, different attributes need to be included and eval-

uated. For Type I Duplicates, we include every attribute that defines each node/edge

except for display names (used to denominate nodes in the flow and having no impact

on the execution and evaluation of expressions). As an example, for an Aggregate to be
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a duplicate of Type I, all the joins, sources, filters, calculated attributes, sorts, group bys,

and aggregated attributes need to be an exact match.

At the root of comparing each type of node is the comparison of the expressions that

these nodes reference in the logic flow. For Type I Duplicates, the expression needs to be

the same, and so we follow the following rules for each expression kind:

• Basic: the value and type need to be the same in the two logic flows (e.g. both the

values for the two expressions reference the Basic type Boolean value true).

• Operation: the value and type of the expressions referred to in the operation are

the same in the two logic flows (e.g. for a Unary Operation the negation of a Basic

Boolean expression is the same as another if the Boolean expression value is the

same).

• Identifier: the type and value of the attribute being referred need to be the same in

the two logic flows (e.g. both the local variables being compared are called x and

have value y).

• Compound Identifier: both these rules need to be followed: 1) the attributes of the

node/ structure referred to in the expression have the same values and types and 2)

the Identifier specifies an attribute of that node with the same value and type (e.g.

a Compound Identifier referring an Aggregate node is the same as another if 1) the

sources referred by the Aggregate are the same, 2) it performs joins over the same

sources, 3) the values for the sorts/filters/other attributes are the same, and at last

4) the Identifier refers the same attribute/property of the Aggregate).

• Call: the function being called needs to be the same in the two logic flows, and for

each parameter of the function the value of the expression for that argument also

needs to be the same (e.g. a call to a function over two Text expressions is the same

as another, if the function is the same (concatenation) and the values attributed to

those two Text expressions are the same in both duplicates).

Lastly, the definition of Type I Duplicates considers that there can be differences in

whitespace, layout, and comments. These requirements are met as follows:

• Differences in Whitespace can only occur in the definition of expressions. Thus, for

each expression, we remove the whitespace occurrences in the expressions, includ-

ing blanks, newlines, tabs, etc., before comparison.

• Differences in Comments can occur by adding different Comment nodes to a flow

and changing the string value that they represent. Thus, Comment nodes are en-

tirely discarded in the detection of duplicates.

• Differences in Layout in OutSystems can occur when positioning the different nodes

of a logic flow throughout the canvas. Thus, the position (‘X’ and ‘Y’ coordinates) of
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nodes in the canvas is not included in the node labels to be compared. Additionally,

the duplicated code detector only identifies clones whose graph structure of the

duplicated part is the same.

8.2 Duplicated Patterns Processing

The result of running the duplicated code detector is a set of tree hierarchies of dupli-

cated patterns (sub-graphs of the logic flows) with an indication of the logic flows, nodes

and edges where the duplication occurs. Let G and G′ be duplicated code patterns that

occur across the logic flows in sets F and F′ respectively. Assuming that, at some point

during its execution, the algorithm extracts an MCS GC for G and G′, then GC is a possi-

bly smaller pattern that occurs across the flows in F ∪F′. The tree hierarchy contains an

internal node for GC with two children nodes for G and G′. Analogously, children of G

would represent possibly larger patterns that occur in subsets of F [6].

For each set of patterns, we chose the pattern with the highest refactor value from

the flattened representation of the tree hierarchy (as a list). The highest refactor weight

for a graph G is computed as described in Section 4.4.2.3. The refactor value estimate

for graph G with refactor weight wG and that occurs in n logic flows, is exactly the same

as the total number of nodes and edges that can be removed when refactoring the set of

logic flows where G occurs (taking into account that not all nodes have a refactor weight

of 1) and is given by:

wG × (n− 1)−n

Start and End nodes are discarded in the MaxSAT formulation phase, as they must

appear in every flow and therefore cannot be refactored to a separate flow. Even though

some post-processing is done to eliminate flows and nodes that cannot be refactored,

our analysis found that some of the duplicated patterns could not be refactored in a

straightforward way. Next, we will explain such cases that need some extra processing

before executing the extract function mechanism. In the following examples consider

edges whose labels are empty as having type Connector, since this is the default label.

8.2.1 Analysis

Consider the logic flow in Figure 8.1a where only one part of the cycle (coming from the

For Each node) is included in the duplicated pattern. This pattern cannot be refactored

because there are two outgoing edges outside the pattern, the Cycle edge and the Connec-

tor edge of the For Each node. If we were to refactor this pattern, there would be no way

of including the Execute Action node branched from the cycle, since we would not have

access to it in a separate logic flow. Next, consider the logic flow in Figure 8.1b besides

noticing that the whole cycle is included in the duplicated pattern, we can verify that

there is only one branch going from a node in the pattern to the nodes of the remaining
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(a) Unrefactorable Pattern (b) Refactorable Pattern

Figure 8.1: Duplicated patterns including For Each nodes

logic flow, we can generalize this condition by saying that all branches whose destination

is outside of the pattern go to the same node, thus this pattern can be refactored.

Additionally, another important condition can be extracted from the logic flow in

Figure 8.1a. There are two incoming edges from outside the pattern, the Cycle edge and

the Connector edge of the Assign node. If we were to refactor this pattern, since all logic

flows begin in a Start node with only one branch, there would be no way of including

both the For Each node and the Assign node as Connector branches of the Start node.

Next, consider the logic flow in Figure 8.1b, we can verify that there is only one branch

going from a node outside the pattern into nodes in the pattern, the Connector branch

whose destination is the For Each node, we can generalize this condition by saying that

all branches from outside the pattern into nodes in the pattern go to the same node,

thus this pattern can be refactored.

A different example can be seen for If nodes, consider the logic flow in Figure 8.2a

where the True branch of the If node is completely refactorable (until the End node),

whilst the False branch is not (missing one Assign node). Similarly, if we were to refactor

this pattern, there would be no way of including the Assign node branched following

the False branch since we would not have access to it in a separate logic flow. Next,

consider the logic flow in Figure 8.2b besides noticing that both branches are completely

included in the duplicated pattern, we can verify that even though two branches are

going from nodes in the pattern to the nodes of the remaining logic flow, all branches

whose destination is outside of the pattern go to the same node, thus this pattern can

be refactored.

Following the previous example, consider the logic flow in Figure 8.3a where both
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(a) Unrefactorable Pattern (b) Refactorable Pattern

Figure 8.2: Duplicated patterns including If nodes

branches of the If node are completely included in the duplicated pattern. As seen in

the previous example, since all branches with destination outside of the pattern go to

the same node, this pattern can be refactored. Next, consider an equivalent logic flow in

Figure 8.3b, where the nodes following the True and False branches, branch to different

End nodes. Although in this example the refactoring rule where all branches whose

destination is outside of the pattern go to the same node does not hold, a different rule

applies since all destinations are End nodes. We can imagine a refactoring of this pattern

since both these End nodes can be added in the separate logic flow (or replaced with a

single End node), in the current logic flow they can be replaced with a single End node

when the pattern is refactored. Thus, all patterns whose branches’ destination outside

of the pattern go to nodes of type End node, can be refactored.

8.2.2 Rules

We will now formally present the rules that can be extracted from the examples above.

Let G be a logic flow, defined as a directed weakly connected graph G = (V ,E). Let P be

a sub-graph of G, that defines the duplicated pattern. P is defined as P = (Vp,Ep) and

where Vp ⊂ V and Ep ⊂ E, and for any edge (u,v) ∈ Ep, u,v ∈ Vp. P is never the same as G

because Start and End nodes cannot be refactored and neither can their connecting edges.

We start by giving two useful definitions:
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(a) Pattern with edges outside the pattern branch-
ing to the same node

(b) Pattern with edges outside the pattern branch-
ing to End nodes

Figure 8.3: Similar refactorable patterns

• Root. A node v ∈ V is a root if there is no edge (u,v′) ∈ E where v = v′, i.e. there is

no edge in E towards v.

• Leaf. A node u ∈ V is a leaf if there is no edge (u′ ,v) ∈ E where u = u′, i.e. there is

no branch in E for u.

Start nodes are roots since they have no edges incident to the node. On the other hand,

End nodes are leaves since there in no edge in the logic flow that starts in an End node.

The pattern mining algorithm has a no spurious edge constraint, i.e. an edge is only in

Ep if both its nodes are in Vp. Thus, if the edges are only included if both nodes are in

the pattern, and since there is a mandatory Start node in the logic flow G that cannot

be included in the pattern, then there will always be an incoming edge into the pattern

from a node in outside the pattern (Start nodes have exactly one Connector branch), that

cannot be included in Ep that makes its destination a root of the pattern. This rule is

formalized as follows:

• At least one root in the pattern. There is at least one node v ∈ Vp that is the root of

the pattern.

∃r ∈ Vp∀(u,v) ∈ Ep⇒ v , r (8.1)

A similar situation happens for End nodes, where there is at least one End node in the

logic flow G and since these cannot be included in the pattern, then there will always be

at least one branch from a node in the pattern to a node in G (End nodes have at least one
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Function 2: GetUnrefactorableNodes(G,P )

Input: G, P

1 N ←∅;
2 I ← InEdges(Nodes(P)) \ Edges(P);
3 if |I | > 1 then
4 if ¬AllEquals(InNodes(I)) then
5 N ← OutNodes(I);
6 if N = ∅ then
7 O← OutEdges(Nodes(P)) \ Edges(P);
8 if |O| > 1 then
9 if ¬AllEquals(OutNodes(O)) ∨ ¬AllEndNodes(OutNodes(O)) then

10 N ← OutNodes(O);
11 return N ;

incoming edge) that cannot be included in Ep. Additionally, the root of the pattern and

the node with a branch to a node outside the pattern (if there is only one) cannot be the

same node since the no isolated node constraint prohibits it, because a node is only in Vp
if there is at least one edge in Ep to another node in Vp, i.e. the pattern has at least two

nodes.

Finally, we can present the rules that the duplicated pattern P needs to respect before

refactoring:

• All incoming edges to the only root. There is one node r ∈ Vp that is the root of the

pattern, and for all edges (u,v) ∈ E where u < Vp and v ∈ Vp, r is equal to v, i.e. there

is at least one incoming edge from an origin outside the pattern and all incoming

edges branch to the same destination in the pattern, the root of the pattern.

∃r ∈ Vp∀(u,v) ∈ E,u < Vp,v ∈ Vp⇒ v = r (8.2)

• All outgoing edges to the same destination or to End node type. There is one node

d ∈ V , and for all edges (u,v) ∈ E where u ∈ Vp and v < Vp, d is equal to v or v has

type End node, i.e. there is at least one branch to a destination outside the pattern,

and all branches from nodes in the pattern to nodes outside the pattern go to the

same node or to a node with type End node.

(∃d ∈ V∀(u,v) ∈ E,u ∈ Vp,v < Vp⇒ v = d)

∨ (8.3)

(∀(u,v) ∈ E,u ∈ Vp,v < Vp⇒ IsEndNode(v))

8.2.3 Algorithm

Function GetUnrefactorableNodes receives as input a logic flow G and P , a sub-

graph of G containing only the duplicated pattern, and returns N the set of nodes that

91



CHAPTER 8. DUPLICATED CODE ANTI-PATTERN

Algorithm 4: Maximal refactorable sub-graph algorithm.
Input: G, P , N

1 S,m←∅,β;
2 foreach n ∈N do
3 St ← DiGraph(Nodes(P ) \ n, Edges(P ) \ (InEdges(n) ∪ OutEdges(n)));
4 if |Nodes(St) > 1| ∧ RefactorValue(St) > m then
5 U ← GetUnrefactorableNodes(G, St);
6 if U , ∅ then
7 St← MaximalSubgraph(G, St, U);
8 if St , ∅ then
9 S← St;

10 m← RefactorValue(St);
11 return S;

cannot be refactored in a straightforward way, i.e. the multiple roots of the pattern that

break Rule 8.2 or the multiple nodes outside the pattern that break Rule 8.3. The set

of nodes is empty if all the nodes in the pattern can be refactored in a straightforward

way. First, we initialize I as the set of all branches into nodes of S and remove those

that are edges of S (line 2). This leaves us with all the branches from G to P . If I has

more than one edge (line 3), since there is at least one because the pattern has at least one

root (Rule 8.1), we check if all the origin nodes are the same (line 4), since this pattern

can only be refactorable if all its incoming edges from outside the pattern have the same

origin (Rule 8.2). If this condition does not hold, we set N as the roots of the pattern

that cannot be refactored together (line 5). If N is still empty (line 6), i.e. the pattern

has only one root, we initialize O as the set of all branches from nodes of S and remove

those that are edges of S (line 7). If O has more than one edge, since there is at least one

because the pattern has at least one outgoing edge outside the pattern, we check if all the

destination nodes are the same or if they are all End nodes (line 8), since this pattern can

only be refactorable if all its branches to nodes outside the pattern have either the same

destination or an End node as destination (Rule 8.3). Similarly, if this condition does not

hold, we set N as the leaves of the pattern that cannot be refactored together (line 10).

We need to find a maximal sub-graph of P that respects the constraints in Section 8.2.2,

along with the constraints for the pattern miner, by removing one or more nodes that

cannot be refactored together. Algorithm 4 receives as input: G a logic flow, P a sub-graph

of G (containing only the duplicated pattern), and N a set of nodes to be removed to find

a maximal sub-graph that respects the constraints, and returns S a maximal sub-graph

of P that is refactorable or an empty graph. For each node in N , we try to find a valid

pattern St which has all the nodes of P except for n and all the edges of P except for the

incident edges and branches of n (line 3). Next, we compute the refactor weight of St and

we check that St has more than one node (no isolated nodes) and that the refactor weight

is higher than the maximum refactor weight foundm (line 4), which has to be higher than
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(a) Unrefactorable Pattern (b) Refactorable Pattern (c) Unrefactorable Pattern

Figure 8.4: Maximal refactorable sub-graph example

the minimum refactor weight threshold β. Then, we check if the sub-graph St of P is still

not refactorable by calling the function GetUnrefactorableNodes that checks the

rules in Section 8.2.2 and returns U the set of nodes that cannot be refactored together.

If U is not empty, we recursively call the algorithm but now with U as the set of nodes to

remove (line 7). If the algorithm returns a sub-graph St that in not a null graph (line 8),

it will have at least one node and the refactor weight will be higher than the maximum

found, we found a graph that can be refactorable and with the highest refactor weight.

Lastly, we set S as the maximal sub-graph to be returned (line 9) and m as the highest

refactor weight found (line 10) and the iteration continues.

An example of applying the algorithm is shown in Figure 8.4. The logic flow in

Figure 8.4a does not respect Rule 8.2 since the highlighted duplicated pattern has two

roots, and thus the Assign node (N =N − 1) and the Execute Action node (factorial),

cannot be refactored together. Algorithm 4 iteratively tests sub-graphs by removing nodes

from the set of nodes that could not be refactored together, Figure 8.4b shows one of these

iterations after removing the Assign node (N = N − 1). We can verify that all the edges

coming from the logic flow into the highlighted duplicated pattern go to the same node
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Figure 8.5: Action extended representation

(Rule 8.2), thus the pattern only has one root and since all the edges from the only node

with outgoing edges outside the pattern (Assign result) go to the same node, this sub-

graph can be refactored. A second iteration of the algorithm would remove the Execute

Action node instead and the result would leave us with both rules being broken instead

of one since the two incoming edges from the logic flow into the highlighted pattern go

to separate nodes (Rule 8.2) and the two branches from the highlighted pattern into the

logic flow also go to separate nodes that are not of type End (Rule 8.3). Since the pattern

is still not refactorable, the next iterations would leave the pattern with only one node.

Algorithm 4 before adding the sub-graph as a possible maximal sub-graph, checks if the

pattern has more than one node (line 4) otherwise, it is considered invalid since such

graphs do not respect the no isolated node constraint.

8.3 Refactoring

We consider the refactoring of Type I Duplicates as refactoring a subcase within the

Duplicated Code anti-pattern. Once we have a refactorable duplicated pattern with the

highest refactor value and a set of logic flows where the duplicated pattern occurs, we can

start refactoring the flows. First, we consider the extended representation of an action

as shown in Figure 8.6. An action is a logic flow that, just like a function in a regular

programming language, has:

• Input parameters: the parameters used to pass values into functions/ logic flows

(can be none).

• Output parameters: the parameters(s) returned from the functions/ logic flows (the

set is empty when the function’s return type is void).

• Local variables: the variables whose scope is within the function/ logic flow.

• Nodes: the statements of the function or for the case of logic flows, the statements

represented as nodes in the flow.
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8.3.1 Rules

We follow the extract function refactoring mechanism steps but taking into account that

the pieces of code to refactor are logic flows.

1. Copy the duplicated pattern into a new logic flow. We add a new logic flow (action)

with one Start node and one End node. Then, we connect the nodes of the duplicated

pattern to the new logic flow nodes and set them as the action’s nodes.

2. Pass references to local variables as input parameters. We scan the duplicated

pattern for references to any local variables and pass them as input parameters of

the action. If a local variable is only used inside the new logic flow, we add a local

variable to the new action and remove it from the other logic flows.

3. Pass references in the duplicated pattern as parameters. We scan the duplicated

pattern for references to variables that are assigned and their values. In the logic

flow, these variables can be input parameters, output parameters, the result of

previous Instruction nodes or Aggregate nodes that are in the scope of the logic flow.

We pass the referenced input parameters and the referenced results of the nodes

defined before the duplicated pattern (displayed as “Before Nodes” in Figure 8.6) as

input parameters of the new logic flow. If the output parameters of the original logic

flows are assigned in the duplicated pattern, we add them as output parameters

of the new logic flow. Lastly, we replace the assignments in the duplicated pattern

with the new variables.

4. Pass references in the original flow as parameters. We scan the original logic

flow for references to the result of Instruction nodes in the duplicated pattern. If

any node that comes after the duplicated pattern (displayed as “After Nodes” in

Figure 8.6) accesses the result of an Instruction node in the duplicated pattern in

OutSystems we add this result as an output parameter of the new logic flow and

replace the references in the original flow with this new variable.

5. Replace the duplicated pattern in the original logic flows with a call to the new

logic flow. We add an Execute Action node as shown in Figure 8.7 with reference to

the new action and reconnect the original action. Additionally, we have to add the

arguments for the input parameters of the new action and set the values accordingly.

If the input parameter of the new action was originally an input parameter, we

simply set the argument to take the value of the original input parameter. If the

input parameter was a local variable or the result of an Instruction node, we pass

this value accordingly. Lastly, we add an Assign node when needed to assign to

the original output parameters the return values of the output parameters that are

assigned in the duplicated pattern.

A similar process is executed by the extract to action functionality in OutSystems.
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Figure 8.6: Action flow extended representation

8.3.2 Algorithm

The maximal sub-graph S of P returned by algorithm 4, respects the constraints in Sec-

tion 8.2.2 and has the highest refactor value of its sub-graphs. S is computed according

to a logic flow G that we want to refactor. Nonetheless, we always have at least two logic

flows to refactor, or we would not have a duplicated pattern between flows. Thus, the

resulting sub-graph S depends on the graph structure of the logic flow passed to the

algorithm and where we are looking for maximal sub-graphs. With this in mind, we

have to compare the maximal sub-graphs given by the duplicated pattern for each flow G.

Additionally, the result of the duplicated code detector is a tree hierarchy of duplicated

patterns, thus when we chose a refactorable pattern from the set comprised of the root

graph (or its highest refactorable value sub-graph according to each flow G) and of its

children (or a highest refactorable value sub-graph per child according to each flow G),

we have to take into account that the number of logic flows that can be refactored with

this graph may have decreased. Thus, we recalculate the refactor value for each graph

with the new number of logic flows. The graph to be refactored will be the one with the

highest refactorable value that respects the constraints in Section 8.2.2.

Algorithm 5 receives the tree hierarchy of duplicated patterns T and the logic flows

G1,G2, . . . ,Gn where the patterns occur (all patterns of T do not necessarily occur in every

Gi or even have the same subset of occurrences) and returns a new logic flow A that

encapsulates the selected duplicated pattern and the set R with logic flows that we were

able to refactor and where the duplicated pattern is no longer present. It starts by calling

auxiliary function TreeMaximalSubgraph (line 1) that for each of the patterns in
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Algorithm 5: Refactoring logic flows given a tree hierarchy of duplicated pat-
terns.

Input: G1, G2, . . . , Gn, T

1 P ,R← TreeMaximalSubgraph(G1, G2, . . . , Gn, T );
2 if P , ∅ then
3 A← AddAction(P);
4 AddParameters(A, P);
5 foreach r ∈ R do
6 r← RefactorGraph(A, P, r);
7 return A, R

the flattened tree and according to each Gi calculates the maximal sub-graph with the

highest refactor value from the given patterns. The highest refactor value sub-graph P

can correspond to one of the patterns or to a maximal sub-graph of one of the patterns

and R is the set of graphs where the pattern was identified and can be refactored. The

function ultimately calls Algorithm 4 and Function GetUnrefactorableNodes to

find this maximal sub-graph. If a valid pattern that matches at least two logic flow with

no isolated nodes and with a refactor weight higher than β cannot be found, the null
graph is returned instead of the maximal sub-graph. If a pattern was found (line 2),

the call to auxiliary function AddAction performs step 1 by copying P to a separate

logic flow and making the necessary connections. Then, the call to auxiliary function

AddParameters performs steps 2 to 4 by adding the necessary input parameters, local

variables and output parameters to the new logic flow (line 4). Considering the case of

adding local variables, the function checks if the local variables accessed in the pattern are

used before and after the duplicated pattern, and then 1) if the local variable is only used

in the pattern, it is removed from the original logic flows and added as a local variable

of the new action, 2) if the local variable is used before the pattern, it is added as an

input parameter, 3) if the local variable is used after the pattern, it is added as an output

parameter, 4) if the local variable is used both before and after the pattern, it needs to be

assigned at the end of the new action to carry its value to the original logic flows since

the value received has been modified, and 5) any output parameters of the new action

will need to be assigned in the original logic flows right after calling the new action,

and the local variables that became output parameters are no exception. After adding

the action’s parameters in algorithm 5, for each of the graphs in R, where the pattern

can be refactored, we perform step 5 by calling auxiliary function RefactorGraph

(line 6) and replacing the duplicated pattern within each graph with a call to the new

logic flow A. In this function, we add both the arguments values for each parameter and

the necessary assignments after the call to the new action for the output parameters and

the local variables that remained in the original flows.
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Figure 8.7: Execute action extended representation

8.4 Experimental Evaluation

In this section, we evaluate the performance of the algorithms for finding a maximal refac-

torable sub-graph of a duplicated pattern and for automatically refactoring Type I Du-

plicates of the Duplicated Code anti-pattern proposed in Section 8.2.3 and Section 8.3.2,

respectively. All experiments were run on a Windows 10 Enterprise instance with 16 GB

of RAM and an Intel® Core™ i5-8350U CPU@1.70GHz. The algorithms were executed on

benchmark sets of graphs from a random sample of 500 real-world code bases written in

OutSystems. The code bases were sampled from the total of 1221 code bases that existed

at data collection time. Only benchmarks for which there exists at least one logic flow are

considered in the evaluation. This results in a final collection of 497 benchmarks. In this

analysis, two performance indicators are considered: the duplicated refactor weight fixed

with our refactoring algorithm and, the detection and refactoring time, i.e. the elapsed

time since the start of the algorithm until termination. The same node/edge may appear

multiple times across different patterns, but the respective refactor weight is counted

only once.

In our analysis, to obtain only the action flows in which we are interested in detecting

duplicates, we use filters defined and implemented by the AI team that discard unwanted

flows, such as flows that are part of the OutSystems environment, flows that correspond

to system or template flows, flows that are too small to be refactorable, Preparation flows,

etc. Additionally, a significant amount of flows were considered invalid as the information

about their nodes necessary to build the node labels for matching graphs is not accessible

or incomplete and therefore cannot be evaluated by our algorithms. Flows with a refactor

weight lower than the threshold 5 (β) are also discarded. Before running the mining

algorithms, nodes that cannot be refactored to a separate logic flow, such as Start and
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Table 8.1: Number of flows statistics.

Parameter Min Median Max
Flows 35 1,642 20,255
Flows considered 1 87 1,215
Flows with duplicated code 0 20 539
Flows with duplicated code refactored 0 19 475

Table 8.2: Maximum and total elapsed time for executing algorithms.

Algorithm Max Total
Mining time 2s 1m16s
Finding pattern time 6h31m18s 52h34m20s
Refactoring time 7m56s 2h25m13s
Benchmark Analysis 6h43m5s 120hh40m38s

End nodes are discarded. Some post-processing is done to discard certain patterns with

If and Switch nodes, since these can only be refactored if at least one of their branches

is also part of the duplicated code pattern. Nonetheless, the total number of logic flows,

nodes and edges considered for an environment in our statistics is independent from

these filters so that our estimates are accurate. Table 8.1 presents statistics regarding the

number of flows found in the analyzed benchmarks. “Flows considered” corresponds to

the flows that are not discarded before mining duplicates. “Flows with duplicated code”

represent the flows where duplicated code has been detected and thus the flows where

we will apply automated refactoring.

Table 8.2 shows the elapsed time for this experimental evaluation. It is possible to

see that almost no time is spent in detecting the Duplicated Code anti-pattern, being this

algorithm the result of a work focused on scalability [6]. Note that the elapsed time for

executing our algorithms for “Finding” a valid pattern and for “Refactoring” the pattern

include the time spent in copying the flow representations since we operate in a copy

of the original data. Additionally, the elapsed time for the “Refactoring’ algorithm also

takes into account the time spent building logic flow representations of the refactored

flows, since we execute the refactoring on extended representations of the flows but still

wanted to leverage the visual facet of SAPs that was already maintained in the detection

of the flows. Thus, we are able to do a side by side comparison of the detected pattern and

its logic flows with its refactoring representation, for each pattern tree refactored. The

high values for the elapsed time of our algorithms justify the need for a future revision of

their implementations, in order to improve their performance and scalability, besides the

possibility of running these experiences in a different setting than the enterprise instance

mentioned above.

Table 8.3 shows the amount of duplication found in the benchmark sets for Type I

duplicates. The ρ = x columns show the result from the analysis of the x percentage of

the benchmarks for each parameter. For example, a value of 1.2% in the ρ = 0.5 column
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Table 8.3: Duplicated code of Type I found and refactored per benchmark set statistics.

Parameter Min ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 0.9 ρ = 0.95 ρ = 0.99 Max Total
Flows with duplicated code 0% 0.5% 1.2% 2.0% 2.9% 3.5% 5.4% 10.1% −
Duplicated nodes found 0% 0.2% 0.7% 1.0% 1.6% 2.0% 2.8% 5.1% −
Duplicated weight found 0 44 134 363 619 872 1451 3178 132695
Flows refactored 0% 0.2% 0.9% 1.6% 2.4% 3.1% 4.9% 9.3% −
Duplicated nodes refactored 0% 0.1% 0.5% 0.8% 1.2% 1.6% 2.7% 4.6% −
Duplicated weight refactored 0 24 88 250 478 610 1152 2537 94822

Table 8.4: Aggregated refactoring values statistics.

Parameter Max Total %
Duplicated weight found 3,178 132,695 -
Duplicated weight refactored 2,537 94,822 71%
Flows with duplicated code found 539 19,862 -
Flows with duplicated code refactored 475 15,253 77%
Duplicated nodes found 1,804 73,997 -
Duplicated nodes refactored 1,481 53,523 72%
Pattern trees found 95 3,390 -
Patterns trees refactored 54 2,144 63%

of the ‘Flows with duplicated code’ parameter indicates that, in 50% of the benchmarks,

1.2% or less of the flows are found to contain duplicated code of Type I. Note that

these percentages consider the full universe of flows/nodes present in these benchmarks

before pre-processing. There are benchmarks where no duplication of Type I was found

(“Min”=0%) and thus, the duplicated weight found in those benchmarks was equal to

zero. If we consider only benchmarks where there exists duplication, the minimum

duplicated weight value is 14. The last lines in the table represent the percentage of Type

I duplicates that can be solved through our automated refactoring techniques out of the

total duplication found in the benchmarks.

Table 8.4 shows the refactoring performed in the benchmark sets out of the total

duplication detected. For the case of Type I Duplicates, we found a total refactor weight

of 132,695 and we managed to solve 71% of this refactor weight. The refactor weight

that was not solved corresponds to the patterns of the tree hierarchy that the finding

pattern algorithm did not choose for refactoring, since we only chose one pattern per tree.

Additionally, when the pattern with the highest refactor value cannot be refactored, we

have to find a maximal refactorable sub-graph and end up losing the refactor weight that

corresponds to the node and edges that are eliminated from the pattern. Lastly, if no

maximal refactorable sub-graph for the tree hierarchy is found, with a minimum refactor

weight equal to the threshold β, the total refactor weight of that pattern tree is lost since

it cannot be refactored. On the other hand, these constraints have less impact on the

number of flows, since most of the time, a maximal refactorable sub-graph of the pattern

trees can be found and we are able to refactor the flows (solving 63% of the patterns

corresponds to solving 77% of the flows).
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Figure 8.8: Normalized duplicated refactor weight found/ refactored distribution per
benchmark.

Figure 8.8 shows a distribution plot of duplicated refactor weight found and respective

refactoring per benchmark. These values are normalized against the largest duplicated

refactor weight value found in all of the analyzed benchmarks and the plot is presented

in ascending order of the duplicated refactor weight found. For a given benchmark x, if

the y coordinate in the plot for the duplicated weight found matches the y coordinate

for the duplicated weight refactored that, then the duplicated refactor weight found was

completely refactored for that benchmark. The accentuated negative dips correspond

to benchmarks where we were not able to refactor the total duplicated refactor weight

found, and are due to benchmarks where a maximal sub-graph for each set of detected

duplicated patterns was not found as explained above. The small negative variations

correspond to benchmarks where we lost refactor weight by only selecting one pattern for

refactoring or by finding a smaller sub-graph that can be refactored straightforwardly.

8.5 Limitations and Discussion

In this work, we present results from an evaluation of 500 real-world code bases written

in OutSystems. Since the effectiveness of the developed techniques was evaluated in

the context of the OutSystems ecosystem, and since the infrastructure does not have

test banks defined for its code bases, that would allow for continuous integration, it

would be unfeasible to validate the refactoring operations automatically. In the future,

when the OutSystems platform has mechanisms for automated tests, our results can be

automatically validated. An alternate validation could be performed if there existed an

equivalence checker for OutSystems, so that our refactorings could be formally verified

in an automated way.
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We have selected 10% of the refactored patterns for manual validation (214 patterns

out of the 2,144 refactored patterns). To the best of our knowledge, the refactorings

performed are correct and the program’s behavior is expected to be maintained. The

precision and recall of the proposed approach strongly depend on the quality of the node

and edge labels. Our focus in this dissertation is the establishment of rules that allow for

the refactoring to be performed and not in the validation of the refactoring operations that

could easily be fixed in the case of a bug. Note that we have refactored Type I Duplicates,

which correspond to exact clones, and that this is a prototype tool running offline.

Our detection and refactoring capabilities are limited to Type I clones and thus our

results have a low impact in the total duplication. Extending our automated refactoring

techniques to be applied on Type II and Type III Duplicates that maintain the graph

structure of the duplicated part will be left for future work. Additionally, our approach

only refactors one pattern per tree hierarchy and in some cases, it might be possible to

refactor more than one pattern detected in the logic flows, e.g. sub-flows of the pattern

without common nodes and edges.

Some efforts can still be applied on improving the performance of the algorithms pro-

posed in this work. The elapsed time for finding a maximal sub-graph and refactoring the

duplicates can be reduced, since our focus was not on algorithm scalability but mainly on

refactoring the highest possible value, thus ultimately contributing to lowering technical

debt. These improvements will be left for future work.

102



9

Conclusion And Future Work

In this chapter, we present the concluding remarks of this dissertation. Finally, we suggest

proposals for future work indicated by our research.

9.1 Conclusions

Our work is motivated by the high technical debt problem found in SAPs. Applications

built with a short-term mindset end up consuming a large portion of a company’s re-

sources, time, and energy. These resources are spent maintaining and rewriting defective

code that contributes to high technical debt instead of focusing on the development of

new ideas [49].

In this dissertation, to mitigate the above challenge, we presented an approach to

automatically refactor a set of relevant high-impact anti-patterns that contribute to high

technical debt. The high technical debt problem can be subdivided into smaller problems,

each consisting of resolving a single identified anti-pattern. The problems are indepen-

dent and we were able to progressively resolve, test, and evaluate our solution. This

allowed for an iterative resolution with independent deliveries where each step consists

of the automated resolution of an anti-pattern and each improvement increases the final

solution value.

The first anti-pattern for which we developed automated refactoring techniques was

the Unlimited Records Anti-pattern. The profusion of this anti-pattern in OutSystems

proves to be a real concern, as 7 out of 10 Aggregates are missing the Max Records prop-

erty, each contributing to an occurrence of this anti-pattern. These findings incur a neg-

ative impact on software maintenance and evolution, being the state-of-the-art solution

having developers fixing them by hand when notified by Architecture Dashboard. When

considering the quantity of these findings as each application usually has several Aggre-

gates (737,443 Aggregates in total across 45,405 modules), this can become extremely

time-consuming. If we also consider the background necessary to estimate the size of

queries, the fixing of these findings can prove to be an arduous task. Scenarios such as

queries returning only one record by construction (e.g. get by primary key) hinder the
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handling of true problems. Furthermore, for the identified Count subcase, the problem

also negatively impacts the performance of applications, increasing screen loading time

since 1) it corresponds to an extra query and 2) all the records that match the Aggregate

definition are returned when only one was necessary. Hence, we proposed automated

refactoring techniques for detecting and automatically refactoring two subcases of the

Unlimited Records anti-pattern and that effectively solve 28% of all occurrences.

The Duplicated Code Anti-pattern was identified in OutSystems as the most common

anti-pattern, reaching as high as 39% in some code-bases. As this pattern is found in such

a large part of the OutSystems code base, it is understandable why it was included in the

initial set of anti-patterns refactored with automated techniques. In our work, we have

identified that the amount of duplication of Type I in OutSystems can reach as high as

5.1% and we were able to refactor as high as 4.6%.

In this work, we were able to refactor subcases of two high-impact anti-patterns that

result in the elimination of findings that contribute to technical debt. Since this is a

prototype tool we cannot evaluate that the warnings for the refactored anti-patterns have

disappeared in Architecture Dashboard and thus lowering technical debt in the active

code base. Nonetheless, since we are working on a snapshot of the data consisting of real-

word code bases and since our automated prototype tool has solved a considerable amount

of findings, if these refactoring techniques were to be implemented on the running version

of the code, we are positive that the technical debt would decrease. Thus, we have shown

that it is possible to lower technical debt in SAPs by implementing automated refactoring

techniques that solve the anti-patterns causing high technical debt.

9.2 Future Work

An interesting topic for future work is the definition of refactoring rules and algorithms

for other relevant anti-patterns and adding them to the conjoint prototype tool since the

high technical debt problem can be subdivided into smaller problems, each consisting of

resolving a single identified anti-pattern.

In terms of research, a particular challenge would be to explore ways of providing a

guided but automated refactoring experience to the user, allowing for visualization of the

refactoring changes and refactoring automatically on approval. This research can benefit

from the visual representations of refactored logic flows presented in this dissertation for

the refactoring of Type I Duplicates.

Future work can also include widening the set of subcases to automatically refactor

within each anti-pattern. An example of a subcase to explore, considering the Unlimited

Records anti-pattern, is the Empty Subcase that occurs in flows that execute unnecessary

and possibly complex queries to only check if the result is empty. As 72% of the Unlimited

Records occurrences remain unclassified, some analysis can still be done to continue to

identify different subcases. Regarding the Duplicated Code anti-pattern, we can extend
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our automated refactoring techniques to be applied to Type II and Type III Duplicates

that maintain the graph structure of the duplicated part.

Finally, the current refactoring implementation relies on the OutSystems concepts

for the extended representation of logic flows. Future research could examine if this

implementation could be decoupled from these concepts.
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Refactoring Mechanisms Examples

Listing I.1: Code Before Extract Function

(Amended From [1])
funct ion printOwing ( invo ice ) {

/ / r e c o r d due d a t e
const today = Clock . today ;
invo ice . dueDate = new Date (

today . getFul lYear ( ) ,
today . getMonth ( ) ,
today . getDate ( ) + 3 0 ) ;

l e t owing = 0 ;
/ / c a l c u l a t e owing
for ( const o of invo ice . orders )

owing += o . amount ;

/ / p r i n t d e t a i l s
console . log ( ‘ name : $ { invo ice . c l i e n t } ‘ ) ;
console . log ( ‘ amount : $ { owing } ‘ ) ;
console . log ( ‘ due : $ { invo ice . dueDate

. toLocaleDateStr ing ( ) } ‘ ) ;
}

Listing I.2: Code After Extract Function

(Amended From [1])
funct ion recordDueDate ( invo ice ) {

const today = Clock . today ;
invo ice . dueDate = new Date (

today . getFul lYear ( ) ,
today . getMonth ( ) ,
today . getDate ( ) + 3 0 ) ;

}
funct ion calculateOwing ( invo ice ) {

l e t r e s u l t = 0 ;
for ( const o of invo ice . orders )

r e s u l t += o . amount ;
return r e s u l t ;

}
funct ion p r i n t D e t a i l s ( invoice , owing ) {

console . log ( ‘ name : $ { invo ice . c l i e n t } ‘ ) ;
console . log ( ‘ amount : $ { owing } ‘ ) ;
console . log ( ‘ due : $ { invo ice . dueDate

. toLocaleDateStr ing ( ) } ‘ ) ;
}
funct ion printOwing ( invo ice ) {

recordDueDate ( invo ice ) ;
const owing = calculateOwing ( invo ice ) ;
p r i n t D e t a i l s ( invoice , owing ) ;

}
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