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Abstract

Monitoring land use and land cover is an extremely important task which, if properly

carried out, can assist in decision making about urban and territorial planning, thus pro-

viding an improvement in the citizens’ quality of life. In Portugal, and more specifically

in the Almada municipality , the main tool used in this task is Carta de Ocupação de Solo

(COS), a map which represents 83 classes of land use and land cover. Despite its useful-

ness, COS has certain limitations, such as low spatial resolution, due to the minimum

mapping unit of 1 hectare, and low temporal resolution, as it is developed through the

analysis of orthophotos and released every 3 to 5 years. These constraints lead to a map

which is not adequate to continuously track land-use and land-cover changes, especially

with the increasingly fast pace of urbanization.

This research work investigated the application of machine learning classification

algorithms with Sentinel-1 and Sentinel-2 imagery, and derived products, to LULC map-

ping in Almada. As such, maps were developed for 2018 using the two most common

approaches to LULC classification: pixel-based (PBIA) and object-based (OBIA). Multiple

combinations of satellite data and derived products, as well as two classifiers were tested

for each approach. A comparison of two methods of collecting ground truth data, manual

and semi-automatic, was also produced.

The best results were obtained in the PBIA approach, using the manually collected

ground truth and the Extreme Gradient Boosting (XGBoost) classifier with the combina-

tion of Sentinel-1 and Sentinel-2 imagery and textural features obtained through Sentinel-

2 data. The classification model obtained a kappa score of 0.994, and produced an ac-

curate LULC map, which has some limitations in separating Agriculture and Other

Vegetation, but is able to identify with great precision Artificial Territories, Forests and

Bare and sparsely vegetated areas.

Keywords: Remote sensing, Sentinel-1, Sentinel-2, Machine Learning,

LULC Mapping, Object-based LULC Classification, Pixel-based LULC Classification
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Resumo

A monitorização da utilização e ocupação do solo (LULC) é uma tarefa de extrema im-

portância que, sendo adequadamente realizada, pode auxiliar na tomada de decisões de

ordenamento do território, providenciando assim uma melhoria na qualidade de vida

dos cidadãos. Em Portugal, e mais especificamente no concelho de Almada, a principal

ferramenta utilizada nesta tarefa é a Carta de Uso e Ocupação do Solo (COS), um mapa

que divide o solo em 83 classes. Embora notavelmente útil, a COS possui determinadas

limitações, entre as quais baixa resolução espacial, devido á unidade mínima cartográfica

de 1 hectare, e baixa resolução espacial, sendo desenvolvida através da análise de ortofo-

tos e disponibilizada a cada 3 a 5 anos. Estas limitações levam a que este mapa não seja

adequado para a monitorização contínua de alterações ao nível da utilização e ocupação

do solo, especialmente com o ritmo cada vez mais acelerado do crescimento urbano.

Este trabalho de investigação estudou a aplicação de algoritmos de classificação de

machine learning com imagens de Sentinel-1 e Sentinel-2 e produtos derivados, para a

cartografia de uso e ocupação de solo em Almada. Assim, foram desenvolvidos mapas

para o ano 2018 explorando duas metodologias frequentemente utilizadas em problemas

de classificação de uso e ocupação do solo: baseada em píxeis (PBIA) e baseada em objetos

(OBIA). Para cada abordagem foram testadas várias combinações de imagens de satélite e

produtos derivados, assim como dois classificadores automáticos. Foi também produzida

uma comparação entre dois tipos de ground truth: obtida manualmente, e de uma forma

semi-automática.

Os melhores resultados foram obtidos na abordagem baseada em pixeis, utilizando

a ground truth manual e o classificador Extreme Gradient Boosting (XGBoost) com a

combinação de imagens de Sentinel-1, Sentinel-2 e atributos de textura calculados através

de imagens de Sentinel-2. Este modelo de classificação obteve um coeficiente kappa de

0.994 e produziu um mapa de uso e ocupação do solo com boa precisão e que, embora

tenha algumas limitações ao nível de separação das classes 2. Agricultura e 3. Outra

vegetação, identifica com exatidão as classes Territórios Artificializados, Florestas e

Espaços descobertos ou com pouca vegetação.
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Introduction

Having land cover and land use information is essential for multiple spatial planning

decisions made by local and national administration, that can greatly affect the citizens’

quality of life [43]. In recent years, several earth observation satellites have been launched

that liberalized the access to data: initiatives like the Copernicus Programme provide

remotely sensed data free of charge, at the push of a button. Consequently, the monitoring

of the Earth’s surface has been transformed, with the automatic generation of Land Use

Land Cover (LULC) maps being one of the most active research topics in remote sensing

applications [58]. Different methods and algorithms have been proposed and evaluated

on regions with vastly different characteristics, obtaining varied degrees of accuracy.

1.1 Context

1.1.1 Land Use Land Cover mapping

Even though the expressions land use and land cover are often fused together as LULC,

it is critical to define each one separately, as they have distinct meanings. While land

cover refers to the physical cover of the surface of the ground, be it natural or man-

made (buildings, forest, water...), land use relates to the actual application of the land

(agriculture, recreational...). It is worth noting that a specific class of land cover can have

various land uses, and vice-versa.

The use of the terms together as LULC is usually in the context of LULC maps. These

maps contain spatial information on the coverage or use of the ground, and usually

contain classes which distinguish elements such artificial structures, agriculture, natural

elements and water.

Monitoring land use and land cover through LULC maps greatly assists in decision-

making at the local and national administration levels, as it provides valuable insights

to build strategies for managing natural resources and environmental changes, as well as

urban growth [40, 70].

A LULC map worthy of mention is CORINE Land Cover (CLC)1. CLC is an european

1https://land.copernicus.eu/pan-european/corine-land-cover, Accessed on 2022-02-10

1

https://land.copernicus.eu/pan-european/corine-land-cover


CHAPTER 1. INTRODUCTION

project, initially launched by the European Comission, now taken over by the European

Environment Agency (EEA). This project is implemented by national teams, with most

countries producing maps by visual interpretation of high resolution satellite imagery and

a few through the application of semi-automatic solutions. The Minimum Mapping Unit

(MMU) is 25 hectare (250000 m2) and it is composed of 44 different classes, with three

hierarquical levels. The first version is dated from 1990, and there are four subsequent

updates from 2000, 2006, 2012, and 2018.

1.1.2 Remote sensing

In the most basic sense, remote sensing pertains to the gathering of information at a

distance. This information is collected through the entire electromagnetic spectrum [2],

about objects at the surface of the Earth by use of sensors based on satellites, manned

aircrafts or unmanned aerial vehicles.

This dissertation will focus on remote sensing through the use of satellites, specifically

Sentinel-1 and Sentinel-2. Initiatives like the European Commission’s Copernicus Pro-

gramme and the Landsat program, jointly managed by National Aeronautics and Space

Administration (NASA) and the U.S. Geological Survey, have led to a democratization of

satellite data, making it available to everyone free of cost. This fact makes the study and

advancement of techniques that employ these resources extremely important. Obtaining

data from other sources is often expensive and laborious, which can prevent the evolution

of areas in which remote sensing can be applied.

Satellite data has facilitated LULC monitoring by providing data with increasingly

higher spatial resolutions and frequencies, over large areas [58], and has been used for a

myriad of applications such as urban planning [23], forest and agricultural monitoring [4],

and disaster management of earthquakes [36] or volcanic eruptions [30].

1.2 Motivation

Almada, represented in Figure 1.1, is a Portuguese municipality located in the district of

Setúbal, with 174,030 inhabitants (as of 2011)2 and an area of approximately 70 km2. In

Portugal, and consequently in the city of Almada, the main LULC map utilized is COS.

COS is a national document developed by the Direção Geral do Território (DGT), pro-

duced through the analysis of aerial photographs, and readily available to the public. It

consists of a polygon map, in which each unit is classified as one of 83 classes, organized

into an hierarchical system of four levels. The most recent map is from 2018, with pre-

vious versions from 1995, 2007, 2010 and 2015. One especially important characteristic

of COS is the MMU of 1 hectare (10000 m2), which defines the minimum area that an

object must have in order to be identified. Smaller elements are subjected to a series of

2https://www.m-almada.pt/, Accessed on 2022-02-10
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1.2. MOTIVATION

Figure 1.1: Sentinel-2 image of the Almada municipality

generalization rules, which often results in inaccuracies. Additional information on COS

2018 technical specifications can be found in [20].

Analyzing the characteristics and limitations of COS, it is possible to perceive two

domains in which the LULC mapping of Almada could be improved: temporal and spatial

resolution. A map with higher spatial resolution would lead to a better delineation of

objects on the ground, such as small isolated structures or small areas of vegetation

surrounded by urban territories. As for the temporal resolution, obtaining regular maps

with a better release frequency would allow for more continuous monitoring of changes

in the territory. Creating a map with both of these improvements would highly benefit the

city council’s spatial planning, as more accurate LULC information would be provided,

leading to more precise calculations of monitoring indexes such as the number of illegal

structures and proportion of territory occupied by forests or agriculture.

Therefore, this research work investigated the applicability of using machine learning

classification algorithms with satellite data, in this case Sentinel-1 and Sentinel-2, and

derived products, to create functional and precise LULC maps in the region of Almada,

3



CHAPTER 1. INTRODUCTION

with a higher spatial and temporal resolution than COS. Since the last version of COS is

from 2018, LULC classification models and maps were produced for this year.

1.3 Goals

The main goal of this research was to create a 2018 LULC map for the Almada region, in

order to study whether satellite data and derived products could be used in conjunction

with automatic classification algorithms to produce accurate LULC maps. In addition to

this goal, several other objectives were accomplished:

• Comparison of two different methodologies for LULC classification, Pixel-Based

Image Analysis (PBIA) and Object-Based Image Analysis (OBIA);

• Comparison between sets of input data, created with different combinations of

Sentinel-1 and Sentinel-2 imagery and derived products;

• Comparison between two classifiers, XGB and RF;

• Comparison between two methodologies of ground truth acquisition, manual and

semi-automatic;

• Examination of the best LULC maps against the main reference map used in Almada,

COS, and a recently released reference map, COSsim.

1.4 Document Outline

The present work is divided in 8 different chapters which encompass the following con-

tent:

• Introduction: Introductory in nature, this chapter establishes the context and moti-

vation for this dissertation, define its objectives and present its structure;

• Background Theory: This chapter presents the theoretical background for the the-

sis. Several machine learning topics are introduced, as well as detailed descriptions

of the utilized satellites and its products.

• State of the Art: This chapter presents a survey of the existing research and state of

the art techniques on supervised LULC classification using remote sensing.

• General Approach: The general approach to the research problem is defined, includ-

ing a description of the execution plan and a detailing of several key components

of this problem.

• Methodology: This chapter fully details all sections of the proposed approach and

the experimental setup is presented;

4
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• Results - Pixel Based Approach: This chapter contains the presentation and analy-

sis of the results obtained using the pixel-based approach.

• Results - Object Based Approach: This chapter contains the presentation and anal-

ysis of the results obtained using the object-based approach.

• Conclusions: In this final chapter, the main conclusions achieved across this work

are presented, and a reference to future work is made.

5
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Background Theory

This chapter presents the theoretical background for the dissertation. It is divided into

two main sections, representing the major technologies employed in this dissertation:

Machine learning and Remote Sensing. In each section, several related subjects are intro-

duced and detailed.

2.1 Machine Learning

Machine learning is an branch of Artificial Intelligence which creates systems capable

of learning from data by identifying patterns [8]. In LULC mapping, machine learning

techniques are often applied in the form of supervised and unsupervised classification

algorithms [58]. This dissertation will focus on supervised classification.

Supervised Learning describes a class of problems in Machine Learning in which the

training data is composed of input examples and their corresponding target variables.

The objective of the algorithm is to find an appropriate function F, that correctly maps

the input examples, X, to the target variables, Y, such as:

F : X→ Y (2.1)

Supervised learning models learn by making successive predictions about the input

data, and being corrected by comparing their answer to the real labels. After training

they are used to make predictions on a second set of data, the test data. These predictions

are then compared to the real target labels in order to produce an estimate of the accuracy

or error of the model [8].

2.1.1 Classification Algorithms

Classification problems are one of the main types of supervised learning, and their prin-

cipal goal is the prediction of a class or category through the input data.

There are a myriad of classification algorithms but RF, Support Vector Machine (SVM)

and k-Nearest Neighbor (kNN) are the most widely used in LULC classification [65, 61,

6
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47]. In recent years, the XGB classifier has also been used frequently, delivering good

results [66, 33]. In this research, only RF and XGB classifiers were utilized.

2.1.1.1 Random Forest

Random Forest is a supervised machine learning algorithm, widely used in classification

and regression problems. This method is composed of a large number of individual de-

cision trees, that operate as an ensemble, and is based on the idea that the combination

of multiple uncorrelated models working towards the same goal produces a more overall

robust model, which surpasses the individual decision trees [10]. Each tree works indi-

vidually and the final prediction is obtained by the majority vote of all trees in the forest.

An illustration of this type of classifier can be observed in Figure 2.1.

Figure 2.1: Random Forest illustration. Adapted from: https://www.tibco.com/

reference-center/what-is-a-random-forest

RF use the Bagging (Boostrap Aggregation) technique, in which each individual

decision tree is trained on a training set of the same size of the original, obtained by

random sampling it with replacement. Using this method, the training samples of each

tree will be slightly different, creating uncorrelated individual models. In addition, each

tree is given only a random subset of the original features to choose, resulting in a greater

amount of diversity.

This algorithm can handle high dimensional data, is robust to outliers and not partic-

ularly computationally intensive, although a great amount of memory is required [27].

7
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2.1.1.2 XGBoost

XGBoost, which stands for eXtreme Gradient Boosting, is an implementation of gradient

boosted decision trees optimized for speed and performance [12]. Similar to RF, XGB,

represented in Figure 2.2, is an ensemble learning method, which uses the results of

several individual decision trees to provide the predictions. However, in contrast with

RF, it employs the Boosting technique.

Figure 2.2: XGB illustration. Adapted from: Deng et al. (2021) [18]

The biggest difference between Bagging and Boosting is that in Boosting, the decision

trees are built in sequence, and each subsequent tree aims to reduce the errors (in gradient

boosting, using the gradient descend algorithm) of the previous one. At each iteration

after the first tree, the incorrect classified samples are given heavier weights, forcing the

next tree to focus on their performance. The complete classifier is combination of weak

learners that result in a stronger and robust model.

2.1.2 Model evaluation

Model evaluation is an essential step in any Machine Learning pipeline since the useful-

ness of any model relies on its ability to generalise from the training data and provide

trustworthy predictions.

In classification problems, the most frequent method for model evaluation is the

analysis of confusion matrices, which are tables that provide insight into the predictions

obtained by the models.

8



2.1. MACHINE LEARNING

Table 2.1 represents an example of a confusion matrix for a fictitious classifier with 3

classes. Each row of the table represents the number of instances predicted for each class

and each column represents the number of real instances in each class. In the diagonal

from the top left corner to the bottom right corner are the instances which were classified

correctly, with the remaining being misclassifications.

True
A B C

A 8 1 2
B 0 5 1

Predicted C 3 2 10

Table 2.1: Example of a confusion matrix

Through the confusion matrix it is possible to calculate several metrics:

overall accuracy (OA) =
T P + TN

T P + TN +FP +FN
, (2.2)

precision =
T P

T P +FP
, (2.3)

recall =
T P

T P +FN
, (2.4)

F1 score = 2 · precision · recall
precision + recall

, (2.5)

in which TP represent the true positives, TN the true Negatives, FP the false positives

and FN the false negatives of the model.

In LULC classification, when assessing map accuracy, the metrics used are:

• User’s Accuracy: Proportion of the classes in the map that are in fact correct. Equal

to the precision metric and complement of the Comission Error.

• Producer’s Accuracy: Proportion of true classes on the ground which were pre-

dicted accurately. Equal to the recall metric and complement of the Omission Error.

• Comission Errors: Proportion of instances that were predicted as a certain class

but are not actually part of that class.

• Omission Errors: Proportion of instances of a certain class but were not predicted.

One additional metric that can be derived from the confusion matrix is Kappa, or

Cohen’s Kappa. Kappa is a statistic that can be used for evaluation of a single model or

for the comparison of multiple classifiers, and compares the accuracy of the model to that

of a random system. It is calculated with the following formula:

9
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kappa =
p0 − pr
1− pr

, (2.6)

in which p0 is the Overall Accuracy (OA) of the model and pr is the probability of

random accuracy.

The probability of random accuracy is calculated with the following formula [29]:

pr =
K∑
k

pk · tk , (2.7)

in which pk is the number times that class k was predicted and tk the number of actual

instances of class k.

Kappa’s values can range from 1 to negative values. For a perfect model, the kappa

value is 1, for a random model, 0, and for a model whose OA is worse than that of a

random model, negative.

Kappa is extensively used in LULC classification [60, 67], and it is a useful metric

especially when the class distribution is imbalanced.

2.1.3 Image Segmentation

Image segmentation is the process of partitioning an image into multiple objects (seg-

ments), which are created by analysing the pixels values and grouping similar regions.

Most of the reviewed OBIA classification papers perform image segmentation using the

software eCognition, primarily with the algorithms Mean Shift Segmentation and Mul-

tiresolution Segmentation [34]. However, as eCognition is a paid software, the imple-

mentation of Mean Shift Segmentation (MSS) on Orfeo ToolBox (OTB) was used. This

implementation has been shown to produce good results in land-cover mapping [45].

Mean Shift is a general non-parametric mode finding algorithm, first proposed by

Fukunaga et al. (1975) [24] and further developed by Cheng (1995) [14], which has

several applications, such as clustering [11] and image segmentation [16].

OTB’s MSS implementation is a combination of two main processes: an initial Mean

Shift Filtering and a subsequent segmentation step. Two parameters, spatial and range

radius, highly influence the output of the algorithm.

The Mean Shift Filtering process repeats the following steps for each pixel of the

image:

1. Determination of the set of neighboring pixels by a spatial (s) and range window

(r): all pixels within radius s that have a value difference with the center pixel equal

or lower than r are included.

2. Calculation of the spatial center and the value mean of the set.

3. Utilization of the new spatial center as the center for the next iteration’s spatial and

range window.

10
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4. Repeat steps 1, 2 and 3 until convergence.

5. After convergence, attribute to the initial pixel the value of the last obtained value

mean.

Subsequently, the segmentation step clusters the pixels by grouping neighbor pixels

whose range distance is within the range radius. The full procedure is detailed by Michel

et al. (2015) [48].

2.2 Available Remote Sensing data and derived products

The two constellations most relevant to the dissertation topic are Sentinel-1 and Sentinel-

2, both due to their high revisit time and spatial resolution. In this section, this satellites

are presented, as well as two products that can be derived from their imagery: spectral

indices and texture information.

2.2.1 Sentinel-1

Sentinel-11 is the first satellite constellation in the Sentinel series of the Copernicus pro-

gram managed by the Europen Comission, and it consists of two polar-orbiting satellites

(1A and 1B), launched in 2014 and 2016 respectively, operating day and night.

The Sentinel-1 mission has an average revisit time of 6 days and the spatial resolution

varies across the different operational modes. Interferometric Wide Swath, the main

acquisition mode over land, has a spatial resolution of 5 ×20m.

This satellite carries a C-band Synthetic Aperture Radar (SAR) active sensor, which

means that it can obtain data regardless of cloud coverage, weather condition or lack

of ilumination, which supports operation in single polarisation (HH or VV) and dual

polarisation (HH+HV or VV+VH).

In this dissertation, polarizations ‘VV’ and ‘VH’ in the Interferometric Wide Swath

mode, were used.

2.2.2 Sentinel-2

Sentinel-22 is the second mission in the Sentinel series of the Copernicus program, con-

sisting of two polar-orbiting satellites, launched in 2015 and 2017, respectively. These

satellites are phased at 180 degrees, and offer a revisit time of 5 days at the Equator and

2-3 days in mid-latitudes.

Sentinel-2’s data is high-resolution, wide-swath and multi-spectral, with 13 different

bands, presented in Table 2.2. In this dissertation all bands were used, with exception of

B10.

1https://sentinel.esa.int/web/sentinel/missions/sentinel-1, Accessed on 2020-02-20
2https://sentinel.esa.int/web/sentinel/missions/sentinel-2, Accessed on 2020-02-20
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Table 2.2: Sentinel-2 bands

Band Spectral region Wavelength (nm) Spatial Resolution (m)

B1 Coastal aerosol 443 60
B2 Blue 492 10
B3 Green 560 10
B4 Red 665 10
B5 Red-Edge 704 20
B6 Red-Edge 740 20
B7 Red-Edge 783 20
B8 Near Infrared 833 10
B8A Near Infrared narrow 865 20
B9 Water vapour 945 60
B10 Shortwave infrared/Cirrus 1374 60
B11 Shortwave infrared 1610 20
B12 Shortwave infrared 2190 20

The multispectral instruments in these satellites are passive sensors, which means

that the capturing of data is often disturbed by the weather, since the sensors are not able

to penetrate the clouds.

2.2.3 Spectral Indices

Spectral indices are produced through the combination of various spectral bands of an im-

age, and are widely used in classification using remote sensing. In this dissertation, three

spectral indices were employed: Normalized Difference Vegetation Index (NDVI) [41], to

help identify vegetation, and the Normalized Built-Up Index (NDBI) [73] and Built-Up In-

dex (BUI) [32] to distinguish artificial territories. The formulas of the mentioned indices

are:

NDV I =
NIR−Red
NIR+Red

, (2.8)

NDBI =
SWIR−NIR
SWIR+NIR

, (2.9)

BUI = NDV I −NDBI, (2.10)

where NIR represents a near-infrared band, Red represents a red band and SWIR

represents a short-wave infrared band.

Figure 2.3 presents a comparison between ortophotos and the three indices, calculated

using Sentinel-2 images, for a small area in Almada. In Figure 2.3b the highest values

(white color) correspond to the vegetation in the orthophotos, while in Figure 2.3d and

2.3c, correspond to the artificial territories. Comparing the two built-up indices, its

12
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possible to observe that Figure 2.3c has slightly more contrast and the edges of the objects

on the ground seem to be better defined.

(a) Aerial ortophoto (b) Normalized Vegetation Index

(c) Built-Up Index (d) Normalized Built-Up Index

Figure 2.3: Comparison between orthophots and spectral indices

2.2.4 Texture information - GLCM method

In image processing, texture is characterized by the spatial distribution of the brightness

intensity of a region of pixels. Obtaining texture information about the surface of the

Earth is an essential process for LULC classification, and it is frequently done by using

the Gray-Level Co-Occurence Matrix (GLCM) method [42, 37].

The GLCM method is a statistical process of extracting texture features, initially pro-

posed by Haralick et al. (1973) [31], which consists of creating the GLCM of an image

and from it extracting statistical information.

The GLCM of an image indicates how often a pixel with value i occurs in a specific

spatial relationship with pixels of the value j. Figure 2.4 represents this process for a

fictitious 3x3 image. In this case, the spatial relationship analyzed was between each

pixel and its right neighbor. For example, in the 3x3 image, 0 value pixels appear to the

right of 1 value pixels two times, and as such, this will be the value of the (1,0) element

in the GLCM.

13
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Figure 2.4: GLCM matrix calculation example

From this matrix, several texture features can be extracted, whose formulas are de-

tailed by Haralick et al. (1973) [31]. Figure 2.5 presents three of these features, Energy,

Entropy and Haralick Correlation, calculated using Sentinel-2 images, as well as an or-

tophoto of the same area.

(a) Aerial ortophoto (b) Energy

(c) Entropy (d) Haralick Correlation

Figure 2.5: Comparison between orthophots and textural features
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State of the Art

Similarly to any other research problem, a thorough reviewing of the literature surround-

ing the dissertation themes is necessary. This chapter presents the main findings of that

review.

First, the two most common approaches to LULC classification, pixel-based and object-

based are explored, with multiple studies in distinct areas, using different classifiers

and combinations input data being reviewed. Subsequently, the utilization of the XGB

classifier and textural features extracted using the GLCM method are further investigated,

followed by an analysis of image segmentation evaluation techniques.

3.1 Approaches to LULC classification

The first automatic methods for LULC classification were developed through the use of

PBIA, which analyses an image pixel by pixel. Supervised and unsupervised learning

can and have been used throughout the years, although this dissertation focuses specifi-

cally on the supervised problems. Parametric and non-parametric classifiers have been

explored, although the use of the former has been decreasing over the years due to the

fact that the input data is usually not normally distributed, which is a core assumption

of these type of classifiers [57]. The most frequently used classifiers are RF, SVM and

kNN [67, 35, 3].

Another type of approach using OBIA is also widely used in LULC classification [58].

OBIA methods segment the image into objects of similar pixels, and use information

about these objects to perform the classification [19]. As with PBIA methods, multiple

types of classifiers have been utilized, mostly non parametric, such as SVM and RF [28,

15].

3.1.1 Pixel-based approach

As mentioned before, the pixel-based approach to LULC classification uses the pixel as

its basic unit. Each pixel is classified based on its spectral properties, as pixels from the

same class tend to have similar properties [57].
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One limitation of this type of approaches is that it usually does not take into account

the neighbourhood of each pixel, meaning that there is no spatial context included in the

classifier. This limitation is especially prominent in Land Use classification, since each

land use class can be composed of multiple land cover classes, with varied spectral prop-

erties [75]. In order to surpass this limitation, several researchers combine the satellite

imagery with extracted textural features [69].

Nguyen et al. (2020) [50] studied LULC classification using multitemporal sentinel-2

imagery, and tested fours classifiers, logistic regression (parametric), RF, improved kNN

and SVM (non-parametric), in Dak Nong, a vietnamese province. A total of 446 images

from 2017 and 2018 were collected and divided into four time periods: dry season 2017-

2018, rainy season 2017-2018, a combination of the two seasons, and the year 2017. They

utilized a combination of 10 Sentinel-2 bands, all resampled at 10 meter resolution, with

the addition of NDVI and information from a Digital Elevation Model (DEM). The classes

distinguished in this study can be observed in Table 3.1

Table 3.1: Classes distinguished in Nguyen et al. (2020) [50]

Class names
Dense evergreen broadleaved forest
Open evergreen broadleaved forest
Semi-evergreen forest
Deciduous dipterocarp forest
Plantation forest
Mature rubber (more than 3 years old)
Perennial industrial plants
Croplands
Residential area
Water surface
Other lands (grassland, shrubs, bare land, and abandoned land...)

The model with the highest accuracy was found by using the composite set of the

two seasons in 2017-2018, with SVM reaching an OA of 80.3% and Kappa of 0.813.

Analyzing this result by class, the authors found that the ones with the worst accuracy

were croplands and residencial areas. These findings are mostly consistent with the

literature. Residential areas and cropland are two land use classes, which, as mentioned,

are harder to classify using a pixel-based method [75]. Including the DEM information

was not enough for these classes to reach high levels of accuracy. The lowest accuracy was

obtained using the combination of logistic regression with the rainy season imagery, with

OA of 63.9% and Kappa of 0.611.

The authors conclude that using multitemporal images from different seasons in-

creases the accuracy of the model due to the additional information provided by each of

them for the same land cover classes. One final remark is that although SVM was the best

performing classifier, RF had extremely similar results (OA of 80.0% and Kappa of 0.802)

and was less computationally demanding. This is congruent with the findings from Noi
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et al. (2017) [56]. and Abdi (2020) [1].

Noi et al. (2017) [56] produced a comparative study between RF, kNN and SVM

for Land Cover Classification using Sentinel-2 images. A total of six LULC classes were

distinguished in an area within the Red River Delta of Vietnam, and the effect of the size

of the training samples was investigated. The training data was divided into 14 sets, in

which seven were imbalanced, with percentages from the total training data ranging from

5 to 100, and seven were balanced, with 50 to 1250 pixels per class.

In the classification with the imbalanced sets, SVM always produced the highest

accuracies, followed by RF and kNN, with the discrepancy between classifiers being

larger in the smaller sample sizes. The highest accuracies for each classifier were not

found in the largest sample size, but in sets that represented approximately 0.26% of the

total study area. In the balanced sets, the ranking of the classifiers’ accuracy was equal to

that of the imbalanced. In general, the three algorithms all showed improvement when

the size was increased up until a certain point (more than 750 pixels per class), in which

the results hit a plateau.

SVM was found to be simultaneously the algorithm with the highest OA, and the least

reactive to changes in training data size. Nonetheless, if the training data is sufficiently

large, all three classifiers have comparable OA in both types of datasets. The authors close

with the suggestion that training sample size should be aproximately 0.25% of the total

area of the work.

Tavares at al. (2019) [69] investigated the effects of the combination of optical and

SAR products, on LULC classification in Belém, Brazil with the group of classes presented

in Table 3.2. Two Sentinel-1 images with an C-band SAR Interferometric Wide Swath

(IW) in dual polarization mode (VV + VH) were collected, as well as one image with no

cloud coverage, from Sentinel-2 Level-1C. For the classification all Sentinel-2 bands were

used, except for SWIR/Cirrus. In conjunction with the images, multispectral indexes

derived from S-2 were used (NDVI, Normalized Difference Water Index (NDWI) and Soil

Adjusted Vegetation Index (SAVI)), as well as textural features calculated using the GLCM

method using Sentinel-1 images. The classification algorithm chosen was RF.

The results demonstrate that the combination of both satellites provided the most

accurate classification, with an OA of 91.07% and Kappa of 0.8709. As predicted, the

single Sentinel-1 imagery provided the worst results with an OA of 56.01% and Kappa

of 0.4194. As for the models completed with information derived from the satellites,

although the inclusion of texture features did increase the accuracy of Sentinel-1 classi-

fication, the same did not happen with Sentinel-2, whose classification accuracy slightly

dropped from 89.53% to 87.095% of OA and from 0.8487 to 0.8132 for the Kappa.

The authors conclude that although the application of spectral indices and texture

information has been widely recognized to improve LULC classification, this isn’t always

the case. A final recommendation, based on their best results, is made for the synergetic

use of both Sentinels for LULC classification, which is corroborated by other works [71].
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Table 3.2: Classes distinguished in Tavares at al. (2019) [69]

Class names
Agriculture
Airport
Bare soil
Beach
Built-up
Grassland
Highway
Mining
Primary vegetation
Urban vegetation
Water with sediments
Water without sediments

3.1.2 Object-based approach

As the name evokes, object-based approach uses objects as its basic unit, which are com-

posed of similar pixels. The greatest advantage of the OBIA methods is the homogeniza-

tion introduced by the segmentation step, which leads to a reduction of the within class

variation and the salt-and-pepper effect common in PBIA approaches [57]. In addition, in

this type of approach other types of spatial information can be calculated, such as geomet-

ric attributes that describe the overall shape of each segment. The biggest challenge when

using this type of approach is choosing the appropriate parameters for the segmentation.

Multiple studies have been conducted using OBIA with high degrees of accuracy [28, 15].

In a paper by Clerici et al. (2017) [15], LULC classification was performed using both

Sentinel-1A and Sentinel-2A data, for the lower Magdalena region, in Colombia. Spectral

indices were calculted from Sentinel-2, as well as texture measures from Sentinel-1, and

utilized in conjunction with both satellites’ images, resampled to 10 meters.

The object-based classification was performed using the software eCognition. After

obtaining the segmentation, the classifiers were trained on six classes: forests, secondary

vegetation/shrubs, cropland, water, pastureland and built; using 160 locations obtained

from Google Earth and on-site. Three different classification algorithms were tested, SVM,

RF and kNN and, in order to evaluate the fusion of information from both satellites, the

individual layers were also tested separately.

Like in the case of Tavares at al. (2019) [69], the worst accuracies were achieved with

the sole use of Sentinel-1. SVM was the superior classifier in all of the tests, achieving

the maximum OA of 88.75% and Kappa of 0.86 in the combination of both satellites.

The classes secondary vegetation/shrubs and cropland had the lowest accuracies, and the

authors theorize that this might be due to the model not being able to capture their high

spectral variance.
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Sánchez-Espinosa et al. (2019) [62] studied the use of Sentinel-2 and Landsat8 im-

agery for LULC classification in a Mediterranean wetland area. Images were collected

from both satellites from autumn 2015 to summer 2016, and Sentinel-2’s 20 meter bands

were resampled to 10m. As reference data, the researchers used LULC maps produced

by the regional government of Andalucia, and a total of 12 classes were distinguished,

present in Table 3.3

Table 3.3: Classes distinguished in Sánchez-Espinosa et al. (2019) [62]

Class names
Urban
Arable land
Vineyards
Fruit trees and berry plantations
Olive groves
Grassland
Mixed forest with tree cover density higher than 80%
Mixed forest with tree cover density between 30% and 50%
Sclerophyllous vegetation
Inland marshes
Water courses
Areas without vegetation

The classifications were obtained using GeoClassifier, a Geographic Information Sys-

tem (GIS) software. This software first performs the image segmentation using spectral

and geometrical characteristics, then trains the classifier using those segments and finally

performs the test image classification and calculates the statistics. The parameters for

the segmentation were found using a process of trial and error. To train the model, a

minimum of 30 segments for each class were used and the classifier utilized was the

maximum-likelihood.

Overall, the results obtained with Sentinel-2 were slightly better than Landsat8, with

an OA of 88-87%, although both satellites obtained comparable results. The classes with

the best results were agriculture and wetland, and the one with the lowest accuracy was

urban, with around 61% of accuracy. The authors explain these low results by outlining

the fact that the tested area is a rural region with elements like roads and dispersed

houses, which are too small to be detected. They also note that there seems to be some

confusion between areas under construction and areas without vegetation, and between

green urban areas and natural vegetation.

3.1.3 Comparison of pixel and object methods

Goodin et al. (2015) [28] compared the results of LULC mapping using both pixel and

object based approaches with an SVM classifier, in a complex agricultural landscape along

the Ukraine-Poland border. The input data was obtained from a single date from Landsat

19



CHAPTER 3. STATE OF THE ART

8 OLI, with bands 2-7 being used. Table 3.4 contains the land cover classes distinguished

in this and Table 3.5 contains the land use classes.

Table 3.4: Land Cover classes distinguished in Goodin et al. (2015) [28]

Class names
Artificial/urban
Bare
Grasslands or Herbaceous cover
Woodland
Wetland
Water

Table 3.5: Land Use classes distinguished in Goodin et al. (2015) [28]

Class names
Artificial/urban
Arable land Type 1
Arable land Type 2
Pasture/abandoned
Heterogeneous agriculture
Forest - mixed
Forest - coniferous
Wetland/pasture
Water

Image segmentation was performed using the ENVI Zoom module and the parameters

were obtained by trial and error. Following the segmentation, two types of attributes

were calculated: spectral, related to the reflectance properties of the objects, and spatial,

related to their geometry and texture.

As for the land cover results, both methods produced similar results, with OBIA re-

sulting in a slightly more accurate map, although not statistically significant. In the land

use classification, OBIA using both spectral and spatial attributes obtained the highest

result, with an OA of 75%. Pixel based classification performed similarly to OBIA using

only spatial characteristics, and OBIA using only spectral attributes outperformed them

both.

The authors conclude that the OBIA method does not inherently provide a significant

improvement for the OA of land-cover classification, since this task is more closely related

to the spectral properties of the elements. As for land use, when the combined OBIA

method was used, a noteworthy improvement was produced in overall accuracy, and

especially in the agriculture classes.

The researchers also mention that although a single image was used for the study,

this was done because it was the only available image. They attribute their lower OA, in

comparison with other LULC classification studies, to this limitation and theorize that
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improvements could be achieved by using multitemporal imagery.

3.2 XGB classifier in Land-Use Land-Cover classification

The most prevalent machine learning classifiers for LULC classification in the last decade

have been Support Vector Machines, Random Forests and K-Nearest Neighbours, with RF

and SVM being considered the best techniques, with consistently high results in several

OBIA and PBIA studies [67, 46, 54, 44].

However, Gradient Boosting Machines, in particular Xgboost, a regularized implemen-

tation of Gradient Boosting Machines (GBM) developed by Chen and Guestrin (2016) [12],

has recently risen in popularity and have achieved excellent results [66, 26, 33].

Georganos et al. (2018) [26] developed a comparison of the XGB classifier with RF

and SVM in an object-based urban LULC classification, with a diverse group of land use

and land cover classes. The authors concluded that the XGB, optimized with a Bayesian

model, consistently outperformed the other classifiers, although it had an increased com-

putational time.

Additionally, Dobrinić et al. (2020) [66] tested RF and XGB in a LULC classification

of Lyon, France, with a combination of Sentinel-1 and Sentinel-2 imagery, and the group

of land cover classes presented in Table 3.6. Similar to Georganos et al. (2018) [26], the

XGB classifier slightly outperformed RF, although in this study the computational time

was lower for the XGB.

Table 3.6: Land Cover classes distinguished in Dobrinić et al. (2020) [66]

Class names
Water
Bare soil
Forest
Built-up
Low vegetation

In Portugal, Neves et al. (2019) [49] explored Sentinel-1 and Sentinel-2 imagery for

the detection of permanent structures using the XGB classifier. The final results were

robust, with the classification model being able to identify structures which were not

represented in the reference data.

3.3 Textural features - GLCM

Research shows that the use of textural information in classification when combined with

spectral data, can increase the accuracy by helping to distinguish areas with spectral

similarities in both object and pixel-based studies [42, 5, 68].
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Textural features can be extracted from images using a multitude of techniques, and

one of the most common is through the utilization of the Gray Level Co-Occurrence Ma-

trix. As mentioned in the previous chapter, Haralick et al. (1973) [31] proposed several

statistical measures, which have achieved good results when used in LULC classifica-

tion [53, 6, 55].

A study by Kupidura (2019) [42] reported an increase in kappa value when combining

GLCM features with spectral properties, to classify Sentinel-2 imagery with the group

of classes in Table 3.7. The author applied a Principal Component Analysis (PCA) to

the satellite imagery, and calculated several versions of the GLCM matrix (with neighbor-

hoods of 5, 7, 10 and 13) from the first component. Although all versions had a positive

effect in classification accuracy, the best results were obtained with neighborhood 7. The

class with the most improvement in accuracy was urban, with deciduous forest having a

slight deterioration.

Table 3.7: Land Cover classes distinguished in Kupidura (2019) [42]

Class names
Water
Low vegetation
Bare soil
Urban
Coniferous forest
Deciduous forest

3.4 Image segmentation evaluation

Image segmentation is a key step in the OBIA approaches to LULC classification and

obtaining a quality segmentation of the study area highly influences the classification

results [34]. The most common segmentations algorithms used in remote sensing are

region-based methods, such as the multiresolution and mean-shift algorithms, which

generate good results but require parameter optimization that greatly influences the

quality [34]. Therefore, the assessment and evaluation of segmentation quality is a crucial

part of the OBIA methodology.

There are three main methods of segmentation evaluation: subjective, which is based

on human visual judgment; supervised, in which the segmentation is compared to a

segmented reference image; and unsupervised. The subjective methodology is the most

common and has been used on a number of studies [34], although it is time consuming

and limits the evaluation to a small number of comparisons [76]. In this dissertation, since

no well segmented reference data exists, the review will focus on the topic of unsupervised

evaluation.

Unsupervised evaluation methods measure the quality of the segmentations without

requiring manual supervision, and are extremely useful when assessing the quality of a
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substantial amount of segmentations. These types of procedures usually calculate metrics

that describe intra-region homogeneity and inter-region heterogeneity, and combine them

into one overall index [76]. An optimal segmentation should have both high intra-region

homogeneity, with each segment being composed of spectrally similar pixels, and high

inter-region heterogeneity, with each segment being different from its neighbors.

One popular approach, proposed by Espindola et al. (2006) [21] uses the Moran’s

Index (MI) to measure inter-segment heterogeneity, and Area-Weighted Variance (WV) to

measure intra-segment homogeneity. The WV is calculated as:

WV =

n∑
i=1

ai ∗ vi
n∑
i=1

ai

, (3.1)

where ai and vi are the area and variance of segment i, and n is the number of segments.

The MI is calculated as:

MI =

n
n∑
i=1

n∑
j=1

wij(yi − y)(yj − y)

n∑
i=1

(yi − y)2

( ∑
i,j

∑
wij

) , (3.2)

where n is the total number of segments, wij is the measure of spatial proximity (0 if

segments Ri and Rj are not neighbors), yi and yj is the mean spectral value of segment Ri

and Rj , and y is the mean value of the image.

The two indices are then normalized to a common range (such as 0 to 1) and the sum

of the two normalized measures yields the final score of each segmentation, Global Score

(GS):

GS = WVnorm + MInorm (3.3)

The objective in this approach is to minimize both indices and consequently, the

optimal segmentation is the one which obtains the lowest GS. Although this approach

was developed for single band images, multispectral imagery has also been used, by

averaging each band for the two indices [38].

However, Böck et al. (2017) [9] showed that this method has an instability introduced

by the normalization of the indices, which makes the GS values sensitive to the range

of segmentations tested and returns different optimums depending on that range. The

authors proposed a normalization scheme using a fixed range, correspondent to the ex-

treme values of the two indices. Since then, this new normalization has also been proved

to be ineffective and results in the GS skewing towards the MI, selecting undersegmented

segmentations as optimal [25].
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3.5 Conclusion

LULC classification is highly dependent on the region and the chosen land use land cover

classes. For this reason, it is impossible to assume which approach or methods will have

the highest accuracy. Nonetheless, there seem to be certain topics which gather relative

consensus, such as the utilization of multitemporal series, as opposed to a single image

and the synergetic use of Sentinel-1 and Sentinel-2 imagery.

SVM and RF have both been extensively used in LULC classification, demonstrating

excellent results [63]. Recently, the application of XGB to this type of problems has been

growing, with comparable performances [26]. Since the use of XGB is still relatively

uncommon, this research work focused on its comparison with one of the most common

classifiers, RF. The choice of RF, in detriment of SVM, was made due to its computational

speed and easy hyperparameter optimization [7], characteristics especially important

when performing a significant number of experiences.

Including textural features in the classification models, specifically through the use

of the GLCM method was studied in this review. Although the research by Kupidura

(2019) [42] concluded that the use of such features had a positive influence on the classi-

fication kappa, the same was not verified by Tavares at al. (2019) [69]. These two studies

were performed on different areas, with a completely different group of classes, and using

different Sentinels, Kupidura (2019) [42] using Sentinel-2 and Tavares at al. (2019) [69],

Sentinel-1. Consequently, this research will study the effect of the inclusion of textural

features using the GLCM method, by performing separate experiments using Sentinel-1

and Sentinel-2 imagery.

After the review on segmentation evaluation, it is clear why the majority of OBIA

approaches to classification still employ the subjective method to evaluate the segmen-

tations. Additional research on segmentation evaluation, in particular the unsupervised

version still needs to be executed [76]. Notwithstanding, this research will employ the

use of the WV and MI proposed by Espindola et al. (2006) [21]. Due to the conflicting

reports on the validity of GS, it was decided that it would not be used to automatically

select the optimal segmentation. As such, the calculation of the two indices will be com-

plemented by the subjective evaluation (visual analysis) when needed. Although this is

not an ideal solution, as it requires a great amount of manual analysis, the creation and

validation of segmentation metrics is a complex problem, which falls out of the scope of

this dissertation.

Finally, it is important to mention the obvious exclusion of Deep Learning in this

review. Convolutional Neural Networks (CNN) are the state of the art solution in various

computer vision tasks, and have also been applied to LULC classification problems using

remote sensing [64, 74]. However this approach has two main problems: the necessity

for high amounts of training data and high processing power, in order to accurately

understand the complexities present in remote sensing data [51]. Furthermore, some

studies have shown that traditional machine learning produces competitive results, at a
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fraction of the computational time, and with a higher degree of interpretability [39]
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General approach

The main goal of this dissertation was to study whether remote sensed imagery, specifi-

cally Sentinel-1 and Sentinel-2 and derived products, could be used to create functional

LULC maps, in the context of the Almada municipality. Since the most recent version of

the main reference map, COS, is from 2018, this region’s 2018 LULC map was created.

Through the investigation produced by the state-of-the-art review, a proposed solution

was developed. This chapter opens with a description of the execution plan for that

solution, followed by the presentation of multiple key elements: the available reference

data, the chosen classification classes, and the study region. Moreover, a recently released

LULC map, a simplified version of COS (COSsim) is presented. The final section details

the utilized software.

4.1 Proposed Solution

The proposed solution was achieved through a comparison between the two most com-

mon approaches to LULC classification, PBIA and OBIA, using two classifiers, Random

Forests and XGBoost. Additionally, multiple combinations of satellite imagery and de-

rived products were tested. The diagram in Figure 4.1 represents the general pipeline of

the execution of this research.

The first three steps are common to both approaches. In Data acquiring and pre-

processing, all satellite data was obtained and pre-processed, and in Creation of derived

products, the spectral indices and textural features were calculated. In Ground truth

construction, the reference data was used to create two ground truths for the future

labelling of data for the classifiers.

Subsequently, two separate paths were followed. In the PBIA approach, the next

phase was Dataset creation, where the two ground truths were random sampled and

used to create all the different datasets. This was followed by Classification, in which

the datasets were used to train and test several classification models. In the last step,

Accuracy Assessment, all models were analysed and the best one was used to produce

the final LULC map.
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Figure 4.1: Diagram of the dissertation’s general pipeline

The OBIA approach followed a similar path, with Dataset creation being preceded

by a Segmentation step, which created the objects used to extract features and build the

datasets.

The last phase, Comparisons and conclusions, consisted of a comparative review of

the maps obtained by the best classification models, as well as a general comparison of

the implementation of each approach.

4.2 Reference data

Supervised classification models are trained on labeled information. In this case, the

input data to the classifier models is Sentinel-1 and Sentinel-2 imagery, as well as infor-

mation derived from them, which are not labeled. As so, reference data was used to create

ground truth to label the input data.
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Two sources of information were used: the most recent COS, from 2018, presented

in chapter 1, and a mosaic of aerial orthophotos, an example area of which is present in

Figure 4.2. The orthophotos were created by the DGT, using a 2018 aerophotogrametric

survey, acquired by the Instituto de Financiamento da Agricultura e Pescas, I.P (IFAP).

They are available free of charge through WMTS visualization service, and cover the

entirety of continental Portugal’s territory, with a spatial resolution of 0.25m, providing

information on four spectral bands, RGB and NIR.1

Figure 4.2: Example area (0,43289 km2) of DGT’s 2018 ortophotos

4.3 Classes and study region

One key detail in LULC classification is the choice of classes. Analysing the relevant

literature, different groups of classes are used in every region and study, with some

degree of overlapping.

For this research, the chosen classes were based on the Level 1 classes in COS 2018,

with representation in the Almada municipality, presented in Table 4.1.

1https://snig.dgterritorio.gov.pt/, Accessed on 2020-11-06
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Table 4.1: Level 1 COS 2018 classes, represented in Almada

Classes
1. Artificial Territories
2. Agriculture
3. Pastures
5. Forests
6. Spontaneous vegetation areas with shrub coverage (in Portuguese, Matos)
7. Bare and sparsely vegetated areas
8. Wetlands
9. Shallow bodies of water

After some initial tests, and a meeting with the Almada city council, it was decided

that classes Spontaneous vegetation areas with shrub coverage and Pastures should be

merged into a new class, Other Vegetation, due to their similarities. Wetlands was also

added to this new class, due to its very small representation in the study region. For the

same reason, Shallow bodies of water was eliminated from the group. The final group

of classes can be observed in Table 4.2

Table 4.2: Final group of classes

Classes

1. Artificial Territories
2. Agriculture
3. Other Vegetation
4. Forests
5. Bare and sparsely vegetated areas

After determining the group of classes, it is important to describe the Almada munici-

pality in their context and so, COS 2018 was used to estimate the proportions of each class.

Analysing both Table 4.3, which presents the area of each class, and Figure 4.3, which

visually represents the proportion, it is evident that the areas are extremely imbalanced,

with 1. Artificial Territories representing more than 50% of the region. This imbalance

in representation was a critical detail in the research problem.

Table 4.3: Area of each class in Almada

Class Area (in km2) % of total area
1. Artificial Territories 37.99 54.29%
2. Agriculture 8.20 11.72%
3. Other Vegetation 5.51 7.87%
4. Forests 16.53 23.67%
5. Bare and sparsely vegetated areas 1.71 2.44%
Total 69.97 100.00%
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Figure 4.3: Proportion of each class in Almada

These areas are solely an approximation, as COS has a minimum mapping unit of 1

hectare and is not able to fully capture all objects. Additionally, there are some choices

of classification in COS which do not fully align with the classes in this dissertation, such

as identifying parks and golf courses as Artificial Territories. It is important to note that

when talking about errors and inaccuracies in other maps, such as COS and COSsim, it is

solely in the context of this dissertation, as they generally occur due to known limitations

or specific methodological choices.

4.4 COSsim

During the development of this dissertation, a different product was made available by

the DGT, COSsim2, a simplified version of COS.

COSsim is a LULC map, created to provide complementary information to COS. It was

2https://www.dgterritorio.gov.pt/COSsim-Carta-de-Ocupacao-do-Solo, Accessed on 2020-11-
07
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produced through a combination of rules derived from expert knowledge and artificial

intelligence methods, using time-series of Sentinel-2 imagery and spectral indices. The

training samples were obtained through the automatic processing of ancillary information

and by photo interpretation. More information about development of this product can

be found in [17].

COSsim has a yearly production frequency and is made available in raster format with

a spatial resolution of 10m (MMU of 100 m2), in the EPSG:3763 coordinate system. The

global precision of this map is 81.3% (±2.1%), obtained through a sample of 4018 points

with a confidence level of 95%.

This map has three hierarchical levels of classification, with 6, 9 and 13 (or 15, from

2020 forward) classes, which are detailed in Table 4.4. It is interesting to note that

COSsim’s Level 1 classes correspond exactly to the ones chosen for this dissertation, with

the exception of Water and wetlands, which has almost no representation in Almada.

Table 4.4: Classification nomenclature in COSsim

Level 1 Level 2 Level 3
1. Artificial 10. Artificial 100. Artificial
2. Agriculture 21. Agriculture 211. Annual autumn/winter

crops
212. Annual spring/summer
crops
213. Other agricultural
areas

3. Forest 31. Broadleaf 311. Quercus rotundifolia
and Quercus suber
312. Eucalyptus
313. Other broadleaf

32.Coniferous 321. Pinus pinaster
322. Pinus pinea
323. Other coniferous

4. Shrub and
spontaneous
herbaceous vegetation

41. Spontaneous vegetation
areas with shrub coverage

410. Spontaneous vegetation
areas with shrub coverage

42. Spontaneous herbaceous
vegetation

420. Spontaneous herbaceous
vegetation

5. Areas with no
vegetation

50. Areas with no vegetation 500. Areas with no vegetation

6. Water and wetlands 61. Wetlands 610. Wetlands
62. Water 620. Water

The DGT emphasizes that COSsim is still an experimental product, and that COS

must still be used as the main cartography. Nevertheless, the release of this product

was extremely interesting in the context of this dissertation, since it provided an extra

LULC map, obtained through similar techniques, for further evaluation of the proposed

solution.
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4.5 Software

During the execution of this study, multiple software and applications were used in order

to reach the proposed solution. This section presents those tools and their main purposes.

4.5.1 QGIS

QGIS3 is a free open-source GIS, which offers a variety of standard GIS functionalities

and allows users to visualize and manipulate spatial information, that can be stored in

vector or raster formats. It can also be integrated with various plug-ins to extend its

functionalities.

In the development of this dissertation, QGIS was heavily explored, being used as a

visualization tool and employing several of its raster and vector editing functions. Addi-

tionally, OTB, a remote sensing open-source project, was also used as a fully integrated

QGIS plug-in. OTB has a variety of functionalities, some of which were explored such as

dimensionality reduction and image segmentation.

4.5.2 Spyder

The majority of the code developed for this project was written in Python, in the Spyder

IDE running with Anaconda. As this research problem deals with geospatial data, mul-

tiple libraries developed to work with such data in vector or raster format were used, as

well as libraries pertaining to machine learning. The complete list of Python libraries

utilized is represented in Table 4.5.

Table 4.5: Python libraries used

Libraries Version General purpose

rasterio 1.2.10 Geospatial raster data manipulation
fiona 1.8.20 Geospatial vector data manipulation
geopandas 0.6.1 Geospacial data analysis
pandas 1.3.0 Data analysis
xgboost 1.5.0 Classification model
scikit-learn 1.0.1 Classification model, validation and metrics

4.5.3 Google Earth Engine

Google Earth Engine (GEE) is a platform developed by Google for the analysis and visual-

ization of geospatial datasets. It hosts satellite imagery from multiple sources dating back

around 40 years, which is publicly available for consulting and downloading. One of the

main advantages of GEE is the possibility to retrieve the satellite images and pre-process

them in the Google servers, eliminating the need for storing the raw data locally.

3https://www.qgis.org/en/site/
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In this dissertation, GEE served exclusively as a data acquiring and pre-processing

tool, and it was utilized via the web-based IDE, Earth Engine Code Editor.4 This IDE

can be freely accessed after activation through a Google account, and allows for the

development of Javascript scripts for a multitude of applications. The GEE scripts used

in this dissertation were provided by the colleague André Neves, and altered to suit the

needs of this research work.

4.5.4 Tableau

Tableau5 is a data visualization and analytics platform, which makes creating visually

pleasing and easily understandable charts and tables extremely simple. For this disserta-

tion, it was used in its Desktop version to explore and understand data in depth, as well

as produce various figures and tables for this document.

4https://code.earthengine.google.com/
5https://www.tableau.com/
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5

Methodology

After the general plan for the execution of the proposed solution was presented, in this

chapter each component of that plan is further detailed, including methodologies and

technologies used, as well as any necessary implementation details.

All experiments were produced on a machine with CPU Intel(R) Core(TM) i7-8750H

CPU @ 2.20GHz with 8GB RAM, HDD 931GB and SSD 477GB.

5.1 Acquiring and pre-processing the input data

As discussed before, this study aimed to create a 2018 LULC map for the Almada region.

Initially, only 2018 input data was used to create the classification models, but after some

experimentation it was discovered that combining both 2017 and 2018 data provided

better classification results. Accordingly, the temporal window for obtaining the satellite

data was set between January 2017 and December of 2018.

5.1.1 Sentinel-1

Sentinel-1 imagery is available in GEE in the ‘COPERNICUS/S1_GRD’ Image Collection.

This collection consists of backscatter coefficient processed Level-1 Ground Range De-

tected. Figure 5.1 represents the full process of obtaining and processing the Sentinel-1

imagery, including GEE’s pre-processing steps, implemented by the Sentinel-1 Toolbox.

First, the collection was filtered by region, to gather the images where Almada is

present. Then, a date filter was applied, with the images from 2017 and 2018 being

collected separately. A total of 121 images for 2017, and 120 for 2018 were used.

In order to create homogeneous groups of data, the ascending and descending orbits

of each year were separated, and for each one the ’VV’ and ’VH’ polarization were selected.

Subsequently, each band in each year’s collection of images was reduced to its 30th, 50th

and 70th percentiles. Finally, the images from the two years were stacked and all bands

were resampled to the 10x10m spatial resolution, in the EPSG:4326 coordinate system.

The final product downloaded from GEE was a raster image with 20 bands.
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Figure 5.1: Sentinel-1 processing chain

5.1.2 Sentinel-2

Sentinel-2 imagery is available in GEE in the ‘COPERNICUS/S2’ and ‘COPERNICUS/S2_SR’

Image Collections. While ‘COPERNICUS/S2’ contains Level-1C, which are Top-Of-

Atmosphere (TOA) products, ‘COPERNICUS/S2_SR’ contains Level-2A products, which

are Bottom-Of-Atmosphere (BOA) corrected reflectance product, derived from the re-

spective 1C images. In this research, only Level-2A products were utilized. Figure 5.2

represents the full process of obtaining and processing the Sentinel-2 imagery.

As with Sentinel-1 imagery, the first step was filtering the ‘COPERNICUS/S2_SR’

collection by region and date.

Since Sentinel-2 instruments are passive sensors, its products are affected by the

weather, specifically clouds which highly influence the spectral values. As so, the col-

lection of images of each year was filtered, and only the images with a percentage of
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Figure 5.2: Sentinel-2 processing chain

cloudy pixels lower than 10% were kept. Following this filtering, a mask was applied

over the remaining cloud pixels. Both the filtering and masking were performed using

GEE functions.

For both years, all Sentinel-2 band were selected, with the exception of B10, and

reduced to its 30th, 50th and 70th percentiles.

Finally, the images from the two years were stacked and all bands were resampled to

the 10x10m spatial resolution, in the EPSG:4326 coordinate system. The final product

downloaded from GEE was a raster image with 72 bands.

A total of 77 Sentinel-2 images were collected and Figure 5.3 presents the number of

images obtained in each month of 2017 and 2018. The variation is due to the satellites’

revisit time, as well as each months’ cloud coverage which influenced the number of

images deleted by the filtering. As Sentinel-2 Level-2A images have only been processed

from Level-1C images starting from the 28th of March of 2017, no images were acquired

from January, February and March of 2017.
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Figure 5.3: Number of Sentinel-2 images acquired per month

5.2 Creation of products derived from satellite imagery

5.2.1 Spectral Indices

The three spectral indices detailed in Chapter 2, NDVI, NDBI and BUI, were calculated

using Sentinel-2 bands: B8, as the near-infrared band, B4, as the red band, and B12, as

the short-wave infrared band.

This calculation was performed in GEE, and as with the satellite’s bands, the 30th,

50th and 70th percentiles were computed from the 2017 and 2018 data.

5.2.2 Texture information

Inspired by experiments by Kupidura et al. (2019) [42], texture information was in-

troduced in the classification models using GLCM features in conjunction with PCA.

Although the authors employed only Sentinel-2 data, in this dissertation two paths were

explored, using Sentinel-1 and Sentinel-2 separately. Despite the input data being differ-

ent, the same process was used for both satellites, represented in Figure 5.4.

First, a PCA was performed on all image bands of each satellite, in order to obtain the

first principal component, using the DimensionalityReduction function in OTB QGIS.

In both satellites’ data, this component explains over 80% of the overall variability. Then,
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the first component was used to extract the GLCM features, using the HaralickTexture-

Extraction function in OTB QGIS. The utilized parameters for the extraction are present

in Table 5.1.

Figure 5.4: Creation of the textural features

Table 5.1: HaralickTextureExtraction parameters

Parameter Value

Computational step 1
X Radius 3
Y Radius 3
X Offset 1
Y Offset 0
Histogram number of bin 16

For each satellite 8 features were computed: Energy, Entropy, Correlation, Inverse

Difference Moment, Inertia, Cluster Shade, Cluster Prominence and Haralick’s Corre-

lation. Further information on the calculations of these features by OTB can be found in

[52].
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5.2.3 Combination of data

After collecting all satellite imagery and derived products, four sets of aggregated data

were created:

• S1+S2;

• S1+S2+SI;

• S1+S2+T1;

• S1+S2+T2;

S1 represents the Sentinel-1 bands, S2, the Sentinel-2 bands, SI, the spectral indices

calculated through Sentinel-2, T1 the texture obtained through Sentinel-1 bands and T2

the texture obtained through Sentinel-2 bands. The same notation will be used through-

out this document.

5.3 Ground Truth construction

5.3.1 Manual

Even though COS is a useful tool for urban planning, when it is analysed with the help of

the aerial ortophotos, it is clear that some of the methodological choices in the construc-

tion of its classes, as well as the MMU limitations, lead to a map which cannot be reliably

used to automatically collect ground truth for the group of classes in this dissertation.

As such, a manual ground truth was constructed, in order to provide the classifiers

with the most accurate data possible. This manual ground truth was made by inspecting

the reference data: the orthophotos, as well as COS, and hand-drawing polygons in QGIS.

To ensure that the models would be able to classify all the different elements within the

same class, several subclasses were created using COS’s Level 4 classes, which are shown

in Table 5.2.

A total of 3194 polygons were drawn, covering around 14.71 km2, approximately 21%

of the study area. Table 5.3 presents the area collected for each subclass and the total of

each class.

5.3.2 Semi-automatic

After some tests, a concern arose that the manually extracted polygons might not be a

representative sample of the true composition of each class. Thus, an additional ground

truth was created in a semi-automatic way to minimize the bias introduced by hand

picking. A new version of COS, henceforth referred to as improved COS, was constructed

based on the original map, but with some changes on the major areas with the largest

incompatibilities in classification.
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Table 5.2: Classes, subclasses and respective COS Level-4 classes

Class Subclass COS Level-4 class
1. Artificial Territories 10 1.1.1.1 Continuous urban fabric

predominantly horizontal
1.1.1.2 Continuous urban fabric
predominantly vertical

11 1.1.2.1 Discontinuous urban fabric
1.1.2.2 Sparse discontinuous urban fabric

12 1.2.1.1 Industrial areas
1.2.2.1 Commercial areas

13 1.4.1.1 Road network and associated spaces
1.4.1.2 Rail network and associated spaces

14 1.1.3.1 Parking areas and public spaces
1.4.2.1 Sea and river port terminals
1.6.1.2 Sports facilities
1.6.2.1 Camping sites
1.6.5.1 Other equipments and touristic
facilities

2. Agriculture 20 2.2.2.1 Orchards
2.2.3.1 Olive groves

21 2.1.1.1 Non-irrigated and irrigated temporary
crops

22 2.3.2.1 Complex cultivation patterns
3. Other vegetation 30 6.1.1.1 Spontaneous vegetation areas

with shrub coverage
8.1.2.1 Marshes

31 3.1.2.1 Spontaneous pastures
32 3.1.1.1 Improved pastures
33 1.6.1.1 Golf courses

1.7.1.1 Parks and gardents
4. Forests 40 5.1.2.2 Pinus pinaster forests

41 5.1.2.1 Pinus pine forests
42 5.1.1.7 Other broadleaf forests
43 5.1.1.5 Eucalyptus forests
44 5.1.1.2 Quercus rotundifolia forests

5.1.1.6 Forests of invasive species
5. Bare and sparsely
vegetated areas

50 7.1.1.2 Beaches, dunes and coastal sand areas
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Table 5.3: Area of manually selected ground truth for each subclass and class

Class Subclass Area (in km2)
1. Artificial Territories 10 2.10

11 0.50
12 0.28
13 0.26
14 0.74
Total 3.88

2. Agriculture 20 0.07
21 1.82
22 0.16
Total 2.05

3. Other vegetation 30 1.45
31 0.61
32 0.20
33 0.02
Total 2.28

4. Forests 40 2.58
41 1.86
42 0.13
43 0.20
44 1.26
Total 6.03

5. Bare and sparsely vegetated areas 50 0.47
Total 0.47

Total 14.71

Four areas were identified:

• The Alfeite region, in Figure 5.5, with a significant section of Forests classified as

Artificial Territories;

• The beach area, in which almost no artificial buildings are represented;

• Parks, classified as Level-1 Artificial Territories (although divided in its own Level-

2 class, Parks and Gardens);

• Golf courses, also classified as Level-1 Artificial Territories, in its own Level-4

class, Golf Courses.

In the case of Alfeite and the beach area, QGIS was utilized to manually draw polygons

and divide the classes. The parks, gardens, and golf courses were included in class 3.

Other Vegetation.

Event though the Aroeira area, in Figure 5.6 was also identified as problematic, with

a significant amount of Forests being identified as Artificial Territories, the small size

of the objects made the manual separation of the classes infeasible.
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Artificial Territories
Forests

Figure 5.5: COS’s classification of Artificial Territories and Forests in the Alfeite region

Artificial Territories
Forests

Figure 5.6: COS’s classification of Artificial Territories and Forests in the Aroeira region

The same subclasses present in Table 5.2 were used to label all zones of the improved

COS.
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5.4 Dataset creation - PBIA

Figure 5.7 represents the pipeline of the creation of the datasets for the pixel-based

experiments.

Since the basic unit of the PBIA classification is the pixel, collecting samples in this

approach was done by performing a stratified (using the subclasses) random sampling

of each of the two constructed ground truths. Those pixels were then used to extract the

features from each set of data and create the datasets. While several datasets were created

using the manual ground truth, only one was constructed for the semi-automatic, using

the best combination of features obtained with the manual datasets, S1+S2+T1.

Figure 5.7: Dataset creation in the PBIA approach

Table 5.4 represents the class and subclass composition of the datasets created. There

was an attempt to maintain the proportions of the classes, which was difficult since

the manual selection of Artificial Territories was extremely laborious. Each dataset is

composed of 120885 pixels (12.09 km2), representing approximately 16,9% of the full

area.
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Table 5.4: Class composition of PBIA datasets

Class Subclass Number of pixels
1. Artificial Territories 10 26964

11 6381
12 3357
13 3287
14 9396
Total 49585 (41.02%)

2. Agriculture 20 646
21 15919
22 1435
Total 18000 (14.89%)

3. Other vegetation 30 10160
31 4278
32 1398
33 164
Total 16000 (13.24%)

4. Forests 40 13667
41 9846
42 699
43 1084
44 6704
Total 32000 (26.47%)

5. Bare and sparsely vegetated areas 50 5300
Total 5300 (4.38%)

Total 120885 (100.00%)

5.5 Image Segmentation

Achieving good image segmentation is essential in OBIA classification and there are three

components that greatly influence this process: the data, the segmentation algorithm and

its parameters, and the segmentation evaluation.

5.5.1 Segmentation algorithm

As detailed previously, the segmentation algorithm used in this dissertation was Mean-

Shift segmentation, implemented in OTB in the LargeScaleMeanShift function, which

has three parameters: spatial radius, range radius, and minimum segment size. The

minimum size was set at 4 pixels, meaning that an object on the ground has to have an

area of at least 200 m2 in order to not be absorbed into other elements. The spatial and

range radius have a great influence on the quality of the segmentation and, as such, a

wide range of combinations was tested and evaluated, with the results being presented

in Chapter 7.
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5.5.2 Data

The first experiments of segmentation were performed on a composite of the bands with

the highest spatial resolution (10m) in Sentinel-2: band 2, Blue; band 3, Green; band 4,

Red; and band 8, NIR. The Sentinel-2 data was obtained in an identical process as the

one mentioned in section 5.1.2, with the only exception being the calculated percentiles,

which were the 25th, 50th and 75th.

After some experimentation with segmentation evaluation, it was decided that due

to the high number of bands (12), a PCA would be applied to the Sentinel-2 composite

in order to reduce the dimensionality of the data. Only the 5 first principal components

were kept and used for the segmentation, explaining approximately 99% of the overall

variability.

Combinations of Sentinel-2 images with other sources of data, such as Sentinel-1

imagery and texture features, were also tested, but later abandoned as the visual inspec-

tion suggested that the additional bands were creating confusion in the segmentation

algorithm, and produced inferior segmentations.

5.5.2.1 Segmentation Evaluation

As observed in the state-of-the-art review, the process and metrics to evaluate segmenta-

tions, specifically in unsupervised approaches, are still highly debated.

For this dissertation, the metrics proposed by Espindola et al. [21], area-weighted

variance (WV) and Moran’s I Index (MI), without the computation of Global Score, were

chosen to evaluate the segmentations produced, complemented by visual analysis. Each

index was calculated for each band (principal component) of the composite, and analyzed

separately.

An R script was developed to calculate the WV and MI, using two libraries, raster and

spdep, to read the shapefiles containing each segmentation, and to obtain the neighbors

of each segment for the calculation of MI.

5.5.3 Spatial Geometric Attributes

One advantage of the OBIA approach is the possibility to use geometric attributes of the

segments, in addition to their spectral properties.

In this dissertation three spacial attributes were calculated:

• Area: obtained by the number of pixels;

• Rectangularity: calculated by dividing the area of each segment by the area of its

smallest bounding box;

45



CHAPTER 5. METHODOLOGY

• Compactness: calculated using a commonly used test, Polsby-Popper, developed

for calculating compactness of political districs [59]:

C =
4 · a ·π
p2 , (5.1)

where a and p represent the area and perimeter of each segment

5.6 Dataset creation - OBIA

Figure 5.8 represents the pipeline of the creation of the datasets for the object-based

experiments. In this approach, only the manual ground truth was used.

Figure 5.8: Dataset creation in the OBIA approach

The segmentation step performed on Sentinel-2 data produced objects, which are the

unit of classification in this approach. Each object was intersected with the ground truth

polygons and assigned the class of the polygon with the largest area of intersection. Since

the ground truth does not cover the entire region of study, only segments with a coverage

higher than 50% were selected, in order to avoid choosing segments with small areas of

intersection, which could be due to poor segmentation quality.

Subsequently the segments were randomly selected using stratification (using the

subclasses) and used to extract the features from each set of aggregated data: the average

value of each band inside the segment. The datasets were created by combining these

features and the spatial geometric attributes of the objects.
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Table 5.5 presents the number of segments collected for each class and subclass. A

total of 5152 segments were obtained, representing 7.9% of the total number of segments

obtained, 65519.

Table 5.5: Class composition of OBIA datasets

Class Subclass Number of pixels
1. Artificial Territories 10 26964

11 6381
12 3357
13 3287
14 9396
Total 49585 (41.02%)

2. Agriculture 20 646
21 15919
22 1435
Total 18000 (14.89%)

3. Other vegetation 30 10160
31 4278
32 1398
33 164
Total 16000 (13.24%)

4. Forests 40 13667
41 9846
42 699
43 1084
44 6704
Total 32000 (26.47%)

5. Bare and sparsely vegetated areas 50 5300
Total 5300 (4.38%)

Total 5152 (100.00%)

5.7 Classification

The process of building the classification models for each dataset and classifier is de-

scribed in this section.

First, the dataset was divided into training and test sets by performing an 80/20 split.

Since both XGB and RF have several hyperparameters which must be tuned in order

to obtain the best possible results, the training set was further divided with a second

80/20 split, creating the smaller validation set.

Validation was performed using sklearn’s RandomizedSearchCV with 40 iterations.

This function uses the training set to train the network with multiple parameter combi-

nation (sampled from a given distribution), and chooses the best by evaluating with the

validation set. Although it would have been interesting to test other validation methods,

47



CHAPTER 5. METHODOLOGY

such as stratified k-fold cross validation, the amount of experiments and the computation

time did not allow for that.

Table 5.6 presents the python libraries for the classifiers used, as well as the hyperpa-

rameters optimized in the validation stage and the corresponding distributions searched.

Table 5.6: Hyperparameters optimized for each classifier

Classifier Python library Hyperparameters

XGB xgboost n_estimators: [100,200,300,400,500,600]
max_depth: [3,4,5,6,8]
learning_rate: [0.01,0.05,0.1,0.15,0.2,0.25,0.3]
gamma: [0,0.2,0.3,0.4,0.5]

RF sklearn.ensemble.
RandomForest-
Classifier

n_estimators: [100,200,300,400,500,600]
max_depth: [5,10,15,20,25]
max_features: [’auto’, ’sqrt’]

After validation, the model was retrained using the training data and the best hyperpa-

rameter combination found, and the test set was used to provide an unbiased evaluation

of the model.

5.8 Final list of experiments

Table 5.7 and 5.8 present a detailed view of all classification models developed during

this dissertation. For both approaches and classifiers, the datasets created were tested in

their entirety, using all the calculated percentiles for each band in Sentinel-1, Sentinel-2

imagery and for the spectral indices, and truncated, using only the 50th percentile of

those products’ bands.

In the OBIA approach, an additional experiment was performed using the best per-

forming dataset up to that point, S1+S2+SA+T2, with the exclusion of the spatial geo-

metric attributes (SA).

5.9 Full map classifications

The final step of this research was assessing the performance of the best classification

models of the PBIA and OBIA approaches, when creating the full 2018 LULC maps for

the region of Almada. These maps, henceforth refered to as PBIA_map and OBIA_map

can be consulted in Appendix A.

In order to evaluate the quality of these maps, each of them was compared with

the two available LULC maps, COS and COSsim and a two part review was conducted:

a quantitative analysis, in which the kappa, and comission and omission errors were

calculated; and a qualitative analysis, developed via visual analysis.
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5.9. FULL MAP CLASSIFICATIONS

Table 5.7: PBIA approach experiments

Input data Percentiles Ground truth Classifier

S1+S2 30th, 50th, 70th manual XGB
S1+S2 30th, 50th, 70th manual RF
S1+S2+SI 30th, 50th, 70th manual XGB
S1+S2+SI 30th, 50th, 70th manual RF
S1+S2+T1 30th, 50th, 70th manual XGB
S1+S2+T1 30th, 50th, 70th manual RF
S1+S2+T2 30th, 50th, 70th manual XGB
S1+S2+T2 30th, 50th, 70th manual RF
S1+S2 50th manual XGB
S1+S2 50th manual RF
S1+S2+SI 50th manual XGB
S1+S2+SI 50th manual RF
S1+S2+T1 50th manual XGB
S1+S2+T1 50th manual RF
S1+S2+T2 50th manual XGB
S1+S2+T2 50th manual RF
S1+S2+T1 30th, 50th, 70th semi-automatic XGB

Table 5.8: OBIA approach experiments

Input data Percentiles Ground truth Classifier

S1+S2+SA 30th, 50th, 70th manual XGB
S1+S2+SA 30th, 50th, 70th manual RF
S1+S2+SA+SI 30th, 50th, 70th manual XGB
S1+S2+SA+SI 30th, 50th, 70th manual RF
S1+S2+SA+T1 30th, 50th, 70th manual XGB
S1+S2+SA+T1 30th, 50th, 70th manual RF
S1+S2+SA+T2 30th, 50th, 70th manual XGB
S1+S2+SA+T2 30th, 50th, 70th manual RF
S1+S2+SA 50th manual XGB
S1+S2+SA 50th manual RF
S1+S2+SA+SI 50th manual XGB
S1+S2+SA+SI 50th manual RF
S1+S2+SA+T1 50th manual XGB
S1+S2+SA+T1 50th manual RF
S1+S2+SA+T2 50th manual XGB
S1+S2+SA+T2 50th manual RF
S1+S2+T2 30th, 50th, 70th manual XGB
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Two LULC maps can only be compared if they share the same classes and, as such,

some modifications were required in COS and COSsim. Since the Level-1 classes of

COSsim are extremely similar to this dissertation’s chosen classes, they were maintained,

with the only modification being the merging of Level-2 class Wetlands into the Level-1

Shrub and spontaneous herbaceous vegetation, correspondent to this dissertation’s 3.

Other Vegetation.

As for COS, the Level-1 classes were maintained, with the only modification being

the combination of Level-1 classes Pastures, Spontaneous vegetation areas with shrub

coverage and Wetlands to represent the equivalent of this dissertation’s 3. Other Vegeta-

tion.
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6

Results - Pixel Based Approach

This chapter contains all the discussions concerning the pixel-based approach. Firstly,

the experiments using the manual datasets are presented, and the effect of the different

combinations of features are discussed. Secondly, the results of the two methodologies of

ground truth creation are compared. Finally, a thorough comparison between the map

obtained by the best classification model, PBIA_map, and COS and COSsim is produced.

All coordinates are presented in the EPSG:3763 Coordinate System.

6.1 Experiments using the manual datasets

The kappa values for the first experiments using the manual datasets, with all percentiles,

are presented in Figure 6.1.

XGB RF

Sl+S2

Sl+S2+Sl

Sl+S2+T1

Sl+S2+T2 0,98115

0,98075

0,97977

0,98075

0,99362

0,99437

0,99282

0,99362

Table 6.1: Kappa values per classifier and set of input data - all percentiles

XGB is the classifier with the highest kappa in all experiments, with the input data

combination S1+S2+T1 having the best performance out of all the experiments. Despite

being consistently lower by at least 1%, RF also reaches excellent results.

The presence of spectral indices produce a small decrease in classification perfor-

mance, creating the worse models for each classifier. As for the textural attributes, T1

very slightly improved the classification when the XGB classifier was used, while T2

slightly improved the model using RF.
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Analysing Table 6.2, which presents the F1 score, precision and recall of each class,

for each experiment using XGB, it’s possible to see that class 3. Other vegetation is

consistently the one with the lowest results (albeit still excellent), in particular recall,

followed by 2. Agriculture.

Dataset Class

XGB

F1 Score Precision Recall

Sl+S2 1

2

3

4

5

Sl+S2+Sl 1

2

3

4

5

Sl+S2+T1 1

2

3

4

5

Sl+S2+T2 1

2

3

4

5

0,99623

0,99609

0,98688

0,99361

0,99829

0,99717

0,99563

0,98842

0,99361

0,99798

0,99670

0,99586

0,98765

0,99361

0,99813

0,99717

0,99625

0,98376

0,99361

0,99768

0,99717

0,99438

0,98808

0,99196

0,99808

0,99717

0,99532

0,98591

0,99278

0,99788

0,99811

0,99672

0,98688

0,99556

0,99829

0,99717

0,99563

0,99090

0,99390

0,99839

0,99764

0,99617

0,98889

0,99473

0,99834

0,99811

0,99687

0,98500

0,99278

0,99849

0,99811

0,99547

0,98747

0,99361

0,99829

0,99811

0,99617

0,98624

0,99319

0,99839

Table 6.2: XGB Metric results for each dataset - all percentiles

The presence of the spectral indices has a negative effect on all classes’ F1 score, except

5. Bare and sparsely vegetated land, which is very slightly improved. As for the textural

features, T1 has a slight positive effect on the F1 score of all classes.

The confusion matrices for S1+S2, in Table 6.3, and S1+S2+T1, in Table 6.4, show

that the textural features were particularly useful in clearing up some confusion between

classes, 3. Other Vegetation and 4. Forests, AND 1. Artificial Territories and 5. Bare

and sparsely vegetated areas.

52
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Predicted Class

True Class

1 2 3 4 5

1

2

3

4

5 1 056

0

0

0

4

0

6 374

16

3

5

0

22

3 159

16

4

0

1

15

3 577

7

2

5

6

4

9 900

Table 6.3: XGB Confusion matrix for S1+S2 - all percentiles

Predicted Class

True Class

1 2 3 4 5

1

2

3

4

5 1 058

0

0

0

2

1

6 378

13

1

6

0

22

3 159

15

5

0

1

12

3 584

3

2

5

4

6

9 900

Table 6.4: XGB Confusion matrix for S1+S2+T1 - all percentiles

Regarding the RF experiments, in Table 6.5, the class with the lowest results is, again,

3. Other Vegetation, followed by 2. Agriculture. As with the previous classifier, the

spectral indices decrease the F1 score of all classes, except 5. Bare and sparsely vegetated

areas. The benefits of using XGB over RF are felt mostly in 2. Agriculture, 3. Other

Vegetation and 4. Forests, the three most spectrally similar classes.

The results of the second round of experiments, using the truncated manual sets with

only the 50th percentile are represented in Table 6.6. All results are lower than the re-

spective counterparts of Table 6.1, with XGB being again the highest performing classifier.

Once more, the presence of spectral indices decreased the kappa in both classifiers. In RF

both textural features improved the performance with T2 being the best; while in XGB,

T2 had a small positive effect and T1 produced a slight decrease in kappa.
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Dataset Class

RF

F1 Score Precision Recall

Sl+S2 1

2

3

4

5

Sl+S2+Sl 1

2

3

4

5

Sl+S2+T1 1

2

3

4

5

Sl+S2+T2 1

2

3

4

5

0,99057

0,98984

0,94689

0,98222

0,99738

0,99526

0,98645

0,96713

0,97518

0,99497

0,99291

0,98814

0,95691

0,97869

0,99617

0,99057

0,98875

0,94689

0,98167

0,99657

0,99526

0,98551

0,96467

0,97302

0,99547

0,99291

0,98713

0,95570

0,97732

0,99602

0,99245

0,98984

0,94783

0,98167

0,99708

0,99621

0,98553

0,96563

0,97624

0,99557

0,99433

0,98768

0,95665

0,97895

0,99632

0,98962

0,98937

0,94939

0,98250

0,99758

0,99715

0,98691

0,96691

0,97734

0,99447

0,99337

0,98814

0,95807

0,97991

0,99602

Table 6.5: RF Metric results for each dataset - all percentiles

XGB RF

S1+S2

S1+S2+SI

S1+S2+T1

S1+S2+T2 0,97482

0,97310

0,97143

0,97281

0,99046

0,98845

0,98708

0,98937

Table 6.6: Kappa values per classifier and set of input data - 50th percentile
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The reduction in percentiles had the highest negative impact in class 3. Other Vegeta-

tion, followed by 2. Agriculture, as can be seen in Table 6.7 and 6.8. This difference was

more substantial in the RF classifiers.

Dataset Class

XGB

F1 Score Precision Recall

S1+S2 1

2

3

4

5

S1+S2+SI 1

2

3

4

5

S1+S2+T1 1

2

3

4

5

S1+S2+T2 1

2

3

4

5

0,99811

0,99250

0,97470

0,99194

0,99748

0,99717

0,99250

0,98082

0,98538

0,99798

0,99764

0,99250

0,97775

0,98865

0,99773

0,99717

0,99266

0,96782

0,98806

0,99708

0,99811

0,99095

0,97790

0,98016

0,99768

0,99764

0,99180

0,97284

0,98409

0,99738

0,99623

0,99266

0,97157

0,99000

0,99768

0,99717

0,99126

0,97922

0,98480

0,99788

0,99670

0,99196

0,97538

0,98739

0,99778

0,99717

0,99453

0,97657

0,99111

0,99788

0,99529

0,99313

0,98271

0,98919

0,99768

0,99623

0,99383

0,97963

0,99015

0,99778

Table 6.7: XGB Metric results for each dataset - 50th percentile

To sum up, despite all classification models achieving outstanding results, some clear

conclusions can be derived.

The use of spectral indices for this group of classes in this region was unsuccessful, as

deterioration of metrics happened in all models they were present in.

Textural features had mostly a positive or neutral effect on classification kappa, al-

though no specific pattern could be detected when comparing the experiments. Both T1

and T2 integrated the models with the highest kappa, the former in the XGB and the

latter in the RF experiments.
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Dataset Class

RF

F1 Score Precision Recall

S1+S2 1

2

3

4

5

S1+S2+SI 1

2

3

4

5

S1+S2+T1 1

2

3

4

5

S1+S2+T2 1

2

3

4

5

0,98962

0,98609

0,92034

0,97611

0,99677

0,99715

0,97936

0,95402

0,96169

0,99447

0,99337

0,98271

0,93687

0,96884

0,99562

0,98962

0,98594

0,91846

0,97278

0,99627

0,99526

0,97723

0,94992

0,96209

0,99476

0,99243

0,98156

0,93393

0,96740

0,99552

0,99623

0,98547

0,92252

0,97417

0,99697

0,99811

0,97858

0,95166

0,96505

0,99487

0,99717

0,98201

0,93687

0,96959

0,99592

0,99057

0,98703

0,92627

0,97694

0,99738

0,99526

0,97938

0,95800

0,97694

0,99427

0,99291

0,98319

0,94187

0,97289

0,99582

Table 6.8: RF Metric results for each dataset - 50th percentile

The inclusion of the bands’ 30th and 70th percentiles, as well as the utilization of

classifier XGB provided a considerable improvement in kappa values, and particularly

benefited the three most spectrally similar, and as such, harder to separate, classes: 2.

Agriculture, 3. Other Vegetation and 4. Forests.

The best overall classification model was obtained using S1+S2+T1 with all per-

centiles, with XGB.

6.2 Experiment using the semi-automatic dataset

The best combination of data S1+S2+T1 with the three percentiles was used to train and

test a XGB model, using the semi-automatic ground truth.
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The new model obtained a kappa of 0.87080, a good result, albeit significantly lower

than the one previously obtained for the manual dataset, 0.99437. Observing Table 6.9,

it is possible to see that the classes with the worst performances are again, 3. Other

Vegetation and 2. Agriculture.

Dataset Class

XGB

F1 Score Precision Recall

S1+S2+T1 1

2

3

4

5 0,9500

0,9214

0,8363

0,8736

0,9443

0,9609

0,9065

0,9065

0,9017

0,9196

0,9554

0,9139

0,8700

0,8874

0,9318

Table 6.9: XGB Metric results for S1+S2+T1 - all percentiles and semi-automatic

The confusion matrix in Table 6.10 shows that, in addition to the expected confu-

sion between classes 2, 3 and 4, some confusion exists when separating 1. Artificial

Territories from the nature classes, especially 4. Forests. Since the previous results sug-

gested that these classes are highly separable, this is likely an indication that either the

semi-automatic test set’s ground truth is not completely accurate, and/or the model has

learned to adapt to some of the errors in the training set’s ground truth and is producing

misclassifications.

Predicted Class

True Class

1 2 3 4 5

1

2

3

4

5 1 007

22

4

1

26

18

5 896

106

74

305

7

163

2 677

115

239

0

118

88

3 145

249

16

305

78

153

9 365

Table 6.10: XGB Confusion matrix for S1+S2+T1 -all percentiles and semi-automatic

The same model was used to test the manual test sets, the results of which can be

observed in Table 6.11 and 6.12. The kappa value of this experiment was 0.98448, and

all metrics were lower than the the ones previously obtained by the model trained on the
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manual samples, shown in Table 6.2. Again, class 1. Artificial Territories, one of the

consistently best performing in the previous section, shows some added confusion with

the natural classes.

Dataset Class

XGB

F1 Score Precision Recall

S1+S2+T1 1

2

3

4

5 0,99811

0,99750

0,96189

0,98000

0,99617

0,99157

0,98473

0,98844

0,99018

0,99286

0,99483

0,99107

0,97498

0,98506

0,99451

Table 6.11: XGB Metric results for S1+S2+T1 - all percentiles and semi-automatic train-
ing, tested on manual test set

Predicted Class

True Class

1 2 3 4 5

1

2

3

4

5 1 058

1

0

0

1

0

6 383

10

0

6

0

57

3 079

31

34

0

23

19

3 528

30

9

18

7

4

9 879

Table 6.12: XGB Confusion matrix for S1+S2+T1 - all percentiles and semi-automatic
training, tested on manual test set

These results suggest that the model built with the semi-automatic dataset is likely

adapting to errors in the training ground truth, which lead to incorrect classifications. To

fully verify this claim, the semi-automatic and manual models were used to create the

Almada full map, and a visual analysis was produced.

In general, the semi-automatic map is extremely similar to the map which produced

its ground truth, improved COS. However, it is clear that the manual classifier is able

to produce a much more detailed and accurate map, especially in class 1. Artificial

Territories, examples of which can be seen in Figure 6.1 and 6.2.
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Artificial Territories

(a) (b)

Figure 6.1: Classification examples of the manual map (a) and semi-automatic map (b)
with ortophoto background. The manual map is able to delineate 1. Artificial Territories
with very high precision, as opposed to the semi-automatic map, which is unable to
separate most of the vegetation from the highway.

Artificial Territories

(a) (b)

Figure 6.2: Classification examples of the manual map (a) and semi-automatic map (b)
with ortophoto background. The manual map is able to identify small houses with very
high precision, as opposed to the semi-automatic map, which classifies a substantial
amount of vegetation as 1. Artificial Territories.

When comparing the manual and the semi-automatic map, the latter suffers from less

of the “salt-and-pepper” effect, but at the expense of high accuracy in classification.

In conclusion, the utilization of an automatic way of collecting ground truth through

COS, even with manual improvements, produced a map with a lower degree of precision

and accuracy than the one produced by the manual ground truth. These results are in line
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with the ones obtained by Varga et al. [72]. In this article, the authors proposed to confirm

whether CLC Level-1 categories could be confirmed by spectral values, using Sentinel-2,

Landsat-8 and PlanetScope Images, and RF and Linear Discriminant Analysis. Despite

concluding that CLC polygons hold, in general, relevant information about land cover,

the authors question the validity of using this map as ground truth for classification, due

to the number of issues it possesses. This is exactly the problem encountered multiple

times during this dissertation. COS polygons, although correct in general, suffer from a

lot of intra-polygon class variance, which makes the collection of ground truth and the

evaluation of the results extremely challenging.

6.3 Comparison with available LULC maps

In this subsection, the full map produced by the best model: manual ground truth,

S1+S2+T1 input data with all percentiles and XGB classifier, designated PBIA_map,

was compared against COS and COSsim. The metrics, kappa, omission and comission

errors, as well as the confusion matrix are presented first, followed by the results of the

visual analysis in QGIS.

6.3.1 Carta de Uso e Ocupação do Solo (COS)

The kappa value obtained from the comparison of PBIA_map and COS was 0.6360,

normally considered a moderate to substantial agreement. Analysing Table 6.13, it is

possible to observe that classes 2. Agriculture and 3. Other vegetation have the highest

amount of errors, while 1. Artificial Territories is the class with the highest performance.

As expected, these results follow the pattern observed in the test set results.

Comission Errors (%) Omission Errors (%)

1. Artificial Territories

2. Agriculture

3. Other Vegetation

4. Forests

5. Bare and sparsely vegetated areas 16,54

22,80

23,50

36,13

22,98

17,89

23,23

63,03

37,64

7,92

Table 6.13: Comission and omission errors in PBIA_map using COS as reference.

In order to thoroughly understand the errors identified in PBIA_map, a detailed

visual analysis for each class was constructed, with the support of the confusion matrix,

presented in Table 6.14.
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Predicted Class

True Class

1 2 3 4 5

1

2

3

4

5 2,03

0,09

0,02

0,04

0,25

0,07

18,26

2,79

1,02

1,51

0,05

0,51

6,03

0,56

0,73

0,02

0,34

2,77

7,48

1,11

0,31

4,58

4,70

2,89

41,83

Table 6.14: Area-based (% of total area) confusion matrix of PBIA_map using COS as
reference.

6.3.1.1 Artificial Territories

In 1. Artificial Territories, a significant part of errors (specifically omission errors) occur

due to some of the problematic areas identified in Chapter 5: the Alfeite and Aroeira re-

gion, parks and golf courses. Most of these areas are, in fact, well classified in PBIA_map,

as can be seen in Figure 6.3, which represents a portion of the Aroeira area, and in Fig-

ure 6.4. These examples show that PBIA_map is able to perform good delineation of 1.

Artificial Territories, even when the elements on the ground are small.

Artificial Territories

(a) (b)

Figure 6.3: Classification examples of PBIA_map (a) and COS (b) with ortophoto back-
ground. PBIA_map is able to identify and delineate the small houses with higher preci-
sion than COS.
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Artificial Territories

(a) (b)

Figure 6.4: Classification examples of PBIA_map (a) and COS (b) with ortophoto back-
ground. PBIA_map is able to identify and delineate the highways with higher precision
than COS.

PBIA_map is also able to correctly classify some roads and small buildings not repre-

sented in COS, an example of which can be seen in Figure 6.5.

Artificial Territories

(a) (b)

Figure 6.5: Classification examples of PBIA_map (a) and COS (b) with ortophoto back-
ground. PBIA_map is able to classify small roads and buildings, not represented in COS.

On the other hand, an issue was identified with the boundaries of this class, which

seem to be slightly shifted and/or overestimated. A probable explanation for the shifting

effect is misalignment of the satellite images. As for the small overestimation, since the

region (and dataset) was dominated by 1. Artificial Territories, and the border pixels are

a mixture of two or more classes, it is possible that even pixels with a very small amount
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of artificial structures get categorized as such, inflating the edges.

In addition, there is an area, represented in Figure 6.6, which is unexpectedly misclas-

sified in PBIA_map as 1. Artificial Territories, instead of 3. Other Vegetation.

Artificial Territories
Other Vegetation

(a) (b)

Figure 6.6: Classification examples of PBIA_map (a) and COS (b) with ortophoto back-
ground. PBIA_map wrongly classifies the area as 1. Artificial Territories, while COS
identifies it correctly as 3. Other Vegetation.

6.3.1.2 Agriculture

Assessing the 2. Agriculture classification is a more complex task, since the visual aids,

the ortophotos, don’t provide enough information to discern whether PBIA_map or COS

is correct. This is especially true in the case of confusion between this class and 3. Other

Vegetation, which accounts for a significant portion of the errors.

A lot of confusion with class 1. Artificial Territories can also be observed, both in

the form of comission and omission errors. The omission errors occur mostly due to

PBIA_map’s ability to correctly classify small artificial structures and roads, and are not

real errors. As for the identified comission errors, these are areas which COS identifies

as 1. Artificial Territories, but are actually natural areas with vegetation. However, it is

difficult to evaluate whether PBIA_map’s classification of 2. Agriculture is correct, or

if another vegetation class would be more accurate. An example of an incorrect classifi-

cation is represented in Figure 6.7, in which PBIA_map wrongly identifies a park as 2.

Agriculture instead of the expected 3. Other Vegetation.

6.3.1.3 Other Vegetation

In 3. Other Vegetation, most of the identified errors occur due to PBIA_map’s ability to

more accurately delineate the classes, as seen in Figure 6.8.

63



CHAPTER 6. RESULTS - PIXEL BASED APPROACH

Artificial Territories
Agriculture

(a) (b)

Figure 6.7: Classification examples of PBIA_map (a) and COS (b) with ortophoto back-
ground. PBIA_map wrongly classifies the area (a park) as 2. Agriculture, instead of the
expected 3. Other vegetation. COS identifies this area as 1. Artificial Territories.

Artificial Territories
Other Vegetation

(a) (b)

Figure 6.8: Classification examples of PBIA_map (a) and COS (b) with ortophoto back-
ground. PBIA_map is able to delineate both classes with better precision than COS.

PBIA_map can even identify some (although not all) small vegetation inside urban

conglomerates, not identified in COS, as in Figure 6.9
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Artificial Territories
Other Vegetation

(a) (b)

Figure 6.9: Classification examples of PBIA_map (a) and COS (b) with ortophoto back-
ground. PBIA_map identifies small areas of vegetation, not represented in COS.

As mentioned in the previous subsection, a considerable amount of errors also occur

due to confusion with class 2. Agriculture.

6.3.1.4 Forests

The majority of omission errors in this class are areas that are classified in PBIA_map as

3. Other Vegetation, generally due to not having a thick coverage of trees. In most cases,

PBIA_map’s identification seems to have a better correspondence to the ortophotos, such

as in Figure 6.10

Other Vegetation
Forests

(a) (b)

Figure 6.10: Classification examples of PBIA_map (a) and COS (b) with ortophoto back-
ground. PBIA_map is able to correctly separate 3. Other Vegetation and 4. Forests.
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The comission errors in this class are mainly in parts of the problematic areas detailed

in Chapter 5: Aroeira, Alfeite and parks, and seem to be correctly classified in PBIA_map.

Figure 6.11 presents an area where PBIA_map is able to delineate the forests, as opposed

to COS, which identifies the full areas as 1. Artificial Territories.

Artificial Territories
Forests

(a) (b)

Figure 6.11: Classification examples of PBIA_map (a) and COS (b) with ortophoto back-
ground. PBIA_map is able to delineate 4. Forests with high precision.

6.3.1.5 Bare and sparsely vegetated areas

A considerable portion of this class’ identified errors are due to PBIA_map’s correct clas-

sification of beach bars and roads as 1. Artificial Territories, as can be seen in Figure 6.12.

The breakwaters are also identified as class 1, which could be considered correct, as they

are man-made.

Artificial Territories
Bare and sparsely vegetated areas

(a) (b)

Figure 6.12: Classification examples of PBIA_map (a) and COS (b) with ortophoto back-
ground. PBIA_map correctly identifies the small beach bars and breakwaters.
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Additionally, some errors occur in open areas, with no vegetation, like sports fields

(covered in dirt), as in Figure 6.13, and the parking areas near the beach (covered in sand),

and are not true errors of PBIA_map.

Artificial Territories
Bare and sparsely vegetated areas

(a) (b)

Figure 6.13: Classification examples of PBIA_map (a) and COS (b) with ortophoto back-
ground. PBIA_map correctly identifies a dirt sports field as 5. Bare and sparsely vege-
tated areas.

6.3.2 COSsim

The kappa value of the comparison between COSsim and PBIA_map was 0.6085, a mod-

erate agreement, and Table 6.15 presents the percentage of comission and omission errors

of each class. Once more, class 3. Other vegetation had the worst performance, followed

by 2. Agriculture. Surprisingly, class 5. Bare and sparsely vegetated areas, one of the

highest performing classes in the test sets, had 50% of omission errors. Class 1. Artificial

Territories had the lowest amount of disagreement between the two maps.

Comission Errors (%) Omission Errors (%)

1. Artificial Territories

2. Agriculture

3. Other Vegetation

4. Forests

5. Bare and sparsely vegetated areas 50,69

17,30

58,65

47,84

4,02

9,62

35,51

39,03

33,47

20,64

Table 6.15: Comission and omission errors in PBIA_map using COSsim as reference.
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Once more, a detailed visual analysis for each class was produced, with the support

of the confusion matrix, presented in Table 6.16.

Predicted Class

True Class

1 2 3 4 5

1

2

3

4

5 2,23

0,06

0,11

0,25

1,87

0,00

15,34

2,21

0,28

0,71

0,10

7,22

9,94

2,93

3,85

0,06

0,76

3,56

7,98

2,94

0,07

0,40

0,49

0,55

36,05

Table 6.16: Area-based (% of total area) confusion matrix of PBIA_map using COSsim as
reference.

6.3.2.1 Artificial Territories

The majority of errors in this class are due to mismatched edges with COSsim. This hap-

pens due to the difference in spatial resolution between both maps, but also because of the

previously mentioned issue with shifted and/or overestimated boundaries. Interestingly,

COSsim seems to have the opposite problem, and sometimes under-represents this class,

as can be seen in Figure 6.14.

Artificial Territories

(a) (b)

Figure 6.14: Classification examples of PBIA_map (a) and COSsim (b) with ortophoto
background. PBIA_map appears to be overestimating the edges of 1. Artificial Territo-
ries, while COSsim appears to underestimate them.
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In addition, PBIA_map is capable of detecting smaller roads and houses with higher

accuract, which COSsim does not identify, such as in Figure 6.15.

Artificial Territories

(a) (b)

Figure 6.15: Classification examples of PBIA_map (a) and COSsim (b) with ortophoto
background. PBIA_map is able to identify small roads and structures, which COSsim
cannot.

6.3.2.2 Agriculture

In this class, a large amount of disagreement is due to confusion with 3. Other Vegetation,

which is, again, extremely hard to visually evaluate.

6.3.2.3 Other vegetation

A significant portion of this class’ errors, arise from a specific area which is classified in

PBIA_map as Forests. These are likely inaccuracies in COSsim, as COS’s classification of

the same area is Forest, more specifically Invasive forest.

Additionally, some errors are identified due to PBIA_map’s better separation between

this class and 4. Forests, and are not true errors, as can be seen in Figure 6.16

6.3.2.4 Forests

For the class 4. Forests, most of identified errors are well classified in PBIA_map and are

due to the disagreement on the classification of Invasive forest, and the better delineation

of this class, as previously detailed.
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Other Vegetation
Forests

(a) (b)

Figure 6.16: Classification examples of PBIA_map (a) and COSsim (b) with ortophoto
background. PBIA_map is able to separate 3. Other Vegetation and 4. Forests more
accurately than COSsim.

6.3.2.5 Bare and sparsely vegetated areas

The biggest source of comission errors in this class is confusion with class 3. Other

Vegetation, mostly due to slightly mismatched edges. In addition, an interesting source

of comission errors in this class is the region represented in Figure 6.17. Here, COSsim

wrongly classifies a big portion of the area as 2. Agriculture, while PBIA_map is able to

discern that it is in fact mostly 5. Bare and sparsely vegetated areas.

Agriculture
Bare and sparsely vegetated areas

(a) (b)

Figure 6.17: Classification examples of PBIA_map (a) and COSsim (b) with ortophoto
background. PBIA_map correctly identifies the area as 5. Bare and sparsely vegetated
areas, while COSsim classifies it as 2. Agriculture.
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The percentage of omission errors in this class is the second highest out of all classes,

surprising since it was consistently one of the best performing classes in the test sets of

all classification models. In general, COSsim seems to have some difficulty distinguishing

between classes 1. Artificial Territories and 5. Bare and sparsely vegetated areas, which

causes the disagreement with PBIA_map. Observing the ortophotos, the majority of the

supposed errors are, in fact, correctly classified in PBIA_map, such as in Figure 6.18 and

6.19.

Artificial Territories
Bare and sparsely vegetated areas

(a) (b)

Figure 6.18: Classification examples of PBIA_map (a) and COSsim (b) with ortophoto
background. PBIA_map correctly identifies the area as 1. Artificial Territories, while
COSsim presents some confusion with this class and 5. Bare and sparsely vegetated
areas.

6.3.3 Conclusions

PBIA_map has a higher level of agreement with COS than with COSsim, which is un-

derstandable, since COS was used as reference data to construct the ground truth (in

conjunction with ortophotos).

Through the analysis of each class, it was possible to conclude that 1. Artificial Ter-

ritories, 4. Forests and 5. Bare and sparsely vegetated areas seem to be well classified

in PBIA_map, with disagreements being mostly due to issues in the reference data. As

for 2. Agriculture and 3. Other vegetation, it is hard to assess the quality of the classifi-

cations, though it is obvious that a lot of confusion exists between them. It is likely that

PBIA_map possesses some amount of errors, since disagreements occurred with both

COS and COSsim.
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Artificial Territories
Bare and sparsely vegetated areas

(a) (b)

Figure 6.19: Classification examples of PBIA_map (a) and COSsim (b) with ortophoto
background. PBIA_map correctly separates classes 1. Artificial Territories and 5. Bare
and sparsely vegetated areas. COSsim incorrectly classifies the parking lot as 5. Bare
and sparsely vegetated areas.

6.4 Conclusion

The results obtained in this chapter allowed for multiple conclusions.

First, the experiments comparing the multiple combinations of input data and classi-

fiers showed that XGB was the highest performing classifier in all tests, with the combi-

nation of input data S1+S2+T1 producing the model with the best kappa.

For this group of classes in this region, spectral indices proved to be ineffective, dete-

riorating the performance of all models where present. The addition of textural features,

had either a neutral or slightly positive effect in most models. In the best classification

model, S1+S2+T1 with XGB, T1 helped to further distinguish between classes 1. Artifi-

cial Territories and 5. Bare and sparsely vegetated areas, and 3. Other vegetation and

4. Forests.

Moreover, the models which included the three calculated percentiles, 30th, 50th and

70th, all produced higher results than their counterparts using only the 50th percentile,

with the three most spectrally similar classes (2. Agriculture,3. Other vegetation and 4.

Forests) particularly benefiting from this inclusion.

The experiments using a semi-automatic ground truth revealed that the use of a auto-

matic approach based on the existing LULC map, COS, created a model that adapted to

the errors in ground truth and delivered a less precise map, especially in class Artificial

Territories. This is especially pertinent since a significant amount of studies are produced

using existing LULC maps to collect ground truth, without considering (or mentioning)

the amount of errors or inconsistencies they can have [22].

Finally, the map created with the best classification model, PBIA_map appears to have
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some issues identifying 2. Agriculture and 3. Other Vegetation, although an objective

assessment of the performance is difficult. However, the map presents a high degree

of accuracy in classes 1. Artificial Territories, 4. Forests and 5. Bare and sparsely

vegetated land. Comparing the classifications of these classes PBIA_map and COS, it is

clear that PBIA_map can detail more information, which is not surprising due to COS’s

lower spatial resolution. However, comparisons with COSsim, which has a similar spatial

resolution, further proved the accuracy and superiority of the PBIA_map in those three

classes.
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7

Results - Object Based Approach

This chapter contains all results related to the object-based approach. It is divided in

two main sections: segmentation and classification. The first section consists of all the

discussions concerning segmentation. The second is divided in two parts: presentation

and analysis of all the classification results obtained with the different combinations of

input data and classifiers; and comparison between the final obtained LULC map, and

the available reference data.

All coordinates are presented in the EPSG:3763 Coordinate System.

7.1 Segmentation Results

Table 7.1 contains the details of the segmentations produced for the study region, in-

cluding the ID, the MSS spatial and range radius used, and the number of segments it

created.

Table 7.1: Segmentation experiments

ID Spatial radius Range radius No. of Segments
A 5 2 16208
B 5 1.5 35966
C 5 1.25 50639
D 5 1 67756
E 5 0.75 86684
F 5 0.25 122746
G 7 2 15243
H 7 1.5 33659
I 7 1.25 48204
J 7 1 65519
K 7 0.75 84888
L 7 0.25 122342

The influence of the MSS parameters on the number and size of the segments was

studied. In Figure 7.1 it is possible to observe that variations in range radius lead to

significant changes in both number and size of the segments, although the same is not
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true for the spatial radius. The difference between segmentations with spatial radius 5

and 7 gets progressively smaller, as the image becomes oversegmented, and all segments

approach the set minimum of 4 pixels.

Figure 7.1: Number and average size of objects in each segmentation

Figure 7.2 and Figure 7.3 represent, respectively, the computed WV and MI for each

principal component, of each segmentation. The behaviors of the indices are similar in

all principal components. As seen in the reviewed literature [25, 9], when the image is

undersegmented, such as in segmentation A, the WV is high. As the segmentations start

to get more fine and oversegmentation starts, WV continuously decreases. As for the MI,

it is low when the image is undersegmented and it rises as the number of segments also

increases, indicating that the new segments produced are increasingly similar to their

neighbors and demonstrating that the image is approaching oversegmentation.

Almost every segmentation produced with the spatial range of 7 obtained lower MI

and WV values than its 5 counterpart, even with less segments produced. Since the

objective is to minimize both indices, the results seem to point to the superiority of the

segmentations produced using spatial radius 7. As for the ideal range radius, the indices
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Figure 7.2: Weighted Variance for each principal component, per segmentation
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Figure 7.3: Moran’s Index for each principal component, per segmentation
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had to be complemented with visual analysis. Considering all segmentations produced, as

well as the fact that, in land-cover classification, some oversegmentation is more desirable

than undersegmentation, the chosen segmentation was J.

Segmentation J presents an overall good delineation of objects. Urban areas are much

more finely separated, almost reaching oversegmentation, while different types of natural

areas have a less precise separation, which will undoubtedly affect the quality of the

classification. Figure 7.4 presents two examples of areas in this segmentation.

Figure 7.4: Example areas of segmentation J. Urban areas are finely segmented, whereas
natural areas have less precise separation and non-homogeneous segments.
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7.2 Classification

7.2.1 Experiments

The first models were produced using the different combinations of input data with all

calculated percentiles. The kappa values for the two classifiers are presented in Table 7.2.

XGB RF

S1+S2+SA

S1+S2+SA+SI

S1+S2+SA+T1

S1+S2+SA+T2 0,87607

0,88251

0,87660

0,87797

0,89490

0,89339

0,88427

0,88736

Table 7.2: Kappa values for each dataset, per classifier - all percentiles

XGB was the highest performing classifier in all experiments. However, the RF models

also delivered comparable results, aside from S1+S2+SA+T2 which had an unusual low

result.

The inclusion of spectral indices had a small negative effect on both classifiers, but in

contrast, the presence of textural features improved the kappa of all experiences, except

in the model using S1+S2+SA+T2 and RF. Interestingly, the dataset S1+S2+SA+T2

produced the best performing model, using XGB, and the worst performing of the group,

using RF.

The F1 score, precision and recall of each class, for each experiment, are presented

in Table 7.3 and Table 7.4. In both classifiers, class 1. Artificial Territories and 5. Bare

and sparsely vegetated areas had consistently the best results in all experiments. In

contrast, class 3. Other Vegetation had the worst results, followed by 4. Forests and 2.

Agriculture. The use of XGB was highly beneficial for classes 4. Forests and 3. Other

Vegetation.

Analysing the XGB results, the inclusion of spectral indices had a beneficial effect in

class 5. Bare and sparsely vegetated areas and 1. Artificial Territories. The remaining

classes, 2. Agriculture, 3. Other Vegetation and 4. Forests all had a decrease in F1 values.

This is due to the calculated spectral indices being specifically for identifying built up

areas and vegetation, and as such, likely not useful in distinguishing between different

types of vegetation. The addition of T1 produced a positive effect in the F1 score of all

classes, but T2 generated a slightly higher increase, helping to separate classes 4. Forests

and 3. Other Vegetation, as can be observed by comparing the S1+S2+SA confusion

matrix, presented in Table 7.5, to the one obtained by S1+S2+SA, in Table 7.6.
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Dataset Class

XGB

F1 Score Precision Recall

S1+S2+SA 1

2

3

4

5

S1+S2+SA+SI 1

2

3

4

5

S1+S2+SA+T1 1

2

3

4

5

S1+S2+SA+T2 1

2

3

4

5

1,00000

0,86607

0,80795

0,83824

0,98981

0,97674

0,85840

0,77707

0,89063

0,98981

0,98824

0,86222

0,79221

0,86384

0,98981

1,00000

0,87500

0,76159

0,84559

0,99490

1,00000

0,81667

0,77702

0,87786

0,99490

1,00000

0,84483

0,76923

0,86142

0,99490

1,00000

0,86607

0,80132

0,87500

0,98981

1,00000

0,86607

0,78065

0,85612

0,98480

1,00000

0,86607

0,79085

0,86545

0,98730

1,00000

0,88393

0,81457

0,83824

0,99321

1,00000

0,86087

0,79870

0,90476

0,98651

1,00000

0,87225

0,80656

0,87023

0,98985

Table 7.3: XGB Metric results for each dataset - all percentiles
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Dataset Class

RF

F1 Score Precision Recall

S1+S2+SA 1

2

3

4

5

S1+S2+SA+SI 1

2

3

4

5

S1+S2+SA+T1 1

2

3

4

5

S1+S2+SA+T2 1

2

3

4

5

1,00000

0,84821

0,80132

0,81618

0,98981

0,97674

0,84071

0,75625

0,88800

0,98981

0,98824

0,84444

0,77814

0,85057

0,98981

1,00000

0,83036

0,77483

0,85294

0,98981

0,97674

0,80870

0,75974

0,88550

0,99319

0,98824

0,81938

0,76721

0,86891

0,99147

1,00000

0,83929

0,79470

0,84559

0,99151

0,97674

0,83929

0,77419

0,89147

0,98816

0,98824

0,83929

0,78431

0,86792

0,98983

1,00000

0,82143

0,76159

0,86029

0,99321

1,00000

0,82143

0,76159

0,88636

0,98651

1,00000

0,82143

0,76159

0,87313

0,98985

Table 7.4: RF Metric results for each dataset - all percentiles

Predicted Class

True Class

1 2 3 4 5

1

2

3

4

5 42

0

0

0

0

0

99

9

0

4

0

15

123

10

3

0

1

20

114

1

0

0

2

2

585

Table 7.5: XGB Confusion matrix for S1+S2+SA+T2 - all percentiles
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Predicted Class

True Class

1 2 3 4 5

1

2

3

4

5 42

0

0

0

0

0

97

12

1

2

0

16

122

11

2

0

0

20

114

2

1

0

3

2

583

Table 7.6: XGB Confusion matrix for S1+S2+SA - all percentiles

Analogous to Chapter 6, the same exact experiments were performed using only the

50th percentile of each band. Table 7.7 contains the kappa values of each experiment.

XGB RF

S1+S2+SA

S1+S2+SA+SI

S1+S2+SA+T1

S1+S2+SA+T2 0,86983

0,87453

0,86543

0,86368

0,89023

0,87304

0,86893

0,87648

Table 7.7: Kappa values for each dataset per classifier - 50th percentile

As expected, all experiments produced worse results than the equivalents in Ta-

ble 7.2, with XGB classifier having the highest results. Once again, the combination

S1+S1+SA+T2 and XGB produced the model with the highest kappa, with a similar

kappa to the one obtained by the identical model using all percentiles.

Analysing Table 7.8, it is possible to see that classes 1. Artificial Territories and

5. Bare and sparsely vegetated areas, 2. Agriculture either don’t benefit or benefit

very slightly from the inclusion of the percentiles. On the other hand, class 3. Other

Vegetation had a significant increase in F1 score, on all experiments, as well as 4. Forests.
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Dataset Class

XGB

F1 Score Precision Recall

S1+S2+SA 1

2

3

4

5

S1+S2+SA+SI 1

2

3

4

5

S1+S2+SA+T1 1

2

3

4

5

S1+S2+SA+T2 1

2

3

4

5

1,00000

0,86607

0,73510

0,86765

0,98981

0,97674

0,82203

0,78169

0,85507

0,98981

0,98824

0,84348

0,75768

0,86131

0,98981

1,00000

0,85714

0,71523

0,86765

0,98812

0,97674

0,81356

0,76056

0,83688

0,99317

0,98824

0,83478

0,73720

0,85199

0,99064

1,00000

0,83929

0,73510

0,87500

0,98981

1,00000

0,83186

0,77083

0,85612

0,98480

1,00000

0,83556

0,75254

0,86545

0,98730

1,00000

0,87500

0,75497

0,88235

0,99491

0,97674

0,85965

0,80851

0,86331

0,98820

0,98824

0,86726

0,78082

0,87273

0,99154

Table 7.8: XGB Metric results for each dataset - 50th percentile

To study the effect of the inclusion of the spatial geometric attributes in the classifica-

tion, the best model so far, using S1+S2+T2 with XGB was retrained, omitting the spatial

attributes.

The kappa value obtained was 0.89959, the highest result obtained in all experiments.

Comparing the model’s metrics, included in Table 7.9, with Table 7.3, an increase in both

precision and recall can be seen in class 1. Artificial Territories, 2. Agriculture and 3.

Other Vegetation, while 4. Forests suffered a small decreased in recall.

This result suggests that the inclusion of spatial geometric attributes is ineffective for

this group of classes, perhaps due to them being mostly land-cover classes, which are

usually separable by their spectral properties [28].
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Dataset Class

XGB

F1 Score Precision Recall

S1+S2+SA+T2 1

2

3

4

5 1,00000

0,86607

0,82119

0,85294

0,99660

1,00000

0,86607

0,80000

0,90625

0,98988

1,00000

0,86607

0,81046

0,87879

0,99323

Table 7.9: XGB Metric results for S1+S2+T2

To summarize, XGB was consistently the best performing classifier. The use of this

classifier was particularly beneficial for classes 4. Forests and 3. Other Vegetation.

The inclusion of the spectral indices had a negative impact in most of the models,

although they were sometimes useful in helping to distinguish 1. Artificial Territories

and 5. Bare and sparsely vegetated areas. The inclusion of the 30th and 70th percentiles

in the models had the highest positive impact in class 3. Other Vegetation, followed by

4. Forests.

Finally, the use of spatial geometric proved to be ineffective, as the highest kappa was

obtained by excluding them from the model.

7.3 Comparison with available LULC maps

In this section, the full map produced by the best model: manual ground truth, S1+S2+T2

input data and XGB classifier; designated OBIA_map was compared against COS and

COSsim. First, a quantitative analysis is produced followed by the results of the visual

analysis in QGIS.

7.3.1 Carta de Uso e Ocupação do Solo (COS)

The kappa value of the comparison between COS and OBIA_map was 0.5734, considered

a moderate agreement, and Table 7.10 presents the percentage of comission and omission

errors for each class. Class 3. Other Vegetation had the worst performance, with a per-

centage of comission errors of over 73%. The class with the highest amount of agreement

was 1. Artificial Territories.

To understand the errors identified in PBIA_map, a detailed visual analysis for each

class was constructed, with the support of the confusion matrix, presented in Table 7.11.
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Comission Errors (%) Omission Errors (%)

1. Artificial Territories

2. Agriculture

3. Other Vegetation

4. Forests

5. Bare and sparsely vegetated areas 15,08

27,21

24,12

49,39

26,99

20,04

26,43

73,05

34,06

7,41

Table 7.10: Percentage of OBIA_map’s comission and omission errors using COS

Predicted Class

True Class

1 2 3 4 5

1

2

3

4

5 2,06

0,09

0,04

0,02

0,22

0,09

17,23

4,41

0,61

1,33

0,05

0,75

5,98

0,42

0,69

0,02

0,31

4,53

5,93

0,93

0,36

5,05

7,23

2,02

39,64

Table 7.11: Area-based (in proportion) confusion matrix of OBIA_map using COS as
reference.

7.3.1.1 Artificial Territories

In general, the identified errors in class 1. Artificial Territories are not true errors,

and occur from ground truth inaccuracies. The problematic areas mentioned previously,

Aroeira, Alfeite and parks, contribute significantly to these errors, but are generally

correctly classified in OBIA_map.

OBIA_map is able to identify some small urban conglomerates and roads, not present

in COS, two examples of which are represented in Figure 7.5 and 7.6. In Figure 7.5,

even though OBIA_map represents the small roads, there are still some small artificial

structureS that were not identified
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Tecidos Artificializados

(a) (b)

Figure 7.5: Classification examples of OBIA_map(a) and COS with ortophoto back-
ground. OBIA_map is able to delineate and detect artificial structures and roads, with
higher precision than COS.

Artificial Territories

(a) (b)

Figure 7.6: Classification examples of OBIA_map(a) and COS with ortophoto back-
ground. OBIA_map is able to identify small artificial structures, which are not iden-
tified in COS.

Nonetheless, some errors do exist in OBIA_map, as can be seen in Figure 7.7, which

represents a portion of the Aroeira area. Although OBIA_map is able to discern some

houses from the vegetation, it cannot distinguish all of them. Analysing the segmentation

result in this area in Figure 7.8, it appears to be adequate, being able to detect the dif-

ferences between houses and forest. However, most of the house segments include some

amount of vegetation, which likely explains the incorrect classification.
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Artificial Territories

(a) (b)

Figure 7.7: Classification examples of OBIA_map(a) and COS with ortophoto back-
ground. Although OBIA_map is able to identify houses and artificial structures with
higher precision than COS, a significant portion are not identified.

Figure 7.8: Segmentation result of the area represented in Figure 7.7. Most of the seg-
ments are not homogeneous, with a mixture of artificial structures and vegetation.

In addition, in the beach area, some rocky areas and the breakwaters are classified as

class 1. Artificial Territories in OBIA_map but considered class 5. Bare and sparsely

vegetated areas in COS. Although the breakwaters could be considered artificial struc-

tures and so, not an error in OBIA_map, the rocky parts are misclassifications.
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Furthermore, the classifier seems to have difficulty distinguishing between 1. Artifi-

cial Territories and sandy areas with medium coverage of vegetation, as can be seen in

Figure 7.9. While COS fully classifies this area as 4. Forests, visually it would appear to

be either 3. Other Vegetation or 5. Bare and sparsely vegetated areas.

Artificial Territories
Forests

(a) (b)

Figure 7.9: Classification examples of OBIA_map(a) and COS with ortophoto back-
ground. OBIA_map wrongly classifies the area as 1. Artificial Territories, while COS
classifies it as 4. Forests.

7.3.1.2 Agriculture

In this class, the majority of errors occur due to confusion with class 3. Other Vegetation,

making it difficult to visually discern which map is correct.

Notwithstanding, there are also some areas in which OBIA_map wrongly classifies

houses as 2. Agriculture, as in Figure 7.10, probably due to the segmentation minimum

area and small size of the structures.

7.3.1.3 Other Vegetation

A significant part of this class’ errors occur due to confusion with class 4. Forests. Al-

though some instances exist where OBIA_map is accurate, the majority of the disagree-

ment is due to true errors in classification in OBIA_map, which is not able to properly

separate the classes. Figure 7.11 and 7.13 show two examples. The misclassifications

seem to be a direct consequence of the segmentation, which was not able to separate the

area in different segments, as shown in Figure 7.12 and 7.14.
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Agriculture

(a) (b)

Figure 7.10: Classification examples of OBIA_map(a) and COS with ortophoto back-
ground. OBIA_map wrongly classifies houses as 2. Agriculture.

Other Vegetation
Forests

(a) (b)

Figure 7.11: Classification examples of OBIA_map(a) and COS with ortophoto back-
ground. COS provides a more accurate separation of classes 3. Other Vegetation and 4.
Forests than OBIA_map.
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Figure 7.12: Segmentation result of the area represented in Figure 7.11. The main center
segment is not homogeneous, and could have been subdivided.

Other Vegetation
Forests

(a) (b)

Figure 7.13: Classification examples of OBIA_map(a) and COS with ortophoto back-
ground. COS provides a more accurate separation of classes 3. Other Vegetation and 4.
Forests than OBIA_map.
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Figure 7.14: Segmentation result of the area represented in Figure 7.13. Some segments
are not homogeneous, and could have been subdivided.

3. Other Vegetation has the highest percentage of comission errors, and a significant

portion arise from parks, golf courses, and the Aroeira area, and are correctly classified

in OBIA_map. In addition, some of the small green areas in mostly urban zones are not

classified as vegetation in COS but are correctly identified in OBIA_map.

7.3.1.4 Forests

In this class, the majority of omission errors are due to confusion with class 3. Other

Vegetation, and seem to be real inaccuracies in OBIA_map as declared before.

However, most of the comission errors are not actual errors, and stem from better

delineation of classes in the Aroeira and Alfeite areas, with the latter being represented

in Figure 7.15.

7.3.1.5 Bare and sparsely vegetated areas

The majority of errors in this class arise from the already discussed situations of break-

waters, rocky portions of beach and beach bars.

An interesting case in this class are two sports fields, one with synthetic grass and

one which appears covered in dirt and sand, which OBIA_map identifies as class 5.

Bare and sparsely vegetated areas, but are marked in COS as 1. Artificial Territories.

OBIA_map’s classification of the dirt field, though not compatible with COS, was logical,

while the synthetic grass was unexpected.
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Artificial Territories
Forests

(a) (b)

Figure 7.15: Classification examples of OBIA_map(a) and COS with ortophoto back-
ground. OBIA_map is able to identify classes 1. Artificial Territories and 4. Forests
with higher accuracy than COS.

7.3.2 COSsim

The kappa value of the comparison between COSsim and OBIA_map was 0.5860, con-

sidered a moderate agreement, and Table 7.12 presents the percentage of comission and

omission errors for each class. Classes 2. Agriculture and 3. Other Vegetation had

the highest amount of disagreement. As seen in the previous chapter, class 5. Bare

and sparsely vegetated areas had an extremely high percentage of omission errors. 1.

Artificial Territories was the class with the highest agreement.

Comission Errors (%) Omission Errors (%)

1. Artificial Territories

2. Agriculture

3. Other Vegetation

4. Forests

5. Bare and sparsely vegetated areas 49,11

21,44

50,98

58,41

7,22

10,73

37,73

46,86

29,24

18,62

Table 7.12: Percentage of OBIA_map’s comission and omission errors using COSsim

A detailed comprehensive analysis for each class was produced, with the support of

the confusion matrix, presented in Table 7.13.
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Predicted Class

True Class

1 2 3 4 5

1

2

3

4

5 2,30

0,09

0,21

0,20

1,72

0,00

14,58

3,28

0,15

0,55

0,13

7,01

11,79

1,70

3,41

0,07

0,98

5,60

6,36

2,29

0,07

0,75

1,31

0,58

34,84

Table 7.13: Area-based (in proportion) confusion matrix of OBIA_map using COSsim as
reference.

7.3.2.1 Artificial Territories

The majority of errors in this class are, in fact true errors, as COSsim is able to delineate

small houses and roads much more precisely than OBIA_map, likely due to the quality

of the segmentation and its minimum area. Figure 7.16 and 7.17 present two of those

cases.

Artificial Territories

(a) (b)

Figure 7.16: Classification examples of OBIA_map(a) and COSsim with ortophoto back-
ground. COSsim is able to detect small houses and roads more precisely than OBIA_map

In addition, a substantial portion of errors are due to mismatched edges, which could

be due to misalignment of the satellite images, as mentioned in the previous chapter. In

addition, like with PBIA_map, it appears that OBIA_map has a tendency to overestimate
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Artificial Territories

(a) (b)

Figure 7.17: Classification examples of OBIA_map(a) and COSsim with ortophoto back-
ground. COSsim is able to detect the individual houses with higher precision than
OBIA_map

the edges of this class, while COSsim seems to underestimate them, as can be observed

in Figure 7.18

Artificial Territories

(a) (b)

Figure 7.18: Classification examples of OBIA_map(a) and COSsim with ortophoto back-
ground. OBIA_map overestimates the edges of class 1. Artificial Territories, while
COSsim suffers from the opposite problem, and underestimates them.

Nonetheless, not all errors are true, as there are some inaccurate classifications in

COSsim, such as in Figure 7.19, where a paved parking lot is classified as 5. Bare and

sparsely vegetated areas. OBIA_map is able to correctly classify this area as 1. Artificial

Territories.
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Artificial Territories
Bare and sparsely vegetated areas

(a) (b)

Figure 7.19: Classification examples of OBIA_map(a) and COSsim with ortophoto back-
ground. OBIA_map correctly identifies the parking lot as 1. Artificial Territories, while
COSsim identifies it as 5. Bare and sparsely vegetated areas.

7.3.2.2 Agriculture

The biggest source of agriculture errors is confusion between this class and 3. Other

Vegetation. Again, it is hard to fully discern which map is correct, although visually

COSsim appears to be more accurate.

7.3.2.3 Other Vegetation

A considerable amount of omission errors in class 3. Other Vegetation occur due to

the difference in categorization of the invasive forests, a topic detailed in the previous

chapter.

In addition, errors arise from the fact that COSsim distinguishes more precisely be-

tween 3. Other Vegetation and 4. Forests, an example of which is present in Figure 7.20.

Although this could be, again, a segmentation issue, Figure 7.21 shows that the algorithm

was able to detect some differences and create multiple segments. Therefore, the prob-

lem is likely that the classifier cannot fully separate these classes, especially when the

segments are not entirely homogeneous.

7.3.2.4 Forests

Most of the errors in class 4. Forests seem to be true errors in OBIA_map (with excep-

tion of the invasive forests area), and are due to poor separation of this class and Other

Vegetation, as mentioned before.
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Other Vegetation
Forests

(a) (b)

Figure 7.20: Classification examples of OBIA_map(a) and COSsim with ortophoto back-
ground. COSsim separates classes 3. Other Vegetation and 4. Forests with higher
accuracy than OBIA_map.

Figure 7.21: Segmentation result of the area represented in Figure 7.20. The segments
produced are mainly homogeneous, and correctly separate the areas with high density
tree coverage and no coverage.

7.3.2.5 Bare and sparsely vegetated areas

As previously detailed, COSsim has some difficulty distinguishing between this class and

1. Artificial Territories. Therefore, most of the errors in this class occur due better sepa-

ration of these classes in OBIA_map, an example of which is represented in Figure 7.22.
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Artificial Territories
Bare and sparsely vegetated areas

(a) (b)

Figure 7.22: Classification examples of OBIA_map(a) and COSsim with ortophoto back
ground. OBIA_map distinguishes classes 1. Artificial Territories and 5. Bare and
sparsely vegetated areas with higher accuracy than COSsim.

7.3.3 Conclusions

OBIA_map has a similar level of moderate agreement with both COS and COSsim, with

the latter being slightly higher.

Although class 1. Artificial Territories is mostly well classified, with exceptions

in areas where the structures are small and isolated. Even with the large amount of

disagreement with COSsim, class 5. Bare and sparsely vegetated areas also appears

to be well classified. Classes 2. Agriculture and 3. Other Vegetation have the worst

performances, mostly due to confusion between each other. Finally, class 4. Forests has

an acceptable performance, with some confusion with 3. Other Vegetation.

7.4 Conclusions

Segmentation evaluation, specifically in remote sensing is a somewhat subjective topic,

and even though OBIA approaches to LULC classification have been steadily increasing

in number with extremely good results, it is still under-researched [13].

In consequence, selecting one segmentation as the optimal one proved to be an ex-

tremely difficult task. Although the pursued path of calculating homogeneity (WV) and

heterogeneity (MI) indices definitely pointed in the right direction, their calculation and

combination have some issues, which not only negated the possibility of following a

completely automated method, but also made producing a meaningful manual analysis

challenging, without resorting to visual inspection. It is clear that a balance between the

two indices must be kept, but their relationship needs further investigation and research.

It is important to note that it is not possible to fully claim that the chosen segmentation
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is the optimal one for this area of study. An informed choice was made based on the

analysis produced, but it is highly possible that different parameter combinations could

produce a more accurate segmentation.

As for the classification step, XGB had a consistently superior performance, when

compared with RF, and the combination of input data S1+S2+T2 and XGB classifier

obtained the best results. The addition of spectral indices generated a decrease in kappa in

almost all experiments, while the textural features had mostly a slight positive effect. The

inclusion of the 30th and 70th percentile lead to an increase in kappa for all experiments

tested, with classes 4. Forests and 3. Other Vegetation improving the most. Finally, the

incorporation of spatial geometric attributes deteriorated the model’s results, probably

due to the chosen classes being mostly land-cover classes, which are more closely related

to the spectral properties of the objects.

Even though the manual test sets obtained high results, visual analysis of the map

produced by the best model, OBIA_map, highlighted some issues: segments which are

not well classified because they seem to contain multiple LULC classes; and segments

which look to be homogeneous but are still not well classified. Although the former is

obviously a direct consequence of segmentation quality, the latter is also likely a reper-

cussion of that, due to the methodology chosen to collect the training and test sets. The

correct acquiring of these sets lies on the premise of the segmentation being able to create

homogeneous segments, as each of them was attributed their dominant class present in

the constructed ground truth. If the segment contains a mixture of classes, and is used

as a training sample, it will introduce errors in the model. The methodology chosen also

lead to the small size of the training set, which possibly contributed to some errors.

The final map, OBIA_map, correctly identifies most of classes 1. Artificial Territories

and 5. Bare and sparsely vegetated areas, but struggles to fully separate 3. Other

Vegetation from 2. Agriculture, and 3. Other Vegetation from 4. Forests.

In conclusion, the application of a OBIA approach to this LULC classification problem

was extremely challenging. The final results, although acceptable, are slightly unsatisfac-

tory, especially when compared to the ones obtained in Chapter 6.
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Conclusions

This chapter presents the final conclusions of this dissertation, highlighting its major find-

ings, accomplishments and limitations of the research, as well referencing some possible

future expansions.

8.1 Conclusions

Land Use and Land Cover (LULC) information plays an essential role in urban planning

and sustainable city development. In Portugal, and specifically in the Almada munici-

pality, the main LULC map is Carta de Uso e Ocupação do Solo (COS). The information

provided by COS, although valuable, has some limitations in spatial and temporal resolu-

tion, due to the minimum mapping unit of 1 hectare and the 3 to 5 year release interval.

These limitations lead to a map that cannot be used for consistent monitoring of several

important spatial planning indices such as proportion of forest land or number of small

isolated or illegal structures. As such, this dissertation proposed to study the applicability

of satellite data and derived products for creating LULC maps in the region of Almada,

with better spatial and temporal resolution.

After the state of the art research, it was decided that a comparative analysis of two

common approaches to LULC classification, pixel-based (PBIA) and object-based (OBIA),

should be produced. Both of these approaches were tested with several combinations of

Sentinel-1, Sentinel-2, spectral indices and textural features, as well as two classifiers,

XGB and RF, in order to achieve the best possible results.

In the beginning of this dissertation, it was anticipated that the OBIA methodology

would produce better results than PBIA, due to its increasing popularity and excellent

performance in other studies. This was not the case, as the segmentation step, a key

point in this methodology, was extremely challenging. The lack of established research

in unsupervised segmentation evaluation, specifically in remote sensing, lead to a con-

siderable amount of difficulty assessing the quality of the segmentations produced and

selecting the optimal one. Although the results of the classification models were high,

subsequent visualization of the segments, highlighted misclassifications likely stemming
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from incorrect segmentation.

In general, the OBIA approach had a more difficult implementation, requiring a sig-

nificant amount of manual analysis and, for this region of study and set of classes, did not

produce the best results. The PBIA approach was considered the most successful in this

research problem, as it required a lower amount of manual intervention and produced

excellent results.

The experiments performed in both approaches highlighted the superior performance

of the XGB in this type of problem, when compared to RF, as well as the benefit of

including the 30th and 70th percentiles of the Sentinel-1 and Sentinel-2 bands in the

classification features, in addition to the 50th. The addition of textural features also

had mostly positive effects on the classification, integrating the best models for both

approaches. On the other hand, the introduction of spectral indices lead to a reduction

in classification kappa in almost all experiments.

Comparisons of models using the manual and semi-automatic ground truth showed

that using COS (even a improved version) to obtain ground truth data, produced an infe-

rior LULC map, with class 1. Artificial Territories suffering the most deterioration. This

is a significant finding, as a considerable amount of studies extract ground truth from ex-

istent LULC maps without mentioning any type of uncertainty in the data [22]. Although

the lack of an accurate and complete ground truth was a challenge in the development of

the dissertation, the manually collected ground truth proved to be extremely effective.

Comparing the final 2018 LULC maps obtained by the best classification models in

the PBIA and OBIA experiments, PBIA_map and OBIA_map, it is clear that, although

the agreement between the two maps is high, at around 83.08%, PBIA_map has a higher

degree of accuracy. PBIA_map is able to precisely detect a greater amount of small 1.

Artificial Territories, which OBIA_map cannot distinguish. Furthermore, OBIA_map

struggles slightly more with the identification of 4. Forests. Despite this, both maps have

some limitations in separating 2. Agriculture and 3. Other Vegetation.

Overall, the objective of this dissertation was reached successfully, as the PBIA results

showed that extremely accurate LULC maps in Almada can be created, verified by visual

analysis. Due to its increased spatial resolution, PBIA_map is able to distinguish objects

which their current LULC map, COS, is not able to, such as small artificial structures and

small urban vegetation. Even when compared to a map obtained with similar techniques

and with a closer spatial resolution, COSsim, PBIA_map seems to perform a better delin-

eation of classes 1. Artificial Territories, 4. Forests and 5. Bare and sparsely vegetated

areas. The limitation of this research work in separating 2. Agriculture and 3. Other

Vegetation, although not ideal, is not especially relevant for the Almada city council, as

their primary goal is to monitor urban growth.
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8.2 Future work

This research works showed that the creation LULC maps for Almada, through the use

of Sentinel-2 and Sentinel-1 and derived products is possible and can produce accurate

products. However, future developments can be considered, both in the realm of real life

usage, and research.

The work in this dissertation was optimized to produce LULC classification maps

for the year 2018. Further work could be developed in order to expand on this research

and create an application which the Almada city council could use to produce LULC

classification maps with the desired frequency. Although a similar project with high

spatial and temporal resolution is being developed by the DGT, COSsim, this map is not

optimized specifically for the Almada area. By having an application tailored exactly to

their municipality, the city council could have accurate LULC maps, with full control of

the temporal frequency.

From a research point of view, there are numerous possible expansions to the work

developed in this dissertation. One interesting path would be to study the effects of each

feature on the classification, and possibly perform feature selection, to reduce the number

of features in the models, and reduce the computational effort. Including more classes,

specifically more land-use classes, would also be an interesting development, although

in this case, the region of study would need to be increased substantially.

Finally, this dissertation’s experiments showed that sampling the reference data avail-

able, COS, is not an ideal method of collecting ground truth. However, creating a manual

ground truth is not feasible when escalating this approach to a bigger area, and as such,

a comprehensive study of the effect of using the automatically extracted ground truth

on each class’ classification accuracy would be extremely beneficial, as it would help to

understand which classes are the most negatively affected. This knowledge could then

assist in creating a methodology combining both manual and automatically extracted

ground truth, allowing greater areas (and possibly more classes) to be classified.
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Figure A.1: PBIA_map: LULC map created by the best classifier of the PBIA approach.
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Figure A.2: OBIA_map: LULC map created by the best classifier of the OBIA approach.
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