
Pedro Santos Rodrigues

Bachelor in Computer Science

Accelerating SQL with Complex Visual Querying

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: Teresa Romão, Associate Professor,
NOVA University of Lisbon

Co-advisers: Rui Nóbrega, Assistant Professor,
NOVA University of Lisbon
Tiago Simões, Principal Product Designer,
OutSystems

Examination Committee

Chair: Henrique Domingos, Associate Professor, NOVA University of Lisbon
Rapporteur: António Coelho, Associate Professor with Habilitation, FEUP

Member: Teresa Romão, Associate Professor, NOVA University of Lisbon

January, 2021

Accelerating SQL with Complex Visual Querying

Copyright © Pedro Santos Rodrigues, Faculty of Sciences and Technology, NOVA Univer-

sity Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based on the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To my dear grandparents Júlio and Fátima.

Acknowledgements

I would like to thank Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa
and in special to the Departamento de Informática for providing me an excelent knowledge

base and for setting me challenges that would make me overcome myself, day after day.

Secondly, I have to thank my advisers Tiago Simões, Teresa Romão, and Rui Nóbrega

for mentoring me throughout this dissertation. Your support was essential and I learned

a lot from you!

Thank you to OutSystems for taking initiative on this interesting research project.

And also to all the people I met in the office and in the online meetings, due to this new

normal. Everyone was ready to help and the environment was amazing. Also, thank you

to all participants of the usability tests.

Furthermore, a huge thank to my friend and partner of this journey Pedro Deodato.

We met each other in the first year of university and then we have been walking this jour-

ney as a team - P&PCl forever. Thank you for sharing with me the greatest achievements

and all the moments we had to overcome during these five years. We will never forget

the sleepless nights working on our projects, but the most important is that we did it!

Last but not least, I would also like to express that I’m thankful for all the support

my family has given to me. In particular, I would like to thank, my parents, and my

siblings. They always encouraged me and supported me whenever I needed it. Without

your support, it would have been impossible to get this far. Also, a big thank you to my

grandparents, you are an inspiration to me.

Finally, a special thanks to Mariana, who always has been here for everything. This

accomplishment would not have been possible without you.

vii

Your work is going to fill a large part of your life, and the only
way to be truly satisfied is to do what you believe is great work.

Steve Jobs

Abstract

This dissertation addresses the usability improvement of a graphical user interface that

allows query formulation without using textual query languages, such as SQL. This visual

tool, called Aggregates, is provided on the OutSystems Low-Code Development Platform,

to formulate data queries, through interaction and manipulation of visual components.

Since Aggregates do not support all the existing functionalities of SQL, the OutSys-

tems Platform allows users to build queries using this textual query language. Nonethe-

less, by evaluating customers’ SQL queries, it was revealed that a considerable subset of

the queries written in SQL could have been formulated using the visual tool.

The users’ interviews and the results of the SQL queries evaluation have foreseen

that the cause of the reduced acceptance of the visual approach, could be the existing

usability problems on the interface. Furthermore, the interface is inadequate to build

more complex queries, which involve more entities and conditions.

Through an iterative design process, this dissertation includes the design, implemen-

tation, and evaluation of prototypes with different fidelity levels. The aim is to optimize

the effectiveness and efficiency of the process where users communicate to the system

what data they intend to extract from the database. Moreover, the readability and com-

prehension improvement of the query visual representation is intended, reducing the

time and the effort required to understand what data will be gathering from the database.

The final implemented interface is currently incorporated on the OutSystems Platform to

accelerate the query formulation process without harming the learnability of the system.

Keywords: Visual Query Interfaces, Low-Code Development, User-Centered Design,

Human-computer Interaction, Iterative Design, Database Querying

xi

Resumo

Esta dissertação apresenta um estudo sobre o melhoramento da usabilidade de uma inter-

face gráfica que permite consultar dados sem recorrer a linguagens de consulta textuais,

tais como o SQL. A ferramenta visual abordada, denominada Aggregates, está inserida

na Plataforma de Desenvolvimento Low-Code OutSystems, de modo a permitir a formula-

ção de consultas a bases de dados, através da interação e manipulação de componentes

visuais.

Tendo em conta que a interface gráfica disponibilizada não suporta todos os tipos de

consultas suportadas pelo SQL, os utilizadores podem recorrer a esta linguagem textual

para construir as suas pesquisas. No entanto, ao avaliar estas consultas criadas textual-

mente em SQL, por clientes da plataforma, percebeu-se que um conjunto considerável de

consultas foram construídas usando SQL, embora pudessem ter sido construídas usando

a ferramenta visual disponibilizada.

Tanto as entrevistas aos utilizadores, como a análise das consultas construídas usando

SQL, indicaram que a falta de aceitação do método visual de construção de consultas era

causada por problemas de usabilidade na interface. Para além disso, quando as consultas

de dados envolvem mais entidades ou condições, os utilizadores sentem dificuldade a

usar a interface.

Através de um processo de desenho iterativo, esta dissertação apresenta o desenho, im-

plementação e avaliação de protótipos com diferentes níveis de fidelidade. Foi optimizada

a eficácia e a eficiência do processo de utilização da interface para consultar dados. Além

disso, também se melhorou a legibilidade da representação visual da consulta, de modo

a diminuir o tempo e esforço necessário para compreender que dados pretendem ser

extraídos da base de dados. A implementação final da interface encontra-se atualmente

incorporada na Plataforma OutSystems, acelerando o processo de criação de consultas de

dados sem dificultar a aprendizagem necessária para utilizar o sistema.

Palavras-chave: Interfaces Gráficas de Consulta de Dados, Desenvolvimento Low-Code,

Desenho Centrado no Utilizador, Interação Pessoa-Máquina, Desenho Iterativo, Consulta

de Bases de Dados

xiii

Contents

List of Figures xvii

List of Tables xxi

Acronyms xxv

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Description . 3

1.3 Research Questions . 4

1.4 Contributions . 5

1.5 Document Structure . 5

2 Background 7

2.1 Human-Computer Interaction . 7

2.1.1 Main Concepts . 7

2.1.2 User-centered Design . 9

2.2 OutSystems Background . 15

2.2.1 Visual Development Environment 15

2.2.2 Visual Data Querying . 16

3 Related Work 23

3.1 Query Conceptual Models . 23

3.2 Query Formulation Problems . 25

3.3 Visual Query Composition . 27

3.4 Discussion . 33

4 Methodologies 35

4.1 Problem Exploration . 35

4.2 User Analysis . 36

4.3 Iterative Design . 36

4.4 Testing Scenarios . 38

4.5 Evaluation Method . 43

4.6 Summary . 50

xv

CONTENTS

5 Requirements and Analysis 51

5.1 Problem Analysis . 51

5.1.1 Analysis . 51

5.1.2 User Interviews . 55

5.1.3 Data Analysis . 56

5.1.4 Community Ideas . 58

5.1.5 Existing Interface Evaluation . 59

5.2 Target Users . 63

5.2.1 Requirements and Expectations . 65

5.2.2 User Groups . 66

6 Design and Implementation 69

6.1 Sketching . 69

6.2 Paper Prototype . 72

6.2.1 Design . 72

6.2.2 Implementation . 76

6.2.3 Evaluation . 85

6.3 Service Studio Implementation . 89

6.3.1 Design . 90

6.3.2 Implementation . 93

6.3.3 Evaluation . 100

6.4 Results Analysis . 104

6.4.1 Effectiveness . 104

6.4.2 Efficiency . 109

6.4.3 Satisfaction . 111

7 Conclusions and Future Work 115

7.1 Conclusion . 115

7.2 Future Work . 117

Bibliography 119

Webography 123

Appendices 127

A Taxonomy of Problems - Existing Interface 127

B Usability Tests Results 157

xvi

List of Figures

2.1 The two dimensions of prototyping: Horizontal prototyping keeps the fea-

tures but eliminates depth of functionality, and vertical prototyping gives full

functionality for a few features (source: Nielsen [18]) 11

2.2 Severity Levels of the Problems based on their impact on the users (source:

Nielsen [18]) . 14

2.3 Main areas of Service Studio (source: OutSystems[65]) 15

2.4 Simple Query example in Hub Edition 2.0 (source: OutSystems [66]) 17

2.5 Aggregate Example . 19

2.6 Aggregate - Defining Sources . 19

2.7 Aggregates - Filtering, Sorting and Test Values in an example of querying

DueDates after a month indicated in a variable 20

2.8 Query Design functions while interacting with Query Result 20

2.9 Calculated Attribute Insertion . 21

2.10 Representation of the attributes aggregated through Group By operations or

other aggregation functions (COUNT, SUM, MAX, MIN, AVERAGE) 21

3.1 Models of Query Writing Process. 25

3.2 New and experienced users’ query processes (source: Robb et al. [24]). 26

3.3 Different approaches to select the entities of the query. 30

3.4 Data merging approaches. 31

4.1 Data Model used for User Testing . 41

4.2 Evaluation method overview. 44

4.3 Example of a general annotation registered after a usability test. 46

4.4 Methodology Overview . 50

5.1 Hidden option to add an aggregation function, since it is enclosed in a right-

click on the query result table column header. 52

5.2 Hidden attributes - primary and foreign keys are hidden by default. 54

5.3 Filter edition modal - example of a filter edition after selection of the intended

filter (the first one in that case). 54

5.4 Evaluation point S1: Average of the sucess rate of all scenarios by each user

group (Existing Interface usability tests - 30 users). 63

xvii

LIST OF FIGURES

5.5 Comparison between the users’ profile characteristics of the users have not

achieved scenarios. The charts illustrates the percentage of scenarios not

achieved in average for the users who answered the represented in the horizon-

tal axis to the question presented in the caption. (Existing interface usability

tests - 30 users). 64

6.1 Example of a database query representation through the existing visual inter-

face. 70

6.2 Interface layout sketches. 71

6.3 Searching for an attribute data on the query output preview. 72

6.4 Sketches elaborated to explore other approaches to represent the join opera-

tions present in the query. 72

6.5 Sketch of a general search to allow users to find query elements represented

in the interface. 73

6.6 Example of the existing textual language overloading - The entity ”Sample_Employee”

is represented seven times. 75

6.7 Paper Prototype general layout. 77

6.8 Comparison between the existing query result table and the designed for the

Paper Prototype. 77

6.9 Comparison between the existing filters and sorting sub-editors and the ones

designed for the Paper Prototype. 78

6.10 First stage of the design of a new representation approach to display sources

and joins. 79

6.11 Example of joins representation in the existing interface in a query where the

foreign key used to join is an important detail. 80

6.12 Example of the new foreign key selection and representation applied in the

Paper Prototype. 81

6.13 Example of the sources of a query that has a join with a condition edited. . . 81

6.14 Alternative provided to open the attribute context menu. 83

6.15 New sub-editor into the sources view to add aggregation functions and group

bys. 83

6.16 New sub-editor into the sources view to add calculated attributes. 83

6.17 Sources of a query where a group by and a SUM aggregation function were

applied. 84

6.18 Final Paper Prototype before scanning it. 84

6.19 Brief example of a small part of the interaction configuration in InVision in

order to allow to test the Paper Prototype in a fluid way. 85

6.20 The new design of the Service Studio and its Visual Query Builder. 90

6.21 High-fidelity design ideas built in Figma to present the sources of the query. 92

6.22 Horizontal scroll problem in the existing interface: when users use scroll the

see the columns at the right side, the editors are not fixed above. 93

xviii

LIST OF FIGURES

6.23 Interface after removed the tabs and expanded them in three areas visible at

the same time. 94

6.24 Structure of the React components created to dispose the sources. 94

6.25 Example of the sources view implemented at this stage. 95

6.26 Example of a query were there are joins that could be applied using different

foreign keys to merge the two entities, so the user can use the dropdown to

choose the intended one. 96

6.27 Example of a query that contains a join condition edited manually: The join

condition between ”Sample_Employee” and ”Sample_Notif ication” was edited

so this condition was not simplified as the other ones. 96

6.28 Modal that asks user which foreign key attribute he wants to use to merge the

two entities. In the example illustrated, the user has already added ”Sample_Notif ication”

and ”Sample_Employee”, and when he added ”SampleAccount” the interface

showed the modal presented since there are three references of employees on

the account entity: ”CreatedBy”, ”Manager”, and ”Owner”. 97

6.29 Attributes of each entity and interactions accessible using the right click to

trigger the context menu. 98

6.30 Tooltips of the two new buttons added. 98

6.31 New alternative to group data. 99

6.32 Example of a query that contains a group by (”Id”), an aggregation function

(”BalanceAvg”) and a calculated attribute (”EmployeeFullName”). 99

6.33 Comparison between the table headers of the existing interface and the new

ones (two group bys and one aggregated attribute, from the left to the right). 100

6.34 Evaluation point S1: Average of the success rate of all scenarios by each user

group (Final Prototype usability tests - 30 users). 104

6.35 Comparison of the effectiveness between the Existing Interface (on the left

side of each chart) and the Final Prototype (on the right side of each chart),

regarding specific use cases. 106

6.36 Evaluation point S1: Effectiveness Comparison between the existing interface

and the final prototype. (Comparing the 30 users who tested the existing

interface with the other 30 users who tested the final prototype) 107

6.37 Box plots of the time used by users in each scenario in the existing interface

(E) and in the final prototype (F). 111

B.1 Comparison of the System Usability Scale results (SUS) between the Existing

Interface and the Final Prototype. 157

xix

List of Tables

3.1 Query Language Requisites . 28

3.2 Visual Query Systems (VQSs) Summary . 34

4.1 Number of users tested by each user group and by each solution evaluated . 38

4.2 Distribution of the relevant testing aspects among the testing scenarios de-

signed. 43

4.3 Survey to undertand users’ profile . 45

4.4 Evaluation points registered in each scenario. 47

4.5 Description of the effectiveness states considered. 49

5.1 Queries that contain operations not supported by Aggregates 57

5.2 Queries that could be designed using Aggregates and the queries which the

tool does not support . 57

5.3 Evaluation point S14: Success rate of users when they needed to add a calcu-

lated attribute (Existing Interface usability tests - 30 users). 60

5.4 Evaluation point S7: Readability rate of the join which represents the case

where two entities were merged using a left join and the conditions specified

the that the primary key of the right enitity must be null (Existing Interface

usability tests - 30 users). 61

5.5 Evaluation point S8: Readability of the foreign keys used to join entities that

could be joined using different attributes (Existing Interface usability tests -

30 users). 61

5.6 Evaluation point S22: Selection of the foreign key, in the formulation scenario,

used to join entities that could be joined using different attributes (Existing

interface usability tests - 30 users). 62

5.7 Evaluation point S1: Average success rate of all scenarios by user group (Ex-

isting Interface usability tests - 30 users). 62

5.8 User Groups . 67

6.1 Average of the success rate of all scenarios by user group (Paper Prototype

usability tests - 15 users). 86

xxi

LIST OF TABLES

6.2 Evaluation point S8: Readability of the foreign keys used to join entities that

could be joined using different attributes. (Paper Prototype usability tests - 15

users) . 87

6.3 Evaluation point S7: Readability rate of the join which represents the case

where two entities were merged using a left join and the conditions specified

the that the primary key of the right enitity must be null. (Paper Prototype

usability tests - 15 users) . 88

6.4 Evaluation point S22: Selection of the foreign key, in the formulation scenario,

used to join entities that could be joined using different attributes. (Paper

Prototype usability tests - 15 users) . 89

6.5 Evaluation point S14: Success rate of users when they needed to add a calcu-

lated attribute. (Paper Prototype usability tests - 15 users) 89

6.6 Evaluation point S16: Options used by users to insert the calculated attribute

in the context of the M1 scenario. (Paper Prototype usability tests - 15 users) 89

6.7 Evaluation point S1: Average of the success rate of all scenarios by user group

(Final Prototype usability tests - 30 users). 101

6.8 Evaluation point S14: Success rate of users when they needed to add a calcu-

lated attribute. (Final Prototype usability tests - 30 users) 103

6.9 Evaluation point S8: Readability of the foreign keys used to join entities that

could be joined using different attributes. (Final Prototype usability tests - 30

users) . 103

6.10 Evaluation point S22: Selection of the foreign key, in the formulation scenario,

used to join entities that could be joined using different attributes. (Final

Prototype usability tests - 30 users) . 103

6.11 Evaluation point S7: Readability rate of the join which represents the case

where two entities were merged using a left join and the conditions specified

the that the primary key of the right enitity must be null. (Final Prototype

usability tests - 30 users) . 103

6.12 Evaluation point S16: Options used by users to insert the calculated attribute

in the context of the M1 scenario. (Final Prototype usability tests - 30 users) 106

6.13 Summary of the statistically data regarding the achieved scenarios in the

existing interface and in the final prototype. 108

6.14 Analysis of Variance (ANOVA) of the scenarios achieved in the existing inter-

face and in the final prototype. 108

6.15 Summary of the statistically data regarding the not achieved scenarios in the

existing interface and in the final prototype. 109

6.16 Analysis of Variance (ANOVA) of the scenarios not achieved in the existing

interface and in the final prototype. 109

6.17 Statistical information about the time users elapsed in each scenario in the

existing interface and in the final prototype. 112

xxii

LIST OF TABLES

6.18 Comparison of the time elapsed in each scenario between the tests of the

existing interface and the tests of the final prototype. 112

6.19 Kendall’s Tau-a significance test. 113

A.1 Taxonomy of Aggregates’ Problems - Existing Interface (Last community posts

update: May 06, 2020) . 129

B.1 Users’ profile survey results. (Existing interface usability tests - 30 users) . . 158

B.2 Users’ profile survey results. (Paper prototype usability tests - 15 users) . . . 159

B.3 Users’ profile survey results. (Final prototype usability tests - 30 users) . . . 160

B.4 Success Rate of the scenarios by user group when users tested the existing

interface (30 users). 161

B.5 Success Rate of the scenarios by user group when users tested the paper pro-

totype (15 users). 162

B.6 Success Rate of the scenarios by user group when users tested the Final Proto-

type (30 users). 163

B.7 Average of the time needed for each scenario and user group in the existing

interface (extracted from usability tests with 30 users). 164

B.8 Average of the time needed for each scenario and user group in the final pro-

totype (extracted from usability tests with 30 users). 165

B.9 Average and Standard Deviation of the System Usability Scale (SUS) results. 166

xxiii

Acronyms

ANSI American National Standards Institute

DBMS Database Management System

DQL Data Query Languages

HCI Human-computer Interaction

IDE Integrated Development Environment

ISO International Organization for Standardization

IT Information Technology

RDBMS Relational Database Management System

SQL Structured Query Language

UX User Experience

VQI Visual Query Interface

VQL Visual Query Language

VQS Visual Query System

xxv

C
h
a
p
t
e
r

1
Introduction

Nowadays, database queries are required not only in computer systems areas but also

in most sectors of professional or personal environments. The increase of the database

information gathering needs increased the searching for advanced technologies to opti-

mize the time spent and reduce the errors of this data querying process since the most

important is to obtain the intended information.

In the decades of the 1960s, Database Management Systems (DBMSs) arose, and later

in 1970s new management systems that use relational models, designated as Relational

Database Management Systems (RDBMSs), appeared as well as the first Data Query Lan-

guagess (DQLs), such as Structured Query Language (SQL) [5] which was considered by

the American National Standards Institute (ANSI) and International Organization for

Standardization (ISO) as the standard query language [10]. Even though these new tech-

nologies provided a structured way to access databases, knowledge of relational logic and

DQL was mandatory to fetch data from relational databases. Thereby, only a subset of

people could use these powerful querying technologies.

Visual Query Systems (VQSs) were defined by Catarci et. al. [3] as “systems for query-

ing databases that use a visual representation to depict the domain of interest and express

related requests”. These systems use different visual representations and interaction

strategies to build database queries. This visual approach could improve the user’s learn-

ing curve and reduce the mandatory previous knowledge of a DQL, which are more

difficult to learn, mainly for people without programming base knowledge. Furthermore,

some visual interface mechanisms such as automatisms, accelerators, or feedback mes-

sages, can be explored in order to accelerate the querying formulation process and reduce

the errors that users can make while they are building queries.

In that way, those visual systems are not only useful to users not familiarized with

DQLs. Conversely, some studies have revealed that visual languages might be convenient

1

CHAPTER 1. INTRODUCTION

to the expert users too. For instance, the comparison made by Catarci and Santucci

[4] concludes that diagrammatic languages can reduce the error rate of the queries, in

comparison with the ones that were build using textual languages, even when they were

formulated by expert users. These results have demonstrated that even expert users make

mistakes in simple queries (e.g., they may not remember the name of the tables or the

precise syntax of some language expressions). Therefore, the Visual Query Interfaces

(VQIs) should be built strategically in order to take advantage of their peculiarities that

could optimize the querying process not only to the users with a low database querying

experience level but also for highly experienced users.

1.1 Motivation

Low-Code Development is a recent development paradigm that seeks to reduce the time

and effort spent on tasks that would not have a significant impact on the final product

outcome. As high-level languages, APIs and third-party infrastructures have allowed

developers to be more productive and focus on the most valued sections of the software

they produce. Low-code approaches have followed this endeavor, using visual Integrated

Development Environments (IDEs), connectors between components and lifecycle man-

agers to employ an abstraction layer on the high-level languages, removing concerns of

infrastructure or pattern reimplementation. In that way, developers could focus on tasks

that truly accelerate the growth of the end product, achieving the desired goals with

greater efficiency [70].

The OutSystems Platform provides a cloud solution of low-code development, which

allows developers to build and deploy enterprise-grade applications though visual inter-

actions optimizing the time, effort, and previous knowledge necessary. Then, the OutSys-

tems Platform aims to provide an application development environment that could be

used by users with different backgrounds to build, deploy and manage their applications,

using good practices and state-of-the-art technologies, even if they do not need to concern

about that. Therefore, the vision and potential of the OutSystems Platform are similar to

the VQIs under-mentioned above since both intend to facilitate, accelerate, and optimize

processes through visual interaction.

In spite of development in OutSystems is based principally on visual languages, there

is the possibility to use low-level code, written in textual languages, such as Java, .NET

or SQL, in order to increase the extensibility and the power of solutions. In that way,

there are alternatives to performing operations not supported by the low-code visual

approaches. This is the difference between Low-Code and No-Code paradigms since in

No-Code is not possible to use low-level code [72]. Nonetheless, if the visual languages of

low-code platforms are more robust, responding more thoroughly to users’ requirements,

there is a diminished demand to resort to these textual programming languages which are

high error-prone and have a worse learning curve, requiring also, on multiple situations,

previous coding experience.

2

1.2. PROBLEM DESCRIPTION

Furthermore, as mentioned by Amaral et. al. [12], web and mobile applications pro-

duced on OutSystems’ technology, have proven an increase in quality. Also, it was con-

cluded that low-code developers are 10.9 times more productive than the standard of

Information Technology (IT) Industry, which does not use these rapid software solutions

[21]. These results reinforce the importance of the improvement of the visual languages

used on these platforms.

Following that vision, the principal motivation is the existence of a platform compo-

nent that accelerates the query building process and reduces the errors that could occur

throughout, keeping the experience simple and understandable by all users.

1.2 Problem Description

The OutSystems Platform [63] provides a Visual Query Language (VQL) that allows

users to query data from databases through visual interactions. Using that interface, it is

possible to perform some operations that are usually supported by textual DQLs, namely

join, filter, sort, and aggregation operations.

Although the existing interface turns the process of query formulation more simple

and intuitive, it does not support all SQL functionalities. Due to that lack of expressive-

ness, the platform allows its users to formulate queries using SQL. However, as Catarci et
al. referred [4], visual languages could give advantages in query formulation for all users,

including the ones that are proficient in SQL. Thus, it is important to provide a powerful

and consistent interface in order to give users the possibility to accelerate the formulation

process, reducing also the rate of errors that may arise.

The principal purpose of this visual interface is to provide a more visual and dynamic

tool that accelerates the query formulation process and turns it easier and less error-prone.

So, the existing interface should be a useful and efficient tool for developers due to the

potential of that visual approaches above-mentioned. However, OutSystems knew there

were developers that were not using the visual querying interface, maintaining their

preference for SQL. Therefore, it was necessary to verify the main causes that lead users

to not use that visual tool.

At the beginning of this dissertation, the lack of functionalities (e.g., IN, NOT IN,

EXISTS, NOT EXISTS, DISTINCT, UNION and the possibility to use subqueries) was

indicated as a significant factor for users to use SQL. Nevertheless, the first interface

explorations revealed impactful usability problems. That is an important point since it

could considerably harm users’ query formulation process, reducing the value propo-

sition of the system which intends to accelerate the querying process, keeping it more

effective and less error-prone. Moreover, there were metric results and user interviews

that confirmed the presumption concluded after interface exploration, highlighting the

user experience of the interface as the core subject to research and improve.

Beyond the motivation of turning the query building process faster, effective, and less

error-prone, the following questions would guide the problem definition process in order

3

CHAPTER 1. INTRODUCTION

to clearly understand the existing problems of the interface:

• Why do OutSystems developers often use SQL to formulate database queries?

• What are the main causes that users point out to use SQL?

• Who are the users more unsatisfied with the current provided visual approach to

retrieve data? What are their reasons?

Under the above-mentioned circumstances, the goal of this thesis is the design, im-

plementation. and evaluation of a new and more powerful VQI to provide an improved

User Experience (UX) that:

• Accelerates the query formulation process;

• Improves the readability of queries (i.e., turns easier to understand what data will

be fetched from database);

• Maintains the interface simple and intuitive for all users even the ones that do not

know SQL or OutSystems, reducing also the existing learnability curve, whenever

possible.

1.3 Research Questions

The main research question that is being addressed in this dissertation is:

Can we enable OutSystems developers to easily do complex

database queries without ever using SQL?

Regarding the main question and the diverse background of the system target users,

it is important to research how can be developed a solution that covers the requirements

of all user types with the improved usability possible.

The following research questions focus on this usability trade-off which depends on

the users and the system particularities:

Research Question 1: Does the existing interface have usability problems for the less

experienced users?

Considering the VQI already implemented, the most complex queries have not been

correctly covered by the tool. However, it is important to analyze also if novice users had

similar problems or others that could have an impact on the task performing.

Research Question 2: Can experienced users take advantage in using the visual inter-

face to build queries instead of SQL?

4

1.4. CONTRIBUTIONS

Since the users more experienced who know other textual query languages, such as

SQL, can use SQL to perform the queries, are advantages for them in the usage of a VQI?

What are the advantages and disadvantages of this type of approach for these users?

Research Question 3: Can expert users’ UX be improved without reducing the sys-

tem’s learnability and satisfaction for less experienced users?

The usability attributes trade-off depends on the system’s target users’ expectations

and requirements. Thus it is important to take into account if the development to im-

prove the efficiency, effectiveness, and satisfaction of expert users does not harm the

effectiveness and the learnability of the operations performed for the less experienced

users.

1.4 Contributions

As a result of the work developed throughout this dissertation, these are the main contri-

butions:

• A detailed study of the usability problems of the interface based on different re-

search methods: self-exploration and analysis of the existing interface, user in-

terviews, quantitative data analysis, ideas posted on the worldwide OutSystems

developers’ community, and usability tests of the existing interface;

• Design and implementation of a new visual querying interface built using an iter-

ative design process with two iterations: a paper prototype and a final prototype

completely integrated in the OutSystems Platform;

• Evaluation of the new interface through several usability tests with specific user

testing scenarios and compared the effectiveness, efficiency, satisfaction users have

using the new interface against they had using the previous one;

• State-of-the-art study of the major problems associated to the query formulation

tasks and the visual query interface approaches used to formulate queries visually

without textual query languages.

Furthermore, this dissertation has triggered the beginning of a new initiative at Out-

Systems to integrate the idea and prototype developed in this dissertation in the final

product in order to be released in a further version of the OutSystems Platform.

1.5 Document Structure

The remaining chapters of this thesis are organized as follows:

5

CHAPTER 1. INTRODUCTION

• Chapter 2 - Background: introduces some design and usability concepts to be used

in this work. Besides, it is provided a context of the OutSystems Platform current

progress, which explains the functionalities of the existing data querying tool;

• Chapter 3 - Related Work: analyses the users’ interaction with database systems to

improve the interfaces’ suitability to the target users of the system. Also, approaches

used by other systems to create interfaces that allow to visually build queries, are

described and compared, detailing the interaction strategies used.

• Chapter 4 - Methodologies: presents the methodology planned to design, imple-

ment and evaluate the solution built in the context of this dissertation, including

the problem exploration process, the user analysis, the iterative design, the testing

scenarios and the evaluation approach adopted;

• Chapter 5 - Requirements and Analysis: summarizes the processes used to deeply

understand the problem and the difficulties users of the system have in order to

provide also in this chapter a collection of the major usability problems of the

interface;

• Chapter 6 - Design and Implementation: describes the entirely solution conception

process from the first sketches to the implementation of the final prototype. For

each prototype it is described the design, implementation and evaluation phase.

• Chapter 7 - Conclusions and Future Work: includes the final remarks of the results

obtained through this dissertations and the aspects that should be approached in

the future.

6

C
h
a
p
t
e
r

2
Background

This thesis aims to improve the interface that allows users to build queries in a more

efficient and effective way. Therefore, Human-computer Interaction (HCI) is a core subject

of this work since such interface can only be improved if its interaction and usability are

studied from the user’s perspective.

Accordingly, this chapter will introduce key concepts of HCI, as well as, a brief con-

textualization of the OutSystems Platform that is indispensable for the comprehension

and progression of this study.

2.1 Human-Computer Interaction

Although computer systems have been designed by humans, these two parts of HCI do not

speak the same language. Nonetheless, these types of systems were created to support, in

a transparent way, human tasks and requirements, forgiving careless mistakes [9]. Thus,

HCI aims to study the relationship of users and computer systems, in the context of

the users’ desired tasks, in order to “unfold and reveal challenges and insights, and to

instrument appropriate solutions for alleviating the current obstacles to the access and

use of advanced information technologies” [27].

2.1.1 Main Concepts

The Usability of a system is one of the most important concepts in HCI, that can not be

forgotten on the design process, since its attributes must be taken into account performing

also a guidance function through all this process. This concept was standardized in ISO-

9241 [49] as “extent to which a system, product or service can be used by specified users

to achieve specified goals with effectiveness, efficiency and satisfaction in a specified

context of use”.

7

CHAPTER 2. BACKGROUND

However, usability is not a single-dimensional property, being always associated with

its attributes, that characterize the user accessibility when is using the system into five

different points, such as referred by Nielsen [18]:

• Learnability: How easy is the learning process until a novice user (who has not

used the system before) achieves a high-level of proficiency using the system [29].

The learnability is higher as the learning process is faster, and the user has to spend

less effort to reach his goal. Also, it depends on the tutorials and training provided

to users. A system that requires less training has higher learnability than a system

that requires more training. The time that a novice user requires to perform some

specific tasks can be used to measure learnability. Learnability can be improved

using tips while a novice user explores the system doing his first tasks.

• Efficiency: Refers to the productivity level of a user who has already learned how

to use the system. Efficiency can be measured analyzing the time that expert users

spent to do specific tasks on the system. This attribute can be improved, for example,

adding shortcuts to accelerate the interaction process.

• Memorability: Defines how easy is for a user, that was using a system before but

did not use it for a time period, to do his desired tasks on the system. So it’s related

to how many times the user has not used the system and the time that the user needs

to remember how the system works. Therefore, if a system has good memorability

the user does not need much time to remember it, even if it has stopped using it for

a long period of time. Memorability can be measured, for example, analyzing the

interaction process of a user who has been away from the system, while he uses the

system again. The use of visual components and metaphors with real-life objects

helps, sometimes, the users in this process.

• Errors: A system not only must have a low error-rate but if an error occurs, the user

should be able to recover from that. Since there are multiple types of errors with

different severity levels, catastrophic errors should not occur. This attribute can be

measured by the evaluation of the error-rate, taking into account the severity levels

of the errors. Furthermore, if a system has errors, that can be reverted and does not

have a negative impact on the final result, cannot be forgotten that these errors also

harm the efficiency of the system.

• Satisfaction: The most subjective attribute of the usability that is related to the

overall satisfaction of the user when uses the system. It could be measured by asking

the users about the experience while they are using the system, always searching

for subjective answers.

Nonetheless, as mentioned by Nielsen [18]: “it is not always possible to achieve

optimal scores for all usability attributes simultaneously”. Thus, when a system is

8

2.1. HUMAN-COMPUTER INTERACTION

designed it is necessary to prioritize what are the most important attributes for the users

and the domain where the system will be used and applied. These trade-offs are one of the

most challenging tasks of the design processes because it depends on user expectations

and their backgrounds, as well as, the problem domain and what are the main focus of

the system use. Accordingly, it is fundamental that the design process can focus on target

users of the systems. Therefore, the main concepts, processes, and techniques for a design

process centered on the users will be described.

2.1.2 User-centered Design

Before user-centered design principles and methodologies were adopted, the Waterfall

model was commonly adopted as a software development process. This model comprises

five sequential phases, from the requirements specification phase to the operation and

maintenance phase, and has a good quality control since documentation and planning

are a major concern of this methodology [2]. However, the stages of this model are

not overlapping stages, so other development methodologies and philosophies arose to

mitigate this problem and include the user on the design process, due to their impact on

the usability of the system.

Consequently, it was necessary a new model that has the users included in the de-

velopment process to verify, along with the development, if the approaches adopted are

positive and what is the users’ acceptability. Nielsen [17] reinforces this saying that “user

interfaces should be designed iteratively in almost all cases because it is virtually impossi-

ble to design a user interface that has no usability problems from the start. Even the best

usability experts cannot design perfect user interfaces in a single attempt, so a usability

engineering lifecycle should be built around the concept of iteration”.

The Spiral model of iterative design arose as an iteration through design, implemen-

tation and evaluation phases where the cost and accuracy increase on each iteration. The

first iterations should use low-cost resources, like paper prototypes, and when the results

are positive the accuracy should be incremented, changing to high-fidelity prototypes,

such as computer prototypes [13].

2.1.2.1 User and Task Analysis

Regarding the concept of usability presented above and the importance of the users on

the design process, it is important to define the users and their desired tasks of the system

in order to find the best solution as possible to the usability attributes trade-offs. Just a

good description of the users and the tasks of the system leads the designers to the best

choice of what are the usability attributes most important for the system.

Accordingly, it is important to make a User Analysis to understand all users’ charac-

teristics that could have an impact on the acceptability of the system. The expected result

of this analysis should be a set of structured information that characterize the users of

9

CHAPTER 2. BACKGROUND

the system in terms of technological expertise, knowledge of the business domain, appli-

cation experience, educational background, gender, and age, as other aspects that might

be useful to comprehend, depending on the system’s users and domain [8]. The more

traditional process to gather this information is through questionnaires or interviews, but

that can also be obtained by conducting market analyses or observational studies [18].

Furthermore, it is essential to enumerate and analyze the tasks the users should per-

form using the system. The Task Analysis process aims to aggregate information about

the tasks that should be performed on the system, starting from the system’s overall goals

and break down these to obtain individual tasks [18]. Moreover, the goal of this analysing

process is to obtain more structured information about: how the tasks are performed us-

ing the existing systems, what are the pre-conditions and the requirements of each task,

why the users need to perform this tasks, and others that might be useful to characterize

the tasks of the system.

The techniques used, to extract information to this analysis, aims at figuring out

how the tasks should be done instead of how they would perform them. The idea is to

resort to examples, as well as possible, in order to understand what type of strategies

are used, what type of exceptions from their normal workflow is occurring, and other

aspects that can be observed where the communication with users is on a concrete level

[18]. In addition, Nielsen [18] points out that “The users’ model of the task should also

be identified, since it can be used as a source for metaphors for the user interface”, which

reinforces that these dialogues with users to obtain analysis content, can be useful also to

find relevant solutions to latter design process phases.

Therefore, the outcome of this analysis should contain a list of the entire tasks that

users what to perform in the system, the information that is required to complete them,

the steps and the dependencies between tasks, all the outputs that must be generated,

and how is the communication process between the users associated with the system’s

tasks [18].

2.1.2.2 Sketching and Prototyping

After the user and task analysis process, designers must start sketching and prototyping

ideas and approaches, in order to think about how can they solve the problems. Never-

theless, this phase of the design process should start with sketching techniques, as these

are not only a good and inexpensive starting point to communicate ideas, but also help

to develop structure and enrich the reasoning, leading to the perception of other details

as well as of other approaches to solving the related problems.

While sketching techniques are more plentiful, and have a low detail level, being

mainly based on suggesting and exploring, rather than retrieving results, the prototyping

phases, have more refinement approaches and are used to test the design choices made.

However, prototypes may have different thoroughness degrees, presenting different

advantages and disadvantages. Thus, it is important to start the prototyping process with

10

2.1. HUMAN-COMPUTER INTERACTION

low fidelity prototypes, as paper prototypes, since the objective of these is to evaluate

the conceptual model (if the users understand the system), the functionalities presented,

the navigation, the screen components distribution, and the terminology used. After

the evaluation of these prototypes presents good results, high fidelity prototypes should

be used, such as computer prototypes. There are a set of available tools to assist in the

building process, of these prototypes, such as Balsamiq [31] and Mockingbird [56]. These

different prototype types can detect different issues when tested with users, so it is very

important to test prototypes with different granularity levels.

Furthermore, there is another relevant aspect of the prototype designing, that is the

scope definition of the prototype. It is important to define what features the prototype

undertakes and what is the inherent detail level. Nielsen [18] describes this as two dimen-

sions of prototyping: horizontal prototyping and vertical prototyping, as demonstrated

in Figure 2.1. A vertical prototype is characterized as a prototype to test a restricted part

of the system but with real users and circumstances. A horizontal prototype is presented

as suitable for test the entire system but in a less realistic approach.

Figure 2.1: The two dimensions of prototyping: Horizontal prototyping keeps the features
but eliminates depth of functionality, and vertical prototyping gives full functionality for
a few features (source: Nielsen [18])

Finally, regarding the methodology about how to use the prototypes built, Dix et al.

[9] refer that are three main approaches:

• Throw-away: After the prototype is built and tested, it is used on the final system

development, but after that, the prototype is discarded and the rest of the design

process continues without relying on the prototype previously built;

• Incremental: First, the system is separated into different parts, and each part is

built, one at a time. So the prototypes are developed separately, regarding its corre-

spondent part, and finally are combined to build the final system;

11

CHAPTER 2. BACKGROUND

• Evolutionary: Contrary to the throw-away approach, the prototypes developed are

used as the basis for the next iteration of the design.

2.1.2.3 Evaluation Techniques

The evaluation phases are crucial in the design process, since they allow designers to

understand the systems’ specific problems and the impact of the interfaces on users. So,

the expected outcome of these processes is a list of usability issues ordered by priority

level, referring to what usability principles and guidelines are not being accomplished

and what solutions can be applied to solve the problem [18].

However, there are different approaches to evaluate interfaces. First, one important

topic that distinguishes two types of techniques is who performs the evaluation. There

are techniques where only the designers and specialists are involved in the process and

are another type of evaluation where users participate in [9]. Thus, there are two types of

evaluation: evaluation through expert analysis and evaluation through user participation.

Evaluation through expert analysis

In this type of evaluation, designers, or other specialists, evaluate the system, support-

ing their analysis on cognitive principles, to preview usability problems likely to occur.

Moreover, this evaluation not only is cheaper because it does not involve users, as it also

can be applied to any phase of the design process, from the design specification to the

high fidelity prototypes [9].

Regarding the approach presented above, these two methods are one of the most used:

• Heuristic Evaluation [19]: The system is thoroughly analyzed in order to find

problems that do not follow importantly and recognized usability heuristics. After a

problem has been detected, it should be reported, not only with a description of the

problem but also the indication of the heuristics that have not been accomplished,

the severity level of the problem and possible solutions to solve it [18].

• Cognitive Walkthrough [22]: This method uses a sequence of actions as the prin-

cipal resource to guide the evaluation process. For each action, the evaluator tries

to understand if all steps are clear and visible, as well as, if the system gives clear

feedback, confirming if the action has been completed. Usually, the main focus of

this method is to analyze the learnability of the system. Mainly, to understand if

the system provides a good learning mechanism through exploration, rather than

using manuals, training or other types of a priori learning processes [9].

A study made by Desurvire et al. [7] concluded that Heuristic Evaluation made by spe-

cialists is better to predict some problems before the user testing process than Cognitive

Walkthrough. The reason pointed out for this result is that heuristic evaluation can often

help to remind the designers of problems since this method analyses more dimensions of

the system than Cognitive Walkthrough.

12

2.1. HUMAN-COMPUTER INTERACTION

Evaluation through user participation

Although there exist methods that do not need the users to evaluate the system usabil-

ity, it is difficult to predict all the behaviors of the users when they interact with a system.

Therefore, there are multiple methods to make usability tests with people that are the

system’s target. Some methods of user testing which can be resourceful on the context of

this work, are the following, respecting the terminology used by Dix et al. [9]:

• Observational Methods: the main principle of these methods is observing users

using the system to conclude important usability information about it. Usually, it

is requested to the user to ‘thinks aloud’ since it might be possible to obtain more

insights that can be useful, not only to understand why the user might have made

an error, but also it can be a good strategy to find starting points for other possible

solutions. Moreover, although usually, these tests have a set of predetermined tasks,

since it is easier to find the user reaction to the system part the need to be tested,

also can be executed tests only by evaluating the normal tasks of the users on their

work;

• Experimental Methods: starting from a properly defined test hypothesis, it is se-

lected a set of users to perform an experimental test to verify if the test hypothesis

proves to be true or not. Thus, it is necessary to define previously all the experi-

mental environment, which includes: the test hypothesis that wants to be verified,

the users that will perform the test, and the independent and dependent variables.

The dependent variables are the ones that express the result of the test in function

of the independent variables, such as the task execution time or the number of the

errors that occurred. The independent variables are chosen by the test designer to

produce different conditions for comparison. Examples of independent variables

can be the size of an interface component or the use of an interaction technique.

This method is very useful to verify through a test hypothesis which of the possi-

ble solutions presented (independent variables) have a better performance for the

intended application context;

• Query Methods: these methods focus on what the users think about the system,

collecting information from interviews or questionnaires to analyze their opinion.

One advantage of this method is that it might reveal issues not observed previously

complained before, but contrary a lot of cases are not tested, since in the interaction

field, many times, the user only finds a problem when it occurs for the first time. So

it is not possible to extract concrete information from users that never have passed

for this situation.

Finally, independently of the evaluation process adopted (through expert analysis or

user participation), severity ratings should be attributed to the problems identified in

order to define the main priorities and understand which might have a larger impact

13

CHAPTER 2. BACKGROUND

on the system acceptability. However, although these levels should be attributed by

specialists, if they use not only cognitive principles, but also use the results observed

from the user testing phase to sustain the classification of the problems detected, the

result can be more accurate.

Besides, the Figure 2.2, extracted from [18], displays two influential factors that

should be taken into account to attribute a severity level to a problem: how many users

are experiencing this problem and what is the impact level on the user.

Figure 2.2: Severity Levels of the Problems based on their impact on the users (source:
Nielsen [18])

2.1.2.4 Errors Classification

The errors that occurred when a user interacts with a system are excellent indicators for

designers because the understanding of the reason that led to error situations is a good

strategy to classify them. Therefore, errors can be classified as slips and mistakes, as will

be presented below according to Dix et al. [9]:

• Slips: in these types of errors, the user knows how to do the intended task on the

system, however, he presses a wrong button or closes one window accidentally. So,

he understands the action, but a misaction does not allow that he reaches his goal;

• Mistakes: these errors occur when the user does not understand the system, formu-

lating a wrong goal. An example of a mistake is when the user does not understand

the action associated with an icon, performing a not intended action.

Therefore, the strategy to mitigate the problems associated with these two types of

errors could be different, as mentioned by Dix et. al. [9]: “Slips may be corrected by, for

instance, better screen design, perhaps putting more space between buttons. However,

mistakes need users to have a better understanding of the systems, so it will require far

more radical redesign or improved training, perhaps a totally different metaphor for use.”

14

2.2. OUTSYSTEMS BACKGROUND

Figure 2.3: Main areas of Service Studio (source: OutSystems[65])

2.2 OutSystems Background

The OutSystems Platform has the mission of simplifying and accelerating the devel-

opment and management of digital enterprise solutions, no matter the dimension and

domain of the applications. It covers the entire development lifecycle which aims to

promote rapid development and integration, to facilitate and speed up the deployment

stages, to keep track of the status and health of the applications produced, and to expedite

the management of daily operations and configurations on the final products [62].

2.2.1 Visual Development Environment

Service Studio is the low-code development environment of the platform, which allows

the developers to create complete applications using visual elements to perform drag and

drop actions. Figure 2.3 presents an overview of the IDE, which highlights the different

areas of the workspace.

Using the widgets and icons provided in the toolbox, the main area is dedicated to

designing the applications’ interface and logic. So, in the main area, there are visual

elements, which can be set using the properties editor, placed on the bottom right corner

of the screen.

Also, it includes other sections whose main purpose is not the product development,

but are related to key actions of the software development process. Therefore, on the win-

dow’s top, there is a toolbar which has shortcuts to some of the most common operations,

and a green circle button, denominated "1-Click Publish button", to start the automated

deployment process provided. Besides, the bottom of the window is dedicated not only to

the presentation of messages, errors, and warnings but also to debugging the application.

15

CHAPTER 2. BACKGROUND

Since the development environment can be used to develop a complete full-stack

application, the elements, which can be manipulated in the Service Studio, can be related

to different parts of the application. The Application Layer Tabs, which contain a tree

view of its elements, are described next:

In the Processes tab is possible to create and manage business processes of the sys-

tems through a flow that can be composed by human or automatic activities, time waits,

conditional decisions and indications to execute processes. Also, this section can be used

to configure the timers of the application. Then, it is possible to indicate when a timer

should start, what is it period and what action should be performed when it is triggered.

The Interface tab can be used to manage the components related to the visual interface

of the final application. It is possible to observe all applications’ screens, as well as, the

variables and the actions related to each one. Moreover, flows between the various screens

can be also defined. If one screen or action is selected, it will be possible to add new visual

components to the interface or assign new elements to the action flow in order to define

all the client-side logic of the screen.

The Logic tab is where the core logic of the application could be defined. It includes

not only the server actions of the application but also the exceptions specification, the

existing user’s roles and also the integration with external services. Although there is

a data section on the application layer tabs, which will be described below, the actions

which require data querying are managed in this section.

In the Data section is covered the database modeling, making possible the creation of

diagrams to represent the schema of the database. Moreover, in the tree view of this tab

is allowed to establish new entities and static entities in order to define the data model of

the application.

2.2.2 Visual Data Querying

The main topic of this work is the improvement of the visual data querying process on the

low-code development of applications, using OutSystems. Consequently, the headway of

visual querying components of the platform is an essential factor to properly understand

the dissertation. Regarding the last version of the OutSystems platform, the actual visual

data querying tool, which is the starting point of this study, will be described.

2.2.2.1 Previous Work

Since 2002, which is the release date of the first OutSystems low-code development

environment, the Hub Edition 1.0, allows two manners to create database queries [71]:

• Simple Queries: visual query builder that allows the creation of some less complex

queries, interacting with a graphical user interface;

16

2.2. OUTSYSTEMS BACKGROUND

Figure 2.4: Simple Query example in Hub Edition 2.0 (source: OutSystems [66])

• Advanced Queries: feature to specify queries textually, using a language based on

SQL, but includes some extra syntax to reference variables used of the application

development;

Then, since the first versions of the IDE, it is provided two ways to build queries. The

first uses the visual language, which does not need so many learning requirements but

also diminishes the necessity to remember the entities’ name or the language syntax. The

second provided relies on SQL, which is the standardized textual query language, known

for the developers’ majority.

The first simple queries versions have accelerated the query building process finding

automatically the relationships between the entities chosen. The main idea is that the

developer only needs to select the entities intended and the respective join conditions

would appear automatically in the query view interface. After this, it will be possible to

change the join type, as well as, to add, edit and remove filtering or sorting conditions.

Figure 2.4 presents a simple query example in Hub Edition 2.0 (2003) when the developer

was changing the join type to an Outer Join.

This visual querying approach continued in the next versions, adding some minor

improvements, such as the support to structures in order to store temporary information

without changing the entity definition [67], and the inclusion of a properties pane to view

and change the properties of all query elements in a single window [68].

However, at the launch of the OutSystems Platform 9 (2013), an entirely new way to

manipulate data and express database queries has been released. These new components

of the system, called Aggregates, have replaced Simple Queries, promoting a new inter-

action strategy to query databases, where the main focus is the data, instead of query

design. Also, new features have been introduced to improve the expressiveness of the

VQL, namely grouping functions and the ability to add calculated columns easier.

17

CHAPTER 2. BACKGROUND

2.2.2.2 Current Progress

Since the implementation of Aggregates, the query process without textual languages is

more visual and more focused on the query outcome. Aggregates can be used to query

data from the server or mobile local storage, and can be created in the following ways:

• If someone is designing the user interface and wants to present some data gathered

from the database (server or local storage), he can right-click on the screen where

data will be displayed and select “Fetch Data from Database”;

• When an action flow is designed, there is an Aggregate icon in the toolbox that can

be dragged and dropped to the main area;

When the Aggregate is created, the first step is the data source selection in order to

specify which entities should be included in the query. Then, the developer should click

in the main area and choose the entities he wants or drag and drop the entities to add

them to the query. When an entity is added, all its attributes are automatically included

in Aggregate.

Since an Aggregate can include one or more entities, added on the beginning or later,

if it has more than one, it will be analyzed to verify if there are relationships between

them. If the entities are related, according do the database model defined, then the system

uses the existing relationship to automatically formulate the join between them. Basically,

if the relationship between the two entities is mandatory, (i.e., the foreign key that is an

identifier of the other entity is mandatory) then an inner join is added automatically,

otherwise a left join is added. For the cases there is no relationship which links the two

entities added, then the Aggregate will allow users to specify the join condition manually.

Hereupon, the Aggregate has already been created and its data source specified, so the

visual querying process can be started, in a progressive way, seeing at the same time the

query output. Figure 2.5 demonstrates an Aggregate on the referred state, to be possible

to understand the structure of the interface.

First, this component of the OutSystems Platform presents two main capabilities,

represented visually in two distinct areas: the query design area, and the viewer of the

query result. The former, located at the top of the window, is composed of a set of four tabs,

where each selection action changes the grey area to the respective form-based interface.

The latter is a table-based interface, which is similar to spreadsheets applications, such

as Microsoft Excel [51] of Google Sheets [47] and its principal aim is to provide a direct

and visual approach to show the query output.

Focusing on the query design area, the sources tab, illustrated in Figure 2.6, can

be used to add, change or remove the entities of the quey, defining also, the join types

between them. There are three join types available: "only with", "with or without", and

"with". The respective joins in SQL are: "inner join", "left join", and "full outer join".

Additionally, each one appears with a visual representation similar to Venn Diagrams

18

2.2. OUTSYSTEMS BACKGROUND

Figure 2.5: Aggregate Example

Figure 2.6: Aggregate - Defining Sources

[16] to be easier to identify which data is selected on each join type. Moreover, it is

possible to edit the join condition textually, using the platform expression editor.

The filtering tab can be used to apply filters in the query likewise the WHERE state-

ments in SQL. These filters can be defined through boolean conditions inserted in the

expression editor. The conditions are specified textually with the assistance of some

auto-completes and shortcuts available in a tree view.

The sort conditions can be added in the sorting tab choosing the "add sort"or the "add

dynamic sort"options available. The difference between them is that dynamic sort relies

on a variable of the system, contrary to the other that depends only on an entity attribute.

To add a sort, the user has to select what entity wants to sort and specify what are the

sort criteria, for example, ascending or descending. Moreover, more than one sort can be

inserted and they can be ordered to establish the priorities between them.

Finally, the last tab has a different behavior when compared with the rest of the options

available in this interface area. The main goal of this feature is the testing of query output

when concrete values are assigned to the variables referred to in the query. Thus, it does

not contribute to the query design in the same way as the other tabs, presenting only a

19

CHAPTER 2. BACKGROUND

Figure 2.7: Aggregates - Filtering, Sorting and Test Values in an example of querying
DueDates after a month indicated in a variable

Figure 2.8: Query Design functions while interacting with Query Result

test purpose in the context of the query result visualization.

Figure 2.7 presents a usage example of the last functionalities mentioned, to create a

query to filter and sort dates, regarding the value of a variable.

On the other side, the area dedicated to viewing the query output provides also some

functionalities to design the query while the user is interacting and exploring the query

result. Therefore, as represented by an example in Figure 2.8, the user can change the

query when he performs a right-click on a column or when clicks on the new attribute.

The only options in the list presented that does not change the query are the hide options

since they just change the result in the presentation layer. So, if the user hides a set of

columns, he will not see them in the result preview visualization area, however, the query

output did not change. Besides, the user can add other attributes based on the existing

ones, so Figure 2.9 shows an example of this functionality.

When a group by or an aggregation function (COUNT, SUM, MAX, MIN, AVERAGE)

20

2.2. OUTSYSTEMS BACKGROUND

Figure 2.9: Calculated Attribute Insertion

Figure 2.10: Representation of the attributes aggregated through Group By operations or
other aggregation functions (COUNT, SUM, MAX, MIN, AVERAGE)

is applied through the context menu exemplified in Figure 2.8 the data is aggregated

automatically and is presented as the example shown in Figure 2.10 illustrates. The

aggregated attributes resulted from the application of these operations are the ones that

belong to the query output as well as occur in SQL. However, the query output preview

of Aggregates represents also in a different color a preview of the corresponding data

in the right side. For example, in Figure 2.10, it was counted the number of employees

(COUNT) by each office and department (2 Group Bys applied), but it is possible to read

at the right side of these three first columns the data that was aggregated.

21

C
h
a
p
t
e
r

3
Related Work

Since users were a fundamental component of the study, their relationship with data

and what are their expectations of these query systems were investigated and they will

be discussed in this chapter. Moreover, a set of technologies and techniques will be

described and compared. This information can turn to be useful to explore the solution,

and understand different points of view to manage problems, regarding the project’s

scope.

3.1 Query Conceptual Models

The perception of the user’s conceptual model is important to understand how the user

reason while interacting with the system the perform the intended actions. A query

is built to gather data. To transmit what is the intended data, the user needs to think

about how it could express the data required in the query. The understanding of the

user’s conceptual model could be useful to remove the existing gap between what the

user wants to query from the database and what system register that the user wants to

retrieve.

Some studies have analyzed this reasoning process of the users when they were writing

queries. Siau et al. [25] have referred that "The semantics communicated through the

interface can be classified according to abstraction levels, such as the conceptual and

logical levels". Also, there is one more level, the physical level, where is considered the

system details, such as physical storage and access structures. Since the physical level

is low level, usually, the conceptual and logical levels are most used. The logical level

takes into account abstract structures for data and operations, and the conceptual level

uses real-world objects and concepts to communicate. Through an empirical method of

evaluation, the conceptual level has revealed a higher accuracy. Also, this abstraction level

23

CHAPTER 3. RELATED WORK

makes the users more confident in their answers than the physical level or logical levels.

Moreover, the time that users need to design the queries is reduced using conceptual

levels [25].

Reisner [23] provided a model of query writing from the reading of the query intention

in an English statement to the query writing in SQL (Figure 3.1a). After understanding

what data is required, the user applies two parallel steps. In the Template Generation

phase, the user formulates a template identifying the SQL keywords necessary, such as

SELECT, FROM, and WHERE. In the other step, called Lexical Transformation, the user

identifies the name of the tables and columns involved. Finally, the results of these two

steps are combined in the last step, denominated Insertion, in order to produce the final

query [23]. The recall of table and column names represents a significant use of long-term

memory, being a concern that should be taken into account [26].

In the same field, Ogden [20] presented a three-stage cognitive model of the query

process (Figure 3.1b):

1. Query Formulation: according to the existing data, the user specifies, in natural

language, what data is required;

2. Query Translation: regarding the existing data model, the operations and rela-

tions necessary are defined, in order to adapt the natural language request to the

pragmatics of the intended query;

3. Query Writing: the information of the previous steps is used to built the query,

using the syntactic and the semantics of the query language.

Comparing the two previous models, the Lexical Transformation phase is present in

the Query Translation phase of the latter model, as well as, Template Generation and

insertion are part of the Query Writing phase [6]. Moreover, although the query writing

and comprehension are the focus of this work, it was verified in a comparison between

three different models (relational model, extended-entity-relationship model, and object-

oriented model) that the data model influence the query writing and comprehension

[6].

The query comprehension is one of the important concerns of this work, since it is

important to consider if the query representation, no matter if it is visual or textual,

indicates clearly what data will be gathered. Chan et al. [6] have postulated that the query

comprehension could be covered by the reverse of the stages included in the Ogden Model.

First, the user should identify the data structure and operations, to translate them, in the

next step, to the natural language. After this, the user needs to read and understand what

data gathering is intended. Moreover, in this evaluation, it was concluded that although

data modeling influence query writing, it does not influence the query comprehension.

The explanation is provided by the authors: "Both query writing and comprehension

require an understanding of the query language syntax. This is a component not needed

in the data modeling task."

24

3.2. QUERY FORMULATION PROBLEMS

(a) Reisner Model (adapted: Reisner [23])

(b) Ogden Model (adapted: Ogden [20])

Figure 3.1: Models of Query Writing Process.

The experience with the data involved is another factor that influences the query

comprehension. If novice users do not understand the data involved, they cannot validate

if the query result is correct. This situation was analyzed by Robb et al. [24] that were

distinguished the query process between new users and experienced users (Figure 3.2).

Besides, they concluded that if the novice users were alerted to the details of the data

queried, the query effectiveness will increase.

3.2 Query Formulation Problems

Since the goal of this work is the improvement of an interface that allows its user to build

queries, it is important to summarize a set of significant problems that usually occur

in query formulation. The problems that will be presented are related to SQL queries.

However, as the visual tool of this work aims to substitute some functionalities of SQL,

the comprehension of the interaction problems that exist in the textual language can be

considered and mitigated in the development of the new interface.

Lu et al. [15] have evaluated the SQL usage in a diverse population, which includes

people of different enterprise areas with different levels of experience in the database

systems domain. The authors concluded that the comprehension of the queries is difficult,

as well as the logical errors are difficult to detect. Moreover, the joins and aggregation

functions are the other problems pointed out.

The query errors could be syntactic or semantic. The Syntactic Errors are related

to the grammar rules of the language and are detected by the compiler. Therefore, the

impact of these errors is reduced since the user can see that the query is incorrect through

the compiler alert. The Semantic Errors are a major concern because they occur when

25

CHAPTER 3. RELATED WORK

Figure 3.2: New and experienced users’ query processes (source: Robb et al. [24]).

the returned information is not intended by the user, even if the query does not have

compilation errors [26]. These errors could affect the correctness of the results.

In SQL, the join clauses are used when is necessary to merge data from different

tables in one column in order to specify which data of each table will be considered.

Several studies have demonstrated that the indication of the join clause is one of the most

representative semantic errors [1, 15]. Smeller [26] has studied what are the cognitive

causes that lead the user to forget the join clauses:

• Working memory overload: if the user needs to recall the table and column names,

and the conditions necessary after the identification of the join’s requirement, the

required join clauses could be forgotten in this period;

• Absence of the clue: when the statement that explains what data is required do not

present clues for the join necessity;

• Procedural fixedness: when a query that only extracts data from one table is reused

for another that requires the join clauses but this join is forgotten;

26

3.3. VISUAL QUERY COMPOSITION

• Ignorance: when the user does not know how to merge the tables and specify the

join clauses.

The cognitive causes of the problems are important to develop interfaces that could

mitigate the existing problems in the query formulation. For instance, if the join clues

are provided in the interface, the user does not need to remember them. This approach,

which follows one of the usability heuristics presented by Nielsen [18], minimizes the

user memory load.

A study that evaluated novice programmers’ semantic mistakes concluded also that

omissions are the principal semantic error, mainly in the WHERE clause [1]. Besides, the

authors have referred also the problem of working memory overload: "This error may

occur when the capacity of a student’s working memory is surpassed".

Another study has analyzed a large dataset of queries composed by university students

enrolled in an introductory database course. However, this study is more extensive and

includes a list of the principal errors committed by the students [28]. Continuing the

focus on the semantic errors, the authors have pointed out the following error categories:

inconsistent expressions, inconsistent joins, joins omission, duplicate rows, redundant

column outputs [28].

3.3 Visual Query Composition

The interfaces to build queries resort to visual representations to communicate with the

user. Catarci et al. [3] presented an interesting classification according to the visual

formalism which the interface is based on:

• Form-based: based on forms, which can be seen as a rectangular grid of other com-

ponents (subforms, groups of cells, a combination of cells, etc.) that group objects

in a named collection regarding its structure. Forms and tables are similar, but con-

trary to the tables, forms allow nesting. Thus, forms can be seen as a generalization

of tables. In this approach, the relationships can be represented among cells, cells

subsets, or even the overall set, providing to the user three information levels;

• Diagram-based: usage of graphical representations, such as graphs, charts, and

diagrams to better transmit the relationships among data. The aim is to use visual

representations to help the understanding of the relationships between concepts

which are represented by textual labels;

• Icon-based: as the opposite of the diagram-based, this type of interface tries to

facilitate the understanding of the concepts instead of relationships. So, Icons are

used, which are visual segmented objects to transmit a message or information,

using analogies and metaphors with the real-world objects, or even conventions

that are used to express no tangible objects, as computer processes;

27

CHAPTER 3. RELATED WORK

Table 3.1: Query Language Requisites

Specification Description SQL Indication

Data Source
Entities and attributes which
will be presented in the query

Using SELECT and
FROM statements

Merge Type
Define how will be merged
attributes of different entities

Using JOIN clauses

Filtering Criteria

Criteria that can be used to
filter records, presenting in the
result only those that fulfil a
set of conditions

Using WHERE or
HAVING clauses

Sorting Criteria
Define what are the criteria to
sort the records of the result

Using ORDER BY

Aggregation Functons
Group a set of records by
comparison or using mathematical
functions

Using GROUP BY
statements or SQL
functions, such as
MIN, MAX,
COUNT, AVG and
SUM

Calculated Attributes
Attributes added, based on
existing ones

Using SELECT
statement

Distinct Values
If only different values will be
considered in the result
(removing duplicated values)

Using SELECT
DISTINCT statement

Unions
Combine the result of two
different queries

Using UNION
operator

Subqueries
Defining a query that uses
other queries, for example,
to filter the result

Nesting SELECT
statements

• Hybrid: these approaches can combine the previous visual formalisms in order to

select the best combination of advantages to the application usage domain.

In order to compare different interfaces, it is essential to analyze what a query lan-

guage has to support to build the query. Accordingly, Table 3.1 presents the query creation

required specifications, comparing them with the respective indication in SQL.

Nevertheless, there are two relevant aspects, according to the last requisites presented:

the interaction process to indicate the query specifications, the overview of what data

wants to be retrieved using the current query. Both are fundamental since a good visual

query language aims to simplify not only, the query formulation process but also, the

query readability, promoting an efficient and effective recognition of what are the desired

data.

Data Source:

Chartio [33] has two components to query databases visually: using the Data Explorer

[34] or using the new Visual SQL [36]. Regarding the data source specification, these two

systems use different strategies to select and present the entities and attributes related

28

3.3. VISUAL QUERY COMPOSITION

to the query. In the Data Explorer, the user can expand the items of a list of tables in

a scrollable and searchable tree view, which is pinned in one side of the window, to

choose the desired attributes. This system divides the attributes into two different types:

Measures and Dimensions. Usually, measure refers to quantitative data and dimensions

to categorical data. So, to insert the attributes in the query, users can drag and drop the

required attributes to the form-based interface that contains the Measures, Dimensions,

and Filters of the query (Figure 3.3a) [34].

On the other hand, the new component of Chartio, Visual SQL provides a different

interface to select the data sources. Contrary to the previous approach, in this interface,

there is no fixed list to choose the attributes. In this way, there is only a search text

component that is activated when the user clicks on “add column” action. When this

action occurs, a pop-up style component that has a list, similar to the referred above,

where it is possible to preview some data entries of the table, is presented (Figure 3.3b)

[36].

In the systems referred above the columns are added one by one sequentially, but other

systems have different methods to select the table’s columns. For example, in Tableau

Prep [79] there is a checkbox list to chose the intended attributes (Figure 3.3c), and in

Microsoft Power BI [52] the table is chosen using a list, and all its attributes are added

automatically. Also, users can remove, the columns not desired afterwards [54, 80].

Other systems, as Devart dbForge Query Builder [42], uses a diagram-based interface

to select the entities and attributes of the query. In this system, the user can drag and

drop the desired tables to the diagram area, and select through checkboxes the intended

attributes, that are presented in the database schema diagram (Figure 3.3d).

Merge Type:

Merges are used when it is necessary to extract data from different tables, so it is

necessary to establish what is the join kind to merge the data. Therefore, the interface

needs to adopt an interaction and representation technique to specify it. To define a join

in Devart dbForge Query Builder [42], the user can only select the attributes’ checkboxes

of the different tables and the system generates an inner join automatically. In this system,

there are buttons on the toolbar to select all rows of one table, of another, or both, allowing

to perform left, right and outer joins respectively [41].

Another approach used by some systems, such as Chartio Data Explorer [34] and

Microsoft Power BI [52], is a form-based interface to insert a join. In the former, two

queries can be merged clicking on a button to popup a form that can be used to select

the merge type and the first columns that will be merged using dropdowns [34] (Figure

3.4a). Also, if there are null values on the merge related columns, there is an option to

include or not the null values match rows [35]. Similarly, the latter provides a button to

merge queries that opens a modal where the attributes that will be used on the merge

(viewing also a table preview) and the join kind can be chosen, using a dropdown [54]

(Figure 3.4b).

Tableau Prep [79] provides two options to start a join between two tables: clicking

29

CHAPTER 3. RELATED WORK

(a) Chartio Data Explorer (source: Chartio[34]) (b) Chartio Visual SQL (source: Chartio [36])

(c) Tableau Prep (source: Tableau [80]) (d) Devart dbForge Query Builder (source: De-
vart [42])

Figure 3.3: Different approaches to select the entities of the query.

on a "add join"hover button above the table visual representation with the suggestion of

related tables, or merge the visual representation of two tables using a drag and drop

action. After this selection, the inner join type is selected automatically by the system

according to the tables’ relationship [74, 75]. However, the user can configure the join in

a dedicated section (Figure 3.4c) where it is possible to define the join type using a Venn

Diagram, to manage the join clauses using dropdown lists to select the fields, including

also some join clause recommendations based on the database schema. Moreover, a

summary of the join result that contains counters with the values included and excluded

by each table, in a visual way using diagrams is provided. Finally, a list of the values

included and excluded, where the red values represent the values excluded is presented,

as well as a preview of the join result [75].

Filtering Criteria:

To represent and manage the filtering criteria of the queries, usually it is used text

to indicate the logical conditions. However, some systems are trying to optimize the

30

3.3. VISUAL QUERY COMPOSITION

(a) Chartio Data Explorer (source: Chartio [34]) (b) Microsoft Power BI (source: Microsoft [54])

(c) Tableau Prep (source: Tableau [30])

Figure 3.4: Data merging approaches.

usability, helping the user in the specification process through some autocompletes. These

diminish the necessity to remember all the syntax and the name of the functions. Besides,

other systems present the logical conditions using a more structured layout, although

keeping resorting in a textual representation. An example is Devart dbForge Query

Builder [42] that represents the WHERE and HAVING clauses in a tree where the user

can organize the conditions into groups [39].

Furthermore, some query systems also allow the user to view the query result, pro-

viding a shortcut in the column’s name to insert filters. So, the user can change the query

while is viewing the results. In this way, the user can apply a filter and view its effect

31

CHAPTER 3. RELATED WORK

almost immediately. Power BI Query Editor [52] is an example of a system that uses this

approach.

Different interfaces can be used to select filters regarding the field data type. The

advantages of the graphical interfaces could support the filtering criteria definition. For

example, if a filter is applied to constraint dates, then a date input box with a visual

calendar can be useful to simplify the date typing. In this way, some software, such as

Chartio Visual SQL [36] and Chartio Data Explorer [34], not only helps in the data typing

but also provide dropdown lists that contain operators that can be applied to the referred

data type (e.g. less than, contains, like, etc) to helps the user in the boolean operator

specification [34, 38].

Tableau Prep [79] follows this more strictly, distinguishing between data types when

filtering criteria are indicated. It provides different forms depending on the data type.

The main difference of this system is that not only provides a more diversity of controls,

as integrating range selectors, radio button, and the option to include or exclude fields

through an action accessible near its value, but also gives to the user the option to use a

calculation form where the interaction style is more textually and more extensible [77].

Sorting Criteria:

Usually, in the actual VQIs, the sorting criteria could be indicated in two ways: a

right-click action on the column header of the table that represents the query result, or

using a form-based interface to define the sort criteria of each entity. Devart dbForge

Query Editor [42] is a pure example of the first approach [43]. Chartio Data Explorer

[34] adopts the second approach, providing a pop-up form to apply sorting criteria to

the query. The user can use this form to select the intended attributes and the criteria to

apply [32]. Moreover, Chartio Visual SQL [36], Tableau Prep [79], and Microsoft Power

BI [52] combines the previous solutions with the possibility to redefine the priority of the

sorting criteria, through drag-and-drop actions [38, 54, 78].

Aggregation Functions:

In order to perform aggregations functions, such as MIN, MAX, COUNT, AVG, SUM,

or GROUP BY, some systems provide these functionalities through interaction with the

query result table. Devart dbForge Query Editor [42] provides this option to create an

aggregation function. Moreover, in this editor exists another aggregation dedicated view

which contains the aggregation functions in a tree view. In this view, users can group or

ungroup the elements present in the window [40]. Microsoft Power BI [52] allows also

the users to add aggregations through the right-clicking on the column header, but in this

case, it is open a form to enter the intended function and columns [53]. Chartio Visual

SQL [36] and Chartio Data Explorer [34] presents a pop-up form where could be selected

the columns and the aggregations intended [37]. Using a different interaction strategy,

in Tableau Prep [79], the user drag and drop the desired columns to a specific area that

is divided into two: Grouped Fields and Aggregated Fields. The first is to add the SQL

corresponding GROUP BY, and the second to add the other aggregation functions, such

as COUNT, MIN, MAX, AVG, and SUM.

32

3.4. DISCUSSION

Other Specifications:

Regarding the option to add new calculated attributes, all the systems referred above

allow inserting calculated attributes to the query, excepting the Devart dbForge Query

Editor which does not support [38, 53, 76].

The option to show only distinct values is provided in Tableau Prep [79], Microsoft

Power BI [52], and Devart dbForge Query Editor [42], through a button or a checkbox to

does not see in the result the duplicated values. However, Chartio Visual SQL [36] and

Chartio Data Explorer [34] does not support a specific interaction method to specify this.

Nonetheless, the distinct effect can be applied, using the group by in all the columns of

the query.

Some system provides visual options to build queries that contain UNIONs. For

example, Chartio Visual SQL [36] and Chartio Data Explorer [34] provides this option in

the same components of the joins. In these systems, when the user chooses the join type,

the union is one of the join types available, although there is a different operation in SQL.

Tableau Prep [79] and Microsoft Power BI [52] present different options between the joins

and unions, but the interface and the interaction strategies are similar [54, 75].

Moreover, a visual way to perform subqueries is provided by the diagrammatic-based

interface of Devart dbForge Query Editor [42], using tabs to alternate between the selected

query. Links are used as assistants and shortcuts to view and change between the queries

[44, 45].

3.4 Discussion

The conceptual models of query writing presented in this chapter will be taken into

account along the design of the solution since these are a good baseline to understand

how users reason while are interacting with the system to achieve their goals. The system’s

tasks will be optimized according to the presented users’ conceptual models presented,

in order to reduce the semantic errors, as much as possible. Therefore, the most relevant

semantic errors that occur using SQL were presented. In the design of the solution, these

errors are part of the problems to solve using a new user interface and UX. As referred in

section 3.2, the semantic errors will be the main concern since these could have a negative

impact on the results. The syntactic errors also will be addressed in this work but require

less study about the users’ conceptual model. The major concern in this type of error is

to provide the maximum feedback to the user. In that way, the user will understand the

error and correct it.

Furthermore, since the design of an interface needs to tackle with the usability at-

tributes trade-off, it is important to characterize and consider the problems of the appli-

cation’s target users. This characterization is essential to define the usability priorities

of the interface. The population used in the studies presented in this chapter will be an

excellent reference to the target user analysis. The target users of the intended system

are low-code developers. Since low-code development has advantages not only for not

33

CHAPTER 3. RELATED WORK

Table 3.2: VQSs Summary

Feature \System
Chartio

Data Explorer
Chartio

Visual SQL
Tableau

Prep
Power BI

Query Editor
Devart dbForge
Query Builder

Only the required 3 3 3 7 3

All the attributes
at once

7 7 3 3 3
Tables

and
Columns
Selection

Remove Columns 3 3 3 3 3

Inner Join 3 3 3 3 3

Left Join 3 3 3 3 3

Right Join 7 3 3 3 3

Full Outer Join 3 3 3 3 3

Cross Join 3 3

Using
Calculated
Attributes

Using
Calculated
Attributes

Textually

Null Option 3 3 7 3 7

Merge

Define Join
Condition

3 3 3

Selecting
Columns
Visually

Textually

Filtering Criteria 3 3 3 3 3

Sorting Criteria 3 3 3 3 3

Aggregation
Functions

3 3 3 3 3

Unions 3 3 3 3 7

Calculated
Attributes

3 3 3 3 7

Distinct 7 7 3 3 3

Subqueries 7 7 7 7 3

programmers but to programmers with different levels of expertise, the target users of

the system are wide. Thus, the studies that have evaluated a wide diversity of users, such

as the evaluation of Lu et al. [15], could reveal important results to the work development.

Moreover, the studies presented that have analyzed students of database systems [1], [28],

could add more important data, since some details only occur if the queries formulated

are more complex.

Finally, a set of actual graphical user interfaces used to formulate queries was pre-

sented and compared. The approaches used by other systems are a relevant object study

for the design and the development of the new interface. Table 3.2 represents a summary

of the database query operations supported by each one of the presented systems.

34

C
h
a
p
t
e
r

4
Methodologies

The problem approached in this dissertation required a reformulation of the visual in-

terface used to query data. As such, the methodology used to design, implement and

evaluate each phase of the solution development was regarded as a key factor to keep the

right focus until reach the final stage.

In that way, this chapter will present an overview of the methodology adopted as well

as how users were integrated into the process in order to maintain a user-centered design

approach.

4.1 Problem Exploration

Even though there was a general idea of the problems of the existing interface, a complete

plan was designed to perform a deep exploration of the aforementioned problems. The

main concern was to obtain a global and complete view of the problems through different

gathering strategies in order to examine the problem from different perspectives rather

than using only a subset of users or data, which could bias the problems’ perception.

Firstly, the existing problems were identified in a wide sense from the perspective of

a user who does not have context about how the query builder works, in order to realize

the difficulties that new users who tried to start using the interface could feel. After

that, other gathering techniques were applied in order to perceive also the problems felt

by expert users and progressively understand the most detailed aspects of the problems

presented. Therefore, the methods presented below, which will be further detailed in

section 5.1, were applied, in this order, to obtain a wide and diverse view of the existing

problems:

• Analysis: Visualization of the OutSystems tutorials regarding data querying and

self-exploration of the interface in order to analyze and identify a preliminary set

35

CHAPTER 4. METHODOLOGIES

of preliminary problems;

• User Interviews: Simple and direct dialogues with end-users of the OutSystems

platform to listen their opinion concerning the query builder. The main aim was

to notice in which reasons they use it, what are their major difficulties using it, or

even the struggles or barriers which make them to not use it;

• Data Analysis: Analysis of the queries formulated in SQL through the OutSystems

Platform extensibility feature which allow developers to add queries in SQL to

perceive if SQL is used only for advanced used cases not supported by the visual

query, or if it is often used to cover simple use cases;

• Community Ideas: Exploration of the discussions in the forums of the OutSystems

Community regarding data querying to aggregate more information about problems

users feel and suggestions to improve it;

• Existing Interface Evaluation: Usability tests to the existing interface in order to

visualize directly how users interact with the system as well as what they feel when

trying to understand and formulate database queries using the visual query builder.

The results of this problem information gathering would promote also important

results to validate the further prototypes since it would be possible to compare the

usability of the new prototypes with the existing interface.

4.2 User Analysis

As mentioned, an user-centered design approach was applied and hence an analysis of the

target users of the system, which will be further presented in section5.2, was performed

to perceive and categorize the users who use the query builder. In this analysis, the

users were classified and divided into three groups: OutSystems Developer, Software

Developer, and Citizen Developer.

In that way, the topics that could most branch out the users’ requirements and expec-

tations were pointed out to perceive how users could be divided into different groups.

These groups were used throughout the design process to characterize the target users

of the system. Each group represents a subset of the system’s users, which should be

separated from the remaining ones due to their user’s profiles. Henceforth, all usability

tests were performed in an equitable manner with users of all groups in order to obtain a

representative sample of the end-users of the system.

4.3 Iterative Design

After comprehending the existing problems and the target users of the system, the phases

for the sake of the design and development of the final solution were planned. Accord-

ingly, the design strategy adopted, which will be further detailed in Chapter 6, will be

36

4.3. ITERATIVE DESIGN

briefly presented. The chosen methodology used an iterative design strategy in order to

keep a user-centric design, which prioritizes the users’ needs according to the mentioned

in section 2.1.2.

Sketching: The design process started with an initial sketching phase, where the first

solution ideas were explored and drafted. In this technique, the integration of new ideas

into the existing interface is favored given the fact it is an interactive process where the

ideas are tested progressively. The most important aspect was to think about system

transversal changes and not about particular details of specific components, since these

details could be refined later. The outcome of this phase sets a more concrete idea of

what can be inserted in the prototype, even if it is necessary to think more about how to

implement it later.

Keeping in mind the ideas explored in the sketching phase, it is possible to start to

build the prototypes that will be tested by users. The evolutionary prototyping principle

(described in section 2.1.2.2) was applied. Accordingly, the last prototype was used as a

baseline to develop the prototype of the next iteration. As mentioned in section 2.1.2.2,

the first prototypes should be low-fidelity prototypes, and iteration by iteration, this level

should increase in order to refine details in the interface. In that way, it was decided to

build two prototypes:

• Paper Prototype: Simple low-fidelity prototype implemented in paper using a

ruler, a set square, and writing materials. Through that approach, it is possible to

implement the first ideas faster and reduce the risk of adoption failure, since the

implemented ideas were already tested. The main concern of this type of prototype

is that the design of the major interface changes might affect users mental model

which enables the early detection of which choices should continue to the next

iterations or if they need to be redesigned.

• Service Studio Prototype: This is the final prototype, developed using C#, Type-

script [55], and React [69], which is integrated in the new Design of the Service

Studio. Through this prototype, the solutions implemented were validated and

compared with the previous existing implementation in order to validate if the

usability of the system has improved with the implemented changes.

In each one of the two above-mentioned prototypes, it was included the following

phases: design, implementation, and evaluation. In the Design phase solution ideas that

could be applied were set up as well as the priorities to be tackled in the prototype. The

Implementation phase refers to the concrete prototype development process. Finally, in

the Evaluation phase, the prototypes were tested by end-users, according to the testing

approach further explained in section 4.4 and section 4.5.

Regarding evaluation, it was necessary to establish how many users should be tested

in each evaluating phase. In these phases, not only the two mentioned prototypes were

considered, but also the evaluation of the existing interface mentioned in section 5.1.5.

37

CHAPTER 4. METHODOLOGIES

Table 4.1: Number of users tested by each user group and by each solution evaluated

Previous Implementation Paper Prototype Service Studio Prototype Total
OutSystems Developer 10 5 10 25

Software Developer 10 5 10 25
Citizen Developer 10 5 10 25

Total 30 15 30 75

The data extracted from the evaluation of the existing interface provides an opportu-

nity to compare the existing usability against the usability of the final solution. Thereby,

the number of users tested in the first prototype is also an important factor.

Nielsen performed several studies quantifying how many users should be tested in

a usability study, leading to the conclusion that 5 users were a sufficient number for

qualitative studies since it is possible to get the maximum benefit-cost ratio - "Testing

with 5 people lets you find almost as many usability problems as you’d find using many

more test participants"[58] [59]. However, to perform quantitative analysis it is necessary

to get at least 20 users in order to get statistical relevance [59].

According to the studies mentioned, at least 5 users of each user group (described in

section 5.2.) should be tested since only a qualitative analysis will be performed to validate

user’s interaction with the applied changes. Nevertheless, some statistical results should

be also subject of analysis in order to compare if the new solution provide improved

usability than the existing version. Hence, it was decided to test more users in the existing

implementation and in the final prototype in order to obtain enough elements to conduct

a quantitative analysis. In that way, Table 4.1 shows how many users were tested by each

user group and by each solution evaluated.

To compare the different phases, all tests were performed using the same testing

scenarios, which are presented in the following section.

4.4 Testing Scenarios

Given the wide scope of the usability problems identified, a plan of the testing approach

was required in order to evaluate the most important aspects of the user-interface com-

munication, given the short period available to test the users. Following the plan, it was

possible to keep the testing focus on the prioritized details in a feasible way.

Firstly, it was defined the type of testing scenarios that would be presented. For that

decision, it was taken into account the specific aspects that should be improved in the

interface usability. As mentioned, not only the optimization of the efficiency, effectiveness,

learnability, and user satisfaction of the entire query formulation process was the goal, but

also the improvement of the query comprehension. In such a way that it was important

to evaluate if users could understand the query purpose (i.e., what data intends to be

fetched from the database) as well as the time they required to realize that.

38

4.4. TESTING SCENARIOS

Considering those evaluation requirements, two types of testing scenarios were pre-

pared: scenarios where users explore an existing query and try to realize what was its

purpose, and the other ones where users try to formulate it on their own. Through that

approach, it was possible to analyze the usability of the interfaces tested for both points

of view: comprehension and formulation.

Nevertheless, the complexity of the queries presents a crucial factor when the sce-

narios were devised. For example, an interface could be useful and pleasant to use in

simple use cases but it could lead to a decrease of that quality in more complex queries.

Accordingly, the requirements that were considered relevant to be covered by user testing

scenarios are listed below:

• Query Comprehension: Relevant aspects that should be present in the queries and

consequently in the interface to evaluate the queries’ comprehension:

– Interface Elements Exploration: Include use cases that contain the majority

of the query components supported by the system: database entities and joins

of different types, filtering and sorting criteria applied to different data types,

and other query components added throughout the query formulation process,

such as Group Bys, Aggregation Functions (SUM, MIN, MAX, AVG, COUNT)

or Calculated Attributes 1;

– Joins Representation: Representation of different joins in order to analyze

if users could successfully identify them. First of all, there was a concern to

consider in the scenarios joins of different types, such as inner joins or left joins.

It was important to consider not only the most common joins (i.e., joins where

the unique foreign key referencing another table is equals to the other table

primary key) but also some queries that contain joins with more advanced

conditions. For instance, when the join between two tables could be made

using different foreign keys, as they are multiple relationships between both

tables, or when the join condition contains logical operators.

• Query Formulation and Modification: At the same time, the following aspects

were considered essential to be approached in the user testing scenarios from a

query formulation or modification point of view:

– Add Data Sources and Joins: Identify the options chosen to add query sources

and analyze what are the users’ reactions to the system automatisms to simplify

the joins specification;

– Edit Query Filters: Evaluate if the query filters edition is intuitive and what

barriers could exist in the interfaces regarding this aspect;

1These operations were presented in section 2.2.2.2

39

CHAPTER 4. METHODOLOGIES

– Insert Calculated Attributes, Group Bys, and Aggregation Functions: Check

if users could understand the cases where they would need to use the referred

functionalities and if they can discover how to apply them without difficulty;

– Use Hidden Columns: Verify the main difficulties identified by users when

they need to apply actions in attributes that were not entirely visible in the

interface, either because they are hidden, or because they are not visible due

to the lack of available space in the interface (scroll required).

The aspects mentioned were considered the most relevant to analyze since they allow

a widespread use of the tool but they also cover multiple cases identified as critical in

terms of usability, according to the aspects further detailed in section 5.1.

Nevertheless, the data model could have also a significant impact on user testing

results. For instance, if a user does not understand the data model, he could miss the

purpose of the query, even if the query is presented in a simple and readable manner. In

that way, the selection of the data model used for user testing was performed attending

to the following points:

• Simple Business Domain: The data stored in the database should represent an

example of a day-to-day application that could be understandable by any user re-

gardless of his background.

• Different data types: The data model should contain a wide variety of data types

since it could become useful in order to reflect if the design approaches chosen are

able to work with different types of data;

• Multiple relationships between two entities: The interface aims to accelerate and

simplify the querying process not only for simple cases. For this reason, it is im-

portant to perceive how the interface could help users in cases where there are

more than one relationship between two entities. Moreover, SQL does not have

any particular syntax that helps users in these cases, then there is an improvement

opportunity here.

Accordingly, 4.1 illustrates the data model of the database adopted to perform all

usability tests.

After choosing the data model used as support for the usability tests, the list of test

scenarios was elaborated. Three different types of scenarios were designed:

• Query Comprehension: The user explores a visual query already built and tries to

indicate what are the query components presented as well as the data that would

be fetched from the database through that query;

• Query Modification: After a query comprehension example, the user tries to apply

some modification on the existing query previously explored;

40

4.4. TESTING SCENARIOS

Figure 4.1: Data Model used for User Testing

• Query Formulation: Given a natural language statement that explains what data

is intended to be fetched from the database, the user tries to formulate a new visual

query from scratch in order to retrieve the data intended.

Through that approach, it was possible to keep the focus on different aspects according

to the scenario used. On the one hand, the comprehension scenarios give the focus

to the query readability, which promote a global exploration of the query components

and gave the opportunity to understand if users clearly identified the purpose of each

interface section. On the other hand, modification and formulation scenarios were used

to understand if users could built queries through the interface presented.

In that way, the scenarios below, built to fetch data to the data model presented in

Figure 4.1, were presented to the user in this order:

1. Query Comprehension 1 (C1): Employees of “Portugal” or “Japan” of departments

“Services Support West” or “Services Support East” who have a job position differ-

ent from “Services Representative” and never have created any notification. The

employees must be presented ordered by their last name (descending order);

2. Query Modification 1 (M1): Change the existing query to consider only the em-

ployees of offices "Australia"or "Japan", their department must be "Marketing"or

"Services Support East", and they must have any job position. Moreover, create an

attribute to present employees’ full names;

41

CHAPTER 4. METHODOLOGIES

3. Query Comprehension 2 (C2): List for each AccountNumber the amount sum of

transactions of type “Eating Out”. Moreover, the transaction is only shown if its

source account is managed by employees of department “Credit Control” and office

“United Kingdom”. Account Numbers are sorted by their amount sum in descending

order;

4. Query Comprehension 3 (C3): List the number of employees by department and

office. The number of employees is presented in descending order;

5. Query Formulation 1 (F1): Notifications created by employees who are owners

of a set of accounts which, at least, must combinedly average a balance of 20.000

(average of balances of accounts owned by each employee);

6. Query Comprehension 4 (C4): List all requests assigned to employees of depart-

ment “Services Support West” ordered by priority in the first place (“High” first),

and secondly by creation date (oldest dates first);

7. Query Modification 4 (M4): Considering the previous requests, change the query

to show only the ones that were requested by employees from other departments

(not the same).

Nevertheless, there were several results to be obtained from the user testing scenarios

and it was difficult to reach an approach to test all aspects related to the existing prob-

lems in a short period. Accordingly, Table 4.2 was used to distribute the requirements

mentioned across all scenarios, without turning the usability test exhaustive and heavy

for users.

Table 4.2 clarifications regarding the factors integrated in testing scenarios:

• Simple Joins: Joins that are automatically generated by the system without requir-

ing human intervention;

• Complex Joins: Joins that need to be partially configured manually (e.g., to specify

the foreign key used to merge both tables or to change the join condition);

• Left Join with Null: Left join between entities A and B, to consider only the en-

tities A that are not related to B (e.g., the employees who have not created any

notification.);

• Group by (without reference): The system has an automatism that generates au-

tomatically a name to a new attribute grouped by. However, this name is not self-

explanatory and there was no reference to the source of its attribute. That way, it is

important to highlight this case;

• Aggregation Functions: The aggregation functions supported by aggregates are

Max, Min, Average, Sum, and Count. As the representation in the interface as well

as the insertion method is similar, only a few of these were used;

42

4.5. EVALUATION METHOD

Table 4.2: Distribution of the relevant testing aspects among the testing scenarios de-
signed.

Scenarios C1 M1 C2 C3 F1 C4 M4
Number of Entities 4 4 6 3 3 5 7
Simple Joins 2 2 4 2 1 3 3
Complex Joins - - 1 - 1 1 3
Left Join with Null 1 1 - - - - -
Filters 3 2 3 - - 1 2
Group Filters - - - - 1 - -
Sorting (Text) 1 1 - - - 1 1
Sorting (Number) - - 1 1 - - -
Sorting (Date) - - - - - 1 1
Group By - - 1 2 4 - -
Group By
(without reference)

- - - 3 - - -

Max - - - - - - -
Min - - - - - - -
Average - - - - 1 - -
Sum - - 1 - - - -

Relevant for
Comprehension
and Formulation

Count - - - 1 - - -
Use of not
visible columns

X

Use of hidden
columns

X

Insert
Calculated Attribute

X

Add
Aggregation Function

X

Add not
automatic join

X X

Add same entity
twice (alias)

X

Relevant for
Query Formulation
or Modification

Edit some filters X

Due to the complexity of each scenario, the last two scenarios (Comprehension 4 and

Modification 4) were not tested with Citizen Developers, those users were only tested in

5 scenarios while the other user types were tested in 7.

4.5 Evaluation Method

Having all testing scenarios established, it was necessary to plan how to identify the

users, which enables an accurate evaluation of the interaction with the system, allowing

the gathering of qualitative and quantitative results throughout the usability tests.

Figure 4.2 presents an overview of the evaluation method adopted which have 4 steps:

1. Understaning the user’s profile: User’s answer a survey with questions regarding

43

CHAPTER 4. METHODOLOGIES

their background in order to identify the users’ profile according to the user groups

previously defined;

2. Preparation of the test: There is an explanation of the test to clarify users the

purpose of the test is only to evaluate the interface and not their capabilities. After

that, the data model is presented since it is necessary to test the interface according

to the testing scenarios established;

3. Observation during the test: While users were interacting with the interface to

accomplish the tasks proposed, their user’s reactions were registered as well as

difficulties they felt and other usability evaluation points important to classify the

usability of the interface;

4. Results: The information obtained during the test was processed in order to analyze

the usability of the interface tested.

User’s Profile
Survey1

4

3

2 Preparation of the
test

Observation during
the test

Results

Understand user’s background

Attribute the corresponding user group

Explanation of the testing approach

Take note of user reactions

Aggregate the results

Observe and analyze the results

Register usability metrics

Presentation of the data model

Figure 4.2: Evaluation method overview.

Understanding the user’s profile:

All users tested, started by filling a survey, which included the questions presented in

Table 4.3, in order to perceive what is their background regarding software development,

relational databases, and data management and visualization tools.

The answers to these questions were used to identify the profile of each user according

to the three user groups defined:

• Citizen Developer: users who do not have extensive software development back-

ground neither using traditional programming languages nor with low-code plat-

forms;

• Software Developer: users experienced using traditional programming languages

but not accustomed to use low-code development solutions;

44

4.5. EVALUATION METHOD

Table 4.3: Survey to undertand users’ profile

ID Question Possible answers

1
What is your profes-
sional occupation?

Open question

2
Have you a degree in
Computer Science or
similar?

Yes No

3
Do you have other aca-
demic backgrounds?

Open question

4
Have you already used
OutSystems?

Never
use

Almost
never

Occasionally
/

Sometimes

Almost
every
time

Frequently
use

5
How long do you use
the platform?

No
experi-
ence

<= 6
months

<= 1 year
1-3

years
>4

years

6
Have you used a query
language (SQL or
other)?

Never
use

Almost
never

Occasionally
/

Sometimes

Almost
every
time

Frequently
use

7
When was the last time
that you have used SQL
to build queries?

Never
use

Some
weeks

ago

Some
months ago

Last
year

Some
years
ago

8
From 1 to 5, how do you
define your SQL exper-
tise level?

1 2 3 4 5

9
Have you already used
relational databases?

Never
use

Almost
never

Occasionally
/

Sometimes

Almost
every
time

Frequently
use

10
Are you familiar with
relational operators
(joins)?

Yes No

11
How often do you use
spreadsheet applica-
tions?

Never
use

Almost
never

Occasionally
/

Sometimes

Almost
every
time

Frequently
use

12
How often do you use
business intelligence
software?

Never
use

Almost
never

Occasionally
/

Sometimes

Almost
every
time

Frequently
use

• OutSystems Developer: users who have experience developing software with Out-

Systems, independently of their background.

More details regarding the user groups definition will be further provided in section

5.2.2.

Preparation of the test:

After perceiving the user’s profile, the data model was presented, focusing on the

most relevant aspects of the tests. In that way, it was explained how the entities of the

45

CHAPTER 4. METHODOLOGIES

model were related with each other and the most used attributes in the scenarios were

highlighted.

Users observed the database diagram illustrated in Figure 4.1 and a presentation of

each entity was provided through a dialogue where the focus was the explanation of

the entities included in the data model and how they are related (i.e., explaining which

foreign keys were used to link the entities presented). The language used was adapted

according to the users’ background regarding relational databases. For users who have

previous knowledge regarding join operations, it was reinforced the foreign keys used

in each join. On the other hand, the explanation to users who did not have previous

knowledge in this subject was simplified, explaining for other words what meant the links

between entities, providing whenever necessary examples to ensure users understood

the data model adopted for tests. As soon as users confirmed that they understood the

overview of the existing entities, the testing process started.

Observation during the test:

While users were interacting with the system in order to accomplish the proposed

scenarios, it was observed the approaches used to solve the problems and the difficulties

felt.

However, following users’ reasoning and opinions while they interact with the inter-

face was not considered sufficient to collect all necessary results. Therefore, an evaluation

methodology was designed to collect the required data using the same approach for all

tested interfaces. In that way, Table 4.4 enumerates all aspected registered and evalu-

ated in usability tests for each scenario. The aspects listed in this table were registered

manually inserted the observation results in a spreadsheet as exemplified in Figure 4.3.

For all scenarios, it was registered the time they needed to perform it as well as if they

reached the task goal according to the classification presented in Table 4.5.

In addition, a text highlighting the most relevant usability test topics, including users’

opinions, reactions, expectations, and suggestions has been included for each user. It was

registered the qualitative result of the usability tests, which are not only important for

the design of the next iterations but also to assess users’ satisfaction.

Figure 4.3: Example of a general annotation registered after a usability test.

46

4.5. EVALUATION METHOD

Table 4.4: Evaluation points registered in each scenario.

ID Scenario C1 M1 C2 C3 F1 C4 M4

General observation aspects

S1 Task completion X X X X X X X

S2 Time used to perform the scenario X X X X X X X

S3 Components of the interface explored X X X X X X X

Regarding comprehension scenarios

S4
First area of the interface used to explore

the query
X X X X

S5 List of the entities identified X X X X

S6 List of the joins identified X X X X

S7

In the cases the join is a left join with a

condition where the right entity identifier

must be null

X

S8

In the cases the join between two enti-

ties could be made using different foreign

keys, identification if user identified cor-

rectly the foreign key used

X X

S9 List of the filters identified X X X

S10 List of the sorting criteria identified X X X X

Regarding modification scenarios

S11
Task completion of the required modifica-

tion of the existing filters
X

S12
Time needed to perform the required

modification of the existing filters
X

S13
Registered if users made mistaked when

they were changing the required filters
X

S14
Task completion of the insertion of the re-

quired calculated attribute
X

S15
Time spent to add the required calculated

attribute
X

S16
Option used to add the required calcu-

lated attribute
X

S17

Alternative options tried in order to find

how to add the required calculated at-

tribute

X

47

CHAPTER 4. METHODOLOGIES

Table 4.4 continued from previous page

ID Scenario C1 M1 C2 C3 F1 C4 M4

S18

Registered if users had difficulties to find

how to add the required calculated at-

tribute

X

S19

Registered if users needed a clue in order

to find how to add the required calculated

attribute

X

Regarding formulation scenario

S20 List of entities inserted X

S21 List of joins inserted X

S22

Selection of the required foreign key in

the cases where the join between two enti-

ties could be made using different foreign

keys

X

S23
Registered if users managed to add the re-

quired group filter
X

S24
Task completion of the addition of the re-

quired aggregated attributes
X

S25
Time needed to add the required aggre-

gated attributes
X

S26
Option used to add the required aggre-

gated attributes
X

S27

Alternative options tried in order to find

how to add the required aggregated at-

tributes

X

S28

Registered if users had difficulties to find

how to add the required aggregated at-

tributes

X

S29

Registered if users needed a clue in or-

der to find how to add the required ag-

gregated attributes

X

Evaluation of the users’ satisfaction after using the interface:

Finally, to gain a more extensive notion and some quantitative metrics about the

interaction with the interfaces, the users were asked to fill in a System Usability Scale

(SUS) [73] as their final task in the usability test, where users needed to classify the

questions bellow with a number from 1 (strongly disagree) to 5 (strongly agree):

48

4.5. EVALUATION METHOD

Table 4.5: Description of the effectiveness states considered.

Legend Comprehension Modification Formulation

Achieved

When the user mentioned
all components of the queries
(sources, joins with foreign
keys, filters, sorting, aggregation
functions). The only thing that
would not be considered is if
the user didn’t refer with or
without joins when they were
put automatically.

All modifications
Completely
Right

Partially
Achieved

If the user didn’t refer to the
foreign key between two tables
where there is more than one
foreign key between two tables.
The another possibility is if the
user did not specify only the
sorting criteria.

Forgot to remove
some filter

Group data
using the
wrong
identifier

Not
Achieved

Anything else Anything else Anything else

1. I think that I would like to use this system frequently;

2. I found the system unnecessarily complex;

3. I thought the system was easy to use;

4. I think that I would need the support of a technical person to be able to use this

system;

5. I found the various functions in this system were well integrated;

6. I thought there was too much inconsistency in this system;

7. I would imagine that most people would learn to use this system very quickly;

8. I found the system very cumbersome to use;

9. I felt very confident using the system;

10. I needed to learn a lot of things before I could get going with this system.

The process detailed in this chapter was used in all interfaces tested and addressed in

this dissertation: the existing interface of Aggregates, the paper prototype, and the final

prototype which was integrated into Service Studio (the Visual IDE of the OutSystems

Platform).

49

CHAPTER 4. METHODOLOGIES

4.6 Summary

Figure 4.4 summarizes the methodology described in this chapter, from the problem

definition to the final prototype implemented. As can be observed, there were two major

phases throughout this dissertation:

• Requirements and Analysis: The stage where the problem was defined as well as

the target users of the system were identified and classified into different groups

according to their requirements and expectations. The output of these two analyses

was taken into account to prepare the user testing environment so that the scenarios

and the evaluation method were defined;

• Design and Implementation: The process to reach the redesigned interface, from

the first sketchings to the final prototype integrated into the Service Studio code.

The results of each phase were taken into account in the following phase, in order

to evaluate the design choices made gradually.

Finally, the results of the user testing of the final prototype were compared against the

results obtained when users tested the existing interface in order to measure the success

of the prototype built.

Results Analysis

Requirements and Analysis

User Groups

Requirements and
Expectations

User Analysis

Evaluation Method

Testing Scenarios

Tests Preparation

Analysis

Existing Interface
Evaluation

30 users tested

User Interviews

Data Analysis

Community Ideas

Problem Definition

Design and Implementation

Sketching

Iterative Design

Design

Implementation

Evaluation

15 users tested

Paper Prototype

Design

Implementation

Evaluation

30 users tested

Service Studio
Prototype

Figure 4.4: Methodology Overview

50

C
h
a
p
t
e
r

5
Requirements and Analysis

As previously stated, the problem comprehension and the users’ requirements were con-

sidered key points throughout the design process in order to build a user-centered so-

lution that could tackle the existing most impactful problems. For this to happen, this

chapter describes the processes used to structure the problems of the current visual in-

terface, using the methodology described in the previous chapter. Furthermore, target

users of the system are presented and categorized, accordingly with their background,

expectations, and necessities.

5.1 Problem Analysis

As the existing VQI of the OutSystems Platform has not been having the expected ac-

ceptability due to its interaction problems, multiple approaches were used to collect the

existing problems, understanding for each of them what are the tasks involved, and the

most harmed set of users.

Hereinafter, the approaches and strategies used to collect and organize data regarding

the existing problems of the interface will be presented. As usability issues depend on

interaction with users, the problems were holistically analyzed, considering, in each

problem, the impact caused on each type of user.

5.1.1 Analysis

The analysis of the query formulation interface through self-exploration was the first

method used to comprehend the existing problems. The process started with the visu-

alization of two OutSystems tutorials [60, 61] about visual data querying. The tutorials

included some hands-on exploration that provided an initial contextualization of the vi-

sual query builder and its functionalities. After that, other scenarios of query formulation

51

CHAPTER 5. REQUIREMENTS AND ANALYSIS

were explored to comprehend the system barriers and difficulties.

As pointed out in section 1.2, the lack of some advanced functionalities were observed

during that exploration process. Nevertheless, other problems, which have a negative

effect on user experience and task efficiency and effectiveness, were also identified.

First of all, it was detected that some functionalities were hidden, damaging the

learnability of the system, not fulfilling the "Recognition rather than recall"principle of

the Nielsen Heuristics [57]. Notwithstanding that the learnability issue mainly affects the

novice users, there are peculiarities of this system and its environment that aggravate this

problem. Since SQL formulation is an alternative approach to build queries, if SQL users

do not find the intended functionalities in the visual query builder due to its hiddenness,

they could use SQL to perform their tasks, avoiding the use of the visual system.

The hidden functionalities are not only advanced features of query formulation. For

instance, there is no visible option in the existing interface to add an aggregation func-

tion, such as Group By, SUM, MIN, MAX, AVERAGE, or COUNT. These functions are

accessible for an exclusive interaction path which requires a right-click on the column

header of the attribute where the user intends to apply the aggregation function. Figure

5.1 illustrates an example of the application of an aggregation function. Other options

are not always hidden but are not prepared to keep visible due to interface components

modification. For example, despite the option to add calculated attributes is visible (af-

ter all columns of the query result table), if the query result has several columns it is

necessary to scroll horizontally until the end to find that option.

Figure 5.1: Hidden option to add an aggregation function, since it is enclosed
in a right-click on the query result table column header.

Furthermore, the interface has not revealed to be flexible, efficient, and effective for

professional users’ purposes. Obstacles have been identified as preventing users from

accelerating their query formulation process and causing increases in the queries’ error

rates. Some examples of these aspects which were identified through the interface’s anal-

ysis are presented, hindering query formulation and query comprehension, and reducing

52

5.1. PROBLEM ANALYSIS

the most valued proposition of the data querying visual approach:

• Search engines: there is no option to efficiently search for an attribute neither to

look for some data in the query result or to apply some aggregation function (as

illustrated in Figure 5.1). Moreover, there is no general search in all queries, which

could be useful when users need to find if some entity or variable is present in the

query.

• Hidden columns: in the existing interface, primary and foreign keys are automat-

ically hidden in the query result table since they are considered not relevant data

for the query output. That strategy has been implemented since the first release of

the interface to provide the most clear output for users with lack of technical back-

ground, assuming that they could not understand the meaning of those attributes.

Since those attributes may contain relevant information, it is possible to unhide

them. However, it must be highlighted that there is no efficient way to expand all

hidden columns at once, difficulting significantly the comprehension and formu-

lation of all queries who do not have a reduced number of entities and attributes.

Figure 5.2 illustrates how the hidden attributes are presented in the interface.

• Filter edition: the adaptability of existing query filters is possible using the expres-

sion editor modal, as demonstrated in Figure 5.3. This modal is useful because

it provides some guidance in the expression formulation. Users, can select the

intended language expressions or the entities, attributes, or variables that need

without having to recall those names. However, if users do not need that assistance,

the interaction strategy implemented could led to time and visual context waste-

fulness every time that a modal is opened. It should be noted that the modal is

definitely a good feature but it should not be the unique way to edit filters since

it can increase the time spent to built queries unnecessarily. Moreover, there is no

way to copy and past filter or to read effectively the content since there is no color

highlighting in filters’ expressions.

• Accelerators feedback: this visual query interface has multiple accelerators that

turn the query building process faster. Nevertheless, sometimes the automatic

mechanisms are silent and users may not comprehend they were applied. For ex-

ample, when two entities are added and are related, the system automatically joins

those entities. However, there is no highlight or other visual interaction mechanism

that provides feedback to the user and shows him which action was applied in the

aggregation output.

• Inconsistency problems: some functionalities were accessible through a determined

context and option but other alternative options do not have the same behavior. For

instance, in some use cases it is not possible to add a new entity to the query using

drag and drop but if the user click in another add button the entity is added.

53

CHAPTER 5. REQUIREMENTS AND ANALYSIS

• Multiple actions at once: sometimes it could be useful to do several actions at once

in order to reduce the time spent to build the query. For instance, it should be

possible to add multiple entities at once instead of adding one at a time;

In a nutshell, the first analysis and exploration of the interface lead to conclude that

the interface is useful for users without technical background and has implemented good

strategies that could optimize the query formulation process even more than SQL if those

strategies would be reconsidered and redesigned. Moreover, it was concluded that it is

necessary to provide search engines and other accelerators to enhance the efficiency value

proposition of the system. The value of the system increases if users could build queries

in that system as fast as SQL or even more.

Figure 5.2: Hidden attributes - primary and foreign keys are hidden by default.

Figure 5.3: Filter edition modal - example of a filter edition after selection of the intended
filter (the first one in that case).

54

5.1. PROBLEM ANALYSIS

5.1.2 User Interviews

After the analysis and study of the existing interface, there was a necessity to realize how

are the usage of the visual query system for users. There was a demand to comprehend

what are the most impacting problems of the interface for users’ tasks, what are the first

users’ reactions when asked about the utility of that interface, and if it could be applied,

what are the reasons to use SQL instead of OutSystems’ visual query builder. Asking those

general questions to users was the technique used to understand what is their in-depth

and sincere opinion about the system utility and its most impacting problems.

Therefore, 10 user interviews were performed to explore the tool’s limits and under-

stand their impact on user actions. The interviews started with some brief questions to

perceive the background of the participant. After that, more directed questions were

asked in order to understand the users’ opinions about the advantages and disadvantages

of the visual query tool. Besides, it was asked in which situations users prefer to use SQL

instead of the visual tool. The answer reveled to be important since it provided informa-

tion about the main reasons to resort on SQL alternative and also the main causes which

led the user to stop using the visual query builder interface. Participants identified and

demonstrated in-loco examples of limitations of the visual query system, highlighting

causes and the impact of the problems. Also, users revealed other problems which have

not been already identified.

Furthermore, the set of interviewed users, answered about which advanced function-

alities would benefit further adoption and some usability problems previously identified.

The purpose of these last questions was to ensure that the user answered truthfully about

the aspects that most affect him negatively while using the visual query system. By let-

ting him explain all the details about his vison, on further adjustments to the system, is

possible to establish aspects of common groud between the conclusions of the primary

analysis and the user reasoning about major limitations.

The results revealed that the most novice users, the users with less than six months of

experience, consider Aggregates simple to use and stated that it covered their necessities,

referring that it is more simple to learn than SQL. The most experienced users, who use

the OutSystems platform to develop applications, every day, for professional purposes,

and have a technical technological background, reported that in the visual tool they

cannot have a clear query understanding at a first glance. Moreover, they referred that

they work with queries that contain several tables, attributes, and business rules. In those

cases, they have considered that it was difficult to formulate queries using the visual

querying interface. Besides, being required to switch between tabs in the interface to

view the data sources, and the filters and sorts criteria, other issues were presented such

as the lack of control on the query output1. When asked about the aggregation functions2,

they do not refer any problem with the approach interaction strategy adopted, but they

1As referred on section 2.2.2.2. When a user adds an entity to an Aggregate, all its attributes are added
automatically and if the user hides them the output of the query does not change.

2Funtionality added when Simple Queries have been replaced by Aggregates (section 2.2.2.1)

55

CHAPTER 5. REQUIREMENTS AND ANALYSIS

have emphasized that it is very difficult to find the intended column they need, since

there is no search or navigation engine. Other usability problems that decreases the

users’ satisfaction, such as difficulty to search in all query or to copy and paste query

components, were also pointed out.

In conclusion, the results of the problem definition phase indicated that the interface

is simple to use but presents a considerable set of limitations in its components, mainly

in the domain of professional purpose tasks. In that way, the suggestions to create an

improved overview of the query, which would allow a faster comprehension of the query,

as well as the implementation of interface accelerators to make the query editor powerful

such as search engines and several access alternatives to the same functionality were the

most stated aspects. Regardless of the suggestions, the user experience of the interface

should be kept simple in order to continue to be easy to be learned and used by users

without a technical technological background.

5.1.3 Data Analysis

Even though the performed analysis and the first user interviews have indicated user

experience problems of the interface as the factor that has been impacting the user ac-

ceptance of the visual query builder, a quantitative analysis was performed to perceive

what are the operations most used by developers when they formulate queries textually.

Thereby, the analysis was complemented with a metric study on queries executed on the

Outsystems cloud, in order to find patterns that could justify users reasons to use SQL

instead of Aggregates.

The queries analyzed, which have been extracted in July 2019 from customers’ projects,

were built using Advanced Queries3. The data set used is composed of 214.400 statements.

However, only 60.8% were used in this study since only the queries are important for the

results and not other SQL statements, such as inserts, updates, deletes, and transactions.

Nevertheless, that set of 125.613 queries has duplicated results, so that these ones were

removed resulting in a final data set of 67.828 queries. The operators and clauses were

identified using a SQL Parser developed in JavaScript [50]. After obtaining the abstract

syntax trees of the queries in a JSON file, that data was analyzed in a program to count

the operators and the clauses that were present in the queries.

Firstly, it was measured the percentage of SQL queries that contained operations

not supported by the visual tool. Table 5.1 summarizes the number and the percentage

of those queries containing not supported operations. It is important to refer that the

intersection of the subsets is not null, so there are queries that have two or more of the

indicated operations. Nevertheless, it can be observed that most of the operations have no

significant representation in the results. For example, the DISTINCT operation was the

3The option of the OutSystems Platform, invoked in section 2.2.2.1, that allows the query design in a
textual way using a language based on SQL.

56

5.1. PROBLEM ANALYSIS

Table 5.1: Queries that contain operations not supported by Aggregates

IN NOT IN EXIST NOT EXIST UNIONS DISTINCT SUBQUERIES Total
Queries 7538 2697 132 118 2385 7987 6827 67828

Percentage 11.11% 3.98% 0.19% 0.17% 3.52% 11.78% 10.07% 100%

Table 5.2: Queries that could be designed using Aggregates and the queries which the
tool does not support

Not Supported Supported (Simpler) Supported (More Complex) Total
Queries 28130 24026 15672 67828

Percentage 41.5% 35.4% 23.1% 100%

not supported operation with the highest percentage, included in 11.78% of the queries

analyzed.

Secondly, it was measured how many queries were built using the textual language

but could be designed using the visual query builder. Table 5.2 shows the results obtained

separating the queries performed in three categories:

• Not Supported: Queries which include operations not supported by Aggregates,

such as IN, NOT IN, EXIST, NOT EXIST, Unions, Distincts and Subqueries;

• Supported by Aggregates: Queries that could be designed totally using Aggregates.

These are divided into two subcategories:

– Simpler: Queries which include only operations supported by aggregates ex-

cluding the indication of sorting criteria and the use of aggregation functions

(e.g. GROUP BY or SUM, AVG, MIN, MAX, COUNT);

– More Complex: Queries that are supported by Aggregates excluding the above

(simplers).

User interviews suggested that aggregation functions and sorting criteria were not

the main problems. Accordingly, the queries supported by Aggregates were divided into

two groups in order to compare the quantitative analysis with the qualitative analysis

extracted in interviews. This was considered an important element since these operations

could be obtained using a different interaction technique where the user changes the

query when he is interacting with the query result, as mentioned in section 2.2.2.2.

In the set of queries analyzed, around 58.5% could be designed using Aggregates, is

evident that the lack of support of some SQL expressions might not be the main problem.

Under the circumstances, the results were discussed together with the stakeholders. It

was determined that the main problem was the usability of the system.

In conclusion, the results of the quantitative analysis have confirmed the assumptions

pointed out after the analysis and exploration of the interface and the first user interviews.

All the studies made have concluded that the main priority of the project should be the

57

CHAPTER 5. REQUIREMENTS AND ANALYSIS

usability improvement of the visual querying tool interface. Thereby, there are metrics

that sustain the conclusions made in the problem definition phase.

5.1.4 Community Ideas

Since OutSystems has a wide worldwide Community of developers, the users can use the

OutSystems Community Website [64] to express their problems or difficulties or even to

communicate new ideas for the product. Through that website, it was possible to extract

information in order to align the final solution with the ideas and problems they shared.

Accordingly, all 306 posts of category "Aggregates & Queries"were analyzed in order to

extract useful information for the design phase of this dissertation.

First of all, it has been taken into account for each post if the topic is related to the

lack of some functionalities or related to some problems in the interface. That approach

leads to perceive that the predominance of the posts were about usability problems of

the interface, whereas there are a reduce quantity of posts about functionalities not sup-

ported.

Therefore, the users’ problems and suggestions regarding usability or enhancements

of the interface were processed, transforming that information to relevant input to the

next design phases. The problems presented below were the most important problems

and suggestions indicated in the OutSystems Community:

• Search engines: users requested in multiple posts alternatives to search for an entity,

attribute, or filter inside the query. Not only they refer that the readability in the

interface is difficult primarily due to the non-existing color highlight in the text but

also there is no possibility to search for the intended fields. They have also referred

that this feature was extremely important for their work since they need to build

queries with a large set of entities, attributes, and conditions;

• Filters Edition: it was pointed out in several posts suggestions to improve the inter-

face in order to support filters comments with color highlighting, since they could

be useful to explain the intention of the filter, or even the possibility to disable

filters instead of deleting them;

• Result Count: it was referred that there is no visible count of how many rows the

query result has;

• Accelerators and Utilities: it has been suggested to add different accelerators in

order to accelerate and streamline the query formulation process as well as different

ways to present the query structure since, in the user’s point of view, the query

readability, provided with the existing interface, should be improved.

The description of all problems and suggestions posted in the OutSystems community

are detailed in Appendix A - Taxonomy of Problems - Existing Interface in a table that

aggregates all problems identified throughout this problem analysis process.

58

5.1. PROBLEM ANALYSIS

In summary, beyond the necessity of new advanced functionalities, the developers on

the OutSystems Community have indicated different situations where the interface turns

out not to be as powerful as it could be, since there is a lack of utilities or accelerators

that could assist users keeping their task on track.

5.1.5 Existing Interface Evaluation

The last phase of the problem definition was the usability tests to the existing visual

query interface, which were performed with two main goals:

1. Identify problems: Explore more usability problems that could exist in the inter-

face, by directly observing users interacting with it, under the tasks defined in the

prepared testing scenarios;

2. Gather usability metrics: Record users’ insights about the system as well as the

difficulties they had to perform the proposed tasks. This information is going to

be processed leading to the attainment of qualitative information to characterize

the general opinion of users but also quantitative usability metrics regarding the

completeness of the tasks, the time they required to perform it, the operations or

elements they did not understand, and their satisfaction using the system.

By this means, 30 users have performed usability tests in a remote environment

using Zoom [82], where the screen was shared and recorded and the visual query builder

of Service Studio was tested using the remote control functionality of this meeting plat-

form. Besides, each user allowed to record the session in order to further collect usability

metrics and analyze the feedback provided.

Understanding the user’s profile:

The profile of each user was identified through a survey where users answered some

questions concerning their background namely regarding OutSystems, SQL, and data

tools. This information was useful to attribute each user to his respective user group

according to his knowledge in relational databases and OutSystems development.4

It was tested 10 users of each group and the detailed information about the usability

test participants’ profile is presented in Table B.1 of Appendix B - Usability Tests Results.

Preparation of the test:

The testing process started with a brief explanation of the data model used across the

tests. The communication used to explain the data model was adapted according to the

relational database knowledge each user has. When users confirmed they comprehended

the data model and the aim of the tasks they started using the interface according to the

testing scenarios. More details about the testing scenarios presented and the evaluation

method adopted were already described in sections 4.4 and 4.5 respectively.

4A complete definition of each user group is provided in section 5.2.

59

CHAPTER 5. REQUIREMENTS AND ANALYSIS

Table 5.3: Evaluation point S14: Success rate of users when they needed to add a calcu-
lated attribute (Existing Interface usability tests - 30 users).

Insert Calculated Attribute Added Successfully Difficulty to Add Could not Add

OutSystems Developer 91.67% 8.33% 0.00%
Software Developer 20.00% 80.00% 0.00%
Citizen Developer 20.00% 60.00% 20.00%
Total 43.89% 49.44% 6.67%

Observation during the test:

During the test, it was performed a direct observation of users interacting with the

system to accomplish the tasks proposed in the scenarios planned. Thereby, a spreadsheet

was used to manually register all aspects evaluated in each scenario that was previously

enumerated in Table 4.4. The results considered relevant to the usability improvement

will be presented below.

In summary, the achievement of the goals of each scenario was registered (effectiveness

metrics) as well as the time users spent in each scenario (efficiency metrics). Moreover,

as there was scenarios built to test specific problems and functionalities of the interface,

specific notes and metrics regarding these functionalities studied were also registered.

Results:

Regarding the learnability of the system, the results confirmed that the lack of vis-

ibility of some functionalities have undermined users’ ability to find out how to query

data in some cases. For example, in the scenario M1, where users needed to create a new

calculated attribute (evaluation point S14 according to Table 4.4), there was a set of users

who had difficulty to find how to create it due to the hiddenness of the option. Table 5.3,

presents the percentage of users who managed to add this attribute without difficulty, the

ones who struggle to find it, and the remaining who did not manage to add it although

perceived the goal of the proposed task.

Furthermore, the users revealed difficulty to apply group bys or aggregation functions

(evaluation point S28 according to Table 4.4). In the formulation scenario F1, the users

needed to apply one group by and one average aggregation function in order to reach the

task goal. The results revealed that only around 40% of the users managed to group the

required data in this scenario, which confirmed the problem predicted by analysis of the

interface about the lack of visibility of these functionalities.

On the other hand, the tests revealed some problems concerning the effectiveness

reaching the intended result. Although the value proposition of the visual interface is

to empower users on understanding and formulating queries, it was identified occasions

where users misinterpreter the represented queries or made slips in query formulation

cases.

60

5.1. PROBLEM ANALYSIS

Table 5.4: Evaluation point S7: Readability rate of the join which represents the case
where two entities were merged using a left join and the conditions specified the that the
primary key of the right enitity must be null (Existing Interface usability tests - 30 users).

Left Join with Null Identifier
Comprehension

Identified Did not Identify Did not see the Join

OutSystems Developer 16.67% 83.33% 0.00%
Software Developer 10.00% 40.00% 50.00%
Citizen Developer 0.00% 50.00% 50.00%

Total 8.89% 57.78% 33.33%

Table 5.5: Evaluation point S8: Readability of the foreign keys used to join entities that
could be joined using different attributes (Existing Interface usability tests - 30 users).

Foreign Key Identification Identified Did not Identify Did not See the Join

OutSystems Developer 27.78% 72.22% 0.00%
Software Developer 20.00% 36.67% 43.33%
Citizen Developer 0.00% 35.00% 65.00%
Total 15.93% 47.96% 36.11%

For instance, the scenario C1, which includes a join between ”Sample_Employee” and

”Sample_Notif ication” with the intend of fetching only the employees who have never

created any notification, demonstrated that the representation used was misleading users

to correctly interpret the query. Observing the results presented in Table 5.4, regardless

of their groups, all users did not manage to entirely understand this join (evaluation

point S7 of Table 4.4), even the users who are accustomed to use the visual query builder

(OutSystems Developers).

In addition, the users have also exhibited other problems regarding the comprehen-

sion and formulation of the queries which contain joins between two entities that could

be made using different foreign keys (evaluation point S8 of Table 4.4). For example,

considering the data model presented in Figure4.1, an account has three foreign keys

referencing employees: creators, managers and owners of the account. In those cases it is

important to easily perceive which foreign key was used to made each join between the

two entities. In this respect, only 15.93% of the users identified this join aspect, which

revealed that the interface was not supporting users to further comprehend the query’s

details.

From a query formulation point of view, only 36.67% of the users selected the intended

foreign key when they added entities that could be joined using different attributes (eval-

uation point S22 of table 4.4). Tables 5.5 and 5.6 detail the results regarding the query

aspect described. It was concluded that the interface was not properly guiding users

throughout the data querying process and neither facilitating their work in these specific

cases.

61

CHAPTER 5. REQUIREMENTS AND ANALYSIS

Table 5.6: Evaluation point S22: Selection of the foreign key, in the formulation scenario,
used to join entities that could be joined using different attributes (Existing interface
usability tests - 30 users).

Foreign Key Selection Selected Did not Select Did not Add Join

OutSystems Developer 50.00% 50.00% 0.00%
Software Developer 40.00% 40.00% 20.00%
Citizen Developer 20.00% 40.00% 40.00%
Total 36.67% 43.33% 20.00%

Table 5.7: Evaluation point S1: Average success rate of all scenarios by user group (Exist-
ing Interface usability tests - 30 users).

User Group Not Achieved
Partially
Achieved

Achieved

OutSystems Developer 27.14% 20.00% 52.86%
Software Developer 50.00% 20.00% 30.00%
Citizen Developer 70.00% 8.00% 22.00%
Total 46.84% 16.84% 36.32%

Finally, it was summarized metrics to evaluate the users’ performance regarding ef-

fectiveness, efficiency, and satisfaction for all testing scenarios performed. Table 5.7

represents the average of the success of each user group for all scenarios performed (eval-

uation point S1 of Table 4.4). The success was classified according to the Table 4.5 already

presented and the description of user testing scenarios and user groups which are de-

tailed in section 4.4 and in section 5.2 respectively. The detailed results of each scenario

are detailed in Table B.4 of Appendix B - Usability Tests Results.

Even though there were negative results, it was visible how the SQL knowledge and

the experience using the OutSystems platform impacted the success rate. The percentage

of scenarios which were not achieved by Citizen Developers was 70%. When comparing

this value with the value of Software Developers, who have in general more SQL knowl-

edge, the not achieved scenarios represented 50%. In that way, there was a significant

difference between these two types of users, meaning that, the existing interface is highly

dependent on the users’ SQL knowledge. Lastly, if the results of the Software Developers

are compared with the OutSystems Developers results, it can be observed that the not

achieved percentage decreases from 50% to 27.14%, revealing also that users who are

accustomed to using the interface had a superior success rate.

Figure 5.4 illustrates the difference of the effectiveness according to the user group

(evaluation point S1 of table 4.4), where it is highly visible the usability problems of the

interface which are preventing users to reach the tasks’ goals, allowing to conclude that

for users who use the query builder for the first time, the learnability curve could be

flattened if the user has SQL knowledge.

The information about the background of each user regarding SQL and OutSystems

62

5.2. TARGET USERS

Figure 5.4: Evaluation point S1: Average of the sucess rate of all scenarios by each user
group (Existing Interface usability tests - 30 users).

were filled in the survey, asked before starting the tests. Analyzing the relation between

the SQL knowledge and the OutSystems experience with the scenarios success results,

presented in Figure 5.5, led to concluded that in average, a user who never or almost never

have used a query language did not achieve 80% and 67%, respectively, of scenarios’ goals.

During the tests, users have mentioned other details of the interface that could be a

useful input for the next design iterations. In that way, that feedback was also taken into

account and registered as well as all the other issues identified.

The result of those analyses described in this section was combined in a table that

characterizes each identified problem of the existing interface. This table is presented

in the Appendix A - Taxonomy of Problems - Existing Interface and describes all the

problems identified. For each problem, it is detailed the interface components involved,

the methods used to identify the problem, and the Nielsen Heuristics [57] affected. More-

over, the issues are classified according to the artifact and task attributes of a Framework

adapted from Usability-ODC Framework [11], as well as it contains information regard-

ing OutSystems Community[64] posts and likes related to each problem.

5.2 Target Users

After obtaining a detailed and wide view of the existing problems, the following step was

the exploration of how those problems can be solved. As the main goal is the development

of an improved interface that gives to the users a solution to manage data queries effi-

ciently, and effectively through intuitive interaction strategies, users are a crucial factor

that must be taken into account throughout the entire solution development. Each user

has his peculiarities, then the user experience of the solution should be adapted as much

as possible to the target users of the query formulation system.

Considering that users will only use the visual query system if they use the OutSys-

tems Platform, the low-code development context where the query system is inserted

63

CHAPTER 5. REQUIREMENTS AND ANALYSIS

(a) "Insuccess rate vs. Have you used a query language (SQL or other)?"

(b) "Insuccess rate vs. Have you already used OutSystems?"

Figure 5.5: Comparison between the users’ profile characteristics of the users have not
achieved scenarios. The charts illustrates the percentage of scenarios not achieved in
average for the users who answered the represented in the horizontal axis to the question
presented in the caption. (Existing interface usability tests - 30 users).

64

5.2. TARGET USERS

cannot be dissociated from the user analysis. Thereby, the user analysis process started

by a study to categorize the profile of OutSystems Platform users according to the speci-

ficities of the data querying domain.

Since the low-code development paradigm has integrated more people who do not

have the strict software engineer profile into software development tasks, the users of

the OutSystems Platform do not have the same backgrounds, requirements, and expecta-

tions. If, on the one hand, there are OutSystems Developers that have Computer Science

academic backgrounds or similar, and experience working with low-level programming

languages, on the other hand, there are business experts or specialized in other engi-

neering fields that are also developing in OutSystems. In that way, the provided query

building experience should be a hybrid approach that covers the traditional software

developers’ demands without turning the development and the language less intuitive

for people that are not familiarized with classical development patterns, terminologies,

or processes.

5.2.1 Requirements and Expectations

As the set of users that may use the visual query system is so broad and heterogeneous, it

was necessary to analyze and register the aspects of the user profile which could branch

out their needs and expectations in different directions. In this sense, the following three

topics of the users’ background were considered the ones that could accurately cluster

the users’ expectations and demands, considering the usage context of the interface,

which combines software development, low-code development, and relational databases

querying domains:

Software Development Background: The previous knowledge and experiences of

users in the software development scope can lead significantly to their expectations while

they are interacting with a graphical user interface. Being the object of study an interface

that allows users to formulate queries, the factor mentioned becomes even more relevant.

In software development, most users often associate database querying to languages that

are considered a standard to perform those tasks, such as SQL. In that way, most users

end up unconsciously relating the visual query building process to the languages they

are familiar with. Therefore, if the visual query interface will be used by users that are

familiar with technical languages, it is important to not forget to apply a language that

could invoke similar principles and reasonings.

OutSystems Development Experience: The user experience on low-code develop-

ment, in particular using the OutSystems Platform, has also an impact on how the user

will experience the visual data querying tool, even if the user does not build queries regu-

larly through the Platform. As a complete solution for low-code development, the Service

Studio has a consistent design across its sections. Consequently, a user familiarized with

the Platform could have more facility to find options and understand interface language

65

CHAPTER 5. REQUIREMENTS AND ANALYSIS

than a user that is using the Platform for the first time, since there are multiple design

patterns and built-in behaviors across all the product.

Nevertheless, users who have considerable experience using the existing solution of

OutSystems to build queries could be highly adapted to the existing design. Therefore,

this fact should be taken into account throughout the solution design process in order to

realize how modifications could impact regular users of the systems. Even knowing that

frequent users could be skeptical of changes, it is necessary to properly assess whether the

changes only require adaptation or if users could reject them. Therefore, it is important

to improve the user experience of the existing interface without removing all its most

representative features, in order to keep its singularity.

Data Tools Expertise: Besides textual DQLs, other tools allow users to manage and

visualize data through graphical user interfaces. For instance, spreadsheet applications

such as Microsoft Excel [51] and Google Sheets [47] presents an intuitive interface where

users can manage, organize, and edit data. Using these interfaces, users do not need

to know how relational databases work since data is presented in tables that could be

manipulated directly under simple controls. For this reason, the language used in those

systems is frequently less technical, in such a way that is important to consider that these

users are expecting direct manipulation of data and simple language to query and manage

data.

5.2.2 User Groups

Being the relational database knowledge a crucial point to frame users’ mental model of

query formulation, it is important to split up the users who perceive relational databases

to the other ones. On the other hand, low-code programming experience can affect how

users interact with a visual programming system, thus it is important to study users with

experience in low-code development through a different perspective. Considering the

aspects mentioned, three user groups were created in order to cluster users that have

similar profiles. Thereby, each user could integrate one of the following groups according

to their characteristics:

66

5.2. TARGET USERS

Table 5.8: User Groups

Software
Developer

Software Developer or Engineer who has a solid previous
knowledge of programming and databases. These users are

familiarized with textual programming languages, such as C#,
SQL, and others. In that way, they cannot abstract their previous
knowledge in such a way that communication with these users

should be more technical and specific. Finally, this user group is
not an expert in low-code development. However, as they have
solid programming, logic, and database knowledge, they could

develop some applications using low-code if necessary.

OutSystems
Developer

Independently of their background, these users are experienced
in OutSystems. That way, they are proficient and faster in

low-code development, regardless of their experience in other
traditional software development paradigms.

Citizen
Developer

Users who do not have an extensive programming or software
development background. Even though they are not software

developers, they could develop some simple apps using low-code
due to its simplicity. As some of these users may not know how

relational databases work, they may use other applications, such
as Microsoft Excel, Google Sheets, Salesforce, and others to

manage data.

67

C
h
a
p
t
e
r

6
Design and Implementation

The design process adopted was an iterative design approach to iteratively build the

solution according to the users’ acceptance and feedback. Throughout this chapter, the

design and implementation decisions taken in order to reach the final prototype are

detailed.

6.1 Sketching

Before starting the development of the interface prototypes, which will be tested with

users, some sketches were performed, in order to organize and explore ideas to tackle the

existing usability problems. The primary goal expected to attain at the end of this phase

is not a functional or complete interface, but a practical idea of what could be designed

in the following prototypes.

Considering the extensive list of problems identified, prioritization was an important

aspect taken into account throughout all design phases. The first problem explored was

the difficulty to comprehend the database query purpose.

In the existing interface, users do not have a unique and clear view, which can facilitate

the comprehension of what data could be fetched from the database through the presented

query. As illustrated in Figure 6.1, the users can only see some components of the query

at a time, due to the existence of tabs to individualize each type of query components

(i.e., a tab for source, filter and sort options). In addition, as can be observed in Figure

6.1a, when users open the query, only the query output preview was shown. That was

considered a problem in the analysis of the interface for two different points of view:

• When the existing interface was tested with users who do not usually use the Plat-

form, they could not easily find the tabs, which increased the chances of wrongly

69

CHAPTER 6. DESIGN AND IMPLEMENTATION

(a) Starting point (only the result is visible) (b) Sources Tab

(c) Filters Tab (d) Sorting Tab

Figure 6.1: Example of a database query representation through the existing visual inter-
face.

guessing the query purpose, since they have only observed the query output pre-

view. Besides not being an effective understanding technique, it can be even more

difficult when the output contains several columns;

• The users accustomed to this data tool revealed that is cumbersome to open and

navigate between tabs in order to understand the query.

Therefore, the designing of a new general layout, where it is possible to view the

most important query components at once, was considered a major requirement. A solid

improvement regarding this component, could optimize not only the time and effort

required to comprehend queries but also to formulate them, since all information is more

visible and accessible.

From other perspective, there was also the concern to build a layout that would not

compromise the system usability for more complex cases, such as queries that contain a

relevant number of entities or conditions.

Accordingly, some wireframes were sketched in order to perceive how the query

components could be jointly combined in a unique view. Figure 6.2 illustrates the two

options elected from multiple approaches explored.

In both options, there are two principal areas in the interface as presented in the

current version of the interface: the query editor area and the preview of the query result.

70

6.1. SKETCHING

(a) Option A (b) Option B

Figure 6.2: Interface layout sketches.

Yet, two new manners were explored to display all information of editors jointly with

the query result preview. In Option A, the sub-editors remained in the top area and the

query result preview below. The Option B illustrates another sketched possibility where

all editors were presented on the left side of the screen and the visualization of the results

presented on the right side.

Regardless of the option, the layouts presented have in a single view the most impor-

tant aspects to understand what query is built.

The existing interface does not have any mechanisms that allows the user to easily

find an entity or attribute. The attributes included in the query are not represented in any

region of the interface beyond the query result table. Thereby, the unique way to find out

the attribute is to look for it in the table header of the query output, using the horizontal

scroll. That process is cumbersome and slow, so an alternative was sketched in order to

include the attribute in the sources view. The users could click on the attributes and the

attribute would be automatically highlighted in the query result preview, as illustrated

in Figure 6.3. The idea of a search engine was also considered to prompt users to search

for an entity or attribute.

Furthermore, other approaches, more compact and functional, were also explored

in order to display the joins used in the query. Figure 6.4 shows the sketched ideas to

represent joins: a simple list of all join operations inside the query, and two other ones

aggregated by the entities involved by the join kind.

Lastly, an idea to accelerate the searching process of a specific element inside the

query was sketched. The sketch represented in Figure 6.5 exhibits an idea, taken into

account, to find all references of an entity. This general search would allow users to find

entities, joins, filters, or other query elements faster.

71

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.3: Searching for an attribute data on the query output preview.

(a) Joins flat list (b) Joins associated to each
entity

(c) Joins by each join kind

Figure 6.4: Sketches elaborated to explore other approaches to represent the join opera-
tions present in the query.

6.2 Paper Prototype

The iterative design process started entirely with the first prototype developed: the paper

prototype. The main goal of this phase was to build a functional prototype using paper,

ruler, try square, and writing materials, in order to create faster and with a low-risk level

(i.e., reduced implementation effort spent) a prototype that could be tested by users.

However, due to the COVID-19 pandemic, the prototype was virtually adapted, since

it was not possible to test the prototype in person. Accordingly, the prototype was scanned

and the interactions were configured using the digital product design platform InVision

[48].

6.2.1 Design

The building process of this low-fidelity prototype started with the design phase, where

a brainstorming of ideas, explored previously, took place, in order to establish the design

priorities for the paper prototype as well as concrete ideas to apply in the solutions.

72

6.2. PAPER PROTOTYPE

Figure 6.5: Sketch of a general search to allow users to find query elements represented
in the interface.

Sub-editors arrangement:

Taking into account the sketches mentioned in the last section, the first question

evaluated was which rearrangement of the sub-editors and the result preview views would

be implemented in the next phase. In order to take action in this regard, there was

a point in the visual query builder background considered. As mentioned in section

2.2.2.1, this querying interface was completely redesigned seven years ago, which had

a negative repercussion on users since they were accustomed to the previous interface.

Therefore, there was a concern to change the interface without removing the main points

that characterize and identifies it. In that way, the goal was to ensure that users consider

the new interface as an improved version of the existing one, instead of a completely

different interface.

Comparing the two options sketched (Figure 6.2) with the existing interface (Figure

6.1), the Option A is the most similar because the editors area keeps on the top region

of the interface and the query result data below. For this reason, this arrangement was

considered to be presented in the next phase.

Having chosen where would take place the edition area of the interface, the second

aspect taken into consideration was how to organize its sub-editors. This decision was

taken, bearing in mind, what each query aspect represents in the user’s mental model

when they formulate queries as well as the physical space of the interface they could

occupy.

In this regard, the way users think about the query elements was taken into account.

This reasoning was performed taking into consideration the formulation using SQL since

one of the main goals is the improvement of the interface experience for users that are

proficient in SQL. According to the conceptual models presented in section 3.1, the first

aspect the user thinks, after understanding what data is required, was assessed to be how

to translate them to the query language. In SQL, the core statements are presented in the

73

CHAPTER 6. DESIGN AND IMPLEMENTATION

following order:

1. SELECT: Indicates which attributes will be selected to be present in the query

output table;

2. FROM: Sets out which entities are used to query data. Thereby, even it is necessary

to merge tables, the join operations are specified through that statement;

3. WHERE: Contains the boolean conditions that would filter the results.

4. ORDER BY: Specify the criteria to order the data gathered.

In this visual query building tool users do not select attributes because there is an

optimizing background task that will inspect where the query is used and only select the

attributes that will be used. Therefore, in this system, the information specified through

the SELECT statement will not be specified by the user.

However, the three other aspects of the query are clearly specified by users in three

different interface areas: Sources, Filters, and Sorting respectively. Accordingly, the ar-

rangement chosen to display these three sub-editors, the following logic was considered:

the query edition area were divided into two columns, the left side was elected to repre-

sent the sources of the query and the right side lists the filters and sorting criteria.

New approach to represent sources and joins:

Nevertheless, the way entities and joins were presented in the interface, in the previ-

ous sources tab, required to be redesigned from scratch. As can be observed in Figure

6.1b, a simple list of the entities used was presented in the left side of the editor area and

the joins used to merge them in its right side.

Even though some designs regarding that were elaborated in the sketching phase

(Figure 6.4), it was concluded that the main issues remain:

• Difficulty to comprehend, fast and with a low-effort, what entities were integrated

into the query. Being a visual interface, the comprehension of the entities used

as source to formulate the query should be easier to understand. However, the

potential of the visual interface has not been leveraged, mainly due to the following

aspects:

– Textual language overloading: Not only all join conditions were completely

presented in full-textual way, but also the same entity could be written in a

repeated way. For example, in the example shown in Figure 6.6, the entity

”Sample_Employee” was presented seven times to indicate that the query uses

this entity and this entity was joined with three other entities;

– Lack of guidance to understand what entities are related to each other: As

the entities and sources are listed in the interface, the design should help

users to understand which entities are joined. For instance, if joins were put

74

6.2. PAPER PROTOTYPE

between the entities involved, it would be simpler to identify if they were

merged through a join operation.

• The users who are not familiarized with relational databases and the terminology

used to join tables pointed out that the existing view is complex and difficult to

understand.

Figure 6.6: Example of the existing textual language overloading - The entity
”Sample_Employee” is represented seven times.

Therefore, the way entities and joins were listed in the sources tab of the existing in-

terface was reconsidered, since it was intended to create a simpler, intuitive, and compact

viewing area.

The idea of a tree view which displays all entities and joins used in the query has

emerged to tackle the problem mentioned. Through that approach, it would be possible

to reduce the entity repetition and to explicitly perceive which entities have a certain

entity been joined.

Query formulation improvements:

Regarding query formulation, there was several users who are not accustomed to the

query builder, meaning that they appeared to have difficulty to discover some function-

alities of the system when they were testing the existing interface. Thereby, learnability

was also considering during the design phase of the first prototype.

As mentioned in section 5.1.1, the options to add a new calculated attribute or to

apply a group by or aggregation functions were hidden. These functionalities could be

frequently used, thus it was concluded that these options should be visible in the sources

area. By doing this, not only the options were still visible to the novice users but users

could have a faster alternative to insert these query components.

75

CHAPTER 6. DESIGN AND IMPLEMENTATION

Lastly, the distribution of the formulation options (i.e., the buttons or other interface

elements that allow users to insert new elements in the query) in the screen was a relevant

aspect considered.

The main concern was to put these controls near to the area where the content will

be displayed. As an example, if there is an area where entities, joins, and attributes are

placed together, the related interaction should be accessible near them. In that way, users

do not need to find options in other areas of the interface, keeping the user task on track,

avoiding them to lose reasoning context.

That design principle was considered advantageous to reduce the user’s working

memory overload since they could focus on each part of the query without distractions.

Moreover, if the controls are near, the time the mouse need to move to them, is also

reduced, accelerating the query formulation process.

6.2.2 Implementation

After defining priorities for the current design iteration, the paper prototype implemen-

tation has launched. In this phase, the pieces of the prototype were built progressively

considering the key points presented before and refining some details whenever neces-

sary.

General layout:

As the reasoning applied in the design phase, the general layout was the first part

implemented. The main concern at this phase was the definition of the dimensions for

each sub-editor. In order to ensure that the design will be properly integrated into the

Service Studio, it was created a sketched background image of the IDE using a function of

Balsamiq [31] to convert the Service Studio screenshot to a black and white line drawing

version [81]. As a result, it was possible to perceive if the design done would combine with

the system where it is integrated without increasing the fidelity level of the prototype.

After that, the main areas of the interface were elaborated until reaching the general

layout that can be observed in Figure 6.7.

Query Result Table:

The next step was the design of the query result tables which shows the result preview

of the query built. An output result table was designed in order to provide, in all user

testing scenarios, a real context to users when they tested the prototype.

In order to accelerate the process of the table design in paper, it was used the same Bal-

samiq functionality used for background, to transform the table of the existing interface

into a low-fidelity design.

However, the headers of the table were redesigned manually to improve the readabil-

ity of the table to optimize the understanding of where data of an entity starts from data

of another entity. In that way, the entity reference in the table header were merged to give

76

6.2. PAPER PROTOTYPE

Figure 6.7: Paper Prototype general layout.

(a) Existing Interface

(b) Paper Prototype

Figure 6.8: Comparison between the existing query result table and the designed for the
Paper Prototype.

to the user an easier perception that all the attributes below belong to the entity above.

Figure 6.8 compares the existing one to an example of one of the tables built.

Filters and Sorting:

Regarding filters and sorting, it was decided to not apply major changes since there

were other problems considered as more relevant. Even though the filters edition could

be faster using accelerators such as copy and paste or the possibility to edit each filter in

the line, instead of opening the expression editor, these problems, as well as other similar

problems, mentioned in the Appendix A - Taxonomy of Problems - Existing Interface,

were not tackled. The reason to disconsider these improvements in the prototyping

phase was that there are straightforward improvements that have a low-risk of affecting

negatively the user’s experience. In that way, it the focus was to the design parts that

should be rigorously tested by users to ensure that riskier changes are improving the

77

CHAPTER 6. DESIGN AND IMPLEMENTATION

(a) Existing Interface

(b) Paper Prototype

Figure 6.9: Comparison between the existing filters and sorting sub-editors and the ones
designed for the Paper Prototype.

usability of the interface.

Accordingly, concerning filters, it was only added some syntax highlighting to each

one of the conditions presented in order to reduce the time required to understand the

conditions. Figure 6.9 presents an example of Filters and Sorting design in the paper

prototype.

78

6.2. PAPER PROTOTYPE

Sources View:

As referred before, the design of the sources view was considered one of the most

impactful aspects to improve the usability of the query builder. The restructuration

design of this element was reasoned as a crucial section of the interface that could leverage

the usability of the system.

A new approach to represent sources and joins was progressively built. The first

aspect approached was the creation of a hierarchical view similar to a tree view which

gives to the user the perception of what entities are related with each other. Figure 6.10

shown an example of a tree built at that stage.

Figure 6.10: First stage of the design of a new representation approach to display sources
and joins.

Notwithstanding the visual simplicity achieved was insufficient since it does not rep-

resent the join conditions. However, if join conditions were just included near to the join

type, the interface would be overloaded again and it would still poor readability.

Furthermore, the usability tests of the existing interface showed that users tended to

misunderstand the queries that display joins with specific characteristics. In particular,

in cases where queries had joins with conditions that contained logical operators or when

the join between the two tables could be done through different attributes.

Through practical examples it is easier to understand the dimension of the problem.

For example, considering the data model presented in Figure 4.1, if a user wants to query

the employees and their departments, he will add the two entities and the visual query

builder will build automatically the join condition:

"Sample_Employee.Office = Sample_Office.Id"

This automatism is useful and turns the query formulation process more simple and

efficient. However, there are cases where the join needs to be specified. For instance,

considering the same data model, if a user wants to query the employees who are owners

79

CHAPTER 6. DESIGN AND IMPLEMENTATION

of accounts, the join condition has to merge the two entities ”Sample_Employee” and

”Sample_Account” using the foreign key ”Owner” and not the two other available alter-

natives: ”CreatedBy” and ”Manager”. In this case the condition required to build this

query is:

"Sample_Employee.Id = Sample_Account.Owner"

In these cases, the join condition, which in many cases is not so important as just

covers the general case and it was generated automatically by the system, represents an

important aspect of the query. However, as illustrated in the example of Figure 6.11, the

existing interface represents all joins equally.

Figure 6.11: Example of joins representation in the existing interface in a query where
the foreign key used to join is an important detail.

When users tested the existing interface with cases similar to the one presented, two

relevant usability problems were detected. On the one hand, when users tried to com-

prehend the query, most of them did not pay attention to this detail, not mentioning the

foreign keys used. On the other hand, when they need to formulate queries that con-

templates these cases, several users, even the most experienced using this query builder,

did not select the intended foreign key. This behavior was considered normal since the

system just assumes one of the foreign keys and generate the join, without asking user

what attribute he would want to use to join the two entities.

Therefore, the exploration of new sources and joins representation was an excellent

opportunity to tackle this problem. In that way, the existing tree view of sources was

designed in order to integrate also the foreign key used to build each of the presented

joins. Moreover, when two entities are added and the join between them can be done

through different keys, the system starts asking the user which key he wants to use. Figure

6.12 illustrates how this idea was transposed to the paper prototype.

Nevertheless, the foreign key is not the only aspect that could be specified in the join

condition. As in SQL, the existing query builder allows user to edit manually the join

condition, for example to add more restrictions using logical operators.

80

6.2. PAPER PROTOTYPE

Figure 6.12: Example of the new foreign key selection and representation applied in the
Paper Prototype.

In these cases, not only is it important to continue to allow the edition of the conditions

in the new interface but the conditions already edited should also be highlighted in such

a way that users who open the query for the first time perceive that the condition of these

joins is different.

The strategy applied in the paper prototype to maintain the interface simple, clear,

and intuitive while highlighting the relevant aspects was to put only the function icon in

the simple join conditions, and the other ones has their difference explicitly represented

after. Figure 6.13 represents the sources of a query with a join condition edited. In

this case the join condition between ”Sample_Employee” and ”Sample_Notif ication”

was changed since the goal is to fetch the employees who have never created notifications.

Accordingly, a simplification took place to represent only the differentiating factor instead

of the full condition which is:

"Sample_Employee.Id = Sample_Notification.CreatedBy and

Sample_Notification.Id = NullIdentifier()"

Figure 6.13: Example of the sources of a query that has a join with a condition edited.

Through that approach, users will be able to identify entities and joins of the query

without information overloading, allowing them to perceive easily and faster the purpose

of the query. Even if the join condition is hidden, the user could click on the function

icon and the expression editor would appear making possible to see and edit the join

condition selected.

81

CHAPTER 6. DESIGN AND IMPLEMENTATION

New alternatives to add and search for attributes:

The last improved aspect during the development of this paper prototype was regard-

ing the addition of new attributes. In accordance with the mentioned in the last section,

there was a demand to provide other alternatives to add calculated attributes as well as

group bys or aggregation functions.

Considering the concern to insert strategically these alternatives, in easily and fast

accessible places, it was necessary to improve the visibility of these options to improve

the learnability of novice users. The following options were applied:

• Click and right-click in the attributes exhibited in the Sources sub-editor: The

list of the attributes of each entity was added into each entity represented in the

Sources of the query. On the one hand, if users click in an attribute, they would

see the data related into the query result preview (according to the sketch already

presented in Figure 6.3). On the other hand, if they right-click in an attribute,

they would see the same context menu that they already could see when they right-

click on the result table headers. Therefore they could apply operations using that

alternative, as exemplified in Figure 6.14.

• Two new visible buttons to add attributes: In the footer of the Sources View, two

buttons were added:

– Aggregation / Group By: Clicking in this button the user could choose an

attribute and apply the following operations to group the data of the attribute:

Group by, Sum, Average, Max, Min, or Count. Figure 6.15 shows this new

formulation area.

– Calculated Attribute: When the user selects this option the interface will show

an expression edition area similar to the existing one (as exemplified in Fig-

ure 2.9) to indicate the formula of the new attribute. Figure 6.16 shows this

alternative to add a new calculated attribute.

In order to improve the query readability and the consistency of the interface, these

attributes, added to the query, were put into the sources view as exemplified in Figure

6.17.

Digital Paper Prototype:

Combining all the components elaborated in paper, the result is illustrated in Figure

6.18. In order to make it remotely testable, each one of the interface components were

scanned and composed again using the InVision App [48].

Therefore, for each scenario, it was required to build multiple images since each one

represents a state among the interface manipulation. In that way, interactions were added

to the components to configure the images sequence, as can be observed in Figure 6.19.

In total, 291 images were created and, multiple interactions between them were con-

figured, in order to reach a prototype that could be tested in all scenarios.

82

6.2. PAPER PROTOTYPE

Figure 6.14: Alternative provided to open the attribute context menu.

Figure 6.15: New sub-editor into the sources view to add aggregation functions and group
bys.

Figure 6.16: New sub-editor into the sources view to add calculated attributes.

83

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.17: Sources of a query where a group by and a SUM aggregation function were
applied.

Figure 6.18: Final Paper Prototype before scanning it.

84

6.2. PAPER PROTOTYPE

Figure 6.19: Brief example of a small part of the interaction configuration in InVision in
order to allow to test the Paper Prototype in a fluid way.

6.2.3 Evaluation

After completing the implementation of the Paper Prototype, the user testing phase has

started. This prototype was tested with 5 users of each user group to perform a qualitative

analysis regarding the changes applied in the interface. The testing methodology used

was the same used to test the existing interface evaluation, completely described in section

5.1.5. Accordingly, the Zoom [82] meeting solution was used to share and record the

screen, showing the Paper Prototype built in InVision [48], thus users managed to interact

with the prototype using the Zoom remote control feature. In that way, the aim, at this

stage, was to map the improved aspects and details which require a redesign in the

following phase.

Understanding the user’s profile:

The profile of each user was identified through a survey where users answered some

questions concerning their background namely regarding OutSystems, SQL, and data

tools. This information was useful to attribute each user to his respective user group

according to his knowledge in relational databases and OutSystems development.1

The detailed information about the usability test participants’ profile (15 participants)

are presented in Table B.2 of Appendix B - Usability Tests Results.

Preparation of the test:

The testing process started with a brief explanation of the data model used across the

tests. The communication used to explain the data model was adapted according to the

relational database knowledge each user has. When users confirmed they comprehended

the data model and the aim of the tasks they started using the interface according to

the testing scenarios. More details about the evaluation method adopted and the testing

scenarios planned were already described in sections 4.5 and 4.4 respectively.

1A complete definition of each user group is provided in section 5.2.

85

CHAPTER 6. DESIGN AND IMPLEMENTATION

Table 6.1: Average of the success rate of all scenarios by user group (Paper Prototype
usability tests - 15 users).

User Group Not Achieved
Partially
Achieved

Achieved

OutSystems Developer 11.43% 2.86% 85.71%
Software Developer 14.29% 8.57% 77.14%
Citizen Developer 28.00% 4.00% 68.00%
Total 17.90% 5.14% 76.95%

Observation during the test:

During the test, it was performed a direct observation of users interacting with the

system to accomplish the tasks proposed in the scenarios planned. Thereby, a spreadsheet

was used to manually register all aspects evaluated in each scenario that was previously

enumerated in Table 4.4.The results considered relevant to the usability improvement

will be presented below.

In summary, the achievement of the goals of each scenario was registered (effectiveness

metrics) as well as the time users spent in each scenario (efficiency metrics). Moreover,

as there was scenarios built to test specific problems and functionalities of the interface,

specific notes and metrics regarding these functionalities studied were also registered.

Results:

Regarding the achievement of the tasks proposed, Table 6.1 summarizes the effec-

tiveness results of users by each user group (evaluation point S1 of Table 4.4). As can

be observed, there were positive results concerning the achievements of the tasks’ goals

since 76.95% of users managed to reach the intended goals. Full results are detailed in

table B.5 of Appendix B - Usability Tests Results.

By observing users using the interface, the new sub-editors layout applied was ac-

cepted positively by the users, even the ones who were more accustomed to the previous

tab layout. Although, at a first glance, some users claimed feeling overloaded with in-

formation, they mentioned, that seeing all query structure in a short visualization area

above was useful. Other feedback pointed out was that it could be useful to resize the

dimensions of each sub-editor area.

Regarding the query result preview, a set of users did not manage to comprehend

which attributes belong to the query output against the ones that were only a preview

to understand the aggregations or group bys applied 2. Even though it was difficult to

distinguish the two elements of the query result, since it was used a low expressiveness

in terms of color, this constraint will be taken into account in the next design iteration

since more styling and color resources will be available.

2As mentioned in section 2.2.2.2 and exemplified in Figure 2.10, the query output preview not only
presents the attributes that belong to the query output but also a preview of the data related to the aggregated
attributes.

86

6.2. PAPER PROTOTYPE

Table 6.2: Evaluation point S8: Readability of the foreign keys used to join entities that
could be joined using different attributes. (Paper Prototype usability tests - 15 users)

Foreign Key Identification Identified Did not Identify Did not see the Join

OutSystems Developer 86.67% 13.33% 0.00%
Software Developer 66.67% 33.33% 0.00%
Citizen Developer 80.00% 20.00% 0.00%
Total 77.78% 22.22% 0.00%

As predicted in the design and implementation phases of this prototype, the com-

pletely redesigned sources editor triggered different points of view and interesting feed-

back for the next iteration design phase.

Therefore, the following points describe the information collected with respect to the

users’ comprehension of this new representation:

• Some users misinterpreted the joins of some queries due to the indentation used

to represent them. For instance, in the example shown in Figure 6.18, some users

indicated that "Office"was joined with "Department", when "Office"was joined with

"Employee"(evaluation point S5 of Table 4.4);

• Some users did not manage to understand what the foreign key label was, until they

need to select one of them in the formulation scenario. That way, the representation

of this element should be reevaluated to make it more clear. Nevertheless, the

results concerning the identification of the foreign key, presented in Table 6.2, are

positive since considering all user groups 77.78% of users have identified correctly

the foreign key in the causes that entities could be joined using different attributes

(evaluation point S8 of Table 4.4). Therefore, although the positive results, the lack

of intuitiveness regarding the foreign key presentation perceived by users when

they observed the interface at the first sight was considered as an aspect to improve

in the following design iteration;

• Regarding the join conditions simplification, it was identified an increased aware-

ness, when compared to the existing interface, to perceive that there were two

representations of join conditions, as shown in Figure 6.13. The majority of users

did not manage to understand the meaning of these different visual representations,

which intended to differentiate joins automatically generated from the ones manu-

ally edited, as Table 6.3 points out since only 26.67% of users have identified clearly

the join purpose (evaluation point S7 of Table 4.4).

Furthermore, the following aspects were captured from observing users trying to

formulate queries:

• As expected, the foreign key selection method presented in Figure 6.12 has opti-

mized the effectiveness of the formulation scenario (evaluation point S22 of Table

87

CHAPTER 6. DESIGN AND IMPLEMENTATION

Table 6.3: Evaluation point S7: Readability rate of the join which represents the case
where two entities were merged using a left join and the conditions specified the that the
primary key of the right enitity must be null. (Paper Prototype usability tests - 15 users)

Left Join with Null Identifier
Comprehension

Identified Did not Identify Did not see the Join

OutSystems Developer 40.00% 60.00% 0.00%
Software Developer 20.00% 80.00% 0.00%
Citizen Developer 20.00% 80.00% 0.00%
Total 26.67% 73.33% 0.00%

4.4). Since users were asked to choose between the existing foreign key, they were

able to select the correct one. The results presented in Table 6.4 illustrates the effect

of the improvement made in the interface since all users have selected the correct

foreign key to indicate the properly join the formulation case that was necessary to

add a join to merge two entities that could be joined using three different foreign

keys;

• Concerning the two new buttons to add aggregation functions, group bys, and

calculated attributes, it was concluded that, the results have enhanced, but some

drawback aspects were identified (evaluation points S14 and S24 of Table 4.4). Users

who have never used the system, found these features easy since the two buttons

became visible in the interface. However, they continue to make misunderstand

when they needed to use a calculated attribute or the aggregation function:

– Insert Calculated Attribute: The users’ acceptance to the new options provided

to insert calculated attributes was positive. Not only users who not have al-

ready used the query builder have less difficulty to create new attributes, since

only 20% of Software Developers and 40% of Citizen Developers had difficulty

to find the options and the remaining ones managed to added it intuitively,

as detailed in Table 6.5, but also the new options provided were used by Out-

Systems Developers who are accustomed to use the previous query builder

interface. As Table 6.6 demonstrates, the new button added on the bottom

of the sources view was used by 86.67% of users. Besides, even 80% of the

OutSystems Developers, who knew the existence of a button on the final of

the query result table, preferred to use the new option to add the attribute,

so that the acceptance of that changes was positive not only to mitigate learn-

ability problems of users who had not found the option before in the existing

interface, but also for expert users that preferred this option more accessible.

Finally, some users referred that they felt a reduced necessity to confer the Data Model

while they were building queries, since the new sources representation shown how enti-

ties were related with each other

88

6.3. SERVICE STUDIO IMPLEMENTATION

Table 6.4: Evaluation point S22: Selection of the foreign key, in the formulation scenario,
used to join entities that could be joined using different attributes. (Paper Prototype
usability tests - 15 users)

Foreign Key Selection Selected Did not Select Did not Add the Join

OutSystems Developer 100.00% 0.00% 0.00%
Software Developer 100.00% 0.00% 0.00%
Citizen Developer 100.00% 0.00% 0.00%
Total 100.00% 0.00% 0.00%

Table 6.5: Evaluation point S14: Success rate of users when they needed to add a calcu-
lated attribute. (Paper Prototype usability tests - 15 users)

Insert Calculated Attribute Added Successfully Difficulty to Add Could not Add

OutSystems Developer 100.00% 0.00% 0.00%
Software Developer 80.00% 20.00% 0.00%
Citizen Developer 60.00% 40.00% 0.00%
Total 80.00% 20.00% 0.00%

Table 6.6: Evaluation point S16: Options used by users to insert the calculated attribute
in the context of the M1 scenario. (Paper Prototype usability tests - 15 users)

Option used to insert the
calculated attribute

Add button on
the bottom of the
Sources View

Right click in the
attributes tree
(Sources View)

Add button on the
result table (after
all attributes)

OutSystems Developer 80.00% 0.00% 20.00%
Software Developer 100.00% 0.00% 0.00%
Citizen Developer 80.00% 20.00% 0.00%
Total 86.67% 6.67% 6.67%

In conclusion, the general success results of the 15 users performing the proposed

scenarios were positive although the improvement topics already stated. Therefore, the

design implemented in the paper prototype was considered favourable to optimize the

usability of the interface for the different user groups analyzed. In that way, the following

prototyping iteration will take into account the feedback users provided in this evaluation

stage as well as the results obtained.

6.3 Service Studio Implementation

As mentioned in section 2.2.1, Service Studio is the IDE integrated in the OutSystems

Platform that allows users to build full applications using the low-code programming

paradigm. In that way, the last iteration of the design process, and consequently, the final

prototype elaborated in this dissertation, was a functional prototype of the query builder

completely integrated into the code of the Service Studio.

89

CHAPTER 6. DESIGN AND IMPLEMENTATION

Nevertheless, Service Studio was getting a major facelift to achieve a new revamped

and refreshed design. Even though the new Service Studio design has not been released

yet, the development of the final prototype was decided to be done using the new Service

Studio look. In that way, the interface of the query builder developed could be easily

integrated later on the OutSystems Platform. Figure 6.20 illustrates the design used as

the starting point for the final prototype development. As can be observed, is a redesigned

version of the previous Service Studio design illustrated before in Figures 2.3 and 2.5

Figure 6.20: The new design of the Service Studio and its Visual Query Builder.

Despite the new design of all interface elements and components, the core behav-

iors and interactions of the interface remained, so the same design and implementation

intentions to be applied in this new phase of development were maintained.

6.3.1 Design

Following the same methodology used in the Paper Prototype, the building process of

this solution started with the design phase. In this phase, the paper prototype evaluation

outcomes were deliberated in order to define and prioritize the aspects to be tackled in

the final prototype.

First of all, the source code of the Service Studio was explored in order to plan the

development that could be done in the available time. As explained in the presentation

of the paper prototype, the development aspects were planned according to their impact

on the final interface. Ideas that fundamentally alter the experience of using the interface

will be considered a priority, since, is primarily important to perceive how users react to

those changes when testing the interface. Minor features and enhancements could also be

considered as future work if the new interface solution evaluation show positive results.

Taking into account the evaluation of the Paper Prototype, the sources editor was

90

6.3. SERVICE STUDIO IMPLEMENTATION

considered the main focus of the design phase of the Final Prototype. As referred, during

the usability tests of the paper prototype, the sources view has revealed positive results,

but it was concluded that it should be refined regarding some aspects, mainly the joins

representation which were not completely clear for a set of users.

Nevertheless, in order to implement the new interface representation of entities and

joins, a considerable implementation effort would be required. The visualization area

requires a personalized hierarchical view that should be built from scratch, since there is

no similar element in the rest of the Service Studio.

Accordingly, before implementing any idea, a robust design should be established in

order to avoid wasting implementation time on doing and redoing ideas. Therefore, more

designs were performed, regarding the sources editor of the interface, using the product

design system components. Basically, it was used the Figma [46], which is a design tool

where all the new Service Studio components were designed, to explore concrete options

to represent sources and solve the problems found when users tested the Paper Prototype.

By this means, it was possible to obtain a high-fidelity design faster and perceive what

solution could most fit the existing requirements.

After exploring multiple alternatives, the options illustrated in Figure 6.21 were con-

sidered the most valuable. The main difference between them is the way joins are rep-

resented. In Option A, the join is represented in a single line placed between the two

entities involved. In Option B, the join condition is represented after the second entity

involved in the join. Lastly, in Option C, the second entity is presented on the right of the

join kind.

In order to decide an option, the following topics were taken into account:

• Reading flow: The flow of the entities and joins was considered important, espe-

cially due to the representation of the join kind. As this was presented in natural

language, users should manage to read sequentially, first the entity, than the join,

and after the second entity, all in a fluid way. Due to the arrangement adopted, the

Option C was considered the most clear regarding this aspect since the second entity

is placed in the right side of the join kind. In that way, the users reading affordance

will unconsciously help them to understand the reading flow, since becomes more

natural due to the similarities with natural languages;

• Width and height required: The space that each option would occupy was impor-

tant to analyze for the accommodation in the interface. Comparing the options

presented, it can be concluded that the Option A and Option B would require more

height, and the Option C more width;

• Emphasis: The used representation may end up giving more prominence to certain

elements even though they were not built for that purpose. Accordingly, it was

verified the aspects of the interface which would stand out at a first glance. In

Option A and Option B, joins are more highlighted since there are specific lines to

91

CHAPTER 6. DESIGN AND IMPLEMENTATION

StructureAttribute
StructureAttribute

Entity

EntityKeyAttribute
EntityAttribute
EntityAttribute
EntityAttribute
EntityRefAttribute

Only with Join Condition

Entity

Only with Join Condition

Entity

Only with Join Condition

Entity

(a) Option A

StructureAttribute
StructureAttribute

Entity

EntityKeyAttribute
EntityAttribute
EntityAttribute
EntityAttribute
EntityRefAttribute

Only with
Entity Join Condition

Only with
Entity Join Condition

Only with
Entity Join Condition

(b) Option B

StructureAttribute
StructureAttribute

Entity

EntityKeyAttribute
EntityAttribute
EntityAttribute
EntityAttribute
EntityRefAttribute
Only with Entity Join Condition

Only with Entity Join Condition
Only with Entity Join Condition

(c) Option C

Figure 6.21: High-fidelity design ideas built in Figma to present the sources of the query.

represent them. Conversely, in the Option C the join is presented in the same line

of an entity, which makes entities stand out, in general. Therefore, the Option C

was considered the most appropriated to highlight entities at a first sight.

Reflecting on the topics presented, the evaluation of the advantages and disadvantages

of each option was conducted, the Option C was elected, as preferred, since it provides a

clear readability and highlights the entities used in the query. Despite it requires more

width space in the interface, mainly if there are multiple joins nested, these disadvantages

could be mitigated in the future if the join conditions would be simplified or represented

in a different way.

Regarding the remaining elements of the interface, the design approaches applied

in the Paper Prototype improved the usability of the interface. As a result, the design

concerning filters, sorting and the query result table have followed the ideas already

detailed in section 6.2.

92

6.3. SERVICE STUDIO IMPLEMENTATION

6.3.2 Implementation

Bearing in mind the ideas explored in the paper prototype, and taking in account the

evaluation performed with users, as well as, the high-fidelity design ideas built in Figma,

the system started to be implemented in React [69], Typescript [55] and C#.

General layout:

Following the methodology used in the previous prototype, the first stage of the

development process was to switch the tabs by an equivalent edition area with the three

components visible at once (sources, filters, and sorting), as can be observed in Figure

6.23. Also, the existing scroll problem identified, illustrated in Figure 6.22, (i.e., when

users wanted to scroll the table horizontally to see the columns in overflow, the edition

area above disappears) was solved. As a result, they are able to see all the components

of the edition area and the information in the query result table at the same time. This

change was important to reduce the users’ working memory overload since they have the

information they need visible.

Figure 6.22: Horizontal scroll problem in the existing interface: when users use scroll the
see the columns at the right side, the editors are not fixed above.

Sources View:

As approached in the section above, the sources and joins editor has been completely

redesigned. Since the design elaborated for this interface area presents multiple compo-

nents using some indentation and nesting, the React components were structured before

the implementation, they were organized, as shown in Figure 6.24, in order to guarantee

the feasibility of the arrangement created.

The ”SourcesAndJoinsEditor” is the parent component that contains all query sources.

This component includes two areas: a list of ”DataSetAttribute”, which are the attributes

of the query result added throughout the query formulation, such as aggregated attributes,

group bys, or calculated attributes, and a component ”Sources” that represents all entities

and joins of the query.

As the presentation of the entities and joins depends on the joins and the entities

involved in the query, due to the indentation and nesting applied whenever an entity is

93

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.23: Interface after removed the tabs and expanded them in three areas visible at
the same time.

StructureAttribute
StructureAttribute

Entity

EntityKeyAttribute
EntityAttribute
EntityAttribute
EntityAttribute
EntityRefAttribute
Only with Entity Join Condition

Only with Entity Join Condition
Only with Entity Join Condition

DataSetAttribute

SourcesAndJoinsEditor
DataSetAttributes

Sources

Sources

Source

Source

Join

Join

JoinSource

Source

Figure 6.24: Structure of the React components created to dispose the sources.

94

6.3. SERVICE STUDIO IMPLEMENTATION

joined with another already presented above, it was necessary to create some logic in the

”Sources” component to present the entities with the design intended.

Therefore, the ”Sources” renders the first entity added to the query, and after that, it

iterates along the joins of the query to represent the ones that are related to the entity

already rendered. For each join related to an entity, it is presented the join specification

(i.e. join kind and join condition), however when the join is being generated, it is verifies

if the entity joined to the previous one is related to more entities. In those cases, other

”Sources” is rendered to represent the remaining sources. Figure 6.25 exemplifies the

result of the interface implemented at this stage.

Figure 6.25: Example of the sources view implemented at this stage.

Nevertheless, as referred in section 6.2.2, the join conditions which were generated

automatically by the system were simplified. In those cases, the join conditions, on the

existing interface, presented the primary key of an entity equal to a foreign key of the

other entity, however since the characteristics of this formulation shown drawbacks for

the users fully comprehension, it was designed a simplified version of the join condition.

In this simplified version, only the foreign key is presented. If the join between the two

entities could be made through different foreign keys, the foreign key used is presented

in a dropdown, which allows users to change to another key if they intend. An example of

a query with these dropdowns is presented in Figure 6.26. Through that approach, users

not only can change that query aspect faster but also the data model could be perceived

without consulting it directly, since the dropdown is an indicator that there are multiple

attributes that could be used to join the two entities.

Furthermore, for users who open a query already created, it is important to perceive

if any join condition was edited manually before in order to mitigate miscomprehensions

of the query purpose. In that way, it was decided to represent distinctively, the conditions

for these joins, whose condition was edited manually, in order to differentiate them from

95

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.26: Example of a query were there are joins that could be applied using different
foreign keys to merge the two entities, so the user can use the dropdown to choose the
intended one.

the ones generated automatically. Figure 6.27 shows an example of a query where a join

condition was edited manually.

Figure 6.27: Example of a query that contains a join condition edited manually: The join
condition between ”Sample_Employee” and ”Sample_Notif ication” was edited so this
condition was not simplified as the other ones.

Finally on this point concerning the foreign keys of the joins, there was a problem

in the existing interface which could lead users to make semantic errors while they are

formulating queries that uses entities which could be joined using different foreign keys.

As explained in section 6.2.2, the existing interface did not ask users which foreign key he

96

6.3. SERVICE STUDIO IMPLEMENTATION

wants to use. Consequently, the idea adopted in the paper prototype (Figure 6.12), which

had leveraged the results for the user testing in a positive way, continued to this phase,

where a modal appears in cases where there are multiple foreign keys, asking user which

attribute he would want to use to merge the entities, as demonstrated in Figure 6.28.

Figure 6.28: Modal that asks user which foreign key attribute he wants to use to
merge the two entities. In the example illustrated, the user has already added
”Sample_Notif ication” and ”Sample_Employee”, and when he added ”SampleAccount”
the interface showed the modal presented since there are three references of employees
on the account entity: ”CreatedBy”, ”Manager”, and ”Owner”.

Moreover, the ”Source” component was changed to present every entity as a tree node

which contains the name and icon of each attribute as a child. Besides, not only a context

menu, available when users right-click in each entity attribute, was added, as Figure 6.29

exemplifies, but also an option to click on the attribute to highlight it on the query result

preview. In that way, there is a possibility to find and add query options easier, since the

table auto-direct the user to the intended attribute, promoting a more quick right-click

on the attribute to apply aggregation functions, group bys, filters, sorting, or even to hide

it.

New alternatives to add and search for attributes:

Nevertheless, these options not only are interesting alternatives to access these func-

tionalities of the query builder, but also add a visible way to access these options, which

will improve the adoption of new users when they try to use the system. As stated be-

fore, these options were added in the Paper Prototype, as illustrated in 6.15 and 6.16.

However, as mentioned in section 6.2.3, some users did not understand if they would

need to add a calculated attribute or an aggregated attribute. Consequently, the button

labels were changed to provide a more imperative and informative message related to the

action accessible through each button. In that way, "Add Aggregation / Group By"was

changed to "Group Data"and "Add Calculated Attribute"was changed to "New Attribute",

to reinforce that using the "Group Data"button users can combine data of an attribute

97

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.29: Attributes of each entity and interactions accessible using the right click to
trigger the context menu.

(a) New Attribute (b) Group Data

Figure 6.30: Tooltips of the two new buttons added.

merging its rows, and in "New Attribute", they can add a new attribute calculated from

the existing ones to the query result. Besides, tooltips were also added to each button in

order to clarify the users who were confused about what function they intend. Figure

6.30 illustrates the two buttons and the respective tooltips added.

When a user click on the "Group Data"button the area, the interface shows a new

area where the user can select the attribute and the functions he could apply to the

attribute according to the attribute data type. Figure 6.31 demonstrates this new designed

functionality of the system. This option is advantageous not only for users who are not

familiarized with the system, who can see a visible option to group data, but also is it

provides a faster way to add multiple group bys or aggregation functions since in a short

area of the interface users can group data of several attributes without the need to search

horizontally through the query result.

The "New Attribute"button allows users to add calculated attributes in the same way

they could add it before using the button available at the right side of all columns (in

most times hidden due to the overflow). However, this button not only is more visible

98

6.3. SERVICE STUDIO IMPLEMENTATION

Figure 6.31: New alternative to group data.

but also is more accessible.

The attributes added through these two buttons over the query formulation process

are presented in the "Sources"tab, as illustrated in Figure 6.32. This representation is

advantageous since users can read more information about how those attributes were

added because there are visible information about the attributes and the formulas used

to insert them.

Figure 6.32: Example of a query that contains a group by (”Id”), an aggregation function
(”BalanceAvg”) and a calculated attribute (”EmployeeFullName”).

In the same way, the query result table headers of these attributes were changed

not only to improve their readability but also to maintain the consistency with the new

99

CHAPTER 6. DESIGN AND IMPLEMENTATION

(a) Existing Interface (b) Service Studio Prototype

Figure 6.33: Comparison between the table headers of the existing interface and the new
ones (two group bys and one aggregated attribute, from the left to the right).

area visible in sources. Figure 6.33 compares the header representation of an aggregated

attribute, a group by, and a calculated attribute in the existing interface to the new one.

As can be observed, the reference of the source attribute used to group data was added

to the group bys and aggregation function, since before it was difficult to perceive which

attributes were grouped in the query. Moreover, the function symbol of aggregation

functions was removed since no formula is inserted in these attributes and several users

tried to click on the function symbol to open some formula.

6.3.3 Evaluation

The final evaluation phase elaborated in the context of this dissertation was the usability

tests of the final prototype, using the same methodology and testing scenarios used to

test the existing interface and the paper prototype. Accordingly, the Final Prototype was

tested with 30 users (10 users of each user group) under a remote environment supported

by the Zoom [82] meeting solution and its feature of sharing and recording the presenter’s

screen.

Understanding the user’s profile:

The profile of each user was identified through a survey where users answered some

questions concerning their background namely regarding OutSystems, SQL, and data

tools. This information was useful to attribute each user to his respective user group

according to his knowledge in relational databases and OutSystems development.3

The detailed information about the usability test participants’ profile are presented

in Table B.3 of Appendix B - Usability Tests Results.

Preparation of the test:

The testing process started with a brief explanation of the data model used across the

tests. The communication used to explain the data model was adapted according to the

relational database knowledge each user has. When users confirmed they comprehended

3A complete definition of each user group is provided in section 5.2.

100

6.3. SERVICE STUDIO IMPLEMENTATION

Table 6.7: Evaluation point S1: Average of the success rate of all scenarios by user group
(Final Prototype usability tests - 30 users).

User Group Not Achieved
Partially
Achieved

Achieved

OutSystems Developer 12.86% 5.71% 81.43%
Software Developer 21.43% 10.00% 68.57%
Citizen Developer 42.00% 8.00% 50.00%
Total 25.43% 7.90% 66.67%

the data model and the aim of the tasks they started using the interface according to

the testing scenarios. More details about the evaluation method adopted and the testing

scenarios planned were already described in sections 4.5 and 4.4 respectively.

Observation during the test:

During the test, it was performed a direct observation of users interacting with the

system to accomplish the tasks proposed in the scenarios planned. Thereby, a spreadsheet

was used to manually register all aspects evaluated in each scenario that was previously

enumerated in Table 4.4.The results considered relevant to the usability improvement

will be presented below.

In summary, the achievement of the goals of each scenario was registered (effectiveness

metrics) as well as the time users spent in each scenario (efficiency metrics). Moreover,

as there was scenarios built to test specific problems and functionalities of the interface,

specific notes and metrics regarding these functionalities studied were also registered.

Results:

In that way, the users tried to accomplish the tasks integrated in the testing scenarios,

and all this interaction process was analyzed in order to perceive the difficulties they had

as well as to register usability metrics that could allow to characterize the success of the

prototype built and compare it with the previous visual querying solution.

Regarding the achievement of the tasks proposed (evaluation point S1 of Table 4.4),

Table 6.7 summarizes the effectiveness results of users by each user group. The positive

results about the tasks achievement were positive since 66.67% of users managed to reach

the intended goals and 7.90% partially achieved the goal. The complete list of results are

presented in table B.6 of Appendix B - Usability Tests Results.

The users who use to the previous interface, have reacted positively to the new inter-

face layout without tabs and the three areas always visible. They reinforced that in the

previous interface it was very cumbersome to interpret or formulate queries using the

tabs since they did not have a query overview anytime.

In general, users who have some relational database foundations managed to compre-

hend effortlessly the new sources view, which presents all entities in a tree and promotes

a more simple and compact view of the entities and joins included in the query, and

101

CHAPTER 6. DESIGN AND IMPLEMENTATION

pointed out that the arrangement used allow to perceive faster the query purpose since it

is possible to visualize which entities are related with each other.

The changes applied to the foreign key used in the joins generated automatically have

impacted positively the users’ success rate performing scenarios that contain these cases.

For example, as Table 6.9 details, the 58.89% of users have identified the foreign keys

used to merge tables that could be linked using different attributes (evaluation point

S8 of Table 4.4). On the other hand, the modal added to ask user which foreign key he

intend to use when there are multiple available options to create the automatic join, have

improved the effectiveness of the join insertion for these cases (evaluation point S22 of

Table 4.4). For instance, Table 6.10 demonstrates the effectiveness of the join specification

of the F1 scenario where is necessary to join two entities using a specific foreign key

and these two entities have three relationships linking each other. As it can be observed,

the results are very positive since 96.67% of users have joined the two entities used the

required foreign key. In that way, this change of the interface have leveraged the guidance

that the interface could give to users reaching their goals, mainly in these cases where a

distraction could lead to query the wrong data, turning the interface less error-prone.

Nevertheless, the approach used to distinguish the joins generated automatically to

the ones that were edited manually and have a more complex condition have not revealed

positive results (evaluation point S7 of Table 4.4). As Table 6.11 presents, in the use case

used to present a join edited manually, only 16.67% of users have successfully interpreter

the join purpose.

Regarding the operations which were identified as difficult to find by users who have

never used the query builder neither visualize any tutorial video concerning it (add group

by, aggregation function or calculated attributes), the majority of users managed to find

intuitively the options to access this functions in the scenarios they needed it.

As presented in table 6.8, 83.33% of users added calculated attributes when necessary

without difficulties and no user did not manage to add it (evaluation points S14 of Table

4.4). At the same way, users have fewer difficulties to apply aggregation functions and

group bys, since the two buttons were visible in the interface and they found them easily.

In that way, the main cause for users did not manage to group data was the lack of

relational database knowledge.

The new functionality added that allow users to search for a specific attribute and

apply operations using the attributes tree was not found intuitively. Several users thought

that the "triangle"buttons to expand the attributes of an entity were to add information

regarding the join of the entity and the nested one.

However, after ending the test, this functionality was demonstrated to the users and

they revealed that is very useful although they did not discover the feature by themselves.

In that way, it is necessary to add some introduction to indicate that this functionality is

available or study other representations that could be more intuitive for users.

In conclusion, Figure 6.34 summarize the average of the success of each user group in

each scenario as well as the total average (evaluation point S1 of Table 4.4). OutSystems

102

6.3. SERVICE STUDIO IMPLEMENTATION

Table 6.8: Evaluation point S14: Success rate of users when they needed to add a calcu-
lated attribute. (Final Prototype usability tests - 30 users)

Insert Calculated Attribute Added Successfully Difficulty to Add Could not Add

OutSystems Developer 100.00% 0.00% 0.00%
Software Developer 70.00% 30.00% 0.00%
Citizen Developer 80.00% 20.00% 0.00%
Total 83.33% 16.67% 0.00%

Table 6.9: Evaluation point S8: Readability of the foreign keys used to join entities that
could be joined using different attributes. (Final Prototype usability tests - 30 users)

Foreign Key Identification Identified Did not Identify Did not See the Join

OutSystems Developer 86.67% 13.33% 0.00%
Software Developer 50.00% 50.00% 0.00%
Citizen Developer 40.00% 40.00% 20.00%
Total 58.89% 34.44% 6.67%

Table 6.10: Evaluation point S22: Selection of the foreign key, in the formulation scenario,
used to join entities that could be joined using different attributes. (Final Prototype
usability tests - 30 users)

Foreign Key Selection Selected Did not Select Did not Add the Join

OutSystems Developer 90.00% 0.00% 10.00%
Software Developer 100.00% 0.00% 0.00%
Citizen Developer 100.00% 0.00% 0.00%
Total 96.67% 0.00% 3.33%

Developers achieved 81.43% of the scenarios, Software Developers 68.57%, and Citizen

Developers 50%. Considering all user groups, 66.67% of the scenarios were completely

achieved and 7.90% have not completely achieved due to the lack of some peculiarities.

The success was classified according to the Table 4.5 already presented and the description

of user testing scenarios and user groups which are detailed in section 4.4 and in section

5.2 respectively.

Table 6.11: Evaluation point S7: Readability rate of the join which represents the case
where two entities were merged using a left join and the conditions specified the that the
primary key of the right enitity must be null. (Final Prototype usability tests - 30 users)

Left Join with Null Identifier
Comprehension

Identified Did not Identiy Did not seen the Join

OutSystems Developer 30.00% 70.00% 0.00%
Software Developer 20.00% 70.00% 10.00%
Citizen Developer 0.00% 90.00% 10.00%
Total 16.67% 76.67% 6.67%

103

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.34: Evaluation point S1: Average of the success rate of all scenarios by each user
group (Final Prototype usability tests - 30 users).

6.4 Results Analysis

Since the goal of this dissertation is the usability improvement of the visual query build-

ing interface approached in this study, the results of the usability tests were analyzed

regarding three attributes of usability: effectiveness, efficiency, and satisfaction.

In that way, the purpose of this section is to compare the usability of the final pro-

totype with the usability of the existing interface, measured before starting the solution

building. Accordingly, the results obtained in usability tests of the existing interface, pre-

sented in section 5.1.5, were compared against the results extracted from usability tests of

the final Service Studio prototype, presented in section 6.3.3. The test environment was

the same for both tests where 30 users (10 of each user group) tested the existing interface

and different 30 users (also 10 of each user group) tested the final prototype. Accordingly,

this section will present a comparison of the gathered metrics in the evaluation of the two

interfaces.

6.4.1 Effectiveness

Regarding the problems of the interface, identified throughout the evaluation phases of

the iterative design, it was identified that users have improved their success perceiving the

details considered critical in the first evaluation. Figure 6.35 illustrates the comparisons

of the aspects described below between the existing interface and the final prototype:

• Insert calculated attribute (Figure 6.35a): When users performed the scenario

which required a calculated attribute insertion, in the existing interface, the users

who knew how to do it in the existing interface (OutSystems Developers) managed

to insert it, but the majority of other users did not manage to add the calculated

104

6.4. RESULTS ANALYSIS

attribute or had difficulties discovering how to add it. For instance, in the existing

interface 20% of the citizen developers, 92% of the OutSystems Developers and

20% of the software developers added successfully the calculated attribute without

difficulty. The results were more positive when users used the final prototype since

80% of citizen developers, 100% of OutSystems developers, and 70% of software

developers managed to add successfully the intended calculated attribute without

difficulty. In conclusion, the new, and more visible option, mitigated the learnability

problem identified in the existing interface, since in the final prototype not only the

majority of users could successfully add the calculated attribute but also used the

new button to add calculated attributes, as you can confirm in table 6.12;

• Left join with null identifier readability (Figure 6.35b): The strategy adopted to

distinguish the joins generated automatically to the ones edited manually did not

fulfill the expected effectiveness. The join presented in scenario C1, to select only

the employees who have never created notifications (one entity left joined, with

another entity and the condition defining that the primary key of the second entity

must be null), was not comprehended by most of users. In spite of the number of

users who successfully interpreted this joins have quite duplicated for OutSystems

developers (from 17% to 30%) and Software Developers (from 10% to 20%), the

values continue to be low. Consequently, the way these joins are presented is an

aspect that should be further improved;

• Foreign key selection (Figure 6.35c): The modal implemented to force users to

choose the foreign key, to join two entities, everytime the foreign key could not be

foreseen due to the multiple hypotheses available, have revealed outstanding posi-

tive results in the correct join formulation. For the scenario F1, the success rate on

adding correctly one of these joins that could be formulated using different foreign

keys was 22%, 50%, and 40% (Citizen Developers, OutSystems Developers, and

Software Developers, respectively) in the existing interface. The values registered

by observing the number of users interacting with the final prototype were much

more favorable since 100% of Citizen Developers, 90% of OutSystems Developers,

and 100% of Software Developers added these joins correctly;

• Foreign key readability (Figure 6.35d): The new representation of joins, which

highlights the foreign key used, have leveraged the number of users who have cor-

rectly interpreted the joins of the query. Concerning the comprehension scenarios

C2 and C4 that contained queries that included joins that could have been built by

different foreign keys, it is important to highlight the foreign key used to link the

entities in order to completely comprehend the query. With the highlight gave to

the foreign keys in these cases, through the usage of a dropdown list, the foreign

key identification success rate have more than duplicated, passing from 0%, 28%

and 20% of Citizen Developers, OutSystems Developers, and Software Developers,

105

CHAPTER 6. DESIGN AND IMPLEMENTATION

(a) Insert calculated attribute (evaluation point
S14)

(b) Left join with null readability (evaluation
point S7)

(c) Foreign key selection (evaluation point S22) (d) Foreign key readability (evaluation point S8)

Figure 6.35: Comparison of the effectiveness between the Existing Interface (on the left
side of each chart) and the Final Prototype (on the right side of each chart), regarding
specific use cases.

Table 6.12: Evaluation point S16: Options used by users to insert the calculated attribute
in the context of the M1 scenario. (Final Prototype usability tests - 30 users)

Option used to insert the
calculated attribute

Add button on
the bottom of the
Sources View

Right click in the
attributes tree
(Sources View)

Add button on the
result table (after
all attributes)

OutSystems Developer 50.00% 20.00% 30.00%
Software Developer 90.00% 10.00% 0.00%
Citizen Developer 100.00% 0.00% 0.00%
Total 80.00% 10.00% 10.00%

respectively, in the existing interface to a success rate of the correct comprehension

of 40%, 87%, and 50%.

The results of all scenarios and all users were combined, in order to evaluate the

differences of the success rate that users achieved with the existing interface and with

the final prototype (evaluation point S1 of Table 4.4). Thereby, Figure 6.36 presents the

average of the success rate, considering all user groups (defined in section 5.2.2), all

106

6.4. RESULTS ANALYSIS

scenarios, described in section 4.4, and the success rate labelling, presented in table 4.5.

The changes applied in the interface have leveraged the values of the success rate. In

the existing interface only 36% of the scenarios were completely achieved and in the final

prototype the percentage of the scenarios completely achieved was 68%.

Figure 6.36: Evaluation point S1: Effectiveness Comparison between the existing inter-
face and the final prototype. (Comparing the 30 users who tested the existing interface
with the other 30 users who tested the final prototype)

Analysis of Variance (ANOVA)

Furthermore, two one-way analysis of variance (ANOVA) were performed to deter-

mine if there are statistically significant differences between the mean users’ success rate

and the mean users’ fail rate, using the existing interface and the final prototype.

Achieved Scenarios: Accordingly, the first ANOVA was computed to determine if the

users’ success rate (based on the percentage of achieved scenarios - stats presented in

table 6.13) means are statistically different between the existing interface and the final

prototype.

H0 - "There is no significant difference between the mean of achieved scenarios rate, in

the existing interface and in the final prototype"

A one-way ANOVA, between subjects, was conducted (table 6.14 to compare if the

mean between the samples are equal. In a 95% confidence interval, the null hypothesis

is rejected, meaning that the two means are statistically different between the two tests

(p − value = 1.24E − 06 < 0,05). Therefore, it can be concluded that there is a statistically

significant difference in terms of the achieved scenarios between the existing interface

and the final prototype tests.

Not achieved scenarios: Since the method used to classify the success rate of the users

while they performed the usability tests was not only yes or no answers but three types

(achieved, partially achieved, and not achieved), the opposite of the achieved analysis is

not the not achieved. In that way, another ANOVA analysis was performed concerning

the not achieved scenarios in order to measure if users could formulate and comprehend

107

CHAPTER 6. DESIGN AND IMPLEMENTATION

Table 6.13: Summary of the statistically data regarding the achieved scenarios in the
existing interface and in the final prototype.

Groups Count Sum Average Variance

Achieved scenarios rate on
the existing interface

30 10.4857 0.3495 0.0519

Achieved scenarios rate on
the final prototype

30 20.0000 0.6667 0.0511

Table 6.14: Analysis of Variance (ANOVA) of the scenarios achieved in the existing
interface and in the final prototype.

Source of Variation SS df MS F P-value F crit

Between Groups 1.5087 1 1.5087 29.2874 1.24E-06 4.0069
Within Groups 2.9878 58 0.0515

Total 4.4965 59

queries in a most effective way using the final prototype than with the existing interface

way even if they made some mistakes. 4

Therefore, the second ANOVA was used to determine the differences between the not

achieved scenarios (stats presented in table 6.15) in the existing interface and the final

prototype.

H0 - "There is no significant difference between the mean of not achieved scenarios rate,

in the existing interface and in the final prototype"

A one-way ANOVA, between subjects, was conducted (table 6.16 to compare if the

mean between the samples are equal. In a 95% confidence interval, the null hypothesis

is rejected, meaning that the two means are statistically different between the two tests

(p − value = 5.08E − 05 < 0,05). Therefore, it can be concluded that there is a statistically

significant difference in terms of the not achieved scenarios between the existing interface

and the final prototype tests.

It was also verified that in the existing interface the average of the achieved scenarios

(≈ 0.3495) was lower than the average of the not achieved scenarios (≈ 0.4905), but in

the final prototype the average of the achieve scenarios (≈ 0.6667) was superior of the

average of the not achieved scenarios (≈ 0.2543). By this means, users managed to most

successfully comprehend and formulate queries using the final prototype than using the

existing interface.

4If the mean of the not achieved scenarios is statistically different and lower, the users could achieved
and partially achieved scenarios with a higher probability in the final prototype than using the existing
interface.

108

6.4. RESULTS ANALYSIS

Table 6.15: Summary of the statistically data regarding the not achieved scenarios in the
existing interface and in the final prototype.

Groups Count Sum Average Variance

Not Achieved scenarios rate
on the existing interface

30 14.7143 0.4905 0.0516

Not Achieved scenarios rate
on the final prototype

30 7.6286 0.2543 0.0358

Table 6.16: Analysis of Variance (ANOVA) of the scenarios not achieved in the existing
interface and in the final prototype.

Source of Variation SS df MS F P-value F crit

Between Groups 0.8837 1 0.8368 19.1610 5.08E-05 4.0069
Within Groups 2.5330 58 0.0437

Total 3.3697 59

6.4.2 Efficiency

The time users spent in each scenario when they tested the existing interface and the

final prototype was also evaluated in order to compare the usability efficiency attribute

of the final prototype against the one of the existing interface (evaluation point S2 of

Table 4.4). Figure 6.37 and Table 6.17 presents the statistical data extracted to analyze the

distribution of the time elapsed in each scenario and their skewness along the different

quartiles.

The interquartile range (IQR) (i.e., the difference between the first and the third

quartiles) was used to measure the variability. Moreover, there were values considered as

outliers (isolated points in Figure 6.37)) since they were located 1.5(IQR) or more below

the first quartile (Q1) or they were located 1.5(IQR) or more above the third quartile (Q3)

[14].

As detailed in Table 6.18, the comparison of the results regarding comprehension

scenarios shown that the median has decreased at least 34% with the exception of the

scenario C4, where the median has increased 20 seconds from the existing interface to

the final prototype tests. The difference between the first and the third quartiles has also

become shorter in the comprehension scenarios excluding the case of the scenario C3

where this difference has slightly increased (2.67%).

Also noteworthy was the results about the scenario C1. As it was the first scenario

tested in the usability tests, the time users needed to perform the intended task reflected

also the time needed to explore the system for the first time to understand the way it

works. In this scenario, the median has decreased 33.98% and the difference between

the first and the third quartiles 52.50%, which means that users required less time to

understand the interface. In that way, not only users who explored the interface for

109

CHAPTER 6. DESIGN AND IMPLEMENTATION

the first time were faster in the new prototype, but also the users, who were already

accustomed, to use the existing interface were faster reaching the task’s goal in the new

interface.

Furthermore, the median time spent in the last comprehension scenario performed

by users in the usability tests has decreased 42.71% and the difference between the first

and the third quartiles 133%, which indicates that after exploring the interface through

some scenarios, users needed less time to comprehend the query. Thereby, the interface

revealed promising results in terms of productivity, essentially after passing the initial

learning phase.

From the edition and formulation point of view, the results revealed that in the first

modification scenario the median has decreased 8.76% and the difference between the

first and the third quartiles 26.30%. This result demonstrated the success of improving

the visibility option to add a new calculated attribute, which made new users to spend

less time searching for this option, promoting a decrease on variance.

The formulation scenario did not presented a huge difference in terms of efficiency

in opposite of the values presented before, regarding effectiveness. The median has

decreased 4.0% and the difference between first and the third quartiles 0.67%. However,

as stated before, there were positive results in terms of effectiveness which confirms that

the changes applied in the interface, have helped users to reach the formulation goals.

Nevertheless, there is a lack of some training and some accelerators to improve this values.

Since the usability tests were made without previous training, users have used the final

prototype for the first time, which led to a negative impact in terms of efficiency metrics

because they needed time to explore the interface.

Even without implementing some accelerators, as shortcuts or search engines, the

efficiency results of the final prototype were not worse than the ones of the existing

interface. Moreover, in the existing interface, some users have already used the interface

before. In opposite, all users who tested the final prototype, tested the interface for the

first. In that way, they needed time to explore the interface. Considering these factors,

the efficiency metrics remained stable, which is a positive indicator, since users needed

the same time using the interface although they were less experienced. Also, these results

could be optimized if users gained experience using the interface, mainly if the missing

accelerators were further implemented.

The time needed to complete the last modification scenario (M4) has decreased also

in the final prototype. The median has decreased 29.35% and the difference between the

first and the third quartiles 42.40%.

In a nutshell, this analysis on efficiency optimization pointed out multiple indicators

that revealed improvements, even without the presence of some accelerators as well as

experience using the interface which could leverage the efficiency metrics to a superior

level.

110

6.4. RESULTS ANALYSIS

01:01

09:03

01:56

03:00

04:50

00:57

05:18

07:15

07:43

01:23

01:58

03:15

01:18

09:15

11:17

02:19

03:37

05:41

01:31

08:33

02:33

03:18

05:01

01:00

05:03

02:02

02:51

04:05

01:04

07:15
07:38

02:09

03:11

04:12

00:28

02:52

01:03
01:20

01:50

00:21

03:12
03:24

00:32
00:45

01:38

03:26

14:16

05:59

07:21

09:44

02:58

12:25

04:48

07:03

09:15

00:35

03:07
03:30

01:27
01:39

02:13

00:33

01:41

02:12

02:38

03:22

00:45
00:57
01:10

00:15

07:19

14:12

02:10

03:42

05:34

00:18

05:34

07:35

02:18
02:37

04:11

E C1 F C1 E M1 F M1 E C2 F C2 E C3 F C3 E F1 F F1 E C4 F C4 E M4 F M4
00:00:09

00:01:35

00:03:01

00:04:28

00:05:54

00:07:21

00:08:47

00:10:13

00:11:40

00:13:06

Figure 6.37: Box plots of the time used by users in each scenario in the existing interface
(E) and in the final prototype (F).

6.4.3 Satisfaction

After completing all the testings, users filled out a System Usability Survey (SUS) [73],

where they attributed a number from 1 to 5 to each one of the sentences presented in

Table B.9 and Figure B.1.

The users’ satisfaction increased in all questions. The users reacted positively to the

changes implemented into the prototype, revealing that the system was more pleasant

and simple to use as well as more consistent than the previous interface. Namely, the

questions below were the ones with the highest average increase:

• "I thought there was too much inconsistency in this system"(improved 44.58%)

• I found the system very cumbersome to use"(43.88%)

• "I found the various functions in this system were well integrated"(40.0%)

• "I found the system unnecessarily complex"(33.80%)

• "I think that I would like to use this system frequently"(27.35%)

Furthermore, the average SUS score [73] of all participants in the existing prototype

was around 58.58% and the score of the final prototype was around 79.08%, which trans-

posed the improvement regarding users’ satisfaction.

111

CHAPTER 6. DESIGN AND IMPLEMENTATION

Table 6.17: Statistical information about the time users elapsed in each scenario in the
existing interface and in the final prototype.

Scenario Interface Min Q1 Median Q3 Max

C1 Existing Interface 0:01:01 0:01:56 0:03:00 0:04:50 0:09:03
Final Prototype 0:00:57 0:01:23 0:01:59 0:03:15 0:07:43

M1 Existing Interface 0:01:18 0:02:20 0:03:37 0:05:41 0:11:17
Final Prototype 0:01:31 0:02:33 0:03:18 0:05:01 0:08:33

C2 Existing Interface 0:01:00 0:02:02 0:02:51 0:04:05 0:05:03
Final Prototype 0:01:04 0:02:09 0:03:11 0:04:12 0:07:38

C3 Existing Interface 0:00:28 0:01:03 0:01:21 0:01:50 0:02:52
Final Prototype 0:00:21 0:00:32 0:00:45 0:01:39 0:03:24

F1 Existing Interface 0:03:26 0:05:59 0:07:21 0:09:44 0:14:16
Final Prototype 0:02:58 0:04:48 0:07:03 0:09:15 0:12:25

C4 Existing Interface 0:00:35 0:01:27 0:01:40 0:02:13 0:03:31
Final Prototype 0:00:33 0:00:45 0:00:57 0:01:10 0:03:22

M4 Existing Interface 0:00:15 0:02:10 0:03:42 0:05:34 0:14:12
Final Prototype 0:00:18 0:02:18 0:02:37 0:04:11 0:07:35

Table 6.18: Comparison of the time elapsed in each scenario between the tests of the
existing interface and the tests of the final prototype.

Scenario Median Difference Percentage Q3-Q1 Difference Percentage

C1 -0:01:01 -33.98% -0:01:32 -52.50%

M1 -0:00:19 -8.76% -0:00:53 -26.30%

C2 0:00:20 11.40% 0:00:03 2.65%

C3 -0:00:36 -44.10% -0:00:04 -8.65%

F1 -0:00:18 -4.08% -0:00:02 -0.67%

C4 -0:00:43 -42.71% -0:01:01 -133.33%

M4 -0:01:05 -29.35% -0:01:27 -42.40%

However, although the questions regarding learnability have improved in comparison

to the existing interface, they do not show as relevant as the remaining questions.

Since the opinion about how the system is easy to use could be highly affected by the

users’ background, the information retrieved from the users’ profile survey was analyzed

in order to perceive if there is some degree of correlation between the technical knowledge

and the satisfaction using the interface.

Therefore, a study was performed in order to evaluate if the relational databases

knowledge could have a significant impact into the users’ opinion about how visual query

builder is easy to use.

112

6.4. RESULTS ANALYSIS

Table 6.19: Kendall’s Tau-a significance test.

Kendall’s Tau-a Existing Interface Final Prototype

α 0.05 0.05

Sample size 30 30

Combinatorial 435 435

Number of discordant pairs 104 52

Number of concordant pairs 331 383

Tau (τ) 0.5218 0.7609

Tau-Critical 0.218 0.218

Significant? (Tau >Tau-Critical) Yes Yes

In that way, a Kendall’s Tau-a correlation test was performed to determine the corre-

lation between the relational database knowledge and the perception about how easy is

to use the system. The sample considered the 30 users who tested the existing interface

and the 30 users who tested the final prototype.

H0 = "There is no correlation between the relational databases knowledge and the

interface ease of use"

Table 6.19 presents the values necessary to calculate this correlation value.

In a 95% confidence interval, the null hypothesis was rejected for both cases, the

existing interface and the final prototype, which means that users with more relational

databases knowledge were more likely to find the system easy to use.

In conclusion, all the analysis and comparisons made between the existing interface

and the final prototype built in this dissertation shown that, there was a considering

improvement regarding the task completion rate and in the time users needed to com-

prehend the queries, illustrated in the interface. However, there are an opportunities to

improve in terms of efficiency, mainly for formulation tasks and also regarding learnabil-

ity, since the relational databases foundations are important to find the system easy to

use.

113

C
h
a
p
t
e
r

7
Conclusions and Future Work

This chapter presents a wide perspective on all of the points approached in this disser-

tation, as well as, the results achieved, reinforcing also what could be improved in the

future.

7.1 Conclusion

The low-code development paradigm has accelerated software development and extended

this industry to people with different backgrounds, due to the usage of visual program-

ming languages. Sharing the same vision, VQIs arose in order to facilitate the data

querying process, turning it easier to learn, more efficient, and less error-prone.

In this dissertation, the VQI integrated into the OutSystems low-code development

platform was studied due to the low level of the users’ acceptance and satisfaction on this

platform component. Notwithstanding the lack of some SQL features in the visual query

building solution, the large set of usability problems identified were the main topics

addressed in this dissertation.

In a nutshell, the interface had different usability problems that were preventing users

to exploit the main advantages of a visual query language: easiness to learn, acceleration

of the querying process, and reduction of the errors which could occur during this process.

Hence, all problems were detailed and categorized as well as the target users of the

system who were divided into groups, according to their requirements and expectations.

By this means, the solution could be built, by having users in mind (following a user-

centered design approach), in order to have a positive effect on all users. Moreover, it was

prepared a design and evaluation method that would make it possible to build the most

appropriate solution to cover the problems identified and to improve the experience of

the target users.

115

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Firstly, a paper prototype was built to explore the first ideas and test with users, in

order to validate if the design choices made were forwarding the solution in the right

direction to solve the problems that users felt the most in the existing interface.

Secondly, the information obtained from the evaluation of the paper prototype was

used to refine details and implement a new prototype, integrated into the OutSystems

Platform, with the aim to mitigate some usability problems in the interface and reducing

the errors that users mainly made while they were building their queries.

The existing interface and the final prototype were both tested with 30 users, using

the same method and testing scenarios in order to compare the success of the changes

in design, applied in the interface. With the changes applied to the new interface, users

have increased around 84% the task completion rate, which means the new interface has

significant improvements regarding effectiveness.

Furthermore, users spent less time, on average, to complete each one of the proposed

testing scenarios. Also, they have reported through a System Usability Scale [73] that the

system was more consistent and more pleasant to use.

Regarding the research questions pointed out in the beginning of this dissertations,

it was concluded that OutSystems developers can easily do complex database queries

without using SQL in the final prototype, taking into account the effectiveness results

achieved, excluding the complex queries which contain operations not supported by the

existing interface. Nevertheless, the formulation of other complex database queries which

can include several entities, joins, attributes, and conditions revealed more easily using

the final prototype built in this dissertation.

On the other hand, it was concluded that the existing interface had usability problems

for less experienced users and the UX of the system could be improved without reducing

the system’s learnability and satisfaction for new users given that the results of the final

prototype have revealed more positive results for less experienced users, regarding these

aspects, against the existing interface.

The main goal stated for this dissertation was the mitigation of the current problems

in the visual query interface, which has been blocking users to completely take advantage

of the VQIs value proposition, leading to a low users’ acceptance of this visual query

builder.

Since the potential of these interfaces establishes a reduced previous knowledge, the

possibility to accelerate the query building process, and the reduction of errors users

could make, due to the lack of technical knowledge or because they do not remember

important details in some queries, the results showed there was a significant improvement

in all these three components.

116

7.2. FUTURE WORK

7.2 Future Work

Although the prototype build has leveraged the potential of the visual query interface

in all dimensions (i.e., learnability, effectiveness, and efficiency), some aspects should be

further improved in order to optimize even more the UX success metrics of this interface:

1. Learnability: despite the evident improvement noticed, regarding learnability in

the new interface, since new users had less difficulties to find how to apply the

query operations they needed. However, there is still a correlation between the

relational databases knowledge and how users prospect the easiness of use of the

system. The join operations used in the visual interface, to combine columns from

one or more tables, are the same used in relational databases, which come from

relational algebra. Accordingly, the users who have never used a relational database

have more difficulty to understand how these merging functions work. In that

way, this dependency should be further mitigated trying a new design approach

that could be intuitive for users without these relational algebra foundations, main-

taining the productivity level provided for technical users. Moreover, users still

do not understand the joins with more difficult conditions, thus the join condition

should be improved, to not only show a textual expression, but resorting on more

visual elements that could turn the readability simpler and accessible for everyone,

independently of the users’ background;

2. Efficiency/Productivity: the new designed interface has improved the efficiency of

use due to the new rearrangement of the different areas and components in the

interface. However, as mentioned before, the accelerators and other productivity

features, as search engines and keyboard shortcuts, were not implemented as the

tests performed could not test this type of features, since users had no previous

training or adaptation period before testing the interface. Regardless, it was proven

that the most restructuring changes made have increased the efficiency levels even

without these boosters. In that way, if these accelerators were also implemented,

there was a significant prospection to increase the productivity metrics;

3. Efficiency comparison with SQL: the time users need to formulate queries is a

relevant topic. If a user is faster formulating a query in SQL than using the visual

query interface, he might prefer to use SQL even if the visual query builder helps

him making fewer mistakes. Although the efficiency of the interface built is superior

to the one of the previous query builder, a different case study should be further

approached in order to evaluate if users with similar database knowledge are faster

using SQL or the visual query interface. In order to make this comparison, as

believable as possible, the accelerators mentioned should be implemented and users

should test the interface after a learning and adaptation period, and not as users

who tried the interface for the first time during the test, as occurred in the usability

tests performed in this dissertation.

117

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

The idea and prototype proposed in this dissertation triggered the start of a new

project at OutSystems that aims to explore the solution presented and explore how

to improve also, the aspects mentions that should be further improved. The goal

is to clearly define a roadmap to invest in the development of these improvements

and release of a new visual query builder to the low-code platform.

118

Bibliography

[1] A. Ahadi, J. Prior, V. Behbood, and R. Lister. “Students’ Semantic Mistakes in

Writing Seven Different Types of SQL Queries.” In: Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education. ITiCSE

’16. Arequipa, Peru: Association for Computing Machinery, 2016, 272–277. isbn:

9781450342315. doi: 10.1145/2899415.2899464. url: https://doi.org/10.

1145/2899415.2899464.

[2] A. Alshamrani and A. Bahattab. “A comparison between three SDLC models wa-

terfall model, spiral model, and Incremental/Iterative model.” In: International
Journal of Computer Science Issues (IJCSI) 12.1 (2015), p. 106.

[3] T. CATARCI, M. F. COSTABILE, S. LEVIALDI, and C. BATINI. “Visual Query

Systems for Databases.” In: J. Vis. Lang. Comput. 8.2 (Apr. 1997), 215–260. issn:

1045-926X. doi: 10.1006/jvlc.1997.0037. url: https://doi.org/10.1006/

jvlc.1997.0037.

[4] T. Catarci and G. Santucci. “Diagrammatic Vs Textual Query Languages: A Compar-

ative Experiment.” In: Visual Database Systems 3: Visual information management.
Ed. by S. Spaccapietra and R. Jain. Boston, MA: Springer US, 1995, pp. 69–83.

isbn: 978-0-387-34905-3. doi: 10.1007/978-0-387-34905-3_5. url: https:

//doi.org/10.1007/978-0-387-34905-3_5.

[5] D. D. Chamberlin and R. F. Boyce. “SEQUEL: A Structured English Query Lan-

guage.” In: Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control. SIGFIDET ’74. Ann Arbor, Michigan: As-

sociation for Computing Machinery, 1974, 249–264. isbn: 9781450374156. doi:

10.1145/800296.811515. url: https://doi.org/10.1145/800296.811515.

[6] H. Chan, H. Teo, and X. Zeng. “An evaluation of novice end-user computing

performance: Data modeling, query writing, and comprehension.” In: Journal of the
American Society for Information Science and Technology 56.8 (2005), pp. 843–853.

doi: 10.1002/asi.20178. eprint: https://asistdl.onlinelibrary.wiley.com/

doi/pdf/10.1002/asi.20178. url: https://asistdl.onlinelibrary.wiley.

com/doi/abs/10.1002/asi.20178.

119

https://doi.org/10.1145/2899415.2899464
https://doi.org/10.1145/2899415.2899464
https://doi.org/10.1145/2899415.2899464
https://doi.org/10.1006/jvlc.1997.0037
https://doi.org/10.1006/jvlc.1997.0037
https://doi.org/10.1006/jvlc.1997.0037
https://doi.org/10.1007/978-0-387-34905-3_5
https://doi.org/10.1007/978-0-387-34905-3_5
https://doi.org/10.1007/978-0-387-34905-3_5
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.1002/asi.20178
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.20178
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.20178
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.20178
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.20178

BIBLIOGRAPHY

[7] H. Desurvire, J. Kondziela, and M. E. Atwood. “What is Gained and Lost When

Using Methods Other than Empirical Testing.” In: Posters and Short Talks of the
1992 SIGCHI Conference on Human Factors in Computing Systems. CHI ’92. Mon-

terey, California: Association for Computing Machinery, 1992, 125–126. isbn:

9781450378048. doi: 10.1145/1125021.1125115. url: https://doi.org/10.

1145/1125021.1125115.

[8] A. Dillon and C. Watson. User analysis in HCI: the historical lesson from individual
differences research. 1996. url: http://hdl.handle.net/10150/105824.

[9] A. Dix, A. J. Dix, J. Finlay, G. D. Abowd, and R. Beale. Human-computer interaction.

Pearson Education, 2003. isbn: 978-0-13-046109-4.

[10] J. Gehrke and R. Ramakrishnan. Database management systems. McGraw-Hill, 2003.

[11] R. Geng, M. Chen, and J. Tian. “In-process Usability Problem Classification, Anal-

ysis and Improvement.” In: 2014 14th International Conference on Quality Software.

2014, pp. 240–245.

[12] H. Henriques, H. Lourenço, V. Amaral, and M. Goulão. “Improving the Developer

Experience with a Low-Code Process Modelling Language.” In: Proceedings of the
21th ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems. MODELS ’18. Copenhagen, Denmark: Association for Computing Ma-

chinery, 2018, 200–210. isbn: 9781450349499. doi: 10.1145/3239372.3239387.

url: https://doi.org/10.1145/3239372.3239387.

[13] P. Jennifer, R. Yvonne, and S. Helen. “Interaction design: beyond human-computer

interaction.” In: NY: Wiley (2002).

[14] D. Larose. Discovering Knowledge in Data: An Introduction to Data Mining. Wiley,

2005. isbn: 9780471687535. url: https://books.google.pt/books?id=

JbPMdPWQIOwC.

[15] H. Lu, H. C. Chan, and K. K. Wei. “A Survey on Usage of SQL.” In: SIGMOD Rec.
22.4 (Dec. 1993), 60–65. issn: 0163-5808. doi: 10.1145/166635.166656. url:

https://doi.org/10.1145/166635.166656.

[16] J. V. M.A. “I. On the diagrammatic and mechanical representation of propositions

and reasonings.” In: The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 10.59 (1880), pp. 1–18. doi: 10.1080/14786448008626877.

eprint: https://doi.org/10.1080/14786448008626877. url: https://doi.

org/10.1080/14786448008626877.

[17] J. Nielsen. “Iterative user-interface design.” In: Computer 26.11 (1993), pp. 32–41.

issn: 1558-0814. doi: 10.1109/2.241424.

[18] J. Nielsen. Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 1993. isbn: 0-12-518406-9.

120

https://doi.org/10.1145/1125021.1125115
https://doi.org/10.1145/1125021.1125115
https://doi.org/10.1145/1125021.1125115
http://hdl.handle.net/10150/105824
https://doi.org/10.1145/3239372.3239387
https://doi.org/10.1145/3239372.3239387
https://books.google.pt/books?id=JbPMdPWQIOwC
https://books.google.pt/books?id=JbPMdPWQIOwC
https://doi.org/10.1145/166635.166656
https://doi.org/10.1145/166635.166656
https://doi.org/10.1080/14786448008626877
https://doi.org/10.1080/14786448008626877
https://doi.org/10.1080/14786448008626877
https://doi.org/10.1080/14786448008626877
https://doi.org/10.1109/2.241424

BIBLIOGRAPHY

[19] J. Nielsen and R. Molich. “Heuristic Evaluation of User Interfaces.” In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’90. Seattle,

Washington, USA: Association for Computing Machinery, 1990, 249–256. isbn:

0201509326. doi: 10.1145/97243.97281. url: https://doi.org/10.1145/

97243.97281.

[20] W. C. Ogden. “IMPLICATIONS OF A COGNITIVE MODEL OF DATABASE QUERY:

COMPARISON OF A NATURAL LANGUAGE, FORMAL LANGUAGE AND DI-

RECT MANIPULATION INTERFACE.” In: SIGCHI Bull. 18.2 (Oct. 1986), 51–54.

issn: 0736-6906. doi: 10.1145/15683.1044078. url: https://doi.org/10.

1145/15683.1044078.

[21] OutSystems. OutByNumbers - Benchmark Overview Repor. Tech. rep. 2013.

[22] P. G. Polson, C. Lewis, J. Rieman, and C. Wharton. “Cognitive walkthroughs: a

method for theory-based evaluation of user interfaces.” In: International Journal
of Man-Machine Studies 36.5 (1992), pp. 741 –773. issn: 0020-7373. doi: https:

//doi.org/10.1016/0020-7373(92)90039-N. url: http://www.sciencedirect.

com/science/article/pii/002073739290039N.

[23] P. Reisner. “Human Factors Studies of Database Query Languages: A Survey and

Assessment.” In: ACM Comput. Surv. 13.1 (Mar. 1981), 13–31. issn: 0360-0300.

doi: 10.1145/356835.356837. url: https://doi.org/10.1145/356835.356837.

[24] D. A. Robb, P. L. Bowen, A. F. Borthick, and F. H. Rohde. “Improving New Users’

Query Performance: Deterring Premature Stopping of Query Revision with Infor-

mation for Forming Ex Ante Expectations.” In: J. Data and Information Quality 3.4

(Sept. 2012). issn: 1936-1955. doi: 10.1145/2348828.2348829. url: https:

//doi.org/10.1145/2348828.2348829.

[25] K. L. Siau, Hock Chuan Chan, and Kwok Kee Wei. “Effects of query complexity and

learning on novice user query performance with conceptual and logical database

interfaces.” In: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems
and Humans 34.2 (2004), pp. 276–281. issn: 1558-2426. doi: 10.1109/TSMCA.

2003.820581.

[26] J. B. Smelcer. “User errors in database query composition.” In: International Jour-
nal of Human-Computer Studies 42.4 (1995), pp. 353 –381. issn: 1071-5819. doi:

https://doi.org/10.1006/ijhc.1995.1017. url: http://www.sciencedirect.

com/science/article/pii/S1071581985710178.

[27] C. Stephanidis. “User interfaces for all: New perspectives into human-computer

interaction.” In: User Interfaces for All-Concepts, Methods, and Tools 1 (2001), pp. 3–

17.

[28] T. Taipalus, M. Siponen, and T. Vartiainen. “Errors and Complications in SQL

Query Formulation.” In: ACM Trans. Comput. Educ. 18.3 (Aug. 2018). doi: 10.

1145/3231712. url: https://doi.org/10.1145/3231712.

121

https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/97243.97281
https://doi.org/10.1145/15683.1044078
https://doi.org/10.1145/15683.1044078
https://doi.org/10.1145/15683.1044078
https://doi.org/https://doi.org/10.1016/0020-7373(92)90039-N
https://doi.org/https://doi.org/10.1016/0020-7373(92)90039-N
http://www.sciencedirect.com/science/article/pii/002073739290039N
http://www.sciencedirect.com/science/article/pii/002073739290039N
https://doi.org/10.1145/356835.356837
https://doi.org/10.1145/356835.356837
https://doi.org/10.1145/2348828.2348829
https://doi.org/10.1145/2348828.2348829
https://doi.org/10.1145/2348828.2348829
https://doi.org/10.1109/TSMCA.2003.820581
https://doi.org/10.1109/TSMCA.2003.820581
https://doi.org/https://doi.org/10.1006/ijhc.1995.1017
http://www.sciencedirect.com/science/article/pii/S1071581985710178
http://www.sciencedirect.com/science/article/pii/S1071581985710178
https://doi.org/10.1145/3231712
https://doi.org/10.1145/3231712
https://doi.org/10.1145/3231712

BIBLIOGRAPHY

[29] M. Unsöld. “Measuring Learnability in Human-Computer Interaction.” Master’s

thesis. 2018.

122

Webography

[30] C. Alchin, J. Martin, J. Allenby, and T. Prowse. 2019: Week 9 Solution. url: https:

//preppindata.blogspot.com/2019/04/2019-week-9-solution.html (visited

on 02/19/2020).

[31] Balsamiq. Balsamiq. url: https://balsamiq.com/ (visited on 01/29/2020).

[32] Chartio. Advanced Sorting. url: https://chartio.com/help/data-pipeline/

advanced-sorting/ (visited on 02/10/2020).

[33] Chartio. Chartio. url: https://chartio.com/ (visited on 02/07/2020).

[34] Chartio. Chartio Data Explorer | Documentation. url: https://chartio.com/

docs/data-explorer/ (visited on 02/07/2020).

[35] Chartio. Chartio FAQs: Joining Data Across Databases. url: https://chartio.com/

docs/visual-sql/actions/ (visited on 02/10/2020).

[36] Chartio. Chartio Visual SQL (beta) | Documentation. url: https://chartio.com/

docs/visual-sql/ (visited on 02/07/2020).

[37] Chartio. Data Pipeline Steps. url: https://chartio.com/docs/data-pipeline/

basic/steps/ (visited on 02/10/2020).

[38] Chartio. Visual SQL Actions | Chartio Documentation. url: https://chartio.com/

docs/visual-sql/actions/ (visited on 02/10/2020).

[39] Devart. Building WHERE or HAVING Clause. url: https://docs.devart.com/

querybuilder- for- sql- server/building- queries- with- query- builder/

building-where-and-having-clause.html (visited on 02/10/2020).

[40] Devart. Grouping Data In Grid. url: https://docs.devart.com/querybuilder-

for-sql-server/working-with-data-in-data-editor/grouping-data-in-

grid.html (visited on 02/10/2020).

[41] Devart. Making Joins Between Tables. url: https://docs.devart.com/querybuilder-

for- sql- server/building- queries- with- query- builder/making-joins-

between-tables.html (visited on 02/10/2020).

[42] Devart. Query Builder Tool in dbForge Studio for SQL Server. url: https : / /

www . devart . com / dbforge / sql / studio / query - builder . html (visited on

02/07/2020).

123

https://preppindata.blogspot.com/2019/04/2019-week-9-solution.html
https://preppindata.blogspot.com/2019/04/2019-week-9-solution.html
https://balsamiq.com/
https://chartio.com/help/data-pipeline/advanced-sorting/
https://chartio.com/help/data-pipeline/advanced-sorting/
https://chartio.com/
https://chartio.com/docs/data-explorer/
https://chartio.com/docs/data-explorer/
https://chartio.com/docs/visual-sql/actions/
https://chartio.com/docs/visual-sql/actions/
https://chartio.com/docs/visual-sql/
https://chartio.com/docs/visual-sql/
https://chartio.com/docs/data-pipeline/basic/steps/
https://chartio.com/docs/data-pipeline/basic/steps/
https://chartio.com/docs/visual-sql/actions/
https://chartio.com/docs/visual-sql/actions/
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/building-where-and-having-clause.html
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/building-where-and-having-clause.html
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/building-where-and-having-clause.html
https://docs.devart.com/querybuilder-for-sql-server/working-with-data-in-data-editor/grouping-data-in-grid.html
https://docs.devart.com/querybuilder-for-sql-server/working-with-data-in-data-editor/grouping-data-in-grid.html
https://docs.devart.com/querybuilder-for-sql-server/working-with-data-in-data-editor/grouping-data-in-grid.html
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/making-joins-between-tables.html
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/making-joins-between-tables.html
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/making-joins-between-tables.html
https://www.devart.com/dbforge/sql/studio/query-builder.html
https://www.devart.com/dbforge/sql/studio/query-builder.html

WEBOGRAPHY

[43] Devart. Sorting Data. url: https://docs.devart.com/querybuilder-for-sql-

server/working-with-data-in-data-editor/sorting-data-in-grid.html

(visited on 02/10/2020).

[44] Devart. Subqueries in From Clauses. url: https://docs.devart.com/querybuilder-

for-sql-server/building-queries-with-query-builder/subqueries-other-

clauses.html (visited on 02/10/2020).

[45] Devart. Subqueries Overview. url: https://docs.devart.com/querybuilder-

for - sql - server / building - queries - with - query - builder / subqueries -

overview.html (visited on 02/10/2020).

[46] Figma: the collaborative interface design tool. url: https://www.figma.com/ (vis-

ited on 10/25/2020).

[47] Google. Google Sheets. url: https://www.google.com/sheets/about/ (visited

on 02/05/2020).

[48] InVision | Digital product design, workflow and colaboration. url: https://www.

invisionapp.com/ (visited on 10/21/2020).

[49] ISO. ISO 9241-11:2018(en) Ergonomics of human-system interaction — Part 11: Us-
ability: Definitions and concepts. 2018. url: https://www.iso.org/obp/ui/#iso:

std:iso:9241:-11:ed-2:v1:en (visited on 01/27/2020).

[50] JavaScriptor. js-SQL-parser. url: https://github.com/JavaScriptor/js-SQL-

parser (visited on 02/10/2020).

[51] Microsoft. Microsoft Excel. url: https://products.office.com/en/excel

(visited on 02/05/2020).

[52] Microsoft. Microsoft Power BI. url: https://powerbi.microsoft.com/en-us/

(visited on 02/07/2020).

[53] Microsoft. Perform common query tasks in Power BI Desktop. url: https://docs.

microsoft.com/en-us/power-bi/desktop-common-query-tasks#group-rows

(visited on 02/10/2020).

[54] Microsoft. Tutorial: Shape and combine data in Power BI Desktop. url: https:

//docs.microsoft.com/en-us/power-bi/desktop-shape-and-combine-data

(visited on 02/07/2020).

[55] Microsoft. TypeScript - JavaScript that scales. url: https://www.typescriptlang.

org/ (visited on 02/20/2020).

[56] Mockingbird. Mockingbird. url: https://gomockingbird.com/home (visited on

01/29/2020).

[57] J. Nielsen. 10 Usability Heuristics for User Interface Design. 1994. url: https://www.

nngroup.com/articles/ten-usability-heuristics/ (visited on 05/05/2020).

124

https://docs.devart.com/querybuilder-for-sql-server/working-with-data-in-data-editor/sorting-data-in-grid.html
https://docs.devart.com/querybuilder-for-sql-server/working-with-data-in-data-editor/sorting-data-in-grid.html
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/subqueries-other-clauses.html
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/subqueries-other-clauses.html
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/subqueries-other-clauses.html
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/subqueries-overview.html
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/subqueries-overview.html
https://docs.devart.com/querybuilder-for-sql-server/building-queries-with-query-builder/subqueries-overview.html
https://www.figma.com/
https://www.google.com/sheets/about/
https://www.invisionapp.com/
https://www.invisionapp.com/
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://github.com/JavaScriptor/js-SQL-parser
https://github.com/JavaScriptor/js-SQL-parser
https://products.office.com/en/excel
https://powerbi.microsoft.com/en-us/
https://docs.microsoft.com/en-us/power-bi/desktop-common-query-tasks#group-rows
https://docs.microsoft.com/en-us/power-bi/desktop-common-query-tasks#group-rows
https://docs.microsoft.com/en-us/power-bi/desktop-shape-and-combine-data
https://docs.microsoft.com/en-us/power-bi/desktop-shape-and-combine-data
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://gomockingbird.com/home
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/

WEBOGRAPHY

[58] J. Nielsen. Why You Only Need to Test with 5 Users. 2000. url: https://www.

nngroup.com/articles/why-you-only-need-to-test-with-5-users/ (visited

on 10/14/2020).

[59] J. Nielsen. How Many Test Users in a Usability Study? 2012. url: https://www.

nngroup.com/articles/how-many-test-users/ (visited on 10/14/2020).

[60] OutSystems. Advanced Aggregates Course - Training - OutSystems. url: https://

www.outsystems.com/learn/courses/132/advanced-aggregates/?LearningPathId=

18 (visited on 10/30/2019).

[61] OutSystems. Aggregates 101 Course - Training - OutSystems. url: https://www.

outsystems.com/learn/courses/126/aggregates-101/?LearningPathId=18

(visited on 10/28/2019).

[62] OutSystems. Evaluation Guide (Developing with OutSystems. url: https://www.

outsystems.com/evaluation-guide/developing-with-outsystems/ (visited

on 02/01/2020).

[63] OutSystems. Low-Code Development Platform for Enterprise Applications. url: https:

//www.outsystems.com/platform/ (visited on 01/31/2020).

[64] OutSystems. OutSystems Community. url: https : / / www . outsystems . com /

community/ (visited on 05/06/2020).

[65] OutSystems. Service Studio Overview - OutSystems 11 Documentation. url: https:

//success.outsystems.com/Documentation/11/Getting_Started/Service_

Studio_Overview (visited on 02/02/2020).

[66] OutSystems. What’s new in OutSystems Hub Edition 2.0. 2003. url: https://drive.

google.com/file/d/1wkKESumKhJbwK6aoeW2DGU4-TMq-snOp/view (visited on

02/03/2020).

[67] OutSystems. What’s new in OutSystems Hub Edition 2.2. 2004. url: https://drive.

google.com/file/d/0B7C37RyL27_oNHF4UmFRX3pFMlpMTVlCWnV5dzJCcmhRS2tj/

view (visited on 02/03/2020).

[68] OutSystems. Agile Platform What’s New in Version 5.0. 2009. url: https://

www . outsystems . com / home / document - download / 542 / 31 / 0 / 0 (visited on

02/03/2020).

[69] React. React - A JavaScript library for building user interfaces. url: https://reactjs.

org/ (visited on 02/20/2020).

[70] M. Revell. What Is Low-Code? 2020. url: https://www.outsystems.com/blog/

what-is-low-code.html (visited on 01/24/2020).

[71] T. Simões. What’s (Not) New in OutSystems: A Product Timeline. 2018. url: https:

//www.outsystems.com/blog/posts/not-new-product-timeline/ (visited on

02/03/2020).

125

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/how-many-test-users/
https://www.nngroup.com/articles/how-many-test-users/
https://www.outsystems.com/learn/courses/132/advanced-aggregates/?LearningPathId=18
https://www.outsystems.com/learn/courses/132/advanced-aggregates/?LearningPathId=18
https://www.outsystems.com/learn/courses/132/advanced-aggregates/?LearningPathId=18
https://www.outsystems.com/learn/courses/126/aggregates-101/?LearningPathId=18
https://www.outsystems.com/learn/courses/126/aggregates-101/?LearningPathId=18
https://www.outsystems.com/evaluation-guide/developing-with-outsystems/
https://www.outsystems.com/evaluation-guide/developing-with-outsystems/
https://www.outsystems.com/platform/
https://www.outsystems.com/platform/
https://www.outsystems.com/community/
https://www.outsystems.com/community/
https://success.outsystems.com/Documentation/11/Getting_Started/Service_Studio_Overview
https://success.outsystems.com/Documentation/11/Getting_Started/Service_Studio_Overview
https://success.outsystems.com/Documentation/11/Getting_Started/Service_Studio_Overview
https://drive.google.com/file/d/1wkKESumKhJbwK6aoeW2DGU4-TMq-snOp/view
https://drive.google.com/file/d/1wkKESumKhJbwK6aoeW2DGU4-TMq-snOp/view
https://drive.google.com/file/d/0B7C37RyL27_oNHF4UmFRX3pFMlpMTVlCWnV5dzJCcmhRS2tj/view
https://drive.google.com/file/d/0B7C37RyL27_oNHF4UmFRX3pFMlpMTVlCWnV5dzJCcmhRS2tj/view
https://drive.google.com/file/d/0B7C37RyL27_oNHF4UmFRX3pFMlpMTVlCWnV5dzJCcmhRS2tj/view
https://www.outsystems.com/home/document-download/542/31/0/0
https://www.outsystems.com/home/document-download/542/31/0/0
https://reactjs.org/
https://reactjs.org/
https://www.outsystems.com/blog/what-is-low-code.html
https://www.outsystems.com/blog/what-is-low-code.html
https://www.outsystems.com/blog/posts/not-new-product-timeline/
https://www.outsystems.com/blog/posts/not-new-product-timeline/

WEBOGRAPHY

[72] C. Souther. Low-Code vs. No-Code: What’s the Real Difference. 2019. url: https:

/ / www . outsystems . com / blog / posts / low - code - vs - no - code/ (visited on

01/25/2020).

[73] System Usability Scale (SUS). url: https://www.usability.gov/how-to-and-

tools/methods/system-usability-scale.html (visited on 10/20/2020).

[74] Tableau. Add More Data in the Input Step - Tableau. url: https://help.tableau.

com/current/prep/en-us/prep_add_input_data.htm (visited on 02/10/2020).

[75] Tableau. Aggregate, Join, or Union Data - Tableau. url: https://help.tableau.

com/current/prep/en-us/prep_combine.htm (visited on 02/10/2020).

[76] Tableau. Create a Simple Calculated Field. url: https://help.tableau.com/

current/pro/desktop/en-us/calculations_calculatedfields_formulas.htm

(visited on 02/10/2020).

[77] Tableau. Filter Your Data - Tableau. url: https://help.tableau.com/current/

prep/en-us/prep_filter.htm (visited on 02/10/2020).

[78] Tableau. Sorting Data. url: https://help.tableau.com/current/reader/

desktop/en-us/reader_sort.htm (visited on 02/10/2020).

[79] Tableau. Tableau Prep. url: https://www.tableau.com/products/prep (visited

on 02/07/2020).

[80] Tableau. What’s New in Tableau Prep Builder. url: https://help.tableau.com/

current/prep/en-us/prep_whatsnew.htm (visited on 02/07/2020).

[81] Using Images and Assets - Balsamiq for Desktop Documentation | Balsamiq. url:

https://balsamiq.com/wireframes/desktop/docs/images/ (visited on 10/23/2020).

[82] Video Conferencing, Web Conferencing, Webinars, Screen Sharing - Zoom. url: https:

//zoom.us/ (visited on 11/12/2020).

126

https://www.outsystems.com/blog/posts/low-code-vs-no-code/
https://www.outsystems.com/blog/posts/low-code-vs-no-code/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://help.tableau.com/current/prep/en-us/prep_add_input_data.htm
https://help.tableau.com/current/prep/en-us/prep_add_input_data.htm
https://help.tableau.com/current/prep/en-us/prep_combine.htm
https://help.tableau.com/current/prep/en-us/prep_combine.htm
https://help.tableau.com/current/pro/desktop/en-us/calculations_calculatedfields_formulas.htm
https://help.tableau.com/current/pro/desktop/en-us/calculations_calculatedfields_formulas.htm
https://help.tableau.com/current/prep/en-us/prep_filter.htm
https://help.tableau.com/current/prep/en-us/prep_filter.htm
https://help.tableau.com/current/reader/desktop/en-us/reader_sort.htm
https://help.tableau.com/current/reader/desktop/en-us/reader_sort.htm
https://www.tableau.com/products/prep
https://help.tableau.com/current/prep/en-us/prep_whatsnew.htm
https://help.tableau.com/current/prep/en-us/prep_whatsnew.htm
https://balsamiq.com/wireframes/desktop/docs/images/
https://zoom.us/
https://zoom.us/

A
p
p
e
n
d
i
x

A
Taxonomy of Problems - Existing Interface

The visual interface to formulate queries that was implemented before this dissertation

had several usability problems which led users to prefer to use other DQLs such as SQL.

In order to comprehend the existing problems of the visual interface or the characteristics

that hamper users to extract advantages of that visual approach to query databases, there

were performed the following studies:

• Study and Analysis: This was the first approach used to explore the existing prob-

lems of the interface. The process started with the visualization of two OutSystems

tutorials [60, 61] about visual data querying. This was the first experience using

the interface and there were pointed out some problems. As this was the first expe-

rience, it was mainly found issues regarding hidden operations and behaviors that

were not clear for users who did not use the platform. After that tutorials, there

has been made some more explorations using practical examples where there were

found other problems related to efficiency and effectiveness of use;

• User Interviews: There were performed some dialogues with a reduced set of novice

and expert users to comprehend what are the main issues pointed out. In the case of

expert users, the causes to use SQL instead of the Visual Interface were registered

as well as a set of other UX issues. Regarding users who did not have relevant

experience either in SQL or OutSystems, it was registered the functionalities more

difficult to learn or understand;

• Community Ideas: Since OutSystems contains a wide and worldwide Community

where users could contribute with suggestions or express their problems or diffi-

culties, all the ideas of the category "Aggregates and Queries"were explored to un-

derstand the problems presented. Moreover, the number of likes of each post was

registered in order to know what are the problems which had more user reactions;

127

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

• User Testing: During the user tests of the existing implementation, there were

pointed out some issues by users. Also, other problems were found through the

interpretation of user-interface interaction.

Furthermore, each issue registered was characterized according to the Nielsen Heuris-

tics [57] and the artifact and task attributes of a Framework adapted from Usability-ODC

Framework [11]. Besides, for each issue it was checked if the action most hampered

is the query formulation or the query comprehension as well as what are the interface

components affected between the ones presented below:

• Actions and Nodes (Method/Function where the Visual Query was added)

• General Layout (The arrangement of the main interface components on the main

window)

• Sources

• Joins

• Filters

• Sorting

• Aggregation Functions

• Calculated Attributes

• Static Entities

• Query Result Table

• Test Values

In that way, it is simple to categorize and prioritize the problems detected. Besides,

as mentioned above, if the problem were referred in the OutSystems Community, their

number of likes and the respecting posts were included. Table A.1 represents the result

of all problems detected and categorized under the parameters mentioned:

128

Table A.1: Taxonomy of Aggregates’ Problems - Existing Interface (Last community posts

update: May 06, 2020)

Taxonomy of Aggregates’ Problems

ID Issue Description

1
Entity misadded (auto-

matic joins deletion)

When the user adds an en-

tity that trigger automati-

cally a new join, if this en-

tity is removed, the entity

could also be removed.

Figured Out Community Ideas

Interface Components

Related
Sources and Joins

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Presentation of Information/Results

Task Category Task-facilitation

Task Subcategory User Error Tolerance

Nielsen Heuristics User Control and Freedom

Community Posts

Post Likes

Changes to behaviour of adding Entities to an Aggre-

gate1 25

2
Select multiple sources at

once

There are some use cases

where this is already pos-

sible. However, it should

be possible in any use

case where the user can

add multiple entities.

Figured Out
Study and Analysis, User Interviews, Community

Ideas, and User Testing

Interface Components

Related
Sources

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Direct Manipulation

Continued on next page

1https://www.outsystems.com/ideas/2890/changes-to-behaviour-of-adding-entities-to-an-aggregate

129

https://www.outsystems.com/ideas/2890/changes-to-behaviour-of-adding-entities-to-an-aggregate

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics
Flexibility and efficiency of use, and Consistency and

standards

Community Posts

Post Likes

Changes to behaviour of adding Entities to an Aggre-

gate2 25

Allow multiple entity selection on first screen of new

aggregate3 6

Replace data with multiple entities4 1

3
Add the same entity more

than once

Allow drag/dropping the

same entity more than

once (It’s possible using

Select Source pop-up but

it’s not possible using

Drag and Drop.

Figured Out Study and Analysis, and Community Ideas

Interface Components

Related
Sources

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Direct Manipulation

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics
Flexibility and efficiency of use, and User control and

freedom

Community Posts

Post Likes

Changes to behaviour of adding Entities to an Aggre-

gate5 25

Continued on next page

2https://www.outsystems.com/ideas/2890/changes-to-behaviour-of-adding-entities-to-an-aggregate
3https://www.outsystems.com/ideas/5417/allow-multiple-entity-selection-on-first-screen-of-new-aggregate
4https://www.outsystems.com/ideas/7568/replace-data-with-multiple-entities
5https://www.outsystems.com/ideas/2890/changes-to-behaviour-of-adding-entities-to-an-aggregate

130

https://www.outsystems.com/ideas/2890/changes-to-behaviour-of-adding-entities-to-an-aggregate
https://www.outsystems.com/ideas/5417/allow-multiple-entity-selection-on-first-screen-of-new-aggregate
https://www.outsystems.com/ideas/7568/replace-data-with-multiple-entities
https://www.outsystems.com/ideas/2890/changes-to-behaviour-of-adding-entities-to-an-aggregate

Continuation of Table A.1

ID Issue Description

4

Add automatically a

static entity even if it is

not mandatory

“It’s very annoying that

every time I drag to an ag-

gregate an entity with a

foreign key to a static en-

tity (SE) - even if it’s not

mandatory - that static

entity is dragged along

with it.”

Figured Out Community Ideas

Interface Components

Related
Sources, and Static Entities

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Direct Manipulation

Task Category Task-facilitation

Task Subcategory Task/function automation

Nielsen Heuristics Consistency and standards

Community Posts

Changes to behaviour of adding Entities to an Aggre-

gate6 25

5

Join tables with more

than one identifier of the

same table (other table)

When an entity has sev-

eral identifiers of same

other entity, do the join

like currently but with

a warning or ask which

field to do the join.

Figured Out
Study and Analysis, Community Ideas, and User Test-

ing

Interface Components

Related
Joins

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory No-message feedback

Continued on next page

6https://www.outsystems.com/ideas/2890/changes-to-behaviour-of-adding-entities-to-an-aggregate

131

https://www.outsystems.com/ideas/2890/changes-to-behaviour-of-adding-entities-to-an-aggregate

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

Task Category Task-facilitation

Task Subcategory Keeping the user task on track

Nielsen Heuristics
User control and freedom, and Visibility of System

Status

Community Posts

Post Likes

Changes to behaviour of adding Entities to an Aggre-

gate7 25

Join tables with more than one identifier of same other

table8 5

6
Move multiple aggregate

columns at the same time

Actually it is possible to

reorder one column. Ex-

tend this behavior.

Figured Out Community Ideas, and User Testing

Interface Components

Related
Query Result Table

Main Action Hampered Query Formulation and Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Direct Manipulation

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics Flexibility and efficiency of use

Community Posts

Post Likes

Move multiple aggregate columns at the same time9 5

7

Search and focus for par-

ticular columns of the

query result

There should be an intu-

itive solution to navigate

through the query result

columns. That solution

should include search

fields and vertical scroll

lists to improve the user

navigation and control.

Continued on next page

7https://www.outsystems.com/ideas/2890/changes-to-behaviour-of-adding-entities-to-an-aggregate
8https://www.outsystems.com/ideas/2885/aggregate-join-tables-with-more-than-one-identifier-of-same-other-table
9https://www.outsystems.com/ideas/6590/move-multiple-aggregate-columns-at-the-same-time

132

https://www.outsystems.com/ideas/2890/changes-to-behaviour-of-adding-entities-to-an-aggregate
https://www.outsystems.com/ideas/2885/aggregate-join-tables-with-more-than-one-identifier-of-same-other-table
https://www.outsystems.com/ideas/6590/move-multiple-aggregate-columns-at-the-same-time

Continuation of Table A.1

ID Issue Description

Figured Out
Study Analysis, User Interviews, Community Ideas,

and User Testing

Interface Components

Related
Sources and Query Result Table

Main Action Hampered Query Formulation and Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Direct Manipulation

Task Category Task-mapping

Task Subcategory Navigation

Nielsen Heuristics
Flexibility and efficiency of use, and Visibility of Sys-

tem Status

Community Posts

Post Likes

Improve Aggregates to allow entity/attribute filter-

ing10 18

Aggregates improvement - Visual Filters11 32

Ability to search attributes in aggregates while group-

ing12 5

Search columns in Aggregate13 0

Focus Aggregate Column14 2

Aggregate Group By Tab15 19

8 Expand hidden columns.

Figured Out
Analysis and Study, User Interviews, Community

Ideas, and User Testing

Interface Components

Related
Query Result Table

Main Action Hampered Query Formulation and Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Mouse click

Task Category Task-mapping

Continued on next page

10https://www.outsystems.com/ideas/5720/service-studio-improve-aggregates-to-allow-entity-attribute-filtering
11https://www.outsystems.com/ideas/5955/aggregates-improvement-visual-filters
12https://www.outsystems.com/ideas/5904/ability-to-search-attributes-in-aggregates-while-grouping
13https://www.outsystems.com/ideas/6826/search-columns-in-aggregate
14https://www.outsystems.com/ideas/6537/focus-aggregate-column
15https://www.outsystems.com/ideas/7322/aggregate-group-by-tab

133

https://www.outsystems.com/ideas/5720/service-studio-improve-aggregates-to-allow-entity-attribute-filtering
https://www.outsystems.com/ideas/5955/aggregates-improvement-visual-filters
https://www.outsystems.com/ideas/5904/ability-to-search-attributes-in-aggregates-while-grouping
https://www.outsystems.com/ideas/6826/search-columns-in-aggregate
https://www.outsystems.com/ideas/6537/focus-aggregate-column
https://www.outsystems.com/ideas/7322/aggregate-group-by-tab

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

Task Subcategory Functionality

Nielsen Heuristics
Flexibility and efficiency of use, and Consistency and

standards

Community Posts

Post Likes

Expand hidden columns16 8

9
Hide multiple columns

with right-click

Actually users can use

table of query results to

hidden some columns.

In addition, they can

right-click in an attribute

column and select hide.

However, if they select

multiple columns and

right-click in one of them,

only one will be selected.

Figured Out
Analysis and Study, Community Ideas, and User Test-

ing

Interface Components

Related
Query Result Table

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Mouse click

Task Category Task-mapping

Task Subcategory Interaction

Nielsen Heuristics Consistency and standards

Community Posts

Post Likes

Ability to select multiple columns in an aggregate for

hiding them17 1

10
If an attribute is lengthy the user cannot see the en-

try.

Figured Out Community Ideas

Continued on next page

16https://www.outsystems.com/ideas/5054/aggregate-expand-hidden-columns
17https://www.outsystems.com/ideas/7102/ability-to-select-multiple-columns-in-an-aggregate-for-hiding-them

134

https://www.outsystems.com/ideas/5054/aggregate-expand-hidden-columns
https://www.outsystems.com/ideas/7102/ability-to-select-multiple-columns-in-an-aggregate-for-hiding-them

Continuation of Table A.1

ID Issue Description

Interface Components

Related
Query Result Table

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Presentation of information/results

Task Category Task-mapping

Task Subcategory Interaction

Nielsen Heuristics
User control and freedom, and Visibility of System

Status

Community Posts

Post Likes

Adjust the columnsize in aggregates query data re-

sult18 2

Improve cell options for aggregate tables19 5

11
Search and navigate be-

tween values

Actually users can only

select columns. They can-

not select rows or cells.

Figured Out Community Ideas

Interface Components

Related
Query Result Table

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Direct Manipulation

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics Flexibility and efficiency of use

Community Posts

Post Likes

Position cursor on desired field within an aggregate20 1

Improve cell options for aggregate tables21 5

Continued on next page

18https://www.outsystems.com/ideas/7027/adjust-the-columnsize-in-aggregates-query-data-result
19https://www.outsystems.com/ideas/6009/service-studio-improve-cell-options-for-aggregate-tables
20https://www.outsystems.com/ideas/7290/position-cursor-on-desired-field-within-an-aggregate
21https://www.outsystems.com/ideas/6009/service-studio-improve-cell-options-for-aggregate-tables

135

https://www.outsystems.com/ideas/7027/adjust-the-columnsize-in-aggregates-query-data-result
https://www.outsystems.com/ideas/6009/service-studio-improve-cell-options-for-aggregate-tables
https://www.outsystems.com/ideas/7290/position-cursor-on-desired-field-within-an-aggregate
https://www.outsystems.com/ideas/6009/service-studio-improve-cell-options-for-aggregate-tables

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

Copy a value from the Aggregate preview data22 27

In an aggregate you can’t copy (Ctrl-C) values23 3

12
It’s not possible to see all the results (disable re-

maining results).

Figured Out Community Ideas

Interface Components

Related
Query Result Table

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Presentation of information/results

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics
Visibility of System Status, and Match between sys-

tem and the real world

Community Posts

Post Likes

In aggregates I should have an option to see all results

in DEV mode24 18

Don’t always truncate aggregate results25 1

Ability to switch off ’remaining results truncated’26 2

13 Provide more shortcuts.

Figured Out Community Ideas

Interface Components

Related

General Layout, Sources, Joins, Filters, Sorting, Aggre-

gation Functions, Calculated Attributes, Query Result

Table, and Test Values

Main Action Hampered Query Formulation and Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Keyboard press

Task Category Task-facilitation

Task Subcategory Alternatives

Continued on next page

22https://www.outsystems.com/ideas/2828/copy-a-value-from-the-aggregate-preview-data
23https://www.outsystems.com/ideas/7015/in-an-aggregate-you-cant-copy-ctrl-c-values
24https://www.outsystems.com/ideas/3052/in-aggregates-i-should-have-an-option-to-see-all-results-in-dev-mode
25https://www.outsystems.com/ideas/8097/dont-always-truncate-aggregate-results
26https://www.outsystems.com/ideas/6824/ability-to-switch-off-remaining-results-truncated

136

https://www.outsystems.com/ideas/2828/copy-a-value-from-the-aggregate-preview-data
https://www.outsystems.com/ideas/7015/in-an-aggregate-you-cant-copy-ctrl-c-values
https://www.outsystems.com/ideas/3052/in-aggregates-i-should-have-an-option-to-see-all-results-in-dev-mode
https://www.outsystems.com/ideas/8097/dont-always-truncate-aggregate-results
https://www.outsystems.com/ideas/6824/ability-to-switch-off-remaining-results-truncated

Continuation of Table A.1

ID Issue Description

Nielsen Heuristics Flexibility and efficiency of use

Community Posts

Post Likes

Aggregate Editor - Shortcut Keys - Move Column Left

and Right27 5

14
Present number of results (rows) of the query re-

sult.

Figured Out User Interviews and Community Tests

Interface Components

Related
Query Result Tables

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Presentation of information/results

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics Visibility of System Status

Community Posts

Post Likes

Record count in Aggregates28 7

Display number of rows returned for an aggregate29 2

15
Invert members of join

operation

As we only have left

join (with or without) it

would be interesting one

button that changes the

entity in the left side of

the join with the one that

is in the right side.

Figured Out Community Ideas and User Testing

Interface Components

Related
Joins

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Continued on next page

27https://www.outsystems.com/ideas/3322/aggregate-editor-shortcut-keys-move-column-left-and-right
28https://www.outsystems.com/ideas/1780/record-count-in-aggregates
29https://www.outsystems.com/ideas/6825/display-number-of-rows-returned-for-an-aggregate

137

https://www.outsystems.com/ideas/3322/aggregate-editor-shortcut-keys-move-column-left-and-right
https://www.outsystems.com/ideas/1780/record-count-in-aggregates
https://www.outsystems.com/ideas/6825/display-number-of-rows-returned-for-an-aggregate

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

Artifact Subcategory Mouse click

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics Flexibility and efficiency of use

Community Posts

Post Likes

Aggregate: swap join entities30 9

16 Improve joins readability

Change the visual rep-

resentation of joins, be-

cause could be difficult to

users to understand what

are the tables joined in

the query, principally if

there is some nesting.

Figured Out Community Ideas and User Testing

Interface Components

Related
Joins

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Object appearance

Task Category Task-mapping

Task Subcategory Interaction

Nielsen Heuristics Visibility of System Status

Community Posts

Post Likes

Aggregates: make them smarter (nested joins)31 14

Continued on next page

30https://www.outsystems.com/ideas/1870/aggregate-swap-join-entities
31https://www.outsystems.com/ideas/1846/aggregates-make-them-smarter-nested-joins

138

https://www.outsystems.com/ideas/1870/aggregate-swap-join-entities
https://www.outsystems.com/ideas/1846/aggregates-make-them-smarter-nested-joins

Continuation of Table A.1

ID Issue Description

17

Delete last joins automat-

ically added if a user

want to remove last entity

added

When an entity is added,

the system analyzes the

relationships with other

tables. In some cases the

system put automatically

other entities related

with the added. But if

the user removes the

entity that he had added,

the joins automatically

added, remain in the

aggregate.

Figured Out Community Ideas

Interface Components

Related
Sources and Joins

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Object appearance

Task Category Task-facilitation

Task Subcategory Keeping the user task on track

Nielsen Heuristics
Consistency and standards, and Match between sys-

tem and the real world

Community Posts

Post Likes

Delete joins automatically when we delete an entity32 22

18 Copy and past filters

Could be more efficient to

user, to generate a similar

filter.

Figured Out Community Ideas and User Testing

Interface Components

Related
Filters

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Continued on next page

32https://www.outsystems.com/ideas/8104/aggregates-delete-joins-automatically-when-we-delete-an-entity

139

https://www.outsystems.com/ideas/8104/aggregates-delete-joins-automatically-when-we-delete-an-entity

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

Artifact Subcategory Keyboard press

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics
Flexibility and efficiency of use, and Consistency and

standards

Community Posts

Post Likes

Ability to copy and paste Filters in Aggregates (includ-

ing in bulk)33 2

19 Copy and past joins

Could be more efficient to

user, to generate a similar

join.

Figured Out Analysis and Study

Interface Components

Related
Joins

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Keyboard press

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics
Flexibility and efficiency of use, and Consistency and

standards

20 Comments in Filters

Improve the highlighting

of comments. It doesn’t

matter if the commentls

will be showed separated

or if the comments would

have a different color.

Just examples...

Figured Out Community Ideas

Interface Components

Related
Filters

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Continued on next page

33https://www.outsystems.com/ideas/6627/ability-to-copy-and-paste-filters-in-aggregates-including-in-bulk

140

https://www.outsystems.com/ideas/6627/ability-to-copy-and-paste-filters-in-aggregates-including-in-bulk

Continuation of Table A.1

ID Issue Description

Artifact Category Representation

Artifact Subcategory Presentation of information/results

Task Category Task-facilitation

Task Subcategory Keeping the user task on track

Nielsen Heuristics Match between system and the real world

Community Posts

Post Likes

Comments and Activate/Deactivate on Aggregates

(Filters, Joins)34 13

Comments on aggregate filter35 6

Comments inside Aggregates36 7

21 Disable filters
Option to disable filter’s

effect.

Figured Out Community Ideas

Interface Components

Related
Filters

Main Action Hampered Query Formulation and Query COmprehension

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Mouse click

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics User control and freedom

Community Posts

Post Likes

Comments and Activate/Deactivate on Aggregates

(Filters, Joins)37 13

Aggregate Filter option38 9

Temporarily disable aggregate Filters39 2

Allow to disable (not remove) aggregate filters40 5

Continued on next page

34https://www.outsystems.com/ideas/2058/comments-and-activate-deactivate-on-aggregates-filters-joins
35https://www.outsystems.com/ideas/7664/comments-on-aggregate-filter
36https://www.outsystems.com/ideas/2891/comments-inside-aggregates
37https://www.outsystems.com/ideas/2058/comments-and-activate-deactivate-on-aggregates-filters-joins
38https://www.outsystems.com/ideas/1765/aggregate-filter-option
39https://www.outsystems.com/ideas/7170/temporarily-disable-aggregate-filters
40https://www.outsystems.com/ideas/7565/allow-to-disable-not-remove-aggregate-filters

141

https://www.outsystems.com/ideas/2058/comments-and-activate-deactivate-on-aggregates-filters-joins
https://www.outsystems.com/ideas/7664/comments-on-aggregate-filter
https://www.outsystems.com/ideas/2891/comments-inside-aggregates
https://www.outsystems.com/ideas/2058/comments-and-activate-deactivate-on-aggregates-filters-joins
https://www.outsystems.com/ideas/1765/aggregate-filter-option
https://www.outsystems.com/ideas/7170/temporarily-disable-aggregate-filters
https://www.outsystems.com/ideas/7565/allow-to-disable-not-remove-aggregate-filters

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

22
Turn filter edition more

accessible

Change aggregate filter

without openning aggre-

gate.

Figured Out Community Ideas

Interface Components

Related
Filters

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Mouse click

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics Flexibility and efficiency of use

Community Posts

Post Likes

Change Aggregate filter without opening Aggregate41 23

23

Change filter without ne-

cessity to open the modal

of expression editor

Turn the insertion and

edition process more

faster.

Figured Out Analysis and Study

Interface Components

Related
Filters

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Direct Manipulation

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics Flexibility and efficiency of use

24
Increase the readability of filters (text highlight-

ing) withou open expression editor modal.

Figured Out Analysis and Study

Interface Components

Related
Filters

Main Action Hampered Query Comprehension

Continued on next page

41https://www.outsystems.com/ideas/3309/change-aggregate-filter-without-opening-aggregate

142

https://www.outsystems.com/ideas/3309/change-aggregate-filter-without-opening-aggregate

Continuation of Table A.1

ID Issue Description

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Presentation of information/results

Task Category Task-facilitation

Task Subcategory Keeping the user task on track

Nielsen Heuristics Match between system and the real world

25 Remove aggregate filter if rule is empty.

Figured Out
Analysis and Study, Community Ideas, and User Test-

ing

Interface Components

Related
Filters

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Presentation of information/results

Task Category Task-facilitation

Task Subcategory Task/function automation

Nielsen Heuristics Consistency and standards

Community Posts

Post Likes

Remove Aggregate filter if rule is empty42 10

26 Bin button to delete filter is not visible.

Figured Out Community Ideas

Interface Components

Related
Filters

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Screen layout

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics
User control and freedom, and Recognition rather

than recall

Community Posts

Post Likes

Continued on next page

42https://www.outsystems.com/ideas/5056/remove-aggregate-filter-if-rule-is-empty

143

https://www.outsystems.com/ideas/5056/remove-aggregate-filter-if-rule-is-empty

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

Don’t make me scroll to delete filters43 8

Move delete filter button to be near the actual filter in

an aggregate44 3

27
Group by attributes’

names are not perceptive

For example if two

different entities

have attributes called

"Name"and a user group

by this two attribuytes,

they will be presented

as "Name1"and "Name2".

Moreover, there is not any

reference to attribute’s

entity.

Figured Out
Analysis and Study, Community Ideas, and User Test-

ing

Interface Components

Related
Aggregation Functions

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Language

Artifact Subcategory Nameling/labeling

Task Category Task-mapping

Task Subcategory Interaction

Nielsen Heuristics Visibility of system status, and Error prevention

Community Posts

Post Likes

Set attribute name when ’Group by Id’ to Entity-

NameId45 4

28 View area of group bys.

There is no list view with

all aggregated attributes,

in order to improve the ef-

ficiency of query compre-

hension.

Continued on next page

43https://www.outsystems.com/ideas/5686/dont-make-me-scroll-to-delete-filters
44https://www.outsystems.com/ideas/7145/move-delete-filter-button-to-be-near-the-actual-filter-in-an-aggregate
45https://www.outsystems.com/ideas/6456/set-attribute-name-when-group-by-id-to-entitynameid

144

https://www.outsystems.com/ideas/5686/dont-make-me-scroll-to-delete-filters
https://www.outsystems.com/ideas/7145/move-delete-filter-button-to-be-near-the-actual-filter-in-an-aggregate
https://www.outsystems.com/ideas/6456/set-attribute-name-when-group-by-id-to-entitynameid

Continuation of Table A.1

ID Issue Description

Figured Out
Analysis and Study, Community Ideas, and User Test-

ing

Interface Components

Related
Aggregation Functions

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Presentation of information/results

Task Category Task-mapping

Task Subcategory Navigation

Nielsen Heuristics Visibility of system status

Community Posts

Post Likes

Aggregate Group By Tab46 19

29

When the user

clicks in "add at-

tribute"(calculated

attribute), set the cursor

automatically to value

This is useful to turns the

process of adding faster,

reducing the user’s effort,

increasing the pleasant of

use.

Figured Out Analysis and Study, and Community Ideas

Interface Components

Related
Calculated Attributes

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Mouse click

Task Category Task-facilitation

Task Subcategory Keeping the user task on track

Nielsen Heuristics
Consistency and standards, and Recognition rather

than recall

Community Posts

Post Likes

Set cursor to ’value’ after adding new attribute to an

aggregate47 1

Continued on next page

46https://www.outsystems.com/ideas/7322/aggregate-group-by-tab
47https://www.outsystems.com/ideas/7528/set-cursor-to-value-after-adding-new-attribute-to-an-aggregate

145

https://www.outsystems.com/ideas/7322/aggregate-group-by-tab
https://www.outsystems.com/ideas/7528/set-cursor-to-value-after-adding-new-attribute-to-an-aggregate

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

30

Inconsistent data formats

between filters and test

values

"The test values for Ag-

gregate filters requires

YYYY-MM-DD, but data

in the results is displayed

as MM/DD/YYYY. If you

enter MM/DD/YYYY into

the test values, you get an

error."

Figured Out Community Ideas

Interface Components

Related
Filters

Main Action Hampered Query Formulation and Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Language

Artifact Subcategory Nameling/labeling

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics Consistency and standards

Community Posts

Post Likes

Allow date entry into test values in same format as

results are displayed48 4

31
Inconsistent of sorting between aggregate proper-

ties and aggregate popup on action.

Figured Out Community Ideas

Interface Components

Related
Actions and Nodes

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Presentation of information/results

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics
Consistency and standards, and Flexibility and effi-

ciency of use

Continued on next page

48https://www.outsystems.com/ideas/4985/allow-date-entry-into-test-values-in-same-format-as-results-are-displayed

146

https://www.outsystems.com/ideas/4985/allow-date-entry-into-test-values-in-same-format-as-results-are-displayed

Continuation of Table A.1

ID Issue Description

Community Posts

Post Likes

Consistency between Aggregate properties and

popup info balloon when hovering49 10

32
Aggregates’ Search en-

gine.

General query search

box.

Figured Out Analysis and Study, and Community Ideas

Interface Components

Related

General Layout, Sources, Joins, Filters, Sorting, Aggre-

gation Functions, Calculated Attributes, and Query

Result Table

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Keyboard press

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics
Flexibility and efficiency of use, and Recognition

rather than recall

Community Posts

Post Likes

Aggregate - Highlight/Find Usage by Source50 4

33
Freeze formulation areas while scroll horizontal in

query result table.

Figured Out
Analysis and Study, User Interviews, and Community

Ideas

Interface Components

Related
General Layout

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Screen layout

Task Category Task-mapping

Task Subcategory Navigation

Nielsen Heuristics Visibility of system status

Continued on next page

49https://www.outsystems.com/ideas/5740/consistency-between-aggregate-properties-and-popup-info-balloon-when-hovering
50https://www.outsystems.com/ideas/3412/aggregate-highlight-find-usage-by-source

147

https://www.outsystems.com/ideas/5740/consistency-between-aggregate-properties-and-popup-info-balloon-when-hovering
https://www.outsystems.com/ideas/3412/aggregate-highlight-find-usage-by-source

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

Community Posts

Post Likes

Freeze Sources, Filters, Sorting and Test Values in AG-

GREGATE51 10

34 Duplicate tables.

Figured Out Community Ideas

Interface Components

Related
Sources

Main Action Hampered Query Formualtion

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Keyboard press

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics Flexibility and efficiency of use

Community Posts

Post Likes

Aggregates: Duplicate Tables / Joins52 1

35 Duplicate joins.

Figured Out Community Ideas

Interface Components

Related
Joins

Main Action Hampered Query Formualtion

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Keyboard press

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics Flexibility and efficiency of use

Community Posts

Post Likes

Aggregates: Duplicate Tables / Joins53 1

36 Duplicate filters.

Figured Out Analysis and Study

Continued on next page

51https://www.outsystems.com/ideas/5935/freeze-sources-filters-sorting-and-test-values-in-aggregate
52https://www.outsystems.com/ideas/7582/aggregates-duplicate-tables-joins
53https://www.outsystems.com/ideas/7582/aggregates-duplicate-tables-joins

148

https://www.outsystems.com/ideas/5935/freeze-sources-filters-sorting-and-test-values-in-aggregate
https://www.outsystems.com/ideas/7582/aggregates-duplicate-tables-joins
https://www.outsystems.com/ideas/7582/aggregates-duplicate-tables-joins

Continuation of Table A.1

ID Issue Description

Interface Components

Related
Filters

Main Action Hampered Query Formualtion

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Keyboard press

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics Flexibility and efficiency of use

Aggregates: Duplicate Tables / Joins54 1

37 Distinct function

Without extending ag-

gregates’ expressiveness

is the "Group by of all

columns of the result".

Figured Out Analysis and Study, and Community Ideas

Interface Components

Related
Query Result Table

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Language

Artifact Subcategory Nameling/labeling

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics
Consistency and standards, and Match between sys-

tem and the real world

Community Posts

Post Likes

Aggregate with Distinct55 107

38 Count Distinct function

Expressiveness problem

(distinct in all could be

"replaced"by group bys,

but COUNT DISTINCT

cannot be reached using

group bys).

Continued on next page

54https://www.outsystems.com/ideas/7582/aggregates-duplicate-tables-joins
55https://www.outsystems.com/ideas/Idea_View.aspx?IdeaID=2179&IdeaName=

aggregate-with-distinct&utm_source=community&utm_medium=email&utm_campaign=idea-comment

149

https://www.outsystems.com/ideas/7582/aggregates-duplicate-tables-joins
https://www.outsystems.com/ideas/Idea_View.aspx?IdeaID=2179&IdeaName=aggregate-with-distinct&utm_source=community&utm_medium=email&utm_campaign=idea-comment
https://www.outsystems.com/ideas/Idea_View.aspx?IdeaID=2179&IdeaName=aggregate-with-distinct&utm_source=community&utm_medium=email&utm_campaign=idea-comment

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

Figured Out Community Ideas

Interface Components

Related
Aggregation Function, and Query Result Table

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Mouse click

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics Flexibility and efficiency of use

Community Posts

Post Likes

Aggregate: Count Distinct56 13

39
Drag and drop input parameters to automatically

create filters into Aggregates.

Figured Out Community Ideas

Interface Components

Related
Actions and Nodes, and Filters

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Object movement

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics Flexibility and efficiency of use

40
Button to clear all the test

values inserted

It could be a good re-

source if users have many

values inserted and they

want to clear all. It could

be very annoying if they

need to clear one at a

time.

Figured Out Analysis and Study

Interface Components

Related
Test Values

Continued on next page

56https://www.outsystems.com/ideas/1889/aggregate-count-distinct

150

https://www.outsystems.com/ideas/1889/aggregate-count-distinct

Continuation of Table A.1

ID Issue Description

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Mouse click

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics Flexibility and efficiency of use

41

Add variable into aggre-

gate puts again the entity

already inserted

When dragging a vari-

able of type identifier

(e.g. CompanyID) the en-

tity Company is added

even if it was added be-

fore. The only thing that

it should add is the fil-

ter (if there isn’t one al-

ready).

Figured Out Analysis and Study

Interface Components

Related
Actions and Nodes, and Sources

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Object movement

Task Category Task-facilitation

Task Subcategory Keeping the user task on track

Nielsen Heuristics User control and freedom

42
Query compreension at a

glance

To comprehend what

data the query will re-

trive (query structure)

the user need to switch

between tabs.

Figured Out Analysis and Study, and User Interviews

Interface Components

Related
General Layout

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Continued on next page

151

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

Artifact Category Representation

Artifact Subcategory Screen layout

Task Category Task-mapping

Task Subcategory Navigation

Nielsen Heuristics Visibility of system status

43
"Hide others"bug in

group by

When someone clicks on

“hide others” above an ag-

gregation column, there

is no visible effect (gray

columns stay visible).

Figured Out Analysis and Study

Interface Components

Related
Aggregation Functions, and Query Result Table

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Mouse click

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics Flexibility and efficiency of use

44
Highlight new additions

(feedback)

Highlight elements

added in last interaction.

For example sources,

joins, group bys sorts,

etc...

Figured Out Analysis and Study

Interface Components

Related

Sources, Joins, Filters, Sorting, Aggregation Functions,

Calculated Attributes, Static Entities, and Query Re-

sult Table

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory No-message feedback

Task Category Task-facilitation

Task Subcategory Keeping the user task on track

Nielsen Heuristics Visibility of system status

Continued on next page

152

Continuation of Table A.1

ID Issue Description

45
Turn visible query formu-

lation options

Some query formulation

options like aggregation

functions or calculated at-

tributes are only visible

if the user uses acceler-

ators like right-click on

columns. As well as pos-

sible, try to show these

options without pain sim-

plicity of interface. Im-

prove "Recognition, not

recall"without harm "Aes-

thetic and minimalist de-

sign".

Figured Out Analysis and Study, and User Testing

Interface Components

Related
General Layout

Main Action Hampered Query Formulation and Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Object appearance

Task Category Task-facilitation

Task Subcategory Alternatives

Nielsen Heuristics Recognition rather than recall

46
It’s not possible to remove more than one aggre-

gated attribute at the same time.

Figured Out Analysis and Study, and User Testing

Interface Components

Related

Aggregation Functions, Calculated Attributes, and

Query Result Table

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Mouse click

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics
Flexibility and efficiency of use, and Consistency and

standards

Continued on next page

153

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

47
It’s not possible to change

aggregation functions

To change an aggregation

function (e.g. count, max,

etc.) is necessary to re-

move the attribute and to

add again.

Figured Out Analysis and Study, and User Testing

Interface Components

Related
Aggregation Functions, and Query Result Table

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Mouse click

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics Flexibility and efficiency of use

48

Add another join of two

tables that are already

merged.

When for example

already exists a join

between A and B with

foreign key Key1 and

we need to add another

join between A and B

but with the foreign

key Key2, the interface

should add automatically

the entities twice (e.g.,

A2 join B using Key2).

Figured Out User Testing

Interface Components

Related
Sources and Joins

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Mouse click

Task Category Task-facilitation

Task Subcategory Task/function automation

Nielsen Heuristics
Error prevention, and Match between system and the

real world

Continued on next page

154

Continuation of Table A.1

ID Issue Description

49
The users don’t know that

exist hidden attributes

If the users don’t have ex-

perience using the plat-

form they don’t know

that some attributes are

hidden.

Figured Out User Testing

Interface Components

Related
Query Result Table

Main Action Hampered Query Formulation and Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Object appearance

Task Category Task-facilitation

Task Subcategory User error tolerance

Nielsen Heuristics
Visibility of system status, and Match between system

and the real world

50

Function symbol of ag-

gregated attributes isn’t

clickable.

Figured Out User Testing

Interface Components

Related
Aggregation Functions, and Query Result Table

Main Action Hampered Query Comprehension

Usability-ODC Framework Attributes

Artifact Category Manipulation

Artifact Subcategory Mouse click

Task Category Task-facilitation

Task Subcategory Keeping the user task on track

Nielsen Heuristics
Consistency and standards, and Visibility of system

status

51

No visual identifier to

show that is a filter edi-

tion option

Reported by a user in an

User Test.

Figured Out User Testing

Interface Components

Related
Filters

Continued on next page

155

APPENDIX A. TAXONOMY OF PROBLEMS - EXISTING INTERFACE

Continuation of Table A.1

ID Issue Description

Main Action Hampered Query Formulation

Usability-ODC Framework Attributes

Artifact Category Representation

Artifact Subcategory Presentation of information/results

Task Category Task-mapping

Task Subcategory Functionality

Nielsen Heuristics Visibility of system status

End of Table A.1

156

A
p
p
e
n
d
i
x

B
Usability Tests Results

(a) Existing Interface

(b) Final Prototype

Figure B.1: Comparison of the System Usability Scale results (SUS) between the Existing
Interface and the Final Prototype.

157

APPENDIX B. USABILITY TESTS RESULTS

Table B.1: Users’ profile survey results. (Existing interface usability tests - 30 users)

Questions Yes No

Have you a degree in
Computer Science or

similar?
66.67% 33.33%

Are you familiar with
relational operators

(joins)?
80.00% 20.00%

Never
use

Almost
never

Occasionally
sometimes

Almost
every
time

Frequently
use

Have you already used
OutSystems?

30.00% 26.67% 13.33% 3.33% 26.67%

Have you used a query
language (SQL or

other)?
6.67% 20.00% 46.67% 13.33% 13.33%

Have you already used
relational databases?

10.00% 13.33% 30.00% 23.33% 23.33%

How often do you use
spreadsheet

applications?
0.00% 16.67% 43.33% 10.00% 30.00%

How often do you use
business intelligence

software?
33.33% 33.33% 20.00% 3.33% 10.00%

No expe-
rience

<= 6
months

<= 1 year 1-3 years
>= 4
years

How long do you use
the platform?

40.00% 13.33% 10.00% 10.00% 26.67%

Never
use

Some
weeks

ago

Some
months

ago
Last year

Some
years ago

When was the last time
that you have used SQL

to build queries?
16.67% 40.00% 13.33% 13.33% 16.67%

1 2 3 4 5

How do you define
your SQL expertise

level?
22.22% 7.41% 33.33% 29.63% 7.41%

158

Table B.2: Users’ profile survey results. (Paper prototype usability tests - 15 users)

Questions Yes No

Have you a degree in
Computer Science or

similar?
66.67% 33.33%

Are you familiar with
relational operators

(joins)?
86.67% 13.33%

Never
use

Almost
never

Occasionally
sometimes

Almost
every
time

Frequently
use

Have you already used
OutSystems?

33.33% 26.67% 20.00% 6.67% 13.33%

Have you used a query
language (SQL or

other)?
26.67% 6.67% 33.33% 6.67% 26.67%

Have you already used
relational databases?

0.00% 20.00% 40.00% 20.00% 20.00%

How often do you use
spreadsheet

applications?
0.00% 13.33% 46.67% 6.67% 33.33%

How often do you use
business intelligence

software?
46.67% 33.33% 6.67% 6.67% 6.67%

No expe-
rience

<= 6
months

<= 1 year 1-3 years
>= 4
years

How long do you use
the platform?

53.33% 13.33% 13.33% 6.67% 13.33%

Never
use

Some
weeks

ago

Some
months

ago
Last year

Some
years ago

When was the last time
that you have used SQL

to build queries?
26.67% 33.33% 26.67% 13.33% 0.00%

1 2 3 4 5

How do you define
your SQL expertise

level?
26.67% 0.00% 40.00% 13.33% 20.00%

159

APPENDIX B. USABILITY TESTS RESULTS

Table B.3: Users’ profile survey results. (Final prototype usability tests - 30 users)

Questions Yes No

Have you a degree in
Computer Science or

similar?
76.67% 23.33%

Are you familiar with
relational operators

(joins)?
80.00% 20.00%

Never
use

Almost
never

Occasionally
sometimes

Almost
every
time

Frequently
use

Have you already used
OutSystems?

23.33% 30.00% 26.67% 0.00% 20.00%

Have you used a query
language (SQL or

other)?
16.67% 13.33% 46.67% 10.00% 13.33%

Have you already used
relational databases?

6.67% 20.00% 46.67% 3.33% 23.33%

How often do you use
spreadsheet

applications?
0.00% 16.67% 46.67% 10.00% 26.67%

How often do you use
business intelligence

software?
30.00% 33.33% 30.00% 0.00% 6.67%

No expe-
rience

<= 6
months

<= 1 year 1-3 years
>= 4
years

How long do you use
the platform?

43.33% 10.00% 10.00% 16.67% 20.00%

Never
use

Some
weeks

ago

Some
months

ago
Last year

Some
years ago

When was the last time
that you have used SQL

to build queries?
20.00% 33.33% 13.33% 20.00% 13.33%

1 2 3 4 5

How do you define
your SQL expertise

level?
7.69% 26.92% 30.77% 26.92% 7.69%

160

Table B.4: Success Rate of the scenarios by user group when users tested the existing
interface (30 users).

Testing Scenario User Group Not Achieved
Partially
Achieved

Achieved

C1 OutSystems Developer 90.00% 0.00% 10.00%
Software Developer 80.00% 0.00% 20.00%
Citizen Developer 100% 0.00% 0.00%
Total 90.00% 0.00% 10.00%

M1 OutSystems Developer 0.00% 10.00% 90.00%
Software Developer 10.00% 10.00% 80.00%
Citizen Developer 30.00% 10.00% 60.00%
Total 13.33% 10.00% 76.67%

C2 OutSystems Developer 0.00% 90.00% 10.00%
Software Developer 60.00% 30.00% 10.00%
Citizen Developer 90.00% 10.00% 0.00%
Total 50.00% 43.33% 6.67%

C3 OutSystems Developer 0.00% 0.00% 100.00%
Software Developer 0.00% 20.00% 80.00%
Citizen Developer 50.00% 10.00% 40.00%
Total 16.67% 10.00% 73.33%

F1 OutSystems Developer 50.00% 0.00% 50.00%
Software Developer 70.00% 20.00% 10.00%
Citizen Developer 80.00% 10.00% 10.00%
Total 66.67% 10.00% 23.33%

C4 OutSystems Developer 0.00% 40.00% 60.00%
Software Developer 30.00% 60.00% 10.00%
Total 15.00% 50.00% 35.00%

M4 OutSystems Developer 50.00% 0.00% 50.00%
Software Developer 100.00% 0.00% 0.00%
Total 75.00% 0.00% 25.00%

Total OutSystems Developer 27.14% 20.00% 52.86%
Software Developer 50.00% 20.00% 30.00%
Citizen Developer 70.00% 8.00% 22.00%
Total 46.84% 16.84% 36.32%

161

APPENDIX B. USABILITY TESTS RESULTS

Table B.5: Success Rate of the scenarios by user group when users tested the paper proto-
type (15 users).

Testing Scenario User Group Not Achieved
Partially
Achieved

Achieved

C1 OutSystems Developer 60.00% 0.00% 40.00%
Software Developer 100.00% 0.00% 0.00%
Citizen Developer 80.00% 0.00% 20.00%
Total 80.00% 0.00% 20.00%

M1 OutSystems Developer 0.00% 0.00% 83.33%
Software Developer 0.00% 0.00% 80.00%
Citizen Developer 0.00% 0.00% 60.00%
Total 0.00% 0.00% 75.00%

C2 OutSystems Developer 0.00% 20.00% 80.00%
Software Developer 0.00% 40.00% 60.00%
Citizen Developer 0.00% 20.00% 80.00%
Total 0.00% 26.67% 73.33%

C3 OutSystems Developer 0.00% 0.00% 100.00%
Software Developer 0.00% 0.00% 100.00%
Citizen Developer 0.00% 0.00% 100.00%
Total 0.00% 0.00% 100.00%

F1 OutSystems Developer 0.00% 0.00% 100.00%
Software Developer 0.00% 0.00% 100.00%
Citizen Developer 60.00% 0.00% 40.00%
Total 20.00% 0.00% 80.00%

C4 OutSystems Developer 0.00% 0.00% 100.00%
Software Developer 0.00% 20.00% 80.00%
Total 0.00% 10.00% 90.00%

M4 OutSystems Developer 20.00% 0.00% 80.00%
Software Developer 0.00% 0.00% 100.00%
Total 10.00% 0.00% 90.00%

Total OutSystems Developer 11.43% 2.86% 85.71%
Software Developer 14.29% 8.57% 77.14%
Citizen Developer 28.00% 4.00% 68.00%
Total 17.90% 5.14% 76.95%

162

Table B.6: Success Rate of the scenarios by user group when users tested the Final Proto-
type (30 users).

Testing Scenario User Group Not Achieved
Partially
Achieved

Achieved

C1 OutSystems Developer 70.00% 0.00% 30.00%
Software Developer 80.00% 0.00% 20.00%
Citizen Developer 100.00% 0.00% 0.00%
Total 83.33% 0.00% 16.67%

M1 OutSystems Developer 0.00% 10.00% 90.00%
Software Developer 0.00% 0.00% 100.00%
Citizen Developer 10.00% 0.00% 90.00%
Total 3.33% 3.33% 93.33%

C2 OutSystems Developer 0.00% 20.00% 80.00%
Software Developer 20.00% 40.00% 40.00%
Citizen Developer 20.00% 40.00% 40.00%
Total 13.33% 33.33% 53.33%

C3 OutSystems Developer 0.00% 0.00% 100.00%
Software Developer 0.00% 0.00% 100.00%
Citizen Developer 20.00% 0.00% 80.00%
Total 6.67% 0.00% 93.33%

F1 OutSystems Developer 10.00% 10.00% 80.00%
Software Developer 20.00% 0.00% 80.00%
Citizen Developer 60.00% 0.00% 40.00%
Total 30.00% 3.33% 66.67%

C4 OutSystems Developer 0.00% 0.00% 100.00%
Software Developer 0.00% 30.00% 70.00%
Total 0.00% 15.00% 85.00%

M4 OutSystems Developer 10.00% 0.00% 90.00%
Software Developer 30.00% 0.00% 70.00%
Total 20.00% 0.00% 80.00%

Total OutSystems Developer 12.86% 5.71% 81.43%
Software Developer 21.43% 10.00% 68.57%
Citizen Developer 42.00% 8.00% 50.00%
Total 25.43% 7.90% 66.67%

163

APPENDIX B. USABILITY TESTS RESULTS

Table B.7: Average of the time needed for each scenario and user group in the existing
interface (extracted from usability tests with 30 users).

Testing Scenario User Group Not Achieved
Partially
Achieved

Achieved

C1 OutSystems Developer 0:02:14 - 0:03:46
Software Developer 0:03:30 - 0:04:20
Citizen Developer 0:04:47 - -
Total 0:03:30 - 0:04:03

M1 OutSystems Developer - 0:01:18 0:02:06
Software Developer 0:07:53 0:04:28 0:04:55
Citizen Developer 0:08:25 0:08:26 0:04:11
Total 0:08:09 0:04:44 0:03:44

C2 OutSystems Developer - 0:02:31 0:04:09
Software Developer 0:02:38 0:03:58 0:02:15
Citizen Developer 0:03:09 0:03:07 -
Total 0:02:53 0:03:12 0:03:12

C3 OutSystems Developer - - 0:01:01
Software Developer - 0:00:54 0:01:40
Citizen Developer 0:01:50 0:02:45 0:01:57
Total 0:01:50 0:01:50 0:01:33

F1 OutSystems Developer 0:04:46 - 0:06:05
Software Developer 0:08:44 0:10:56 0:07:17
Citizen Developer 0:08:46 0:10:57 0:08:10
Total 0:07:25 0:10:56 0:07:11

C4 OutSystems Developer - 0:01:23 0:02:09
Software Developer 0:02:11 0:01:51 0:02:03
Total 0:02:11 0:01:37 0:02:06

M4 OutSystems Developer 0:02:38 - 0:03:55
Software Developer 0:04:47 - -
Total 0:03:42 - 0:03:55

164

Table B.8: Average of the time needed for each scenario and user group in the final
prototype (extracted from usability tests with 30 users).

Testing Scenario User Group Not Achieved
Partially
Achieved

Achieved

C1 OutSystems Developer 0:01:54 - 0:02:02
Software Developer 0:01:50 - 0:02:22
Citizen Developer 0:04:10 - -
Total 0:02:38 - 0:02:12

M1 OutSystems Developer - 0:02:36 0:02:31
Software Developer - - 0:04:02
Citizen Developer 0:06:50 - 0:05:00
Total 0:06:50 0:02:36 0:03:51

C2 OutSystems Developer - 0:02:22 0:03:04
Software Developer 0:02:09 0:04:17 0:03:00
Citizen Developer 0:03:14 0:04:55 0:03:34
Total 0:02:41 0:03:51 0:03:12

C3 OutSystems Developer - - 0:00:47
Software Developer - - 0:01:01
Citizen Developer 0:02:52 - 0:01:11
Total 0:02:52 - 0:01:00

F1 OutSystems Developer 0:11:17 0:06:14 0:05:10
Software Developer 0:06:59 - 0:08:36
Citizen Developer 0:07:12 - 0:08:59
Total 0:08:29 0:06:14 0:07:35

C4 OutSystems Developer - - 0:00:59
Software Developer - 0:01:45 0:01:14
Total - 0:01:45 0:01:07

M4 OutSystems Developer 0:00:45 - 0:03:01
Software Developer 0:01:18 - 0:04:24
Total 0:01:02 - 0:03:42

165

APPENDIX B. USABILITY TESTS RESULTS

Table B.9: Average and Standard Deviation of the System Usability Scale (SUS) results.

Average Standard Deviation

Question Existing
Interface

Final Pro-
totype

Existing
Interface

Final Pro-
totype

I think that I would like to use this
system frequently.

3.40 4.33 1.00 0.54

I found the system unnecessarily
complex.

2.87 1.90 1.01 0.79

I thought the system was easy to
use.

3.40 4.07 0.97 0.73

I think that I would need the sup-
port of a technical person to be able
to use this system.

2.97 2.20 1.27 1.14

I found the various functions in this
system were well integrated.

3.07 4.30 0.91 0.64

I thought there was too much incon-
sistency in this system.

2.40 1.33 1.22 0.54

I would imagine that most people
would learn to use this system very
quickly.

3.60 4.13 1.04 0.85

I found the system very cumber-
some to use.

2.37 1.33 1.13 0.54

I felt very confident using the sys-
tem.

3.30 4.00 1.24 0.93

I needed to learn a lot of things be-
fore I could get going with this sys-
tem.

2.73 2.43 1.11 1.12

166

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Problem Description
	Research Questions
	Contributions
	Document Structure

	Background
	Human-Computer Interaction
	Main Concepts
	User-centered Design

	OutSystems Background
	Visual Development Environment
	Visual Data Querying

	Related Work
	Query Conceptual Models
	Query Formulation Problems
	Visual Query Composition
	Discussion

	Methodologies
	Problem Exploration
	User Analysis
	Iterative Design
	Testing Scenarios
	Evaluation Method
	Summary

	Requirements and Analysis
	Problem Analysis
	Analysis
	User Interviews
	Data Analysis
	Community Ideas
	Existing Interface Evaluation

	Target Users
	Requirements and Expectations
	User Groups

	Design and Implementation
	Sketching
	Paper Prototype
	Design
	Implementation
	Evaluation

	Service Studio Implementation
	Design
	Implementation
	Evaluation

	Results Analysis
	Effectiveness
	Efficiency
	Satisfaction

	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography
	Webography
	Appendices
	Taxonomy of Problems - Existing Interface
	Usability Tests Results

