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Figure 1: Main contributions of this research: given a dataset containing a radiologist’s eye-tracking data and annotations of
the anatomical regions of the chest X-ray, (1) we extracted Markov chains corresponding to the radiologist’s visiting patterns,
(2) we performed a density map analysis to determine the most visited regions in the X-ray, and (3) we conducted a frequent
pattern analysis to understand what were the main visitation patterns between different diagnosis.

ABSTRACT
Radiologists are trained professionals who use medical images to
obtain clinically relevant information. However, little is known
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about visual search patterns and strategies radiologists employ
during medical image analysis. Thus, there is a current need for
guidelines to specify optimal visual search routines commonly used
by radiologists. Identifying these features could improve radiologist
training and assist radiologists in their work. Our study found that
during the moments in which radiologists view chest X-ray images
in silence before verbalizing the analysis, they exhibit unique search
patterns regardless of the type of disease depicted. Our findings
suggest that radiologists’ search behaviors can be identified at this
stage. However, when radiologists verbally interpret the X-rays, the
gaze patterns appear noisy and arbitrary. Current deep-learning
approaches train their systems using this noisy and arbitrary gaze
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data. This may explain why previous research still needs to show
the superiority of deep-learning models that use eye tracking for
disease classification. Our paper investigates these patterns and
attempts to uncover the eye-gaze configurations during the different
analysis phases.
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1 INTRODUCTION
Radiologists are in short supply worldwide, with low-income and
middle-income countries (LMICs) suffering the most significant
shortages [Hricak et al. 2021]. There has been increased interest in
finding solutions to mitigate this problem. A potential solution is
to automate the diagnostic process using Artificial Intelligence (AI).
There are, however, concerns about bias regarding the use of AI in
high-stakes decision-making, as well as a lack of transparency in
how decisions are made. Using eye-tracking data from radiologists
to analyze X-rays is an effective way to solve this problem. Research
has been conducted on radiologists’ behavior patterns to reduce
misclassifications and prepare medical students for the future. Al-
though these methods are promising, the noise in eye-tracking
data limits their scalability. Recently, studies have been made to
incorporate eye-tracking data and X-ray images in multimodal deep
learning architectures to improve prediction accuracy based on the
underlying radiologists’ behavioral patterns. However, the litera-
ture is not conclusive on whether eye-tracking data is helpful for
deep learning. Still, most recent work has used simple saccade and
fixation patterns. We argue that more elaborate analyses might
yield signature patterns to contribute to more precise diagnostics.
To this end, we analysed gaze patterns in two distinct moments
during a X-ray analysis protocol: (1) when the radiologist is silent
at the beginning, and (2) when the radiologist is reporting their
findings. We conducted a three-pronged approach focusing, first,
on density maps that capture atemporal patterns to reveal the most
visited regions of Chest X-Ray (CXR) images. Second, we looked at
the temporal visitation patterns using Markov Models to uncover
differences over time across different diagnoses. Finally, we adopted
string analysis to compare sequences between visited areas. One
key finding of our study is that initial (silent) and final (reporting)
gaze patterns differ markedly regardless of diagnostic. Our results
suggest that information gathered from reporting phase data using
these three techniques may well provide the key to usher in more
precise machine learning techniques and that indeed Eye Gaze
patterns may be leveraged to enhance deep learning approaches.

The remainder of this paper is organized as follows. In the next
section, we review relevant literature on the topic. Subsequently,
we present the methodology of our study, including the datasets
used and a detailed description of the three analyses conducted:
Density Maps, Markov Chains, and Longest Repeating Patterns. We
conclude with a summary of our findings, and discuss suggestions
for future research.

2 RELATEDWORK
Interpreting and diagnosing CXR images is a complex task com-
bining visual perception and multiple cognitive processes. Several
medical conditions can only be detected through the analysis of
medical images, and doctors have to make decisions with images
that may not have the best conditions. This highlights the need for
approaches to this challenge. Eye Gaze applications have become
popular in recent years [Harezlak and Kasprowski 2018; Zammarchi
and Conversano 2021].

Understanding the visual search behavior of radiologists when
viewing medical images is crucial as their visual search patterns
are unique and highly subjective in nature [Alamudun et al. 2015;
Carmody et al. 1984; Thomas and Lansdown 1963; Tuddenham and
Calvert 1961].

Kundel et al. [Kundel et al. 1990] reported that missed diagnoses
in chest radiographs result from various errors, with scanning er-
rors accounting for about 30%, recognition errors accounting for
about 25%, and decision-making errors accounting for about 45%
of the total errors respectively. The study also identified potential
causes of these errors using chest radiographs. These causes in-
clude: (i) premature termination of search after the detection of an
abnormality, commonly explained as satisfaction in the ‘quest for
meaning’ [Samuel et al. 1995; Tuddenham 1962]; (ii) termination
of search when the probability of reporting more false positives
increases with increase in search time [Berbaum et al. 1991, 1990];
(iii) premature termination due to lack of confidence in reporting
abnormalities55; (iv) limited perceptual resources [Berbaum et al.
1996, 1991]; and (v) visual neglect of certain regions in an image
while detecting abnormalities [Berbaum et al. 1996].

Previous studies have demonstrated that the incorporation of
virtual reality (VR) technologies in radiology reading rooms offer
a practical, adaptable, portable, and financially viable solution to
address the limitations of traditional settings. Recent studies by
Sousa et al. [Sousa et al. 2017], have shown the potential benefits
of VR technologies in enhancing radiologists’ performance and
improving the diagnostic accuracy. However, using eye-tracking
data in evaluation of X-ray images has yet to be fully explored.

Recently, the EYEGAZE dataset [Karargyris et al. 2021] and RE-
FLACX [Bigolin Lanfredi et al. 2022] studies employed eye-tracking
technology to track visual search behaviors of radiologists while
interpreting medical images. In the EYE GAZE dataset, a radiolo-
gist who was American Board of Radiology certified with over five
years of experience performed routine radiology readings using
the GazePoint GP3 Eye Tracker in multiple sessions, with 30 cases
per session over a period of two months. On the other hand, RE-
FLACX involved five board-certified subspecialty-trained thoracic
radiologists who closely worked on the study design.
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Ganesan [Ganesan et al. 2018] shows that identifying the fac-
tors that influence radiologists’ visual search behavior can help
understand their perception and interpretation of medical images,
which in turn could lead to the development and implementation
of effective strategies to improve the ability to detect abnormali-
ties. Factors that have been identified as significant influences on
radiologists’ visual search patterns include expertise, satisfaction of
search, visual fatigue, confidence in reporting abnormalities, train-
ing received, and prior knowledge. Among these factors, expertise
has been identified as having the most significant impact on vi-
sual search patterns. Eye-tracking studies have also shown that
more experienced readers tend to have more effective visual search
strategies, which can be observed through the difference in visual
search patterns among readers with different levels of experience.

In medical imaging, radiologists typically establish an overall
impression of an image within the first few seconds of viewing,
called the global impression, as previously reported [Kundel and
Nodine 1975; Kundel et al. 1991; Nodine and Kundel 1987]. After
resolving initial perturbations, radiologists carry out a scan of the
whole image to detect abnormalities that were not conspicuous
enough to be picked out during the initial global impression. This
is followed by the confirmation of initial decisions made without
focusing on finding new abnormalities. The global-focal search
model of visual search proposes the four main components of visual
search: (i) Global impression, (ii) Foveal verification, (iii) Discovery
scanning, and (iv) Reflective search [Nodine and Kundel 1987].

Some studies have already shown results regarding the improve-
ment of the identification of pathologies based on observing an-
other person’s eye movements. For instance, in a study where there
were improvements regarding the identification of pulmonary nod-
ules [Litchfield et al. 2010].

3 METHODOLOGY
We analysed gaze patterns in moments where the radiologist is
silent and when the radiologist is reporting their findings and con-
ducted a three-pronged approach: (1) focusing on density maps
that capture atemporal patterns to reveal the most visited regions
of CXR images; (2) investigating temporal visitation patterns using
Markov Models to uncover differences in temporal order across
different diagnoses; and (3) adopting a string analysis to compare
sequences between visited areas.

3.1 Dataset Used
The EYEGAZE [Karargyris et al. 2021] dataset contains eye-tracking
information for 1,083 CXR images selected from the MIMIC-CXR
dataset [Johnson et al. 2019b,a]. EYEGAZE further contains the
final diagnostic of the images as a label, which can be “Normal”
(a healthy subject), “Pneumonia”, and “Congestive Heart Failure”
(CHR). Additionally, EYEGAZE features raw eye gaze 𝑥 and 𝑦 co-
ordinates of a single radiologist reading sessions for all images,
captured at millisecond intervals. The dataset also contains fixation
points due to the post-processing of the raw gaze data. Two of the
EYEGAZE dataset’s key features are: (1) it provides bounding boxes
corresponding to the different anatomical regions of the thorax, and
(2) it contains audio transcripts of the radiologist reading sessions.
When creating the EYEGAZE dataset, the radiologist was asked to

describe a CXR image while their eye gaze patterns were captured
and the audio recorded. These data enable us to investigate the
differences in the radiologist’s search patterns during moments of
silence and moments of reporting. These findings can contribute to
more refined and human-centered models for diagnosis prediction.

3.2 Density Map Estimation
In order to investigate the correlation between diagnostic outcomes
and visual search patterns, we employed a density map analysis of
the radiologist’s raw gaze data. The density maps were generated by
applying Gaussian distributions to cluster the 𝑥 and 𝑦 coordinates
of gaze points.

We also performed a gaze analysis by computing the percentage
of gaze points that fall inside each anatomic region during the
silent and reporting diagnostic phases. Note that one gaze point can
correspond to several overlapping anatomical regions, e.g., “Right
Hilar Structures” can overlap parts of the “Right Lung” region. To
address this issue, we applied the smaller-area heuristic, choosing
the smallest area anatomical region that contains a given gaze point.
The rationale is that the least area should identify the most specific
anatomical feature. Other heuristics are possible, such as nearest-
neighbors-visited-in-sequence, although it is unclear whether the
added complexity would yield significantly better insights.

According to professional radiologists, the process of interpret-
ing medical images involves two phases: the exploration phase
and the reporting phase. During the exploration phase, radiologists
silently observe the image and identify regions of interest. In the
reporting phase, they revisit these regions and make their final
diagnostic conclusions. This process aligns with cognitive theories,
such as the adaptive gain theory [Aston-Jones and Cohen 2005;
Gilzenrat et al. 2010], which posits that the human mind balances
the tendencies of exploitation and exploration in visual search. Ex-
ploitation refers to focusing on known and high-salience regions
that are likely to yield diagnostic information, while exploration
refers to the process of scanning the entire image for additional re-
gions of potential diagnostic significance. As radiologists interpret
medical images, they engage in both exploitation and exploration,
allowing them to make accurate and comprehensive diagnostic
conclusions [Brunyé et al. 2016].

3.3 Markov Chain Discovery
Density Maps allow us to identify hot spots in an atemporal manner.
However, these blur the sequential visitation patterns, which can
provide important insights regarding sequence analysis and possi-
ble lesion discovery process. We mapped each visited bounding box
into a distinct state in a Markov Chain (MC) to unearth these fea-
tures. MCs are useful in capturing larger transition patterns across
many different images grouped by diagnosis. This enables us to fur-
ther investigate the exploration/exploitation phases of the adaptive
gain theory by analyzing the dynamics of the radiologist’s gaze
patterns. Again, we present our findings in two phases (silent and
reporting moments) as in the previous analysis. We achieved this
by simply counting the number of times the gaze of the radiologist
transitioned from one annotated anatomical region to another. The
transition matrix was then computed by normalizing these values.
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We then plotted the Markov Chains and animated how the radiol-
ogist’s gaze transitions between the different anatomical regions.
These animations are provided in the supplementary materials of
this work. The animations were produced using a process mining
tool from Fluxicon called Disco.1 Note that when directly mapping
the gaze points to a Markov Chain, this visualization becomes a
spaghetti diagram, which is very hard to read. In order to provide a
visualization that promotes the readability and the understandabil-
ity of the radiologist’s gaze patterns, we plotted the MCs using the
30% most frequent visitation patterns.

3.4 Frequent Pattern Extraction
Finally, we analyzed the most frequent sequential patterns that the
radiologist performed for each different diagnosis for the silent
and reporting phases. To achieve this, we mapped each anatomical
region of the sequence to a unique character, obtaining a string
with a sequence of characters that uniquely describe the radiolo-
gist’s visiting patterns. To find the most frequent patterns in this
string, we applied the longest repeating sub-sequence (LRS) algo-
rithm [Hirschberg 1975], used in bio-informatics to find similarities
in protein sequences [Gusfield 1997]. We computed the 5 most fre-
quent patterns depicted in Figure 4 as yellow arrows. Note that
in each of these Figures, the background CXR images are merely
provided for context.

4 RESULTS AND DISCUSSION
In this section, we present the key findings from our study of the
EYEGAZE dataset. We provide a detailed analysis of the most note-
worthy results and offer insights into the implications of these
findings.

4.1 Gaze Density Analysis
The results obtained in the Gaze Density Analysis can be found in
Figure 2.

Figure 2 (left) presents the resulting cluster centers of the density
maps, indicating the radiologist’s most frequently visited regions
across all images of the dataset. The intensity of the color on the
map ranges from dark blue for the least visited areas to bright red
for the most visited spots, with values on a [0, 1] interval.

Our analysis of the radiologists’ gaze patterns during moments
of silence revealed that the density maps were similar across diag-
nostic categories. This suggests that the radiologists were engaged
in the exploration process, wherein they scanned the X-ray image
in search of regions of interest. The density maps further revealed
that the radiologists predominantly focused on the upper medi-
astinum region of the thorax, which encompasses vital structures
such as the heart and hilar structures. This observation aligns with
the exploration/exploitation model [Aston-Jones and Cohen 2005;
Brunyé et al. 2016; Gilzenrat et al. 2010], which posits that radiol-
ogists engage in a dynamic balance between exploring the image
to identify new information and exploiting previously acquired
knowledge to make a diagnosis.

The bar charts in Figure 2 (right) indicate significant variations
between the reporting (yellow) and silent (blue) phases across dif-
ferent diagnostic modalities, as evident in both the left and right
1https://fluxicon.com/disco/

columns of each row in the data. Furthermore, the bar charts also
reveal substantial differences in reporting patterns. During the
silence periods, radiologists tend to focus their attention on the
mediastinum region. However, during the reporting phase, atten-
tion is shifted toward the lung regions, regardless of the specific
diagnosis. This suggests that radiologists selectively focus on these
regions as they report on their findings. This pattern of attentional
allocation is consistent with the exploitation phase of the explo-
ration/exploitation model [Brunyé et al. 2016], in which individuals
tend to focus on regions of high relevance or salience. Further re-
search is needed to explore the underlying cognitive and neural
mechanisms driving these attentional shifts in radiologists and in-
vestigate whether these patterns generalize to other populations
and modalities.

4.2 Markov Chains
Figure 3 presents the Markov Chains that were directly extracted
from the radiologist’s visitation patterns across different diagnoses
for the silent and reporting moments. Note that, for visualisation
purposes, Figure 3 only presents the 30% most visited paths of the
radiologist.

Our overall statistical results indicate that during the Silent phase,
the time the radiologist takes to explore the different CXR im-
ages is: 2.09𝑠𝑒𝑐 for Normal images, 2.15𝑠𝑒𝑐 for Pneumonia images,
and 2.11𝑠𝑒𝑐 for CHF images. This shows that independently of the
pathology present in the CXR, the radiologist takes approximately
the same time to initially process the image’s feature, as predicted
in the global impression phase of the four-stage model [Nodine
and Kundel 1987]. During the initial phase, the radiologist forms
a general impression of the image and quickly identifies the most

Figure 2: Density maps of the 𝑥 and 𝑦 coordinates of the
radiologist’s gaze across all images of the dataset. Note that
the background CXR image is to promote the readability of
the density regions.
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Figure 3: Markov chains representing the different anatomic
regions that the radiologist visited duringmoments of silence
vs. moments of reporting across different diagnoses. The
yellow/red bubbles represent the radiologist’s gaze flowwhen
transitioning from one anatomical region to another.

obvious abnormalities. However, for the reporting phase, these fig-
ures vary slightly. For instance, it takes 12𝑠𝑒𝑐 for the radiologist to
report a Normal image, 20𝑠𝑒𝑐 for a Pneumonia image, and 21𝑠𝑒𝑐 for
a CHF image. This increase in time is also in accordance with the
Foveal verification phase of the 4-stage model, where the radiologist
focuses on the perturbations to report any possible abnormalities.

In terms of the computed MCs, the initial observation of silent
exploration reveals a more profound examination, as evidenced by
the longer paths we observed. Analysis of MCs derived from the
Silent stages demonstrates exploratory patterns, as the probability
of accessing various anatomical regions from the initial state is con-
sistent across different diagnoses. This is reflected in the resulting
graphs, which exhibit higher depths, than those of Reporting, as
all CXR regions must be traversed regardless of the starting point.
On the other hand, an examination of Markov chains extracted
from the Reporting stages reveals a targeted gaze towards specific
anatomical regions. This is reflected in the resulting graphs, which
exhibit a more horizontal pattern, as the radiologist’s focus is di-
rected towards regions of interest or regions potentially containing
abnormalities.

4.3 Longest Repeating Visitation Patterns
The final results of this study correspond to the radiologist’s fre-
quent visitation pattern analysis. Our results are illustrated in Fig-
ure 4.

Our analysis of gaze patterns during the silent phase of the
radiologist’s image interpretation revealed that the frequency of
gaze patterns is lower than in the reporting phase. Specifically, the
radiologist looks back at the same regions fewer times. This finding
is consistent with our previous analysis, which indicated that the
silent phase is characterized by an exploratory pattern, where the

Figure 4: Most frequent visitation patterns using the longest
repeating subsequence (LRS) algorithm. Thicker arrows de-
pict more frequent patterns. Note that background CXR im-
ages are merely provided for context.

radiologist is more likely to examine a variety of regions within the
image. These results suggest that the radiologist’s gaze patterns
during the silent phase are characterized by a more comprehensive
exploration of the image rather than a focused examination of
specific regions.

Regarding Reporting moments, our analysis of gaze patterns
suggests that the frequency of eye fixations is significantly higher
than in other phases. Specifically, the radiologist’s eye gaze revisits
the same regions repeatedly. This finding suggests that the radi-
ologist focuses on specific regions within the image rather than a
more exhaustive exploration during the reporting phase. This is
consistent with exploitation patterns, where the radiologist focuses
on describing regions of interest or potentially containing abnor-
malities. These results indicate that the radiologist’s gaze patterns
during the reporting phase are characterized by a more focused
examination of specific regions rather than a broader exploration
of the image.

5 CONCLUSIONS AND FUTUREWORK
The results of this study show that periods of silence indicate short
and more exploratory gaze patterns which exhibit higher depths
than those of Reporting phase, as all CXR regions must be traversed
regardless of the starting point. When radiologists initially view
chest X-ray images in silence, they apply their own specific and
individual search patterns regardless of the type of disease present
in the image. This indicates that the radiologists’ search behaviors
can be identified at this stage. However, when radiologists report
their readings of the X-rays, the gaze patterns appear to be noisy
and arbitrary.

In the future, we plan to continue our research by comparing the
gaze patterns during the silent and reporting phases across different
diagnoses using density map analysis. We will also investigate the
Markov chains we have computed by analyzing their stationary
distributions and transition matrices. This will allow us to gain a
deeper understanding of the gaze patterns observed during these
phases and potentially identify patterns that are specific to certain
diagnoses.

In conclusion, this paper has argued that conventional approaches
to deep learning applied to chest X-ray images have not been en-
tirely successful. Despite the significant computational resources
invested, simple function fitting has not provided conclusive results.
We have therefore proposed a shift towards feature engineering,
utilizing computer vision techniques to extract more meaningful
semantics from fixation patterns. Furthermore, we have empha-
sized the importance of considering the unique characteristics of
human-generated data, such as eye-gaze, and processing it in a
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manner that captures human functionality. While significant work
remains to be done, we are optimistic that our trailblazing efforts
will lead to promising advancements in the field.
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