

MESTRADO EM INFORMÁTICA E

SISTEMAS

Real-Time Data Analytic Platform

Autor

Dany Fajardo Carvalho

Orientadores

José Marinho

Coimbra, março 2021

INSTITUTO POLITÉCNICO

DE COIMBRA

INSTITUTO SUPERIOR

DE ENGENHARIA

DE COIMBRA

D
E

F
IN

IT
IV

O

DEPARTAMENTO DE INFORMÁTICA E SISTEMAS

Real-Time Data Analytic Platform

Relatório de Estágio de Natureza Profissional para a obtenção do

grau de Mestre em Informática e Sistemas

Especialização em Desenvolvimento de Software

Autor

Dany Fajardo Carvalho

Orientadores

José Marinho

Supervisores na empresa Critical Software S.A.

Álvaro Menezes

Pedro Miranda

Coimbra, março 2021

INSTITUTO POLITÉCNICO

DE COIMBRA

INSTITUTO SUPERIOR

DE ENGENHARIA

DE COIMBRA

Politécnico de Coimbra | Instituto Superior de Engenharia de Coimbra

v

This dissertation is dedicated to my family.

Politécnico de Coimbra | Instituto Superior de Engenharia de Coimbra

vii

Acknowledgements

Even before we dive into the whole document there is always time to thank all the people that

contributed to this project. The remainder of this section is therefore more intimate and presents

some Portuguese words so that, at least, something can be understood by familiar members.

Antes de mais, gostaria de agradecer aos meus pais, José Carvalho e Olinda Fajardo, por me

terem apoiado em todo o meu percurso académico, assim como durante toda a minha vida, e

por estarem sempre dispostos a ajudar em o que quer que seja.

Ao meu irmão, Fábio Fajardo, que apesar da distância que nos separa entre países, sempre me

viu com olhos de orgulho e esteve pronto com palavras de incentivo, assim como a sua esposa

e filha, minha afilhada.

Já mais por perto, gostaria de agradecer ao meu namorado, Telmo Julião, por todo o conforto e

carinho que me deu durante todo este percurso de estágio, incluindo os bons momentos que me

proporcionou durante o confinamento e fora disso.

É com grande satisfação que agradeço também ao meu orientador, Doutor José Marinho,

docente no Instituto Superior de Engenharia de Coimbra, por toda a compreensão que teve

durante este processo de estágio, assim como todos os conhecimentos transmitidos, incluindo

a ajuda na redação deste relatório.

Também envio um enorme abraço aos engenheiros Álvaro Menezes e Pedro Miranda, da

Critical Software, que estiveram a certa altura presentes a acompanhar-me neste projeto

académico e que sempre me deram conselhos bastante importantes.

Aos restantes familiares, amigos e colegas de faculdade e de trabalho, queria deixar uma palavra

de agradecimento, sendo que foram um incentivo para eu não desistir.

Finalmente, gostaria de enviar as melhores recuperações aos meus pais, que infelizmente, em

2020 não tiveram a melhor sorte, tendo sido detetado o cancro da mama à minha mãe e o meu

pai ter sofrido um severo Acidente Vascular Cerebral. Aos dois, as profundas melhoras e que

nunca desistam de lutar na vida e por quem mais vos ama. Isto é por vocês.

Obrigado – Thank you.

Politécnico de Coimbra | Instituto Superior de Engenharia de Coimbra

ix

Abstract

The world of data has increased in today’s data science and data engineering fields. Data

analytics, from a perspective, is increasing since they are useful to get insights of a company

and guarantee an excellent business opportunity precisely because of data which are more

present due to Artificial Intelligence, Internet of Things (IoT), social media and

software/hardware components.

In order to process, analyze and deliver data in a very short period of time, streaming gained its

form, and real-time data analytic platforms began to rise, leaving the traditional batching

process aside. In fact, to build a data analytics platform, real-time or not, Big Data joins in and

provides their architectures with their components.

Lambda and Kappa, two existing Big Data architectures, consist of numerous components, i.e.,

supporting ‘blocks’, offering the opportunity to explore their functionalities to develop real-

time data analytic platforms. When implementing such solutions, another question that might

arise is the choice of which architecture might best fit the targeted business type.

This internship report focuses on analyzing and drawing some conclusions about any possible

correlation between business types and specific data analytics solutions that are better suited to

support them. It also discusses if creating a generic real-time data analytic platform (i.e.,

appliable to any kind of existing business type) is feasible, which could significantly decrease

development and deployment costs. Specifically, Lambda and Kappa are inspected in this report

to understand if these Big Data architectures are generic enough to address this issue or if a

customization based on their components is possible. Proving that any of the analyzed Big Data

architectures are feasible to be implemented to any real-time data analytic platform, the

remaining report addresses the development of a specific use case covering Kappa as its main

architecture.

Politécnico de Coimbra | Instituto Superior de Engenharia de Coimbra

xi

Resumo

Atualmente, o mundo dos dados está a crescer, sobretudo nas áreas de Data Science e Data

Engineering. A análise de dados, tem-se tornado cada vez mais relevante para obter um

conhecimento mais profundo sobre uma determinada empresa e representa uma oportunidade

de negócio, precisamente devido à emergente presença de dados derivados da Inteligência

Artificial, Internet of Things (IoT), social media e componentes de software/hardware.

De modo a processar, analisar e distribuir estes dados num curto espaço de tempo, o streaming

tem ganho popularidade e as plataformas de análise de dados em tempo real começaram a

surgir, colocando de lado os tradicionais processamentos de dados por lotes. De facto, para

desenvolver uma plataforma de análise de dados, em tempo real ou não, as arquiteturas de Big

Data e os seus componentes tornaram-se essenciais.

As arquiteturas de Big Data existentes, Lambda e Kappa, são suportadas por vários

componentes, oferecendo a oportunidade de explorar as suas funcionalidades para desenvolver

plataformas de análise de dados em tempo real. Ao implementar este tipo de soluções, surge,

por vezes, a questão sob qual das arquiteturas será a mais adequada a um determinado tipo de

negócio.

Neste relatório de estágio, é demonstrada a análise e conclusões sobre uma possível correlação

entre os tipos de negócio e quais as soluções de análise de dados mais adequadas para os

suportar. Ao longo deste documento, é ainda ponderada a possibilidade de desenvolver uma

plataforma de análise de dados em tempo real, genérica o suficiente, para ser aplicável em

qualquer tipo de negócio, reduzindo significativamente os custos de desenvolvimento e

implementação. Neste contexto, são examinadas as arquiteturas Lambda e Kappa, por forma a

entender se são suficientemente universais para essa possibilidade ou se é viável uma

personalização baseada nos seus componentes. De modo a comprovar se qualquer uma destas

arquiteturas de Big Data é implementável numa plataforma genérica de análise de dados em

tempo real, o relatório também descreve o desenvolvimento de um caso de uso específico

baseado na arquitetura Kappa.

Real-Time Data Analytic Platform Table of Contents

xiii

Table of Contents

Acknowledgements .. vii

Abstract .. ix

Resumo .. xi

List of Figures ... xv

List of Tables .. xvii

Acronyms and Definitions ... xix

1 Introduction .. 1

1.1 Critical Software .. 1

1.2 ISEC ... 1

1.3 Context and Problem Statement .. 2

1.4 Workplan and Methodology .. 3

1.5 Outline ... 4

2 Literature review... 7

2.1 Background .. 7

2.2 Related Work ... 8

2.2.1 Big Data Architectures and their components .. 8

2.2.2 Lambda Architecture .. 9

2.2.3 Kappa Architecture ... 11

2.2.4 Differences and Similarities ... 12

2.2.5 Business Type ... 13

2.2.6 Case Studies .. 13

3 Requirement analysis and architecture design.. 15

3.1 Architecture ... 15

3.2 Architecture Components .. 16

3.3 Use case ... 16

3.4 Functional requirements .. 17

3.5 Non-Functional requirements .. 18

4 Implementation ... 19

4.1 Tools and Technologies ... 19

4.2 Setup .. 22

4.3 Data Collector .. 23

4.4 Messaging System ... 25

Real-Time Data Analytic Platform Table of Contents

xiv

4.5 Stream Processing Framework .. 26

4.6 Analyzed Data Storage .. 29

4.7 Web Interface ... 30

4.8 Data Mining ... 31

4.9 REST API .. 32

5 Results and Test Cases ... 35

5.1 Kibana Graphs ... 35

5.2 Apriori test results .. 38

6 Conclusions and Future Research directions .. 39

6.1 Conclusions .. 39

6.2 Directions for future research .. 40

References .. 41

Appendix A – Internship proposal.. 45

Appendix B – Docker-compose file ... 51

Appendix C – Technical Report ... 55

Real-Time Data Analytic Platform List of Figures

xv

List of Figures

Figure 1-1: Workplan in Gantt chart .. 4

Figure 2-1: Big Data Components diagram [14] .. 8

Figure 2-2: Lambda’s Architecture [14] ... 10

Figure 2-3: Kappa Architecture [14] .. 11

Figure 3-1: Real-Time Data Analytic High-Level Pipeline ... 15

Figure 3-2: Subset of the grocery dataset ... 17

Figure 4-1: Pipeline Projection ... 19

Figure 4-2: Docker Desktop with running containers .. 22

Figure 4-3: Data Collector Component .. 23

Figure 4-4: Java class ProductUDT .. 24

Figure 4-5: Java class Order ... 24

Figure 4-6: Messaging System component .. 25

Figure 4-7: Producer/Consumer within docker containers ... 26

Figure 4-8: [Code] Apache Spark code with ETL process ... 27

Figure 4-9: [Code] Detailed Order on Apache Spark ... 28

Figure 4-10: [Code] Storing data from Apache Spark to Databases .. 28

Figure 4-11: Apache Spark DAG Visualization ... 29

Figure 4-12: Cassandra database .. 30

Figure 4-13: PostgreSQL database ... 30

Figure 4-14: REST API for the Apriori algorithm ... 33

Figure 5-1: Number of transactions counter ... 35

Figure 5-2: Average of Transactions per Country donut chart ... 36

Figure 5-3: Number of transactions per country plot ... 36

Figure 5-4: Top 10 most bought product plot .. 37

Figure 5-5: Number of transactions per hour line plot ... 37

Figure 5-6: REST API call ... 38

Figure 5-7: Result of the POST verb on the URI /main/products .. 38

Real-Time Data Analytic Platform List of Tables

xvii

List of Tables

Table 2-1: λ and κ Characteristics .. 12

Table 3-1: Functional requirements .. 18

Table 4-1: Tools, Frameworks and Technologies used within the project 20

Table 4-2: ProductUDT POJO class ... 24

Table 4-3: Order POJO class .. 25

Table 4-4: Stream Processing Framework Comparison ... 26

Table 4-5: Data Analytics Business Questions .. 31

Table 4-6: Heuristics of the Apriori algorithm [37] ... 32

Real-Time Data Analytic Platform Acronyms and Definitions

xix

Acronyms and Definitions

A

AI

Artificial Intelligence ... 2

C

CEO

Chief Executive Officer ... 1

CSW

Critical Software .. 1

D

DA

Data Analytics ... 2

E

ETL

Extract-Transformation-Load .. 16

I

IDE

Integrated Development Environment .. 23

IoT

Internet of Things ... ix, 2

IP

Internet Protocol .. 23

ISEC

Instituto Superior de Engenharia de Coimbra ... 1

J

JSON

JavaScript Object Notation .. 33

M

MIS

Mestrado em Informática e Sistemas ... 1

ML

Machine Learning .. 9

Real-Time Data Analytic Platform Acronyms and Definitions

xx

N

NASA

National Aeronautics and Space Administration .. 1

NFR

Non-Functional Requirements ... 18

P

POJO

Plain Old Java Object ... 23

R

RDD

Resilient Distributed Dataset .. 27

REST API

Representational State Transfer Application Programming Interface.. 32

U

UI

User Interface .. 31

URI

Uniform Resource Identifier ... 32

UUID

Universally Unique IDentifier .. 25

1 Introduction

1

1 Introduction

This report describes the work performed during an internship integrated in the Master’s course

in Informatics and Systems (Mestrado em Informática e Sistemas – MIS) at the Instituto

Superior de Engenharia de Coimbra (ISEC) [1] for the academic year 2019/2020. The duration

of this internship was two semesters and has been distributed along two academic semesters,

starting on November the 14th, 2019, at Critical Software [2] headquarters in Coimbra and then

later being transferred voluntarily to Lisbon Offices for the second semester, in February 2020.

Its goal was to develop a real-time data analytic platform, as generic as possible, to be applied

to any business type case and since Critical software did not have any similar project that

followed that approach, the development of this project was one big accomplishment.

In the following sections, Critical Software and ISEC are presented, a more contextualized

scope and background is also provided, and the structure of the report follows in the last section.

1.1 Critical Software

Critical Software, internally referenced as CSW, is an internationally respected and recognized

organization which started from the bottom but were right on top of systematic excellent work

delivery. All started when Diamantino Costa, Gonçalo Quadros, and João Carreira, now the

actual CEO (Chief Executive Officer), wrote several papers about the space sector and

consequently attracted NASA (National Aeronautics and Space Administration) in 1998, year

in which Critical Software was born.

Afterwards they were unstoppable and managed to gather international success such as being

chosen as a case study by The European Space Agency (ESA). Also, they were the first Iberian

company to receive the ISO9001:2000 TickIT quality certification. They contributed to ESA’s

EarthCARE space mission project, they launched several spin-offs and are one of the few

companies in the world achieving the CMMI-SE/SW Level 5 certification [3].

Their work was being undoubtedly recognized and the dream of expanding became reality,

having currently 9 offices distributed around the globe. The space sector is not the only industry

CSW explores but also Aerospace, Automotive, Defence, Energy, Finance, Government,

Medical Devices, Railway, Space and Telecoms. In each sector, CSW works on ‘demanding

projects, providing software and system services for safety, mission, and business-critical

applications’ [4], ensuring high quality throughout the entire project.

1.2 ISEC

Instituto Superior de Engenharia de Coimbra, or ISEC, is an Institute of Engineering located

in Coimbra and offers several Bachelor and Master courses, as well as other professional

courses in different areas of engineering, such as Chemical, Civil, Electrical, Information

Real-Time Data Analytic Platform

2

Technology, and Mechanical. Moreover, ISEC ‘has as its mission the creation, transmission

and diffusion of culture, science and technology, being responsible for providing a higher

education for the exercise of professional activities in the field of Engineering and promoting

the development of the region’ [5].

Finally, and extremely important to increase students’ passion in creating innovative projects,

ISEC encourages them to participate in the Fikalab [6] project. Through the participation, not

only are students able to win special nominations and prizes but also experience in developing

fun and unique projects, individually or in a group. This initiative is also supported by CSW

and the students’ involvement increases their capacity of developing in a fun and healthy way

and to bring some challenges to their professional lives.

1.3 Context and Problem Statement

Data nowadays are undoubtedly as important as the ignition of a rocket, carbon for an old

locomotive, electricity for a smart gadget, or even coffee for our brains. This increasing

importance is due to a huge evolution in our technology era, which results in data volumes

being expected to double every two years (“Fast Data” designation [7]). The evolution of

Artificial Intelligence (AI), Internet of Things (IoT), Cloud Computing, and Edge Computing

largely contribute to this phenomenon [7].

Organizations take Data very seriously since it is one of the most valuable resources for their

business models. There are even companies that make money selling personal information to

other organizations [8]. Transformation and aggregation operations must be applied to data

prior allowing the company analysts to come up with business insights and future opportunities.

Analyzing collected data and giving some useful insights to the company is one of the

components of Data science, more precisely Data Analytics (DA). The maintenance of data,

the exploration of historical overview records, and the availability of real-time data are three

key factors that enable providing companies with solutions that help them predicting and

making decisions.

Big Data is a well-recognized area in the world of Data and the use of open-source tools has

been considered to ‘address the storage, processing and visualization of such data’ [9]. Big Data

is a collection of large datasets which are complex to work with when using traditional methods

like regular databases. Also, Big Data is well-known for their 5 V (Volume, Variety, Velocity,

Value, and Veracity) and for their architectures.

In this context, this report aims to analyze existing state of the art Big Data solutions, namely

Lambda [10] and Kappa [10], and also to determine if they are generic enough such that they

can be applied to any business type. It is organized in various chapters and starts providing

some background information about key concepts, such as data analytic and big data. Then, it

analyses related work about Big Data architectures, covering Lambda and Kappa architecture

in greater detail, demonstrating how they are built and specifying how they differ from each

other. Furthermore, two case studies are presented and compared, so that conclusions could be

conducted either which of the Big Data architectures could be suitable to any type of business

cases. Both presented case studies follow a distinct Big Data architecture so that the advantages

1 Introduction

3

and the disadvantages are clearly understood, emphasizing the choice of Lambda and Kappa

architectures within each different business type systems. In addition, this project’s scope is to

develop a real-time data analytic platform which needs an infrastructure that supports and

therefore, the chosen architecture is based on the comparison of the Lambda and Kappa

architecture previously mentioned.

1.4 Workplan and Methodology

At an initial stage of the internship, it was crucial to start with some basics and background

information within this project’s scope. Since it was not within the specialization domain of the

trainee’s Master course, it was clearly important to invest more in Data Analytics1 and Big

Data2 areas. Therefore, a literature review covering some important background concepts, such

as Big Data, Data Analytics, Batch, and Streaming processing, was performed. Also, the CSW’s

internship proposal (Appendix A) presented a high-level pipeline projection that contributed to

an initial input that could be certified while searching for Big Data architectures. In this context,

and even in a brighter spectrum like Data Science, a pipeline can be compared to a process that

gets input data, that also can perform transformations during the process time range (e.g.: inside

the ‘pipe’) and end up with an output result. The pipeline projection in Appendix A is composed

by several components and those are within Lambda or Kappa architecture.

The Gantt chart in Figure 1-1 lists all the tasks that were performed, such as the literature

review, as well as other significant tasks that contributed to the implementation of a real-time

data analytic platform pipeline. Also, the effort reported for every task is measured in days and

these effort values are displayed in the table within Figure 1-1. Regarding the documentation

phase, its duration is relatively higher than the other tasks because of some limitations that are

described in section 6.1 and, the fact that this is not a continuous process.

1 Science of examining data to make conclusions.
2 Area in which a huge amount of data is transformed, processed, and worked with.

Real-Time Data Analytic Platform

4

Figure 1-1: Workplan in Gantt chart

Since the beginning, the steps to carry this project along were clearly defined by CSW, and the

proposal itself stated to follow a Waterfall methodology. Due to the global pandemic, the

project started to change its course. In March, it began to suffer some adjustments, more

meetings were being held, other requirements were added, and some tailoring was conducted,

among other tasks that are mentioned in Chapter 4.

The meetings were held once a week via Microsoft Teams platform. Initially, the assigned CSW

supervisor was Álvaro Menezes who was replaced afterwards by the current project supervisor

Pedro Miranda. Also, to mention that Professor José Marinho from ISEC was one of the main

supervisors of this internship, and several meetings were held with him to monitor the course

of the project development and report writing.

1.5 Outline

The remainder of this report is organized as follows:

Chapter 2: Literature review. The origins of Big Data and Data Analytics concepts, their

scope, a background section, and an overview of the literature on these subjects are provided.

An analysis of existing state of the art solutions and two use cases are also presented.

Chapter 3: Requirement analysis and architecture design. All the functional and non-

functional requirements are listed according to the development needs. The architecture of the

developed solution is specified along with necessary tools and frameworks.

Chapter 4: Implementation. This chapter contains all the implementation choices

throughout the entire project development phase, as well as a description of the tools and

technologies that were used.

1 Introduction

5

Chapter 5: Results and Test Cases. In this chapter the result of the development phase

and the test cases are presented.

Chapter 6: Conclusions and Future Research directions. This chapter draws final

conclusions about the entire study and project development. Furthermore, it also includes

possible future developments.

2 Literature review

7

2 Literature review

This chapter covers some background topics to understand the projects’ scope. Some topics

related to Big Data, Data Analytics, as well as batch and stream processing principles are

described in the related work section. Lambda and Kappa are also clearly identified as main

architectural models to support a real-time data analytic platform infrastructure. These models

are based on individual components and those can be implemented by using several

technologies. Along with the Lambda and Kappa specifications, two different business cases

are presented to distinguish the use of each architecture according to the respective use case.

2.1 Background

Even though this report is about Data Analytics, it is important to highlight the importance of

Big Data in this context. Data analytics are supported by Big Data architectures. Just cruising

back to 2012 when the term Big Data was no longer a secret for its use and mission, the three

V were presented as the answer to treat large datasets (Volume) from different data sources

(Variety), in a high frequency of time to collect and publish this information (Velocity) [11].

Its existence is due to today’s huge amount of data, which turns traditional database systems

unable to process those large datasets. Additionally, data come from distinct data sources in

different forms, like structured, unstructured, and semi-structured formats. Since data is

growing, Gartner (former MetaGroup analytic firm) [12] added two more relevant V (Value

and Veracity) aiming for providing value to the company and quality to the collected data [12].

Considering the main reasons why Big Data is known for and its main characteristics, Data

Analytics is in some way connected to it since it is a process ahead, i.e., the science of

examining those collected data and giving some useful insights to the company. However, just

collecting information does not mean that it will correspond to good results. The right

information must be collected and then translated into some profitable result, in the right place,

and at the right time in a near future. Companies want results as fast as they can and while they

are still up to date and useful to them, i.e., in real-time.

Creating platforms for working with big volumes of data and getting some analytics about them

in a hopefully short and useful period is not completely achievable through batch processing,

which consists in fetching some analytics sometime after data collection. This approach, which

continues being applied nowadays, is not appropriate to achieve consumer preferences,

satisfaction, company insights, and fraud detection in a new era where streaming and results

are important factors [13]. Thus, the need to process results in real time resulted in the

development of a technology designated as streaming processing. While batch processing

consists in collecting data over time and fetching some analytics later after, especially

overnight, stream processing, on the other hand, consists in collecting data as soon as it is

available and delivering results in real-time or, more precisely, in near real-time [10].

Real-Time Data Analytic Platform

8

2.2 Related Work

After some background about Big Data, Data Analytics, and Batch and Stream processing

provided in the previous section, this section describes in more detail these topics and

demonstrates the connection between them. As a starting point, a generic Big Data diagram that

consists of different components is considered (Figure 2-1). Then, the Lambda (λ) and Kappa

(κ) Big Data architectures, which include some of these components, are described in greater

detail with their main characteristics, differences, advantages, and disadvantages. For this

project, only Lambda and Kappa were considered to be analyzed since other architectures, such

as Unified Lambda architecture, Mu architecture and Zeta architecture, are variations of the

Lambda and Kappa architectures [9]. Moreover, two different business types are described

following different architecture approaches, namely the Lambda architecture for a streaming

service and the Kappa architecture for a Telco company.

2.2.1 Big Data Architectures and their components

Figure 2-1 [14] is a generic pipeline that includes the components of both Big Data

architectures, Lambda and Kappa, but also the variations previously mentioned. Not every

component is mandatory while building a Data Analytics platform and the goal of this section

is to describe each one.

Figure 2-1: Big Data Components diagram [14]

Data come across from diverse data sources in distinct data formats. Structured, unstructured,

and semi structured formats are the most common ones. Examples of structured data are

relational databases and spreadsheets. Unstructured data examples are e-mails, portable

document format (PDF) files, images, and videos. The semi-structured data format is visible in

extensible Markup Language (XML) files or Comma-Separated Values (CSV) documents. It is

basically information that is not allocated in relational databases but has attributes that help in

the analysis process.

2 Literature review

9

These incoming data can be stored in the Data Storage component, which is usually a Data

Lake3 or a Data Warehouse4. These systems maintain the data in its raw format and help when

it comes to batch and stream processing.

Even though real-time message ingestion, stream processing, and batch processing components

are presented individually on Figure 2-1, they can be implemented as a single component

through Apache Kafka [15] which is a powerful streaming processing platform that leads with

different data in near real-time. It is based on the Producer and Consumer pattern, where the

producer publishes log messages to a Kafka Topic, also known as Kafka broker. Each message

is allocated to a partition and is set with an offset, while the consumer subscribes to a topic and

consumes all the messages that are within the partition(s).

Machine Learning (ML) algorithms can be implemented to identify any related pattern and to

train data to discover some useful information. In this category, two classes of algorithms can

be used, namely Supervised and Unsupervised. Supervised algorithms have access to the input

and output data, such as Classification models (Naïve Bayes, SVM) and Regression (Linear,

Logistic), while unsupervised algorithms do not have access to the outputs in advance, working

only with the input data. Clustering (K Means) and Dimensionality Reduction (Principal

Component Analysis, SVD) are examples of unsupervised algorithms [16] [17].

The analytical data store component can be the representation of the result views. Queries are

made through those views and the information is returned to the end-user. Analytics and

reporting are the data visualization part where any result is presented on a dashboard or web

interface.

Considering the two currently most used Big Data architectures, Lambda and Kappa, the next

two sections will cover their usage and demonstrate how each architecture differs from one

another. To mention that, both Lambda and Kappa can have similar technologies in each further

described component [9]. As for a developer, the development of the component does require

the use of an existing tool or framework. In other words, similar technologies and frameworks

like Apache Kafka, Apache Spark can figure in these architectures but can be implemented

using different programming languages. For instance, Apache Spark allows us to develop on

Java, Scala or even Python programming language [16].

2.2.2 Lambda Architecture

Lambda architecture (Figure 2-2) has been named by Nathan Marz [10]. Back in 2011, the

former lead engineer of the company BackType [18], stated this architecture as a ‘generic,

scalable and fault-tolerant real-time data processing architecture’ [10]. Even before streaming

was possible, big companies had to process their data by batch processing. This mode of

operation requires too much time, leading to a high latency and therefore to an overnight task.

By observing Figure 2-2, and knowing that batching is a task that carries a huge latency, it may

seem controversial to see the batching process present, making it less probable that this

architecture is even suitable for real-time streaming. Fortunately, Lambda does include the

3 Repository for storing structured, unstructured, and semi-structured in its raw format
4 System that stores data along with metrics, expected to be processed by an ETL process

Real-Time Data Analytic Platform

10

speed layer, which fixes the latency problem. So, the high latency problem is fixed by assuming

pre-computed views (i.e., data that the batch layer processes) and indexing them with the low

latency real-time views (i.e., current data from the speed layer) to a merged view results, namely

Serving layer. Back then, this architecture seemed to be a successful architecture to support

real-time analytics with low latency.

Figure 2-2: Lambda’s Architecture [14]

Marz wanted to beat the CAP (Consistency, Availability, Partition) Theorem [19], which in his

beliefs this architecture could master. Ultimately, his architecture does not resolve the CAP

theorem and this is also proved in article [10] stated by the authors that ‘the architecture does

not rebut the CAP theorem but simplifies its [architecture] complexity…’, which is also

criticized by the IEEE Internet Computing department Big Data Bites led by Jimmy Lin [20].

Furthermore, this department, which is known to ‘deliver thought-provoking and potentially

controversial ideas about all aspects of big data’, mentions that Marz’s so-called ‘invention’

was already proposed by Butler Lampson’s paper in 1983 [21].

Lambda’s architecture follows the pipeline illustrated in Figure 2-2. The first component to be

mentioned is the incoming data for processing, designated as Unified Log. It is a set of three

generic existing data formats (structured, unstructured, and semi-structured). The idea behind

this component is to group all the data and apply some transformations [17], such as conversion

to a specific data format for easier communication for the speed layer, the second component.

As soon as data come in, they are conducted to two different layers, the Batch layer and the

Speed layer, respectively. The speed layer is responsible of processing the data, whereas the

batch layer does not process the data at all, maintaining it immutable. Furthermore, the batch

layer indexes the batch view to the serving layer and then, the speed layer just updates the

already existing serving layer with the most recently processed data. The end-user (either a

2 Literature review

11

human or an analytics engine) can visualize the processed data through a web interface like a

dashboard.

Digital companies like Yahoo and Netflix [22] use this implementation for their business

models. Clearly these types of companies make use of machine learning algorithms in order to

obtain the most suitable and updated movies/series preferences list in app or streaming services.

2.2.3 Kappa Architecture

As soon as the Lambda architecture gained its form across the Big Data world, Jay Kreps

(2014), a staff engineer at LinkedIn [23], wrote an article where he pointed out some pitfalls to

the Lambda architecture. According to Jay, Kappa is a simplification of Lambda and not a

replacement [14]. The main difference between these two architectures consists in removing

the batch layer and, therefore, automatically decreasing complexity (Figure 2-3). This is

achieved avoiding two separate codebases, one for the batch component and the other for the

speed component. This means that only one layer (speed layer) is needed and no

synchronization between batch and speed is necessary. Everything goes through a single stream

(i.e., the speed layer in Figure 2-3).

Figure 2-3: Kappa Architecture [14]

In what concerns development frameworks and tools, both Lambda and Kappa can be produced

with Apache Kafka and Apache Spark technologies [9] [10]. Along with these two frameworks,

there are other possible solutions meaning that there is a large number of technologies enabling

to develop these systems [9].

Regarding κ pipeline, it is very similar to λ’s architecture. The collected data, represented as

the Unified Log in Figure 2-3, passes through the speed layer where the data is processed by

the stream process. With Apache Kafka and Apache Spark, it is possible to get the processed

data and deliver it and index it to the real-time views, which is similar to the Serving Layer in

Real-Time Data Analytic Platform

12

Lambda. From there on, analytics clients or final human users can access these data submitting

appropriate queries.

2.2.4 Differences and Similarities

λ and κ are in fact two possible solutions to develop a powerful platform for data analytics and

Big Data. Indeed, through a deep research and mainly focusing on recent papers, it is totally up

to the companies to decide which one to choose and, therefore, which one is the most suitable

to their business type [10]. Nevertheless, we should not forget about their specific strengths and

weaknesses as summarized in Table 2-1.

Table 2-1: λ and κ Characteristics

Architecture Strengths Weaknesses

Λ

More accuracy results due to

batch processing
High latency by batching

Machine Learning effectiveness

Difficult to implement and to

keep data and the two

codebases synchronized

Re-computation of data in

failure cases

Two codebases (for batch

and stream)

Parallelism
Lack of availability in the

batch layer [10]

Κ

Easier implementation

Evidence of errors during

data processing

(redundancy, loss data even

‘fault-tolerant’)

Computationally Cheaper
Evidence of errors while

updating database

Single stream for processing

(no need for two codebases)

Difficult to migrate and

adapt to λ (if it is the case)

To summarize, both architectures are two possible solutions for a data analytic platform.

However, no matter what business type it is, it should be planned carefully based on some

criteria. One of the criterium that should be considered is that Lambda delivers more accurate

processed data but suffers from high latency when batching all the existing data. Kappa, on the

other hand, is much easier to implement since it does not require to have two distinct codebases

because it does not have the batch layer. It also makes keeping data synchronized easier since

there is just a single stream to worry about.

2 Literature review

13

2.2.5 Business Type

There have not been any recent studies or any studies at all to clarify if there is any ideal

architecture to any specific business type. Throughout the literature, there are quite a lot of

business types coming to foreground with ideas to develop such a data analytics platform. The

most quoted business types found were banking and credit companies, e-commerce companies,

marketing and streaming services, Mobile Network Operators, and Healthcare. One common

factor to all these companies is that they want to contribute with good decisions and strategies.

This said, every business type can perfectly consider any of these architectures. They just have

to go over their characteristics, which are summarized in Table 2-1, and decide which one to

use. If for instance, the importance to maintain data registered and apply any type of machine

learning algorithm to get better and accurate results then Lambda is more precise to do so.

Otherwise, if the data is not so important, then Kappa is more appropriate to use.

The next section describes two case studies for two distinct business types.

2.2.6 Case Studies

As already mentioned in the previous section, two different case studies will now be described

focusing on Netflix, a well-known streaming service, and on the telecommunications industry

(Telco Industry). Both follow a different architecture with Netflix using λ as its base

architecture [24], among other components, and the Telco Industry preferentially using κ [25].

2.2.6.1 Netflix

Being now one of the most requested streaming services, Netflix already exists since 1997 and

has gained popularity along these past years offering several movies and series through

streaming. In recent years, streaming has won distinctive appreciation and therefore Netflix has

not stopped since then and is now quoted to stream over 97k hours of video every minute [22].

Netflix also keeps track of users’ preferences in terms of movies and series, which is achieved

through machine learning and personalization algorithms [26], in order to improve their service

quality and maximize clients’ satisfaction.

The reason why Netflix chose Lambda over Kappa is that the streaming service uses the best

of both worlds in just one platform, namely batch and stream processing. It takes advantage of

ML algorithms since data is much more precise due to have batching, and by this, it meets

Netflix’s quality of service standards [27].

2.2.6.2 Telco Industry

In telecommunication industries, where data is constantly present, it is deeply appreciated

having a big data platform that can collect data and turn it into useful information. In this case

study detecting anomalies is precious to avoid high maintenance costs.

So, Telco companies [25], probably not all, but just reflecting on this source, use κ as an

alternative architecture because the batch layer results they want can be obtained using a

streaming engine, for instance, Apache Kafka, which is responsible of ingesting volumes of

Real-Time Data Analytic Platform

14

data and therefore ensures the same results as the stream layer [25], classifying batch processing

as a subset of stream processing [25].

Since in this case the batch and speed layers would contain the same codebases, it would be

redundant and, therefore, unnecessarily to have both codebases synchronized, avoiding extra

work on keeping constantly everything synchronized since batch and speed would give similar

results. This way, it decreases the complexity of the architecture and respects the removal of

the batch layer (Table 2-1), emphasizing this way the speed layer (Figure 2-3). Besides this

reason, the article also mentions possible ML algorithms implementations.

3 Requirement analysis and architecture design

15

3 Requirement analysis and architecture

design

This chapter not only is intended to present the architectural design of the real-time Data

Analytic platform developed during the internship but also its functional and non-functional

requirements. To accomplish all the necessary functionalities of such a platform it is important

to specify all the requirements, which represent the functionalities of the pipeline must do to

stream data in real-time (section 3.4) and quality attributes of the pipeline (section 3.5). All the

requirements were accordingly agreed with the CSW’s supervisor to focus on the main goal of

the system.

3.1 Architecture

Based on the two analyzed Big Data architectures, the project we developed follows the Kappa

architecture which by nature is appropriate for real-time data streaming. However, and

considering its main architecture as described in section 2.2.3 and Figure 2-3, it is necessary to

tailor it to be able to represent the pipeline for this concrete project. Despite Figure 2-3 does not

include literally the serving layer, the ‘Analytics client’ can be considered as the serving layer

since the data is grouped and displayed on the web interface. The tailoring part reflects on that

assumption and there is no need to build extra components. The components are built upon

existing tools and technologies that can be visualized in Chapter 4.

Figure 3-1 presents the main components that were developed and are explained in section 3.2

(colored in red). It follows the standard structure of the Kappa architecture (colored in grey) as

already defined in section 2.2.3.

Figure 3-1: Real-Time Data Analytic High-Level Pipeline

Real-Time Data Analytic Platform

16

3.2 Architecture Components

Once the architecture is defined, this section presents the components’ structure, their goal of

having it in the pipeline, and their own achievements. For that, follows a list covering all the

five essential components.

Data Collector component: This component is the starting point of the system5, being

responsible to generate randomly data based on an existing dataset and according to the given

use case that is further explained in section 3.3 and to be consumed by the Messaging System

component.

Messaging System component: This component encapsulates the typically known

producer and consumer of a messaging system. In other words, its main goal is to be prepared

to handle the generated data from Data Collector and, as a producer, send the data to the

consumer, which is the Stream Processing Framework. For this component, Apache Kafka is

used to accomplish the process of producing and consuming the data.

Stream Processing Framework component: This component is our so-said consumer,

and therefore our manager for receiving the data from the messaging system. Once the data has

arrived, the data is consumed and pulled to a non-mandatory process, which is known for

executing transformations6 (part of the Extract-Transformation-Load, i.e., ETL, process) on the

incoming data. For this component, Apache Spark is the core technology that is able to produce

ETL processes and send them through existing libraries to the final two components: Analyzed

Data Storage and Web Interface components, respectively.

Analyzed Data Storage component: This component is more than just a regular data

storage or data repository. Its responsibility is to store and save all the incoming data in their

RAW7 format and the processed data, if passed through the ETL process, in databases according

to the project’s needs.

Web Interface component: To conclude the project’s pipeline, it should be possible to

visualize the processed data. Thus, the web interface component is very important since it is the

Visualization/Serving layer of the entire project and the crucial window in which conclusions

are drawn for business.

3.3 Use case

Building a data pipeline system as described in the previous section without any concrete or

precise data to support the analytical part of the project would not be conclusive nor would

result in lessons to be learned. Therefore, Pedro Miranda, the CSW supervisor for this project,

defined a specific use case that is based on a grocery e-commerce. The idea was to represent a

5 In this context it is the pipeline
6 Transformations on data such as aggregations, cleansing and filtering
7 original

3 Requirement analysis and architecture design

17

demo of a grocery’s transactions e-commerce shop that enables to graphically present which

country has made more transactions in that website, which product has been bought the most

and how many transactions were made, among other interesting graphs including the purchased

items of each transaction. The names of the items were supported by an existing dataset [28]

and its content can be partially visualized in Figure 3-2, which is just a small subset of the entire

dataset.

Figure 3-2: Subset of the grocery dataset

According to the dataset, each line represents a transaction with 𝑥 products. There are no other

attributes in the dataset but the names of the purchased items. Since this project’s use case is

about groceries, the idea behind this dataset is the extraction of the product names to be stored

afterwards into a regular database, or relational database technically spoken.

The dataset contains 𝑛 transactions and obviously any product would be part of 𝑚 transactions,

meaning that the dataset would contain replicas of product names. Removing duplicates must

be handled before storing the names of the products into the database so therefore, it suffered

some transformation, such as cleansing. By underdoing this step, it is possible to speak of an

ETL process. This achievement is explained in a more detailed way in section 4.6.

3.4 Functional requirements

This use case contains some basic and generic functionalities that were already mentioned and

understood while establishing the literature review (Chapter 2), such as having a way to transmit

data from one location to another, transform data or store it in databases. Table 3-1 reports all

the developed functional requirements and are grouped by component approach.

While for the Data Collector, it is important to generate randomly data based on an existing

dataset, the Messaging System component is able to read those generated data and publish them

so that the Stream Processing Framework can read the data and apply some transformations.

To display graphs with the data, it is important to send the processed data from Stream

Processing Framework to the Analyzed Data Storage component and also to the Web Interface

component. Furthermore, other functional requirements were needed to help generate the

random data as well as a Data Mining algorithm is applied on the processed data that is stored

in the database.

Real-Time Data Analytic Platform

18

3.5 Non-Functional requirements

Like any other software project, this project also includes some non-functional requirements

(NFR), which basically represent the quality attributes of the system. In this case, quality

attributes refer to Availability, Capacity, Security, Usability, Scalability, or Reliability just to

name a few.

Within this project, consistency, efficiency, and scalability are main NFR. As already specified

by the name of the project, a real-time data analytics platform must handle data in fast speed.

Therefore, it must be efficient. Scalability is important when dealing with big data. There must

be always a huge structure to support big data volumes. Consistency is crucial because the idea

is not just to send data from one location to another, but also to do something with that data. In

that case, ETL processes can help by removing redundancy from the data and, thus, facilitate

the application of ML algorithms or other detection pattern algorithms.

The approach to prove the efficiency of the NFR within this project’s scope is based on the

chosen tools and technologies used for each of the Kappa architecture components. More details

regarding each quality attributes of the components are specified in Chapter 4. Any tool that is

used within this project does have quality attributes that satisfies the project’s quality and

ensures the good functioning of such a real-time data analytic platform.

Table 3-1: Functional requirements

Functional requirement

1 Data Collector

1.1 Generate random grocery e-commerce Data

2 Messaging System

2.1 Retrieve Data using Apache Kafka

2.2 Send the incoming data to the Messaging System

3 Stream Processing Framework

3.1 Consume Data from the Messaging System

3.2 Apply transformations to the data

3.3 Send processed Data to the Analyzed Data Storage component

3.4 Send Data to the Visualization layer (part of Web Interface component)

4 Analyzed Data Storage

4.1 Create Databases to store processed and raw Data

5 Web Interface

5.1 Create visualization plots

6 Data Mining

6.1 Build REST API in Python

6.2 Apriori Algorithm application to stored Data

7 ETL Dataset

7.1 Apply ETL process within existing dataset

4 Implementation

19

4 Implementation

This chapter intends to present individual aspects of each component. Not only does each

section indicate how they communicate with each other, but also explains what each other’s

input and output results are. Along with all reasonable justifications, Figure 4-1 helps to

perceive its general flow and indicates the main technologies, tools or frameworks used.

Figure 4-1: Pipeline Projection

Regarding the tools and frameworks used for each individual component, a more detailed

description can be encountered in section 4.1 under Table 4-1. Also, initial setup and

configuration needs are described in section 4.2 to understand base requirements crucial to run

this pipeline. All other relevant technical aspects can be found in Appendix C.

4.1 Tools and Technologies

As previously mentioned, this section includes the tools and the technologies used for the

grocery e-commerce use case. In this context, these tools were chosen while reviewing the

literature and suggested by the CSW supervisor Álvaro Menezes. For a better reading

experience, Table 4-1 is divided into several chunks to differentiate the importance of each

layer and to group them by their main goal. Their versions as well as their use within the project

are referenced by the ‘Version’ and ‘Use’ columns, respectively. It is important to mention that

this use case depends on numerous technologies not previously known by the student. This fact

represented the main challenge and a great investment in research was required.

Real-Time Data Analytic Platform

20

Table 4-1: Tools, Frameworks and Technologies used within the project

Tools and Frameworks

Name Version Description Use (cf 3.4)

Apache Kafka

2.5.0

Producer and Consumer mechanism, to publish Data

and to be subscribed by Apache Spark respectively
Messaging System

Apache Zookeeper
Management of resilient distributed data offering

availability and scalability

Apache Spark 2.4.6
Consumer that reads the data and processes them by

applying ETL processes
Processing Framework

Docker/ Docker Desktop 2.2.0.0
Docker-compose was used to deploy and run instances

of services that are needed by the project

Messaging System, Analyzed Data

Storage

Flask 1.1.2

Web service gateway Interface to host methods

concerning the Apriori algorithm (see last row in this

table)

Data Mining

Elasticsearch
7.7.1

Elasticsearch is used to index the data so that Kibana

can collect the data and do Visualization interface
Web Interface

Kibana

IDE and Programming Languages

Name Version Description Use

IntelliJ - Java

2019.3.2

(Community

Edition)

Java programming language used for implementing

Data Collector, Messaging System and Stream

Processing Framework

Data Collector, Messaging System,

Processing Framework

PyCharm - Python

2020.1.1

(Community

Edition)

Python programming language used for implementing

REST API using the Apriori algorithm and the ETL

Pipeline for initial dataset

Data Mining, ETL Dataset

Repository Storage and Version Control

Name Version Description Use

Bitbucket 7.4 Version Control System for the entire code Entire Project

4 Implementation

21

Cassandra
2.5.0 Store Big Data (NoSQL); data that is processed

through the pipeline is stored in Cassandra
Analyzed Data Storage

PostgreSQL
42.2.14 Store the groceries existing dataset after ETL apply (cf

3.4 ETL Dataset and 4.6)
Analyzed Data Storage

Jira 8.13 Product backlog containing FR and project evolution Entire Project

Data Mining

Name Version Description Use

Apriori 1.1.1 [29]
Data Mining algorithm that has been used to detect

pattern on the groceries e-commerce
Data Mining

Real-Time Data Analytic Platform

22

4.2 Setup

Inevitably, it was necessary to download and to try out some tools and frameworks mentioned

in Table 4-1 since at the beginning there was no experience from the past.

Docker is a so-called base layer for some pipeline components, namely Messaging System and

Analyzed Data Storage. In other words, docker serves as a virtual machine to deploy the

pipeline. Inside that virtual instance, four different docker containers were created based on

existing images8. For the Messaging System, two instances were needed, namely an Apache

Kafka Broker9, which is identified inside a Cluster10, and Apache Zookeeper which comes

automatically with Apache Kafka since its responsibility is to control and manage the broker(s)

inside the cluster. It then can allocate and/or re-allocate the broker within the cluster, assuming

a better performance regarding scalability and availability.

A docker-compose file was created and is provided in this report as an appendix (Appendix B).

That file contains instructions so that all docker containers are run simultaneously11, avoiding

the need for any other additional configuration or run them one by one. Figure 4-2 represents a

snapshot of the Docker Desktop application with all four docker containers running.

Figure 4-2: Docker Desktop with running containers

Regarding the docker-compose file, the instructions are built based on tags. These tags are

necessary to specify the services to be created, which are the containers. For example, the Kafka

broker is built on an existing image called wurstmeister/kafka and it depends on the Zookeeper

8 Technical name given in a docker context which represents e.g., an instance of a tool
9 Like a single instance of a client
10 Group of brokers (it can also be a single node/machine)
11 Command to run under command line is: docker-compose up

4 Implementation

23

service, which is also built based on the wurstmeister/zookeeper image. These images can be

downloaded and looked up on the official Docker hub repository [30].

The broker follows some specification, such as environment variables, so that it is possible to

create topics12, send the data, which is created locally on the machine and sent over to the

created topic, and be ready to be read by the Apache Kafka technology (producer/consumer

mechanism). More information covering this topic is provided in section 4.4, which is about

the Messaging System component.

For the data to flow from the Data Collector through the Messaging System, a new topic is

needed. This is achievable by specifying the KAFKA_CREATE_TOPICS tag, which in this case

is given the name topic1. It is also to mention that these services are run inside a specific Internet

Protocol (IP) address after creating a network (kafkaNetwork) with the subnet address

172.19.0.0/16. To mention that, this subnet address was chosen to be the docker network

address since it was one of the available addresses to run all docker services. These

specifications allow the communication between containers and maintaining the structure of

the Messaging System organized.

In this specific use case, only one broker is necessary, but of course this differs from project to

project when it comes to complexity and requirements. Another interesting and relevant

element that is found on the docker-compose file is the definition of two distinct databases.

More details concerning it are described in section 4.6.

4.3 Data Collector

Data Collector, also denominated Producer (Figure 4-7), is based on the Java object-oriented

programming language, and, since there was some previous experience with, the chosen

Integrated Development Environment was IntelliJ (Figure 4-3).

Figure 4-3: Data Collector Component

To simplify this use case, two Plain Old Java Object (POJO) classes were built in order to help

generate all necessary data for this component. They are identified by Figure 4-4 and Figure

4-5. A POJO class permits to group all necessary attributes in one Java class, making it

accessible to any Java program to use the POJO class ensuring the reuse of it in any other project

and for instance store the attribute values in a data storage (in this context, the POJO class is

stored in the database).

12 Similar to a pipe, gets input and returns output

Real-Time Data Analytic Platform

24

All POJO classes implement the Serializable interface, which permits to transform Java classes

into series of bytes and send them over to the Messaging System under the Apache Kafka

technology. ProductUDT is an auxiliary POJO class containing only two distinct attributes that

are detailed in Table 4-2.

public class ProductUDT implements Serializable {
 private Integer idproduct;
 private String productname;
…

Figure 4-4: Java class ProductUDT

Table 4-2: ProductUDT POJO class

Class: ProductUDT

Attribute Use and Definition

idproduct Product identifier (unique values)

productname Product name (unique names)

The Order class is a more complete and representative state of a transaction of the grocery

e-commerce (Figure 4-5). It has multiple attributes that are specified in greater detail in Table

4-3. It is important to mention that this class contains a list of ProductUDT (see previous POJO

class). This class is the transaction/order that goes to the Stream Processing Framework since

transformations are applied to this specific Order POJO class (cf. section 4.5)

public class Order implements Serializable {
 private UUID uuid;
 private Integer idOrder;
 private String items;
 private Date timestamp;
 private List<ProductUDT> products;
 private String countryOfOrigin;
…

Figure 4-5: Java class Order

4 Implementation

25

Table 4-3: Order POJO class

Class: Order

Attribute Use and Definition

Uuid Universally Unique Identifier (UUID)

idOrder Order identifier

Items String containing items by their id product (e.g. 1,3,6,18,56,…)

Timestamp Date when the Order has been purchased

Products Product information coming from the database

countryOfOrigin Reflects to the country where the Order has been purchased

4.4 Messaging System

For the Messaging System component, Apache Kafka has been used as the main technology

(Figure 4-6). Kafka’s approach is based on a producer/consumer architecture as mentioned in

Figure 4-7 and its ecosystem works under the docker name streamingpipeline_kafkaBroker0_1

(Figure 4-2).

Figure 4-6: Messaging System component

Beside Apache Kafka, Apache Zookeeper also contributes to this component by controlling

scalability and availability, running under the docker name streamingpipeline_zookeeper_1

(Figure 4-2).

Figure 4-7 represents the architecture the Messaging System offers. On the left side, the

previous component, Data Collector publishes (or sends) the data to the Kafka broker, which

forwards it to the created topic. As soon as the data comes in, the other service, Zookeeper

container, provides the required scalability and availability so that the data is not run over. The

broker subsequently waits for the consumer to subscribe to its topic so that it can read the data.

In this case, Apache Spark is responsible for consuming the data and proceeding to the

transformations upon the data, called ETL process.

Real-Time Data Analytic Platform

26

Figure 4-7: Producer/Consumer within docker containers

4.5 Stream Processing Framework

In the market, there is a variety of existing stream processing frameworks, such as Apache

Flink, Apache Samza, Apache Storm, and Apache Spark just to name a few [31]. For this

specific project, Apache Spark was the selected framework. Despite all the other mentioned

frameworks could integrate and work for this project or similar projects, Apache Spark was

more complete by offering more libraries and modules, which resulted in its selection. The

content of Table 4-4 [31] , which provides a comparison between processing frameworks based

on six features, also supports the choice of Apache Spark.

Table 4-4: Stream Processing Framework Comparison

 Characteristics

Stream Processing

Framework

D
el

iv
er

y

G
u

ar
an

te
es

F
au

lt

to
le

ra
n

ce

S
ta

te

M
an

ag
em

en
t

P
er

fo
rm

an
ce

A
d

v
an

ce
d

F
ea

tu
re

s

M
at

u
ri

ty

Apache Flink

Apache Samza

Apache Storm

Apache Spark

Legend:

 Strong Weak So-so

4 Implementation

27

Based on Table 4-4, Apache Flink and Apache Spark have both the best ranks guaranteeing

fault-tolerance and good performances. By this, it is stated that these frameworks can retake

their operation after failure (energy, network, node). They are also the best solutions for getting

higher throughput and low latency. The chosen framework was in this context preferred by

having a much wider community than Apache Flink, which also confirmed by the first assigned

CSW supervisor.

Apache Spark was the selected framework and therefore, it must be well understood before

proceeding to the implementation of it. The component is responsible to receive inputs and

deliver outputs, the generated data coming from the Messaging System and the stored procedure

to the Data Storage and Web Interface respectively.

Concerning the inputs, Apache Spark has a module called Spark Streaming (Table 4-4) which

is the core system of this component. Its job is to be aware of incoming data, endlessly. This

means that this specific component is connected (subscribed) to the Kafka broker, through the

existing Kafka Integration API within Spark Streaming, and receives an alert, which technically

is a ConsumerRecord object. These objects are key-value tuples where the identification and

the generated data from the Data Collector are stored. Whenever there is an alert, a Resilient

Distributed Dataset (RDD) is created. RDDs are known to be immutable data structures in

Spark. Their life cycle aims to maintain the data as it came and represent a distributed collection

of objects. In this case, these objects inherit from the user-defined class Order (Figure 4-5).

Whatever the change is, small or huge, on that RDD, a new RDD is always created. This means

that the very first RDD has been copied to a brand new RDD and that both the old and new

RDD are accessible whenever evoked.

For instance, the example in Figure 4-8 demonstrates that each RDD that comes through the

directKafkaStream object is mapped into a collection of type Order, making it the first

RDD. After deciding to apply a UUID to that distributed collection, a second RDD is created,

javaRDD and javaRDDUUID respectively.

directKafkaStream.foreachRDD(rdd -> {
 System.out.println("--- New RDD with " + rdd.partitions().size() + "
partitions and " + rdd.count() + " records");
 JavaRDD<Order> javaRDD = rdd.map(ConsumerRecord::value);
 JavaRDD<Order> javaRDDUUID = javaRDD.map(r->{
 r.setUuid(UUID.randomUUID());
 return r;
 });

Figure 4-8: [Code] Apache Spark code with ETL process

Now that every RDD has a distinct UUID, the biggest transformation is yet to come. Coming

back to the Data Collector component, every incoming Order has a field called items. Its content

is of type String, which means that this attribute contains a string composed by product

identification numbers (that are stored in the postgresql database, cf Section 4.6). In order to

know which identifier corresponds to the product name in the postgres database, the code

section in Figure 4-9 splits every product identifier to a String array prod, where finally every

Real-Time Data Analytic Platform

28

product is added to an empty dynamic array of ProductUDT. This means that

javaRDDDetailedOrder is filled with the corresponding product name from the database.

JavaRDD<Order> javaRDDDetailedOrder = javaRDDUUID.map(r->{
 String[] prod = r.getItems().split(",");
 List<ProductUDT> prods = new ArrayList<>();
 for(String p:prod){
 int n = Integer.parseInt(p);
 prods.add(new ProductUDT(n, products.get(n-1)));
 }
 r.setProducts(prods);
 return r;
});

Figure 4-9: [Code] Detailed Order on Apache Spark

To store every processed and final RDD (javaRDDDetailedOrder), two actions are performed,

namely indexing them to the Elasticsearch tool and saving them in two different tables in the

Cassandra database: the detailed order table and the only-id order (javaRDDUUID) table

(Figure 4-10).

JavaEsSpark.saveToEs(javaRDDDetailedOrder, "all_ordertransactions");

//Detailed Orders
CassandraJavaUtil.javaFunctions(javaRDDDetailedOrder)
 .writerBuilder(keyspace, tableName,
CassandraJavaUtil.mapToRow(Order.class, orderColumnNameMappings))
 .saveToCassandra();

//Just Orders with ids
CassandraJavaUtil.javaFunctions(javaRDDUUID)
 .writerBuilder(keyspace, tableNameIds,
CassandraJavaUtil.mapToRow(Order.class, orderColumnNameMappings))
 .saveToCassandra();
javaRDDDetailedOrder.foreach(record -> System.out.println(record.toString()));

Figure 4-10: [Code] Storing data from Apache Spark to Databases

When accessing localhost:4040 through a web browser (e.g., Chrome), Apache Spark offers a

graphical DAG (Directed Acyclic Graph) visualization (Figure 4-11) containing all the ETL

processes, including the creation of the Kafka DirectStream object that consumes the incoming

data, as well as the map transformations. In other words, the first blue rectangle in Figure 4-11

is the creation of the directKafkaStream object (Figure 4-8) and the other three map

transformations are done by running the code shown in Figure 4-8 and Figure 4-9. Once the

transformations come to an end, the RDD containing the POJO class (Order) is stored to the

Cassandra database and also to the Elasticsearch service (Figure 4-10).

4 Implementation

29

Figure 4-11: Apache Spark DAG Visualization

This concludes the process of the stream processing framework component by having read the

incoming data, conducted an ETL process and stored the processed data to its final storage

location.

4.6 Analyzed Data Storage

In a very generic perspective, this component stores all the data involved in the project. To

separate the data which has been generated randomly based on the dataset from what is static

throughout the project, both data types follow different paths, emphasizing Big Data and

‘regular’ Data, respectively. This distinction is required since the amount of generated data is

expected to be significantly higher than the amount of regular data that can be supported by a

regular database. For the Big Data, the considered database is the NoSQL 13 Cassandra

management system and for the regular database a PostgreSQL Database is considered. Using

Apache Cassandra as a database (Figure 4-12) does not require the data to be normalized and

therefore no relationships are needed between Cassandra tables. Of course, these advantages

are not the only ones nor the single reason it was chosen for the project. As stated in the official

website of Apache Cassandra, scalability, high availability and fault-tolerance are ensured [32].

13 Non-relational database

Real-Time Data Analytic Platform

30

Figure 4-12: Cassandra database

Regarding the relational database, the existing e-commerce products were retrieved from an

existing data source (csv file format) which was illustrated in Figure 3-2. Since each row

represents a transaction, there might be redundancy along the rows when it comes to the

products. Hence, a python script was developed to eliminate any duplicate from file and only

retain distinct products. Through this approach, it is possible to identify a pipeline, or ETL

pipeline to be more precise. The script ingests the data (extract the data from the csv file),

applies the needed transformation, which is removing any duplicate, and, finally, the output is

sent over to the relational database.

Products (Figure 4-13) is the main and only entity in the postgres database. It retains the

productName, which is guaranteed by the ETL pipeline explained previously, and contains

other basic information like a product description (productDescription) and a quantity for that

product. Finally, all products are identified with a unique identifier (idProduct).

Figure 4-13: PostgreSQL database

4.7 Web Interface

This component is visually the most appealing and the most revealing part of this project. It

does not only present the insights of what has been ordered and purchased, but also contributes

to the Data Analyst’s study field whose goal is to take the most out of these facts and numbers.

4 Implementation

31

The aim of this component is to help Data Analyst’s to extract insights of any company by

applying Data Analytic knowledge upon interesting and promising graphs such as bar, column,

or pie charts. ELK stack, Elasticsearch, Logstash and Kibana contribute to this component by

indexing incoming data, processing, and designing attractive dashboards over the user interface

(UI).

In fact, just Elasticsearch and Kibana (EK) are used in this project. Logstash did not appear to

be revealing since its main generic objective is to simulate a pipeline that can ingest, transform,

and output the processed data. This, of course, would not make any difference since our goal is

to create a pipeline that can do all of this by using more powerful and scalable technologies,

such as Apache Kafka and Apache Spark which promise a better, stable, scalable job [33].

Regarding Elasticsearch and Kibana, both tools were supported and run on the local machine,

which also could have been run on official existing docker images [34] [35]. Once they are

running, it is possible to access them through a web browser under localhost:5601. The

Kibana app pops up and presents its interface with the graphs dashboard.

One important aspect was to understand how Elasticsearch and Kibana work together. At first,

the data that is sent to Elasticsearch is indexed and is stored based on documents. In other words,

the index value represents the repository where 𝑛 documents are saved, which can be

considered as single rows in the perspective of a regular database. This means every document

is represented by the attributes that were generated by the Data Collector and, when sent to

Elasticsearch, the mapping of data types is done automatically.

Regarding Kibana, it offers many interactive charts that can be assigned appropriately to the

data to be presented. In this case, Table 4-5 contains all the questions that can be used to build

graphs on the Kibana tool.

Table 4-5: Data Analytics Business Questions

Questions

What is the most bought product?

Which country has purchased more?

How many transactions were made in total?

At what time are made more transactions?

Average transactions per country?

How many transactions per hour?

4.8 Data Mining

Data Mining is not directly related with in any of the components described in the previous

sections. It is a side activity in the context of the project described in this report. Even though

Apache Spark offers multiple Machine Learning (ML) libraries with a variety of algorithms, it

Real-Time Data Analytic Platform

32

was decided by the CSW supervisor to use one of the earliest existing Data Mining algorithms,

the Apriori algorithm [36].

Globally, Data Mining technics are applied to an existing dataset or to a data warehouse to

detect any pattern. Within the grocery e-commerce case study, it focuses in analyzing the

Cassandra database and detect possible patterns. Since this is all about e-commerce products, it

totally makes sense to apply this algorithm and understand how each product can relate with

other products. For instance, when purchasing a specific product, which other products can grab

a user’s attention and possibly make part of the final shopping list just before checkout? The

idea is to find that pattern and then, help the ‘company’ to get some advantages, such as business

opportunities. For instance, applying a discount on a product (chips) when knowing that if

another product (beer) is bought, then the first product has more probability to be bought

(confidence) with the second product, meaning that this could lead to a positive profit.

This algorithm is set with 4 heuristics, namely: Support, Confidence, Lift, and Conviction. Each

one contributes to a final prediction and certain confidence about a product that has been

purchased and/or is related to. The results of this algorithm are stored in the Apriori table inside

the Cassandra database (Figure 4-12). Table 4-6 describes the four heuristic.

Table 4-6: Heuristics of the Apriori algorithm [37]

Heuristic Interval Description Formula

Support [0, 1] Number of times that product X

occurs in transactions

𝑆{𝑋}

Confidence [0, 1] Probability that Y is purchased

given X was purchased
𝐶{𝑋 → 𝑌} =

𝑆{𝑋 → 𝑌}

𝑆{𝑋}

Lift [0, +∞] Likelihood of Y being

purchased when X is

purchased, while considering

the popularity of Y

𝑙𝑖𝑓𝑡{𝑋 → 𝑌} =
𝑆{𝑋 → 𝑌}

(𝑆{𝑋} ∗ 𝑆{𝑌})

Conviction [0, +∞] Ratio between X and Y, being

both independent
𝑐𝑜𝑛𝑣{𝑋 → 𝑌} =

(1 − 𝑆{𝑋})

(1 − 𝐶{𝑋 → 𝑌})

4.9 REST API

A REST API (Representational State Transfer Application Programming Interface) is an

architectural style for an API to communicate under http requests with other applications [38].

The retrieved data over the requests can be achieved by using commands such as GET, POST,

PUT and DELETE. For this specific use case, the API we developed has a single URI (Uniform

Resource Identifier) that is related to section 4.8 (Data Mining) and implements the Apriori

algorithm. The purpose of this feature complements this use case by stating and detecting

frequent item set patterns and therefore giving insight about the business.

4 Implementation

33

This feature is built using the Python programming language within the PyCharm IDE. For the

creation of the web server gateway interface, Flask framework has been used. The API is

prepared to trigger off an action when receiving a POST http request. The requests can be a list

of one or more products and the body of the response, in JSON (JavaScript Object Notation)

format, contains a complete list with other products that are related to the sent list based on the

Apriori algorithm. For instance, using the web e-commerce example, this would give the

customer other related products that could also be purchased just before checkout.

The prototype of the POST method follows as an example in Figure 4-14 and is ready to trigger

off when receiving such a http request. The product list, as previously mentioned, is identified

as productList and consists of one or more product ids (type: integer). For instance, in case of

having the product id 25 (e.g., beer) in the productList list and if the method is called, the result

which can be obtained are products that have quite good relationship with product number 25.

Maybe, hungry programmers might consider chips as a good deal and reconsider buying it just

before checkout.

Figure 4-14: REST API for the Apriori algorithm

5 Results and Test Cases

35

5 Results and Test Cases

During the time allocated to the internship no unit tests or integration tests for the components

were performed due to time limitation. Therefore, this chapter only presents some results

regarding the developed Kibana graphs as well as a demonstration on how the Apriori algorithm

behaves exposing some test cases. In this phase, the real-time data analytic platform is totally

built by all necessary components and is therefore ready to be executed. The Data Collector

starts to generate random data based on the existing dataset, that are further analyzed and

transformed to build detailed orders using the specified POJO class Order (Figure 4-5). This

said, the graphs contain these generated data, and these are displayed in the Kibana dashboard.

Kibana provides a range of graphs and these are created by drag and drop. This setup does not

require any programming skill, just a correct configuration is needed, since the data from

Elasticsearch must be indexed correctly to the created dashboard.

5.1 Kibana Graphs

Kibana tool is responsible to automatically update the dashboard and all the graphs that are

inside the dashboard. While the Data Collector generates random data repeatedly, like an

endless circle, other components do their work, inclusive updating the data on the Elasticsearch

so that Kibana can update the data on the graphs automatically. These plots are represented by

different figures, starting from Figure 5-1 to Figure 5-5, and each figure does represent a

question that can be found in Table 4-5.

Figure 5-1 presents an overview counter with the number of transactions.

Figure 5-1: Number of transactions counter

Figure 5-2 is a donut chart in which the countries regarding the transactions are displayed. A

country that does not figure in the top 10 transactions is stored in the ‘Other’ category. When

hovering over a specific country on the graph, it is possible to get more details, such as the exact

number of transactions per country.

Real-Time Data Analytic Platform

36

Figure 5-2: Average of Transactions per Country donut chart

Figure 5-3 is tabular chart where the representation follows the same path as the previous figure

(Figure 5-2).

Figure 5-3: Number of transactions per country plot

Figure 5-4 displays the 10 most bought products regarding all the transactions.

5 Results and Test Cases

37

Figure 5-4: Top 10 most bought product plot

Figure 5-5 is a line plot that intends to give a feedback covering the transactions on a per hour

base. This time range is about a day long and is divided into periods of exactly one hour.

Figure 5-5: Number of transactions per hour line plot

Real-Time Data Analytic Platform

38

5.2 Apriori test results

As already mentioned, the Apriori algorithm was implemented as a REST API (Figure 4-14).

Figure 5-6 presents an example of the single URI of the developed REST API being accessed

throw a POST http method. It specifies the purchased product number 49 in the URI parameter

(Frozen fish, which is the most bought item [Figure 5-4]). The body of the http response

message, in JSON format, is presented in Figure 5-7 and contains the names and respective

identifiers of the products that figure the most when buying product number 49. It retrieves the

item with the highest interest/relevance first. In this case, grapes, chewing gum and

fruit/vegetable juice are the three most requested items when buying frozen fish, according to

the Apriori algorithm. Despite this being an example within this project’s use case, a pattern is

here identified and is a Data Analyst’s job to get more insights to the company by producing

more of these results.

Figure 5-6: REST API call

Figure 5-7: Result of the POST verb on the URI /main/products

6 Conclusions and Future Research directions

39

6 Conclusions and Future Research directions

This section aims at drawing some conclusions about the work described in this document and

discusses directions for future research.

6.1 Conclusions

The constant technological evolution and the increasing amount of Data on the web tend to

bring changes to existing real-time data analytic platforms. Data science is therefore in constant

change. With the aim to continue delivering good performance levels and/or to maintain the

already existing quality of service of the companies using these platforms, the project described

in this report intended to discuss about two major existing Big Data architectures, Lambda and

Kappa, and perceive if they are generic14 enough solutions suitable to support real-time data

analytic platforms.

The literature review, the first task performed, allowed to dive deeper to the existing problem

and to study topics that could be helpful to achieve the purpose of the research goals. It also

established the state of the art and comparison of Big Data solutions that effectively support

real-time data analytics platforms, namely Lambda and Kappa. Then, two real business cases

were presented to illustrate the use of Lambda and Kappa in a streaming service (Netflix) and

in the telecommunication industry, respectively, and draw some conclusions. Finally, an

implementation of a real-time data analytic platform based on the Kappa architecture has been

achieved by using a grocery e-commerce use case which was further explored using the Apriori

algorithm to discover frequent item sets pattern.

The main theoretical contribution of this work is a detailed description, analysis, and

comparison of two Big Data architectures, Lambda and Kappa, for real-time data analytics. The

features, strengths, and weaknesses of both were clearly explained, as well as real business

cases presented.

The practical contributions consisted in following the Kappa architecture to implement a

straightforward processing pipeline, with all the essential components implemented, to support

data analytics for an e-commerce grocery use case. A large number of tools and frameworks,

such as Apache Kafka and Apache Spark, were used to this end. Most of them were new to the

trainee. With this practical hands-on, the Kappa architecture was put on proof to understand if

the concepts and key principles studied by the theoretical contribution were correctly applied.

This includes the use of all components proposed by its generic architecture and the use of the

studied technologies that figure in published articles.

The main challenges of this project are summarized as follows. Its scope, i.e., Data Engineering,

was not within the student’s study field and was different from any previous project at Critical

14 Suitable to be applied to any business type

Real-Time Data Analytic Platform

40

Software, the host institution. Therefore, the student had to learn and work with never-seen

technologies, frameworks, tools, and programming languages, as well as relevant Big Data and

other theoretical concepts. The global pandemic also affected the project itself. The first

allocated CSW supervisor, Álvaro Menezes, had to be replaced mid second semester, which

resulted in schedule adjustments. The software development methodology was also changed

and working from home was not as effective as from CSW’s offices. Also, a difficult familiar

situation led to a delay on the project, specifically on the documentation writing phase.

Nevertheless, the goal of this project was successfully achieved and CSW has now one base

framework for further developments. Consequently, CSW accomplished their goal that was to

have this pipeline structure as generic as possible that ensures its implementation to any

business type.

6.2 Directions for future research

To conclude this chapter, this section presents some possible approaches and directions for

future developments and research. Therefore, the following list introduces some of these

features.

During the development phase, Apache Kafka offered a variety of APIs, including

processing methods (Kafka DStreams). Back then, a stable version was not confirmed and thus

made the decision fall on Apache Spark (Table 4-4) for the Stream Processing Framework

component. Meanwhile, Apache Kafka could have extended its Kafka DStreams library making

it possible to use Kafka as for the Messaging System component as well as for the Stream

Processing Framework component. This would make Apache Spark’s redundant and not worth

anymore to be implemented despite their enriched libraries (e.g., Machine Learning, Spark

Streaming). As a future research it would be interesting to perceive if it is effective to apply

Apache Kafka to the entire speed layer, including Stream Processing Framework and

Messaging System (removing Apache Spark from the project).

This project focused an e-commerce use case and the Apriori algorithm was

implemented to detect a pattern on the products. However, using the machine learning library

from Apache Spark and applying any other probability distribution (i.e., not uniform) on the

input data might also be a reasonable approach to detect patterns. This approach might make

this project even more realistic.

Another future research direction can be identified in the serving layer. The way the

data is displayed and visualized through the Kibana tool is not the best offer in the market.

Instead, another possible visualization tool could be used, such as Tableau [39], Power BI [40],

or others, replacing Elasticsearch and Kibana. Moreover, Kibana presents some difficulties on

displaying the indexing documents on the plots as well as some limitations by not offering more

customizations, such as add labels on the plots and grouping the documents, change color just

to name a few.

References

41

References

[1] "Instituto Superior de Engenharia de Coimbra," [Online]. Available:

https://www.isec.pt/PT/Default.aspx. [Accessed 13 July 2020].

[2] "Critical Software," [Online]. Available: https://www.criticalsoftware.com/. [Accessed

13 July 2020].

[3] "Culture CSW," 2020. [Online]. Available: https://www.criticalsoftware.com/en/our-

world/culture-history.

[4] "CSW History," 2020. [Online]. Available: https://www.criticalsoftware.com/en.

[5] "ISEC - The Institute," [Online]. Available: https://www.isec.pt/EN/ISEC/.

[6] ISEC, "Fikalab - ISEC," [Online]. Available: https://fikalab.pt/isec/. [Accessed 16

November 2020].

[7] Z. Milosevic, W. Chen, A. Berry and F. A. Rabhi, "Real-Time Analytics," p. 1, December

2016.

[8] S. Melendez and A. Pasternack, "Here are the data brokers quietly buying and selling your

personal information," February 2019. [Online]. Available:

https://www.fastcompany.com/90310803/here-are-the-data-brokers-quietly-buying-and-

selling-your-personal-information.

[9] K. N. Singh, R. K. Behera and J. K. Mantri, "Big Data Ecosystem - Review on

Architectural Evolution," ResearchGate, 2019.

[10] M. Feick, N. Kleer and M. Kohn, "Fundamentals of Real-Time Data Processing

Architectures Lambda and Kappa," pp. 3, 6, 2018.

[11] S. Bandyopadhyay and A. Banik, "Big Data - A Review on Analysing 3Vs," Journal of

Scientific and Engineering Research, pp. 3-4, 2016.

[12] S. Sheriff, "UNDERSTANDING THE 5VS OF BIG DATA," March 2019. [Online].

Available: https://acuvate.com/blog/understanding-the-5vs-of-big-data/.

[13] C. Tozzi, "Big Data 101: Dummy’s Guide to Batch vs. Streaming Data," July 2017.

[Online]. Available: https://blog.syncsort.com/2017/07/big-data/big-data-101-batch-

stream-processing/.

Real-Time Data Analytic Platform

42

[14] Microsoft, "Big data architectures," Microsoft, December 2018. [Online]. Available:

https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/.

[15] A. Awad, S. Sakr and E. Shahverdi, "Big Stream Processing Systems: An Experimental

Evaluation," ResearchGate, p. 54, April 2019.

[16] A. J. Awan, M. Brorsson, V. Vlassov and E. Ayguade, "Architectural Impact on

Performance of In-memory Data Analytics: Apache Spark Case Study," ResearchGate,

2016.

[17] S. Salloum, R. Dautov, X. Chen, P. X. Peng and J. Z. Huang, "Big data analytics on

Apache Spark," Springer International, Switzerland, 2016.

[18] N. Marz, "LinkedIn," [Online]. Available: https://www.linkedin.com/in/nathanmarz.

[19] N. Marz, "How to beat the CAP theorem," thoughts from the red planet, 13 October 2011.

[20] J. Lin, "The Lambda and the Kappa," Big Data Bites, pp. 60-66, October 2017.

[21] B. W. Lampson, "Hints for Computer System Design," Xerox Palo Alto Research Center,

1983.

[22] N. Hunt, "Netflix & AWS Lambda Case Study," in

https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/, 2014.

[23] "Jay Kreps at Linkedin," [Online]. Available: https://www.linkedin.com/in/jaykreps.

[Accessed 14 July 2020].

[24] D. Bryant, "Migrating Batch ETL to Stream Processing: A Netflix Case Study with Kafka

and Flink," February 2018. [Online]. Available: https://www.infoq.com/articles/netflix-

migrating-stream-processing/.

[25] N. Seyvet and I. M. Viela, "Applying the Kappa architecture in the telco industry," 19

May 2016. [Online]. Available: https://www.oreilly.com/ideas/applying-the-kappa-

architecture-in-the-telco-industry.

[26] D. Gray, "Netflix's Big Data Architecture," 15 May 2014. [Online]. Available:

https://dataconomy.com/2014/05/netflix-big-data-architecture/.

[27] I. Samizadeh, "A brief introduction to two data processing architectures — Lambda and

Kappa for Big Data," 15 March 2018. [Online]. Available:

https://towardsdatascience.com/a-brief-introduction-to-two-data-processing-

architectures-lambda-and-kappa-for-big-data-4f35c28005bb.

[28] N. Caballero, "Github," [Online]. Available: https://github.com/stedy/Machine-Learning-

with-R-datasets/blob/master/groceries.csv. [Accessed 13 April 2020].

References

43

[29] A. algorithm, "pypi," [Online]. Available: https://pypi.org/project/efficient-apriori/.

[Accessed 14 June 2020].

[30] "Docker Hub Repository," [Online]. Available: https://hub.docker.com/. [Accessed

March 2020].

[31] C. Prakash, "Spark Streaming vs Flink vs Storm vs Kafka Streams vs Samza : Choose

Your Stream Processing Framework," [Online]. Available:

https://www.linkedin.com/pulse/spark-streaming-vs-flink-storm-kafka-streams-samza-

choose-prakash. [Accessed 2 March 2020].

[32] Apache Cassandra, [Online]. Available: https://cassandra.apache.org/. [Accessed 25

September 2020].

[33] "XPLG," [Online]. Available: https://www.xplg.com/what-is-logstash/. [Accessed 28

September 2020].

[34] "Docker Hub Repository - Elasticsearch," [Online]. Available:

https://hub.docker.com/_/elasticsearch. [Accessed November 2020].

[35] "Docker Hub Repository - Kibana," [Online]. Available:

https://hub.docker.com/_/kibana. [Accessed November 2020].

[36] Y. Djenouri, "Combining Apriori Heuristic and Bio-Inspired Algorithms for Solving the,"

Information Sciences, p. 3, August 2017.

[37] tommyod, "Efficient-Apriori Documentation," November 2020. [Online]. Available:

https://readthedocs.org/projects/efficient-apriori/downloads/pdf/latest/.

[38] M. Rouse, C. Bedell, E. Hannan, S. Wilson and A. Gillis, "RESTful API (REST API),"

[Online]. Available: https://searchapparchitecture.techtarget.com/definition/RESTful-

API. [Accessed December 2020].

[39] "Tableau Official Website," [Online]. Available: https://www.tableau.com/. [Accessed

December 2020].

[40] "Power BI Official Website," [Online]. Available: https://powerbi.microsoft.com/en-us/.

[Accessed December 2020].

[41] R. Felder and R. Silverman, "Learning and Teaching Styles in Engineering Education,"

Journal of Engneering Education 78 (7), pp. 674-681, 1988.

[42] E. v. Heck and P. Vervest, "Smart business networks: how the network wins,"

Communications of the ACM, Vol. 50 No. 6, pp. 28-37, 2007.

Real-Time Data Analytic Platform

44

45

Appendix A – Internship proposal

Appendix A: Internship proposal

Appendix A: Internship proposal

47

Real-Time Data Analytic Platform

48

Appendix A: Internship proposal

49

Real-Time Data Analytic Platform

50

51

Appendix B – Docker-compose file

Appendix B: Docker-compose file

 Appendix B: Docker-compose file

53

version: '3.7'
networks:
 default:
 name: kafkaNetwork
 driver: bridge
 ipam:
 config:
 - subnet: 172.19.0.0/16
services:
 zookeeper:
 image: wurstmeister/zookeeper:latest
 ports:
 - "2181:2181"
 environment:
 ZOOKEEPER_SERVER_ID: 0
 ZOOKEEPER_CLIENT_PORT: 2181
 kafkaBroker0:
 build: .
 image: wurstmeister/kafka:latest
 hostname: kafkaBroker0
 depends_on:
 - zookeeper
 ports:
 - "9092:9092"
 expose:
 - "9093"
 environment:
 KAFKA_BROKER_ID: 0
 KAFKA_ADVERTISED_HOST_NAME: 172.19.0.3
 KAFKA_LISTENERS: LISTENER_DOCKER_INTERNAL://kafkaBroker0:9093,
LISTENER_DOCKER_EXTERNAL://0.0.0.0:9092
 KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafkaBroker0:9093,
LISTENER_DOCKER_EXTERNAL://localhost:9092
 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP:
LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT
 KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL
 KAFKA_CREATE_TOPICS: "topic1:4:1"
 KAFKA_ZOOKEEPER_CONNECT: "zookeeper:2181"
 KAFKA_LOG_DIRS: /kafka/kafka-logs-kafkaBroker0
 KAFKA_DELETE_TOPIC_ENABLE: "true"
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 cassandraServer:
 image: cassandra:latest
 ports:
 - 7199:7199
 - 7000:7000
 - 7001:7001
 - 9042:9042
 - 9160:9160
 expose:
 - "9042"
 environment:
 - "MAX_HEAP_SIZE=256M"
 - "HEAP_NEWSIZE=128M"
 volumes:
 - cassandra:/var/lib/cassandra
 postgresdb:
 build: .
 image: postgres:latest
 environment:
 POSTGRES_USER: "*****"
 POSTGRES_PASSWORD: "*****"
 POSTGRES_DB: "*****"
 volumes:
 - postgresdb_data:/var/lib/postgresql/data
 ports:
 - 5432:5432
 networks:
 - default
volumes:
 postgresdb_data:
 cassandra:

55

Appendix C – Technical Report

Appendix C: Technical Report

 Appendix C: Technical Report

57

Real-Time Data Analytic Platform

58

Appendix C: Technical Report

59

Real-Time Data Analytic Platform

60

Appendix C: Technical Report

61

Real-Time Data Analytic Platform

62

Appendix C: Technical Report

63

Real-Time Data Analytic Platform

64

Appendix C: Technical Report

65

Real-Time Data Analytic Platform

66

Appendix C: Technical Report

67

Real-Time Data Analytic Platform

68

Appendix C: Technical Report

69

Real-Time Data Analytic Platform

70

Appendix C: Technical Report

71

Real-Time Data Analytic Platform

72

Appendix C: Technical Report

73

Real-Time Data Analytic Platform

74

Appendix C: Technical Report

75

Real-Time Data Analytic Platform

76

Appendix C: Technical Report

77

