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Abstract 

The world of data has increased in today’s data science and data engineering fields. Data 

analytics, from a perspective, is increasing since they are useful to get insights of a company 

and guarantee an excellent business opportunity precisely because of data which are more 

present due to Artificial Intelligence, Internet of Things (IoT), social media and 

software/hardware components. 

In order to process, analyze and deliver data in a very short period of time, streaming gained its 

form, and real-time data analytic platforms began to rise, leaving the traditional batching 

process aside. In fact, to build a data analytics platform, real-time or not, Big Data joins in and 

provides their architectures with their components. 

Lambda and Kappa, two existing Big Data architectures, consist of numerous components, i.e., 

supporting ‘blocks’, offering the opportunity to explore their functionalities to develop real-

time data analytic platforms. When implementing such solutions, another question that might 

arise is the choice of which architecture might best fit the targeted business type. 

This internship report focuses on analyzing and drawing some conclusions about any possible 

correlation between business types and specific data analytics solutions that are better suited to 

support them. It also discusses if creating a generic real-time data analytic platform (i.e., 

appliable to any kind of existing business type) is feasible, which could significantly decrease 

development and deployment costs. Specifically, Lambda and Kappa are inspected in this report 

to understand if these Big Data architectures are generic enough to address this issue or if a 

customization based on their components is possible. Proving that any of the analyzed Big Data 

architectures are feasible to be implemented to any real-time data analytic platform, the 

remaining report addresses the development of a specific use case covering Kappa as its main 

architecture. 
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Resumo 

Atualmente, o mundo dos dados está a crescer, sobretudo nas áreas de Data Science e Data 

Engineering. A análise de dados, tem-se tornado cada vez mais relevante para obter um 

conhecimento mais profundo sobre uma determinada empresa e representa uma oportunidade 

de negócio, precisamente devido à emergente presença de dados derivados da Inteligência 

Artificial, Internet of Things (IoT), social media e componentes de software/hardware. 

De modo a processar, analisar e distribuir estes dados num curto espaço de tempo, o streaming 

tem ganho popularidade e as plataformas de análise de dados em tempo real começaram a 

surgir, colocando de lado os tradicionais processamentos de dados por lotes. De facto, para 

desenvolver uma plataforma de análise de dados, em tempo real ou não, as arquiteturas de Big 

Data e os seus componentes tornaram-se essenciais. 

As arquiteturas de Big Data existentes, Lambda e Kappa, são suportadas por vários 

componentes, oferecendo a oportunidade de explorar as suas funcionalidades para desenvolver 

plataformas de análise de dados em tempo real. Ao implementar este tipo de soluções, surge, 

por vezes, a questão sob qual das arquiteturas será a mais adequada a um determinado tipo de 

negócio. 

Neste relatório de estágio, é demonstrada a análise e conclusões sobre uma possível correlação 

entre os tipos de negócio e quais as soluções de análise de dados mais adequadas para os 

suportar. Ao longo deste documento, é ainda ponderada a possibilidade de desenvolver uma 

plataforma de análise de dados em tempo real, genérica o suficiente, para ser aplicável em 

qualquer tipo de negócio, reduzindo significativamente os custos de desenvolvimento e 

implementação. Neste contexto, são examinadas as arquiteturas Lambda e Kappa, por forma a 

entender se são suficientemente universais para essa possibilidade ou se é viável uma 

personalização baseada nos seus componentes. De modo a comprovar se qualquer uma destas 

arquiteturas de Big Data é implementável numa plataforma genérica de análise de dados em 

tempo real, o relatório também descreve o desenvolvimento de um caso de uso específico 

baseado na arquitetura Kappa. 
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1 Introduction 

This report describes the work performed during an internship integrated in the Master’s course 

in Informatics and Systems (Mestrado em Informática e Sistemas – MIS) at the Instituto 

Superior de Engenharia de Coimbra (ISEC) [1] for the academic year 2019/2020. The duration 

of this internship was two semesters and has been distributed along two academic semesters, 

starting on November the 14th, 2019, at Critical Software [2] headquarters in Coimbra and then 

later being transferred voluntarily to Lisbon Offices for the second semester, in February 2020. 

Its goal was to develop a real-time data analytic platform, as generic as possible, to be applied 

to any business type case and since Critical software did not have any similar project that 

followed that approach, the development of this project was one big accomplishment. 

In the following sections, Critical Software and ISEC are presented, a more contextualized 

scope and background is also provided, and the structure of the report follows in the last section. 

1.1 Critical Software  

Critical Software, internally referenced as CSW, is an internationally respected and recognized 

organization which started from the bottom but were right on top of systematic excellent work 

delivery. All started when Diamantino Costa, Gonçalo Quadros, and João Carreira, now the 

actual CEO (Chief Executive Officer), wrote several papers about the space sector and 

consequently attracted NASA (National Aeronautics and Space Administration)  in 1998, year 

in which Critical Software was born. 

Afterwards they were unstoppable and managed to gather international success such as being 

chosen as a case study by The European Space Agency (ESA). Also, they were the first Iberian 

company to receive the ISO9001:2000 TickIT quality certification. They contributed to ESA’s 

EarthCARE space mission project, they launched several spin-offs and are one of the few 

companies in the world achieving the CMMI-SE/SW Level 5 certification [3]. 

Their work was being undoubtedly recognized and the dream of expanding became reality, 

having currently 9 offices distributed around the globe. The space sector is not the only industry 

CSW explores but also Aerospace, Automotive, Defence, Energy, Finance, Government, 

Medical Devices, Railway, Space and Telecoms. In each sector, CSW works on ‘demanding 

projects, providing software and system services for safety, mission, and business-critical 

applications’ [4], ensuring high quality throughout the entire project. 

1.2 ISEC 

Instituto Superior de Engenharia de Coimbra, or ISEC, is an Institute of Engineering located 

in Coimbra and offers several Bachelor and Master courses, as well as other professional 

courses in different areas of engineering, such as Chemical, Civil, Electrical, Information 
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Technology, and Mechanical. Moreover, ISEC ‘has as its mission the creation, transmission 

and diffusion of culture, science and technology, being responsible for providing a higher 

education for the exercise of professional activities in the field of Engineering and promoting 

the development of the region’ [5]. 

Finally, and extremely important to increase students’ passion in creating innovative projects, 

ISEC encourages them to participate in the Fikalab [6] project. Through the participation, not 

only are students able to win special nominations and prizes but also experience in developing 

fun and unique projects, individually or in a group. This initiative is also supported by CSW 

and the students’ involvement increases their capacity of developing in a fun and healthy way 

and to bring some challenges to their professional lives. 

1.3 Context and Problem Statement 

Data nowadays are undoubtedly as important as the ignition of a rocket, carbon for an old 

locomotive, electricity for a smart gadget, or even coffee for our brains. This increasing 

importance is due to a huge evolution in our technology era, which results in data volumes 

being expected to double every two years (“Fast Data” designation [7]). The evolution of 

Artificial Intelligence (AI), Internet of Things (IoT), Cloud Computing, and Edge Computing 

largely contribute to this phenomenon [7]. 

Organizations take Data very seriously since it is one of the most valuable resources for their 

business models. There are even companies that make money selling personal information to 

other organizations [8]. Transformation and aggregation operations must be applied to data 

prior allowing the company analysts to come up with business insights and future opportunities. 

Analyzing collected data and giving some useful insights to the company is one of the 

components of Data science, more precisely Data Analytics (DA). The maintenance of data, 

the exploration of historical overview records, and the availability of real-time data are three 

key factors that enable providing companies with solutions that help them predicting and 

making decisions. 

Big Data is a well-recognized area in the world of Data and the use of open-source tools has 

been considered to ‘address the storage, processing and visualization of such data’ [9]. Big Data 

is a collection of large datasets which are complex to work with when using traditional methods 

like regular databases. Also, Big Data is well-known for their 5 V (Volume, Variety, Velocity, 

Value, and Veracity) and for their architectures.  

In this context, this report aims to analyze existing state of the art Big Data solutions, namely 

Lambda [10] and Kappa [10], and also to determine if they are generic enough such that they 

can be applied to any business type. It is organized in various chapters and starts providing 

some background information about key concepts, such as data analytic and big data. Then, it 

analyses related work about Big Data architectures, covering Lambda and Kappa architecture 

in greater detail, demonstrating how they are built and specifying how they differ from each 

other. Furthermore, two case studies are presented and compared, so that conclusions could be 

conducted either which of the Big Data architectures could be suitable to any type of business 

cases. Both presented case studies follow a distinct Big Data architecture so that the advantages 
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and the disadvantages are clearly understood, emphasizing the choice of Lambda and Kappa 

architectures within each different business type systems. In addition, this project’s scope is to 

develop a real-time data analytic platform which needs an infrastructure that supports and 

therefore, the chosen architecture is based on the comparison of the Lambda and Kappa 

architecture previously mentioned. 

1.4 Workplan and Methodology 

At an initial stage of the internship, it was crucial to start with some basics and background 

information within this project’s scope. Since it was not within the specialization domain of the 

trainee’s Master course, it was clearly important to invest more in Data Analytics1 and Big 

Data2 areas. Therefore, a literature review covering some important background concepts, such 

as Big Data, Data Analytics, Batch, and Streaming processing, was performed. Also, the CSW’s 

internship proposal (Appendix A) presented a high-level pipeline projection that contributed to 

an initial input that could be certified while searching for Big Data architectures. In this context, 

and even in a brighter spectrum like Data Science, a pipeline can be compared to a process that 

gets input data, that also can perform transformations during the process time range (e.g.: inside 

the ‘pipe’) and end up with an output result. The pipeline projection in Appendix A is composed 

by several components and those are within Lambda or Kappa architecture. 

The Gantt chart in Figure 1-1 lists all the tasks that were performed, such as the literature 

review, as well as other significant tasks that contributed to the implementation of a real-time 

data analytic platform pipeline. Also, the effort reported for every task is measured in days and 

these effort values are displayed in the table within Figure 1-1. Regarding the documentation 

phase, its duration is relatively higher than the other tasks because of some limitations that are 

described in section 6.1 and, the fact that this is not a continuous process. 

 

 
1 Science of examining data to make conclusions. 
2 Area in which a huge amount of data is transformed, processed, and worked with. 
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Figure 1-1: Workplan in Gantt chart 

 

Since the beginning, the steps to carry this project along were clearly defined by CSW, and the 

proposal itself stated to follow a Waterfall methodology. Due to the global pandemic, the 

project started to change its course. In March, it began to suffer some adjustments, more 

meetings were being held, other requirements were added, and some tailoring was conducted, 

among other tasks that are mentioned in Chapter 4. 

The meetings were held once a week via Microsoft Teams platform. Initially, the assigned CSW 

supervisor was Álvaro Menezes who was replaced afterwards by the current project supervisor 

Pedro Miranda. Also, to mention that Professor José Marinho from ISEC was one of the main 

supervisors of this internship, and several meetings were held with him to monitor the course 

of the project development and report writing. 

1.5 Outline  

The remainder of this report is organized as follows:  

Chapter 2: Literature review. The origins of Big Data and Data Analytics concepts, their 

scope, a background section, and an overview of the literature on these subjects are provided. 

An analysis of existing state of the art solutions and two use cases are also presented. 

Chapter 3: Requirement analysis and architecture design. All the functional and non-

functional requirements are listed according to the development needs. The architecture of the 

developed solution is specified along with necessary tools and frameworks. 

Chapter 4: Implementation. This chapter contains all the implementation choices 

throughout the entire project development phase, as well as a description of the tools and 

technologies that were used. 
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Chapter 5: Results and Test Cases. In this chapter the result of the development phase 

and the test cases are presented. 

Chapter 6: Conclusions and Future Research directions. This chapter draws final 

conclusions about the entire study and project development. Furthermore, it also includes 

possible future developments. 
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2 Literature review 

This chapter covers some background topics to understand the projects’ scope. Some topics 

related to Big Data, Data Analytics, as well as batch and stream processing principles are 

described in the related work section. Lambda and Kappa are also clearly identified as main 

architectural models to support a real-time data analytic platform infrastructure. These models 

are based on individual components and those can be implemented by using several 

technologies. Along with the Lambda and Kappa specifications, two different business cases 

are presented to distinguish the use of each architecture according to the respective use case. 

2.1 Background 

Even though this report is about Data Analytics, it is important to highlight the importance of 

Big Data in this context. Data analytics are supported by Big Data architectures. Just cruising 

back to 2012 when the term Big Data was no longer a secret for its use and mission, the three 

V were presented as the answer to treat large datasets (Volume) from different data sources 

(Variety), in a high frequency of time to collect and publish this information (Velocity) [11]. 

Its existence is due to today’s huge amount of data, which turns traditional database systems 

unable to process those large datasets. Additionally, data come from distinct data sources in 

different forms, like structured, unstructured, and semi-structured formats. Since data is 

growing, Gartner (former MetaGroup analytic firm) [12] added two more relevant V (Value 

and Veracity) aiming for providing value to the company and quality to the collected data [12]. 

Considering the main reasons why Big Data is known for and its main characteristics, Data 

Analytics is in some way connected to it since it is a process ahead, i.e., the science of 

examining those collected data and giving some useful insights to the company. However, just 

collecting information does not mean that it will correspond to good results. The right 

information must be collected and then translated into some profitable result, in the right place, 

and at the right time in a near future. Companies want results as fast as they can and while they 

are still up to date and useful to them, i.e., in real-time. 

Creating platforms for working with big volumes of data and getting some analytics about them 

in a hopefully short and useful period is not completely achievable through batch processing, 

which consists in fetching some analytics sometime after data collection. This approach, which 

continues being applied nowadays, is not appropriate to achieve consumer preferences, 

satisfaction, company insights, and fraud detection in a new era where streaming and results 

are important factors [13]. Thus, the need to process results in real time resulted in the 

development of a technology designated as streaming processing. While batch processing 

consists in collecting data over time and fetching some analytics later after, especially 

overnight, stream processing, on the other hand, consists in collecting data as soon as it is 

available and delivering results in real-time or, more precisely, in near real-time [10]. 
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2.2 Related Work 

After some background about Big Data, Data Analytics, and Batch and Stream processing 

provided in the previous section, this section describes in more detail these topics and 

demonstrates the connection between them. As a starting point, a generic Big Data diagram that 

consists of different components is considered (Figure 2-1). Then, the Lambda (λ) and Kappa 

(κ) Big Data architectures, which include some of these components, are described in greater 

detail with their main characteristics, differences, advantages, and disadvantages. For this 

project, only Lambda and Kappa were considered to be analyzed since other architectures, such 

as Unified Lambda architecture, Mu architecture and Zeta architecture, are variations of the 

Lambda and Kappa architectures [9]. Moreover, two different business types are described 

following different architecture approaches, namely the Lambda architecture for a streaming 

service and the Kappa architecture for a Telco company. 

2.2.1 Big Data Architectures and their components 

Figure 2-1 [14] is a generic pipeline that includes the components of both Big Data 

architectures, Lambda and Kappa, but also the variations previously mentioned. Not every 

component is mandatory while building a Data Analytics platform and the goal of this section 

is to describe each one. 

 

 

Figure 2-1: Big Data Components diagram [14] 

 

Data come across from diverse data sources in distinct data formats. Structured, unstructured, 

and semi structured formats are the most common ones. Examples of structured data are 

relational databases and spreadsheets. Unstructured data examples are e-mails, portable 

document format (PDF) files, images, and videos. The semi-structured data format is visible in 

extensible Markup Language (XML) files or Comma-Separated Values (CSV) documents. It is 

basically information that is not allocated in relational databases but has attributes that help in 

the analysis process. 
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These incoming data can be stored in the Data Storage component, which is usually a Data 

Lake3 or a Data Warehouse4. These systems maintain the data in its raw format and help when 

it comes to batch and stream processing. 

Even though real-time message ingestion, stream processing, and batch processing components 

are presented individually on Figure 2-1, they can be implemented as a single component 

through Apache Kafka [15] which is a powerful streaming processing platform that leads with 

different data in near real-time. It is based on the Producer and Consumer pattern, where the 

producer publishes log messages to a Kafka Topic, also known as Kafka broker. Each message 

is allocated to a partition and is set with an offset, while the consumer subscribes to a topic and 

consumes all the messages that are within the partition(s). 

Machine Learning (ML) algorithms can be implemented to identify any related pattern and to 

train data to discover some useful information. In this category, two classes of algorithms can 

be used, namely Supervised and Unsupervised. Supervised algorithms have access to the input 

and output data, such as Classification models (Naïve Bayes, SVM) and Regression (Linear, 

Logistic), while unsupervised algorithms do not have access to the outputs in advance, working 

only with the input data. Clustering (K Means) and Dimensionality Reduction (Principal 

Component Analysis, SVD) are examples of unsupervised algorithms [16] [17]. 

The analytical data store component can be the representation of the result views. Queries are 

made through those views and the information is returned to the end-user. Analytics and 

reporting are the data visualization part where any result is presented on a dashboard or web 

interface. 

Considering the two currently most used Big Data architectures, Lambda and Kappa, the next 

two sections will cover their usage and demonstrate how each architecture differs from one 

another. To mention that, both Lambda and Kappa can have similar technologies in each further 

described component [9]. As for a developer, the development of the component does require 

the use of an existing tool or framework. In other words, similar technologies and frameworks 

like Apache Kafka, Apache Spark can figure in these architectures but can be implemented 

using different programming languages. For instance, Apache Spark allows us to develop on 

Java, Scala or even Python programming language [16]. 

2.2.2 Lambda Architecture 

Lambda architecture (Figure 2-2) has been named by Nathan Marz [10]. Back in 2011, the 

former lead engineer of the company BackType [18], stated this architecture as a ‘generic, 

scalable and fault-tolerant real-time data processing architecture’ [10]. Even before streaming 

was possible, big companies had to process their data by batch processing. This mode of 

operation requires too much time, leading to a high latency and therefore to an overnight task. 

By observing Figure 2-2, and knowing that batching is a task that carries a huge latency, it may 

seem controversial to see the batching process present, making it less probable that this 

architecture is even suitable for real-time streaming. Fortunately, Lambda does include the 

 
3 Repository for storing structured, unstructured, and semi-structured in its raw format 
4 System that stores data along with metrics, expected to be processed by an ETL process 
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speed layer, which fixes the latency problem. So, the high latency problem is fixed by assuming 

pre-computed views (i.e., data that the batch layer processes) and indexing them with the low 

latency real-time views (i.e., current data from the speed layer) to a merged view results, namely 

Serving layer. Back then, this architecture seemed to be a successful architecture to support 

real-time analytics with low latency. 

 

 

Figure 2-2: Lambda’s Architecture [14] 

 

Marz wanted to beat the CAP (Consistency, Availability, Partition) Theorem [19], which in his 

beliefs this architecture could master. Ultimately, his architecture does not resolve the CAP 

theorem and this is also proved in article [10] stated by the authors that ‘the architecture does 

not rebut the CAP theorem but simplifies its [architecture] complexity…’, which is also 

criticized by the IEEE Internet Computing department Big Data Bites led by Jimmy Lin [20]. 

Furthermore, this department, which is known to ‘deliver thought-provoking and potentially 

controversial ideas about all aspects of big data’, mentions that Marz’s so-called ‘invention’ 

was already proposed by Butler Lampson’s paper in 1983 [21].  

Lambda’s architecture follows the pipeline illustrated in Figure 2-2. The first component to be 

mentioned is the incoming data for processing, designated as Unified Log. It is a set of three 

generic existing data formats (structured, unstructured, and semi-structured). The idea behind 

this component is to group all the data and apply some transformations [17], such as conversion 

to a specific data format for easier communication for the speed layer, the second component. 

As soon as data come in, they are conducted to two different layers, the Batch layer and the 

Speed layer, respectively. The speed layer is responsible of processing the data, whereas the 

batch layer does not process the data at all, maintaining it immutable. Furthermore, the batch 

layer indexes the batch view to the serving layer and then, the speed layer just updates the 

already existing serving layer with the most recently processed data. The end-user (either a 
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human or an analytics engine) can visualize the processed data through a web interface like a 

dashboard. 

Digital companies like Yahoo and Netflix [22] use this implementation for their business 

models. Clearly these types of companies make use of machine learning algorithms in order to 

obtain the most suitable and updated movies/series preferences list in app or streaming services. 

2.2.3 Kappa Architecture 

As soon as the Lambda architecture gained its form across the Big Data world, Jay Kreps 

(2014), a staff engineer at LinkedIn [23], wrote an article where he pointed out some pitfalls to 

the Lambda architecture. According to Jay, Kappa is a simplification of Lambda and not a 

replacement [14]. The main difference between these two architectures consists in removing 

the batch layer and, therefore, automatically decreasing complexity (Figure 2-3). This is 

achieved avoiding two separate codebases, one for the batch component and the other for the 

speed component. This means that only one layer (speed layer) is needed and no 

synchronization between batch and speed is necessary. Everything goes through a single stream 

(i.e., the speed layer in Figure 2-3). 

 

 

Figure 2-3: Kappa Architecture [14] 

 

In what concerns development frameworks and tools, both Lambda and Kappa can be produced 

with Apache Kafka and Apache Spark technologies [9] [10]. Along with these two frameworks, 

there are other possible solutions meaning that there is a large number of technologies enabling 

to develop these systems [9]. 

Regarding κ pipeline, it is very similar to λ’s architecture. The collected data, represented as 

the Unified Log in Figure 2-3, passes through the speed layer where the data is processed by 

the stream process. With Apache Kafka and Apache Spark, it is possible to get the processed 

data and deliver it and index it to the real-time views, which is similar to the Serving Layer in 
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Lambda. From there on, analytics clients or final human users can access these data submitting 

appropriate queries. 

2.2.4 Differences and Similarities 

λ and κ are in fact two possible solutions to develop a powerful platform for data analytics and 

Big Data. Indeed, through a deep research and mainly focusing on recent papers, it is totally up 

to the companies to decide which one to choose and, therefore, which one is the most suitable 

to their business type [10]. Nevertheless, we should not forget about their specific strengths and 

weaknesses as summarized in Table 2-1. 

 

Table 2-1: λ and κ Characteristics 

Architecture Strengths Weaknesses 

Λ 

More accuracy results due to 

batch processing 
High latency by batching 

Machine Learning effectiveness 

Difficult to implement and to 

keep data and the two 

codebases synchronized 

Re-computation of data in 

failure cases 

Two codebases (for batch 

and stream) 

Parallelism 
Lack of availability in the 

batch layer [10] 

Κ 

Easier implementation 

Evidence of errors during 

data processing 

(redundancy, loss data even 

‘fault-tolerant’) 

Computationally Cheaper 
Evidence of errors while 

updating database 

Single stream for processing 

(no need for two codebases) 

Difficult to migrate and 

adapt to λ (if it is the case) 

 

To summarize, both architectures are two possible solutions for a data analytic platform. 

However, no matter what business type it is, it should be planned carefully based on some 

criteria. One of the criterium that should be considered is that Lambda delivers more accurate 

processed data but suffers from high latency when batching all the existing data. Kappa, on the 

other hand, is much easier to implement since it does not require to have two distinct codebases 

because it does not have the batch layer. It also makes keeping data synchronized easier since 

there is just a single stream to worry about. 
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2.2.5 Business Type 

There have not been any recent studies or any studies at all to clarify if there is any ideal 

architecture to any specific business type. Throughout the literature, there are quite a lot of 

business types coming to foreground with ideas to develop such a data analytics platform. The 

most quoted business types found were banking and credit companies, e-commerce companies, 

marketing and streaming services, Mobile Network Operators, and Healthcare. One common 

factor to all these companies is that they want to contribute with good decisions and strategies. 

This said, every business type can perfectly consider any of these architectures. They just have 

to go over their characteristics, which are summarized in Table 2-1, and decide which one to 

use. If for instance, the importance to maintain data registered and apply any type of machine 

learning algorithm to get better and accurate results then Lambda is more precise to do so. 

Otherwise, if the data is not so important, then Kappa is more appropriate to use. 

The next section describes two case studies for two distinct business types. 

2.2.6 Case Studies 

As already mentioned in the previous section, two different case studies will now be described 

focusing on Netflix, a well-known streaming service, and on the telecommunications industry 

(Telco Industry). Both follow a different architecture with Netflix using λ as its base 

architecture [24], among other components, and the Telco Industry preferentially using κ [25]. 

2.2.6.1 Netflix 

Being now one of the most requested streaming services, Netflix already exists since 1997 and 

has gained popularity along these past years offering several movies and series through 

streaming. In recent years, streaming has won distinctive appreciation and therefore Netflix has 

not stopped since then and is now quoted to stream over 97k hours of video every minute [22]. 

Netflix also keeps track of users’ preferences in terms of movies and series, which is achieved 

through machine learning and personalization algorithms [26], in order to improve their service 

quality and maximize clients’ satisfaction.  

The reason why Netflix chose Lambda over Kappa is that the streaming service uses the best 

of both worlds in just one platform, namely batch and stream processing. It takes advantage of 

ML algorithms since data is much more precise due to have batching, and by this, it meets 

Netflix’s quality of service standards [27]. 

2.2.6.2 Telco Industry 

In telecommunication industries, where data is constantly present, it is deeply appreciated 

having a big data platform that can collect data and turn it into useful information. In this case 

study detecting anomalies is precious to avoid high maintenance costs.  

So, Telco companies [25], probably not all, but just reflecting on this source, use κ as an 

alternative architecture because the batch layer results they want can be obtained using a 

streaming engine, for instance, Apache Kafka, which is responsible of ingesting volumes of 
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data and therefore ensures the same results as the stream layer [25], classifying batch processing 

as a subset of stream processing [25]. 

Since in this case the batch and speed layers would contain the same codebases, it would be 

redundant and, therefore, unnecessarily to have both codebases synchronized, avoiding extra 

work on keeping constantly everything synchronized since batch and speed would give similar 

results. This way, it decreases the complexity of the architecture and respects the removal of 

the batch layer (Table 2-1), emphasizing this way the speed layer (Figure 2-3). Besides this 

reason, the article also mentions possible ML algorithms implementations. 
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3 Requirement analysis and architecture 

design 

This chapter not only is intended to present the architectural design of the real-time Data 

Analytic platform developed during the internship but also its functional and non-functional 

requirements. To accomplish all the necessary functionalities of such a platform it is important 

to specify all the requirements, which represent the functionalities of the pipeline must do to 

stream data in real-time (section 3.4) and quality attributes of the pipeline (section 3.5). All the 

requirements were accordingly agreed with the CSW’s supervisor to focus on the main goal of 

the system. 

3.1 Architecture 

Based on the two analyzed Big Data architectures, the project we developed follows the Kappa 

architecture which by nature is appropriate for real-time data streaming. However, and 

considering its main architecture as described in section 2.2.3 and Figure 2-3, it is necessary to 

tailor it to be able to represent the pipeline for this concrete project. Despite Figure 2-3 does not 

include literally the serving layer, the ‘Analytics client’ can be considered as the serving layer 

since the data is grouped and displayed on the web interface. The tailoring part reflects on that 

assumption and there is no need to build extra components. The components are built upon 

existing tools and technologies that can be visualized in Chapter 4. 

Figure 3-1 presents the main components that were developed and are explained in section 3.2 

(colored in red). It follows the standard structure of the Kappa architecture (colored in grey) as 

already defined in section 2.2.3. 

 

 

Figure 3-1: Real-Time Data Analytic High-Level Pipeline 
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3.2 Architecture Components 

Once the architecture is defined, this section presents the components’ structure, their goal of 

having it in the pipeline, and their own achievements. For that, follows a list covering all the 

five essential components. 

Data Collector component: This component is the starting point of the system5, being 

responsible to generate randomly data based on an existing dataset and according to the given 

use case that is further explained in section 3.3 and to be consumed by the Messaging System 

component. 

Messaging System component: This component encapsulates the typically known 

producer and consumer of a messaging system. In other words, its main goal is to be prepared 

to handle the generated data from Data Collector and, as a producer, send the data to the 

consumer, which is the Stream Processing Framework. For this component, Apache Kafka is 

used to accomplish the process of producing and consuming the data. 

Stream Processing Framework component: This component is our so-said consumer, 

and therefore our manager for receiving the data from the messaging system. Once the data has 

arrived, the data is consumed and pulled to a non-mandatory process, which is known for 

executing transformations6 (part of the Extract-Transformation-Load, i.e., ETL, process) on the 

incoming data. For this component, Apache Spark is the core technology that is able to produce 

ETL processes and send them through existing libraries to the final two components: Analyzed 

Data Storage and Web Interface components, respectively. 

Analyzed Data Storage component: This component is more than just a regular data 

storage or data repository. Its responsibility is to store and save all the incoming data in their 

RAW7 format and the processed data, if passed through the ETL process, in databases according 

to the project’s needs. 

Web Interface component: To conclude the project’s pipeline, it should be possible to 

visualize the processed data. Thus, the web interface component is very important since it is the 

Visualization/Serving layer of the entire project and the crucial window in which conclusions 

are drawn for business. 

3.3 Use case 

Building a data pipeline system as described in the previous section without any concrete or 

precise data to support the analytical part of the project would not be conclusive nor would 

result in lessons to be learned. Therefore, Pedro Miranda, the CSW supervisor for this project, 

defined a specific use case that is based on a grocery e-commerce. The idea was to represent a 

 
5 In this context it is the pipeline 
6 Transformations on data such as aggregations, cleansing and filtering 
7 original 
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demo of a grocery’s transactions e-commerce shop that enables to graphically present which 

country has made more transactions in that website, which product has been bought the most 

and how many transactions were made, among other interesting graphs including the purchased 

items of each transaction. The names of the items were supported by an existing dataset [28] 

and its content can be partially visualized in Figure 3-2, which is just a small subset of the entire 

dataset. 

 

 

Figure 3-2: Subset of the grocery dataset 

 

According to the dataset, each line represents a transaction with 𝑥 products. There are no other 

attributes in the dataset but the names of the purchased items. Since this project’s use case is 

about groceries, the idea behind this dataset is the extraction of the product names to be stored 

afterwards into a regular database, or relational database technically spoken. 

The dataset contains 𝑛 transactions and obviously any product would be part of 𝑚 transactions, 

meaning that the dataset would contain replicas of product names. Removing duplicates must 

be handled before storing the names of the products into the database so therefore, it suffered 

some transformation, such as cleansing. By underdoing this step, it is possible to speak of an 

ETL process. This achievement is explained in a more detailed way in section 4.6. 

3.4 Functional requirements 

This use case contains some basic and generic functionalities that were already mentioned and 

understood while establishing the literature review (Chapter 2), such as having a way to transmit 

data from one location to another, transform data or store it in databases. Table 3-1 reports all 

the developed functional requirements and are grouped by component approach. 

While for the Data Collector, it is important to generate randomly data based on an existing 

dataset, the Messaging System component is able to read those generated data and publish them 

so that the Stream Processing Framework can read the data and apply some transformations. 

To display graphs with the data, it is important to send the processed data from Stream 

Processing Framework to the Analyzed Data Storage component and also to the Web Interface 

component. Furthermore, other functional requirements were needed to help generate the 

random data as well as a Data Mining algorithm is applied on the processed data that is stored 

in the database. 
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3.5 Non-Functional requirements 

Like any other software project, this project also includes some non-functional requirements 

(NFR), which basically represent the quality attributes of the system. In this case, quality 

attributes refer to Availability, Capacity, Security, Usability, Scalability, or Reliability just to 

name a few. 

Within this project, consistency, efficiency, and scalability are main NFR. As already specified 

by the name of the project, a real-time data analytics platform must handle data in fast speed. 

Therefore, it must be efficient. Scalability is important when dealing with big data. There must 

be always a huge structure to support big data volumes. Consistency is crucial because the idea 

is not just to send data from one location to another, but also to do something with that data. In 

that case, ETL processes can help by removing redundancy from the data and, thus, facilitate 

the application of ML algorithms or other detection pattern algorithms. 

The approach to prove the efficiency of the NFR within this project’s scope is based on the 

chosen tools and technologies used for each of the Kappa architecture components. More details 

regarding each quality attributes of the components are specified in Chapter 4. Any tool that is 

used within this project does have quality attributes that satisfies the project’s quality and 

ensures the good functioning of such a real-time data analytic platform. 

 

Table 3-1: Functional requirements 

# Functional requirement 

1 Data Collector 

1.1 Generate random grocery e-commerce Data 

2 Messaging System 

2.1 Retrieve Data using Apache Kafka 

2.2 Send the incoming data to the Messaging System 

3 Stream Processing Framework 

3.1 Consume Data from the Messaging System 

3.2 Apply transformations to the data 

3.3 Send processed Data to the Analyzed Data Storage component 

3.4 Send Data to the Visualization layer (part of Web Interface component) 

4 Analyzed Data Storage 

4.1 Create Databases to store processed and raw Data 

5 Web Interface 

5.1 Create visualization plots 

6 Data Mining 

6.1 Build REST API in Python 

6.2 Apriori Algorithm application to stored Data 

7 ETL Dataset 

7.1 Apply ETL process within existing dataset 

 



4 Implementation 

19 

4 Implementation 

This chapter intends to present individual aspects of each component. Not only does each 

section indicate how they communicate with each other, but also explains what each other’s 

input and output results are. Along with all reasonable justifications, Figure 4-1 helps to 

perceive its general flow and indicates the main technologies, tools or frameworks used. 

 

 

Figure 4-1: Pipeline Projection 

 

Regarding the tools and frameworks used for each individual component, a more detailed 

description can be encountered in section 4.1 under Table 4-1. Also, initial setup and 

configuration needs are described in section 4.2 to understand base requirements crucial to run 

this pipeline. All other relevant technical aspects can be found in Appendix C. 

4.1 Tools and Technologies 

As previously mentioned, this section includes the tools and the technologies used for the 

grocery e-commerce use case. In this context, these tools were chosen while reviewing the 

literature and suggested by the CSW supervisor Álvaro Menezes. For a better reading 

experience, Table 4-1 is divided into several chunks to differentiate the importance of each 

layer and to group them by their main goal. Their versions as well as their use within the project 

are referenced by the ‘Version’ and ‘Use’ columns, respectively. It is important to mention that 

this use case depends on numerous technologies not previously known by the student. This fact 

represented the main challenge and a great investment in research was required. 
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Table 4-1: Tools, Frameworks and Technologies used within the project 

Tools and Frameworks 

Name Version Description Use (cf 3.4) 

Apache Kafka 

2.5.0 

Producer and Consumer mechanism, to publish Data 

and to be subscribed by Apache Spark respectively 
Messaging System 

Apache Zookeeper 
Management of resilient distributed data offering 

availability and scalability 

Apache Spark 2.4.6 
Consumer that reads the data and processes them by 

applying ETL processes 
Processing Framework 

Docker/ Docker Desktop 2.2.0.0 
Docker-compose was used to deploy and run instances 

of services that are needed by the project 

Messaging System, Analyzed Data 

Storage 

Flask 1.1.2 

Web service gateway Interface to host methods 

concerning the Apriori algorithm (see last row in this 

table) 

Data Mining 

Elasticsearch 
7.7.1 

Elasticsearch is used to index the data so that Kibana 

can collect the data and do Visualization interface 
Web Interface 

Kibana 

IDE and Programming Languages 

Name Version Description Use 

IntelliJ - Java 

2019.3.2 

(Community 

Edition) 

Java programming language used for implementing 

Data Collector, Messaging System and Stream 

Processing Framework 

Data Collector, Messaging System, 

Processing Framework 

PyCharm - Python 

2020.1.1 

(Community 

Edition) 

Python programming language used for implementing 

REST API using the Apriori algorithm and the ETL 

Pipeline for initial dataset 

Data Mining, ETL Dataset 

Repository Storage and Version Control 

Name Version Description Use 

Bitbucket 7.4 Version Control System for the entire code Entire Project 
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Cassandra 
2.5.0 Store Big Data (NoSQL); data that is processed 

through the pipeline is stored in Cassandra 
Analyzed Data Storage 

PostgreSQL 
42.2.14 Store the groceries existing dataset after ETL apply (cf 

3.4 ETL Dataset and 4.6) 
Analyzed Data Storage 

Jira 8.13 Product backlog containing FR and project evolution Entire Project 

Data Mining 

Name Version Description Use 

Apriori 1.1.1 [29] 
Data Mining algorithm that has been used to detect 

pattern on the groceries e-commerce 
Data Mining 
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4.2 Setup 

Inevitably, it was necessary to download and to try out some tools and frameworks mentioned 

in Table 4-1 since at the beginning there was no experience from the past. 

Docker is a so-called base layer for some pipeline components, namely Messaging System and 

Analyzed Data Storage. In other words, docker serves as a virtual machine to deploy the 

pipeline. Inside that virtual instance, four different docker containers were created based on 

existing images8. For the Messaging System, two instances were needed, namely an Apache 

Kafka Broker9, which is identified inside a Cluster10, and Apache Zookeeper which comes 

automatically with Apache Kafka since its responsibility is to control and manage the broker(s) 

inside the cluster. It then can allocate and/or re-allocate the broker within the cluster, assuming 

a better performance regarding scalability and availability. 

A docker-compose file was created and is provided in this report as an appendix (Appendix B). 

That file contains instructions so that all docker containers are run simultaneously11, avoiding 

the need for any other additional configuration or run them one by one. Figure 4-2 represents a 

snapshot of the Docker Desktop application with all four docker containers running. 

 

 

Figure 4-2: Docker Desktop with running containers 

 

Regarding the docker-compose file, the instructions are built based on tags. These tags are 

necessary to specify the services to be created, which are the containers. For example, the Kafka 

broker is built on an existing image called wurstmeister/kafka and it depends on the Zookeeper 

 
8 Technical name given in a docker context which represents e.g., an instance of a tool 
9 Like a single instance of a client 
10 Group of brokers (it can also be a single node/machine) 
11 Command to run under command line is: docker-compose up 



4 Implementation 

 

23 

service, which is also built based on the wurstmeister/zookeeper image. These images can be 

downloaded and looked up on the official Docker hub repository [30]. 

The broker follows some specification, such as environment variables, so that it is possible to 

create topics12, send the data, which is created locally on the machine and sent over to the 

created topic, and be ready to be read by the Apache Kafka technology (producer/consumer 

mechanism). More information covering this topic is provided in section 4.4, which is about 

the Messaging System component. 

For the data to flow from the Data Collector through the Messaging System, a new topic is 

needed. This is achievable by specifying the KAFKA_CREATE_TOPICS tag, which in this case 

is given the name topic1. It is also to mention that these services are run inside a specific Internet 

Protocol (IP) address after creating a network (kafkaNetwork) with the subnet address 

172.19.0.0/16. To mention that, this subnet address was chosen to be the docker network 

address since it was one of the available addresses to run all docker services. These 

specifications allow the communication between containers and maintaining the structure of 

the Messaging System organized. 

In this specific use case, only one broker is necessary, but of course this differs from project to 

project when it comes to complexity and requirements. Another interesting and relevant 

element that is found on the docker-compose file is the definition of two distinct databases. 

More details concerning it are described in section 4.6. 

4.3 Data Collector 

Data Collector, also denominated Producer (Figure 4-7), is based on the Java object-oriented 

programming language, and, since there was some previous experience with, the chosen 

Integrated Development Environment was IntelliJ (Figure 4-3). 

 

 

Figure 4-3: Data Collector Component 

 

To simplify this use case, two Plain Old Java Object (POJO) classes were built in order to help 

generate all necessary data for this component. They are identified by Figure 4-4 and Figure 

4-5. A POJO class permits to group all necessary attributes in one Java class, making it 

accessible to any Java program to use the POJO class ensuring the reuse of it in any other project 

and for instance store the attribute values in a data storage (in this context, the POJO class is 

stored in the database). 

 
12 Similar to a pipe, gets input and returns output 
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All POJO classes implement the Serializable interface, which permits to transform Java classes 

into series of bytes and send them over to the Messaging System under the Apache Kafka 

technology. ProductUDT is an auxiliary POJO class containing only two distinct attributes that 

are detailed in Table 4-2. 

 

public class ProductUDT implements Serializable { 
    private Integer idproduct; 
    private String productname; 
…  

Figure 4-4: Java class ProductUDT 

 

Table 4-2: ProductUDT POJO class 

Class: ProductUDT 

Attribute Use and Definition 

idproduct Product identifier (unique values) 

productname Product name (unique names) 

 

The Order class is a more complete and representative state of a transaction of the grocery 

e-commerce (Figure 4-5). It has multiple attributes that are specified in greater detail in Table 

4-3. It is important to mention that this class contains a list of ProductUDT (see previous POJO 

class). This class is the transaction/order that goes to the Stream Processing Framework since 

transformations are applied to this specific Order POJO class (cf. section 4.5) 

 

public class Order implements Serializable { 
    private UUID uuid; 
    private Integer idOrder; 
    private String items; 
    private Date timestamp; 
    private List<ProductUDT> products; 
    private String countryOfOrigin; 
…  

Figure 4-5: Java class Order 
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Table 4-3: Order POJO class 

Class: Order 

Attribute Use and Definition 

Uuid Universally Unique Identifier (UUID) 

idOrder Order identifier 

Items String containing items by their id product (e.g. 1,3,6,18,56,…) 

Timestamp Date when the Order has been purchased 

Products Product information coming from the database 

countryOfOrigin Reflects to the country where the Order has been purchased 

 

4.4 Messaging System 

For the Messaging System component, Apache Kafka has been used as the main technology 

(Figure 4-6). Kafka’s approach is based on a producer/consumer architecture as mentioned in 

Figure 4-7 and its ecosystem works under the docker name streamingpipeline_kafkaBroker0_1 

(Figure 4-2). 

 

 

Figure 4-6: Messaging System component 

 

Beside Apache Kafka, Apache Zookeeper also contributes to this component by controlling 

scalability and availability, running under the docker name streamingpipeline_zookeeper_1 

(Figure 4-2). 

Figure 4-7 represents the architecture the Messaging System offers. On the left side, the 

previous component, Data Collector publishes (or sends) the data to the Kafka broker, which 

forwards it to the created topic. As soon as the data comes in, the other service, Zookeeper 

container, provides the required scalability and availability so that the data is not run over. The 

broker subsequently waits for the consumer to subscribe to its topic so that it can read the data. 

In this case, Apache Spark is responsible for consuming the data and proceeding to the 

transformations upon the data, called ETL process. 
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Figure 4-7: Producer/Consumer within docker containers 

 

4.5 Stream Processing Framework 

In the market, there is a variety of existing stream processing frameworks, such as Apache 

Flink, Apache Samza, Apache Storm, and Apache Spark just to name a few [31]. For this 

specific project, Apache Spark was the selected framework. Despite all the other mentioned 

frameworks could integrate and work for this project or similar projects, Apache Spark was 

more complete by offering more libraries and modules, which resulted in its selection. The 

content of Table 4-4 [31] , which provides a comparison between processing frameworks based 

on six features, also supports the choice of Apache Spark. 

 

Table 4-4: Stream Processing Framework Comparison 
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Based on Table 4-4, Apache Flink and Apache Spark have both the best ranks guaranteeing 

fault-tolerance and good performances. By this, it is stated that these frameworks can retake 

their operation after failure (energy, network, node). They are also the best solutions for getting 

higher throughput and low latency. The chosen framework was in this context preferred by 

having a much wider community than Apache Flink, which also confirmed by the first assigned 

CSW supervisor. 

Apache Spark was the selected framework and therefore, it must be well understood before 

proceeding to the implementation of it. The component is responsible to receive inputs and 

deliver outputs, the generated data coming from the Messaging System and the stored procedure 

to the Data Storage and Web Interface respectively. 

Concerning the inputs, Apache Spark has a module called Spark Streaming (Table 4-4) which 

is the core system of this component. Its job is to be aware of incoming data, endlessly. This 

means that this specific component is connected (subscribed) to the Kafka broker, through the 

existing Kafka Integration API within Spark Streaming, and receives an alert, which technically 

is a ConsumerRecord object. These objects are key-value tuples where the identification and 

the generated data from the Data Collector are stored. Whenever there is an alert, a Resilient 

Distributed Dataset (RDD) is created. RDDs are known to be immutable data structures in 

Spark. Their life cycle aims to maintain the data as it came and represent a distributed collection 

of objects. In this case, these objects inherit from the user-defined class Order (Figure 4-5). 

Whatever the change is, small or huge, on that RDD, a new RDD is always created. This means 

that the very first RDD has been copied to a brand new RDD and that both the old and new 

RDD are accessible whenever evoked. 

For instance, the example in Figure 4-8 demonstrates that each RDD that comes through the 

directKafkaStream object is mapped into a collection of type Order, making it the first 

RDD. After deciding to apply a UUID to that distributed collection, a second RDD is created, 

javaRDD and javaRDDUUID respectively. 

 

directKafkaStream.foreachRDD(rdd -> { 
    System.out.println("--- New RDD with " + rdd.partitions().size() + " 
partitions and " + rdd.count() + " records"); 
    JavaRDD<Order> javaRDD = rdd.map(ConsumerRecord::value); 
    JavaRDD<Order> javaRDDUUID = javaRDD.map(r->{ 
        r.setUuid(UUID.randomUUID()); 
        return r; 
    }); 

Figure 4-8: [Code] Apache Spark code with ETL process 

 

Now that every RDD has a distinct UUID, the biggest transformation is yet to come. Coming 

back to the Data Collector component, every incoming Order has a field called items. Its content 

is of type String, which means that this attribute contains a string composed by product 

identification numbers (that are stored in the postgresql database, cf Section 4.6). In order to 

know which identifier corresponds to the product name in the postgres database, the code 

section in Figure 4-9 splits every product identifier to a String array prod, where finally every 
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product is added to an empty dynamic array of ProductUDT. This means that 

javaRDDDetailedOrder is filled with the corresponding product name from the database. 

 

JavaRDD<Order> javaRDDDetailedOrder = javaRDDUUID.map(r->{ 
    String[] prod = r.getItems().split(","); 
    List<ProductUDT> prods = new ArrayList<>(); 
    for(String p:prod){ 
        int n = Integer.parseInt(p); 
        prods.add(new ProductUDT(n, products.get(n-1))); 
    } 
    r.setProducts(prods); 
    return r; 
}); 

 

Figure 4-9: [Code] Detailed Order on Apache Spark 

 

To store every processed and final RDD (javaRDDDetailedOrder), two actions are performed, 

namely indexing them to the Elasticsearch tool and saving them in two different tables in the 

Cassandra database: the detailed order table and the only-id order (javaRDDUUID) table 

(Figure 4-10). 

 

JavaEsSpark.saveToEs(javaRDDDetailedOrder, "all_ordertransactions"); 
 
//Detailed Orders 
CassandraJavaUtil.javaFunctions(javaRDDDetailedOrder) 
        .writerBuilder(keyspace, tableName, 
CassandraJavaUtil.mapToRow(Order.class, orderColumnNameMappings)) 
        .saveToCassandra(); 
 
//Just Orders with ids 
CassandraJavaUtil.javaFunctions(javaRDDUUID) 
        .writerBuilder(keyspace, tableNameIds, 
CassandraJavaUtil.mapToRow(Order.class, orderColumnNameMappings)) 
        .saveToCassandra(); 
javaRDDDetailedOrder.foreach(record -> System.out.println(record.toString())); 

 

Figure 4-10: [Code] Storing data from Apache Spark to Databases 

 

When accessing localhost:4040 through a web browser (e.g., Chrome), Apache Spark offers a 

graphical DAG (Directed Acyclic Graph) visualization (Figure 4-11) containing all the ETL 

processes, including the creation of the Kafka DirectStream object that consumes the incoming 

data, as well as the map transformations. In other words, the first blue rectangle in Figure 4-11 

is the creation of the directKafkaStream object (Figure 4-8) and the other three map 

transformations are done by running the code shown in Figure 4-8 and Figure 4-9. Once the 

transformations come to an end, the RDD containing the POJO class (Order) is stored to the 

Cassandra database and also to the Elasticsearch service (Figure 4-10). 
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Figure 4-11: Apache Spark DAG Visualization 

 

This concludes the process of the stream processing framework component by having read the 

incoming data, conducted an ETL process and stored the processed data to its final storage 

location. 

4.6 Analyzed Data Storage 

In a very generic perspective, this component stores all the data involved in the project. To 

separate the data which has been generated randomly based on the dataset from what is static 

throughout the project, both data types follow different paths, emphasizing Big Data and 

‘regular’ Data, respectively. This distinction is required since the amount of generated data is 

expected to be significantly higher than the amount of regular data that can be supported by a 

regular database. For the Big Data, the considered database is the NoSQL 13  Cassandra 

management system and for the regular database a PostgreSQL Database is considered. Using 

Apache Cassandra as a database (Figure 4-12) does not require the data to be normalized and 

therefore no relationships are needed between Cassandra tables. Of course, these advantages 

are not the only ones nor the single reason it was chosen for the project. As stated in the official 

website of Apache Cassandra, scalability, high availability and fault-tolerance are ensured [32]. 

 

 
13 Non-relational database 
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Figure 4-12: Cassandra database 

 

Regarding the relational database, the existing e-commerce products were retrieved from an 

existing data source (csv file format) which was illustrated in Figure 3-2. Since each row 

represents a transaction, there might be redundancy along the rows when it comes to the 

products. Hence, a python script was developed to eliminate any duplicate from file and only 

retain distinct products. Through this approach, it is possible to identify a pipeline, or ETL 

pipeline to be more precise. The script ingests the data (extract the data from the csv file), 

applies the needed transformation, which is removing any duplicate, and, finally, the output is 

sent over to the relational database. 

Products (Figure 4-13) is the main and only entity in the postgres database. It retains the 

productName, which is guaranteed by the ETL pipeline explained previously, and contains 

other basic information like a product description (productDescription) and a quantity for that 

product. Finally, all products are identified with a unique identifier (idProduct). 

 

 

Figure 4-13: PostgreSQL database 

 

4.7 Web Interface 

This component is visually the most appealing and the most revealing part of this project. It 

does not only present the insights of what has been ordered and purchased, but also contributes 

to the Data Analyst’s study field whose goal is to take the most out of these facts and numbers. 
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The aim of this component is to help Data Analyst’s to extract insights of any company by 

applying Data Analytic knowledge upon interesting and promising graphs such as bar, column, 

or pie charts. ELK stack, Elasticsearch, Logstash and Kibana contribute to this component by 

indexing incoming data, processing, and designing attractive dashboards over the user interface 

(UI). 

In fact, just Elasticsearch and Kibana (EK) are used in this project. Logstash did not appear to 

be revealing since its main generic objective is to simulate a pipeline that can ingest, transform, 

and output the processed data. This, of course, would not make any difference since our goal is 

to create a pipeline that can do all of this by using more powerful and scalable technologies, 

such as Apache Kafka and Apache Spark which promise a better, stable, scalable job [33]. 

Regarding Elasticsearch and Kibana, both tools were supported and run on the local machine, 

which also could have been run on official existing docker images [34] [35]. Once they are 

running, it is possible to access them through a web browser under localhost:5601. The 

Kibana app pops up and presents its interface with the graphs dashboard. 

One important aspect was to understand how Elasticsearch and Kibana work together. At first, 

the data that is sent to Elasticsearch is indexed and is stored based on documents. In other words, 

the index value represents the repository where 𝑛 documents are saved, which can be 

considered as single rows in the perspective of a regular database. This means every document 

is represented by the attributes that were generated by the Data Collector and, when sent to 

Elasticsearch, the mapping of data types is done automatically. 

Regarding Kibana, it offers many interactive charts that can be assigned appropriately to the 

data to be presented. In this case, Table 4-5 contains all the questions that can be used to build 

graphs on the Kibana tool. 

 

Table 4-5: Data Analytics Business Questions 

Questions 

What is the most bought product? 

Which country has purchased more? 

How many transactions were made in total? 

At what time are made more transactions? 

Average transactions per country? 

How many transactions per hour? 

 

4.8 Data Mining 

Data Mining is not directly related with in any of the components described in the previous 

sections. It is a side activity in the context of the project described in this report. Even though 

Apache Spark offers multiple Machine Learning (ML) libraries with a variety of algorithms, it 
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was decided by the CSW supervisor to use one of the earliest existing Data Mining algorithms, 

the Apriori algorithm [36]. 

Globally, Data Mining technics are applied to an existing dataset or to a data warehouse to 

detect any pattern. Within the grocery e-commerce case study, it focuses in analyzing the 

Cassandra database and detect possible patterns. Since this is all about e-commerce products, it 

totally makes sense to apply this algorithm and understand how each product can relate with 

other products. For instance, when purchasing a specific product, which other products can grab 

a user’s attention and possibly make part of the final shopping list just before checkout? The 

idea is to find that pattern and then, help the ‘company’ to get some advantages, such as business 

opportunities. For instance, applying a discount on a product (chips) when knowing that if 

another product (beer) is bought, then the first product has more probability to be bought 

(confidence) with the second product, meaning that this could lead to a positive profit. 

This algorithm is set with 4 heuristics, namely: Support, Confidence, Lift, and Conviction. Each 

one contributes to a final prediction and certain confidence about a product that has been 

purchased and/or is related to. The results of this algorithm are stored in the Apriori table inside 

the Cassandra database (Figure 4-12). Table 4-6 describes the four heuristic. 

 

Table 4-6: Heuristics of the Apriori algorithm [37] 

Heuristic Interval Description  Formula 

Support [0, 1] Number of times that product X 

occurs in transactions 

𝑆{𝑋} 

Confidence [0, 1] Probability that Y is purchased 

given X was purchased 
𝐶{𝑋 → 𝑌} =

𝑆{𝑋 →  𝑌}

𝑆{𝑋}
 

Lift [0, +∞] Likelihood of Y being 

purchased when X is 

purchased, while considering 

the popularity of Y 

𝑙𝑖𝑓𝑡{𝑋 → 𝑌} =  
𝑆{𝑋 → 𝑌}

(𝑆{𝑋}  ∗  𝑆{𝑌})
 

Conviction [0, +∞] Ratio between X and Y, being 

both independent 
𝑐𝑜𝑛𝑣{𝑋 → 𝑌} =  

(1 − 𝑆{𝑋})

(1 − 𝐶{𝑋 → 𝑌})
 

 

4.9 REST API 

A REST API (Representational State Transfer Application Programming Interface) is an 

architectural style for an API to communicate under http requests with other applications [38]. 

The retrieved data over the requests can be achieved by using commands such as GET, POST, 

PUT and DELETE. For this specific use case, the API we developed has a single URI (Uniform 

Resource Identifier) that is related to section 4.8 (Data Mining) and implements the Apriori 

algorithm. The purpose of this feature complements this use case by stating and detecting 

frequent item set patterns and therefore giving insight about the business. 
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This feature is built using the Python programming language within the PyCharm IDE. For the 

creation of the web server gateway interface, Flask framework has been used. The API is 

prepared to trigger off an action when receiving a POST http request. The requests can be a list 

of one or more products and the body of the response, in JSON (JavaScript Object Notation) 

format, contains a complete list with other products that are related to the sent list based on the 

Apriori algorithm. For instance, using the web e-commerce example, this would give the 

customer other related products that could also be purchased just before checkout. 

The prototype of the POST method follows as an example in Figure 4-14 and is ready to trigger 

off when receiving such a http request. The product list, as previously mentioned, is identified 

as productList and consists of one or more product ids (type: integer). For instance, in case of 

having the product id 25 (e.g., beer) in the productList list and if the method is called, the result 

which can be obtained are products that have quite good relationship with product number 25. 

Maybe, hungry programmers might consider chips as a good deal and reconsider buying it just 

before checkout. 

 

 

Figure 4-14: REST API for the Apriori algorithm 
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5 Results and Test Cases 

During the time allocated to the internship no unit tests or integration tests for the components 

were performed due to time limitation. Therefore, this chapter only presents some results 

regarding the developed Kibana graphs as well as a demonstration on how the Apriori algorithm 

behaves exposing some test cases. In this phase, the real-time data analytic platform is totally 

built by all necessary components and is therefore ready to be executed. The Data Collector 

starts to generate random data based on the existing dataset, that are further analyzed and 

transformed to build detailed orders using the specified POJO class Order (Figure 4-5). This 

said, the graphs contain these generated data, and these are displayed in the Kibana dashboard. 

Kibana provides a range of graphs and these are created by drag and drop. This setup does not 

require any programming skill, just a correct configuration is needed, since the data from 

Elasticsearch must be indexed correctly to the created dashboard. 

5.1 Kibana Graphs 

Kibana tool is responsible to automatically update the dashboard and all the graphs that are 

inside the dashboard. While the Data Collector generates random data repeatedly, like an 

endless circle, other components do their work, inclusive updating the data on the Elasticsearch 

so that Kibana can update the data on the graphs automatically. These plots are represented by 

different figures, starting from Figure 5-1 to Figure 5-5, and each figure does represent a 

question that can be found in Table 4-5. 

Figure 5-1 presents an overview counter with the number of transactions. 

 

 

Figure 5-1: Number of transactions counter 

 

Figure 5-2 is a donut chart in which the countries regarding the transactions are displayed. A 

country that does not figure in the top 10 transactions is stored in the ‘Other’ category. When 

hovering over a specific country on the graph, it is possible to get more details, such as the exact 

number of transactions per country. 
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Figure 5-2: Average of Transactions per Country donut chart 

 

Figure 5-3 is tabular chart where the representation follows the same path as the previous figure 

(Figure 5-2). 

 

Figure 5-3: Number of transactions per country plot 

 

Figure 5-4 displays the 10 most bought products regarding all the transactions. 



5 Results and Test Cases 

 

37 

 

Figure 5-4: Top 10 most bought product plot 

 

Figure 5-5 is a line plot that intends to give a feedback covering the transactions on a per hour 

base. This time range is about a day long and is divided into periods of exactly one hour. 

 

 

Figure 5-5: Number of transactions per hour line plot 
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5.2 Apriori test results 

As already mentioned, the Apriori algorithm was implemented as a REST API (Figure 4-14). 

Figure 5-6 presents an example of the single URI of the developed REST API being accessed 

throw a POST http method. It specifies the purchased product number 49 in the URI parameter 

(Frozen fish, which is the most bought item [Figure 5-4]). The body of the http response 

message, in JSON format, is presented in Figure 5-7 and contains the names and respective 

identifiers of the products that figure the most when buying product number 49. It retrieves the 

item with the highest interest/relevance first. In this case, grapes, chewing gum and 

fruit/vegetable juice are the three most requested items when buying frozen fish, according to 

the Apriori algorithm. Despite this being an example within this project’s use case, a pattern is 

here identified and is a Data Analyst’s job to get more insights to the company by producing 

more of these results. 

 

 

Figure 5-6: REST API call 

 

 

 

Figure 5-7: Result of the POST verb on the URI /main/products  
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6 Conclusions and Future Research directions 

This section aims at drawing some conclusions about the work described in this document and 

discusses directions for future research. 

6.1 Conclusions 

The constant technological evolution and the increasing amount of Data on the web tend to 

bring changes to existing real-time data analytic platforms. Data science is therefore in constant 

change. With the aim to continue delivering good performance levels and/or to maintain the 

already existing quality of service of the companies using these platforms, the project described 

in this report intended to discuss about two major existing Big Data architectures, Lambda and 

Kappa, and perceive if they are generic14 enough solutions suitable to support real-time data 

analytic platforms.   

The literature review, the first task performed, allowed to dive deeper to the existing problem 

and to study topics that could be helpful to achieve the purpose of the research goals. It also 

established the state of the art and comparison of Big Data solutions that effectively support 

real-time data analytics platforms, namely Lambda and Kappa. Then, two real business cases 

were presented to illustrate the use of Lambda and Kappa in a streaming service (Netflix) and 

in the telecommunication industry, respectively, and draw some conclusions. Finally, an 

implementation of a real-time data analytic platform based on the Kappa architecture has been 

achieved by using a grocery e-commerce use case which was further explored using the Apriori 

algorithm to discover frequent item sets pattern. 

The main theoretical contribution of this work is a detailed description, analysis, and 

comparison of two Big Data architectures, Lambda and Kappa, for real-time data analytics. The 

features, strengths, and weaknesses of both were clearly explained, as well as real business 

cases presented. 

The practical contributions consisted in following the Kappa architecture to implement a 

straightforward processing pipeline, with all the essential components implemented, to support 

data analytics for an e-commerce grocery use case. A large number of tools and frameworks, 

such as Apache Kafka and Apache Spark, were used to this end. Most of them were new to the 

trainee. With this practical hands-on, the Kappa architecture was put on proof to understand if 

the concepts and key principles studied by the theoretical contribution were correctly applied. 

This includes the use of all components proposed by its generic architecture and the use of the 

studied technologies that figure in published articles. 

The main challenges of this project are summarized as follows. Its scope, i.e., Data Engineering, 

was not within the student’s study field and was different from any previous project at Critical 

 
14 Suitable to be applied to any business type 
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Software, the host institution. Therefore, the student had to learn and work with never-seen 

technologies, frameworks, tools, and programming languages, as well as relevant Big Data and 

other theoretical concepts. The global pandemic also affected the project itself. The first 

allocated CSW supervisor, Álvaro Menezes, had to be replaced mid second semester, which 

resulted in schedule adjustments. The software development methodology was also changed 

and working from home was not as effective as from CSW’s offices. Also, a difficult familiar 

situation led to a delay on the project, specifically on the documentation writing phase. 

Nevertheless, the goal of this project was successfully achieved and CSW has now one base 

framework for further developments. Consequently, CSW accomplished their goal that was to 

have this pipeline structure as generic as possible that ensures its implementation to any 

business type. 

6.2 Directions for future research 

To conclude this chapter, this section presents some possible approaches and directions for 

future developments and research. Therefore, the following list introduces some of these 

features. 

During the development phase, Apache Kafka offered a variety of APIs, including 

processing methods (Kafka DStreams). Back then, a stable version was not confirmed and thus 

made the decision fall on Apache Spark (Table 4-4) for the Stream Processing Framework 

component. Meanwhile, Apache Kafka could have extended its Kafka DStreams library making 

it possible to use Kafka as for the Messaging System component as well as for the Stream 

Processing Framework component. This would make Apache Spark’s redundant and not worth 

anymore to be implemented despite their enriched libraries (e.g., Machine Learning, Spark 

Streaming). As a future research it would be interesting to perceive if it is effective to apply 

Apache Kafka to the entire speed layer, including Stream Processing Framework and 

Messaging System (removing Apache Spark from the project). 

This project focused an e-commerce use case and the Apriori algorithm was 

implemented to detect a pattern on the products. However, using the machine learning library 

from Apache Spark and applying any other probability distribution (i.e., not uniform) on the 

input data might also be a reasonable approach to detect patterns. This approach might make 

this project even more realistic. 

Another future research direction can be identified in the serving layer. The way the 

data is displayed and visualized through the Kibana tool is not the best offer in the market. 

Instead, another possible visualization tool could be used, such as Tableau [39], Power BI [40], 

or others, replacing Elasticsearch and Kibana. Moreover, Kibana presents some difficulties on 

displaying the indexing documents on the plots as well as some limitations by not offering more 

customizations, such as add labels on the plots and grouping the documents, change color just 

to name a few. 
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version: '3.7' 
networks: 
  default: 
    name: kafkaNetwork 
    driver: bridge 
    ipam: 
      config: 
        - subnet: 172.19.0.0/16 
services: 
  zookeeper: 
    image: wurstmeister/zookeeper:latest 
    ports: 
      - "2181:2181" 
    environment: 
      ZOOKEEPER_SERVER_ID: 0 
      ZOOKEEPER_CLIENT_PORT: 2181 
  kafkaBroker0: 
    build: . 
    image: wurstmeister/kafka:latest 
    hostname: kafkaBroker0 
    depends_on: 
      - zookeeper 
    ports: 
      - "9092:9092" 
    expose: 
      - "9093" 
    environment: 
      KAFKA_BROKER_ID: 0 
      KAFKA_ADVERTISED_HOST_NAME: 172.19.0.3 
      KAFKA_LISTENERS: LISTENER_DOCKER_INTERNAL://kafkaBroker0:9093, 
LISTENER_DOCKER_EXTERNAL://0.0.0.0:9092 
      KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafkaBroker0:9093, 
LISTENER_DOCKER_EXTERNAL://localhost:9092 
      KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: 
LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT 
      KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL 
      KAFKA_CREATE_TOPICS: "topic1:4:1" 
      KAFKA_ZOOKEEPER_CONNECT: "zookeeper:2181" 
      KAFKA_LOG_DIRS: /kafka/kafka-logs-kafkaBroker0 
      KAFKA_DELETE_TOPIC_ENABLE: "true" 
    volumes: 
      - /var/run/docker.sock:/var/run/docker.sock 
  cassandraServer: 
    image: cassandra:latest 
    ports:  
      - 7199:7199 
      - 7000:7000 
      - 7001:7001 
      - 9042:9042 
      - 9160:9160 
    expose: 
      - "9042" 
    environment: 
      - "MAX_HEAP_SIZE=256M" 
      - "HEAP_NEWSIZE=128M" 
    volumes: 
      - cassandra:/var/lib/cassandra 
  postgresdb: 
    build: . 
    image: postgres:latest 
    environment: 
      POSTGRES_USER: "*****" 
      POSTGRES_PASSWORD: "*****" 
      POSTGRES_DB: "*****" 
    volumes: 
      - postgresdb_data:/var/lib/postgresql/data 
    ports: 
      - 5432:5432 
    networks: 
      - default 
volumes: 
  postgresdb_data: 
  cassandra: 
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