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In this paper, we investigate the relation between shielded base contraction postulates 
and credibility-limited (CL) base revision postulates. More precisely, we identify (i) the 
relation between the postulates satisfied by a shielded base contraction operator and the 
postulates satisfied by the CL base revision operator that is defined from it by means of the 
consistency-preserving Levi identity and (ii) the relation between the postulates satisfied 
by a CL base revision operator and the postulates satisfied by the shielded base contraction 
operator that is defined from it by means of the Harper identity. Furthermore, we show 
that the consistency-preserving Levi identity and the Harper identity establish a one-to-
one correspondence between the twenty classes of shielded base contractions presented in 
[21] and the twenty classes of credibility-limited base revisions presented in [22].

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Alchourrón, Gärdenfors and Makinson proposed in [1] a belief change framework that is currently commonly designated 
by the AGM model. In that framework, which has acquired the status of the standard model in the belief change literature, 
each belief of an agent is represented by a sentence, and the belief state of an agent is represented by a logically closed set 
of (belief-representing) sentences. In the AGM model, three kinds of change operators for belief sets are considered, namely:

• Expansions, whose output is a belief set that (may be inconsistent) contains all the sentences of the original belief set 
and the (sentence representing the) new information.

• Contractions, whose output is a belief set that is a subset of the original one, which does not contain the sentence 
received as input but contains as many of the previous beliefs as possible.

• Revisions, whose output is, whenever possible, a consistent belief set that contains the new belief and as many of the 
previous beliefs as possible.
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The expansion (usually denoted by +) of a belief set by a sentence is a two-step procedure: first, the sentence is added 
to the belief set, and afterwards, the resulting set is closed by logical consequence. That is, given a belief set K, the outcome 
of the expansion of K by α, which is denoted by K + α, is the set Cn(K ∪ {α}). Contrary to expansions, the operators of 
contraction and revision are not defined in a unique way but are constrained by a set of postulates. As stated by Meyer [49, 
p. 18]: “The idea is that these are the rational choices to be made”.

The following postulates, which were presented in [1] (following [23,25]), are commonly known as basic Gärdenfors 
postulates for contraction or basic AGM postulates for contraction:

(÷1) K ÷ α = Cn(K ÷ α), whenever K is a belief set. (Closure)
(÷2) K ÷ α ⊆ K. (Inclusion)
(÷3) If α /∈ K, then K ⊆ K ÷ α. (Vacuity)
(÷4) If � α, then α /∈ K ÷ α. (Success)
(÷5) K ⊆ (K ÷ α) + α. (Recovery)
(÷6) If � α ↔ β , then K ÷ α = K ÷ β . (Extensionality)

The operators that satisfy postulates (÷1) to (÷6) are known as basic AGM contractions.
The following six postulates, which were presented in [26], are commonly known as basic AGM postulates for revision1:

(�1) K�α = Cn(K�α) (i.e., K�α is a belief set). (Closure)
(�2) α ∈ K�α. (Success)
(�3) K�α ⊆ K + α. (Inclusion)
(�4) If ¬α /∈ K, then K + α ⊆ K�α. (Vacuity)
(�5) If α is consistent, then K�α is consistent. (Consistency)
(�6) If � α ↔ β , then K�α = K�β . (Extensionality)

The operators that satisfy postulates (�1) to (�6) are known as basic AGM revisions.
The following identity (originally proposed in [45]) allows us to define a revision using a contraction:

Levi identity: K�α = (K ÷ ¬α) + α.

The following equality, which was originally presented in [42], defines a contraction using a revision2:

Harper identity: K ÷ α = (K�¬α) ∩ K.

The AGM model inspired many researchers to propose extensions and generalizations for it (for an overview, see [12]
and [13]), as is the case for the following:

(a) Models of belief base change: These are models in which the belief state of an agent is represented by a set of sentences 
that is not, except as a limiting case, closed under logical consequence. These sets have a fundamental property: they 
allow us to distinguish between explicit beliefs, which are elements of the belief base and derived beliefs, i.e., elements 
that are logical consequences of the belief base but that are not explicitly present in the belief base. Belief bases are 
more suitable than belief sets for representing the belief states of real cognitive (non-omniscient) agents. If we intend 
to model the way humans (or any other rational agents) reason, the use of belief sets to model epistemic states is 
inadequate. As Rott pointed out in [53], AGM theory is unrealistic in its assumption that epistemic agents are “ideally 
competent regarding matters of logic. They should accept all the consequences of the beliefs they hold (that is, their set 
of beliefs should be logically closed), and they should rigorously see to it that their beliefs are consistent”. In the AGM 
framework, agents have unlimited memory and inference ability, which is an unrealistic feature of human reasoning. 
Furthermore, as Gärdenfors and Rott pointed out, “when we perform revisions or contractions, it seems that we never 
do it to the belief set itself (. . . ) but rather on some typically finite base for the belief set” [27]. Additionally, because 
belief sets are often too large, eventually even infinite, they are not adequate for computational implementations of 
belief change models. The use of belief bases has been largely studied in the literature ([8,16,30,33,36,52]).

(b) Models of non-prioritized belief change: These are models in which the belief change operators considered do not give 
priority to the new information received (contrary to what is the case regarding the AGM model, which fulfills the 
principle of primacy of new information). For example, the output of a non-prioritized revision may not contain the 
new belief that has motivated that revision. Analogously, the outcome of a non-prioritized contraction may still contain 
the sentence by which the contraction is made. For an overview, see [13,38].

Regarding the kind of operators mentioned in (b), we highlight the following:

1 These postulates were previously presented in [1] but with slightly different formulations.
2 As stated in [23,25], if an operator ÷ satisfies the contraction postulates (÷2) to (÷4) and (÷6), then the operator � defined from ÷ using the Levi 

identity is a basic AGM revision operator. Conversely, if � satisfies the revision postulates (�1), (�2), (�4), (�5) and (�6), then the operator ÷ defined from 
� using the Harper identity satisfies the basic AGM contraction postulates.
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• The shielded contraction operators presented in [11]. These operators are defined using an AGM contraction and a set 
of sentences, designated by the set of retractable sentences and denoted by R . If a sentence α belongs to R , then the 
outcome of the shielded contraction by it coincides with the outcome of the associated AGM contraction; otherwise, 
the original belief set is left unchanged.

• The credibility-limited revision operators (CL revisions for short) introduced by Hansson et al. [40]. Roughly speaking, a 
CL revision has the following behavior: If a sentence α is credible, then it is added to the set of beliefs of the agent 
as a consequence of the revision process; otherwise, no change is made to the belief set. Hence, a CL revision operator 
is induced by a (standard) revision operator and a set of sentences —which contains the sentences that are considered 
credible, called the set of credible sentences and represented by C . If α ∈ C , then the outcome of the CL revision by it 
coincides with the outcome of the associated AGM revision; otherwise, the original belief set is left unchanged.3

CL revisions and shielded contractions have been extensively studied in the artificial intelligence literature [40,15,5,9,
6,57,20,44,50]. In [11], Fermé and Hansson established relationships between shielded contractions and credibility-limited 
revisions. An operator of revision defined using the Levi identity always satisfies success, but CL revisions do not satisfy this 
postulate in general. For this reason, in [11], the following variant of the Levi identity was proposed for defining an operator 
(of CL revision) 	 using an operator (of shielded contraction) − ◦−:

K 	α =
{

(K −◦− ¬α) + α if K −◦− ¬α � ¬α
K otherwise

(Consistency-preserving Levi identity)

Currently, an immense amount of information is generated every second. Rational agents, such as governments and 
companies, must be able to process information to make better decisions. New information is not always reliable. Therefore, 
a rational agent should not always accept this new information and should have a mechanism to decide which information 
should be accepted and which should be rejected. At this point, we note that non-prioritized belied change operators, 
as is the case of shielded base contractions and CL revisions, are useful in the field of artificial intelligence, essentially 
because they are adequate for modeling the behavior of an agent when confronted with some new information that is 
inconsistent with his current belief state. We emphasize that by means of this kind of operator, it is possible to obtain 
more realistic models than those that can be obtained using (only) prioritized belief change operators (as is the case of 
AGM contractions and revisions), since it is naturally expectable that a rational agent will not always be willing to give up 
any of its present beliefs or to incorporate a new belief (which is inconsistent with its present belief state) even if some 
external new information compels it to do so. Some concrete settings in which it may be relevant to implement these kinds 
of operators are, for example, the following: databases (where some integrity constraints are not liable to be retracted); 
normative systems (in which some norms may not be deleted from the system); and project management (when some 
restrictions such as budget and schedule cannot be modified when some contingency plan is implemented).

Example 1.1. When working with databases, it is important to detect inconsistent and non-admissible data and prevent 
them from being incorporated into the system database. To this end, suitable integrity constraints must be defined. These 
are used by the system’s data validation mechanisms to prevent incorrect data from being entered. Integrity constraints are 
logical conditions that must be satisfied by the input data to be incorporated into the system database. When new input 
data are received, the database verifies if the integrity constraints are satisfied. If not, the input information is not accepted. 
In this context, the integrity constraints can be seen as the conditions that define the set of credible sentences. From a 
different perspective, we can also think of the integrity constraints as “beliefs” that cannot be given up, i.e., as beliefs that 
do not belong to the set of retractable sentences.

Example 1.2. Sensors allow the collection of data from the surrounding environment, allowing machines to extract useful 
information to perform appropriate actions. However, the corruption of a sensor can lead to unpleasant consequences since 
the actions to be taken largely depend on the collected data ([43]). For example, in an industrial environment, a damaged 
sensor can affect the quality of products, and in a self-driven vehicle, it may result in the loss of human lives. For this 
reason, it is important to detect faulty sensors as soon as possible. Historical data provided by reliable sensors can be 
used to define a set of constraints ([54]). Such constraints can also be obtained by means of methods based on machine 
learning algorithms that are used to detect faulty sensors after data collection ([43]). If the constraints are violated by the 
information provided by a sensor, then that sensor may be considered defective, and the information provided by it should 
be treated as unreliable. Otherwise, the information can be considered credible.

Several operators that are contained (simultaneously) in both classes of operators mentioned in items (a) and (b) above 
have been presented in [15], [21] and [22]. These operators are defined for belief bases and (in general) do not satisfy 
the postulate of success. In [21], twenty classes of shielded base contraction operators were presented and axiomatically 
characterized, and in [22], a similar study regarding CL base revision operators was performed. In this paper, we study the 
interrelation among shielded base contraction postulates and CL base revision postulates in the two following ways:

3 CL revision can be seen as a modified version of Makinson’s Screened revision ([48]).
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1. Given a shielded base contraction operator ∼ and the CL base revision operator �∼ that is defined from ∼ by means 
(of an adaptation to the belief base context) of the consistency-preserving Harper identity, we identify which postulates 
of CL revision are induced in �∼ by each of the postulates of shielded contraction that are (assumed to be) satisfied by 
∼.

2. Given a CL base revision operator � and the shielded base contraction operator ∼� that is defined from � using the 
Levi identity, we identify which postulates of shielded contraction are induced in ∼� by each of the postulates of CL 
revision that are (assumed to be) satisfied by �.

Furthermore, we show that there is a one-to-one correspondence between the classes of shielded base contractions pre-
sented in [21] and the classes of credibility-limited base revisions presented in [22]. More precisely, we show that:

(i) Each one of the classes of shielded contractions considered in [21] is formed by the shielded contraction operators that 
can be obtained, by means of the Harper identity, from the CL revision operators that constitute one and only one of 
the classes of CL revisions introduced in [22].

(ii) Each one of the classes of CL revisions considered in [22] is formed by the CL revision operators that can be obtained, 
by means (of an adaptation to the belief base context) of the consistency-preserving Levi identity, from the shielded 
contraction operators that constitute one and only one of the classes of shielded contractions introduced in [21].

The rest of the paper is organized as follows: In Section 2, we introduce the notations and recall the main background 
concepts that will be needed throughout this article. In Section 3, we present a formal definition of shielded base contraction 
and recall, from [21], the axiomatic characterizations of several classes of such operators. In Section 4, we present the 
definition of credibility-limited base revision and recall, from [22], the axiomatic characterizations for several classes of such 
operators. In Section 5, we study the relations between the properties of a set of retractable sentences and the properties 
of a set of credible sentences, and we analyze the interrelations among (all) the classes of shielded contractions considered 
in Section 3, and those of CL revisions considered in Section 4, using the Harper identity and the consistency-preserving 
Levi identity (adapted to the belief base context). In Section 6, we briefly mention several operators of non-prioritized belief 
change that have been presented in the literature. In Section 7, we summarize the main contributions of the paper and 
briefly discuss their relevance. In Appendix A, we provide proofs for all the original results presented.

2. Background

2.1. Formal preliminaries

We will assume a propositional language L that contains the usual truth functional connectives: ¬ (negation), ∧ (con-
junction), ∨ (disjunction), → (implication) and ↔ (equivalence). We shall make use of a consequence operator Cn that 
takes sets of sentences to sets of sentences and that satisfies the standard Tarskian properties ([55]), namely: (i) A ⊆ Cn(A)

(inclusion); (ii) if A ⊆ B , then Cn(A) ⊆ Cn(B) (monotony) and (iii) Cn(A) = Cn(Cn(A)) (iteration). Furthermore, we assume 
that Cn satisfies the following three properties: (iv) if α can be derived from A by classical truth-functional logic, then 
α ∈ Cn(A) (supraclassicality); (v) β ∈ Cn(A ∪ {α}) if and only if α → β ∈ Cn(A) (deduction); and (vi) if α ∈ Cn(A), then 
α ∈ Cn(A′) for some finite subset A′ of A (compactness). We will sometimes use Cn(α) for Cn({α}), A � α for α ∈ Cn(A), 
� α for α ∈ Cn(∅), A � α for α /∈ Cn(A), � α for α /∈ Cn(∅). The letters α, β, . . . (except for γ and σ ) will be used for 
denoting sentences of L. A, B, . . . shall denote sets of sentences of L. K is reserved to represent a set of sentences that is 
closed under logical consequence (i.e., K = Cn(K)) — such a set is called a belief set or theory.

2.2. Belief base change postulates

In this section, we present several postulates for belief base change (both for revision and for contraction).

2.2.1. Base contraction postulates
We start by recalling the definition of a contraction operator in terms of postulates presented in [39].

Definition 2.1 ([39]). An operator ÷ for a set A is an operator of contraction if and only if ÷ satisfies the following postu-
lates:

(Success) ([25]) If � α, then A ÷ α � α.
(Inclusion) ([25]) A ÷ α ⊆ A.

We now recall some well-known base contraction postulates:

(Failure) ([17]) If � α, then A ÷ α = A.
(Vacuity) ([24]) If A � α, then A ⊆ A ÷ α.
4
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(Relative Closure) ([35]) A ∩ Cn(A ÷ α) ⊆ A ÷ α.
(Extensionality) ([25]) If � α ↔ β , then A ÷ α = A ÷ β .
(Uniformity) ([32]) If it holds for all subsets A′ of A that α ∈ Cn(A′) if and only if β ∈ Cn(A′) then A ÷ α = A ÷ β .
(Relevance) ([29,32]) If β ∈ A and β /∈ A ÷ α, then there is a set A′ such that A ÷ α ⊆ A′ ⊆ A and A′

� α but A′ ∪ {β} � α.
(Core-retainment) ([31]) If β ∈ A and β /∈ A ÷ α then there is some set A′ such that A′ ⊆ A and A′

� α but A′ ∪ {β} � α.
(Disjunctive Elimination) ([14]) If β ∈ A and β /∈ A ÷ α then A ÷ α � α ∨ β .

The following observation highlights some relations among the postulates presented above.

Observation 2.2 ([39]). Let A be a belief base and ÷ be an operator on A. Then:

(a) If ÷ satisfies relevance, then it satisfies relative closure and core-retainment.
(b) If ÷ satisfies inclusion and core-retainment, then it satisfies failure and vacuity.
(c) If ÷ satisfies uniformity, then it satisfies extensionality.

2.2.2. Base revision postulates
The following definition establishes the minimal set of postulates that a revision operator must satisfy.

Definition 2.3 ([22]). An operator ∗ for a set A is an operator of revision if and only if ∗ satisfies the following postulates:

(Success) ([25]) α ∈ A ∗ α.
(Inclusion) ([25]) A ∗ α ⊆ A ∪ {α}.
(Consistency) ([1]) If α �⊥, then A ∗ α �⊥.

We now recall other belief base revision postulates:

(Vacuity) ([25]) If A � ¬α, then A ∪ {α} ⊆ A ∗ α.
(Weak Relative Closure) ([20]) A ∩ Cn(A ∩ A ∗ α) ⊆ A ∗ α.
(Weak Extensionality) ([20]) If � α ↔ β , then A ∩ A ∗ α = A ∩ A ∗ β .
(Uniformity) ([34]) If for all subsets A′ ⊆ A, A′ ∪ {α} �⊥ if and only if A′ ∪ {β} �⊥, then A ∩ (A ∗ α) = A ∩ (A ∗ β).
(Relevance) ([34]) If β ∈ A and β /∈ A ∗ α, then there is some A′ such that A ∗ α ⊆ A′ ⊆ A ∪ {α}, A′

�⊥ but A′ ∪ {β} �⊥.
(Core-retainment) ([56]) If β ∈ A and β /∈ A ∗ α, then there is some A′ ⊆ A such that A′

� ¬α and A′ ∪ {β} � ¬α.
(Disjunctive Elimination) ([20]) If β ∈ A and β /∈ A ∗ α, then A ∗ α � ¬α ∨ β .

2.3. Constructive models of base change operators

In this section, we present some explicit definitions of base change functions. As for belief sets, it is possible to define 
revisions in terms of contractions using the following adaptation of the Levi identity to the belief base context:

A ∗ α = (A ÷ ¬α) ∪ {α}. (Levi identity)

In what follows, we present the explicit definitions of some base contraction and some base revision functions.

2.3.1. Partial meet contraction and revisions
The central concept underlying the definition of partial meet contractions is that of the remainder set. The elements of 

this set are the maximal subsets (of the considered set) that fail to imply a given sentence. Formally:

Definition 2.4 ([2]). Let A be a belief base and α be a sentence. The set A⊥α (A remainder α) is the set of sets such that 
B ∈ A⊥α if and only if:

1. B ⊆ A.
2. B � α.
3. There is no set B ′ such that B ⊂ B ′ ⊆ A and B ′

� α.

The partial meet contractions are obtained by intersecting some elements of the (associated) remainder set. The choice of 
those elements is performed by means of a selection function. A selection function associates to each non-empty remainder 
set one of its non-empty subsets and to the empty (remainder) set the singleton set {A}.

Definition 2.5 ([1]). Let A be a belief base. A selection function for A is a function γ such that for all sentences α:

1. If A⊥α is non-empty, then γ (A⊥α) is a non-empty subset of A⊥α.
5
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2. If A⊥α is empty, then γ (A⊥α) = {A}.

A partial meet contraction is obtained by intersecting the elements chosen by a selection function.

Definition 2.6 ([1,30]). The partial meet contraction operator on A based on a selection function γ is the operator ÷γ such 
that for all sentences α:

A ÷γ α = ∩γ (A⊥α).

An operator ÷ for a set A is a partial meet contraction if and only if there is a selection function γ for A such that 
A ÷ α = A ÷γ α for all sentences α.

Partial meet revisions are the revision functions that can be obtained from partial meet contractions using the Levi 
Identity.

2.3.2. Kernel contractions and revisions
A kernel contraction of a set A by a sentence α consists essentially of the removal of some sentences selected among the 

sentences of A that contribute effectively to imply α. Formally:

Definition 2.7 ([35]). Let A be a set in L and α be a sentence. Then, A⊥⊥α is the set such that B ∈ A⊥⊥α if and only if:

1. B ⊆ A.
2. B � α.
3. If B ′ ⊂ B then B ′

� α.

A⊥⊥α is called the kernel set of A with respect to α, and its elements are the α-kernels of A.

To contract a belief α from a set A, one must give up at least one sentence of each α-kernel; otherwise, α would 
continue being implied by A. The so-called incision functions select the beliefs to be discarded.

Definition 2.8 ([35]). Let A be a set of sentences. Let A⊥⊥α be the kernel set of A with respect to α. An incision function σ
for A is a function such that for all sentences α:

1. σ(A⊥⊥α) ⊆ ⋃
(A⊥⊥α).

2. If ∅ �= B ∈ A⊥⊥α, then B ∩ σ(A⊥⊥α) �= ∅.

Definition 2.9 ([35]). Let A be a set of sentences and σ an incision function for A. The kernel contraction on A based on σ
is the operator ÷σ defined, for any sentence α, by:

A÷σ α = A \ σ(A⊥⊥α).

An operator ÷ for a set A is a kernel contraction if and only if there is an incision function σ for A such that A ÷ α =
A÷σ α for all sentences α.

In the following definition, we recall a more conservative type of kernel contraction, the so-called smooth kernel contrac-
tion. Sometimes, when contracting a set by a kernel contraction, some beliefs are removed without reason. For example, if 
β ∈ A and β ∈ Cn(A ÷ α), then β should also be in A ÷ α (i.e., ÷ should satisfy relative closure). This holds if the incision 
function satisfies the condition expressed in the following definition.

Definition 2.10 ([35]). An incision function σ for a set A is smooth if and only if it holds for all subsets A′ of A that if 
A′ � β and β ∈ σ(A⊥⊥α) then A′ ∩ σ(A⊥⊥α) �= ∅.
A kernel contraction is smooth if and only if it is based on a smooth incision function.

Kernel and smooth kernel base revisions are the revision functions that can be obtained from their namesake base 
contraction operators using the Levi identity.

2.3.3. Basic AGM-generated base contractions and revisions
In what follows, we recall the definitions of other base change operators, the basic AGM-generated base contractions and 

the basic AGM-generated base revisions. These are operators defined in terms of basic AGM contractions and basic AGM 
revisions (for belief sets), respectively.
6
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Definition 2.11 ([14]). Let A be a belief base. An operator ÷ for A is a basic AGM-generated base contraction if and only if, 
for all α ∈L:

A ÷ α = (Cn(A) − α) ∩ A

where − is a basic AGM contraction (i.e., an operator that satisfies the basic AGM postulates for contraction) on Cn(A).4

Definition 2.12 ([22]). Let A be a belief base. An operator ∗ for A is a basic AGM-generated base revision if and only if, for 
all α ∈L:

A ∗ α = (Cn(A) � α) ∩ A

where � is a basic AGM revision (i.e., an operator that satisfies the basic AGM postulates for revision) on Cn(A).

3. Shielded base contraction operators

Shielded base contraction operators are defined by means of a base contraction operator and a set of sentences R
satisfying certain properties, named the set of retractable sentences, which models the set of sentences that the agent is 
willing to give up (if needed). Informally speaking, a shielded base contraction is a function that receives (just as a standard
contraction does) a set (of beliefs) and a sentence and returns:

• The received set (unchanged), if the received sentence is not included in R;
• The output produced by the associated base contraction if the received sentence is in R .

Definition 3.1 ([11,15,21]). Let ÷ be a contraction operator on a belief base A (i.e., an operator that satisfies success and 
inclusion). Let R be a set of sentences (the associated set of retractable sentences). Then, ∼ is the shielded base contraction 
induced by ÷ and R if and only if:

A ∼ α =
{

A ÷ α if α ∈ R
A otherwise

When considering different constraints on the structure of R (the set of retractable sentences) and/or different types of 
contraction operators, we obtain different kinds of shielded contraction operators.

3.1. The set of retractable sentences

The following properties were proposed for sets of retractable sentences (the first three properties were proposed in [15]
and the remaining ones in [21]):

Non-retractability Propagation: If α /∈ R , then Cn(α) ∩ R = ∅.
Conjunctive Completeness: If α ∧ β ∈ R , then α ∈ R or β ∈ R .
Non-retractability of Tautology: R ∩ Cn(∅) = ∅.
Retractability of Logical Equivalents: If � α ↔ β , then α ∈ R if and only if β ∈ R .
Uniform Retractability: If it holds for all subsets A′ of A that α ∈ Cn(A′) if and only if β ∈ Cn(A′), then α ∈ R if and only 
if β ∈ R .
Non-retractability Upper Bounding: L\R ⊆ Cn(A).

Non-retractability propagation says that if a sentence α is irretractable, then all its logical consequences are also irre-
tractable. This is a natural property to require from the set R , since the consequences of irretractable beliefs of an agent 
are also irretractable for that agent. Conjunctive completeness states that the conjunction of irretractable sentences is also an 
irretractable sentence. In fact, to remove a conjunction, we must remove at least one of its conjuncts. Non-retractability of 
tautology states that tautologies are irretractable sentences. Retractability of logical equivalents states that two logical equiva-
lent sentences are both retractable or both irretractable. Uniform retractability says that if two sentences α and β are implied 
by exactly the same subsets of A, then they are both retractable or both irretractable. Non-retractability upper bounding states 
that all irretractable sentences are deducible from the set to be contracted.5

Additionally, in [21], the following condition, which relates the set of retractable sentences R and the contraction function 
÷ that induce a certain shielded contraction, was proposed:

4 In [14] these operators were designated by basic related-AGM base contractions.
5 We note that more rigorously the expression “with respect to A” should be added to the designation of the last two properties presented (namely, 

uniform retractability and non-retractability upper bounding), since these relate R and A. However, we will use the shorter designation of these properties 
since there is no risk of ambiguity whenever these properties are mentioned along this paper.
7
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If α /∈ R and β ∈ R , then A ÷ β � α. (R - ÷)

The condition (R - ÷) informally illustrates the idea that irretractable sentences should not be removed from the belief 
base when a shielded contraction (by any sentence) is performed. Then, if a set (of retractable sentences) R and a contraction 
÷ are intended to be used to define a shielded contraction, it should hold that if a sentence is not in R (i.e., is considered 
irretractable), then it should not be removed when using ÷ to contract by a sentence included in R (i.e., by a sentence that 
is considered retractable).6

3.2. Postulates for shielded base contractions

The following postulates (that consist of an adaptation to the context of belief bases of the postulates proposed in [11]
for shielded contractions on belief sets) were proposed to characterize shielded base contractions.

(Relative success) ([51]) A ∼ α = A or α /∈ Cn(A ∼ α).
(Persistence) ([11]) If β ∈ Cn(A ∼ β), then β ∈ Cn(A ∼ α).
(Success propagation) ([11]) If A ∼ β � β and � β → α, then A ∼ α � α.
(Conjunctive constancy) ([11]) If A ∼ α = A ∼ β = A, then A ∼ (α ∧ β) = A.

Relative success states that when contracting by any given sentence, either that sentence is effectively removed or the 
belief base is left unchanged. Persistence intuitively states that if a belief is removed when contracting a belief base A by 
some sentence, then it is also removed when A is contracted by that belief itself. Success propagation states that if a certain 
sentence is not removed when trying to contract a belief base by it, then the same thing happens regarding every logical 
consequence of that sentence. Conjunctive constancy states that if the contraction by a given conjunction causes a change, 
then the same thing happens when contracting by at least one of its conjuncts.

3.3. Representation theorems of some classes of shielded base contractions

We now recall axiomatic characterizations for several classes of shielded contractions. More precisely, we consider the 
shielded contractions on belief bases induced by partial meet contractions, (smooth) kernel contractions and basic AGM-
generated base contractions, and additionally, we take into account different sets of properties regarding the associated set 
of retractable sentences R .

Observation 3.2 ([21]). Let A be a belief base and ∼ be an operator on A. Then:

∼ is an operator of 
shielded contraction 
induced by a

and a set R ⊆ L that satisfies iff ∼ satisfies relative success, inclusion and Acronym

partial meet 
contraction operator 
÷

uniform retractability uniformity and relevance SPMC

uniform retractability and non-retractability 
propagation

uniformity, relevance and success propagation SP-SPMC

uniform retractability and conjunctive 
completeness

uniformity, relevance and conjunctive 
constancy

CC-SPMC

uniform retractability, non-retractability 
propagation and conj. completeness

uniformity, relevance, success propagation 
and conjunctive constancy

SP+CC-SPMC

condition (R - ÷) uniformity, relevance and persistence P-SPMC

kernel contraction 
operator ÷

uniform retractability uniformity and core-retainment SKC

uniform retractability and non-retractability 
propagation

uniformity, core-retainment and success 
propagation

SP-SKC

uniform retractability and conj. completeness uniformity, core-retainment and conj. 
constancy

CC-SKC

uniform retractability, non-retractability 
propagation and conjunctive completeness

uniformity, core-retainment, success 
propagation and conj. constancy

SP+CC-SKC

condition (R - ÷) uniformity, core-retainment and persistence P-SKC

6 We note that, rather than a property of R , condition (R - ÷) expresses a relation between the set R and a (standard) contraction function on a belief 
base A.
8
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∼ is an operator of 
shielded contraction 
induced by a

and a set R ⊆ L that satisfies iff ∼ satisfies relative success, inclusion and Acronym

smooth kernel 
contraction operator 
÷

uniform retractability uniformity, core-retainment and relative 
closure

SSKC

uniform retractability and non-retractability 
propagation

uniformity, core-retainment relative closure 
and success propagation

SP-SSKC

uniform retractability and conj. completeness uniformity, core-retainment, relative closure 
and conj. constancy

CC-SSKC

uniform retractability, non-retractability 
propagation and conjunctive completeness

uniformity, core-retainment, relative closure, 
success propagation and conj. constancy

SP+CC-SSKC

condition (R - ÷) uniformity, core-retainment relative closure 
and persistence

P-SSKC

basic AGM-generated 
base contraction 
operator ÷

retractability of logical equivalents vacuity, extensionality and disjunctive 
elimination

SbAGMC

non-retractability propagation vacuity, extensionality, disj. elimination and 
success propagation

SP-SbAGMC

retr. of logical equivalents and conj. 
completeness

vacuity, extensionality, disj. elimination and 
conj. constancy

CC-SbAGMC

non-retractability propagation and 
conjunctive completeness

vacuity, extens., disj. elimination, success prop. 
and conj. constancy

SP+CC-SbAGMC

condition (R - ÷) vacuity, extens., disj. elimination and 
persistence

P-SbAGMC

We finish this section by presenting examples of shielded contraction operators that belong to some of the classes 
mentioned in the above theorem but do not belong to the others.

Example 3.3. Let A = {p, p ∨ q, p → q} and Cn be purely truth-functional. It holds that A⊥⊥q = {{p, p → q}, {p ∨ q, p → q}}. 
Let R = L\Cn(p ∨ q) and ÷ be a kernel contraction based on an incision function σ such that for all sentences α ∈ R , it 
holds that σ(α) ⊆ R ,7 and, in particular, σ(q) = {p, p → q}. Let ∼ be the shielded contraction induced by ÷ and R . Since the 
set R satisfies conjunctive completeness, non-retractability propagation and uniform retractability, and ÷ and R satisfy condition 
(R - ÷) (see Lemma 1 in Appendix A), ∼ is an SP+CC-SKC and a P-SKC. On the other hand, A ∼ q = A ÷q = {p ∨q}, and from 
p ∈ A \ A ÷ q, it follows that ∼ does not satisfy relevance or disjunctive elimination. Thus, ∼ is not an SPMC or an SbAGMC.

4. Credibility-limited base revision operators

The basic idea underlying the definition of credibility-limited (CL) revision is a two-step procedure. The first step consists 
of the identification of credible sentences, i.e., the sentences that an agent is willing to incorporate when performing a 
revision. The second step consists of the following behavior:

- leave the revised set of beliefs unchanged when revising by a non-credible sentence; and
- work as a “standard” revision when revising by a credible sentence.

The following definition formalizes this concept:

Definition 4.1 ([15,22,40]). Let ∗ be a revision operator on a belief base A (i.e., an operator that satisfies success, inclusion 
and consistency). Let C be a set of sentences (the associated set of credible sentences). Then, � is a CL base revision induced 
by ∗ and C if and only if:

A � α =
{

A ∗ α if α ∈ C
A otherwise

.

When considering different restrictions on the structure of C (the set of credible sentences) and/or different kinds of 
revision operators, we obtain different types of CL base revision operators.

7 Note that if α ∈ R , then α /∈ Cn(p ∨ q). Then, any α-kernel of A that contains p ∨ q must contain at least one sentence of A \ Cn(p ∨ q). For this reason 
it is possible to define an incision function σ such that for all α ∈ R , σ(α) ∩ Cn(p ∨ q) = ∅.
9
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4.1. The set of credible sentences

In the CL model, the set of sentences that an agent is willing to accept when a revision is performed is called the set of 
credible sentences. This set will be denoted by C .8 In [40], some desirable properties for set C were presented.

Credibility of logical equivalents: If � α ↔ β , then α ∈ C if and only if β ∈ C .9

Single sentence closure: If α ∈ C , then Cn(α) ⊆ C .
Disjunctive completeness: If α ∨ β ∈ C , then either α ∈ C or β ∈ C .
Element consistency: If α ∈ C , then α �⊥.
Expansive credibility: If A � α, then ¬α ∈ C .

In [22], the following properties for C (the set of credible sentences) were proposed.

Credibility lower bounding: If A is consistent, then Cn(A) ⊆ C .
Uniform credibility: If it holds for all subsets A′ of A that A′ ∪ {α} �⊥ if and only if A′ ∪ {β} �⊥, then α ∈ C if and only if 
β ∈ C .

Credibility of logical equivalents imposes that equivalent sentences have the same credibility status. Single sentence closure
states that if we assign the status of “credible” to a sentence α, then the same should happen to its logical consequences. 
Disjunctive completeness states that if two sentences are both not credible, then their disjunction is also not credible. Element 
consistency states that contradictions are not credible. Expansive credibility informally states that if a belief is consistent with 
the agent’s belief base, then it is credible. Credibility lower bounding states that all the logical consequences of a consistent 
belief base are credible. Uniform credibility states that if two sentences have the “same behavior” regarding a belief base A, 
i.e., are consistent with exactly the same subsets of A, it is expected that both have the same credibility status.10

Additionally, in [22], the following condition, which relates the set of credible sentences C and the revision function ∗
that induce a given credibility-limited operator, was proposed.

If α /∈ C and β ∈ C , then A ∩ A ∗ β � ¬α. (C - ∗)

Condition (C - ∗) states that if a sentence α is not credible, then any possible outcome of revising a set A by a credible 
sentence contains a subset of A that implies ¬α.11

4.2. Postulates for credibility-limited base revisions

In this subsection, we recall some postulates for (credibility-limited) base revision and some relations among these 
postulates. The following postulates are an adaptation to the belief bases context of the postulates for credibility-limited 
revisions on belief sets presented in [40].

(Relative Success) α ∈ A � α or A � α = A.
(Strict Improvement) If α ∈ A � α and � α → β , then β ∈ A � β .
(Disjunctive Distribution) If α ∨ β ∈ A � (α ∨ β), then α ∈ A � α or β ∈ A � β .
(Consistency Preservation) If A �⊥, then A � α �⊥.

The following postulate was proposed in [20,22].

(Persistence) If ¬β ∈ Cn(A ∩ A � β), then ¬β ∈ Cn(A ∩ A � α).

Relative success states that when revising by any sentence, either that sentence is contained in the resulting belief base or 
the original belief base is left unchanged. Strict improvement states that if a certain sentence is incorporated when revising a 
belief base by it, then the same thing happens regarding every logical consequence of that sentence. Disjunctive distribution
states that if a disjunction belongs to the revision of a belief base by it, then the same thing happens regarding at least one 
of its disjuncts. Consistency Preservation states that if a belief base is consistent, then so is the outcome of any revision of 
that belief base. Persistence states that if the formulae of A that are kept when revising it by a sentence β imply ¬β , then 
¬β is implied by the formulae of A that remain when revising it by any formula.

8 Having in mind Example 1.2, the information provided by a sensor that satisfies the constraints provided by the historical data (which determine that 
the sensor is not defective), can be seen, in this context, as being “Credible Sentences”.

9 This property was named closure under logical equivalence in [40].
10 We note that more rigorously the expression “with respect to A” should be added to the designation of the last three properties. This will be omitted 

since there is no risk of ambiguity whenever these properties are mentioned along this paper.
11 We note that, rather than a property of the set C , condition (C - ∗) is an expression which relates the set C and a (standard) base revision on a belief 

base A.
10
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Although persistence is a reasonable property (of shielded contraction and credibility-limited revision), there are some 
contexts in which this postulate is not satisfied, as is the case in the following situation.12

Example 4.2 ([22]). Suppose I believe strongly in ¬β and that at a certain moment I get the information that β is the case. 
I am not willing to stop believing in ¬β in order to incorporate β . Suppose now that I get stronger information that proves 
that β is the case (for example, α ∧ (α → β)). Therefore, although I revise by a belief other than β , I end up losing my 
belief in ¬β . For example, suppose John made a retreat away from the rest of the world between December 2019 and May 
2020 and did not have access to any information during that period. Suppose now that when he returns to civilization, in 
June 2020, we tell him that the streets of some of the main cities of the world have been completely empty for several 
weeks in March-April 2020 (β). John will not believe it. Then, we explain that this happened because a virus appeared in 
December 2019 (α), and to avoid contamination, a large part of the population had to be confined at home (α → β). Then, 
John may recall hearing in the news, before going to the retreat, that a highly contagious virus had been discovered. At that 
moment, John will start to believe that the streets of some of the main cities in the world have been completely empty for 
some time during his retreat (β).

The following observation states that weak extensionality follows from uniformity.

Observation 4.3 ([20]). Let A be a belief base and � be an operator on A. If � satisfies uniformity, then � satisfies weak extensionality.

4.3. Representation theorems for some classes of credibility-limited base revisions

We now recall axiomatic characterizations for several classes of CL base revisions. More precisely, we consider the CL 
revisions on belief bases induced by partial meet revisions, by (smooth) kernel revisions and by basic AGM-generated base 
revisions, taking into account different sets of properties regarding the associated set of credible sentences.

Observation 4.4 ([22]). Let A be a consistent belief base and � be an operator on A. Then:

� is an operator of CL 
base revision induced 
by a

and a set C ⊆ L that satisfies element 
consistency, expansive credibility and

iff � satisfies relative success, consistency 
preservation, inclusion, vacuity and

Acronym

partial meet revision 
operator ∗

uniform credibility uniformity and relevance CLPMR

uniform credibility and single sentence closure uniformity, relevance and strict improvement SI-CLPMR

uniform credibility and disjunctive 
completeness

uniformity, relevance and disjunctive 
distribution

DD-CLPMR

uniform credibility, single sentence closure 
and disj. completeness

uniformity, relevance, strict improvement and 
disj. distribution

SI+DD-CLPMR

condition (C - ∗) uniformity, relevance and persistence P-CLPMR

kernel revision 
operator ∗

uniform credibility uniformity and core-retainment CLKR

uniform credibility and single sentence closure uniformity, core-retainment and strict 
improvement

SI-CLKR

uniform credibility and disjunctive 
completeness

uniformity, core-retainment and disjunctive 
distribution

DD-CLKR

uniform credibility, single sentence closure 
and disj. completeness

uniformity, core-retainment, strict 
improvement and disjunctive distribution

SI+DD-CLKR

condition (C - ∗) uniformity, core-retainment and persistence P-CLKR

smooth kernel 
revision operator ∗

uniform credibility uniformity, core-retainment and weak relative 
closure

CLSKR

uniform credibility and single sentence closure uniformity, core-retainment, weak relative 
closure and strict improvement

SI-CLSKR

uniform credibility and disjunctive 
completeness

uniformity, core-retainment, weak relative 
closure and disj. distribution

DD-CLSKR

uniform credibility, single sentence closure 
and disj. completeness

uniformity, core-retainment, weak relative 
closure, strict improvement and disj. 
distribution

SI+DD-CLSKR

condition (C - ∗) uniformity, core-retainment, weak relative 
closure and persistence

P-CLSKR

(continued on next page)

12 For this reason, we consider several classes of shielded base contractions and of credibility-limited base revision, some of which satisfy persistence and 
others that do not.
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� is an operator of CL 
base revision induced 
by a

and a set C ⊆ L that satisfies element 
consistency, expansive credibility and

iff � satisfies relative success, consistency 
preservation, inclusion, vacuity and

Acronym

Basic AGM-Generated 
base revision operator 
∗

credibility of logical equivalents weak extensionality and disjunctive 
elimination

CLbAGMR

single sentence closure weak extensionality, disj. elimination and 
strict improvement

SI-CLbAGMR

cred. of logical equivalents and disj. 
completeness

weak extensionality, disj. elimination and 
disjunctive distribution

DD-CLbAGMR

single sentence closure and disj. completeness weak extensionality, disjunctive elimination, 
strict improvement and disj. distribution

SI+DD-CLbAGMR

condition (C - ∗) weak extensionality, disj. elimination and 
persistence

P-CLbAGMR

Next, we present an example of a credibility-limited revision operator that belongs to some of the classes mentioned in 
the theorem above but does not belong to all of them.

Example 4.5. Let A = {p, q}, Cn be purely truth-functional and ∗ be a partial meet revision on A such that A ∗ (¬p ∨ ¬q) =
{p, ¬p ∨ ¬q} and A ∗ (¬p ∧ ¬q) = {¬p ∧ ¬q}. Let � be the operator of credibility-limited base revision induced by ∗ and 
the set C = {α ∈ L : ¬α /∈ Cn(p) ∪ Cn(q)}. This set C satisfies element consistency, expansive credibility, uniform credibility and 
single sentence closure (see Lemma 2 in Appendix A). Therefore, � is a CLPMR and a SI-CLPMR. On the other hand, it holds 
that ¬p /∈ C , ¬q /∈ C and ¬p ∨ ¬q ∈ C . Hence, A � ¬p = A � ¬q = A but A � (¬p ∨ ¬q) = A ∗ (¬p ∨ ¬q) = {p, ¬p ∨ ¬q}. 
Thus, � does not satisfy disjunctive distribution. Therefore, � is not a DD-CLPMR or a SI+DD-CLPMR.

5. Relations between shielded base contractions and credibility-limited base revisions

In this section, we establish the relations between the properties of a set of retractable sentences R and of a set of 
credible sentences C . We also establish the relation between different kinds of operators of shielded contractions and 
credibility-limited revisions using the consistency-preserving Levi identity and the Harper identity (adapted to the belief 
base context).

5.1. Relations between sets of credible and retractable sentences

In this subsection, we study the relation between credible and retractable sentences of an agent. If we want to ensure 
that our credibility-limited revision operators satisfy consistency preservation, then we must ensure that a sentence is credible 
only if its negation can be removed during the revision process; otherwise, the outcome of this revision will be inconsistent. 
Hence, we can relate the sets R and C by the following condition: if α ∈ C , then ¬α ∈ R . On the other hand, if ¬α ∈ R
then, when revising by α, there is no reason to keep ¬α (since the agent is predisposed to remove it), and so there is 
no reason not to accept α. Thus, one should also expect that if ¬α ∈ R , then α ∈ C . Therefore, the following condition, 
originally proposed in [15], seems natural:

α ∈ C if and only if ¬α ∈ R. (C-R)

The following condition can be seen as the dual of the previous one:

α ∈ R if and only if ¬α ∈ C . (R-C)

The following observation illustrates that conditions (C-R) and (R-C) are equivalent provided that R and C are closed 
under double negation.

Observation 5.1. Let R and C be subsets of L. R is closed under double negation, and condition (C-R) holds if and only if C is closed 
under double negation, and condition (R-C) holds.

Having in mind conditions (C-R) and (R-C), relating credible and retractable sentences, the following observations estab-
lish the relation between properties of sets of retractable sentences and of credible sentences.

Observation 5.2. Let A be a belief base and R and C be sets of sentences that are closed under double negation and satisfy conditions 
(C-R) and (R-C).13 It holds that:

13 Note that, according to Observation 5.1, conditions (C-R) and (R-C) are equivalent when C and R are closed under double negation.
12
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(a)
R satisfies if and only if C satisfies

retractability of logical equivalents credibility of logical equivalents
non-retractability of tautology element consistency
non-retractability propagation single sentence closure
uniform retractability with respect to A uniform credibility with respect to A
non-retractability upper bounding with respect to A expansive credibility with respect to A

(b) If R satisfies retractability of logical equivalents and C satisfies credibility of logical equivalents, then14:

R satisfies if and only if C satisfies

conjunctive completeness disjunctive completeness

The following observation relates conditions (R - ÷) and (C - ∗), when C and R are related through condition (C-R) and 
the revision operator ∗ is defined from ÷ using the Levi identity.

Observation 5.3. Let A be a belief base and R and C be sets of sentences that satisfy condition (C-R). Let ∗ be a revision operator defined 
from the contraction operator ÷ on A using the Levi identity. If R and ÷ satisfy condition (R - ÷), then C and ∗ satisfy condition (C -
∗).

The following observation relates conditions (C - ∗) and (R - ÷), whenever the contraction operator ÷ is defined from ∗
using the Harper identity and C and R are related through condition (R-C):

Observation 5.4. Let A be a belief base and R and C be sets of sentences that satisfy condition (R-C). Let ÷ be a contraction operator 
defined from the revision operator ∗ on A using the Harper identity. If C and ∗ satisfy condition (C - ∗), then R and ÷ satisfy condition 
(R - ÷).

5.2. Generalized Levi and Harper identities

In this subsection, we establish several results that relate credibility-limited revisions and shielded contractions through 
the consistency-preserving Levi identity (adapted to the belief base context)

A � α =
{

(A ∼ ¬α) ∪ {α} if A ∼ ¬α � ¬α
A otherwise

(C-P Levi identity)

and the Harper identity

A ∼ α = (A � ¬α) ∩ A. (Harper identity)

The following theorem illustrates that if a contraction operator ÷ is defined from a revision operator ∗ using the Harper 
identity, then the shielded contraction induced by ÷ and R can be obtained, using the Harper identity, from the credibility-
limited revision operator induced by ∗ and C , provided that the sets R and C are related by through condition (R-C).

Theorem 5.5. Let A be a belief base and ∗ be a revision operator on A. Let ÷ be the contraction operator on A defined from ∗ using 
the Harper identity. Let C ⊆L and � be the credibility-limited revision induced by ∗ and C. Let R ⊆L be the set defined from C using 
condition (R-C). Let ∼ be the shielded base contraction on A induced by ÷ and R. Then, ∼ can be defined from � using the Harper 
identity.

In the following theorem, a result that can be seen as the dual of the previous one is presented. The second item of 
this theorem states that if a revision operator ∗ is defined from a contraction operator ÷ using the Levi identity, then the 
credibility-limited revision induced by ∗ and C can be obtained using the consistency-preserving Levi identity from the 
shielded contraction operator induced by ÷ and R , provided that the sets R and C are related by the condition (C-R) and R
satisfies non-retractability of tautology and non-retractability upper bounding.

Theorem 5.6. Let A be a belief base and ÷ be a contraction operator on A. Let ∗ be the revision operator on A defined from ÷ using 
the Levi identity. Let R ⊆ L and ∼ be the shielded base contraction induced by ÷ and R. Let C ⊆ L be the set defined from R using 
condition (C-R). Let � be the credibility-limited revision induced by ∗ and C. Then:

14 Note that, according to (a), under the current assumptions, R satisfies retractability of logical equivalents if and only if C satisfies credibility of logical 
equivalents.
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(a)

A � α =
{

(A ∼ ¬α) ∪ {α} if α ∈ C
A otherwise

(b) If R satisfies non-retractability of tautology and non-retractability upper bounding, then � can be defined from ∼ using the 
consistency-preserving Levi identity.

The following two theorems illustrate some relations between the postulates of shielded contraction and credibility-
limited revision whenever one of these operators is obtained from the other using the Harper or the consistency-preserving 
Levi identities.

Theorem 5.7. Let A be a consistent belief base and ∼ be a shielded base contraction on A. Let � be defined from ∼ via the consistency-
preserving Levi identity. Then:

If ∼ satisfies then � satisfies

— relative success and consistency preservation
inclusion inclusion
inclusion and persistence disjunctive distribution and persistence
inclusion, vacuity and uniformity uniformity
relevance relevance
core-retainment core-retainment
conjunctive constancy, relative success and extensionality disjunctive distribution
inclusion and success propagation strict improvement
inclusion and vacuity vacuity
disjunctive elimination disjunctive elimination
extensionality, inclusion and vacuity weak extensionality
inclusion, vacuity and relative closure weak relative closure

Theorem 5.8. Let A be a consistent belief base and � be a credibility-limited base revision on A. Let ∼ be defined from � via the 
Harper identity. Then:

If � satisfies then ∼ satisfies

— inclusion
relative success and consistency preservation relative success
persistence persistence
relative success and relevance relevance
core-retainment core-retainment
uniformity uniformity
vacuity vacuity
vacuity, relative success, consistency preservation, 
disjunctive distribution and weak extensionality

conjunctive constancy

disjunctive elimination disjunctive elimination
weak extensionality extensionality
consistency preservation, strict improvement and relative success success propagation
weak relative closure relative closure

The following theorem clarifies that each element of one of the classes of shielded contraction considered in Section 3
gives rise, using the consistency-preserving Levi identity, to an element of one of the classes of credibility-limited base 
revision operators mentioned in the previous section.

Theorem 5.9. Let A be a consistent belief base and ∼ be a shielded base contraction operator on A. Let � be defined from ∼ via the 
consistency-preserving Levi identity. Then:
14



M. Garapa, E. Fermé and M.D.L. Reis Artificial Intelligence 319 (2023) 103907
(a)

If ∼ is a then � is a

SPMC CLPMR
SP-SPMC SI-CLPMR
CC-SPMC DD-CLPMR
SP+CC-SPMC SI+DD-CLPMR
P-SPMC P-CLPMR

(b)

If ∼ is a then � is a

SKC CLKR
SP-SKC SI-CLKR
CC-SKC DD-CLKR
SP+CC-SKC SI+DD-CLKR
P-SKC P-CLKR

(c)

If ∼ is a then � is a

SSKC CLSKR
SP-SSKC SI-CLSKR
CC-SSKC DD-CLSKR
SP+CC-SSKC SI+DD-CLSKR
P-SSKC P-CLSKR

(d)

If ∼ is a then � is a

SbAGMC CLbAGMR
SP-SbAGMC SI-CLbAGMR
CC-SbAGMC DD-CLbAGMR
SP+CC-SbAGMC SI+DD-CLbAGMR
P-SbAGMC P-CLbAGMR

The following theorem illustrates that each element of one of the classes of credibility-limited base revision operators 
considered in Section 4 gives rise, using the Harper identity, to an element of the classes of shielded contractions considered 
in Section 3.

Theorem 5.10. Let A be a consistent belief base and � be a credibility-limited base revision operator on A. Let ∼ be defined from �
via the Harper identity. Then:

(a)

If � is a then ∼ is a

CLPMR SPMC
SI-CLPMR SP-SPMC
DD-CLPMR CC-SPMC
SI+DD-CLPMR SP+CC-SPMC
P-CLPMR P-SPMC

(b)

If � is a then ∼ is a

CLKR SKC
SI-CLKR SP-SKC
DD-CLKR CC-SKC
SI+DD-CLKR SP+CC-SKC
P-CLKR P-SKC

(c)

If � is a then ∼ is a

CLSKR SSKC
SI-CLSKR SP-SSKC
DD-CLSKR CC-SSKC
SI+DD-CLSKR SP+CC-SSKC
P-CLSKR P-SSKC

(d)

If � is a then ∼ is a

CLbAGMR SbAGMC
SI-CLbAGMR SP-SbAGMC
DD-CLbAGMR CC-SbAGMC
SI+DD-CLbAGMR SP+CC-SbAGMC
P-CLbAGMR P-SbAGMC

Next, we will show that the operators of non-prioritized base contraction and revision considered in this paper are in-
terdefinable through the Harper and the consistency-preserving Levi identities. The following definition introduces functions 
that take us from contractions to revisions and vice-versa.

Definition 5.11 ([47,11]). For every operator − ◦−, R(− ◦−) is the operator generated from − ◦− through the consistency-preserving 
Levi identity. Furthermore, for every operator 	, C(	) is the operator generated from 	 using the Harper identity.

The following theorems illustrate that operators of shielded base contraction and CL base revision are interdefinable 
through the Harper and the consistency-preserving Levi identities.

Theorem 5.12. Let A be a consistent belief base and ∼ be an operator for A that satisfies the (shielded contraction) postulates of 
inclusion, vacuity, extensionality and relative success. Then, C(R(∼)) =∼.

Theorem 5.13. Let A be a consistent belief base and � be an operator for A that satisfies the (credibility-limited revision) postulates 
of relative success, consistency preservation, inclusion, vacuity and weak extensionality. Then, R(C(�)) = �.
15
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6. Related works

In this section, we will mention other approaches related to the present paper. We will divide the related works into 
three groups: (a) non-prioritized contraction, (b) non-prioritized revision, and (c) status of the belief regarding its credibil-
ity/retractability.

(a) Shielded contraction was originally defined and axiomatically characterized in [11]. In this paper, the relation between 
Shielded and Credibility-Limited operators was established. In [15], the basic construction of shielded contraction was ex-
tended for belief bases. Later, in [21], twenty classes of shielded base contraction operators were characterized (based on 
partial meet base contraction, kernel and smooth kernel base contraction and basic AGM-generated base contraction opera-
tors). To the best of our knowledge, no other non-prioritized contraction operators have been proposed in the literature.

(b) The model of credibility-limited revision operators has been largely studied in the literature. In the original paper 
[40], it was axiomatically characterized, and it was also developed in terms of partial meet contraction, epistemic en-
trenchment and possible world models. In [15], the basic credibility-limited revision construction was extended for belief 
bases. Later, in [22], twenty classes of credibility-limited base revision operators were characterized (based on partial meet 
base revision, kernel and smooth kernel base revision and basic AGM-generated base revision operators). In [5], iterated 
credibility-limited revision operators were studied.

In the classification for non-prioritized revision operators made by Hansson [37,39], credibility-limited revision operators 
are placed in the class of Decision + Revision operators. This kind of operation encompasses two steps: (1) Decide whether to 
fully accept, partially accept, or reject the input. (2) Revise when appropriate. Another operator of revision in this category 
is screened revision, proposed by Makinson in [48]. In that paper, a set A of sentences that are immune to revision is 
introduced. The outcome of revising by sentences that contradict K ∩ A is identical to the original belief set. If the input 
sentence is compatible with K ∩ A, then the belief set is revised essentially in the AGM way. Formally, screened revision for 
a belief set K is defined as follows:

K#Aα =
{

K ∗ α if α is consistent with K ∩ A.

K otherwise

where ∗ is an AGM revision function with the additional constraint that for all α, K ∩ A ⊆ K ∗ α.
A more general approach, called generalized screened revision, was proposed in [37]:

K# f α =
{

K ∗ α if α is consistent with K ∩ f (α).

K otherwise

where f is a function such that for each sentence α, f (α) is a set of sentences. ∗ is a (modified) AGM revision function 
such that for all α, K ∩ f (α) ⊆ K ∗ α. Different properties can be imposed on f . Makinson [48] proposed, for example, 
f (p) = {q : p < q}, where < is a binary relation on the language. Credibility-limited revision operators are considered a 
generalization of screened revision operators (see [40, Definition 2]). Another non-prioritized revision operator is selective 
revision, proposed by Fermé and Hansson in [10]. This operator allows the acceptance of only part of the new information 
and the rejection of the rest of it. An operator of selective revision, �, is constructed from a basic AGM revision ∗ and a 
function f from L to L as follows:

K � α = K� f (α).

Intuitively, f selects the credible part of every sentence. In [19], the adaptation of selective revision operators to the 
belief base context was studied, and several representation theorems for selective base revision operators were presented.

(c) In addition to shielded contraction, screened revision and credibility-limited revision, there are few works that assign 
a status to the beliefs regarding their behavior in the revision/contraction process. Among them, Ghose and Goebel ([28]) 
introduced explicit disbeliefs and explicit beliefs as allowable epistemic inputs. The explicit disbeliefs are used to record and 
store sentences that an agent refuses to commit to. Based on this work, Chopra, Ghose and Meyer defined information states
[7]. An information state I is a finite set of information, i.e., beliefs and disbeliefs. The belief state consisting of all the beliefs 
in I is denoted by BI. Similarly, the disbelief state consisting of all the disbeliefs in I is denoted by DI. It is important to 
mention the notion of consistency. An information state is consistent if the beliefs (as a whole) do not imply the negation 
of any of its disbeliefs. This notion of consistency, which differs from the notion used in credibility-limited revision and 
shielded contraction, allows an information state to contain both α and ¬α as disbeliefs.

Other works that attribute different statuses to beliefs were presented in [18] and [4]. In these papers, operators similar 
to credibility-limited revision operators were defined, but different degrees of credibility were considered. The operators 
designated in [18] by two credibility-limited revisions have the following behavior: a belief at the highest level of credibility 
is always incorporated when revising by it; if it is considered to be at the second level of credibility, then that sentence 
is not incorporated in the revision process, but its negation is removed from the original belief set; when revising by a 
non-credible sentence, the operator leaves the original belief set unchanged. Formally, this operator is defined by means of 
an AGM revision ∗ and two sets of sentences C H and CL as follows:
16
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K 	 α =
⎧⎨
⎩

K ∗ α if α ∈ C H

(K ∗ α) ∩ K if α ∈ CL

K if α /∈ (CL ∪ C H )

Note that, according to the Harper identity (and the extensionality of ∗), K ÷ ¬α = (K ∗ α) ∩ K, where ÷ is an AGM 
contraction operator. The intuition regarding a sentence in CL , is that it is not credible enough to be incorporated when 
revising by it but creates in the agent sufficient doubt that forces him or her to remove from the belief set K the beliefs 
that are inconsistent with it.

7. Conclusion

A crucial point in artificial intelligence is the representation of knowledge and its dynamics. Several issues must be over-
come when updating the knowledge base with entries that are not consistent with its content. The AGM model provides 
a conceptual mechanism concerning how to proceed when new information is received. However, this model always gives 
priority to new information (incorporating it in the case of revision and removing it in the case of contraction). In many 
cases, this is not a desirable behavior, as the new information may lack credibility, and sometimes there are beliefs that the 
agent is not willing to remove (regardless of the information received). For this reason, non-prioritized change operators 
were considered. Two of those are the shielded contractions and the credibility-limited revisions. Furthermore, since belief 
sets are not suitable for computational implementations, credibility-limited base revision operators and shielded base con-
tractions are relevant in the field of artificial intelligence. The results presented in this paper highlight a duality between 
these two types of operations in the sense that they allow us to go back and forth between these two classes of operators.

The identity commonly known as the Levi identity (e.g., [24,3]) is the result of the formalization by means of an equation 
of the procedure identified by Isaac Levi, in [45], as the most intuitive one to obtain a (new) belief set that is acceptable 
as the result of the revision of a (given) belief set by a sentence α. Such identity provides an explicit way of defining a 
revision function on a belief set from a (given) contraction function on that same belief set. On the other hand, a widely 
known way of proceeding conversely, i.e., of defining a contraction by means of a revision, is captured by the identity that 
is commonly known as the Harper identity (e.g., [26]) since the idea underlying that equation was first presented by William 
Harper in [41].15

The relevance of the Levi and Harper identities is emphasized by the fact that they lead to the conclusion that there 
is a one-to-one correspondence between the class of basic AGM contractions and the class of basic AGM revisions. In fact, 
this interrelation among those classes is an immediate consequence of the following results originally presented by Peter 
Gärdenfors in [23,25]:

(a) An operator defined from a basic AGM contraction using the Levi identity is a basic AGM revision.
(b) An operator defined from a basic AGM revision using the Harper identity is a basic AGM contraction.
(c) If we regard the Levi and Harper identities as functions (from the class of all basic AGM contractions to the class of all 

basic AGM revisions and vice versa, respectively), then they are the inverse (functions) of each other.

The present paper shows that the (natural adaptations of) the Levi and Harper identities are also appropriate in the 
(more general) setting of non-prioritized revisions and contractions on belief bases. In fact, the main results of Subsec-
tion 5.2 highlight that the operators obtained from a shielded contraction using the consistency-preserving Levi identity are 
credibility-limited revisions and, vice versa, the operators obtained from a credibility-limited revision using the Harper iden-
tity are shielded contractions. Furthermore, the last two theorems of Subsection 5.2, which can be seen as a generalization 
of the results from [23,25] stated (informally) in item (c) above, allow us to conclude that there is a one-to-one correspon-
dence between the classes of shielded contractions considered in [21] and the classes of CL revision studied in [22]. More 
precisely, the results of Section 5.2 assert that for each class S ∈ {S P MC, S P − S P MC, CC − S P MC, S P + CC − S P MC, P −
S P MC, S K C, S P − S K C, CC − S K C, S P + CC − S K C, P − S K C, S S K C, S P − S S K C, CC − S S K C, S P + CC − S S K C, P − S S K C, 
Sb AGMC, S P − Sb AGMC, CC − Sb AGMC, S P + CC − Sb AGMC, P − Sb AGMC} there is one and only one class C ∈
{C L P M R, S I −C L P M R, D D −C L P M R, S I + D D −C L P M R, P −C L P M R, C LK R, S I −C LK R, D D −C LK R, S I + D D −C LK R, P −
C LK R, C L S K R, S I − C L S K R, D D − C L S K R, S I + D D − C L S K R, P − C L S K R, C Lb AGM R, S I − C Lb AGM R, 
D D − C Lb AGM R, S I + D D − C Lb AGM R, P − C Lb AGM R}, such that:

(i) each one of the shielded contractions in S can be obtained from one and only one of the CL revisions in C using the 
Harper identity.

(ii) each one of the CL revisions in C can be obtained from one and only one of the shielded contractions in S using the 
consistency-preserving Levi identity.

15 We notice, however, that in the literature such equation is also sometimes referred to as the Gärdenfors identity (e.g., [3], [46]) since it has also been 
proposed by Gärdenfors in [24].
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In summary, the set of results presented in this paper provides definite evidence of the adequacy of the consistency-
preserving Levi identity and Harper identity as procedures for obtaining credibility-limited base revision operators from 
shielded base contraction operators and vice versa, respectively. On the other hand, these results also highlight the very 
strong interconnection among credibility-limited base revisions and shielded base contractions in the sense that these two 
kinds of non-prioritized belief change operators are interdefinable by means of the consistency-preserving Levi identity and 
the Harper identity.
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Appendix A. Proofs

Lemma 1. Let A = {p, p ∨ q, p → q}, Cn be purely truth-functional and R =L\Cn(p ∨ q). It holds that:

1. R satisfies conjunctive completeness, non-retractability propagation and uniform retractability.
2. If ÷ is a kernel contraction based on an incision function σ such that σ(α) ⊆ R, for all sentences α ∈ R, then condition (R - ÷)

holds.

Proof. 1. Conjunctive completeness: Let α ∧β ∈ R . Hence {p ∨q} � α ∧β . Therefore {p ∨q} � α or {p ∨q} � β , from which 
it follows that α ∈ R or β ∈ R .
Non-retractability propagation: Let α /∈ R . Then {p ∨ q} � α. Let β ∈ Cn(α). Hence {p ∨ q} � β , from which it follows 
that β /∈ R .
Uniform retractability: Assume that it holds for all subsets A′ of A that α ∈ Cn(A′) if and only if β ∈ Cn(A′). Let α /∈ R . 
Hence {p ∨ q} � α, from which it follows that {p ∨ q} � β . Thus β /∈ R . It also holds, by symmetry of the case, that if 
β /∈ R , then α /∈ R . Hence α ∈ R if and only if β ∈ R .

2. Let α /∈ R and β ∈ R . Hence α ∈ Cn(p ∨q) and β /∈ Cn(p ∨q). It holds that σ(β) ∩Cn(p ∨q) = ∅. Therefore A ÷β � α. �

Lemma 2. Let A = {p, q}, Cn be purely truth-functional and C be the set defined by the following condition:

α ∈ C if and only if ¬α /∈ Cn(p) ∪ Cn(q)

Then C satisfies element consistency, expansive credibility, uniform credibility and single sentence closure.

Proof. Element consistency: Let α ∈ C . Hence ¬α /∈ Cn(p) ∪ Cn(q). Thus ¬α /∈ Cn(∅) (since Cn(∅) ⊆ Cn(p) ∪ Cn(q)). There-
fore α �⊥.
Expansive credibility: Assume that ¬α /∈ C . Hence α ∈ Cn(p) ∪ Cn(q). Therefore A � α.
Uniform credibility: Assume that it holds, for all subsets A′ ⊆ A, that A′ ∪ {α} �⊥ if and only if A′ ∪ {β} �⊥. Let α ∈ C . 
Hence ¬α /∈ Cn(p) ∪ Cn(q). Thus ¬α /∈ Cn(p) and ¬α /∈ Cn(q). Therefore {p, α} �⊥ and {q, α} �⊥. Thus, by hypothesis, 
{p, β} �⊥ and {q, β} �⊥. Hence ¬β /∈ Cn(p) and ¬β /∈ Cn(q), from which it follows that ¬β /∈ Cn(p) ∪ Cn(q). Thus β ∈ C . By 
symmetry of the case it follows that if β ∈ C , then α ∈ C . Therefore it holds that α ∈ C if and only if β ∈ C .
Single sentence closure: Let α ∈ C and β ∈ Cn(α). Thus ¬α /∈ Cn(p) ∪ Cn(q) and {¬β} � ¬α. Therefore ¬β /∈ Cn(p) ∪ Cn(q). 
Hence β ∈ C . �

Lemma 3. Let R and C be subsets of L. If R and C are closed under double negation, then condition (C-R) holds if and only if condition 
(R-C) also holds.
18



M. Garapa, E. Fermé and M.D.L. Reis Artificial Intelligence 319 (2023) 103907
Proof of Lemma 3. Let R and C be subsets of L that are closed under double negation. We intend to prove that condition 
(C-R) holds if and only if condition (R-C) also holds.
(From left to right) α ∈ R iff ¬¬α ∈ R iff ¬α ∈ C .
(From right to left) α ∈ C iff ¬¬α ∈ C iff ¬α ∈ R . �

Proof of Observation 5.1. Let R and C be subsets of L. We intend to prove that R is closed under double negation and 
condition (C-R) holds if and only if C is closed under double negation and condition (R-C) holds.
(From left to right) α ∈ C iff ¬α ∈ R iff ¬¬¬α ∈ R iff ¬¬α ∈ C . Therefore C is closed under double negation. Thus, according 
to Lemma 3, condition (R-C) holds.
(From right to left) α ∈ R iff ¬α ∈ C iff ¬¬¬α ∈ C iff ¬¬α ∈ R . Therefore R is closed under double negation. Thus, according 
to Lemma 3, condition (C-R) holds. �

Proof of Observation 5.2. Let A be a belief base, R and C be sets of sentences that are closed under double negation and 
satisfy conditions (C-R) and (R-C).

(a) Let R be a set that satisfies non-retractability of logical equivalents we intend to prove that C satisfies credibility of logical 
equivalents.
Let � α ↔ β and assume without loss of generality that α ∈ C . Hence ¬α ∈ R . Therefore ¬β ∈ R , since R satisfies non-
retractability of logical equivalents. Thus β ∈ C . By symmetry of the case it follows that if β ∈ C , then α ∈ C . Thus α ∈ C
if and only if β ∈ C .
Let C be a set that satisfies credibility of logical equivalents we intend to prove that R satisfies non-retractability of logical 
equivalents.
Let � α ↔ β and assume without loss of generality that α ∈ R . Hence ¬¬α ∈ R , from which it follows that ¬α ∈ C . 
Therefore ¬β ∈ C , since C satisfies credibility of logical equivalents (and � ¬α ↔ ¬β). Thus ¬¬β ∈ R , from which it 
follows that β ∈ R . By symmetry of the case it follows that if β ∈ R , then α ∈ R . Thus α ∈ R if and only if β ∈ R .
Let R be a set that satisfies non-retractability of tautology we intend to prove that C satisfies element consistency.
Let α �⊥. Hence � ¬α. Therefore ¬α /∈ R , since R satisfies non-retractability of tautology. Thus α /∈ C .
Let C be a set that satisfies element consistency we intend to prove that R satisfies non-retractability of tautology.
Let � α. Hence {¬α} �⊥. Thus, since C satisfies element consistency, ¬α /∈ C . From which it follows that ¬¬α /∈ R . 
Therefore α /∈ R .
Let R be a set that satisfies non-retractability propagation we intend to prove that C satisfies single sentence closure.
Let α ∈ C and β ∈ Cn(α). Hence ¬α ∈ R and, by deduction, � α → β . Thus � ¬β → ¬α. Therefore ¬α ∈ Cn(¬β). 
Assume by reductio ad absurdum that β /∈ C . Hence ¬β /∈ R . From which it follows that ¬α /∈ R , since R satisfies non-
retractability propagation. Contradiction. Thus β ∈ C .
Let C be a set of sentences that satisfies single sentence closure we intend to prove that R satisfies non-retractability 
propagation.
Let α /∈ R and suppose that β ∈ Cn(α). From α /∈ R it follows that ¬¬α /∈ R , from which it follows that ¬α /∈ C . From 
β ∈ Cn(α) it follows that � ¬β → ¬α. Thus by single sentence closure, it follows that ¬β /∈ C . Therefore ¬¬β /∈ R , from 
which it follows, that β /∈ R .
Let R be a set that satisfies uniform retractability with respect to A. We intend to prove that C satisfies uniform credibility 
with respect to A.
Assume that it holds for all subsets A′ of A that A′ � ¬α if and only if A′ � ¬β . Then, ¬α ∈ R if and only if ¬β ∈ R , 
since R satisfies uniform retractability with respect to A. Hence α ∈ C if and only if β ∈ C .
Let C be a set that satisfies uniform credibility with respect to A. We intend to prove that R satisfies uniform retractability 
with respect to A.
Assume that it holds for all subsets A′ of A that A′ � α if and only if A′ � β . Hence for all subsets A′ of A it holds that 
A′ ∪ {¬α} �⊥ if and only if A′ ∪ {¬β} �⊥. Therefore, by uniform credibility, it follows that ¬α ∈ C if and only if ¬β ∈ C . 
Thus ¬¬α ∈ R if and only if ¬¬β ∈ R . Hence α ∈ R if and only if β ∈ R .
Let R be a set that satisfies non-retractability upper bounding with respect to A. We intend to prove that C satisfies 
expansive credibility with respect to A. Assume that ¬α /∈ C . Hence ¬¬α /∈ R , from which it follows that α /∈ R . Thus 
A � α, since by non-retractability upper bounding, L \R ⊆ Cn(A).
Let C be a set that satisfies expansive credibility with respect to A. We intend to prove that R satisfies non-retractability 
upper bounding with respect to A.
Let α ∈ L \R . Then ¬¬α /∈ R , from which it follows that ¬α /∈ C . Hence, by expansive credibility with respect to A, it 
follows that A � α.

b) Assume that R satisfies retractability of logical equivalents and C satisfies credibility of logical equivalents.
Let R be a set that satisfies conjunctive completeness we intend to prove that C satisfies disjunctive completeness.
Let α /∈ C and β /∈ C . Therefore ¬α /∈ R and ¬β /∈ R . By conjunctive completeness it follows that ¬α ∧ ¬β /∈ R . Thus, by 
retractability of logical equivalents, it follows that ¬(α ∨ β) /∈ R . Therefore α ∨ β /∈ C .
Let C be a set that satisfies disjunctive completeness we intend to prove that R satisfies conjunctive completeness.
Let α /∈ R and β /∈ R . Thus ¬¬α /∈ R and ¬¬β /∈ R , from which it follows that ¬α /∈ C and ¬β /∈ C . From which it 
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follows, by disjunctive completeness that ¬α ∨ ¬β /∈ C . Hence ¬(¬α ∨ ¬β) /∈ R . Thus by retractability of logical equivalents
it follows that α ∧ β /∈ R . �

Proof of Observation 5.3. Let α /∈ C and β ∈ C . We intent to prove that A ∩ A ∗ β � ¬α.
From α /∈ C and β ∈ C it follows by condition (C-R) that ¬α /∈ R and ¬β ∈ R . Therefore, according to condition (R - ÷), 
A ÷¬β � ¬α. On the other hand, by the Levi identity, A ∗β = (A ÷¬β) ∪ {β}. Therefore, A ∩ A ∗β = A ∩ ((A ÷¬β) ∪ {β}) =
(A ∩ (A ÷ ¬β)) ∪ (A ∩ {β}) = (A ÷ ¬β) ∪ (A ∩ {β}). Thus A ÷ ¬β ⊆ A ∩ A ∗ β , from which it follows that A ∩ A ∗ β � ¬α. �

Proof of Observation 5.4. Let α /∈ R and β ∈ R . We intent to prove that A ÷ β � α.
By condition (R-C), it follows that ¬α /∈ C and ¬β ∈ C . Therefore, according to condition (C - ∗), A ∩ A ∗ ¬β � ¬¬α. Thus, it 
follows from the Harper identity that A ÷ β � α. �

Proof of Theorem 5.5. Assume first that α ∈ R . It follows that ¬α ∈ C . Hence A ∼ α = A ÷α = (A ∗¬α) ∩ A = (A �¬α) ∩ A. 
If α /∈ R , then ¬α /∈ C . Hence A � ¬α = A and A ∼ α = A. Thus A ∼ α = A = (A � ¬α) ∩ A. �

Proof of Theorem 5.6. (a) Assume first that α /∈ C . Hence A � α = A. If α ∈ C , then ¬α ∈ R . Thus A � α = A ∗ α = (A ÷
¬α) ∪ {α} = (A ∼ ¬α) ∪ {α}.

(b) It remains to prove that: α ∈ C if and only if A ∼ ¬α � ¬α.
Let α /∈ C . Then ¬α /∈ R . Hence, by ∼ definition, A ∼ ¬α = A. Thus, by R non-retractability upper bounding, A ∼ ¬α � ¬α.
Let α ∈ C . Then ¬α ∈ R . Therefore, by ∼ definition, A ∼ ¬α = A ÷ ¬α. On the other hand, by R non-retractability of 
tautology, � ¬α. Thus, by ÷ success, A ∼ ¬α � ¬α. �

Proof of Theorem 5.7. Let A be a consistent belief base and (for all α ∈L)

A � α =
{

(A ∼ ¬α) ∪ {α} if A ∼ ¬α � ¬α
A otherwise

Relative success and consistency preservation follow directly from the definition of �.
Assume that ∼ satisfies inclusion. We intend to prove that � satisfies inclusion. It follows directly from the definition of 

� and ∼ inclusion that A � α ⊆ A ∪ {α}.
Assume that ∼ satisfies inclusion and persistence. We intend to prove that � satisfies disjunctive distribution and persis-

tence.
Disjunctive distribution: Let α /∈ A � α and β /∈ A � β . Hence, by definition of �, A � α = A � β = A. Furthermore, A ∼
¬α � ¬α and A ∼ ¬β � ¬β . By ∼ persistence A ∼ ¬(α ∨ β) � ¬α and A ∼ ¬(α ∨ β) � ¬β . Hence A ∼ ¬(α ∨ β) � ¬(α ∨ β). 
Hence A � (α ∨ β) = A. Thus α ∨ β /∈ A � (α ∨ β), since A �⊥ and by ∼ inclusion A � ¬(α ∨ β).
Persistence: Let A ∩ A � β � ¬β . Hence A � ¬β and A � β � ¬β . If A ∼ ¬β � ¬β , then β ∈ A � β . Thus A � β �⊥, from 
which it follows, by � definition and deduction, that A ∼ ¬β � ¬β . Contradiction. Hence A ∼ ¬β � ¬β . From which it 
follows, by ∼ persistence, that A ∼ ¬α � ¬β . By ∼ inclusion it follows that A ∼ ¬α ⊆ A. We will consider two cases:
Case 1) A ∼ ¬α � ¬α. Hence A � α = A. Then A ∩ A � α = A � ¬β .
Case 2) A ∼ ¬α � ¬α. Hence A � α = (A ∼ ¬α) ∪ {α} from which it follows that A ∩ A � α = A ∩ ((A ∼ ¬α) ∪ {α}) =
(A ∩ (A ∼ ¬α)) ∪ (A ∩ {α}) = (A ∼ ¬α) ∪ (A ∩ {α}). Thus A ∼ ¬α ⊆ A ∩ A � α. Therefore A ∩ A � α � ¬β .

Assume that ∼ satisfies inclusion, vacuity and uniformity. We intend to prove that � satisfies uniformity.
Let it be the case that for all subsets A′ of A, A′ ∪ {α} �⊥ if and only if A′ ∪ {β} �⊥. Hence, for all A′ ⊆ A, A′ � ¬α if and 
only if A′ � ¬β . By ∼ uniformity A ∼ ¬α = A ∼ ¬β . By ∼ inclusion A ∼ ¬β ⊆ A.
If A ∼ ¬α � ¬α. Then A ∼ ¬β � ¬α. Thus, by hypothesis, A ∼ ¬β � ¬β . Hence, by definition of �, A � α = A � β = A. 
Therefore A ∩ A � α = A ∩ A � β .
If A ∼ ¬α � ¬α. Then A ∼ ¬β � ¬α. From which it follows, by hypothesis, that A ∼ ¬β � ¬β . Therefore, by definition of �, 
A � α = (A ∼ ¬α) ∪ {α} and A � β = (A ∼ ¬β) ∪ {β}.
There are three cases to consider:
Case 1) α ∈ A. Then A � ¬α (since A �⊥). Hence, by ∼ vacuity and inclusion A ∼ ¬α = A. Thus A ∼ ¬β = A. Therefore 
A ∩ A � α = A ∩ ((A ∼ ¬α) ∪ {α}) = A ∩ (A ∪ {α}) = A. Using a similar reasoning, it follows that A ∩ A � β = A. Hence 
A ∩ A � α = A ∩ A � β .
Case 2) β ∈ A. This case is similar to the previous one.
Case 3) α /∈ A and β /∈ A. Then A ∩ A �α = A ∩ ((A ∼ ¬α) ∪{α}) = (A ∩ A ∼ ¬α) ∪ (A ∩{α}) = A ∼ ¬α = A ∼ ¬β = (A ∩ A ∼
¬β) ∪ (A ∩ {β}) = A ∩ ((A ∼ ¬β) ∪ {β}) = A ∩ A � β .

Assume that ∼ satisfies relevance. We intend to prove that � satisfies relevance.
Let β ∈ A and β /∈ A � α. Hence A �= A � α. Thus A � α = (A ∼ ¬α) ∪ {α} and A ∼ ¬α � ¬α. Hence β /∈ A ∼ ¬α. By ∼ rele-
vance there is some A′ such that A ∼ ¬α ⊆ A′ ⊆ A, A′

� ¬α but A′ ∪ {β} � ¬α. Let X = A′ ∪ {α}. Thus A � α ⊆ X ⊆ A ∪ {α}. 
It remains to prove that:
1) X �⊥.
2) X ∪ {β} �⊥.
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1) Assume by reductio ad absurdum that X �⊥. Hence A′ ∪ {α} �⊥. Thus, by deduction, A′ � α →⊥. Hence A′ � ¬α. Contra-
diction.
2) X ∪ {β} = A′ ∪ {α, β}. Since A′ ∪ {β} � ¬α it follows that A′ ∪ {α, β} �⊥. Hence X ∪ {β} �⊥.

Assume that ∼ satisfies core-retainment. We intend to prove that � satisfies core-retainment.
Let β ∈ A and β /∈ A � α. Hence A �= A � α. Thus A � α = (A ∼ ¬α) ∪ {α} and A ∼ ¬α � ¬α. Hence β /∈ A ∼ ¬α. By ∼
core-retainment there is some A′ such that A′ ⊆ A, A′

� ¬α but A′ ∪ {β} � ¬α.
Assume that ∼ satisfies conjunctive constancy, relative success and extensionality. We intend to prove that � satisfies 

disjunctive distribution.
Let α /∈ A �α and β /∈ A �β . By definition of � it follows that A ∼ ¬α � ¬α and A ∼ ¬β � ¬β . Hence by ∼ relative success, 
A ∼ ¬α = A ∼ ¬β = A. Thus, by ∼ conjunctive constancy, A ∼ (¬α ∧ ¬β) = A. From which it follows, by ∼ extensionality, 
that A ∼ ¬(α ∨ β) = A. On the other hand A � ¬α ∧ ¬β . Hence A ∼ ¬(α ∨ β) � ¬(α ∨ β). Therefore, by definition of �, 
A � (α ∨ β) = A. From A �⊥ it follows that A � (α ∨ β) � α ∨ β . Hence α ∨ β /∈ A � (α ∨ β).

Assume that ∼ satisfies inclusion and success propagation. We intend to prove that � satisfies strict improvement.
Let α ∈ A � α and � α → β . Hence � ¬β → ¬α. Assume by reductio ad absurdum that A ∼ ¬α � ¬α. Then, by ∼ inclusion, 
A � ¬α. On the other hand, it follows from � definition that A �α = A. Hence α ∈ A. Therefore A �⊥. Contradiction. Hence 
A ∼ ¬α � ¬α. Thus, by ∼ success propagation, A ∼ ¬β � ¬β . From which it follows, by definition of �, that β ∈ A � β .

Assume that ∼ satisfies inclusion and vacuity. We intend to prove that � satisfies vacuity.
Assume that A � ¬α. By ∼ inclusion and vacuity it follows that A ∼ ¬α = A � ¬α. Hence, by definition of �, it follows that 
A � α = (A ∼ ¬α) ∪ {α} = A ∪ {α}.

Assume that ∼ satisfies disjunctive elimination. We intend to prove that � satisfies disjunctive elimination.
Let β ∈ A and β /∈ A � α. Then A � α �= A. Thus A ∼ ¬α � ¬α and A � α = (A ∼ ¬α) ∪ {α}. Thus β /∈ A ∼ ¬α, from which 
it follows by disjunctive elimination that A ∼ ¬α � ¬α ∨ β . Hence (A ∼ ¬α) ∪ {α} � ¬α ∨ β , otherwise it would follow by 
deduction that A ∼ ¬α � α → (¬α ∨ β) and consequently that A ∼ ¬α � ¬α ∨ β , since � (¬α ∨ β) ↔ (α → (¬α ∨ β)). 
Therefore A � α � ¬α ∨ β .

Assume that ∼ satisfies extensionality, inclusion and vacuity. We intend to prove that � satisfies weak extensionality.
Let � α ↔ β . Then � ¬α ↔ ¬β . We will prove by cases:
Case 1) A ∼ ¬α � ¬α. Then A ∼ ¬α � ¬β . Thus, by ∼ extensionality, A ∼ ¬β � ¬β . Therefore, by definition of �, A � α =
A � β = A. Hence A ∩ A � α = A ∩ A � β .
Case 2) A ∼ ¬α � ¬α. Then A ∼ ¬α � ¬β . Therefore, by ∼ extensionality, A ∼ ¬β � ¬β . Therefore, by definition of �, 
A � α = (A ∼ ¬α) ∪ {α} and A � β = (A ∼ ¬β) ∪ {β}.
Case 2.1) α ∈ A. Therefore A � ¬α (since A �⊥) and A � ¬β . By ∼ vacuity and inclusion it follows that A ∼ ¬α = A ∼
¬β = A. Hence A ∩ A � α = A ∩ ((A ∼ ¬α) ∪ {α}) = A. By symmetry of the case, it holds that A ∩ A � β = A. Therefore 
A ∩ A � α = A ∩ A � β .
Case 2.2) β ∈ A. Follows as in the previous case.
Case 2.3) α /∈ A and β /∈ A. By ∼ inclusion it follows that A ∼ ¬α ⊆ A and A ∼ ¬β ⊆ A. Hence A ∩ A � α = A ∩ ((A ∼
¬α) ∪ {α}) = (A ∩ A ∼ ¬α) ∪ (A ∩ {α}) = A ∼ ¬α. By symmetry of the case, it follows that A ∩ A � β = A ∼ ¬β . Hence by 
∼ extensionality it follows that A ∩ A � α = A ∩ A � β .

Assume that ∼ satisfies inclusion, vacuity and relative closure. We intend to prove that � satisfies weak relative closure.
Let β ∈ A ∩Cn(A ∩ A �α). It follows trivially if A ∼ ¬α � ¬α. Assume now that A ∼ ¬α � ¬α. Hence A �α = (A ∼ ¬α) ∪{α}. 
Hence β ∈ A ∩ Cn(A ∩ ((A ∼ ¬α) ∪ {α})). Hence β ∈ A and β ∈ Cn((A ∩ (A ∼ ¬α)) ∪ (A ∩ {α})). We will prove by cases:
Case 1) α ∈ A. Then A � ¬α (since A �⊥). Therefore, by ∼ inclusion and vacuity, it follows that A ∼ ¬α = A. Thus A � α =
A ∪ {α}. Hence β ∈ A � α.
Case 2) α /∈ A. Thus β ∈ A and β ∈ Cn((A ∼ ¬α) ∩ A). By ∼ inclusion it follows that β ∈ A and β ∈ Cn(A ∼ ¬α). Therefore, 
by ∼ relative closure it follows that β ∈ A ∼ ¬α. Thus β ∈ A � α. �

Proof of Theorem 5.8. Let A be a consistent belief base and A ∼ α = A ∩ A � ¬α (for all α ∈L).
That ∼ satisfies inclusion follows directly from the definition of ∼.

Assume that � satisfies relative success and consistency preservation. We intend to prove that ∼ satisfies relative success.
If A ∼ α � α, then by definition of ∼, A � ¬α � α. Hence, by � consistency preservation, ¬α /∈ A � ¬α. Thus, by � relative 
success, A � ¬α = A. Therefore A ∼ α = A.

Assume that � satisfies persistence. We intend to prove that ∼ satisfies persistence.
Let A ∼ α � β . Then A ∩ A � ¬α � β . Thus, by � persistence, A ∩ A � ¬β � β . Therefore, A ∼ β � β .

Assume that � satisfies relative success and relevance. We intend to prove that ∼ satisfies relevance.
Let β ∈ A and β /∈ A ∼ α. Then, by definition of ∼, β /∈ A � ¬α. Thus A � ¬α �= A. By � relative success it follows that ¬α ∈
A �¬α. By � relevance, there is some A′ such that A �¬α ⊆ A′ ⊆ A ∪{¬α}, A′

�⊥ but A′ ∪{β} �⊥. Let X = A′ \ {¬α}. Hence 
X ⊆ A and, since ¬α ∈ A � ¬α ⊆ A′ , it follows that X ∪ {¬α} = A′ . Therefore A � ¬α ⊆ X ∪ {¬α}. Thus A ∼ α ⊆ X ∪ {¬α}. 
To prove that A ∼ α ⊆ X it is enough to show that A ∼ α � ¬α.
Assume by reductio ad absurdum that A ∼ α � ¬α. Hence, by definition of ∼, A � ¬α. From A′ ⊆ A ∪ {¬α} and A′ ∪ {β} �⊥
it follows, by monotony, that A ∪ {¬α, β} �⊥. From β ∈ A if follows that A ∪ {¬α} �⊥. Thus from A � ¬α it follows that 
A �⊥. Contradiction. Therefore A ∼ α � ¬α. Hence A ∼ α ⊆ X . On the other hand, from A′

�⊥, it follows that X ∪ {¬α} �⊥. 
Thus X � α. From A′ ∪ {β} �⊥ it follows that X ∪ {¬α, β} �⊥. From which it follows, using deduction, that X ∪ {β} � α.
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Assume that � satisfies core-retainment. We intend to prove that ∼ satisfies core-retainment.
Let β ∈ A and β /∈ A ∼ α. Then, by definition of ∼, β /∈ A � ¬α. Hence, by � core-retainment, there is some A′ such that 
A′ ⊆ A, A′

� α but A′ ∪ {β} � α. Hence ∼ satisfies core-retainment.
Assume that � satisfies uniformity. We intend to prove that ∼ satisfies uniformity.

Let it be the case that for all subsets A′ of A, A′ � α if and only if A′ � β . Hence, for all subsets A′ of A it holds that 
A′ ∪ {¬α} �⊥ if and only if A′ ∪ {¬β} �⊥. Therefore, by � uniformity, A ∩ A � ¬α = A ∩ A � ¬β . Thus, by definition of ∼, 
A ∼ α = A ∼ β .

Assume that � satisfies vacuity. We intend to prove that ∼ satisfies vacuity.
Assume that A � α. Hence A � ¬¬α. Thus, by � vacuity it follows that A ∪ {¬α} ⊆ A � ¬α. Thus A ⊆ A � ¬α. Therefore 
A ∼ α = (A � ¬α) ∩ A = A.

Assume that � satisfies vacuity, relative success, consistency preservation, disjunctive distribution and weak extensionality. We 
intend to prove that ∼ satisfies conjunctive constancy. As shown above ∼ satisfies inclusion and vacuity.
Let A ∼ α = A ∼ β = A. We will consider three cases:
Case 1) A � ¬α � α. Then A ∼ α � α. Thus A � α. From which it follows that A � α ∧ β . Hence, by ∼ inclusion and vacuity, 
A ∼ (α ∧ β) = A.
Case 2) A � ¬β � β . This case is symmetrical with the first case.
Case 3) A �¬α � α and A �¬β � β . By � consistency preservation it follows that ¬α /∈ A �¬α and ¬β /∈ A �¬β . Hence, by 
disjunctive distribution, it follows that ¬α∨¬β /∈ A �(¬α∨¬β). Hence, by � relative success, A �(¬α∨¬β) = A. By definition 
of ∼, A ∼ (α ∧ β) = A ∩ A � ¬(α ∧ β). Thus, by � weak extensionality, it follows that A ∼ (α ∧ β) = A ∩ A � (¬α ∨ ¬β) = A.

Assume that � satisfies disjunctive elimination. We intend to prove that ∼ satisfies disjunctive elimination.
Let β ∈ A and β /∈ A ∼ α. By definition of ∼ it follows that β /∈ A � ¬α. Therefore, by � disjunctive elimination, A � ¬α �

(¬¬α) ∨ β . Thus A � ¬α � α ∨ β . Therefore A ∼ α � α ∨ β .
Assume that � satisfies weak extensionality. We intend to prove that ∼ satisfies extensionality.

Let � α ↔ β . Hence � ¬α ↔ ¬β . By definition of ∼ and � weak extensionality it holds that A ∼ α = A ∩ A � ¬α = A ∩ A �
¬β = A ∼ β .

Assume that � satisfies consistency preservation, strict improvement and relative success. We intend to prove that ∼ satisfies 
success propagation.
Let A ∼ α � α and � α → β . From the latter, it follows that � ¬β → ¬α. By definition of ∼ it holds that A ∼ α = A ∩ A �¬α. 
Hence A � ¬α � α and A � α. Therefore A � β . On the other hand, by � consistency preservation, ¬α /∈ A � ¬α. From the 
latter and � ¬β → ¬α it follows by � strict improvement that ¬β /∈ A � ¬β . Thus by � relative success it follows that 
A � ¬β = A. Hence A ∼ β = A ∩ A � ¬β = A. Thus A ∼ β � β .

Assume that � satisfies weak relative closure. We intend to prove that ∼ satisfies relative closure.
Let β ∈ A ∩ Cn(A ∼ α). Hence β ∈ A. Furthermore, by definition of ∼, it follows that (A �¬α) ∩ A � β . Thus by weak relative 
closure β ∈ A � ¬α. From which it follows, by definition of ∼, that β ∈ A ∼ α. �

Proof of Theorem 5.9. Follows trivially by Observations 3.2, 4.4 and 2.2 and Theorem 5.7. �

Proof of Theorem 5.10. Follows trivially by Observations 3.2, 4.4 and 4.3 and Theorem 5.8. �

Proof of Theorem 5.12. Let � =R(∼) and ∼2=C(R(∼)). Then:

A � ¬α =
{

(A ∼ ¬¬α) ∪ {¬α} if A ∼ ¬¬α � α
A otherwise

and

A ∼2 α = A ∩ A � ¬α

By ∼ extensionality A ∼ ¬¬α = A ∼ α. There are two cases to consider:
Case 1) A ∼ ¬¬α � α. Then A � ¬α = A, from which it follows that A ∼2 α = A. On the other hand, by ∼ relative success, 
A ∼ α = A. Thus A ∼2 α = A ∼ α.
Case 2) A ∼ ¬¬α � α. Then A � ¬α = (A ∼ ¬¬α) ∪ {¬α} = (A ∼ α) ∪ {¬α}. Hence A ∼2 α = A ∩ ((A ∼ α) ∪ {¬α}).
Let β ∈ A ∼ α. Then, by ∼ inclusion, β ∈ A. Hence β ∈ A ∼2 α. Thus A ∼ α ⊆ A ∼2 α.
Let β ∈ A ∼2 α. Then β ∈ A and β ∈ (A ∼ α) ∪ {¬α}. Hence β ∈ A ∼ α or β = ¬α. If β = ¬α, then ¬α ∈ A. From A �⊥ it 
follows that A � α. Then, by ∼ vacuity and inclusion, A ∼ α = A. Therefore β ∈ A ∼ α. Hence A ∼2 α ⊆ A ∼ α. Therefore 
A ∼2 α = A ∼ α. �

Proof of Theorem 5.13. Let ∼=C(�) and �2 =R(C(�)). Then:

A ∼ ¬α = A ∩ A � ¬¬α

and
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A �2 α =
{

(A ∼ ¬α) ∪ {α} if A ∼ ¬α � ¬α
A otherwise

If A � ¬α, then by � vacuity and inclusion A � α = A ∪ {α} and A � ¬¬α = A ∪ {¬¬α}. Thus, by ∼ definition, A ∼ ¬α = A. 
Hence A ∼ ¬α � ¬α. Thus A �2 α = A ∪ {α}. Therefore A �2 α = A � α.
Assume now that A � ¬α. By � relative success ¬¬α ∈ A � ¬¬α or A � ¬¬α = A. On the other hand, by � weak extension-
ality A ∩ A � ¬¬α = A ∩ A � α. We will consider two cases:
Case 1) A � ¬¬α = A. Hence A ∼ ¬α = A, from which it follows that A ∼ ¬α � ¬α. Thus A �2 α = A.
From A �¬¬α = A and A ∩ A �¬¬α = A ∩ A �α, it follows that A = A ∩ A �α. Hence A ⊆ A �α. Since A � ¬α and A �⊥
it follows, by � consistency preservation, that α /∈ A � α. Hence by � relative success A � α = A.
Case 2) ¬¬α ∈ A � ¬¬α. Hence, by � consistency preservation, A � ¬¬α � ¬α. Thus A ∼ ¬α � ¬α. Hence A �2 α = (A ∼
¬α) ∪ {α} = (A ∩ A � ¬¬α) ∪ {α} = (A ∩ A � α) ∪ {α}.
Let β ∈ A �2 α. Hence β ∈ A ∩ A � α or β = α. In the former case, β ∈ A � α. Assume now that β = α. If α ∈ A � α, then 
β ∈ A � α.
Assume by reductio ad absurdum that α /∈ A � α. Hence, by � relative success A � α = A. Thus A �2 α = A ∪ {α}. Hence 
A �2 α �⊥ and A �2 α �= A (since A � ¬α and A �⊥). Hence (A ∼ ¬α) ∪ {α} �⊥. Therefore, by deduction, A ∼ ¬α � ¬α. 
Contradiction. Hence A �2 α ⊆ A � α.
Let β ∈ A � α. By � inclusion A � α ⊆ A ∪ {α}. Hence β ∈ A or β = α. We will consider those two cases separately:
case 1) β ∈ A. Hence, by � weak extensionality it follows that β ∈ A ∩ A �¬¬α. Therefore β ∈ A ∼ ¬α. Therefore β ∈ A �2 α.
case 2) β = α. Hence α ∈ A �α. Assume by reductio ad absurdum that A ∼ ¬α � ¬α. Hence A ∩ A �¬¬α � ¬α. From which 
it follows, by � weak extensionality, that A ∩ A � α � ¬α. Therefore A � α � ¬α. This contradicts � consistency preservation
(since α ∈ A � α). Thus A ∼ ¬α � ¬α. From which it follows by definition of �2 that α ∈ A �2 α. Thus β ∈ A �2 α.
In both cases, β ∈ A �2 α. Hence A � α ⊆ A �2 α. Therefore A �2 α = A � α. �
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