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Abstract: Methodologies for automatic non-rapid eye movement and cyclic alternating pattern
analysis were proposed to examine the signal from one electroencephalogram monopolar derivation
for the A phase, cyclic alternating pattern cycles, and cyclic alternating pattern rate assessments.
A population composed of subjects free of neurological disorders and subjects diagnosed with
sleep-disordered breathing was studied. Parallel classifications were performed for non-rapid eye
movement and A phase estimations, examining a one-dimension convolutional neural network (fed
with the electroencephalogram signal), a long short-term memory (fed with the electroencephalogram
signal or with proposed features), and a feed-forward neural network (fed with proposed features),
along with a finite state machine for the cyclic alternating pattern cycle scoring. Two hyper-parameter
tuning algorithms were developed to optimize the classifiers. The model with long short-term
memory fed with proposed features was found to be the best, with accuracy and area under the
receiver operating characteristic curve of 83% and 0.88, respectively, for the A phase classification,
while for the non-rapid eye movement estimation, the results were 88% and 0.95, respectively. The
cyclic alternating pattern cycle classification accuracy was 79% for the same model, while the cyclic
alternating pattern rate percentage error was 22%.

Keywords: 1D-CNN; ANN; CAP; HOSA; LSTM

1. Introduction

Sleep is a complex cyclical process that is usually examined using sleep-related metrics
attained from signals recorded by polysomnography (PSG). This examination is considered
the gold standard for sleep analysis. The scoring rules, defined by the American Academy
of Sleep Medicine (AASM) manuals, assign to each thirty-second epoch (standardized
scoring epoch) either the stage wake, Rapid Eye Movement (REM), or one of the Non-REM
(NREM) stages [1].

The electroencephalogram (EEG) signals are used as a reference to define the sleep
structure, which is composed of macrostructure and microstructure. The macrostructure
is a stepwise profile characterized by repetitive NREM and REM cycles, according to the
prevalent EEG activity, while transient and phasic events, shown in the brain’s electrical
activity, define the microstructure [2]. The paradigm composed of epochs lasting one
second was employed to score the microstructure events since they have a shorter duration
than the standardized scoring epoch [3].
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The Cyclic Alternating Pattern (CAP) concept was proposed by Terzano et al. [4] to
examine the microstructure of the NREM sleep by evaluating the sequences of transient
electrocortical events, which are different from the EEG background activity. Specifically,
the CAP is composed of an activation phase (A phase), characterized by a sequence of
transient EEG variations, directly followed by a quiescent phase (B phase), denoting the
intermittent recovery of background activity. Each phase can only be considered a valid
CAP phase if its duration ranges from two to sixty seconds [4].

Several studies have been carried out to understand the role of CAP in the sleep
process. It was proposed that CAP is significantly related to the creation, consolidation,
and disruption of the sleep macrostructure [5]. CAP was identified as an EEG marker of
sleep instability [6], functioning as a measure of the brain’s effort to preserve sleep [7],
thus, working as a sleep quality marker. Temporal relation between behavioral activities,
autonomic functions, and CAP was observed [8]. Consequently, CAP was found to be
correlated with the occurrence of several disorders, such as sleep apnea [9]. These works
advocate the relevance of the CAP as a sleep quality marker. However, a large amount
of information is generated during a full night EEG recording. Thus, manual scoring
all the CAP events is unpractical, and misclassifications are likely to occur. As a result,
the specialist agreement, when analyzing the same EEG signals, ranges from 69% to 78%
(getting closer to the lower bound as the number of specialists involved in the analysis
increases) [10,11]. Therefore, the development of automatic CAP detection algorithms is
desirable and consubstantiates the necessity of this study. The main goal of the developed
work is to create an automatic classifier for CAP assessment, which can be used to predict
sleep quality.

Each A phase can be divided into three subtypes according to the amplitude and
spectral characteristics of the EEG signal [4]. Several works have proposed automatic
methods for classifying these subtypes [12,13]. Although these subtypes provide rele-
vant information regarding the sleep process, for the sleep quality examination, the most
relevant information is in the occurrence or not of CAP cycles to calculate the CAP rate
(total CAP duration to the total NREM sleep duration ratio [4]). This metric is the most
widely used microstructural parameter for clinical purposes [8]. It has the advantage of
being characterized by a low night-to-night intraindividual variability, thus, allowing the
appraisal of the quality of sleep by knowing the subject’s age (a CAP rate higher than the
average for the subject’s age can be linked to poorer sleep quality [8]).

Most state-of-the-art works performed the A phase detection by feeding features, cre-
ated by a feature creation process, to the classification procedure, which is either composed
of tuned thresholds or a machine learning classifier. However, the feature creation process
requires significant domain-specific knowledge. It is becoming considerably challenging to
discover a new set of features that can achieve a higher performance than the methods re-
ported, in the state-of-the-art. It is also relevant to note that combining two or more features
does not ensure performance improvement, and the features usually need to be sorted to
find the most relevant [14]. These difficulties can be resolved by using a deep learning
classifier that automatically learns the relevant patterns directly from the input signal.
These classifiers were identified in this work as Automatic Feature Creation (AFC) models.

Nonetheless, important patterns can only be found if there is enough data to train
the classifier. Therefore, CAP analysis can become considerably challenging since the
classification is based on a second by second evaluation with few data points. For this
reason, a novel approach was followed in this work, evaluating consecutive overlapping
windows which fed a One-Dimension Convolutional Neural Network (1D-CNN) that can
exploit spatially local correlations in the signal by enforcing a local connectivity pattern
amongst neurons of adjacent layers. Consequently, the 1D-CNN has the inherent capability
to fuse the feature extraction (automatically identifying the distinctive patterns related
to the A phases) and the classification processes into a single adaptive learning model.
These models are relatively simple to train (compared to the large deep learning classifiers)
and have minimal computational complexity, while attaining state-of-the-art performance
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levels of the complex deep learning models [15]. On the other hand, CAP was found to
have temporal dependencies that can be identified by a recurrent neural network [16], such
as the Long Short-Term Memory (LSTM). These classifiers were also previously found to
be suitable for signal analysis [17]. Therefore, both 1D-CNN and LSTM were examined in
this work.

It was reported by Mendonça et al. [18] that the deep learning models have difficulties
recognizing the relevant patterns for two of the three subtypes, which compose the A phases,
suggesting the need for examining feature-based methods in this work. Specifically, the
LSTM was examined since it was identified as a suitable classifier for feature-based analysis
with temporal dependencies [19]. The Feed-Forward Neural Network (FFNN) was also
tested as it was identified in the state-of-the-art as possibly the best conventional classifier
for A phase estimation, working as a benchmark for the other examined classifiers [20].

As a result, two approaches were followed in this work to perform both the A phase
and NREM assessment. The first involved the AFC methodology, where the classifier
performed the classification by evaluating the EEG signal without having an explicit feature
creation. This work aims to assess if a model based on a machine learning classifier is
suitable for CAP and sleep quality assessment and to identify if either AFC or feature-based
models are the most appropriate to perform the CAP examination.

The main novelties of this article are:

• Presentation of a novel algorithm for optimizing the structure of deep learning models
(code is publicly available). The optimization of deep learning models’ structure is
a challenging task. As a result, there is a need for simple algorithms that can allow
users to develop new models without requiring a detailed optimization procedure;

• Proposal for a fully automatic sleep stability analysis based on CAP, which provides the
A phase, CAP cycle, and CAP rate assessments. To the authors’ best knowledge, this
is the first time a single algorithm provides all these metrics with such high accuracy;

• For CAP analysis, the performance of the machine learning models, using features,
and deep learning models, with automatic feature extraction, was compared. To the
authors’ best knowledge, this is the first time this examination was carried out.

This work has the following organization: evaluation of the state-of-the-art in Section 2;
presentation of the materials and methods in Section 3; performance assessment of the
developed algorithms in Section 4; discussion of the results in Section 5; conclusions of the
work in Section 6.

2. State-of-the-Art

Several works have proposed methods for the A phase detection, where the approach
of considering each epoch as either “A” or “not-A” is common, leading to a binary clas-
sification problem. A technique to describe the sleep microstructure was proposed by
Barcaro et al. [21], computing five band descriptors (one descriptor for each of the EEG
characteristic bands), which provides a normalized measure of how much the amplitude
in a particular frequency band differs from the background. A tuned threshold was then
employed to perform the classification. Largo et al. [22] evaluated the signal’s power of
five frequency bands (by calculating the fast discrete wavelet transform) and analyzed two
moving averages to identify the occurrence of A phases, classified by comparing with a
threshold. Niknazar et al. [23] proposed a classification method that performed a similarity
analysis between reference windows (from a database) and the windowed signal presented
to the algorithm.

Mariani et al. [24] examined the five band descriptors, Hjorth descriptors, and differen-
tial variance (of the EEG signal), performing the classification with tuned thresholds. It was
observed that differential variance attained the best performance. These features were also
evaluated by Mariani et al. [20,25,26], classifying with a Support Vector Machine (SVM)
with a Gaussian kernel, an FFNN, and a Linear Discriminant Analysis (LDA), respectively.
Other classifiers were tested in the third work, however, LDA attained the highest accuracy.
A method based on variable windows was also proposed by Mariani et al. [27], using
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three discriminant functions (one for each A phase subtype), which were then combined
for the final score. Auto-covariance, Shannon entropy, Teager Energy Operator (TEO),
and frequency-domain features (chosen by a sequential forward selection method) were
evaluated by Mendonça et al. [28], and multiple classifiers were tested. Best results were
attained using an FFNN.

A deep learning approach was proposed by Mostafa et al. [29], classifying two-second
segments of the EEG signal with a Deeply-Stacked Auto Encoder (DSAE). A similar ap-
proach was employed by Mendonça et al. [16], feeding the EEG signal to an LSTM. Hart-
mann and Baumert [19] have also used an LSTM to perform the classification, fed with
entropy-based features, TEO, differential variance, and frequency-based features.

Two approaches were found in the state-of-the-art for the CAP cycle assessment. The
first, employed by Mostafa et al. [29], fed the output of the A phase classifier to an FFNN.
The second, used by Mendonça et al. [16,28], provided the A phase classification’s output
to a Finite State Machine (FSM) to apply the CAP cycle scoring rules [4].

3. Materials and Methods

AFC and feature-based approaches were developed for the CAP analysis. This was
accomplished using the methodology presented in Figure 1 (developed in Python 3 using
TensorFlow). The proposed algorithm for the AFC methods is composed of seven steps,
starting by pre-processing the input signal, which was then segmented to create either the
overlapping windows (for the 1D-CNN) or the time steps data (for LSTM). These were then
fed to the classification procedures composed of two parallel classifiers. Each one-second
epoch was classified as either “A” or “not-A” by one classifier, and as “NREM” or “not-
NREM” by the other classifier. Afterward, a correction procedure was employed, in the
post-processing step, to reduce the misclassifications by correcting the isolated “A” or “not-
A” classifications and reclassifying the “A” as “not-A” when the NREM classifier indicates
a “not-NREM” epoch. The estimation of a sleep quality metric (CAP rate) was performed in
the final step. A similar approach was employed for the feature-based methods. However,
a new step was included, for the feature creation, between the pre-processing and the
data segmentation.

Figure 1. Followed methodology.
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3.1. Studied Population

Recordings from nine females and ten males, fifteen free of neurological disorders
and four with sleep-disordered breathing, were selected from the Physionet CAP Sleep
Database [4,30]. The recordings were performed at the Sleep Disorders Center of the
Ospedale Maggiore of Parma. The evaluation was implemented with the EEG monopolar
derivation (C3–A2 or C4–A1) signals, which were considered essential for CAP scoring [4].
The relevant characteristics of the population are presented in Table 1. The annotations
regarding the sleep macrostructure and the occurrence of the A phases were provided by
expert neurologists. The CAP cycles were identified by applying the scoring rules defined
by Terzano et al. [4] to the annotated A phases. The total number of examined epochs (each
with one second of EEG data) was 592,641.

Table 1. Characteristics of the studied population.

Measure Mean Range

Age (years) 40.58 23–78
REM time (seconds) 5652.63 480–11,430

NREM time (seconds) 20,505.79 13,260–27,180
A phase time (seconds) 4059.21 1911–10,554

CAP cycles time (seconds) 10,323.95 5000–23,306
CAP rate (%) 49.16 29–86

3.2. Pre-Processing Resampling Procedure

The sampling frequency of the records ranges from 100 Hz to 512 Hz. Hence, a
resampling procedure was applied to all signals to create a uniform database. Specifically,
the records were resampled by decimation [31] at the lowest sampling frequency; therefore,
59,264,100 sample points were examined. A constant reduction factor was used for the
sampling rate, r, and a standard lowpass filter (Chebyshev type I filter with order eight,
a passband ripple of 0.05 dB, and normalized cutoff frequency of 0.8/r [32]) was used to
down-sample the signal and avoid aliasing. This filter was selected as it is recommended
by the standard Python, MATLAB, and R libraries to perform decimation, and also as the
Chebyshev type I filters have small transition bands and roll off fast (good properties for
decimation). Afterward, the resampling procedure selected each rth point from the filtered
signal to produce the resampled signal, which was then standardized (subtract the mean
and divide the result by the standard deviation) to reduce the effect of systematic signal
variations [33]).

Several studies recommended the removal of artifacts related to movements and the
cardiac field to improve the classifier’s performance [13,34]. However, some events can
be labeled as an artifact and yet be related to the occurrence of an A phase intended to be
detected. The proper removal of eye movement and cardiac field artifacts requires both
electrocardiogram and electrooculogram signals, making the algorithm more complex and
less suitable for hardware implementation. For these reasons, no artifact removal procedure
was employed.

3.3. Pre-Processing Segmentation Procedure

A segmentation process was employed to create the epochs. Each epoch corresponds
to one label of the dataset, which defines the second (epoch’s duration) as either “A” or
“not-A” for the A phase classification, and as either “NREM” or “not-NREM” (not-NREM
includes REM and wake periods) for the NREM classification. However, each epoch
contains 100 sample points (signal resampled at 100 Hz), which may not be enough for
the 1D-CNN classifiers to find the relevant patterns. Therefore, overlapping windows
were examined for this classifier to evaluate if additional information can improve the
classification’s performance. Three approaches were tested for the overlapping, considering
either the first, the central, or the last 100 samples of the window as the ones corresponding
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to the epoch’s label. Therefore, the first scenario overlaps on the right, the second on the
right and left, and the third on the left.

For the LSTM classifier, the time steps concept was employed where the features fed
each LSTM block, and were either from an epoch of the pre-processed input signal or
from the features created in the feature creation procedure. The number of time steps and
the number of hidden units that produced the LSTM layer’s outputs are parameters that
require tuning.

3.4. Feature Creation

A feature creation procedure was used for the feature-based methods, and three
categories of features were examined. The first category was composed of features produced
from symbolic dynamics, performing segmentation analysis, and one amplitude variation
metric. These features identify the abrupt variations in the signal’s amplitude that occur
during the A phases. The symbolic dynamics transformed the input signal into a sequence
of symbols by examining several thresholds for the signal’s amplitude, which are multiples
of the signal’s standard deviation, σ. A total of nine thresholds were used since it was
previously identified as a suitable number for the A phase examination [18]. Thus, for
each sample point of the epoch (which is composed of 100 sample points), the algorithm
evaluated if the point’s amplitude is lower than either −5 × σ, −4 × σ, −3 × σ, −2 × σ,
−σ, 2 × σ, 3 × σ, 4 × σ, emitting the symbol 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. The number
of each emitted symbol (for each input window) was then considered as the value for the
feature. As an example, if symbol 1 was emitted 10 times, symbol 2 was emitted 15 times,
symbol 3 was emitted 5 times, symbol 4 was emitted 10 times, symbol 5 was emitted 50,
and symbol 6 was emitted 10 times, then the value for the features A1 to A9 are 10, 15, 5, 10,
50, 10, 0, 0, 0, respectively.

An amplitude variation metric was also examined by calculating the variation in
the current epoch’s, E, maximum amplitude with respect to the previous two epoch’s
maximum amplitudes by

A(E) = max(E) + [max(E− 2)−max(E− 1)] (1)

where max is the operation that searches for the maximum value. This feature was used
since it can possibly designate the onset epoch of an A phase as, by definition, the amplitude
of the epoch must be 2/3 higher than the previous two epochs [4].

The second category of features examined the Power Spectral Density (PSD) of the five
characteristic EEG frequency bands, specifically, Delta (PSDD), Theta (PSDT), Alpha (PSDA),
Sigma (PSDS), and Beta (PSDB). These features were employed as they were previously
identified as relevant for A phase analysis as the A phases are composed of characteristic
frequency patterns on these bands [28]. The PSD was calculated using the Welch’s method
with the Hanning window, H, and an overlap, ϕ, of 50% for a given frequency, ζ, by [35].

β(ζ) =
∑

floor[ P−ϕM
(1−ϕ)M ]

i=1

∣∣∣∑M−1
n=0 xi(n)HM(n)e−j2πζn

∣∣∣2
floor

[
P−ϕM
(1−ϕ)M

]
∑M−1

n=0 [HM(n)]2
(2)

where P is the number of points in the evaluated segment, M is the examined segment’s
length, floor is the floor function, and x is the input signal.

The last category of features combined the concepts from the two previous categories
by calculating the ratio of the maximum (max) amplitude’s value of the epoch to the
assessed PSD of the epoch for each evaluated EEG frequency band by

α(E, ζ) =
max(E)

β(ζ)
(3)



Entropy 2022, 24, 688 7 of 24

denoting as APSDD for the delta band, APSDT for the theta band, APSDA for the alpha
band, APSDS for the sigma band, and APSDB for the beta band. These ratio based features
were considered since they combined the information of both time and frequency, which
are relevant for the A phase assessment as the activation phases are composed of phasic
and transient activities [4].

The relevance of the features for the A phase classification was assessed by the Minimal-
Redundancy-Maximal-Relevance (mRMR) algorithm, which is a classifier-independent
method [36]. This algorithm assessed the maximal statistical dependency criterion consid-
ering the mutual information θ, which for two discrete variables, I and J, is defined as

(I, J) = ∑r,s P(I = ir, J = js) log
[

P(I = ir, J = js)
P(I = ir)P(J = js)

]
(4)

The maximum dependency on the target class, ρ, was assessed individually by evaluating
the dependence of the selected features ψτ (for τ = 1, 2, . . . , L) through [36].

D(L, ρ) = max

(
∑ψuεL θ(ψu, ρ)

|L|

)
(5)

The evaluation of the minimum (min) redundancy lessens the issue of large dependency
among the selected features and was performed by

R(L) = min

(
∑ψu ,ψvεL θ(ψu, ψv)

|L|2

)
(6)

The algorithm ranked the features by simultaneously estimating D and R through the operation.

µ(D, R) = max(D− R) (7)

The features were ordered by the mRMR ranking from most to less relevant. The
optimal number of features was identified by testing the 20 possible feature sets, where the
first was composed of only the feature identified as the most relevant, the second by the two
features identified as the most relevant, and so on, up to the last set, which was composed of
all features. The features that composed the set that attained the highest performance for the
considered reference performance metric were selected for the performance examination.

3.5. Classification

Three machine learning classifiers were tested to perform the A phase and NREM
detection. The FFNN is a conventional shallow neural network composed of one input
layer, one hidden layer, and one output layer. Each neuron of the network applies an
activation function, Γ, that considers the bias, B, the number of connections, C, and their
weight, W, through [37].

Y = Γ
(
∑C

a=1 xa ×Wa

)
+ B (8)

The hyperbolic tangent function was selected to be the activation function, defined as [37].

tan h(x) =
2

(1 + e−2x)
− 1 (9)

The soft-max function was used as the activation function of the output layer to
provide a probabilistic score according to the probability distribution χ for the input g over
the Q possible results through [37].

softmax
(

χ(g)
)
=

eχ(g)

∑Q
q=1 eχ(q)

(10)
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For the CNN classifier, the model with one dimension was selected since it can identify
relevant patterns from challenging one-dimensional biomedical signals, using a small
number of neurons and hidden layers [16,38–40]. The small networks are easier to train
and implement, requiring less computational resources to develop the algorithm [14].

The 1D-CNN was composed of a sequence of three main groups of layers. First was the
input layer, followed by groups of convolution and pooling layers, and classification layers
formed the last group. The transformation of the inputs was performed by convolution
operations, ~, on the convolution layers by [37].

cn = Γ(Kn ~ X + Bn) (11)

where n is the number of kernels (K), and X are the inputs. These layers allowed the
recognition of the most relevant patterns present on the physiologically driven signal for
the desired classification. The Rectified Linear Unit (ReLU) was employed as the activation
function that supports these layers’ complex pattern learning since it can provide a good
classification performance while diminishing the vanishing gradient problem [37]. The
ReLU is defined as [37].

ReLU(x) =
{

0, x < 0
x, x ≥ 0

(12)

The data dimensionality was reduced by employing a subsampling layer after the
convolution layer. For this purpose, a max-pooling operation was used, mapping a sub-
region to its maximum value. This layer regulates the networks’ complexity and reduces
overfitting, which improves the generalization capability [37].

Fully connected (dense) layers were used at the end of the network to improve the
learning ability of the nonlinear parameter and perform the classification [37]. Specifically,
two dense layers were employed. The first was located between the last subsampling layer
and the output layer to map the data (using the ReLU as the activation function). The
output layer applied the soft-max function (providing a probabilistic score for each class).

All memory cells of the LSTM are controlled by three gates at each time step z. For the
input signal xz, the input (i) and output (o) gates control the flow of activations through [41].

iz = Γ(Wixz + Ωihz−1 + Bi) (13)

oz = Γ(Woxz + Ωohz−1 + Bo) (14)

where the sigmoid function was used as activation function, defined as [37].

sigmoid(x) =
1

1 + e−x (15)

Ω are the recurrence weights, and h is the hidden state given by

hz = ozΓ(sz) (16)

using the hyperbolic tangent function as the activation function, and s is the cell state,
defined as

sz = fzsz−1 + iz[Γ(Wsxz + Ωshz−1 + Bs)] (17)

where activation function was the same as Equation (16) and f is the forget gate given by

fz = Γ
(

W f xz + Ω f hz−1 + B f

)
(18)

Both s and f used the sigmoid function as the activation function. A dense layer was
employed as the output layer, applying the soft-max function. The output class of all
classifiers was given by the highest score through a max operation.
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3.6. Post-Processing Procedure and CAP Assessment

A correction procedure was applied in the post-processing to correct misclassifications
and was composed of two stages. Considering the shortest possible A phase lasts two
seconds, and that binary classification provided an output for every second, thus, an output
class bounded by two opposite classes (isolated classification) was treated as an error.
Hence, in the first stage, a succession of 101 was corrected to 111 and 010 to 000. The NREM
classification was then used in the second stage. Taking into consideration that CAP is only
defined in the NREM sleep, consequently, if the A phase classifier referenced an epoch as
“A” when the NREM classifier indicated as “not-NREM”, then the “A” was reclassified
as “not-A”.

The correction procedure’s outputs fed an FSM, which implements the CAP scoring
rules [4] to assess the CAP cycles. CAP rate was the estimated sleep quality metric and
it was calculated by dividing the total number of epochs classified as CAP (output of the
FSM) by the total number of epochs classified as NREM.

3.7. Performance Assessment and Optimization of the Classifiers

The performance of the developed algorithms was measured by considering the
Accuracy (Acc), Sensitivity (Sen), and Specificity (Spe), defined as [42].

Acc =
tp + tn

tp + tn + fp + fn
(19)

Sen =
tp

tp + fn
(20)

Spe =
tn

tn + fp
(21)

where tp, tn, fp, and fn are the true positives (for the A phase assessment, it reflects the
number of epochs related to an activation phase correctly identified, while for the NREM
classification, it indicates the number of epochs related to the NREM periods correctly
recognized), true negatives (for the A phase classification it indicates the number of epochs
related to the “not-A” class correctly recognized, while for the NREM assessment it indicates
the number of epochs related to the “not-NREM” class correctly identified), false positives,
and false negatives, respectively. The diagnostic aptitude of the classifiers was assessed by
the Area Under the receiver operating characteristic Curve (AUC) [43]. The Significance of
the results was determined according to the Wilcoxon rank sum test (left-tailed), displaying
the p-value when comparing the results against the FFNN (standard model used as a
benchmark), evaluating how significant performance improvements are. The statistical
analysis was performed considering a significance level of 0.05.

The FSM performed the CAP cycles classification, hence, no probabilistic output was
created, and the AUC was not computed. However, the CAP rate error and the CAP rate
percentage error were assessed as predictive metrics of the overall capability of the model
to estimate the CAP rate, and these metrics were calculated by

CAP rate error = CAPP − CAPa (22)

CAP rate percentage error =
abs(CAP rate error)

CAPa
× 100% (23)

where CAPP is the CAP rate predicted by the developed method, CAPa is CAP rate assessed
by the database labels, and abs is the absolute value function.
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The classifiers’ hyper-parameters optimization was empirically performed by a search
methodology, selecting the configuration which attained the highest AUC (considered
reference performance metric). Random Sub-sampling Validation (RSV) was employed
for the optimization procedure, randomly choosing ten subjects to compose the training
set and nine for the validation set, ensuring subject independence of the sets. Each vali-
dation procedure was repeated ten times to achieve statistically significant results. Error
optimization for all classifiers was performed by the Adam algorithm [44] (learning rate of
0.001 and batch size of 1024) to allow a fair comparison of the results. An early stopping
procedure was used to reduce the simulation time and avoid overfitting the classifier. The
training procedure was stopped (before the end of the maximum number of training cycles,
defined as 50) if no relevant improvement in the AUC (improvement lower than 1%) of the
validation set was reached within five consecutive epochs.

A complete grid search optimization approach for all hyper-parameters of the classi-
fiers is not computationally feasible. Therefore, only the most relevant parameters were
tuned for each classifier. For the FFNN optimization, the number of neurons employed
for the hidden layer was varied from 100 to 400, in steps of 100. On the other hand, the
Heuristic Oriented Search Algorithm (HOSA) employed in this work follows the concepts
presented by Mendonça et al. [40] and Mostafa et al. [45], for the LSTM or 1D-CNN opti-
mization to assess the most relevant architecture for the classifiers by considering a heuristic
search for the parameters considered to be the most relevant for the examined models.

Yamashita et al. [46] identified the most important hyper-parameters to tune a 1D-
CNN, where the dominant parameters are the kernel size, number of kernels, and the num-
ber of layers [47]. Hence, the performed search concentrated on these hyper-parameters.
Considering that the kernel size will define the extent of the features that will be identified
and that each sample point of the segmented windows has relevant information, thus, a
kernel size of two with a unitary stride was chosen. The optimal number of kernels was
identified by starting with a value of eight, which was successively increased by a factor of
two without changing the remaining parameters [48].

The overlapping duration, O, of the segmented windows was iteratively changed
(testing the three scenarios of overlapping, Ap, where the database label corresponds
to either the first, central, or last second of data from the overlapping window W) for
each tested combination of the relevant hyper-parameters. The algorithm started without
overlapping, and the duration of overlapping was increased in steps of four seconds up
to a maximum window, Omax, of 35 s (the upper limit was empirically found to be above
the saturation point for the best A phase AUC). The searching procedure was improved by
using the group of layers concept (GofLayer) [40], where each group was composed of one
convolution layer, followed by one subsampling layer, and a 10% dropout was applied at
the output of the group. A downsample of factor two was applied in the subsampling layers
with the chosen stride and filter size of two. These values are frequently used for 1D-CNN
as they can reduce the dimensionality of the data while maintaining the highest excitations
from the convolutional feature maps [47]. The employed algorithm for optimization is
presented in Table 2 and starts with a network composed of: one input layer (Ipt) where the
input data (named Data) was fed; one group of layers; two dense output layers (De). The
number of GofLayer, G, was iteratively incremented until the maximum value Gmax (chosen
to be four). The number of kernels K of the convolution layer, for the first GofLayer, was
16, and the maximum limit was 128, using a step 2M where Mstart ≤M ≤Mmax (Mstart and
Mmax were four and seven, respectively).
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Table 2. Implementation of the HOSA for 1D-NN and LSTM.

HOSA-1D-CNN (Data, Gmax, Mmax, Mstart, MULmax, Nmax, Nstart,
Nstep, Omax, tr)
G = [1, 2, . . . , Gmax]
O = [0, 1, 3, 5, . . . , Omax]
K = 2M where Mstart ≤M ≤Mmax
N = [Nstart, Nstart + Nstep, . . . , Nmax]
for g = 1 to length (G)
| for o = 1 to length (O)
| | for k = 1 to length (K)
| | | for n = 1 to length (N)
| | | | if O (o) > 0
| | | | | W = [2 × O (1) + 1, 2 × O (2) + 1,
. . . , 2 × O (length (O)) + 1]
| | | | | Ap = [W (1), W (floor (W/2 + 1)), W
(length (W))]
| | | | else
| | | | | Ap = 1
| | | | for a = 1 to length (Ap)
| | | | | Net← Ipt (Data, O (o), Ap (a))
| | | | | for z = 1 to g
| | | | | if z == 1
| | | | | | mul = 1
| | | | | | Netg,o,k,n,a,z,mul:MULmax ←
Net + GL (K (k))
| | | | | | kz,mul:MULmax = K (k)
| | | | | else
| | | | | | for mul = 1 to MULmax
| | | | | | | kz,mul = mul × kz-1,mul
| | | | | | | Netg,o,k,n,a,z,mul ←
Netg,o,k,n,a,z-1,mul + GL (kz,mul)
| | | | Netg,o,k,n,a,z,mul ← Net g,o,k,n,a,z,mul + De
(N (n)) + De (2)
| | | | AUCg,o,k,n,a,z,mul ← test (train
(Netg,o,k,n,a,z,mul))
| AUCg,o,k,n,a,z,mul,max = max (AUCg,o,k,n,a,z,mul)|for all o,k,n,a,mul
| if g > 1
| | if AUCg,o,k,n,a,z,mul,max–AUCg-1,o,k,n,a,z,mul,max ≤ tr
| | | if AUCg,o,k,n,a,z,mul,max > AUCg-1,o,k,n,a,z,mul,max
| | | | BestNet =
Netg,o,k,n,a,z,mul|AUCg,o,k,n,a,z,mul,max
| | | else
| | | | BestNet =
Netg−1,o,k,n,a,z,mul|AUCg-1,o,k,n,a,z,mul,max
| | | break
| | else
| | | BestNet = Netg,o,k,n,a,z,mul|AUCg,o,k,n,a,z,mul,max
| | | return BestNet

HOSA-LSTM (Data, Grmax, Nhmax, Nhstart, Nhstep, Tmax, Tstart,
Tstep, tr)
Gr = [1, 2, . . . , Grmax]
T = [Tstart, Tstart + Tstep, . . . , Tmax]
Nh = [Nhstart, Nhstart + Nhstep, . . . , Nhmax]
L = [LSTM, BLSTM]
| for t = 1 to length (T)
| | for n = 1 to length (Nh)
| | | for g = 1 to length (Gr)
| | | | for l = 1 to length (L)
| | | | | Layer = L (l)
| | | | | for m = 1 to 4
| | | | | | Net0,l,t,n,0,m ← Ip (Data, T (t))
| | | | | | for z = 1 to g
| | | | | | | Netz,l,t,n,0,m ←
Netz-1,l,t,n,0,m + Layer (Nh (n))
| | | | | | if m == 1
| | | | | | | Nprev = floor (Nh (n)/2
+ 1/2)
| | | | | | | Netg,l,t,n,1,m ←
Netg,l,t,n,0,m + De (Nprev) + De (2)
| | | | | | else
| | | | | | | if m == 2
| | | | | | | | Nprev = Nh (n)
| | | | | | | | Netg,l,t,n,1,m ←
Netg,l,t,n,0,m + De (Nprev) + De (2)
| | | | | | | else
| | | | | | | | if m == 3
| | | | | | | | | Nprev =
Nh (n) × 2
| | | | | | | | |
Netg,l,t,n,1,m ← Netg,l,t,n,0,m + De (Nprev) + De (2)
| | | | | | | | else
| | | | | | | | |
Netg,l,t,n,1,m ← Netg,l,t,n,0,m + De (2)
| | | | | | AUCg,l,t,n,m ← test (train
(Netg,l,t,n,1,m))
| | | AUCg,l,t,n,m,max = max (AUCg,l,t,n,m)|for all l,m
| | | if g > 1
| | | | if AUCg,l,t,n,m,max–AUCg-1,l,t,n,m,max ≤ tr
| | | | | if AUCg,l,t,n,m,max >
AUCg-1,l,t,n,m,max
| | | | | | BestNett,n =
Netg,l,t,n,1,m|AUCg,l,t,n,m,max
| | | | | else
| | | | | | BestNett,n =
Netg-1,l,t,n,1,m|AUCg-1,l,t,n,m,max
| | | | | break
| | | | else
| | | | | BestNett,n =
Netg-1,l,t,n,1,m|AUCg-1,l,t,n,m,max
| | | | return BestNett=1:length (T), n=1:length(Nh)

The subsequent GofLayer were introduced, with either the same or twice (increment
of the multiplier, MULmax, of two) the number of kernels of the previous group of layers
(leading to linear growth in the number of simulations). The value for the number of
neurons of the first dense layer (De), N, started at 50 (Nstart), and was incremented in steps
of 50 (Nstep) until the maximum value of 150 (Nmax) was reached. This recurrent process
occurred until no relevant improvement in the AUC (considering the minimum threshold,
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tr, increase of 1%) was attained, signifying that the best network, Net, was found. For the
LSTM-based classifier, the input layer, Ip, was followed by either a Bidirectional LSTM
(BLSTM) or an LSTM layer. The subsequent evaluated layers were chosen to be equal to the
first recurrent layer, and the last recurrent layer of the tested architecture could be followed
by a dense layer. The number of recurrent layers, Gr, was increased one by one until
reaching five, the chosen maximum number (Grmax), or was stopped earlier if no significant
improvement in the AUC was attained (examining a minimum threshold increase of 1%)
when comparing with the model with Gr–1 layers. The number of time steps, T, employed
by the recurrent layers was varied from five (Tstart) to 35 (Tmax) in steps of ten (Tstep).

The number of hidden units, Nh, used for the recurrent layers (the same Nh was
used for all recurrent layers for the models with a cascade of LSTM layers) was varied
from 100 (Nhstart) to 400 (Nhmax) in steps of 100 (Nhstep). The De weights were initialized
with a normal distribution and the number of hidden units was chosen to be either half
(applying the floor function to round the result), the same, or twice the number of hidden
units that were employed by the previous recurrent layer. It was empirically observed
that the use of more than 35 time steps or more than 400 hidden units did not lead to
a significant increase in performance. A 10% dropout was employed between the last
recurrent layer and the first dense layer to reduce the possibility of overfitting. Table 2
presents the algorithm’s pseudo-code.

The NREM classifier was only tuned for the best overlapping scenario (for the 1D-
CNN) or best number of time steps (for the LSTM) identified for the A phase classifier since
the NREM classifier was fed with the same input as the A phase classification, and is only
intended to be used in the correction procedure and for the sleep quality metric estimation.
No balancing operation (oversampling the minority class or undersampling the majority
class so that all classes have the same number of samples) was implemented in any training
or testing dataset since it can alter the expected distribution of the data. Conversely, it was
observed that the classifier’s performance could be significantly improved by using cost-
sensitive learning (applying a greater cost when misclassifying an element of the minority
class compared to an event from the majority class). This observation is particularly relevant
for the A phase classification since it is sturdily unbalanced (significantly more “not-A”
than “A” events). Hence, this approach was used to develop the classifiers [49].

The performance of the algorithms (whose classifier’s hyper-parameters were previ-
ously selected) was evaluated by the Leave One Out (LOO) method as it can provide less
biased results for classifiers with few samples [50]. A total of 19 evaluation cycles were
performed, each repeated 50 times to attain statistically significant results, considering the
average of the performance metrics of the repetitions as the result of the evaluation cycle.
For each cycle, the testing dataset was composed of data from one subject (each subject was
only once selected to create the testing dataset). The data from the remaining subjects were
used to compose the training dataset, hence ensuring subject independent results.

4. Experimental Evaluation

Three main examination steps were performed for the experimental procedure. The
first and second comprised the development of the AFC and feature-based classifiers,
respectively, while the third evaluated the performance of the models for the A phase,
NREM, CAP cycle, and sleep quality metric estimations.

4.1. Development of the AFC Classifiers

For the 1D-CNN, the number of examined combinations was 2136. Each network
was simulated ten times. Thus, the total number of examined classifiers (using RSV) was
21,360. The simulation time required for optimization was significantly reduced by using
HOSA when compared with an extensive grid search, which would have required testing
all possible combinations of parameters for each classifier while attaining a classifier with
good performance. An extensive grid search analysis (exhaustive search) would have
resulted in an unreasonable number of simulations as the total number of possible combi-
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nations can easily lead to millions of network structures being tested, which would not be
computationally viable, and most likely would not considerably improve the performance
compared to the attained classifier (using the proposed methodology). The developed
algorithm can optimize a network with the size of the 1D-CNN employed in this work,
in one to two weeks, depending on the complexity and the number of parameters to be
tested. These results are considerably fast, even when compared to other heuristic-based
optimization algorithms, such as genetic algorithms, that can require multiple months
to finish the simulations (for a network of similar size to the 1D-CNN examined in this
work) [14].

The optimal 1D-CNN structure for the A phase classification (identified by the HOSA)
was composed of 64 kernels in the first convolution layer, 128 kernels in the second con-
volution layer, and 100 weights in the first dense layer. For the NREM classification, the
classifier was composed of 32 kernels in the first convolution layer and 64 kernels in
the second convolution layer, using the same number of weights in the first dense layer.
Therefore, it was concluded that the best performance was attained using two groups of
layers (GofLayer). A similar result was previously reported by Mostafa et al. [45], where
it was observed that the use of two clustered layers (composed of one convolution layer,
followed by batch normalization and a pooling layer) led to the highest improvement in
the considered performance metric.

It was observed that the second scenario for overlapping (epoch’s label refers to the
central 100 sample points) attained the best AUC, which was considerably better than the
other two scenarios, with the optimal window length of 19 s. This result is likely linked to
the average A phase duration, found to be around 13 s [4]; hence, extending the window
length too much can possibly introduce excessive information from the background activity,
leading to misclassifications.

These results suggest that there is a strong temporal dependency for the A phases
as introducing more information to the classifier significantly improved the classification
capability. The low performance of the first scenario was associated with misclassifications
of the onset boundary. Such a scenario occurred when the current epoch (data points
related to the label) was “not-A” and the following epochs were “A” (and the sampling
points of these epochs were present on the segmented window), leading the classifier to
classify the current “not-A” as “A”. This effect was lessened in the third scenario even
though the converse effect occurred, related to the A phase offset boundary detection when
the current epoch under classification was “A”, and the sampling points associated with a
subsequent “not-A” epochs were present in the segmented window. Consequently, it led
the classifier to wrongly classify the current epoch as “not-A”.

Both onset and offset misclassification issues occurred in the second scenario. However,
these were diminished as the classifier has contextual information from the previous and
next epochs. It was also observed, for all scenarios, that the proper detection of the offset
boundary was challenging, occurring several misclassifications towards the end of the
longer A phases where the classifier oscillated between “A” and “not-A”. This effect
was previously reported by Terzano et al. [4], indicating that the A phases can display
ambiguous limits due to inconsistent voltage changes in the EEG signal. Nonetheless, post-
processing lessened this problem (if two consecutive A phases are separated by an interval
shorter than two seconds, then they should be combined in a single A phase). However,
these oscillations were still the most notable reason for the misclassifications. It was also
observed that increasing the window length beyond 31 s (having 30 s of overlapping) was
counterproductive as further information led to misclassifications.

For the LSTM-based classifier, it was noticed that the best structure found by the HOSA
was composed of an LSTM layer with 100 hidden units using 25 time steps, followed by
a dense layer with 50 hidden units. The cascade LSTM architecture led to a lower AUC,
and the use of BLSTM instead of LSTM in the recurrent layer had an AUC increase of less
than 1%. Therefore, the LSTM was preferred rather than BLSTM since it attained a better
complexity to performance ratio. A total of 256 network architectures were examined,
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and each test was repeated ten times using RSV. Therefore, the total number of evaluated
classifiers was 2560. It was observed that the proper offset detection was again the primary
source of misclassifications, although the increase in the number of time steps allowed
the model to lessen this problem. However, the use of more than 25 time steps led to a
lower AUC, possibly suggesting that the model could not extract more relevant information
from the input data and started to overfit. The best network’s architecture for the NREM
classification using the 25 time steps was composed of one LSTM layer followed by one
dense layer, with 300 and 150 hidden units, respectively. It was observed that the best
performance was reached when using only one recurrent layer and these results agree with
the findings reported by Yadav et al. [51], which have observed that a model with one
LSTM layer outperformed models with cascade recurrent layers.

The learning curves of the classifiers are presented in Figure 2. It was observed that
both classifiers could possibly improve the performance if more data were available in the
database, and LSTM would perhaps benefit more from the additional data (the slope of the
LSTM linear tendency line is higher than the 1D-CNN linear tendency line). On the other
hand, the performance of both classifiers is similar when 100% of the data was used for the
model’s development, thus, the performed comparative analysis regarding which classifier
is more suitable for the intended classification is fairer.

Figure 2. Learning curves of the optimized AFC classifiers.

4.2. Development of the Feature-Based Classifiers

The relevance of the features for the A phase classification was assessed by the mRMR
algorithm (each simulation of the presented results was repeated 50 times to attain statically
significant results), and the ordered sequence (from most to less relevant) was: PSDD; A;
PSDS; PSDT; APSDB; PSDA; APSDD; APSDS; APSDA; PSDB; APSDT; A3; A7; A2; A9; A8;
A4; A1; A6; A5. The PSDD and A features were expected to be the most relevant since
61% of the database’s A phases belong to the A1 subtype that is characterized by high-
voltage slow waves, where delta waves are the most prevalent. On the other hand, the
A2 subtypes compose 21% of the database labels and have a mixture of high-voltage slow
waves with low-amplitude fast rhythms, whereas the A3 subtypes have a predominance
of low-amplitude fast rhythms [4]. Therefore, it was anticipated that the frequency-based
features would be more relevant for the A phase assessment. However, the amplitude-based
features are still important to detect the high-voltage waves.

For the FFNN optimization, each tested value for the number of hidden units was
examined for all 20 feature sets ordered by the mRMR algorithm. It was observed that the
best performance was attained using the 14 most relevant features with 400 hidden units
for both A phase and NREM classifications (using RSV for the performance assessment,
repeating each simulation ten times). The structure of the LSTM-based classifiers previously
identified as the best for the A phase or NREM classification was employed for the feature-
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based classification to allow a fairer comparison of the results, and the best performance
was attained using the 12 most relevant features.

The learning curves are depicted in Figure 3. Similar to the AFC models, the inclusion
of more data could possibly improve the performance of the classifiers. However, the
variation in performance of the LSTM is likely to be significantly lower for the feature-
based methods. It was also observed that the LSTM has a significantly higher AUC than
the FFNN, suggesting that the performance of the LSTM-based classifier is expected to
be superior.

Figure 3. Learning curves of the optimized feature-based classifiers.

4.3. Performance Evaluation

The performance of the tuned classifiers was assessed using LOO, repeating each
simulation 50 times to provide reliable estimates of the models’ performance, being the
results presented in Table 3 (the Appendix A tables present the results for all subjects,
where subjects 1–15 are free of neurological disorders, while subjects 16–19 were diagnosed
with sleep-disordered breathing). Regarding the A phase estimation, by examining the
table’s results, it is possible to conclude that the FFNN-based classifier attained the lowest
Acc, Spe, and AUC while the feature-based LSTM reached the best performance for all
performance metrics, having significant improvements when comparing against the FFNN
in eight of the eleven studied metrics.

Table 3. Performance of the developed models (mean ± standard deviation (p-value)) estimated
using LOO.

Estimation Metric FFNN 1D-CNN AFC LSTM Features Fed LSTM

A phase

Acc (%)
Sen (%)
Spe (%)
AUC

71.13 ± 14.77
72.58 ± 14.45
70.60 ± 18.44
0.801 ± 0.069

80.33 ± 3.55 (0.001 *)
75.45 ± 11.22 (0.948)

81.74 ± 2.94 (<0.001 *)
0.866 ± 0.050 (0.078)

80.72 ± 6.11 (0.004 *)
66.88 ± 9.57 (0.198)

83.19 ± 5.40 (0.018 *)
0.825± 0.068 (<0.001 *)

82.96 ± 5.54 (<0.001 *)
76.53 ± 11.24 (0.098)

83.36 ± 7.75 (<0.001 *)
0.882 ± 0.042 (<0.001 *)

NREM

Acc (%)
Sen (%)
Spe (%)
AUC

73.53 ± 8.43
68.81 ± 11.96
85.40 ± 10.31
0.829 ± 0.043

78.17 ± 7.77 (<0.001 *)
81.46 ± 12.32 (<0.001 *)

71.77 ± 19.15 (1.000)
0.880± 0.062 (<0.001 *)

84.83 ± 5.54 (0.004 *)
89.79 ± 6.62 (<0.001 *)
73.57 ± 13.14 (1.000)

0.913± 0.056 (<0.001 *)

87.81 ± 6.18 (<0.001 *)
88.24 ± 7.88 (<0.001 *)
86.87 ± 11.04 (0.271)

0.945 ± 0.036 (<0.001 *)

CAP cycles
Acc (%)
Sen (%)
Spe (%)

70.00 ± 12.49
48.39 ± 19.36
83.27 ± 10.90

72.63 ± 10.98 (<0.001 *)
52.68 ± 20.92 (<0.001 *)

84.59 ± 7.49 (0.948)

77.69 ± 6.64 (0.003 *)
72.51 ± 13.63 (0.067)
80.53 ± 8.22 (0.384)

78.91 ± 5.17 (<0.001 *)
69.67 ± 15.63 (<0.001 *)

82.28 ± 9.91 (0.779)

CAP rate Percentage
error(%) 39.86 ± 31.79 31.77 ± 33.29 17.19 ± 14.71 21.80 ± 14.96

* Indicates a statistically significantly result.
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On the other hand, the AFC LSTM attained the most unbalanced results (largest
difference between Sen and Spe), suggesting that the AFC classifier could not find patterns
in the data that are as relevant as the ones present in the used features. The AFC classifier
based on the 1D-CNN surpassed the AFC classifier based on the LSTM for the A phase
assessment. However, the opposite occurred in the NREM classification, where the AFC
classifier based on the LSTM performed better. The FFNN was the worst classifier for the
NREM assessment, while the feature-based LSTM was the best. For the CAP assessment,
it was observed that the model which used the AFC classifier based on LSTM attained a
better Acc and Sen than the classification based on the 1D-CNN, which reached the highest
Spe of all models. The FFNN-based model had the lowest Acc and Sen.

It was observed that the lowest CAP rate percentage error was attained by the model
based on the AFC LSTM, while the FFNN-based model had the worst performance. On the
other hand, the 1D-CNN and the model with the LSTM fed with features reached a similar
average value, although the 1D-CNN results have a larger variation. Figures 4 and 5 depict
the normalized CAP rate error and the CAP rate percentage error boxplots, respectively.

Figure 4. Normalized CAP rate error, for all examined subjects, for the model based on: (a) the
1D-CNN; (b) the AFC LSTM; (c) the FFNN; (d) the LSTM fed with features. The subject’s number is
presented on a balloon, on the top, followed by the percentage of normalized CAP rate error for the
respective subject.
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Figure 5. Boxplots of the CAP rate percentage error for all examined classifiers, which performed the
A Phase and NREM classifications.

It is possible to forecast the sleep quality by knowing the subject’s predicted CAP rate,
considering that a higher CAP rate most likely designates a poor sleep quality. In contrast,
the reverse probably means good sleep quality [8]. If the subject’s age is known, then
sleep quality guess can conceivably be performed by comparing the predicted CAP rate
against what is the average CAP rate for the subject’s age, considering that a higher value
denotes poor sleep quality and a lower value designates good sleep quality. By following
this simplistic approximation, the accuracy of the sleep quality prediction (by comparing
with the estimate based on the CAP rate from the dataset) for the 1D-CNN, AFC LSTM,
FNN, and feature-based LSTM was 74%, 79%, 68%, and 90%, respectively.

5. Discussion

By evaluating the attained results, it is possible to conclude that the use of features
leads to the best performance. However, if more data were available, probably, the AFC
classifiers would significantly improve the results (as it is visible in Figure 2). A similar con-
clusion can be attained for the CAP cycle’s assessment. The achieved results are emphasized
by the difficulties associated with CAP analysis, as reported by Mendez et al. [12], which
predicted that the CAP phase assessment could be affected by up to 25% of subjectivity and
ambiguity. Another relevant factor is the specialist agreement for CAP analysis, examining
the same EEG signals, which ranges from 69% to 78% (getting closer to the lower bound as
the number of specialists involved in the analysis increases) [10,11]. Hence the performance
of the proposed algorithms is either in the agreement range or slightly superior to the upper
bound, advocating the viability of the algorithms for clinical applications.

The Acc of the CAP cycles classification was lower than the A phase classification,
and it was verified that this was due to three factors. The first was the misclassification
around the A phase’s offset boundary (oscillation between “A” and “not-A” at the end of
the longer A phases), which led the FSM to either overestimate or underestimate the CAP
cycles. The second factor was the occurrence of several A phase misclassifications during
long “not-A” periods. These mainly occurred during periods of significant variation in the
EEG signal, usually lasting more than three seconds and are separated by less than 60 s,
leading the FSM to classify these events as a CAP cycle. This second problem was sturdier
in the AFC classifiers, possibly suggesting the low Sen. The last factor was the high impact
that the NREM classification had in the CAP assessment, where the lower performance
created several fp, and fn, which led the FSM to either overestimate or underestimate the
CAP cycle duration and also affected the CAP rate estimation. It was also observed that the
subjects suffering from sleep-disordered breathing were the most challenging to be assessed,
conceivably due to the low number of subjects present in the database (when compared
with the number of subjects free of neurological disorders) and due to the dynamics of the
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EEG signal, which are likely to be different for these subjects (with possible variation in the
prevalence of each A phase subtype).

A summary of the results reported by the state-of-the-art, which had performed
binary A phase classification is presented in Table 4. Most of the works, which attained a
similar accuracy to the proposed work, examined a significantly smaller population for the
development of the models. Specifically, Largo et al. [22] tested 12 subjects, considering one
hour of data for each subject, Niknazar et al. [23] examined six subjects, Mariani et al. [20,25]
evaluated four subjects, and Mariani et al. [26] studied eight subjects. Hartmann and
Baumert [19] examined 15 subjects and reached a similar performance as the best model
examined in this work. Mariani et al. [27] attained a higher Acc while using a similar
population, but with a significantly lower Sen. However, both subjects free of neurological
disorders and subjects suffering from sleep-disordered breathing were considered in this
work, while the other state-of-the-art results with similar performance have only considered
subjects free of neurological disorders.

Table 4. Comparative analysis between the results from the methods proposed in the state-of-the-art
and the proposed methods for the A phase classification.

Work Number of
Examined Subjects Method Acc (%) Sen (%) Spe (%) Average * (%)

[29] 13 EEG signal fed a DSAE 67 55 69 64

[24] 8 Differential variance classified by
a threshold 72 52 76 67

[16] 15 EEG signal fed an LSTM 76 75 77 76

[28] 13
Auto-covariance, Shannon

entropy, TEO, and frequency
domain features fed an FFNN

79 76 80 78

[22] 12 Moving averages classified by
a threshold 81 85 78 81

[23] 6 Similarity analysis with
reference windows 81 76 81 79

[20] 4
Band descriptors, Hjorth

descriptors, and differential
variance classified by an FFNN

82 76 83 80

[19] 15

Entropy-based features, TEO,
differential variance, and

frequency-based features fed
an LSTM

83 76 84 81

[21] 10 Band descriptors classified by a
threshold 84 - - -

[25] 4
Band descriptors, Hjorth

descriptors, and differential
variance classified by an SVM

84 74 86 81

[26] 8
Band descriptors, Hjorth

descriptors, and differential
variance classified by an LDA

85 73 87 82

[27] 16 Variable windows fed to three
discriminant functions 86 67 90 81

Proposed work–
1D-CNN 19 Overlapping windows fed a

1D-CNN 80 76 82 79

Proposed
work–AFC LSTM 19 Pre-processed EEG signal fed

an LSTM 81 67 83 77

Proposed
work–FFNN 19

Amplitude, frequency, and
amplitude-frequency-based

features fed an FFNN
71 73 70 71

Proposed work–
feature-based LSTM 19

Amplitude, frequency, and
amplitude-frequency-based

features fed an LSTM
83 77 83 81

* Average assessed by (Acc+Sen+Spe)/3.

It is also relevant to notice that CAP analysis is characterized by a strong unbalance
between the number of “A” and “not-A” events (approximately 90% of the database
annotations refer to “not-A” events) [18]. Hence a variation in the Spe has a greater impact
in the Acc than a variation in the Sen. As a result, a model with a high Spe and low Sen will
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have a high Acc. This effect can be understood by examining the average metric, which
was around 81% for all the best performance works, suggesting that the focus should be on
attaining balance results to improve the clinical applicability. Furthermore, even though
the traditional methods based on thresholds can achieve a considerable performance with
low complexity algorithms, the studies that have examined these methods usually consider
a low number of subjects and frequently evaluate only a part of the full-nigh EEG signal.
These methods will likely be problematic to generalize to a broader population since the
thresholds need to be tuned for the examined population.

A comparative analysis was not implemented for the developed NREM classifiers
since no other work was found performing a second by second NREM assessment (the
standard defined by the AASM is to use an epoch of 30 s). Nonetheless, the accuracy
reported by state-of-the-art works for NREM classification, considering a 30 s epoch, ranges
from 72% to 98%, depending on the number of classes considered [52]. Hence the developed
work is within the range while using a challenging approach of classifying every second.

A total of three works were found in the state-of-the-art performing the CAP cycles
assessment. Mostafa et al. [29] applied an FFNN for the classification, reporting an Acc
of 62%, while Mendonça et al. [16,28] employed an FSM and reported an Acc of 79%,
using a feature-based method for the A phase classification, and 76%, when an LSTM
classified the A phase. By comparing the results attained in this work, it was concluded
that Mendonça et al. [28] reached the same Acc as the developed feature-based LSTM
method, while the other works reported a lower performance. However, it is important to
bear in mind the higher number of subjects examined in this work. When comparing the
AFC-based classifiers, the developed method based on LSTM reached a higher performance
for the CAP cycle assessment than Mendonça et al. [16].

By examining the normalized CAP rate error presented in Figure 4 it is possible to
conclude that subject 17 (subject with sleep-disordered breathing) has the larger normalized
error for the models based on 1D-CNN, AFC LSTM, and FFNN, possibly due to the low
CAP accuracy of the models for this subject. For the model based on LSTM fed with features,
subject 8 was the most challenging, leading to the higher CAP rate error, possibly due to
the low A phase accuracy, which led the FSM to overestimate the CAP cycles duration. By
examining the CAP rate percentage error, it was observed that the model based on the AFC
LSTM has the best results (lowest average value), followed by the model based on LSTM
fed with features. The FFNN-based model has the highest average value. By inspecting
the boxplots of the CAP rate percentage error presented in Figure 5 it is notorious that
the model based on the AFC LSTM has the lowest variation in the results, suggesting that
this model is the most suitable for the CAP rate examination. These results are likely to
be related to the performance for the CAP assessment since the model based on the AFC
LSTM has the most balanced results, with an accuracy that is similar to the best results
attained by the model based on LSTM fed with features.

Only the work reported by Mariani et al. [27] was found in the state-of-the-art per-
forming the CAP rate appraisal. The reported CAP rate percentage error was 17%. The
same value was attained by using the model based on the AFC LSTM. Nevertheless,
Mariani et al. [27] evaluated only subjects free of neurological disorders, while in this work,
subjects diagnosed with sleep-disordered breathing were also examined. Thus, there is a
larger variation in the dataset’s CAP rate (most sleep-disordered breathing subjects have a
higher CAP rate).

6. Conclusions

Two approaches for automatic CAP analysis were developed, estimating the occur-
rence of the A phases, the CAP cycles, and the CAP rate. The first was based on AFC, where
the classifiers automatically identify the relevant patterns from the input data, while the
second comprised the use of features created by a feature creation procedure that extract
relevant information from the input data to feed the classifiers. It was observed that the
feature-based LSTM attained the best performance, although the results for the A phase
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assessment reached by the 1D-CNN were similar. The performance for the CAP cycle
assessment achieved by the feature-based LSTM and the AFC LSTM was similar. These
results suggest that the low Sen of the AFC LSTM for the A phase estimation (related to
the overestimation and underestimation of the A phase duration) has not affected the CAP
cycle assessment. It is also likely that the inclusion of more data could improve the AFC
models’ performance, possibly surpassing the feature-based LSTM results.

The proposed methods perform the analysis by evaluating the signal from only one
EEG monopolar derivation without requiring any manual manipulation of the signal or the
removal of artifacts. It was observed that the A phase classification performance was similar
to the best state-of-the-art algorithms. A second by second based NREM classification was
also proposed, which was used in the correction procedure and for the sleep quality metric
estimation. The CAP rate error was found to be low, supporting the diagnostic capability
of the algorithms for sleep quality estimation. It is important to highlight that the attained
results are considerably good when considering the challenges of the bioengineering fields,
as the results have even surpassed the specialist agreement when analyzing the same EEG
signals, advocating the relevance of the work.

The next steps in this research are to further validate the developed algorithm in a
larger dataset and examine the A phase subtypes to reach a deeper understanding of the
CAP events, which can lead to a reduction in misclassifications.
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Appendix A

Table A1. Performance of the 1D-CNN for the A phase, NREM and CAP assessments using LOO.

A Phase NREM CAP

Subject Acc (%) Sen (%) Spe (%) AUC Acc (%) Sen (%) Spe (%) AUC Acc (%) Sen (%) Spe (%)
1 82.37 84.61 82.07 0.911 86.11 92.52 66.13 0.927 73.40 70.49 74.98
2 77.16 75.76 77.32 0.842 79.04 88.79 55.54 0.880 70.82 64.21 73.08
3 79.87 73.94 80.37 0.851 80.01 83.24 73.22 0.886 73.34 40.14 83.77
4 79.41 85.77 78.91 0.900 85.46 87.57 82.63 0.933 77.46 76.08 77.82
5 82.25 84.92 81.93 0.912 85.57 82.36 94.79 0.926 80.09 77.11 81.87
6 83.53 81.49 83.86 0.900 80.12 71.98 98.22 0.937 75.29 49.47 91.34
7 80.45 93.37 79.17 0.938 80.91 75.42 92.76 0.922 72.93 47.87 83.42
8 76.58 83.62 75.72 0.872 81.64 86.83 70.80 0.896 72.41 64.33 76.00
9 84.16 83.60 84.20 0.910 70.77 62.87 86.52 0.884 81.18 37.26 92.29

10 79.44 57.92 82.01 0.818 77.72 74.70 83.84 0.864 77.37 24.44 90.11
11 80.62 72.01 81.56 0.858 68.94 68.94 68.93 0.769 80.20 48.96 91.76
12 84.08 82.75 84.27 0.903 85.33 96.74 67.36 0.955 86.41 82.12 88.53
13 85.77 76.31 87.06 0.889 76.14 96.23 35.76 0.903 73.05 66.55 75.33
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Table A1. Cont.

A Phase NREM CAP

14 83.56 87.82 82.94 0.924 85.23 86.48 81.31 0.920 78.65 74.28 80.94
15 84.44 73.36 86.24 0.872 74.71 97.03 17.20 0.842 81.10 70.71 88.22
16 77.57 60.76 79.08 0.782 74.63 83.08 63.25 0.823 76.14 22.09 94.02
17 78.07 61.17 84.09 0.824 73.71 73.54 74.47 0.822 44.42 10.07 99.59
18 72.37 58.75 78.74 0.758 85.63 90.96 72.43 0.915 61.91 49.21 76.12
19 74.57 55.71 83.52 0.789 53.62 48.47 78.53 0.707 43.90 25.59 87.96

Mean 80.33 75.45 81.74 0.866 78.17 81.46 71.77 0.880 72.63 52.68 84.59
Standard
deviation 3.55 11.22 2.94 0.050 7.77 12.32 19.15 0.062 10.98 20.92 7.49

Table A2. Performance of the AFC LSTM for the A phase, NREM and CAP assessments using LOO.

A Phase NREM CAP

Subject Acc (%) Sen (%) Spe (%) AUC Acc (%) Sen (%) Spe (%) AUC Acc (%) Sen (%) Spe (%)
1 79.96 75.25 80.60 0.852 85.79 92.52 64.79 0.924 73.61 79.65 70.31
2 83.00 73.15 84.44 0.863 88.22 94.31 78.61 0.957 83.53 84.52 83.04
3 83.17 72.39 84.74 0.862 88.52 94.11 79.71 0.957 83.16 84.55 82.48
4 82.41 72.01 83.93 0.853 88.24 93.73 79.58 0.953 82.57 81.09 83.31
5 85.40 61.16 89.08 0.856 87.16 88.06 84.30 0.927 81.73 67.49 90.60
6 83.07 66.37 85.72 0.830 87.81 91.27 80.11 0.941 80.61 77.67 82.44
7 81.68 84.94 81.35 0.897 89.57 92.76 82.69 0.950 76.35 75.98 76.50
8 82.37 72.00 83.89 0.854 88.30 93.13 80.69 0.953 82.73 82.91 82.64
9 91.14 61.44 93.30 0.877 91.31 91.01 91.91 0.949 83.84 48.36 92.82

10 82.41 73.19 83.76 0.859 88.56 93.99 79.99 0.958 82.43 83.81 81.75
11 84.03 55.87 87.10 0.812 80.02 76.26 85.33 0.881 81.90 59.89 90.05
12 83.91 78.84 84.65 0.888 89.56 94.00 82.56 0.960 84.96 87.57 83.67
13 80.39 73.14 81.38 0.843 82.85 93.42 61.59 0.899 71.61 80.68 68.42
14 85.64 74.86 87.21 0.885 90.42 96.12 72.57 0.958 82.62 81.89 83.01
15 77.31 61.99 79.79 0.785 81.46 95.80 44.47 0.905 73.16 72.59 73.55
16 78.81 52.75 81.16 0.749 72.46 81.56 60.20 0.825 73.07 45.64 82.14
17 77.76 52.90 86.63 0.775 73.54 71.19 83.55 0.841 60.86 41.45 92.03
18 62.02 51.49 66.94 0.628 78.41 86.46 58.43 0.839 67.94 71.68 63.74
19 69.23 57.01 75.04 0.703 79.60 86.38 46.75 0.763 69.43 70.16 67.65

Mean 80.72 66.88 83.19 0.825 84.83 89.79 73.57 0.913 77.69 72.51 80.53
Standard
deviation 6.11 9.57 5.40 0.068 5.54 6.62 13.14 0.056 6.64 13.63 8.22

Table A3. Performance of the FFNN for the A phase, NREM and CAP assessments using LOO.

A Phase NREM CAP

Subject Acc (%) Sen (%) Spe (%) AUC Acc (%) Sen (%) Spe (%) AUC Acc (%) Sen (%) Spe (%)
1 81.96 76.33 82.72 0.866 79.01 77.85 82.63 0.842 75.33 51.72 88.20
2 45.50 91.34 40.19 0.757 72.28 67.82 83.01 0.802 67.87 65.70 68.61
3 76.09 59.01 77.53 0.750 70.74 62.91 87.15 0.799 69.35 27.51 82.49
4 64.14 85.15 62.47 0.813 81.54 73.37 92.49 0.877 80.29 68.81 83.22
5 85.23 76.47 86.56 0.886 74.47 68.42 93.61 0.845 81.46 58.82 95.55
6 81.56 73.53 82.83 0.853 74.58 66.45 92.64 0.849 76.49 50.60 92.57
7 80.98 84.16 80.67 0.890 76.20 67.39 95.16 0.871 73.32 47.36 84.18
8 37.51 92.57 30.75 0.752 77.92 77.00 79.85 0.846 62.00 65.15 60.58
9 91.57 51.69 94.47 0.887 67.29 52.40 96.90 0.846 82.17 24.41 96.78

10 79.35 46.64 83.25 0.768 80.56 76.09 89.61 0.877 74.29 40.10 82.51
11 82.56 59.90 85.03 0.820 75.35 75.52 75.10 0.811 79.77 47.98 91.53
12 78.32 78.50 78.29 0.846 82.55 83.13 81.64 0.878 82.94 67.01 90.81
13 76.16 71.82 76.75 0.801 82.56 84.85 77.95 0.867 69.84 62.84 72.30
14 85.21 69.26 87.54 0.886 73.76 73.37 74.99 0.820 76.36 45.76 92.35
15 49.03 92.14 42.07 0.795 76.26 85.43 52.64 0.769 71.24 85.84 61.24
16 65.68 74.02 64.93 0.753 77.06 67.15 90.37 0.832 74.55 53.99 81.35
17 74.43 54.69 81.47 0.762 54.37 44.46 96.32 0.788 41.45 5.75 98.68
18 59.01 52.42 62.09 0.614 70.78 62.19 92.03 0.832 52.15 27.95 79.15
19 57.16 89.38 41.89 0.727 49.70 41.64 88.56 0.702 39.15 22.14 80.00

Mean 71.13 72.58 70.60 0.801 73.53 68.81 85.40 0.829 70.00 48.39 83.27
Standard
deviation 14.77 14.45 18.44 0.069 8.43 11.96 10.31 0.043 12.49 19.36 10.90
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Table A4. Performance of the LSTM fed with features for the A phase, NREM and CAP assessments
using LOO.

A Phase NREM CAP

Subject Acc (%) Sen (%) Spe (%) AUC Acc (%) Sen (%) Spe (%) AUC Acc (%) Sen (%) Spe (%)
1 85.22 79.66 85.97 0.907 89.84 88.64 93.59 0.956 79.83 69.60 85.41
2 85.67 81.82 86.24 0.906 93.73 94.75 92.11 0.979 84.75 81.87 86.17
3 85.17 61.87 87.14 0.823 82.36 77.93 91.67 0.925 78.34 40.26 90.31
4 84.90 82.67 85.22 0.898 91.71 94.55 87.22 0.975 84.47 85.50 83.96
5 88.07 76.81 89.77 0.923 89.24 86.89 96.70 0.964 85.88 72.02 94.52
6 83.51 79.76 84.11 0.886 89.93 88.53 93.05 0.956 82.25 76.57 85.78
7 84.01 91.77 83.24 0.946 95.53 96.17 94.16 0.984 78.99 81.96 77.74
8 73.23 90.40 71.12 0.898 85.21 87.65 80.12 0.924 69.36 80.78 64.21
9 91.24 78.08 92.20 0.939 93.20 93.34 92.92 0.967 84.68 54.68 92.28

10 83.80 48.49 88.01 0.816 95.48 94.73 97.03 0.986 75.91 50.89 81.93
11 83.58 66.57 85.43 0.851 89.80 86.86 93.95 0.952 77.34 66.64 81.30
12 85.36 84.20 85.53 0.919 90.71 93.12 86.91 0.970 82.83 78.04 85.20
13 84.87 79.22 85.65 0.897 89.67 96.52 75.86 0.951 75.15 78.88 73.83
14 86.78 87.70 86.65 0.938 95.05 96.43 90.69 0.982 84.71 84.50 84.83
15 78.84 73.82 79.65 0.838 82.34 94.42 51.12 0.923 80.73 79.27 81.74
16 87.32 55.03 90.23 0.842 82.53 77.42 89.42 0.906 78.25 32.01 93.56
17 83.58 70.06 88.40 0.873 73.59 68.82 93.89 0.921 67.52 50.83 94.35
18 71.87 83.77 66.30 0.842 77.49 76.48 80.01 0.877 72.72 76.24 68.78
19 69.26 82.39 63.03 0.821 80.97 83.21 70.14 0.858 75.60 83.17 57.38

Mean 82.96 76.53 83.36 0.882 87.81 88.24 86.87 0.945 78.91 69.67 82.28
Standard
deviation 5.54 11.24 7.75 0.042 6.18 7.88 11.04 0.036 5.17 15.63 9.91

Table A5. Performance of the developed methods for the CAP rate assessment using LOO.

Model Based on
the 1D-CNN

Model Based on
the AFC LSTM

Model Based on
the FFNN

Model Based on the
LSTM Fed with Features

Subject CAP rate
error (%)

CAP rate
percentage

error

CAP rate
error (%)

CAP rate
percentage

error

CAP rate
error (%)

CAP rate
percentage

error

CAP rate
error (%)

CAP rate
percentage

error
1 5.94 12.64 13.60 28.94 −5.59 11.89 2.93 6.23
2 12.01 25.55 5.54 11.79 39.67 84.40 5.30 11.28
3 −1.68 3.57 6.60 14.04 8.08 17.19 −4.56 9.70
4 22.45 47.77 4.14 8.81 25.09 53.38 8.29 17.64
5 14.82 31.53 −5.60 11.91 −2.99 6.36 −4.14 8.81
6 −7.12 15.15 3.25 6.91 −4.97 10.57 4.87 10.36
7 3.50 7.45 13.39 28.49 9.91 21.09 15.82 33.66
8 7.54 16.04 6.48 13.79 34.82 74.09 29.84 63.49
9 2.16 4.60 −5.87 12.49 −9.11 19.38 −3.67 7.81

10 −4.72 10.04 7.09 15.09 11.51 24.49 8.94 19.02
11 −11.86 25.23 −0.06 0.13 −10.94 23.28 13.00 27.66
12 −5.47 11.64 8.08 17.19 −4.76 10.13 3.52 7.49
13 2.35 5.00 20.13 42.83 18.42 39.19 16.09 34.23
14 8.60 18.30 4.10 8.72 −12.40 26.38 6.39 13.60
15 −18.04 38.38 −2.98 6.34 22.13 47.09 −3.93 8.36
16 −26.28 55.91 −4.49 9.55 20.77 44.19 −17.54 37.32
17 −67.26 143.11 −29.35 62.45 −65.13 138.57 −17.61 37.47
18 −22.98 48.89 0.71 1.51 −21.75 46.28 17.29 36.79
19 −38.97 82.91 −12.07 25.68 −27.92 59.40 10.94 23.28

Mean - 31.77 - 17.19 - 39.86 - 21.80
Median −1.68 18.30 4.10 12.49 −2.99 26.38 5.30 17.64

Standard
deviation - 33.29 - 14.71 - 31.79 - 14.96
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