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Abstract 
It is identified that different scheduling problem classes are just special cases of 
one “general scheduling problem” that is that a number of traditional scheduling 
problem classes (for the case of 64 classes obtained by combination of 6  
parameters) could be reduced to the scheduling problem for a set of lots, with one 
part per lot. “General scheduling problem” definition helps to minimize the 
simulator’s size/complexity concerning modeling and evaluation of three 
scheduling paradigms. 
Further, for scheduling problems different notations were developed to represent 
different scheduling problems classes. In this paper we introduced a new field into 
the Graham´s notation, named “sub-problem solution classes”, considering that 
the general solution (objective) is integrated over solutions for sub-problems.  
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1. Introduction 

Scheduling problems has been widely studied. Different notations were 
developed to represent different scheduling problems classes. 

In this paper we present a contribution for generalization of scheduling 
problem classes. The underlying objective of this paper is to identity the 
different classes which represent special cases of a general scheduling 
problem.  “General scheduling problem” definition helps to minimize the 
simulator’s size/complexity concerning modelling and evaluation of three 
scheduling paradigms, which general architecture was presented in 
(Putnik et al., 2014). 
 

The paper is further organized onward as follows. In Section 2 scheduling 
problems and solutions classes are briefly presented, and a notation to 
represent scheduling problems and solutions classes are proposed. 
Section 3 presents a scheduling problem classes generalization to 
generalize different problems into one problem. Finally, the major 
conclusions are presented in Section 4. 

2. Scheduling problems and solutions classes 

Stecca (2014) defines scheduling problem as “a finite number n of jobs 
that need to be processed over a finite number m of machines”.  

In the context of this paper job is defined as the work to produce one lot 
or a part, determined by the “order” for one lot or the “order” for one 
part, although in practice there could be different associations between 
orders and jobs.  Additionally, it is assumed that there is a 
correspondence between a lot and the job. 
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Each job corresponds to one process plan and to one piece. On the opposite, to one process plan corresponds 
different jobs (with the same operations), and each piece corresponds to one job.  

Task is the job element, and job is composed by sequences of tasks necessary to complete the job. The task 
corresponds to one operation of the process plan. On the opposite, to one operation in process plan 
corresponds different number of the tasks of the same contents.  

In other words, process plan is definition of the job in terms of the number of tasks, on which machine tasks 
must be executed and with associated duration of each task. On other hand, the “operation” (within the 
process plan) is a detailed definition of the task in terms of how to execute the task, and with repeated 
information of the machine on which task should be executed and including duration of the task. However, in 
many companies this information is unfortunately not used in a canonical way and for practitioner many time 
there is a confusion on terminology use and meaning.  

Other synonym for task is activity (Emmons, 1987).  
 

Graham, Lawler, Lenstra, and Kan (1979) introduced the three-field notation , ,   , where   represents the 

machine environment,   represents the job characteristics, and   represents the optimally criteria 

(objective).  

Other notations where developed in the domain of scheduling such as the well-known nomenclatures such as 
Conway (Conway, Maxwell, & Miller, 2012), French (French, 1982), Brucker (Brucker, 1995), Blazewicz 
(Blazewicz, Ecker, Pesch, Schmidt, & Weglarz, 1997) , Pinedo (Pinedo, 2002) and Jordan (Jordan, 1996). In 
Varela (2007) a comparative analysis of these nomenclatures is presented.  

Thus, following the Graham’s notation , ,   , we propose a new field  described in this paper as the required 

sub-problem solutions class. By the required “sub-problem solution class” we consider that the general 
solution should contain solutions for sub-problems such as dispatching rule, lot splitting rule, and a type of a 
heuristic algorithm to be used. This class was introduced for the purpose of guiding the simulation process. In 

other words this notation, with proposed field  and corresponded parameters, serves to specify the 

parameters of the simulation process of the “general purpose” scheduling simulator (Putnik et al., 2014). 

As our goal it is not to deepen through all notation’s parameters but to identify the notation’s parameters 
which can be simulated by scheduling simulator which framework is presented in Putnik et al. (2014), the 
considered notation’s parameters of , , ,     are presented in Table 1. 

Table 1. – Notation’s Parameters , , ,       

 Parameter (Brucker, 1995) Designation 

  (system 

environment) 

1  System Type System Type 

2  System size (number of 
processors or machines) 

System size (number of processors or 
machines) 

  

(characteristi
cs, 
restrictions, 
conditions of:  

jobs ( 1 ),  

machines/reso

urces ( ) and  

combined 1  

and  ( 3 )) 

1  Job preemption 

Number of lots; 

Number of parts per lot; 

Size of lots; 

Lot divisible (Lot splitting); 

Process plan for all lots; 

Process plan per part in one lot; 

Lot readiness/availability (ready time); 

Lot preference; 

Job preemption 

2  Precedence relations 
Setup (Variable or fixed) 

Resource availability 

  3  Release dates Combined 1  and  

4  
Restrictions on processing 
time or on the number of 
operations 

n.d. 
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5  Deadline n.d. 

6  Batching problem n.d. 

  

(performance 
measures): 

1  – single 

objective; 

2  – multi-

objective 

1  

Optimality Criteria 

Time-to-Market 

Cost 

CO2 emissions 

2  Combined single objectives  from 1  

 – Sub-

problem 
solution classes 

 n.d. 

Dispatching rule 

Lot Splitting Rule 

Algorithm Class (Neural, Dynamic, Genetic, …) 

 

Because of the combinatorial explosion and limitation of space, in the context of this paper, and for the 

contribution for generalization of scheduling problem classes, we focuses only on parameter 1 , considering 

the number of lots, number of parts per lot, size of lots, lot divisible (lot splitting), process plan for all lots, and 
process plan per part in one lot. These variable parameters were combined following their values (other 
parameters will be considered as constant in this work), such as:  

- Number of lots: {1, }m ; 

- Number of parts per lot: {1, }n ; 

- Size of lots: { , }Equal Different ; 

- Lot Divisible (Lot splitting): { , }Yes No ; 

- Process plan for all lots: { , }Equal Different ; 

- Process Plan per part in one lot: { , }Equal Different ; 

These 6 parameters makes 64 (26=64) possible combinations, instantiations of the scheduling problem.  

Table 2 and Table 3 resume the unfeasible and feasible classes, respectively, from the 64 possible combinations 
of the scheduling parameter values. The naming of the Classes that is the order number of each class is given 
by the authors (in accordance with the combinations generation applied). 

Classes 1-2, 4-8 and 33-40 (Table 2) are impossible to realize. These classes consider only one lot, with the size 
of 1 (one part) only. From this reason there can’t be different size of lots, lot division, different process plan for 
lots and/or different process plans per part belonging to one lot (the lot consist of only one part).  

Considering the combinations for the parameters: number of lots equal to 1 and number of parts per lot equal 
to n , as we have only one lot, the classes that consider different size of lots or different process plans for all 

lots, are not feasible as there is only one lot. Therefore the Classes 10, 12-16, 42 and 44-48 (Table 2) are not 
feasible under this criteria. 

Considering the combinations for the parameters: number of lot equal to m  and number of parts per lot equal 

to 1 , which contains the different size of lots, lots divisible and different process plan per part in one lot, are 
not feasible, namely the Classes 18, 21-24 and 49-56 (Table 2). 

Finally, all the Classes for the combination with the parameters: number of lot equal to m  and number of parts 

per lot equal to n  are feasible, i.e., Classes 25-32 and 57-64 (Table 3). 
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Table 2. – Unfeasible classes under the 64 possible combinations/class problem 

Class 
Number of 
lots 

Number of parts 
per lot 

Size of lots Lot Divisible 
Process Plan for 
all lots 

Process Plan per part in 
one lot 

1 1 1 Equal Yes Equal Equal 

2 1 1 Equal Yes Different  Equal 

4 1 1 Equal No Different  Equal 

5 1 1 Different Yes Equal Equal 

6 1 1 Different Yes Different  Equal 

7 1 1 Different No Equal  Equal 

8 1 1 Different No Different  Equal 

10 1 n Equal Yes Different  Equal 

12 1 n Equal No Different  Equal 

13 1 n Different Yes Equal  Equal 

14 1 n Different Yes Different  Equal 

15 1 n Different No Equal  Equal 

16 1 n Different No Different  Equal 

18 m 1 Equal Yes Different  Equal 

21 m 1 Different Yes Equal  Equal 

22 m 1 Different Yes Different  Equal 

23 m 1 Different No Equal  Equal 

24 m 1 Different No Different  Equal 

33 1 1 Equal Yes Equal Different 

34 1 1 Equal Yes Different  Different 

35 1 1 Equal No Equal Different 

36 1 1 Equal No Different  Different 

37 1 1 Different Yes Equal Different 

38 1 1 Different Yes Different  Different 

39 1 1 Different No Equal  Different 

40 1 1 Different No Different  Different 

42 1 n Equal Yes Different  Different 

44 1 n Equal No Different  Different 

45 1 n Different Yes Equal  Different 

46 1 n Different Yes Different  Different 

47 1 n Different No Equal  Different 

48 1 n Different No Different  Different 

49 m 1 Equal Yes Equal Different 

50 m 1 Equal Yes Different  Different 

51 m 1 Equal No Equal  Different 

52 m 1 Equal No Different  Different 
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53 m 1 Different Yes Equal  Different 

54 m 1 Different Yes Different  Different 

55 m 1 Different No Equal  Different 

56 m 1 Different No Different  Different 

Table 3. – Feasible classes under the 64 possible combinations/class problem 

Class 
Number of 
lots 

Number of parts 
per lot 

Size of lots Lot Divisible 
Process Plan for 
all lots 

Process Plan per part in 
one lot 

3 1 1 Equal No Equal Equal 

9 1 n Equal Yes Equal Equal 

11 1 n Equal No Equal  Equal 

17 m 1 Equal Yes Equal Equal 

19 m 1 Equal No Equal  Equal 

20 m 1 Equal No Different  Equal 

25 m n Equal Yes Equal  Equal 

26 m n Equal Yes Different  Equal 

27 m n Equal No Equal Equal 

28 m n Equal No Different  Equal 

29 m n Different Yes Equal  Equal 

30 m n Different Yes Different  Equal 

31 m n Different No Equal  Equal 

32 m n Different No Different  Equal 

41 1 n Equal Yes Equal Different 

43 1 n Equal No Equal  Different 

57 m n Equal Yes Equal  Different 

58 m n Equal Yes Different  Different 

59 m n Equal No Equal Different 

60 m n Equal No Different  Different 

61 m n Different Yes Equal  Different 

62 m n Different Yes Different  Different 

63 m n Different No Equal  Different 

64 m n Different No Different  Different 

3. Generalizing scheduling problem classes 

Scheduling problems classes were reduced from 64 to 24 classes, as presented in the previous chapter (Table 
3). These 24 classes can be also reduced into several scheduling problems considering the combinations of the 
different parameters. 

Table 4 presents the description of the 16 problems, and the classes associated to them (in grey). As number of 

lots m  and number of parts per lot n , Classes 3-19, 9-17, 20, 43 and 41 are reduced into Classes 27, 

25, 28, 59 and 57 respectively. 
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Table 4. – Generalizing particular scheduling problem 

Problem Class 
Number 
of lots 

Number 
of parts 
per lot 

Size of 
lots 

Lot 
Divisible 

Process 
Plan for 
all lots  

Process 
Plan per 
part in 
one lot  

1 - Equal size of lots, lots indivisible, equal 
process plan for all lots and equal process 
plan per part in one lot 

3 1 1 Equal No Equal Equal 

11 1 n Equal No Equal Equal 

19 m 1 Equal No Equal Equal 

27 m n Equal No Equal Equal 

2 - Equal size of lots, lots divisible, equal 
process plan for all lots and equal process 
plan per part in one lot 

9 1 n Equal Yes Equal Equal 

17 m 1 Equal Yes Equal Equal 

25 m n Equal Yes Equal Equal 

3 - Equal size of lots, lots indivisible, 
different process plan for each lot and equal 
process plan per part in one lot 

20 m 1 Equal No Different Equal 

28 m n Equal No Different Equal 

4 - Equal size of lots, lots divisible, different 
process plan for each lot and equal process 
plan per part in one lot  

26 m n Equal Yes Different Equal 

5 - Different size of lots, lots indivisible, 
equal process plan for all lots and equal 
process plan per part in one lot 

31 m n Different No Equal Equal 

6 - Different size of lots, lots divisible, equal 
process plan for all lots and equal process 
plan per part in one lot 

29 m n Different Yes Equal Equal 

7 -Different size of lots, lots indivisible, 
different process plan for each lot and equal 
process plan per part in one lot 

32 m n Different No Different Equal 

8 - Different size of lots, lots divisible, 
different process plan for each lot and equal 
process plan per part in one lot 

30 m n Different Yes Different Equal 

9 - Equal size of lots, lots indivisible, equal 
process plan for all lots and different 
process plan per part in one lot 

43 1 n Equal No Equal Different 

59 m n Equal No Equal Different 

10 - Equal size of lots, lots divisible, equal 
process plan for all lots and different 
process plan per part in one lot 

41 1 n Equal Yes Equal Different 

57 m n Equal Yes Equal Different 

11 - Equal size of lots, lots indivisible, 
different process plan for each lot and 
different process plan per part in one lot 

60 m n Equal No Different Different 

12 - Equal size of lots, lots divisible, different 
process plan for each lot and different 
process plan per part in one lot 

58 m n Equal Yes Different Different 

13 - Different size of lots, lots indivisible, 
equal process plan for all lots and different 
process plan per part in one lot 

63 m n Different No Equal Different 

14 - Different size of lots, lots divisible, 
equal process plan for all lots and different 
process plan per part in one lot  

61 m n Different Yes Equal Different 
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15 -Different size of lots, lots indivisible, 
different process plan for each lot and 
different process plan per part in one lot 

64 m n Different No Different Different 

16 - Different size of lots, lots divisible, 
different process plan for each lot and 
different process plan per part in one lot 

62 m n Different Yes Different Different 

These 16 problems represent the problems that could be resolved by one or more algorithms. However, it is 
virtually unrealistic to create problem classes for all different scheduling parameters combinations, once the 
number of combinations for n parameters is 2n, or even more if considering the values in parameter description 
(in this paper we combine only 6 parameters giving 64 combinations – as we have seen in the previous section). 

Thus, we breakdown these different problems in accordance with their input for the algorithm. In this paper, 
only the breakdown for the Problem 16 is presented (Table 5), as it encloses all other classes as it includes all 
the parameters. In this case, the lots are indivisible, the size of lots is considered different, as well as the 
process plan for each lot and the different process plan per part in one lot. So, 2 lots are presented with the 
size of 3 and 2 parts, respectively for the lot 1 and 2, and with 3 operations for both lots. Table 5 aims to help 
the understanding of the problem generalization. 

Table 5. – Input considering the problem 16 

Size of Lots Lot Divisible Process Plan for all lots Process Plan per part in one lot 

Lot 1 (3 Parts 
{A,A,A} 

Lot (sublot) 1.1 A Process Plan 1 = {op1, op2, op3} Process Plan 1 (Lot 1, Part A) ={op1, op2, op3} 
Lot (sublot) 1.2 A Process Plan 1 = {op1, op2, op3} Process Plan 2 (Lot 1, Part A) ={op4, op5, op6} 
Lot (sublot) 1.3 A Process Plan 1 = {op1, op2, op3} Process Plan 3 (Lot 1, Part A) ={op7, op8, op9} 

Lot 2 (2 Parts 
{A,A}) 

Lot (sublot) 2.1 A Process Plan 2 = {op4, op5, op6} Process Plan 4 (Lot 1, Part A) ={op10, op11, op12} 
Lot (sublot) 2.2 A Process Plan 2 = {op4, op5, op6} Process Plan 5 (Lot 1, Part A) ={op13, op14, op15} 

 

Generalizing the intrinsic nature of the parameter’s values, it is possible to reduce all the 16 problems into 1. 

This means that in the input will be composed by a matrix i j , where i is determined by the total number of 

parts of all lots, and j corresponds to the variable parameters. For example, in the problem 16 it is considered 

5 lines of input and 3 columns.  

Considering Table 4 and Table 5, it can be assumed that all problems can be built by primitive blocks. For 
example, problem 16 (considering the input values - Table 5) can be generalized into 5 lines composed by 
primitive blocks of problem 1, Class 3. So, all problems described can be represented through the elementary 
Building  Block – Class 3 , , i.e. equal size of lots (size of lot equal to 1), number of parts per lot (lot is composed 
by 1 part), lots indivisible, equal process plan for all lots and equal process plan per part in one lot , represented 
in Table 6. 

Table 6. – Generalized scheduling problem class 

Problem Class 
Number 
of lots 

Number of 
parts per lot 

Size 
of 

lots 

Lot 
Divisible 

Process 
Plan for 
all lots 

Process Plan 
per part in 

one lot 

1 - Equal size of lots, lots indivisible, 
equal process plan for all lots and 
equal process plan per part in one lot 

3 1 1 Equal No Equal Equal 

 

4. Conclusions 

Simulators development for scheduling problem classes could be very complexity. Some authors dedicate their 
research to find and develop simulator for the resolution of the scheduling problem classes. However, in this 
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paper we didn’t go to deepen through all notation’s parameters but to identify the notation’s parameters 
which can be simulated by scheduling simulator to be developed. 

Proposed notation was introduced to specify the parameters of the simulation process of the “general 
purpose” scheduling simulator: 1 {1,1, , , , , }Equal No Equal Equal   and { , Selection_algorithm},FIFO   . 

Other parameters values will be considered fixed, as applying the same methodology all values and parameters 
can be represented by the elementary building block. 

A contribution for generalization of scheduling problem classes to minimize a simulator’s size/complexity was 
given generalizing different scheduling problems into one problem, i.e., problems can be constituted by 
primitive “blocks” concerning Problem 1 – Class 3. Simulator open architecture already used in CIM (Computer 
Integrated Manufacturing) could be considered to represent any problem through the elementary Building 
Block, i.e. represent any problem through the Class 3 (Figure 1).  Considering the terms used in CIM’s jargon, 
Compiler 1 (Compiler Class n to Class 3) and Compiler 2 (Compiler Class 3 to Class n) presented in Figure 1 are 
the “pre-processor” and “post-processor of the simulator. 
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the Class n 
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ré
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P
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r
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Open Integration Architecture 

 

Figure 1. Simulator open architecture for representation of scheduling problem input/output transformation 

Further research will focuses in the proof that all scheduling models can be represented in architectures based 
on Fixed Horizon paradigm as an elementary building block. 
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