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Abstract: Cancer is a leading cause of death worldwide with a huge societal and economic impact.
Clinically effective and less expensive anticancer agents derived from natural sources can help to
overcome limitations and negative side effects of chemotherapy and radiotherapy. Previously, we
showed that the extracellular carbohydrate polymer of a Synechocystis ∆sigF overproducing mutant
displayed a strong antitumor activity towards several human tumor cell lines, by inducing high
levels of apoptosis through p53 and caspase-3 activation. Here, the ∆sigF polymer was manipulated
to obtain variants that were tested in a human melanoma (Mewo) cell line. Our results demon-
strated that high molecular mass fractions were important for the polymer bioactivity, and that the
reduction of the peptide content generated a variant with enhanced in vitro antitumor activity. This
variant, and the original ∆sigF polymer, were further tested in vivo using the chick chorioallantoic
membrane (CAM) assay. Both polymers significantly decreased xenografted CAM tumor growth and
affected tumor morphology, by promoting less compact tumors, validating their antitumor potential
in vivo. This work contributes with strategies for the design and testing tailored cyanobacterial
extracellular polymers and further strengths the relevance of evaluating this type of polymers for
biotechnological/biomedical applications.
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1. Introduction

Cancer is a leading cause of death worldwide, with an estimation of 19.3 million
new cases and almost 10 million deaths in 2020, thus having a huge societal impact
and economical relevance. Based on the GLOBOCAN project in 2020, these numbers
are expected to grow to 28.4 million new cancer cases in 2040, a 47% rise from 2020 [1].
These projections increase the demand of early cancer detection and the development of
advanced and innovative therapies. Due to the limitations and negative side effects of
chemotherapy and radiotherapy, researchers are focused on finding alternative therapeu-
tics that are clinically effective and less expensive, namely anticancer agents from natural
sources [2–4]. In this context, biopolymers of polysaccharidic nature embody promising
therapeutic alternatives, by preventing tumor development and inhibiting proliferation,
invasion, adhesion, metastization, and/or angiogenesis [3,5]. These biopolymers can also
act in combination with conventional anticancer drugs, improving their activity through the
enhancement of tumor sensitivity and patient immune response [3,6]. The molecular mech-
anisms underlying the biopolymers’ antitumor effects include cell cycle arrest, activation of
the mitochondrial-mediated apoptotic pathway, production and activation of nitric oxide
pathway or immunomodulatory pathways [7]. While some biopolymers may act through
defined pathways, for others the mechanism of action is still not clear, but may include pro-
duction of reactive oxygen species, as well as inhibition of proteins involved in angiogenesis
and metastization, among other processes [3]. In recent years, cyanobacteria have emerged
as a promising source of bioactive polysaccharides, since most strains produce extracellular
polymeric substances (EPS), mainly composed by heteropolysaccharides, with a distinctive
set of desirable characteristics, including a (i) large number of different monosaccharides,
allowing a wide range of structural rearrangements, (ii) strong anionic character due to the
presence of uronic acids and sulfate groups and (iii) presence of deoxyhexoses and peptides
that contribute to hydrophobicity and, thus, amphiphilic behavior [8,9]. These peculiar
features prompted significant advances on their characterization [10–12] and validation
of their potential for biomedical applications [13–19]. However, studies on the antitumor
potential of cyanobacterial EPS are still scarce and mainly based on tumor cell lines [20–25],
with few in vivo studies using tumor xenograft mice models [26].

Previously, we showed that a sigma factor mutant (∆sigF) of the model unicellular
cyanobacterium Synechocystis sp. PCC 6803 had the secretion mechanisms significantly
altered, being able to release up to four-fold more polysaccharides (RPS - released polysac-
charides) compared to the wild-type [27,28]. These carbohydrate polymers displayed a
strong antitumor activity towards human tumor cell lines, namely melanoma (Mewo),
thyroid carcinoma (8505C) and ovarian carcinoma (A2780), being the ∆sigF polymer easier
to isolate and recover from the culture medium and more potent than the one from the
wild-type [20]. We also showed that the antitumor effect of the ∆sigF polymer was associ-
ated with the induction of apoptotic pathways via upregulation of p53 protein levels and
caspase-3 activation [20]. Importantly, the ∆sigF polymer induced one of the highest levels
of apoptosis (~40%) observed among natural polymers [20,23,29,30]. Despite these results,
it is still unclear which are the polymer features/constituents that mostly contribute to its
antitumor activity.

The major aim of this study was to manipulate the Synechocystis’ ∆sigF polymer in
order to obtain variants with increased antitumor activity (in vitro and/or in vivo), gaining
insight into key features that contribute to the polymer bioactivity.

2. Materials and Methods
2.1. Cyanobacterial Strain and Culture Conditions

Synechocystis sp. PCC 6803 ∆sigF [27,28] was grown in Erlenmeyer flasks with BG11
medium [31] at 30 ◦C under 12 h light (50 µE/m2/s)/12 h dark regimen, with orbital
shaking at 150 rpm.

The ∆sigF mutant was maintained in BG11 medium supplemented with kanamycin
(100 µg/mL), while the experiments were performed in the absence of selective pressure.
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2.2. Polymer Isolation

The polymer was isolated according to [32,33]. Briefly, the Synechocystis ∆sigF cultures
were dialyzed (12–14 kDa of molecular weight cut-off; Medicell International, London, UK)
against a minimum of 10 volumes of deionized water for 48 h with continuous stirring.
Then, the cultures were centrifuged at 20,000× g for 25 min at 8 ◦C, and 2 volumes of
96% ethanol were added to the supernatant. After an incubation at 4 ◦C overnight, the
suspension was centrifuged at 20,000× g for 25 min at 6 ◦C, and the supernatant was
discarded. The pellet was resuspended in 1 mL of autoclaved type II water and lyophilized.
The dried polymer was stored at room temperature (RT) until further use.

2.3. Polymer Hydrolysis and Molecular Mass Analysis

Hydrolysis of the polymers was performed with either 2 M trifluoroacetic acid (TFA)
(VWR Chemicals, Radnor, PA, USA) at 120 ◦C or in 2 M hydrochloric acid (HCl) (Merk,
Darmstadt, Germany) at 100 ◦C for 10 min, 25 min, 45 min, 1 h, or 2 h. After hydrolysis,
the samples were evaporated two times, and the polymers resuspended in ultrapure water
before being analyzed by size exclusion chromatography (SEC).

The apparent molecular masses (hereafter referred to as MM) were determined ac-
cording to a previously reported method [34], with some changes. Briefly, samples were
dissolved in high-performance liquid chromatography (HPLC) grade water at a concen-
tration of 5 mg/mL and analyzed using a Varian ProStar HPLC chromatograph (Varian,
Palo Alto, CA, USA) equipped with a 355 RI (refractive index) detector and two columns
for SEC, Polysep-GFC-P 6000 and 4000 (Phenomenex, Torrance, CA, USA) connected in
series. The analyses were performed with runs of 70 min and with HPLC grade water
as eluent at a flow rate of 0.4 mL/min, using Dextran (Sigma–Aldrich, Burlington, MA,
USA) at different MM (2000 kDa, 1100 kDa, 410 kDa, 150 kDa, and 50 kDa) and saccharose
(0.34 kDa) as standards.

2.4. Quantification of Sulfate and Peptide Contents

For sulfate quantification, lyophilized RPS were hydrolyzed in 2 M HCl at 100 ◦C
for 10 min to 2 h, centrifuged after cooling, and the supernatant was analyzed by ion-
exchange chromatography [35,36]. The analysis was performed using a Dionex ICS-2500
system chromatograph equipped with a continuously regenerated anion-trap column, a
continuous anionic self-regenerating suppressor, a conductivity detector (ED50), an IonPac
PA11 4× 250 mm column (Dionex, Sunnyvale, CA, USA), and a reagent-free Dionex system
producing high-purity 50 mM KOH at a flow rate of 2 mL/min. Sulfate solutions (1 to
10 mg/L, Fluka, Switzerland) were used as standards.

To evaluate the peptide content, the lyophilized polymer was resuspended in deion-
ized water and quantification was performed by the Lowry method [37].

2.5. Peptide Removal and Analysis

Peptide removal was performed by trichloroacetic acid (TCA) (Fisher Bioreagents,
Bremen, Germany) precipitation [35,36]. Briefly, an aqueous solution polymer (5 mg/mL)
was incubated with 15% TCA for 15 or 30 min at room temperature. After incubation, the
mixture was centrifuged at 11,000× g for 20 min at 4 ◦C. The supernatant was dialyzed
against a minimum of 10 volumes of deionized water for 48 h with continuous stirring and
lyophilized. The precipitation efficiency was assessed measuring the peptide content in the
polymer suspension before and after TCA treatment using the Lowry method [37].

2.6. Human Tumor Cell Lines and Culture Conditions

The human melanoma (Mewo) cell line (kindly given by Prof. Marc Mareel, Depart-
ment of Radiotherapy and Nuclear Medicine, Ghent University Hospital, Belgium) [38]
was maintained in DMEM culture medium with stable glutamine (Capricorn Scientific,
Ebsdorfergrund, Germany), supplemented with 10% fetal bovine serum (FBS, GIBCO,
Invitrogen, UK), 1x penicillin/streptomycin (Biowest, Nuaillé, France), and 1.25 µg/mL
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amphotericin B (Corning, NY, USA). Cells were maintained in a humidified incubator at
37 ◦C with 5% CO2. Cell lines were authenticated following genotyping at i3S Genomics
Core Facility (Porto, Portugal) using the PowerPlex® 16 HS System (Promega, Madison,
WI, USA) and confirmation with the DNA profiles available at ATCC and ECACC STR
profiles database.

2.7. Cell Viability Assays

Mewo cells were plated on 96-well plates at 1 × 104 cells/well and allowed to adhere
for 24 h at 37 ◦C. Cells were then treated for 24 and 48 h with: (i) supplemented media
(Blank), (ii) ∆sigF polymer variants (resuspended in non-supplemented media) at 0.7, 1,
and 1.5 mg/mL, or (iii) with polymer vehicle as control (consisting of supplemented media
containing the equivalent amount of non-supplemented medium used in the polymer
treatments). To assess cell viability after treatment, a PrestoBlueTM cell viability assay
was carried out as previously described [39]. Briefly, cells were washed three times with
the respective non-supplemented medium and further incubated for 45 min with 10%
PrestoBlueTM reagent (Life Technologies, Carlsbad, OR, USA) in supplemented medium.
Fluorescence was measured (excitation 560 nm; emission 590 nm) on a Synergy HT Multi-
Mode Microplate Reader (BioTek Instruments Inc., Santa Clara, CA, USA). All samples
and controls were analyzed with four biological and five technical replicates. Cellular
viability was determined by analyzing the fluorescence values of each sample as a percent-
age in relation to control samples (cells treated with medium only), after removing the
background values.

2.8. CAM Assay

The effect of polymers on tumor growth and angiogenic activity was evaluated in vivo
using the chick chorioallantoic membrane (CAM) assay [40–42]. Fertilized chick eggs
(Gallus gallus) were incubated horizontally at 37 ◦C in a humidified atmosphere and referred
to the embryonic development day 0 (EDD0). On EDD3, eggs were prepared (window
opening) to allow detachment of the developing CAM from the shell. On EDD9, CAMs
were inoculated with 1 × 106 exponentially growing Mewo cells resuspended in Matrigel
(1:1) together with (i) 0.7 mg/ml of ∆sigF polymer, (ii) its variant obtained after 15 min
of TCA treatment (∆sigF.pep-), or (iii) with their vehicle solvent (DMEM), into a 5-mm
silicone ring under sterile conditions. After resealing, eggs were returned to the incubator.
At EDD13, CAMs were fixed in 10% neutral-buffered formalin, the ring was removed, and
CAMs were excised from the embryos and photographed ex ovo under a stereoscope at
20× magnification (Olympus, Tokyo, Japan, SZX16 coupled with a DP71 camera). The
number of new vessels growing towards the inoculation site, delimited by the ring mark
were counted (less than 20 µm in diameter) and the area of the tumors (dense areas) were
determined using the “Cell A Olympus” program, as described previously [40–42].

2.9. Tumor Histology and Immunohistochemical Analysis

Excised CAMs (fixed in 10% neutral-buffered formalin) were processed for paraffin-
embedding. Serial 4-µm-thick sections were cut for hematoxylin and eosin (H&E) stain
and for immunohistochemistry evaluation of Ki-67 and cleaved caspase-3. Briefly, for
immunohistochemistry, after deparaffinization and rehydration, samples were subjected to
heat-induced antigen retrieval in citrate buffer, pH 6 (Richard-Allan Scientific, Kalamazoo,
MI, USA) for Ki-67 or in Epitope Retrieval solution pH 9.0 (Novocastra; Leica Biosystems,
Wetzlar, Germany), for cleaved caspase 3 evaluation, for 45 min at 90 ◦C in a steamer.
Following blocking of endogenous peroxidase activity and of non-specific binding with
Ultravision Hydrogen Peroxide Block and Protein Block reagents (Thermo Scientific, CA,
USA), respectively, sections were incubated with Ki-67 antibody (ref. M7240, 1:200, DAKO,
Glostrup, Denmark) for 30 min at RT or with cleaved-caspase 3 antibody (ref. 9664, 1:1000,
Cell Signaling, Danvers, MA, USA) overnight at 4 ◦C. Signal amplification was carried
out with Primary Antibody Amplifier incubation, followed by HRP polymer (UltraVision
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Quanto Detection System HRP; Thermo Scientific, CA, USA). Detection was performed
using 3,3′ Diaminobenzidine (DAB Quanto Chromogen and Substrate; Thermo Scientific,
CA, USA) and counterstaining with Mayer’s Haematoxylin (Thermo Scientific, CA, USA).
Tonsil tissue sections were used as a positive control for staining. Negative controls (in
which the primary antibody was omitted) were also included. Slides were evaluated using
the light microscope Olympus DP 25 Camera coupled to the Cell B Olympus software
(Tokyo, Japan). The percentage of Ki-67 positive stained cells was determined by evaluating
at least 2900 tumor cells per slide.

2.10. Statistical Analysis

Data were plotted and statistically analyzed using GraphPad Prism version 9.0 (Graph-
Pad Software, San Diego, CA, USA) using an analysis of variance (ANOVA), followed by
Bonferroni’s multiple comparisons test. Regarding the CAM assays, statistical analysis was
performed using one-way ANOVA test with IBM SPSS statistics.

3. Results and Discussion

We previously demonstrated that the extracellular carbohydrate polymers released by
the unicellular cyanobacterium Synechocystis sp. PCC 6803 and its ∆sigF mutant exhibited a
strong antitumor activity against several human tumor cell lines, with the latter being more
effective [20]. The present study goes a step forward by manipulating several features of
the ∆sigF polymer to obtain variants, which were tested in vitro in the human melanoma
(Mewo) cell line. The most promising variant was then evaluated in vivo, using the chick
embryo chorioallantoic membrane (CAM) model.

3.1. Polymer Hydrolysis and Evaluation of Antitumor Activity In Vitro

Since previous studies reported a correlation between the molecular mass (MM)
of algal polysaccharides and their antitumor activity [43–45], modification of the MM
distribution of Synechocystis ∆sigF polymer was firstly achieved through trifluoroacetic
acid (TFA) hydrolysis (Figure 1). A gradual increase of the abundance of lower MM
fractions was observed by increasing the hydrolysis time. This stepwise effect was expected
since TFA disrupts glycosidic bonds selectively, at different rates depending on the linked
monosaccharide [46]. For example, the disruption of bonds from amino sugars takes
a longer time, while pentoses are among the first monosaccharides to be released and
degraded under longer reaction times (>2 h).

Subsequently, the effect of two polymer variants (obtained after 25 min and 2 h of
TFA hydrolysis) on the viability of Mewo cells was evaluated. Overall, our results showed
that both variants had less antitumor activity than the original ∆sigF polymer, and that
after 48 h of treatment there was a significant decrease in bioactivity for the three polymer
concentrations tested (Figure 2) [33]. Moreover, the variant with lower abundance of high
MM fractions (2 h hydrolysis) had the lowest effect on Mewo cells viability, indicating that
the high MM fractions play an important role in its antitumor activity.

One should bear in mind that although hydrolysis with TFA is considered mild
and believed not to cause significant desulfation, this effect cannot be completely ruled
out [47,48]. Considering this, the ∆sigF polymer was also subjected to hydrolysis with HCl,
which led to the formation of polymer variants mainly composed by low MM fractions
(<342.30 Da) (Figure S1). As expected, the disruption of glycosidic bonds by HCl was quite
fast, and HCl had a stronger action than TFA. The polymer variants obtained not only had
alterations in their MM distribution, but also differed in sulfate content (Figure S2), being
the complete desulfation achieved after 2 h of HCl hydrolysis. This is in agreement with
the saturation point described for the HCl hydrolytic reaction but, as previously reported,
the degradation of some sugars such as uronic acids might also occur [49,50]. The polymer
variants obtained after HCl hydrolysis were also tested regarding their antitumor potential
in Mewo cells. The results were similar to those obtained with the TFA variants, with the
HCl variants having the same or lower antitumor activity compared to the original polymer
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(Figure S3). Altogether, these results indicate that hydrolysis and/or removal of sulfate
groups decrease the bioactivity of the polymer.
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This is in accordance with a previous study that reported that the hydrolysis of the
EPS from Synechocystis aquatilis with TFA led to the loss of its bioactivity as inhibitor of
the human complement system [47]. Furthermore, recent studies showed that hydrolyzed
fucoidans from different sources maintained or reduced their antitumor activity compared
to the original polymer [44]. On the other hand, our findings do not support the hypothesis
that polymer variants with lower MM fractions could have higher antitumor activity by
being more easily internalized by the cells [43,51].
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3.2. Reduction of Peptide Content and Evaluation of the Antitumor Activity In Vitro

To evaluate the impact of peptide content on the antitumor activity of Synechocystis
∆sigF polymer (~27% w/w polymer dry weight, [27]), an aqueous solution of the polymer
was incubated for 15 or 30 min with trichloroacetic acid (TCA). After either 15 or 30 min,
the amount of peptides was reduced by approximately 40% (Figure 3a), with a minimal
loss (~5%) in the yield of the polymer (Figure 3b) [36].
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Although TCA precipitation is usually highly efficient and widely used to remove
peptides from polysaccharides [52–54], the efficiency reported here is lower than pre-
viously reported for polysaccharidic polymers from heterotrophic bacterial and plant
sources [55,56], but in the same range as the ones reported for other cyanobacterial poly-
mers [57,58]. In some cases, such as for polysaccharides from Spirulina platensis, higher
TCA concentrations had to be used to achieve a precipitation efficiency similar to the one
reported here (~41% less peptides) [57]. These differences can be attributed to the high
complexity of the cyanobacterial polymers and/or to a stronger association between the
peptides and the polymer. Nevertheless, the amount of ∆sigF polymer that was lost during
the TCA treatment in our study was among the lowest reported, even when compared
with similar treatments using polymers from non-cyanobacterial sources [55]. Since the
decrease in peptide content was similar in the two treatments (Figure 3a), the polymer
variant obtained after 15 min (∆sigF.pep-) was the one selected to proceed.

The antitumor potential of ∆sigF.pep- variant was tested in vitro in Mewo cells and
compared to the ∆sigF polymer with intact peptide content (Figure 4) [36]. Both polymers
induced a strong decrease in cells viability in a time- and dose-dependent manner being
this effect significantly stronger following treatment with the ∆sigF.pep- variant compared
to the treatment with the original ∆sigF (Figure 4). At the lowest concentration tested
(0.7 mg/mL), the ∆sigF polymer reduced Mewo cells viability in approximately 9% and
28% after 24 h and 48 h of treatment respectively, while the cells treated with ∆sigF.pep-
showed a viability decrease of about 47% and 76%, respectively.

This is in line with the results obtained by Garbacki et al. [59], which showed that TCA
peptide precipitation from isolated cyanobacterial capsular polysaccharides (CPS) from
two Phormidium strains increased the anti-inflammatory activity of these polymers in ~60%.
One possible explanation for the stronger bioactivity of the ∆sigF.pep- compared to ∆sigF
may be the increased exposure of bioactive component(s). However, in our study we cannot
exclude that at least some of the bioactive components could be the remaining peptides,
since only a partial peptide removal was achieved with TCA treatment. A previous work
reported that specific protein fractions in the EPS from the cyanobacterium Gloeocapsa sp.
might be involved in their antitumor activity towards human cervical carcinoma (HeLa)
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cells [21]. Furthermore, other studies have shown that peptides present in the EPS from
microalgae are important for their biological activity [60–62], namely a glycoprotein found
in the EPS from Chlorella vulgaris that was associated with their antitumor activity [63].
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Figure 4. Effect of the Synechocystis ∆sigF polymer (∆sigF) and ∆sigF polymer with reduced peptide
content (∆sigF.pep-) on the viability of human melanoma (Mewo) cell line, analyzed using Presto-
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T48, respectively). Cell treatment with polymer vehicle showed no differences compared to Blank
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3.3. Assessment of the Antitumor Activity In Vivo

To validate in vivo the antitumor potential of our original polymer (∆sigF) and its most
promising variant (∆sigF.pep-), the chick embryo chorioallantoic membrane (CAM) assay
was used. This is a low-cost, reproducible, and reliable preclinical cancer model that allows
investigation of tumor growth and angiogenesis in vivo, being often used to evaluate
potential anticancer drugs [64]. Therefore, and following the in vitro results showing that
the variant ∆sigF.pep- had stronger antitumor potential, CAM assays were performed [35].
For this purpose, CAMs were inoculated with Mewo cells at embryonic development day
9 (EDD9), together with the ∆sigF polymer, its ∆sigF.pep- variant or with their vehicle
(DMEM, control). The lowest concentration (0.7 mg/mL) was chosen for this analysis. A
dose–response curve for the effect of the ∆sigF.pep- variant in Mewo cells is shown in
Figure S4, while for the ∆sigF polymer it has been previously published in [20].

After four days of treatment, CAMs were retrieved and analyzed ex ovo to evaluate
vessel formation (angiogenesis) and tumor growth (Figure 5). Results regarding the num-
ber of blood vessels counted on the region of interest showed no significant differences
between polymer and control treatments, although a tendency for a slight decrease in
vessel count was observed with ∆sigF.pep- variant, compared to the control (9.5 ± 1.2
and 10.7 ± 1.2, respectively) (Figure 5b). On the other hand, evaluation of tumor size
showed that treatment with both polymers (∆sigF polymer and ∆sigF.pep- variant) resulted
in a significant decrease of tumor area (7.2 ± 2.1 mm2 and 7.1± 3.7 mm2, respectively)
compared to the control condition (9.9± 2.1 mm2) (Figure 5c). These results, demonstrating
in vivo antitumor activity of both polymers, are in accordance with previously in vitro
results (Figure 4). However, no significant differences were observed when comparing the
effect of the two polymers on tumor growth in vivo.
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Figure 5. Effect of the polymers analyzed by the chick embryo chorioallantoic membrane (CAM) assay.
Mewo cells were inoculated on the CAM at embryonic development day 9 (EDD9) with polymers
∆sigF and ∆sigF.pep-, or with vehicle solvent (DMEM). At EDD13, CAM and respective tumors were
analyzed. (a) Representative ex ovo images showing the ring used for cell inoculation, the tumor
formed and blood vessels. Images are 20× magnification and scale bar = 500 µm. (b) Angiogenic
analysis. Quantification of the number of vessels (<20 µm) growing towards the inoculation site,
delimited by the ring mark, induced by vehicle solvent (Control n = 9, ∆sigF n = 19; ∆sigF.pep- n = 13).
(c) Tumor growth analysis of CAM xenografted tumors area measured in mm2 (Control n = 13, ∆sigF
n = 18; ∆sigF.pep- n = 17) (* p < 0.05).

To gain insight into potential mechanisms involved in the effect of these polymers in tu-
mor growth, CAM xenografted tumors were further evaluated histologically. Hematoxylin-
eosin staining showed differences in tumor cell morphology (Figure 6). While the control
tumors (treated with DMEM) exhibited a more compact and cellular structure, the tumors
treated with the polymers (in particular with ∆sigF polymer) were less compact (with
more stroma and less cells within the same area). Since we previously showed that short
term exposition to the ∆sigF polymer increased apoptosis markers [20], here we proceed to
evaluate proliferation and apoptosis in the CAM tumors. No differences were observed
regarding the percentage of Ki-67-stained cells per slide, with polymer treated tumors
presenting similar levels compared to controls (∆sigF: 70.3 ± 4%; ∆sigF.pep-: 71.9 ± 4%
Control: 73.8 ± 2%, Figure 6 middle panel). Moreover, no evident differences in caspase
3 cleavage were observed in any of the conditions (Figure 6 lower panel). We cannot
exclude the possibility that alterations in apoptosis (or proliferation, for that matter) may
be occurring in polymer-treated cells at earlier time points. It is possible that the observed
differences in tumor cell morphology may result from an initial effect of the polymers on
the inoculated cells, which was not evident in the proliferative or apoptotic profiles of the
surviving cells at EDD13. In addition, in our previous study [20], the experiments were
carried out only in in vitro conditions and using different methodologies (Annexin V/PI
staining by flow cytometry and cleaved caspase-3 by Western blot). Finally, it is important
to consider that the use of different models (in vitro vs. in vivo) may also impact the results,
as in vitro experiments do not take into account the complex interactions between tumor
cells and the surrounding stroma.
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Figure 6. Representative images of the excised tumor xenografts from CAM after treatment with
polymers ∆sigF and ∆sigF.pep-, or with vehicle solvent (DMEM), stained with H&E, and immunos-
tained for Ki-67 and cleaved caspase-3. Scale bar = 200 µm (except in the insets of H&E, in which
scale bar = 50 µm).

4. Conclusions

Overall, Synechocystis ∆sigF polymer was shown to be a powerful platform to develop
polymer variants with in vitro and in vivo antitumor activity. We demonstrated that high
molecular mass fractions of the ∆sigF polymer were important for its antitumor activ-
ity in human melanoma cells, and that the reduction of the peptide content generated
a polymer variant with enhanced in vitro antitumor activity. Importantly, the antitumor
potential of ∆sigF polymer and its ∆sigF.pep- variant was validated in vivo, with both
polymers significantly decreasing xenografted CAM tumor growth and affecting tumor
morphology, by promoting less compact tumors. Further studies are necessary to fully
disclose the mechanisms behind the effects of these polymers in tumor growth, as well
as to overcome technical issues usually associated with polymers with high molecular
mass fractions/viscosity. Nevertheless, the methodologies herein implemented represent
straightforward strategies for the design and testing of tailored cyanobacterial extracellu-
lar polymers for biotechnological/biomedical applications. Moreover, this work further
strengthens the relevance of evaluating the antitumor potential of this type of natural
polymers both in vitro and in vivo.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym15061382/s1, Figure S1: Molecular mass distribution
of Synechocystis sp. PCC 6803 ∆sigF polymer before and after hydrolysis with HCl for different time
periods; Figure S2: Quantification of the sulfate released from Synechocystis ∆sigF polymer after HCl
hydrolysis (from 10 min to 2 h), and the percentage of desulfation obtained; Figure S3: Effect of the
Synechocystis ∆sigF polymer, and its variants obtained after hydrolysis with HCl (from 10 min to 2 h),
on the viability of human melanoma (Mewo) cell line evaluated with the PrestoBlueTM viability assay;
Figure S4: Effect of the Synechocystis ∆sigF polymer with reduced peptide content (∆sigF.pep-) on the
viability of human melanoma (Mewo) cell line, analyzed using the PrestoBlue™ viability assay.

https://www.mdpi.com/article/10.3390/polym15061382/s1
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