
Gestor de Risco aplicado à área de
cibersegurança

DAVID PÓVOAS RESENDE
novembro de 2022

RISK MANAGEMENT APPLICATION FOR THE

CYBERSECURITY FIELD

David Póvoas Resende

Departamento de Engenharia Eletrotécnica

Mestrado em Engenharia Eletrotécnica e de Computadores

Área de Especialização em Sistemas Autónomos

2022

Relatório elaborado para satisfação parcial dos requisitos da Unidade Curricular de

Tese/Dissertação do Mestrado em Engenharia Eletrotécnica e de Computadores

Candidato: David Póvoas, Nº 1200473, 1200473@isep.ipp.pt

Orientação científica: Professora Doutora Isabel Praça, icp@isep.ipp.pt

Coorientação científica: Professor Doutor Lino Figueiredo, lbf@isep.ipp.pt

Departamento de Engenharia Eletrotécnica

Mestrado em Engenharia Eletrotécnica e de Computadores

Área de Especialização em Sistemas Autónomos

2022

To my lovely girlfriend Agata who had the patience and the knowledge to help and support

me in every single moment, and who I could have not completed my studies without.

À minha querida mãe que sempre me apoiou durante todo o meu percurso e me deu força

para prosseguir com os estudos.

i

Acknowledgement

Firstly, I would like to show my appreciation to the thesis’ supervisor, Professora

Isabel Cecília Correia da Silva Praça Gomes Pereira, who accompanied me through

all the research steps and for the availability and engagement when discussing the

research path.

Secondly, I would like to extend my appreciation to my girlfriend, my family and

friends who kindly supported me in the research both technically and emotionally.

Finally, I would like to express my gratitude to Instituto Superior de Engenharia do

Porto - Politécnico do Porto (ISEP), for giving me the opportunity to complete my

Master’s Degree.

iii

Resumo

No cenário moderno de gestão de riscos de segurança cibernética, uma verdade

desconfortável é clara: a gestão de riscos cibernéticos numa empresa, de forma a

manter arquiteturas e sistemas seguros e em conformidade, está mais difícil do que

nunca. Esta gestão passa por um processo contínuo de identificação, análise,

avaliação e tratamento das ameaças de segurança cibernética.

Quando se trata de gestores de riscos, geralmente segue-se um processo de quatro

etapas, começando com a identificação do risco. Em seguida, o risco é avaliado

com base na probabilidade de ameaças que exploram essas vulnerabilidades e o

potencial impacto. Os riscos são priorizados e categorizados dependendo da

estratégia de mitigação existente, na terceira etapa. Por fim, a quarta etapa,

monitorização, é estruturada para a resposta ao risco num ambiente em constante

mudança.

Esta tese tem como objetivo o desenvolvimento de uma aplicação de gestão de

risco de vulnerabilidades dos assets encontrados numa topologia de rede. Esta

aplicação web tem por base a framework Flask e o uso da ferramenta open-source

Nmap, para a realização da deteção dos assets e todos os serviços que estes

incluem. Para a deteção das vulnerabilidades a aplicação conta com uma ligação

através de duas APIs, uma para o repositório NVD e outra para o repositório VulDB

de forma a identificar as vulnerabilidades existentes de cada serviço encontrado.

Toda a informação encontrada é guardada numa base de dados com base em

SQLite.

De notar que o uso do Nmap é proibido por Lei (109/2009) mas se autorizada de

forma evidenciava com permissão das partes envolventes, pode ser usado.

Os testes efetuados utilizam a ferramenta VirtualBox para simular virtualmente a

rede de um hospital virtual criado num outro projeto. Os resultados são por fim

detalhados num relatório através da aplicação web.

iv

Este projeto conseguiu de forma bem sucedida o desenvolvimento de um gestor de

risco funcional através de uma aplicação web capaz de mapear uma rede e

encontrar os assets com vulnerabilidades. Igualmente bem-sucedida foi a

implementação da deteção de vulnerabilidades através de repositórios externos.

Por fim esta tese implementou com sucesso uma comparação entre scans de forma

a descobrir quais vulnerabilidades foram corrigidas ou que novas vulnerabilidades

possam existir em determinados assets.

Contudo não foi possível uma implementação com sucesso desta aplicação num

projeto já existente usando React. Igualmente não foi realizada uma forma

automatizada da realização de scans. Por último, devido aos recursos disponíveis,

a rede hospitalar virtual foi bastante reduzida.

Palavras-Chave

Cybersecurity, Application, Risk Management, Flask, API, NVD, VulDB

v

Abstract

In the modern scenario of cybersecurity, one uncomfortable truth is clear, the risk

management of a company and/or institution in order to keep all its systems and

information secure, is harder than ever. This management goes through a

continuous cycle of identification, analysis, evaluation, and treatment of the daily

threats. Usually risk management follows four steps, starting by the identification of

the risk, then the evaluation of it with the probability of actors exploiting any existing

vulnerability and the consequent impact. Given this analysis, the risks are prioritized

and categorized depending on the mitigation strategy in place, and finally the last

step is the monitorization, in other words, the structure that answers to the risk in an

ever-changing environment.

This Thesis has as objectives the development of a Risk Management web

application that scans all the assets of a given network. This web application uses

the framework Flask for its development and the open-source tool Nmap for the

asset scanning and all the services running on each live host. For the detection of

vulnerabilities, the application has a connection to the repository NVD through an

API, and to the repository VulDB through another API, in order to identify all the

existing vulnerabilities associated with the services found during the scan. All this

information is stored on a SQLite database.

According to the Portuguese law (109/2009), the use of the tool Nmap is strictly

forbidden but can be authorized for use given the proper permission from the

involved parties.

The experiments use the virtualization software VirtualBox to simulate a network of

a virtual Hospital that was already created in another project. All the results are in

the end available as a report through the web application.

This project was able to develop a functional risk management web application,

capable of scan a network in order to find the vulnerable assets.

vi

Equally successful was the implementation of the vulnerability detection through the

use of external vulnerability databases. Finally, this thesis successfully implemented

a comparation between scans to discover which vulnerabilities have been corrected

and which ones appear as new in specific assets.

However it was not possible to integrate in a successful way this application to an

already existing project using React. Equally not accomplished was an automated

way to schedule periodic scans. Finally, given the available resources, the hospital

virtual network was largely reduced.

Keywords

Cybersecurity, Application, Risk Management, Flask, API, NVD, VulDB

vii

Index

ACKNOWLEDGEMENT ... I

RESUMO ... III

PALAVRAS-CHAVE .. IV

ABSTRACT.. V

KEYWORDS ... VI

INDEX ... VII

LIST OF FIGURES .. IX

LIST OF TABLES .. XIII

LIST OF SOURCE CODE .. XIV

LIST OF ACRONYMS ... XV

1. INTRODUCTION ... 1

1.1. CONTEXT ... 1

1.2. OBJECTIVES .. 2

1.3. DOCUMENT STRUCTURE ... 3

2. STATE OF THE ART ... 5

2.1. WHAT IS A SOFTWARE VULNERABILITY? ... 5

2.2. HOW VULNERABILITIES ARE REPORTED ... 5

2.3. CVE ... 6

2.4. CVSS .. 7

2.5. WHAT ARE CYBER THREATS? .. 8

2.6. WHAT IS CYBERSECURITY RISK MANAGEMENT? .. 9

2.7. CYBER RISK MANAGEMENT FRAMEWORKS ... 12

2.8. TECHNOLOGIES ... 29

2.8.1. Python .. 29

2.8.2. Flask ... 30

2.8.3. Django ... 31

2.8.4. Comparation between Flask and Django ... 32

2.9. VULNERABILITY MANAGER .. 33

2.9.1. Nmap ... 33

2.10. NETWORK SIMULATION .. 34

2.10.1. VirtualBox ... 34

2.10.2. GNS3 ... 37

viii

3. VULNERABILITY MANAGEMENT .. 39

3.1. INTRODUCTION ... 39

3.2. THE USE OF NMAP ... 41

3.3. HOST DISCOVERY .. 43

3.4. PORT SCANNER ... 45

3.5. OS DETECTION ... 46

3.6. SERVICE AND VERSION DETECTION .. 47

3.7. SSL/TLS DETECTION ... 49

3.8. METHOD ... 50

3.9. API .. 51

3.10. SSL/TLS VULNERABILITIES .. 60

4. DATABASE ... 63

5. APPLICATION ... 71

5.1. DASHBOARD ... 74

5.2. SCAN .. 74

5.3. SCAN HISTORY .. 76

5.4. REPORT ... 84

5.5. SCAN COMPARATION ... 87

6. TESTS AND RESULTS ... 89

6.1. PHASE ONE .. 90

6.2. PHASE TWO ... 92

6.3. PHASE THREE ... 98

6.4. LIMITATION .. 105

7. CONCLUSIONS ... 107

7.1. OBJECTIVES ACHIEVED .. 107

7.2. LIMITATIONS .. 108

7.3. FUTURE WORK ... 109

7.4. FINAL CONSIDERATIONS .. 110

BIBLIOGRAPHY .. 111

ix

List of Figures

FIGURE 1: RISK MANAGEMENT FRAMEWORK [14] ... 13

FIGURE 2: ISO/IEC 27005 MODEL [17] ... 16

FIGURE 3: FAIR FRAMEWORK MODEL [29] ... 18

FIGURE 4: OCTAVE METHODOLOGY [17] .. 21

FIGURE 5: BOWTIE METHODOLOGY [17] .. 23

FIGURE 6: BOWTIE METHOD [21] .. 25

FIGURE 7: BOWTIE METHODOLOGY [35] .. 26

FIGURE 8: FLASK [38] ... 30

FIGURE 9: DJANGO [39] .. 31

FIGURE 10: NMAP [40] .. 33

FIGURE 11: VIRTUALBOX [41] .. 34

FIGURE 12: NAT NETWORK MODE [42] .. 36

FIGURE 13: HOST-ONLY NETWORK MODE [42] .. 36

FIGURE 14: GNS3 NETWORK TOPOLOGY [44] .. 37

FIGURE 15: VULNERABILITY DETECTION PROCESS .. 51

FIGURE 16: API JSON SCHEMA - 1 ... 53

FIGURE 17: API JSON SCHEMA - 2 ... 54

FIGURE 18: API JSON SCHEMA – 3 .. 55

FIGURE 19: VULDB API JSON SCHEMA ... 59

FIGURE 20: DATABASE OVERVIEW ... 64

FIGURE 21: TABLE SCANNUMBER ... 65

FIGURE 22: TABLE HOSTDISCOVERY... 65

FIGURE 23: TABLE SERVICESCAN ... 66

FIGURE 24: TABLE SSLDISCOVERY ... 66

FIGURE 25: TABLE CVESCAN ... 67

FIGURE 26: DATABASE LINKS .. 69

FIGURE 27: HOSTDISCOVERY TABLE EXAMPLE .. 69

FIGURE 28: SERVICESCAN TABLE EXAMPLE .. 70

FIGURE 29: DIAGRAMA DA APLICAÇÃO ... 73

FIGURE 30: DASHBOARD ... 74

FIGURE 31: SCAN INPUT OPTIONS ... 75

FIGURE 32: NEW BASIC SCAN ... 75

FIGURE 33: NEW FULL SCAN ... 76

x

FIGURE 34: NEW CUSTOM SCAN ... 76

FIGURE 35: HISTORY OF SCANS ... 77

FIGURE 36: HOSTS DISCOVERED .. 79

FIGURE 37: VULNERABILITIES FOUND - 1... 79

FIGURE 38: VULNERABILITIES FOUND - 2... 80

FIGURE 39: VULNERABILITIES FOUND - 3... 80

FIGURE 40: INFORMATIVE CONTENT .. 81

FIGURE 41: INFORMATIVE SERVICES PAGE ... 81

FIGURE 42: INFORMATIVE PORTS PAGE .. 82

FIGURE 43: INFORMATIVE OPERATING SYSTEMS PAGE ... 82

FIGURE 44: INFORMATIVE SSL/TLS PAGE ... 82

FIGURE 45: SCAN REPORT - 1 ... 85

FIGURE 46: SCAN REPORT - 2 ... 86

FIGURE 47: SCAN COMPARATION .. 87

FIGURE 48: SCAN COMPARATION RESULTS .. 88

FIGURE 49: CORRECTED VULNERABILITIES ... 88

FIGURE 50: NEW VULNERABILITIES .. 88

FIGURE 51: OWASP VIRTUAL MACHINE ... 90

FIGURE 52: METASPLOIT VIRTUAL MACHINE .. 91

FIGURE 53: VIRTUAL MACHINE SETUP .. 91

FIGURE 54: VIRTUALBOX NAT NETWORK.. 92

FIGURE 55: FIRST NETWORK SETUP [55] ... 93

FIGURE 56: MACHINES ON THE FIRST SETUP .. 93

FIGURE 57: SSH CONNECTION .. 94

FIGURE 58: INTERNAL NETWORK... 95

FIGURE 59: VIRTUAL MACHINE CONFIGURATION .. 96

FIGURE 60: ROUTER SETUP .. 96

FIGURE 61: PING AND TRACE OTHER VIRTUAL MACHINES.. 97

FIGURE 62: LACK OF VISUAL ADAPTER .. 98

FIGURE 63: ETH1 ADAPTER .. 98

FIGURE 64: NETWORK ADAPTER CONFIGURATION ... 98

FIGURE 65: VIRTUAL HOSPITAL [58] .. 99

FIGURE 66: PHASE TWO NETWORK WITH ADDITIONAL HOSTS .. 100

FIGURE 67: SCAN RESULTS HISTORY – FIRST NETWORK ... 100

FIGURE 68: SCAN RESULTS HOSTS – FIRST NETWORK ... 101

FIGURE 69: FIRST NETWORK SCAN REPORT .. 101

FIGURE 70: PHASE THREE NETWORK .. 102

xi

FIGURE 71: SCAN RESULTS HISTORY – SECOND NETWORK ... 103

FIGURE 72: SCAN REPORT – SECOND NETWORK.. 103

FIGURE 73: COMPARATION OF API RESULTS .. 105

xiii

List of Tables

TABLE 1: RISK APPROACHES .. 11

TABLE 2: RISK MANAGEMENT FRAMEWORKS .. 12

TABLE 3: NIST SP 800-37 FRAMEWORK ... 14

TABLE 4: NIST RMF [27] [28] .. 15

TABLE 5: ISSO 27005 .. 17

TABLE 6: FAIR FRAMEWORK .. 20

TABLE 7: OCTAVE ... 22

TABLE 8: EBIOS .. 24

TABLE 9: BOWTIE ... 27

TABLE 10: RISK MANAGEMENT METHODS, RA – RISK ASSESSMENT, RM – RISK MANAGEMENT RQ – RISK QUANTIFICATION . 28

TABLE 11: FLASK VS DJANGO .. 32

TABLE 12: VIRTUALBOX MODES [29] ... 35

TABLE 13: COMPUTER SPECIFICATION .. 89

TABLE 14: COMPARATION OF SCAN TIME .. 104

xiv

List of Source Code

LISTING 1: PROCESS OF NMAP SCAN IN CODE ... 43

LISTING 2: NMAP HOST DISCOVERY SCAN .. 43

LISTING 3: HOST FOUND XML FILE .. 44

LISTING 4: CONVERT TO NMAP FORMAT ... 45

LISTING 5: NMAP PORT SCAN .. 45

LISTING 6: TOP 1000 PORTS XML FILE .. 46

LISTING 7: NMAP OS DETECTION FUNCTION.. 47

LISTING 8: SERVICE AND VERSION DETECTION - CODE ... 48

LISTING 9: VARIOUS UPDATES AND INSERTS INTO THE DATABASE .. 48

LISTING 10: SSL/TLS XML FILES CREATION .. 49

LISTING 11: HOST AND PORT INFORMATION EXTRACTION FROM XML FILE ... 50

LISTING 12: NMAP SSL/TLS DETECTION FUNCTION .. 50

LISTING 13: : API REQUEST ... 56

LISTING 14: NVD API FUNCTION .. 57

LISTING 15: VULDB API REQUEST ... 58

LISTING 16: VULDB API FUNCTION ... 60

LISTING 17: SSL/TLS CERTIFICATE CHECK ... 61

LISTING 18: SSL/TLS PROTOCOL VERSION CHECK .. 61

LISTING 19: FLASK INITIATING ... 71

LISTING 20: FLASK ROUTES ... 78

LISTING 21: INFORMATIVE WEBPAGES – CODE ... 83

LISTING 22: SCAN REPORT CODE ... 84

xv

List of Acronyms

ACK – Acknowledging

API – Application Programming Interface

CIA – Confidentiality, Integrity and Availability

CPE – Common Platform Enumeration

CSF – Cyber Security Framework

CVE – Common Vulnerabilities and Exposures

CVSS – Common vulnerability Scoring System

EOF – End of file

ICMP – Internet Control Message Protocol

NVD – National Vulnerability Database

OS – Operating System

RM – Risk Management

RMF – Risk Management Framework

ROI – Return of Investment

SSL – Secure Sockets Layer

SYN – Synchronize Sequence Number

TCP – Transmission Control Protocol

TCP/IP – Transmission Control Protocol/Internet Protocol

TEDI – Thesis / Dissertation

TLS – Transport Layer Security

xvi

UDP – User Datagram Protocol

WSGI – Web Server Gateway Interface

 1

1. INTRODUCTION

Within the scope of the Curricular Unit Tese / Dissertação Mestrado de Engenharia

Eletrotécnica e de Computadores – Sistemas Autónomos (TEDI) , this project aims to

expand and consolidate the self-taught knowledge attained by the student and apply it

to a real situation. All the research carried out, as well as all the necessary steps to the

completion of this Thesis, are covered in this document.

The introductory chapter will be responsible for detailing the context of this Thesis as

well as the problem interpretation.

1.1. CONTEXT

This Thesis development emerged by the advice of the main teacher coordinator who

proposed the creation of a Risk Management application for the cybersecurity field.

Despite the different background of the student, the proposal was gladly accepted and

extended by the same. As such, this project took an extra time due to the long-needed

research and development of some of the steps. Initially there was another

implementation to be added, the combination of this project to an already existing one.

 2

This second, a React Application Programming Interface (API), was supposed to

welcome this Risk Management and converge it into one bigger project of Vulnerability

detection with a graphical user’s interface. However, the merge of these two projects

with the use of React, was beyond the scope of the student given the time left for the

Thesis completion. As such, a decision was made not to combine both projects at the

present time, although a continuation could be done and indeed create the complete

project.

1.2. OBJECTIVES

In the modern scenario of cybersecurity, one uncomfortable truth is clear, the risk

management of a company and/or institution in order to keep all its systems and

information secure, is harder than ever. This management goes through a continuous

cycle of identification, analysis, evaluation, and treatment of the daily threats. In these

types of risk managements, generally four steps are followed. Starting by the

identification of the risk, then the evaluation of it with the probability of actors exploiting

any existing vulnerability and the consequent impact. Given this analysis, the risks are

prioritized and categorized depending on the mitigation strategy in place, and finally the

last step is the monitorization, in other words, the structure that answers to the risk in an

ever-changing environment.

This Thesis has as objectives the development of a Risk Management application that

scans all the assets of a given network and detects any possible vulnerability with the

connection to known vulnerabilities databases. The scan itself is done using the popular

open-source tool Nmap, running each individual scan through a python script containing

the module subprocess. A different xml file is generated for every phase of the scan,

being then used to gather the necessary information to store on the SQLite database.

Through the developed Flask web application, it's possible to choose different scan

types, a basic scan, a full scan or a customised scan. The main difference between them

is the number of ports checked. All the other information such as, hosts found, services,

operating system, SSL/TLS and vulnerabilities, remain the same. The validation of

detected vulnerabilities is done through APIs to the National Vulnerability Database

(NVD) and the Vulnerabiliity Database (VulDB) using the Common Platform Enumeration

(CPE). The web application displays all the information about the vulnerabilities found in

 3

a dashboard filtered by date, the possibility to revisit past scans and the creation of a

new scan. It is also possible to download a PDF report of each individual scan.

The testing will be carried out in a simulated network previously designed for a virtual

hospital, using the virtualization software VirtualBox, with the creation of multiple virtual

machines.

1.3. DOCUMENT STRUCTURE

There are eight chapters in this document. To better present the information to the

reader, each chapter has its subsequent sections. As a result of this, the document is

divided into the following sections: Introduction, State of the Art, Vulnerability Scanner,

Vulnerability Detection, Database, Application, Tests and Results and the Conclusions.

The first part introduces the project, it’s contextualization and motivation, followed by the

objectives proposed and finally the documented structure.

The State of the Art informs the reader of the technologies and methods used in the

present and helps familiarize with certain terms and concepts.

The vulnerability scanner chapter dives deep into what the many phases of a scan and

the type of information extracted from it. Introduces the use of Nmap, a widely used

open-source tool for network scanning, on the project and explains the code and logic

used to perform the scan.

The vulnerability detection chapter explains the process behind detecting any

vulnerabilities found from the hosts discovered on the network and how using an API to

the National Vulnerability Database and another to the Vulnerability Database, it’s

possible to determine if a host can or not be exploitable and the dangers associated with

it.

The fifth chapter elaborates on the usage of the database, all the tables created and the

links between them. As an essential part of project, the database is what allows for all

the connectivity between the scans performed and the display on the web application.

 4

The application chapter details the development using Flask and the different pages

created, with all the options and interactions possible. The user will be able to visualize

the presentation of the web application and the information gathered in a graphic way.

The tests and results show the creation of the virtual network of the hospital and the

application placed to a test of finding all possible assets in the hospital network and

determine any vulnerability associated with them. An explanation of the usage of

VirtualBox for this purpose is also detailed.

The final chapter, which is represented by the conclusions, addresses the objectives that

were achieved regarding the project, and the implementations and milestones present

on this thesis. Following this, the constrains and limitations are also mentioned and finally

the possible future works and adding’s to this project, with the final considerations

summarized by the author.

 5

2. STATE OF THE ART

2.1. WHAT IS A SOFTWARE VULNERABILITY?

A software vulnerability can be classified as any weakness in the codebase that can be

exploited for a multiple of reasons [1] [2]. The sources of their vulnerabilities can be a result

a variety of reasons, some of the most common are coding mistakes, faulty logic,

inadequate validation mechanisms, lack of protection against buffer overflows, as well as

unprotected APIs and issues in third-party libraries.

Independent from the source, each vulnerability presents a risk to users and organizations.

Unless they are discovered and patched or fixed in software updates, perpetrators can,

depending on the risk, exploit them to steal data, deploy and spread malware, cause

outages or damage systems.

2.2. HOW VULNERABILITIES ARE REPORTED

The way in which vulnerabilities are reported will depend on the type of software they are

discovered on as well as the type of vulnerability they appear to be.

Also, the perceived importance of the vulnerability will always be affected by the finder in

the way it is reported.

 6

Generally, vulnerabilities are found and reported by penetration testers, security

researchers, and users themselves.

When vulnerabilities are minor or can be easily fixed, these issues are more likely to go

unreported. On the other hand, a severe issue can also go unreported if discovered by a

black hat researcher or cybercriminal.

In the case a vulnerability is found in a proprietary software, there are two options: either to

report directly to the vendor, or report to a third-party oversight organization, such as MITRE

[3]. In open-source software, it may be reported to the project manager or the community.

In the scenario where the vulnerability is reported to a corporation like MITRE, the

organization confirms with different sources the correct assignment of the vulnerability ID

number and the vendor or project manager is notified [4]. The same vendor or project

manager has a 30 to 90 days window to develop a patch for the issue before the information

is made public.

With new services and application emerging every single day and being used by different

companies, institutions and governments, it makes the effort to monitor all software

vulnerabilities dramatically huge and unrealistic. For this reason, from a viewpoint of

intelligent data processing, software vulnerability analysis uses enumeration to build a

database of vulnerabilities and also the infrastructure of other analysis stages by providing

the findings through verified observations [5]. On this area, a lot of work was done to unify

the vulnerability enumeration and Common Vulnerabilities and Exposures (CVE) was

founded by MITRE [6].

2.3. CVE

Usually, the description of vulnerabilities is full of vague concepts by different security

communities, with different authorities managing security vulnerabilities with different

numbering systems. Meaning that, when conducting a study in a vulnerability in detail, a

collection of descriptions from different trusted sources should be made to carefully not fall

into misled and vague concepts.

Vulnerability enumeration emerged inside the software corporations to manage the required

security of their products. Some famous corporations have built vulnerability databases with

published alert information, such as, Microsoft’s Security Bulletins [7], HP’s Security

 7

Bulletins [8], and IBM’s ISS X-Force Database [9]. The security communities and research

institutes which may be sponsored by governments, foundations, or corporations such as

BugTraq [10], US-CERT’s Technical Cyber Security Alerts [11], and so on, publish and

discuss the vulnerabilities collected or submitted by various sources. These collection

systems are the typical enumeration databases which focus on specific software products

security issues, which sometimes can create duplication and confusion in different

vulnerability databases.

An effort to unify all these vulnerability enumerations began in 1999, creating the Common

Vulnerabilities and Exposures (CVE) by MITRE. CVE is intended to provide the standard

for information security and a unified directory for prevailing software vulnerabilities, sharing

data across different and separate vulnerability repositories. Although CVE is not a full set

of all existing vulnerabilities, it collects from a variety of data sources, obtaining a notable

success and with over 60.000 items, it became an actual real industry and academic

vulnerability enumeration standard.

2.4. CVSS

The Common vulnerability Scoring System (CVSS) is a set of free, open standards that

allows for security and IT professionals, testers, and software developers with a

standardized process for assessing vulnerabilities. The CVSS can be used for assessing

the threat level of each vulnerability and consequently prioritize mitigation measures

accordingly.

These standards are maintained by the Forum of Incident Response and Security Teams

(FIRST), a non-profit security organization. A scale from 0.0 to 10.0 is used, where 10.0

represents the highest severity [12].

The scoring is based on a combination of several subsets of scores. The only actual

requirement for the categorization of a vulnerability using CVSS is the completion of the

base score components. Nevertheless, it is recommended the inclusion of temporal scores

and environmental metrics for a more accurate evaluation by the reporters.

 8

2.5. WHAT ARE CYBER THREATS?

The term cyber threat generally applies to any vector that can be exploited in order to breach

security, cause damage to the organization, or exfiltrate data.

Common threat categories facing modern organizations include:

Adversarial threats – including third-part vendors, trusted insiders, insider threats,

established hacker collectives, privileged insiders, suppliers, corporate and nation-states.

This category includes malicious software (malware) created by any of these entities as

well. With specialized tooling and trained security staff by establishing a security operations

center (SOC), large organizations can mitigate these threats.

System failure – when a system fails, it may cause data loss and even lead to a disruption

in business continuity. Timely support, up-to-date backups, redundancy measures and

running high-quality equipment is an imperative procedure in critical systems.

Human error – any user may accidentally download malware or get tricked by social

engineering schemes like phishing campaigns. A storage misconfiguration may expose

sensitive data. In order to prevent and mitigate these threats, an employee training program

should be established as well as enforcing strong security controls.

Key threat vectors that affect many organizations are:

• Unauthorized access – which may be the result of malicious attackers, malware,

and employee error.

• Misuse of information by authorized users – an insider threat may misuse

information by altering, deleting, or using data without authorization.

• Data leaks – threat actors or for example cloud misconfiguration may lead to leaks

of personally identifiable information (PII) and other types of sensitive data.

• Loss of data – poorly configured replication and backup processes may lead to data

loss or accidental deletion.

• Service disruption – downtime may cause reputational damage and revenue losses.

It may be accidental, or the result of denial of service (DoS) attack.

 9

2.6. WHAT IS CYBERSECURITY RISK MANAGEMENT?

Cybersecurity risk management is a strategic approach to prioritizing threats. The

implementation of risk management practices by organizations should ensure the most

critical threats are handled in a timely manner. This helps identify, analyze, evaluate, and

address threats based on the potential impact each threat can bring [13].

A good risk management strategy acknowledges that organizations cannot eliminate all

system vulnerabilities or block all cyber-attacks. Establishing a cybersecurity risk

management initiative helps organizations attend first to the most critical flaws, threat

trends, and attacks [14] [15].

It involves the identification of cyber-attacks that may negatively impact the assets. The

organization is required to determine the likelihood of the occurrence of these attacks and

define the impact each attack may incur. To understand the main goal of risk management,

it's fundamental to emphasize the concepts and the process employed.

Generally, risk should be described by 3 components [16]:

• The probability of occurrence;

• Vulnerabilities of the infrastructure;

• Impacts of the successful threat.

The process of risk management can be divided into four stages [17]:

• Identifying risk – evaluate the organization’s environment in order to identify current

or potential risks that could affect business operations.

• Assess risk – analyzing identified risks to see how likely they are to impact the

organization, and what the impact could be.

• Control risk – define methods, procedures, technologies, or other measures that can

help the organization mitigate the risks.

• Monitoring – evaluating, on an ongoing basis, how effective controls are at mitigating

risks, and adding or adjusting controls as needed.

 10

Risk identification:

The starting point of a Risk Management (RM) involves identifying the organization

environment, its IT infrastructure, and the limits of the RM study [18]. This stage covers:

• System characterization – Identifying the boundaries of the targeted organizations,

components, and resources of relevance.

• Assets identification – Identifies the crucial components of the organization in order

to conduct a vulnerability examination. The assets can either be the business type,

including information and processes or IT type, which are components of the

information system that support the other assets.

• Security objective determination – Describes the security objectives for business

assets, which mostly rely on confidentiality, integrity and availability (CIA).

Risk analysis:

The goal of risk analysis is to assess the probability of an oncoming threat and its magnitude

[19]. Thus, it’s in this process that the components of risk are distinguished:

• Threats identification – Helps recognize the existence of risks.

• Vulnerabilities identification – Identifies security weaknesses or flows that may be

exploitable.

There are several approaches to assess risk components. They can be categorized as:

• Quantitative – uses several variables in order to describe the probability of an event

occurring and the consequent loss [20] .

• Qualitative – uses descriptive variables to express the same probability and the

consequences of risk [21].

The choice of the ideal approach is often based on the availability and the type of data.

 11

Table 1: Risk approaches

Risk analysis

approaches
Advantages Disadvantages

Quantitative

+ Highly detailed
- Requires too much time and

resources

+ Helps calculate the cost of

effectiveness of the RM

process

- The impact precision seems

unclear and requires a

qualitative interpretation

Qualitative

+ Favorable for immediate

improvement

- Inaccurate result in most

cases

+ Does not require an

accurate calculation of the

asset value and the cost of

monitoring

- Making a cost effectiveness

of the RM process is often

difficult

Risk mitigation:

After the risk analysis, a response strategy is needed. In this stage, there are four primary

options for dealing with risks:

• Risk avoidance – Eliminating the exposure of assets or the source of risks.

• Risk limitation – Implementing appropriate controls limiting the exposure to risks.

• Risk Transference – Outsources security services, transferring the risk responsibility

to them.

• Risk acceptance – Develops a risk mitigation plan having accepted the existing

risks.

Risk Monitoring:

Finally, after the implementation of a chosen risk mitigation plan, risk monitoring provides

assurance that the current security controls are implemented in an effective way.

 12

2.7. CYBER RISK MANAGEMENT FRAMEWORKS

There are several cyber risk management frameworks, each providing standards that

organizations can use to identify and mitigate risks. Security leaders and senior managers

use these frameworks to assess and improve the security posture of the organization [22].

These types of frameworks can help organizations effectively assess, mitigate, monitor risks

and define security processes and procedures to address them.

Currently there are three types of cybersecurity frameworks, as explained by F. Kim [23]:

Table 2: Risk Management Frameworks

Control Frameworks Program Frameworks Risk Frameworks

Provides a baseline

set of controls

Assesses the state of the

security program

Identifies, measures, and

quantifies the risk

Develops a basic

strategy for the

security team

Builds a comprehensive

security program

Prioritizes security

activities

Prioritizes control

implementation

Simplifies the communication

between the security team and

the business leaders

Defines the key process

steps to assess and/or

manages the risk

A control framework, using an analogy, is similar to the need for having a good

understanding of the language and the vocabulary before writing a book. In this case,

various control frameworks describe security controls that can be implemented. NIST 800-

53 [24] is an example of a control framework that lists in categories multiple security controls

that can and/or should be implemented. On the other hand, a program framework, and

continuing with the analogy, is a style guide that serves as reference point for any writing

done by the author. ISO 27001 [25] is a program framework that introduces policies,

processes, and procedures for a more robust security program. Finally, a risk management

allows the prioritization of the security implementation and manages the risk according to

the company/institution policy. Follows a list of commonly used cyber risk management

frameworks [17]:

 13

NIST CSF/ NIST RMF (NIST 800-37)

The National Institute of Standards and Technology Cyber Security Framework (NIST CSF)

is a popular framework [26]. Providing a comprehensive set of best practices that

standardize risk management, it defines a map of activities and outcomes related to the

core functions of cybersecurity risk management – protect, detect, identify, respond, and

recover. It is meant to be applied to any organization looking to build a cybersecurity

program.

NIST CSF, has a Program Framework, being created as a result of collaboration between

the government and the private sector, serving has a high-level, strategic view of an

organization management of cybersecurity risk. However, the framework complements and

does not replace an organization risk management program. Thus, the CSF does not intend

to replace the Risk Management Framework (RMF).

NIST RMF (NIST 800-37) has been mandatory for use by federal agencies and

organizations that need to handle federal data and information.

The main differences between NIST CSF and NIST RMF reside on the first being a broader

framework and including standards and guidelines for describing their target state for

cybersecurity, identify and prioritize opportunities for improvement, assess the progress to

achieve the desired target state and communicate among internal and external

stakeholders about the risks. The second focuses more on the risk management side.

Figure 1: Risk Management Framework [14]

 14

Table 3: NIST SP 800-37 Framework

Risk

Management

activities

NIST SP 800-

37 RMF

Steps

RISK Management Framework description

Risk

assessment

1. Categorize Defines the environment, CIA value, impact

analysis, describes the system and the information

processed, stored, and transmitted.

2. Select The type of security controls appropriate based on

the categorization, organization assessment of risk

and local conditions.

Risk

treatment

3. Implement Use security controls, describing how they are

employed withing the system and their effects on the

environment

4. Assess Evaluate the effectiveness of the security controls,

their correct implementation, and their quality.

5. Authorize Consideration by the top management if the risks are

within the acceptance level, identifying how much

risk is still present, deciding, and authorizing

changes.

Risk control 6. Monitor Ongoing monitoring and assessment schedule for

security controls in order to measure their

effectiveness, documenting the system and

operation adjustments, including an impact analysis

of changes made.

 15

Table 4: NIST RMF [27] [28]

NIST RMF

Advantages Disadvantages

+ Allows for a choice of

quantitative, qualitative, or semi-

quantitative methods of scoring

vulnerabilities and risks.

- The key aspect of the system categorization is

the so called ‘high-water mark’ approach. Where

if a system confidentiality is assessed at high,

then the availability and integrity need to also be

set at ‘high’ level, incurring expenses for

unnecessary security measures. Resulting in

under categorization systems by the agencies.
+ Well documented

+ The NIST framework is valuable

in assessing cyber risk and

managing cyber risks. The most

advanced in terms of disaster and

recovery planning

- Requires a detailed understanding of the

standards, confusing and extensive use of

acronyms.

 - Not an automated tool and does not contain an

impact assessment model

 16

ISO 27001/27005/31000

The International Organization for Standardization (ISO) created the standard ISO/IEC

27001 in partnership with the International Electrotechnical Commission (IEC). It is widely

regarded and used as the default risk management framework in most organizations. This

cybersecurity framework offers a certifiable set of standards defined to systematically

manage risks posed by information systems. Organizations can also use the ISO 31000

standard, which provides guidelines for enterprise risk management or ISO/IEC 27005,

which provides guidelines and techniques to managers in order to implement and manage

information security risks. The ISO/IEC 27005, more focused on the RM, builds on the

knowledge concepts, models, processes, and terminologies of ISO/IRC 27001.

Figure 2: ISO/IEC 27005 model [17]

The first step consists of the context establishment, which includes determining the

organization objectives, outlining the scope and boundaries of information security risk

 17

management, specifying the basic criteria, among others. Following comes the risk

assessment, consisting of 3 different steps: risk identification, risk analysis, and risk

evaluation. On the first one, the assets and their owners are identified. Along with this,

occurs the identification of the threats to those identified assets, the existing and planned

controls, the exploitable vulnerabilities, and the record of incident scenarios with related

impact to those identified assets. The risk analysis takes either a qualitative or quantitative

approach to assess the consequences and the likelihood of occurrence of incidents. Finally

on the risk evaluation, the risks identified previously are prioritized according to the risk

evaluation criteria about the scenarios that lead to those risks. With positive results from the

risk assessment, the risk treatment options are selected based on the outcome of risk

assessment. The risks are retained when the level of risks fulfills the risk acceptance criteria.

The risk communication and consultation step guarantee the exchange of information

between the decision-maker and other stakeholders throughout the risk management

process. Additionally, risk and their factors, such as, impacts, value of assets,

vulnerabilities, threats, and the likelihood of occurrence, need to be monitored and reviewed

to identify and corrected at an early stage, corresponding to the risk monitoring and review.

Table 5: ISSO 27005

ISO 27005

Advantages Disadvantages

+ Provides the most ROI

amongst the common CSF.

- Is based on voluntary shared

knowledge and is consensus based.

Requires a level of compulsory

compliance.

+ Better suited for commercial

companies because of its

inclusion of rigorous

documentation.

- Do not ensure the effectiveness of

measures implemented, only their

existence

+ Provides standards for cyber

risk and disaster recovery

- Huge documentation work

 18

FAIR Framework

The Factor Analysis of Information Risk (FAIR) framework is defined for the purpose of

helping enterprises measure, analyze, and understand information risks. The goal is to

guide enterprises through the process of making well-informed decisions when creating

cybersecurity best practices.

The FAIR risk model evaluates the factors that make up IT risk and assesses their

interaction and impact on each other, breaking each risk into basic building blocks. Taking

these elements, it assigns mathematically a dollar value in order to measure the financial

risk.

Figure 3: Fair Framework model [29]

The definition of each top block is as follows:

• Risk – The possible frequency and magnitude of future loss.

• Loss Event Frequency – The frequency, within a given timeframe, that the loss is

expected to occur.

• Loss Magnitude – The consequent value of the loss from a given risk.

 19

When running an analysis, the FAIR model has three ways to look at it, the first one is the

Loss Event Frequency, related to the Threat Event Prevention:

• Threat Event Frequency – The frequency, within a given timeframe, that threat

agents are anticipated to act in a way that could result in loss.

• Contact Frequency – The type of controls that could cause less loss events, the

success of the control enhancement.

• Probability of Action – The decrease of action by the threat actor given the new

control.

The implementation of these blocks would ultimately reduce the threat event frequency and

potentially the overall loss event frequency.

The next look goes over vulnerability management:

• Vulnerability – The probability that a threat event will be transformed into a loss

event.

• Threat Capability – The level of force capable of being applied by the threat agent.

• Resistance Strength – Used to measure how difficult it is for a threat actor to inflict

harm.

It’s in this section that it’s given a bigger focus on the controls that would reduce the

likelihood that a threat event will turn into a loss event.

The final look, the detection and response are overview:

• Loss Magnitude – consequent value of the loss from a given risk.

• Primary Loss – deals with the higher levels of loss created by a threat actor

• Secondary Risk – deals with the lower levels of loss created by a threat actor

(example, a data breach, however the data is encrypted, deeming it unusable to the

threat actor, creating an internal secondary line of defense)

Everything that could change the potential losses would be modeled in this stage.

 20

The FAIR Risk Assessment Methodology respects the following steps:

1. Identify the scenario components:

• Identifying the asset at risk

• Identifying the threat under consideration

2. Evaluate Loss Event Frequency (LEF):

• Estimate the probable threat Event Frequency (TEF)

• Estimate the Threat Capability (TCAP)

• Estimate Control Strength (CS)

• Derive Vulnerability (Vuln)

• Derive Loss Event Frequency (LEF)

3. Evaluate Probable Loss Magnitude (PLM):

• Estimate worst-case loss

• Estimate Probable Loss Magnitude (PLM)

4. Derive and articulate risk:

• Derive and articulate risk

Table 6: FAIR Framework

FAIR Framework

Advantages Disadvantages

+ Provides the most ROI amongst the

common CSF

- Difficult to use, not well documented,

lack of access to current information

and how methodology is applied

+ Complementary to existing risk

frameworks, opportunity for developing a

standardization reference architecture

- Depends on computational engine

for calculating risk and commercial

product RiskLens for analyzing

complex risks

+ Promotes a quantitative, risk based,

acceptable level of loss exposure

- Requires a tightly defined taxonomy

to function

 21

OCTAVE

OCTAVE “Operationally Critical Threat, Asset, and Vulnerability Evaluation” is a risk-based

assessment focused on organization’s information security objectives. It was originally

developed by the Software Engineering Institute at Carnegie Mellon University, seeking to

establish a information-protection decision based on risks, respecting the CIA of critical

information technology assets.

This method uses a three-phase approach to examine organizational and technological

issues and thus defines a global and comprehensive image of the organization’s information

security needs.

The first phase builds an asset-based threat profile, dealing with context analysis in terms

of the dependency of business processes of the information system. The remaining phases

identify vulnerabilities in progressive series so that security strategies and action plans are

developed.

Aside from being a well-structured method and providing detailed audit analysis, it requires

a certain expertise from the technical team in order to obtain the upmost effectiveness of

the used tools.

Figure 4: Octave methodology [17]

 22

Table 7: Octave

OCTAVE

Advantages Disadvantages

+ Well documented with plenty of tools

available

- Does not provide risk monitoring

+ The risk is assessed from an

operational point of view

- Although it takes into consideration the

mitigation and acceptance of the risk, the

avoidance is not considered

+ Can be applied to investigate and

categorize recovery impact areas

- No quantification method for calculating

the required level of recovery

+ Aimed at companies with limited

resources, free and can be used as a

foundation for risk-assessment

- Complex and takes time to

understands, does not provide a support

for financial modelling

 23

EBIOS

“Expression of needs and identification of security objectives” (EBIOS) is a comprehensive

technique dedicated for Information Security risk assessment, using suitable security

measures, which allows for assessing the risks or information systems [30]. Originally

developed by the French government, nowadays EBIOS is used both in public and in the

private sector, in France and abroad, being compliant with major IT security standards.

Figure 5: Bowtie methodology [17]

It primarily consists of 5 phases, the first one deals with context analysis in terms of the

stage in which business processes depend on the information system. The second phase

identifies and estimates the security needs and eventual sources of threats. Followed by

the third phase, in which the risk assessment concerning the identification and the

estimation of the scenarios that can cause a potential threat is carried out. The studied

system has the risks highlighted by confronting the feared events to threat scenarios on the

fourth stage. And finally, the security measures to be implemented are specified and

evaluated [31] [32] [33].

 24

Table 8: EBIOS

EBIOS

Advantages Disadvantages

+ Easily adaptable to the context of each

organization, allowing them to be adjusted to

their methodological tools and habits

- Does not provide immediate solutions or

even recommendations to security

problems

+ Gradually improves the content by reusing

each module

- Does not provide risk monitoring

 - Generates a large amount of information

 25

Bowtie

Bowtie approach is a qualitative method incorporating management system techniques.

The theory in this approach can be found in the “Swiss cheese model”. The Royal

Dutch/Shell Group was the first major company to integrate the full methodology into their

business practices, being credited with developing the technique which is widely used in

the present. The bowtie became popular as a structured method in order to assess risk

where a quantitative approach is not desirable or possible. Essentially, this method is

applied to hazard identification, operational system and procedures to eliminate the hazard

or reduce its frequency of occurrence [34].

Figure 6: Bowtie method [21]

The Bowtie process requires a continuous identification of hazards and effects, assessment

of the risks associated and the specification of the control and recovery measures, which

must be kept and maintained in place. It follows the steps:

• Identify the bowtie hazard – There are two items for this purpose, the hazard itself,

and the event that will occur. The hazard has the potential to cause harm, in different

forms and levels, while the event is the undesired event at the end of the fault tree

and at the beginning of an event tree. Example: The release of a toxic substance

(hazard) is caused by a structural failure (event).

• Assess the threats – The threats are located at the far-left side of the diagram and

are related to something that will potentially cause the release of the identified

hazard (in the example before, it may be a fire or explosion).

 26

• Assess the consequences – The consequences are located at the far-right side of

the diagram and are related to the threats that may lead to the top event (in the

example before, it may be environmental pollution).

• Control – Control is related to the protective measure that is put in place in order to

prevent the threats from releasing a hazard. In the diagram they belong between the

threat and the hazard. The controls can be to prevent threats, prevent

consequences or threats to the controls itself, in order to reduce the risk to a level

low enough to be considered acceptable.

• Recover – These types of control are located between the hazard and the

consequences, being technical, operational, and organizational measures needed

to limit the chain of consequences arising from an event. Recovery controls are

usually systems to detect and decrease incident occurrences.

• Identify threats to the controls – Although the control is meant to protect and prevent

threats, there is the possibility that these same controls are susceptible to threats

that may exploit or override them and thus increase the risk. On the diagram they

are located under and off to the side of the control.

• Identify the controls for the threats to the controls – After knowing which threats may

affect the controls in place, new controls to prevent these threats need to be put in

place, ensuring the functionality of the first controls implemented.

Figure 7: Bowtie methodology [35]

 27

Table 9: Bowtie

Bowtie

Advantages Disadvantages

+ Simple to read and understand

- Does not provide quantitative

assessment of acceptability of risks

unless linked to event tree analysis or

fault tree analysis

+ On the left side of the diagram the full

range of initiating events and the way

they combine and escalate are clearly

shown

- No standards exist therefore there are a

range of different and subtle

representations of bowtie diagrams

+ On the right side of the diagram the

different possible consequences and

outcomes are well defined

The following table (Table 10) represents a comparation between all the methods seen so

far in terms of their type of analysis, monetary requirements, their main focus has a method,

the need for an additional software and the difficulty of use/implementation. All the methods

were found to be qualitative so there is nothing to compare on the first column. The second

and third column unfortunately already exclude two methods, OCTAVE and Fair, since a

monetary amount is needed to purchase the license for their software. Some of the other

methods don’t have information about the cost because they are most guides and standards

and not exactly a product that can be installed and used as well.

For the main focus of the methods, the objective is to use a method that is better qualified

or better targeting the RM area. On this regard, there is the OCTAVE, NIST SP800 and ISO

27005. The software support is associated with the software cost, in which those methods

that have a price tag or are free to use, will require the specified software support.

 28

Lastly the difficulty of use and implementation is distributed equally through the table, having

some methods an easier learning curve, like OCTAVE, NIST SP800 and Bowtie, while the

others require a longer time or knowledge to be applied. As a result of this comparation and

taken into account the monetary part as well as the focus of this project, two options stand

out, NIST P800 and ISOO 27005. After a careful consideration of the industry standards, it

was decided that this thesis will rely on the framework ISO 27005, which provides a broad

range of guidelines and an industry standard recognized anywhere.

Table 10: Risk Management Methods, RA – Risk Assessment, RM – Risk Management RQ – Risk

Quantification

Methods Type of

analysis

Support

cost

Software

cost

Focus Software

support

Ease

of Use

EBIOS Qualitative Free Free RA EBIOS

tool

-

OCTAVE Qualitative Free 1300 € RA/RM Resolver

Ballot

+

NIST

SP800

Qualitative Free N/A RM N/A +

 ISO

27005

 Qualitative Free N/A RA/RM N/A -

 Fair Qualitative Free €€ RQ/RA Risk Lens -

 Bowtie Qualitative Free N/A RA N/A +

 29

2.8. TECHNOLOGIES

For the development of the application, a first thought was given to a standard desktop

application using python, however, to integrate certain features and allow the users to have

a better control and management that the tool can provide, a web application was chosen

instead. Another critical point is based on the proposition that this risk management

application can be used in a critical infrastructure or large company, in which installing an

application in every device can be problematic and time consuming, as some applications

require but to whom this thesis will not further elaborate about, thus relaying on a local web

application where the management can be done anywhere on the network as long as given

the necessary credentials.

2.8.1. PYTHON

Created in 1989 by Guido Van, Python has become one of the most popular high-level

general programming languages [36]. It is an interpreted dynamically typed language;

hence, it does not need any separate compiling time, it is instead compiled to byte code

and executed instantaneously. One of the main reasons why it became so popular is the

simplicity and code readability. Because of its object-oriented architecture, it is not only the

language for just scripting anymore, as it can be used for nearly every situation, although it

may have some drawbacks when compared to other languages in certain conditions. Some

of the big areas of Python are web and big data and machine learning. Thus, for this project

it will be used in the web development of the application [37].

 30

2.8.2. FLASK

Designed to create a web application in a short amount of time, Flask can also be called a

micro-framework, Web Server Gateway Interface (WSGI) application framework. It’s flexible

enough to be used either for pure backend or frontend if required. In terms of frontend, it

provides full request object, routing system for endpoints, cache controls etc.

Figure 8: Flask [38]

The advantages of Flask are as follows:

- Higher compatibility with latest technologies

- Easier to use for simple cases

- High scalability for simple applications

- Easy routing URL

- Easy Database integration

- Small core

- Minimal yet powerful platform

Disadvantages of Flask:

- Higher maintenance cost for more complex systems

- Async may be problematic

- Lack of Object-relational mapping (ORM)

- Setting up a large project requires some previous knowledge of the framework

 31

2.8.3. DJANGO

Introduced earlier than Flask, in 2005 by Adrian Holovaty and Simon Willison, Django had

the goal of developing applications in a fast way using Python. As such, it offers a standard

method for fast and effective website development. Enabling the process to be smooth and

timesaving while having a full kit of tools and a large documentation to support the

developer.

Figure 9: Django [39]

The advantages of Django are as follows:

- Easy to set up and run

- Allows end-to-end application testing

- Offers built-in authentication system

- A complete stack of tools

- Data modelled with Python classes

- Provides an easy-to-use interface for various administrative activities

- Offers bigger support and has a bigger community compared to Django

Disadvantages of Django:

- High dependence on Django ORM. Broad knowledge required

- Fewer design decisions and components

- Larger code size

- High learning curve

- Allows only to handle a single request per time

- A higher entry point for simple solutions

 32

2.8.4. COMPARATION BETWEEN FLASK AND DJANGO

Being Flask younger, it was created for rapid development, allowing the user to require a

smaller learning curve, when compared to Django, with API support, the use of multiple

types of databases

Table 11: Flask vs Django

Flask Django

Created in 2010 Created in 2005

WSGI framework Full Stack Web Framework

Provides support for API Does not have any support for API

Allows the use of multiple types of

databases

Doesn’t offer multiple types of databases

Does not offer dynamic HTML pages Offers dynamic HTML pages

Flask template engine Jinja2 is based on

Django’s template engine

It comes with built-in template engine that

saves a lot of development time

Flask is more open-ended, and

developers may or may not follow the

best practices

Django framework ensures developers

use best practices as everything has a

template

Flask doesn’t not have a feature to

handle administration tasks

Django comes with a ready-to-use admin

framework

In conclusion, after a comparation between the two frameworks, Flask provides a faster and

easier development without a preexisting extensive knowledge and a flexible kit for the front

and backend of the application, along with some previous knowledge in Flask development,

this framework will be the one used to develop the risk management application.

 33

2.9. VULNERABILITY MANAGER

The most common and used cybersecurity tools, such as firewalls and antivirus software

are reactive tools, designed to manage attacks as they occur. On the other hand,

vulnerability management software proactively looks for weaknesses by scanning,

identifying vulnerabilities in the network and if possible, providing remediation suggestions

to mitigate the potential threat. In addition, some vulnerability management tools can assign

threat levels, based risk score, helping to prioritize the most significant issues.

Using vulnerability scanners, the whole network or specific hosts can be scanned for

security holes, missing patches or other type of vulnerabilities. Some of existing vulnerability

managers are Nessus and OpenVAS, with different scanning techniques, offering a

graphical user interface and allowing for different sectors of the company to access and

understand the risk they may be involved in.

2.9.1. NMAP

Nmap, or Network Mapper, is a free and open source and powerful tool used for vulnerability

checking, port scanning, service discovery, operating system detection and network

mapping. Created in 1997, it remains one of the most used tools in cybersecurity. The heart

of this tool is port scanning, in which the users designate a list of targets on a network

without giving specific details.

The depth of each scan is also controllable, with different performance options, types of

scans and techniques to allow for the maximum accuracy possible.

The techniques used for the application will be compared with Nmap for a performance and

accuracy evaluation.

Figure 10: Nmap [40]

 34

2.10. NETWORK SIMULATION

As the thesis relies on a risk management application, to be able to test the scanning

mechanisms a network setup is required. However, as it is not possible to set up a physical

network with a few hosts with different operating systems and vulnerabilities, a virtual

network is needed instead. VirtualBox will be the main software to simulate machines with

different vulnerabilities on a network, while GNS3 will be used to visually simulate the

network that was set up for the tests.

2.10.1. VIRTUALBOX

VirtualBox is an open-source software for virtualizing. It acts as a hypervisor, creating a VM

(Virtual Machine) where the user can run another OS (Operating System).

The operating system in which VirtualBox runs is called the “host” OS, while the one running

in the VM is called the “guest” OS. In the configuration the user can specify how many CPU

cores, how much RAM and disk space should be devoted to the VM.

Figure 11: VirtualBox [41]

One of the central ideas behind hardware virtualization is the possibility to use virtual

machines in almost all cases where physical computers can be used. For this, VM’s must

be able to connect to physical and virtual networks with their own virtual network adapter.

VirtualBox provides multiple network modes to be able to connect to different networks or

allow for different configurations.

Each VM can use up to eight virtual network adapters, or also referred to eight network

interface controllers (NIC). Each adaptor is attached to one network mode, from which the

user can choose. This makes possible for each network adapter to have a separate

configuration and operate in different modes.

 35

Table 12: VirtualBox modes [29]

 VM <-> VM VM -> Host VM <- Host VM -> LAN VM <- LAN

Not

attached

- - - - -

NAT - + Port

Forward

+ Port

Forward

NAT

Network

+ + Port

Forward

+ Port

Forward

Bridged

+ + + + +

Internal

Network

+ - - - -

Host-only

+ + + - -

The comparation of VirtualBox network modes shows how each mode can communicate

with other virtual machines, the host machine and the local area network (LAN).

As a network simulation is needed, the only two modes that will be covered are the NAT

Network and the Host-only.

NAT Network

Like the NAT mode used in a router configuration, this mode allows for multiple virtual

machines to communicate between each other via the network. The virtual machines can

also access other hosts in the physical network and external networks including the internet.

However, any machine from an external network as well as those from the physical network

to which the host machine is connected, are not allowed to access the virtual machine. As

well as the host cannot access the guest machine, unless port forwarding is used.

 36

Figure 12: NAT Network Mode [42]

Host-only Adapter

The primary focus of this mode is for the communication between a host and the guests,

while a guest can only communicate with another one if connected also to the host-only

network.

Figure 13: Host-Only Network Mode [42]

 37

2.10.2. GNS3

GNS3 is a popular open-source emulator used to configure, test and troubleshoot virtual

and real networks, allowing to run a small topology consisting of a few devices or one that

have many devices hosted on multiple servers or even hosted in the cloud. GNS3 supports

multiple switching options, multiple vendor environments, supports VirtualBox and has a

large and active community [43].

Figure 14: GNS3 network topology [44]

The client part and his graphical user interface (GUI), allow for a visual representation as

seen on the Figure 14 where a network comprised of a router, switchers, cloud to connect

to the local area network and a few hosts, are illustrated.

 39

3. VULNERABILITY

MANAGEMENT

3.1. INTRODUCTION

In today’s times, many critical and high-level vulnerabilities are discovered every day in

various products. In order to mitigate these vulnerabilities, companies and corporations are

required to create procedures that can identify, analyse and mitigate those vulnerabilities in

real time.

As mentioned above, a vulnerability is a weakness present in a device or system that, if left

alone, will be exposed to a possibility of being exploited or attacked. A vulnerability scanning

is the process that investigates, identifies and detects such vulnerabilities, using either

manual or automated tools and techniques.

A vulnerability scan is not to be confused with a penetration test, where the former is a

preliminary step to identify the hosts, subsequently the ports and services used for later to

be used in a penetration test. All the information retrieved from a vulnerability scan, such

as, the open ports in a server or the type of vulnerability that a server is susceptible to, will

be the inputs for a penetration tester to use and perform the necessary actions to try to

access that server and show the degree of compromise.

 40

The usual flow of procedures can be divided into three phases, the host discover, port

scanning and service and version detection.

Host Discovery

As the name suggests, the first phase, host discovery, represents the initial moment where

the mechanism or tool used will try to detect and distinguish in a specific network all the

hosts that are up. This procedure is necessary to reduce the time of a network scanning,

since attempting to scan the ports of all the hosts regarding their status, will add

unnecessary time to the vulnerability scan.

Port Scanner

Following the list of live hosts, a detection of the open ports for each live host or a specific

one is conducted. For the detection of an open port in a particular host, a communication

between that host on that port and the machine performing the scan must be established

or partially established.

This procedure differs from protocol to protocol, as an example, TCP and UDP use distinct

patterns and communications to conclude if a port is open or not.

Service and Version Detection

Detecting services and the software version on a target device is critical to determine

potential security holes or vulnerabilities belonging to outdated or specific software versions.

Each commercial service or product can have a huge number of versions and its highly

likely that some of them will have overseen vulnerabilities. The important is to detect them

by running routine checks with known or the latest exploits found.

SSL/TLS Detection

SSL (Secure Socket Layer) and TLS (Transport Layer Security) are cryptographic protocols

used to secure web communications against any unauthorized tampering. They are used

to establish a secure connection between clients and servers across the internet and ensure

that the information relayed is encrypted and kept its integrity. SSL was the antecedent of

TLS, with TLS currently being in its third iteration, TLS 1.3. Despite this, SSL continues to

be used most of the time as well as TLS. Secure connections will indicate their secure status

by presenting HTTPS (Hypertext Transfer Protocol Secure) in the URL bar of any web

browser, contrary to the simple HTTP (Hypertext Transfer Protocol).

 41

3.2. THE USE OF NMAP

Although the use of personal made scripts to do a vulnerability scan of a network was

possible, the comparation between a personal made script and Nmap in terms of

performance, speed, options available and type of output is largely visible. Specially in more

demanding parts like service and version detection of a software. With this conclusion, the

scripts used were changed to a whole adaptation of Nmap in this project.

Given the robustness of Nmap development, a scan can go from a very simple one with

basic techniques, to an advance scan containing complex and hard to detect techniques.

Follows an explanation of the different scan types given by Nmap:

TCP Scan

This scan is generally used to check and complete a three-way handshake between the

machine performing the scan and the chosen target(s) system(s). TCP stands for

Transmission Control Protocol, which is a communication process largely used between

devices over the internet, providing a reliable communication with both sides being able to

acknowledge the reception of the data and making sure that even if the data was damaged

during transmission, it will inform of it and a retry is possible to happen so that all the data

is sent and received without any kind of loss. The three-way handshake, as the name

suggests, is a mechanism that three segments are exchanged between both parties to

ensure a reliable TCP connection to get established. First the client sends a segment with

SYN (Synchronize Sequence Number) to inform the server that a certain client is trying to

start a communication, and which will be the sequence number it should start the segments

with, ensuring an established connection. Second, the server responds to that same client

with a SYN-ACK segment, acknowledging (ACK) that the initial segment of the client was

received with success and which sequence number (SYN) it will start the segments with, in

other terms, which ports both client and server will use to communicate during this session.

Finally, the client receives the SYN-ACK from the server and sends back the last

acknowledgement (ACK) that it received with success the previous server segment. After

this, the normal communication can be established, and the data can be transmitted and

received between the two parties successfully [45].

 42

SYN Scan

SYN scanning, also known as half-open scanning, is often used by malicious actors to

determine the state of a communication port without the need to establish a full connection.

The idea behind it is like a normal port scanning, which the user attempts to set up a TCP/IP

(Transmission Control Protocol/Internet Protocol) connection with a specific server at every

existing port by sending a SYN packet, almost like initiating a three-way handshake.

However, if the server replies with an ACK response or even a SYN/ACK one from any port,

meaning the port is open, the user sends an RST (reset) packet instead of the common

ACK packet. This will cause the server to assume there was a communication error and a

connection was not established with the client [46].

ACK Scan

A TCP ACK scan technique uses packets with the before mentioned ACK, is different than

the previous scanning techniques, as it does not determine open ports but rather is used to

map out firewall rulesets, in order to check if the host is protected by some kind of filtering

system. The user sends an ACK probe packet with a random sequence number, if there is

no response it means the port is filtered, on the other hand if an RST response is received,

the port is closed [47].

ICMP Ping

ICMP (Internet Control Message Protocol) ping also known as ICMP sweep is a basic

network scanning technique used to determine which hosts are live from a given range of

IP addresses. Contrary to a single ping that tells whether one host exists on the network, a

ping sweep using ICMP echo requests sent to different hosts. If an address is live, it will

return an ICMP echo reply, telling the user that the host is live [45].

The normal use of Nmap would require the typing of the IP addresses and the chosen

options on the command line in order to perform the scan, but since this project used a web

application, the main python script initiates and runs by itself the Nmap without any need

for manual typing.

 43

3.3. HOST DISCOVERY

Given a network range or a certain number of IPs, obtained from the web application

interface, the host discovery phase starts. The target is first sent to the function

sendTcpSyn() (Listing 1 and Listing 2) along with the current working directory of a process.

This way, the xml file to be outputted, will be saved on the same location of this script. The

name of the output file is stated, followed by the Nmap command which contain the Nmap

location, the chosen target, and the following options:

• -PS21, 22, 23, 25, 80 ,113, 443: TCP SYN Ping to the following port list

• -PA80, 113, 443: TCP ACK Ping to the following port list

• -n: Do not do DNS resolution

• -sn: ICMP echo request

• -T4: speed template which tells Nmap how quickly to perform the scan.

• -vv: with verbose enabled the open ports are printed in interactive mode as they are

discovered.

• -oX: output the results into xml format

Listing 1: Process of Nmap scan in code

Listing 2: Nmap host discovery scan

Next, the commands are split as arguments to be used by the function subprocess.Popen(),

taking in the previous Nmap arguments and launches a “child” process. This allows to make

a call to Nmap as well as manage the output effectively.

The output xml file is illustrated on Listing 3 (representing only the first 9 hosts), as it’s

visible, the information given has to do with the Nmap script, the location of the file and the

most important part, the hosts IPv4, their status and the response given.

 44

Listing 3: Host found xml file

From this file, it’s extracted the information mentioned before using the python module

xml.etree.ElementTree, which is a simple and effective API for parsing and creating XML

data. At the top, the file is parsed and assigned to the variable xml_tree_echo, followed by

the function getroot(), to return the root element for this tree. Having the tree initialized, now

the xml structure can be accessed and using an iteration over the subelements (also called

“children”) in the root, it’s possible to extract the attributes and consequently the value inside

them.

In the case of any host being up, they are added to the database table HostDiscovery by

the function insert_content(). At this step the information is also appended to the list

get_host_number[], to be later used in the SSL/TLS check and Service scan.

 45

3.4. PORT SCANNER

With the hosts discovered by previous scan, the variable targets now takes the different

hosts found using the function convertToNmapTarget() (Listing 4) and which takes the hosts

and creates a list of them all. This step is important for a smooth process in the following

scans. The port scan finally begins with the use of the function tcpSynPortScan() (Listing 5)

This function will scan the top 1000 most common ports. The name of the output file is

stated, followed by the Nmap command which contain the Nmap location, the chosen target,

and the following options:

• --top-ports 1000: scans the top x ports specified

• -n: Do not do DNS resolution

• -Pn: This option will skip the host discovery stage

• -sS: TCP SYN Scan

• --min-parallelism 100: Specify the minimum number of parallel port scans

• --min-rate 64: Specify the sending rate of packets per second

• -sV: Detects the version of the service used

• --version-intensity 6: Intensity level representing the probes used in version

detection.

• --script banner: Collect details of the target regarding services running on its open

ports.

• (-T4, -vv and -oX were stated before)

Listing 4: Convert to Nmap format

Listing 5: Nmap port scan

 46

Listing 6: Top 1000 ports xml file

3.5. OS DETECTION

Another important data to obtain is the detection of the operating system present on each

live host. Although this detection is not 100% correct, for the most part it detects well the

OS. This is done by the function osScan() (Listing 7) The name of the output file is stated,

followed by the Nmap command which contain the Nmap location, the chosen target, and

the following options:

• -O: Detection of the operating system.

• (-n, -Pn, -T4, --min-parallelism 100, --min-rate 64, -vv and -oX were stated before)

After the file is generated, a for loop iterates through the xml root to find the different IP

addresses and consequently the name of the operating system. In the case it’s not possible

to identify, the space is left as “Unknown”. All the information is appended to the list

os_name[] to later be added to the database.

 47

Listing 7: Nmap OS Detection function

3.6. SERVICE AND VERSION DETECTION

During the scan of the open ports (file top_1000_portscan.xml), the Nmap script also

detected the service running on that port and the consequently version of it. From this file

it’s extracted all the information needed using a for loop. The same way as before, it’s used

the root to iterate through all the necessary attributes, in this case a new iteration is needed

because inside each host element, there is the IPv4 address and the MAC address. The

elements inside the element address need to be accessed by an iteration, in order to find

the subelements and their corresponding attributes.

First and foremost, the initial attribute needed is the “addr” which contains the actual IPv4

and MAC of the host, if the attribute is different than MAC, then the second part ofc

extracting information begins. Both states and ports variables hold the state of the port and

the port number, respectively. To access the subelements inside the element ports, a new

iteration is needed in which this time it will iterate through the range of the existing ports.

Retrieving the port ID, the protocol and service present. A few variables are initiated that

will hold in each iteration the strings containing the cpe name, service name, service product

and service version. Once more, inside each available port, an iteration will try to find any

existing service. Retrieving any value inside the attributes stated before. For the cpe case,

the script will try to find any existing element called ‘cpe’ and through its own iteration, gather

the text inside of it (Listing 8).

As per the end of each ports iteration, all the variables are added to the database with the

use of the function insert_content_service(), with two variables get_host_number[] and

os_name[] being lists which contain the previous spoken host to be used as foreign key in

the database and the corresponding OS name also previously mentioned, respectively.

 48

During the iteration, the table HostDiscovery was also update with the total number of

vulnerabilities found in each individual port. The first table ScanNumber is equally updated

with the total number of vulnerabilities found on the entire scan.

Listing 8: Service and version detection - code

Listing 9: Various updates and inserts into the database

 49

3.7. SSL/TLS DETECTION

With the conclusion of the port scan for each host, it’s possible to detect if any port running

a web service has SSL/TLS. First, the xml file containing the port scan is taken to the

variable in_ssl_xml to be sent to the parseDiscoverPorts() function (Listing 11). This function

takes the xml file and retrieves the hosts and ports found (Listing 10). With this information

a for loop will extract each target and corresponding open ports and begin the SSL/TLS

cipher and certificate scan. The two functions, illustrated on the Listing 12 , shows the Nmap

commands used for this detection. Besides previously mentioned commands, the only new

command in each function is, ssl-enum-ciphers used to initiate SSLv3/TLS connections and

record if the host accepts it or not, and ssl-cert which retrieves a server SSL certificate.

Although both functions integrate and complete the same table on the database, they are

run separately because they both create a separate file. The certificate function will store

on the database the information about the IP, the port, the name and issuer and the starting

and expiring date of the certificate. While the cipher function stores on the database the

protocol used for that specific service. They both generate xml files.

Finally, two more functions are called to extract the information from the previously

generated xml files.

Listing 10: SSL/TLS xml files creation

 50

Listing 11: Host and Port information extraction from xml file

Listing 12: Nmap SSL/TLS Detection function

3.8. METHOD

With all the data gathered until this point, including the live hosts, their ports and services

available, it’s time to detect if there are any vulnerabilities related to them. To do this, a few

ideas were proposed. Initially, given the service name and version, a script would search

on the NVD database for any vulnerability associated with it, however this option was soon

discontinued because not only it would return too many false positives but also the constant

query for vulnerabilities in specific products online, is not the best security practice. With the

idea of security in mind, a few open-source tools were tested to handle the searching part

on the database. However, most of them were standalone tools with not an easy way to

integrate into a Flask application.

 51

With this in mind, a new approach was made, instead of searching for a service name and

obtaining the CVE ID and the rest of the information, the NMAP script already outputs the

translation of the service name and version to the corresponding cpe string.

The cpe string, also allows for search on the NVD, returning any vulnerabilities affecting

that specific product, reducing the number of false positives. To ensure the security of this

query, the use of an API was needed. With the correct implementation of the NVD, a new

vulnerability database was added to the application, VulDB.

As seen on the Figure 15 the process begins with the port scan, followed by the

corresponding cpe string extracted from it. The cpe string is added to the database and

consequently used to search for any match on the NVD API and VulDB API. The result of

it is a JSON file that is used to extract the necessary information of all the vulnerabilities

found and finally added to the database to be displayed on the web application. This

processes of extracting from the JSON file is explained in more detail on the chapter 4.2.

Figure 15: Vulnerability detection process

3.9. API

API stands for Application Programming Interface, meaning a set of definitions and

protocols in order to build and integrate application software [48].

An API works in a way to let a product or a service to communicate with other products and

services without having to know how they were implemented. This allows for a flexibility

when creating tools or products because it can extract information from different sources in

a secure and easy way, shifting most of the work to the actual development of that specific

tool. APIs are basically a simplified way to connect an infrastructure though cloud-native

app development, which also allows for data sharing between customers and external

users.

 52

A good example of a popular API is Google Maps API, allowing for the integration into other

applications of google maps without requiring anything but a simple API communication.

Web APIs usually use HTTP for request messages and provide a definition of the response

messages structure. These response messages are normally in the form of an XML or

JSON file, as they present data in a way that is easy to be used and manipulated for other

apps.

NVD API

In this application to understand and identify the existence of vulnerabilities, it was used the

CVE API [49] to easily retrieve information on the collection of CVE found by the application.

NVD detains one of the biggest collections of CVE, more than 190000, for this reason, NVD

was chosen to be the main database to check the vulnerability found. All the requests to

the API use the method HTTP GET and each one has a unique base URL, with the

possibility of adding parameters to the URL query in order to filters those same requests for

specific information. They function is a similar way to the filters/parameters found on the

NVD CVE search page.

As many public APIs available, there is a limit to how many requests it’s possible to make

in a given time. The public rate limit without any API Key is 5 requests in a 30 second

window while with an API Key this limit is upgraded to 50 requests in the same time period.

This shoes the usefulness and the need for an API Key, however it is still recommended

that the application using the API sleeps for some seconds between the requests, to be

sure no legitimate requests get denied. In order to request an API Key an account had to

be made in the NVD website so that the API Key would be associated with the account

created.

 53

Searching for a specific cpe through the NVD API, returns the follow schema in the JSON

format:

Figure 16: API JSON schema - 1

 54

Figure 17: API JSON schema - 2

 55

Figure 18: API JSON schema – 3

From all those parameters, the ones used for the application will be:

• baseMetricV2/baseMetricV3 – Gathering the information about the score for both

versions.

• CVE-ID – Gathering the ID of the corresponding CVE.

• Current Description – Gathering the text information about the given vulnerability.

The data collected from those 4 parameters are enough for the whole base of detecting and

presenting the vulnerabilities found to be built.

 56

From that point on, the data is processed and stored in a database and consequently shown

on the web application as a final display of the product. A typical API request to the NVD is

shown on Listing 13 where key represents the API key and cpe_name, the variable that

holds the cpe to be searched on the NVD.

Listing 13: : API request

The process of API request and information extraction from the result is done on the function

cve_scan. This function accepts the cpe string, ex: cpe:/a:apache:http_server:2.2, the

service name, representing the connection between two databases, and the connection to

the database.

The uri variable takes the cpe_name and key (hidden) into the API format which will then

be used in the GET request to the NVD. The response is saved and right after loaded in

JSON format, enabling an easier way to navigate through the data received and retrieve

the necessary parts.

Using a for loop to iterate through the property with the name “CVE_Items”, which contains

all the useful data for this application. Given that step, we set a few variables to retrieve the

attributes of that property like, cve_id, identifying the ID of each CVE found by the attributes

[‘cve’][‘CVE_data_meta’][‘ID’] and equally important, the description of each vulnerability by

the attributes [‘cve’][‘description’][‘description_data’][0][‘value’]. The [0] makes sure it only

retrieves the first description of that vulnerability, preventing any wrong description.

The next step retrieves the Base Metric for the CVSS version 3, to provide the Base score

of each vulnerability found. This score will later be important for the classification of the

vulnerability severity. In some cases (mostly the old vulnerabilities), there is no base score,

which in that case, it is given an empty string to the variable cvssv3_base_score. The same

is applied to the Base Metric for the CVSS version 2. Although the version 3 is the latest

and most reliable version of severity classification, some CVEs still use and often times only

have the version 2.

 57

At last, all the data collected is added to the database using the function insert_content_cve

with all the used variables, along with the initial one, get_service_name. As stated before,

this variable will connect two databases, since the current one holds all the vulnerabilities

information, it is needed a connection using a foreign key to the previous database that

holds the information regarding the IPs found, their open ports, services detected and

corresponding cpe string. Without it, it would not be possible to associate each cpe string

generated from the service running on a specific port, to all the potential vulnerabilities

related to that service and version of it.

Given that commit to the database, a counting of the total number of vulnerabilities found

for that cpe is counted and returned, as we can see on Listing 14, with the commit done, a

second source of vulnerabilities is used by sending a list of all the CVE-IDs found to the

function cve_scan_vulndb(), along with the current cpe string, the table id (service_name)

and the total number of vulnerabilities found so far. The function returns the number of

vulnerabilities found on the new API and finally the sleep() function is called to give

sometime between the API requests, to not exceed any limits.

Listing 14: NVD API Function

 58

VulDB API

For a more complete vision of the existing vulnerabilities, a second database was used to

validate and add extra vulnerabilities to the application. VulDB stands for Vulnerability

Database and is one of the biggest vulnerability databases, providing important sources for

people responsible for vulnerability management, vulnerability handling, cyber threat

intelligence, among others.

VulDB also allows for the access of the data through an API, although more limited in terms

of free access than the NVD API. Data can be requested by HTTP requests with a JSON

response, each individual request uses at least 1 credit, a maximum of 50 credits are given

each day (reset of credits) and there should not be more than 10 requests per minute,

otherwise the API response may be blocked. To hold more credits, an upgrade must be

purchased to do so. Contrary to the other API, this one requires an API key for every access,

otherwise no data can be retrieved [50].

The authentication data is sent as HTTP POST, instead of HTTP GET and all other

parameters must be added as headers, such as the fields, the cpe_name and the Apikey.

The parameter fields, expands the results of the API, since by default the details are given

in a limited way, with less variables. It is possible to change for a full detail more, but it

requires extra credits for each request. Because of this, a third option was used, requesting

the limited details but adding 3 important variables that were not added by default, like the

summary of the vulnerability, and both base score for the CVSS version 2 and 3.

Listing 15: VulDB API request

 59

Searching for a specific cpe through the VulDB API, returns the follow schema in the JSON

format:

Figure 19: VulDB API JSON schema

From all those parameters, the ones used for the application will be:

• Summary – Gathering the text information about the given vulnerability

• Cvssv2/Cvssv3 – Gathering the information about the score for both versions.

• CVE-ID – Gathering the ID of the corresponding CVE.

Contrary to before, the severity level is not gathered from the API, because only three extra

parameters can be attached to the request, and while those 3 chosen cannot be replicated,

the severity level can be easily calculated depending on the score number. The data

collected from those 3 parameters allow for the whole base of detecting and presenting the

vulnerabilities found to be built. From that point on, the data is processed and stored in a

database and consequently shown on the web application as a final display of the product.

Following the API request, the function tries to get the results from it, in case there is no,

meaning there are no vulnerabilities for that specific cpe string, the code is skipped through

the exception. In the case there is indeed results found, a for loop is used to iterate through

the JSON result and obtain all the parameters previously described. For the severity level

of each version, it is attributed the level depending on the extracted base score. Finally, all

the data is stored into the database (Listing 16).

 60

Listing 16: VulDB API function

3.10. SSL/TLS VULNERABILITIES

As described before on the previous chapter, a scan to potential SSL/TLS information is

executed. With the resulting xml files, two functions ssl_certs() and ssl_ciphers() will extract

the important information on both xml files for each host with SSL/TLS related content. The

first function ssl_certs() (Listing 17) will iterate through all the found files with an ending

extension of “_ssl_certs.xml” and analyse it to retrieve the IP Address, the port, the

certificate name and the issuer and the beginning and ending of the certificate.

Given this Its necessary to add to the database table SSLDiscovery all the corresponding

information, along with the foreign key retrieved from the HostDiscovery table and at the

same time it has to match the correct port of that host on the table ServiceScan and finally

match the identical foreign key from the CVEScan table. All this allows for the correct

showing on the website of the vulnerability that may occur from the SSL/TLS outdated

protocol or expired certificate date.

 61

Still on Listing 17, the table SSLDiscovery is also populated with the possible vulnerability

from the expired certificate date by comparing the data with the present date. To avoid any

mismatch of the files, a condition checks if the corresponding IP of the file is on the current

scan in the database. The corresponding severity and score of the expired date vulnerability

was taken from the official plug in of the Nessus software from Tenable [51]. A flag is also

placed as “true” on the database to more easily be spotted a vulnerability regarding

SSL/TLS. The two arguments left empty correspond to the protocol version and the flag

regarding the protocol vulnerability.

Listing 17: SSL/TLS certificate check

For the function ssl_ciphers(), Listing 18, the process is similar to the other function, except

the ending part which compares the protocol version with a known vulnerable and old

version, the TLSv1.0. With the retrieved data, a condition will check whether or not the

protocol is vulnerable and will update the database with the corresponding flag and the

score, severity and description based on official plug in of the Nessus software from Tenable

[52].

Listing 18: SSL/TLS protocol version check

 62

 63

4. DATABASE

For the display of the information into the web application, a database with multiple tables

was created to provide a bridge between the data gathered and the presentation of it.

SQLite, a library that implements a SQL database engine, was chosen for the database

creation, given that is an embedded, server-less relational database management system,

does not require prior configuration, and can easily integrate into Flask.

The Figure 20 shows the database and the connection between each table, using Primary

Key and Foreign Key. This was done to allow retrieving information from previous tables in

order to cross data.

Primary key refers to a key that is unique for each record, as seen on Figure 21 It’s

associated with the column id, recording every new entry by a new consecutive number. It

allows the identification of each row as a unique identifier.

Foreign key on the other hand is a column that is used to establish a link between the data

in two different tables. As such, a second table associates each row to a specific id from

the first table. This can be seen on Figure 22 where scan_id is the foreign key from the table

HostDiscovery, associated with the primary key id from the table ScanNumber.

Whenever a new scan is performed and the data saved on the table ScanNumber with an

individual name from the column scan, an id is associated.

 64

However, the information about the hosts found is saved in a second table. A link between

the two tables is required so that each individual scan can link to all the hosts found for that

one specific scan. This is accomplished by the foreign key scan_id, on the table

HostDiscovery, that has the same number as the primary key id from the table ScanNumber.

Figure 20: Database overview

The first table ScanNumber, gathers the information about each individual scan performed,

its name, the date and time it started and ended, the total number of vulnerabilities found,

a flag to show or not on the webpage and the IP range of the scan executed (Figure 21).

 65

Figure 21: Table ScanNumber

The second table HostDiscovery, gathers the information about each individual host found

by the scan. The host_id represents the primary key, scan_id the foreign key, ip the IPv4

of the detected host, status indicating that the host is indeed live, tcp_syn is the response

given by the host, and vuln_found, is the number of vulnerabilities found on that one host

(Figure 22).

Figure 22: Table HostDiscovery

 66

The third table ServiceScan, gathers the information about each individual host found by

the scan. The scan_id is the primary key, host_id the foreign key, ip the host IPv4, os the

Operating System detected, port the ports found for that IP Address, protocol is the protocol

that the port is associated with, service_name the name of the service found running on

that port, service_product the product associated with that service found, service_version

the version of the service found and, cpes the associated cpe to that service found. This

table is linked to the HostDiscovery table by the foreign key host_id to the primary key

host_id of the table HostDiscovery, associated each host found to all the possible ports that

are active (Figure 23).

Figure 23: Table ServiceScan

The fourth table SSLDiscovery gathers the information about each SSL/TLS certificate

found in all the ports of each host, and the protocol version. As the ServiceScan, this table

also uses a foreign key associated with the primary key of the table HostDiscovery, in order

to associate any specific host of each scan, to the discovery of the SSL/TLS certificates and

the protocol version. Two flags also indicate the existence of vulnerabilities (Figure 24).

Figure 24: Table SSLDiscovery

 67

The fifth and last table CVEScan, gathers the information about each vulnerability found.

For all the ports of all the hosts. The foreign key cpe_id is linked with the primary key from

the table ServiceScan to relate each vulnerability found to a specific port, as seen on the

Figure 25. This table also holds each cpe string, the corresponding CVE-ID of the

vulnerability, the CVSSV score for the version 2 and 3 and their respective severity and

finally the description of the vulnerability. As it can be seen, sometimes there is only the

severity and the score in one of the versions. This will be approached in more detail on the

chapter 6.

Figure 25: Table CVEScan

In this chapter and the next one, the concept of connection between tables will be greatly

used, as such, it’s important to understand how it exactly works.

The main point of the display of information on the webpage or the extraction of data from

the database passes through a link between the primary or foreign key across two or more

tables. The Figure 26 shows the flow of connections between tables. It starts on the very

first one, ScanNumber with only a primary key (id), which is linked to the foreign key

(scan_id) of the table HostDiscovery. The same table has also a primary key (host_id) which

is linked to the foreign key (host_id) from the ServiceScan table and the foreign key (host_id)

from the SSLDiscovery table.

 68

This last table, is a last branch table, containing no other connections to any other table.

The ServiceScan table has a primary key (scan_id) which connects to the last table

CVEScan foreign key (cpe_id).

To better understand how the links are used, an example is shown on Figure 27. The

application needs information from certain columns of the table HostDiscovery. The first

step is to identify the scan in question. The primary key value from the ScanNumber table

is taken and like this the foreign key of HostDiscovery is known.

Similar to the Figure 22, the foreign key column from this table repeats a lot the same

number, this means that all those rows belong to one scan. Now having that information,

the required data from the other columns can be taken or filtered.

This will also be useful for the webpages, since whenever a scan is seen in more detail, the

value that will pass between pages will be the primary or foreign key of the tables. In the

beginning the primary key of the table ScanNumber will be used to uniquely identify the

data from each scan. Now imagining the information of the ServiceScan is required, the

process starts the same way but then the primary key (host_id) from the table

HostDiscovery is used depending on which host the user wants to know more information

about.

As seen on Figure 22 the primary key has a different value for each host but still belonging

to the same foreign key value. Having this primary key of the specific host, the ServiceScan

foreign key is also know. As seen on the Figure 23, if a host has a variety of services, the

foreign key of this table will remain the same because the host is still the same one, and

thus the information can be obtained or filtered (Figure 28).

 69

Figure 26: Database links

Figure 27: HostDiscovery table example

 70

Figure 28: ServiceScan table example

 71

5. APPLICATION

The application was created using the micro-framework Flask which allows for the creation

of a web application in a straightforward way with the integration of a database (SQLite).

The use of Flask demands a python file containing the instance of the Flask class, which

will be the WSGI application, in this case the variable app. All the necessary libraries are

imported for both flask and the database. Along with those, all the python scripts are also

imported so they can be called whenever its needed (Listing 19).

To run the application the user simply has to run the command “export FLASK_APP =

r_scan.py” to validate the main flask script and finally “flask run” to start the application in a

localhost environment through the default port of 5000.

Listing 19: Flask initiating

 72

A good way to explain the way something works and is structured, is with an image of the

overall process, as such, the Figure 29 illustrates the whole process this application takes

to display to the user the vulnerabilities detected.

It starts by requesting the user a name of the scan and the IP range (in case of a custom

scan, the port range is also requested). Submitting the arguments, the program will check

whether a database exists, if the answer is negative, then the program creates a new

database. On the other hand, if the answer is affirmative, the scan settings (meaning the

starting date and the scan name) will be added to the database on the first table

(ScanNumber). The next step is the host scan which will be executed through Nmap and

generate an xml file. This file will have the important information extracted by the algorithm

and added to the second table of the database (HostDiscovery).

Following the program, after the hosts have been discovered, the ports are now scanned to

find any open port through Nmap commands. An xml file is generated but this time, it will

not be automatically added to the database. The same situation happens with the OS

discovery, using Nmap commands and generating an xml file.

With all this information, it’s time to use the previously created xml files and extract the

information regarding the existing service on the open ports. During this process, the OS

xml is also gathered and both information’s are used by the algorithm to store on the third

table of the database (ServiceScan).

The service found generated a cpe string which is then used for finding vulnerabilities, this

detection is done through two APIs, the NVD API and the VulDB API. With each vulnerability

found on every specific host, the information is stored on the fourth table (CVEScan) on the

database. In the case of no vulnerabilities have been found, the algorithm simply passed to

the next host discovered and no data will be added to the table about the previous host.

With this stage completed, it’s time to update some tables of the database. The first update

is related with the total number of vulnerabilities found on each host and stored on the

HostDiscovery table. The second update is the total global number of vulnerabilities found

during this scan, stored on the table ScanNumber.

Following this, the final scan is executed, associated with the SSL/TLS discovery, using

Nmap commands, an xml file is generated, and the information stored in the table

SSLDiscovery. The final update is executed, which adds the ending time of the vulnerability

scan to the table ScanNumber.

 73

Finally, all the information is updated on the webpage and displayed to the user.

Figure 29: Diagrama da aplicação

 74

5.1. DASHBOARD

The first page that will be seen by the user is the Dashboard page, containing information

about the total number of scans executed, all the different hosts found, all the unique open

ports found and the total number of vulnerabilities in all the scans.

There are three graphics that illustrate the percentage of each severity level of all the

vulnerabilities found, the percentage of the operating systems found and finally the number

of vulnerabilities found by each date containing scans.

The Dashboard itself is filtered by the date range input by the user. As default it shows the

range of dates containing all the executed scans, but it can be changed to show only certain

dates or even the scans done in a single day.

Figure 30: Dashboard

5.2. SCAN

For the main goal of this application, the user can and should start a new scan from the left

side bar, as illustrated on the Figure 31. This will present 3 options, the first one is a basic

scan that will find every available host on the network and the top 1000 open ports, not

specifically the ports from 1 to 1000 but rather, the 1000 most known ports to be running in

a machine.

 75

The second is a full scan that will have the same characteristics as the previous one but

this time it will attempts to check which open ports from the possible 65,535, allowing for a

more complete scan but with the downside of taking a longer time to complete. Finally, the

last option is the custom scan, again with the same characteristics as the previous ones but

the port scan can be defined by the user using a range of ports to be checked.

After the user chooses one of the options, the page will redirect to the /scanning_create

webpage (Figure 32, Figure 33 and Figure 34). In this page the information regarding the

name of the scan and the IP Address range, on both basic and full scan, must be filled

before the actual scan starts. On the case of the custom scan, the information about the

port range must be also given, Figure 34.

Figure 31: Scan Input options

Figure 32: New basic scan

 76

Figure 33: New full scan

Figure 34: New custom scan

5.3. SCAN HISTORY

The scan history allows the user to check all the scans done so far. In this page the user

can see the names given to each scan, their start and end time and the total number of

vulnerabilities found. There are three actions the user can use, checking the individual

details of each scan, giving a more in dept look at them, the creation of a report of the

chosen scan and finally deleting the row from the history. The scans are ordered by the

newest date to the oldest (Figure 35).

 77

Figure 35: History of scans

In the main python file, the route /scanning_menu_history, is the webpage of the scan

history. The function for this route will take into consideration the chosen option of the new

scan and in case there is a POST request, meaning, the button was submitted with the

name of the scan, the IP range and sometimes the port range, it will save the values there

placed and shortly after will be used to run the corresponding script. In the case of no POST

request (Listing 20), only the normal access to the page, so there is only the part of the

connection to the database and the extraction of all the scans not deleted from the page by

date order.

The three possible actions are, the details button, from the route /posting_hosts, taking the

user to the webpage with all the discovered hosts from that scan, taking into account the

foreign key from the table HostDiscovery, which is the same as the primary key from the

table ScanNumber (Figure 36). The second option is the report button, from the route

/scanning_menu_history/report, this page will download a PDF file containing all the

information regarding that specific scan, and again using the the primary key from the table

ScanNumber to gather the information and to be used on the python report script. More in

detail on chapter 6.4.

 78

Listing 20: Flask routes

 79

Having clicked on an individual scan, the user can see all the hosts and their individual

vulnerabilities found. The button Details shows those vulnerabilities and associated

information (Figure 36).

Figure 36: Hosts discovered

As an example of some vulnerabilities found, they are ordered by the base score level (10

being the highest). Along with the score level, the severity is also displayed, ranging from

Critical to Informative and distinguished by colours, as illustrated on Figure 37, Figure 38

and Figure 39. Each vulnerability has also the description and the corresponding CVE-ID.

Figure 37: Vulnerabilities found - 1

 80

Figure 38: Vulnerabilities found - 2

Figure 39: Vulnerabilities found - 3

 81

Regarding the Informative rows, each serve a purpose of informing the user of the following:

• All the services found running on that host, Figure 41

• All the open ports found on that host, Figure 42

• The most likely operating system of that host Figure 43

• The SSL/TLS found on that host Figure 44

Figure 40: Informative content

Figure 41: Informative Services page

 82

Figure 42: Informative Ports page

Figure 43: Informative Operating Systems page

Figure 44: Informative SSL/TLS page

 83

Every route for the informative pages is very similar, containing the /informative followed by

the actual page purpose and finally the IP which corresponds to the primary key from the

table HostDiscovery or the linked foreign key from the tables ServiceScan and

SSLDiscovery. This allows for selecting specific parts of those tables. Each function seen

on the Listing 21 returns the associated webpage.

Listing 21: Informative webpages – code

 84

5.4. REPORT

For each individual scan, a PDF report can be generated with all the relevant information.

This conversion to PDF is achieved through the class FPDF, allowing a variety of

customizable options for the creation of a PDF report. The python script report_creating()

is responsible for this conversion, in which the main function connects to the database in

order to extract all the important information and stored on proper variables. Afterwards, an

instance of the class is created and used to build the structure of the PDF, such as, the size

of the page, font, looks and tables. The information is then added to the corresponding cell

of the table, which sometimes requires a for loop for a bigger table with different rows. The

Listing 22 demonstrates the code used.

Listing 22: Scan report code

 85

The output of the report of the scan can be divided into a few sections. The first section

demonstrates the date that the report was generated, the name of the scan itself and the

begging and ending of the scan. The second section shows the general result of the scan,

represented by the IP Address range of the scan, the total number of hosts found and the

total number of vulnerabilities. The third section represents the level of vulnerabilities found,

in which the different levels of severity display their vulnerabilities. The fourth section

demonstrates the hosts discovered and their individual vulnerability numbers. Finally, the

fifth section shows the OS, ports and service name of each host discovered, as illustrated

on the Figure 45 and Figure 46.

Figure 45: Scan report - 1

 86

Figure 46: Scan report - 2

 87

5.5. SCAN COMPARATION

The last feature of the side bar is the scan comparation. It takes two previously done scans

stored on the database and compares the hosts found. Depending on the hosts, the follow

up information may or may not be displayed. In the example on the Figure 48, the hosts

that are on both scans can be seen on the “Compared Hosts”, while the hosts on the oldest

and not found on the new scan can be seen on the “Old Hosts” and, the hosts found on the

new scan and not on the oldest, can be seen on the “New Hosts”.

The Figure 49 show the vulnerabilities that were corrected, by the CVE-ID and the

Description. This means that a vulnerability was found on a specific host on the oldest scan

that was not found on the newest scan in the same host, meaning most likely a

correction/patch was made. In the case there was no corrections, the host simply shows

the corresponding IP Address without any further information. On the Figure 50, new

vulnerabilities are shown, meaning, vulnerabilities found on a specific host on the newest

scan that were not present in the same host on the oldest scan. This comparation was made

possible by using SQLite EXCEPT statement that filters the records based on the intersection

of two SELECT statements, as well as the INTERSECT operator that returns the result if two

or more datasets intersect from the SELECT statement.

Figure 47: Scan comparation

 88

Figure 48: Scan comparation results

Figure 49: Corrected vulnerabilities

Figure 50: New vulnerabilities

 89

6. TESTS AND RESULTS

The tests to simulate the virtual network and the execution of the application were carried

out on a laptop with the following characteristics:

Table 13: Computer specification

NAME LENOVO LEGION 5

RAM 16.0 GB

CPU AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz

GPU NVIDIA GeForce RTX 3060 Laptop GPU

 90

6.1. PHASE ONE

For the initial experiments, a few virtual machines were used in VirtualBox for the

development of the application and the corresponding testing of vulnerabilities found. The

main machine uses the Kali Linux as operating system, which allows for a fast and robust

performance while at the same time, holding a lot of the tools and libraries that were needed

during the tests.

For the vulnerable machines, three were picked containing different environments and

services. The first one OWASP Broken Web Applications Project, which is a collection of

vulnerable web applications on a virtual machine [53]. This machine containing different

vulnerable services, allow for a complete scan and a good testing ground for this application.

It does not have the typical graphical interface, only a command line interface, preserving

resources as it only needs a small amount of RAM and CPU usage to run properly, as seen

on Figure 51 The second machine is Metasploitable 2, a virtual test environment to practice

penetration testing and security research. As the previous machine, there is only the

command line interface, creating a lightweight virtual environment full of vulnerabilities to

be detected and tested (Figure 52) [54].

Figure 51: OWASP virtual machine

 91

Figure 52: Metasploit virtual machine

Figure 53: Virtual Machine setup

All the virtual machines can communicate between each other through a NAT Network, as

stated on the State of the Art, this mode allows for multiple virtual machines to communicate

between each other via the network. The virtual machines can also access other hosts in

the physical network and external networks including the internet. However, any machine

from an external network as well as those from the physical network to which the host

machine is connected, are not allowed to access the virtual machine.

 92

Using this method, the main machine (Kali Linux) takes the IP Address 10.0.2.7 while the

OWASP and Metasploit take the IP Address, 10.0.2.4 and 10.0.2.5, respectively. This

explains some of the figures seen in chapter 6 showing the application and some of the

hosts found.

Figure 54: VirtualBox Nat Network

6.2. PHASE TWO

With the whole application working well and the correct showing and scanning of the

vulnerabilities, it was time to pass to the next phase of experiments, the creation of the

network. The idea behind the way to simulate a virtual network through VirtualBox was

explored by Brian Linkletter on his blog [55]. A small network was first simulated, containing

three routers connected between them and a computer connected to each individual router

(Figure 55). All the routers contain four active interface adapters, one for the NAT

connection to be able to communicate with the host machine and three others to allow

communications between the routers (enp0s8, enp0s9 and enp0s10). The computers have

two active interface adapters, one for the communication with the host and another to

communicate with the respective router.

 93

For the creation of the virtual machines, the second experiment used the Ubuntu Server

16.04 virtual environment and follow up clones of that the configured machine, to prevent

having to install all the individual machines (Figure 56). In this case the clones use different

MAC addresses to prevent wrong communications and use the linked clone that create a

new differencing disk image based on the original virtual machine disk image [56].

Figure 55: First network setup [55]

Figure 56: Machines on the first setup

 94

With the six virtual machines installed, their interface network adapter was configured. On

the first adapter, the NAT mode was chosen to allow a TCP port forwarding using a SSH

communication with the host machine. This way, the setup and configuration of the network

takes less time to accomplish. Each virtual machine communicates through the Port 22

(SSH), while at the same time a unique port on the host to establish the communication,

Figure 57.

Figure 57: SSH connection

For the second adapter, the Internal Network mode was used so each virtual machine can

communicate with each other only in a closed environment. In the case of each computer,

there is only one adapter with the Internal Network mode, having every one of them a

different name because they communicate directly only with the corresponding router. On

the case of the routers, they have three adapters with the Internal Network mode, in which

one communicates directly with one computer, and the two others communicate directly

with each one of the other two routers.

 95

Figure 58: Internal Network

With the virtual machines running, the configuration of their network interface and routing

protocols was done. Each computer has the previously defined network interface adapter

(enp0s8) but without any configuration of IP Address. For this purpose, a block of input was

redirected to the bash shell command line starting with the first line which tell the bash shell

that a new block (EOF2) is starting. End-of-file (EOF) is an operating system condition that

tell the computer when there are no more data to be read from the data source. In this case

the EOF2 creates a new block of inputs but inside of it, there is an additional EOF block,

thus the unusual adding of “2”. The second, third and fourth line tell the computer the new

assigned hostname name. The fifth line will input into the location /etc/network/interfaces

the configuration of the new network adapter. In this case of the Ubuntu version, it

corresponds to enp0s8, and the new address will be 192.168.2.1 with a netmask of

255.255.255.0.

Finally, it adds the new to the 192.168.0.0/16 address and will connect directly to the router

at the IP Address 192.168.2.254. With this addition, the network is restarted and the block

ends (Figure 59). The same process is repeated for the other machines with the only

difference being the IP Addresses of the machine and the corresponding router.

 96

Figure 59: Virtual machine configuration

In the case of the router, the process is slightly different. The first four lines start the same,

the fifth update the machine and installs quagga, a network routing software that provides

implementation of Open Shortest Path First, Routing Information Protocol and others [57].

This will allow the virtual machine “routers” to behave like routers. Follows a normal

configuration of quagga in the machine and the setup of different network interfaces, in this

case enp0s8, enp0s9 and enp0s10. The networks to communicate with each router and

computer is also setup along with the IP Address of the machine.

Figure 60: Router setup

 97

With all the machines setup and started, it’s possible to ping and communicate between

them, as seen on Figure 61. In this case the machine 192.168.3.3 will be used, further

detailed on Figure 66.

Figure 61: Ping and trace other virtual machines

The next step is the implementation of different operating systems into this configured

network. Since the previous tests were done with the OWASP and Metasploit machines,

one of each is added into the network. However, due to the type of distribution, the setup

was slightly different. First the network interface had to be added on the VirtualBox, this

allows for the configuration of an extra interface, but it does not show on the command line

(Figure 62), the command “ifconfig eth1 up” must be used to associate with the open

interface. Now that the interface is up, the configuration takes place on the

“/etc/network/interfaces” where the IP Address is attributes and the communication with the

corresponding router, Figure 63 and Figure 64.

 98

Figure 62: Lack of visual adapter

Figure 63: Eth1 adapter

Figure 64: Network adapter configuration

6.3. PHASE THREE

After all the preparations in the previous phases, the third and last phase adds more

machines into the existing network. The initial hospital network that was going to be

simulated on a smaller scale, can be seen on the Figure 65. It belongs to a scientific paper

titled “Intelligent cyberattack detection on SAFECARE virtual hospital*” [58], developed by

various members of the University, Instituto Superior de Engenharia do Porto - ISEP. The

 99

first idea was to replicate at least four subnetworks of the hospital, however as it will be

discussed later, it was not possible to run virtual machines past a certain number.

Figure 65: Virtual Hospital [58]

The network made comprised of the same components of the phase two plus an additional

two vulnerable machines in each subnet. The Figure 66 shows three routers each

communicating between each other through the corresponding 192.168.10X.0/24 network

(being X between 0 and 2). The same routers are also assigned with the IP Address of

192.168.X.254, so that each machine can know how to communicate with the

corresponding router.

On the subnetwork part, there are three of them with each one having a total of three virtual

machines, where two are vulnerable, darker red the Metasploit machine and brighter red

the OWASP machine, and another is a normal Ubuntu Server 16.04. The scanning machine

is connected to the first router through the assigned IP Address 192.168.1.10 (blue laptop).

Because of the connectivity between all the subnetworks, the scanning machine can detect

every host and router present on the whole network.

 100

Figure 66: Phase two network with additional hosts

The results show that a scan of 13 hosts takes around 15min to complete with only the top

1000 ports to be scanned. It found 1035 vulnerabilities since there are 2 vulnerable

machines in each subnetwork (Figure 67). From those, 54 were Critical, 429 High, 474

Medium, 83 Low and 4 Informative (Figure 69).

Figure 67: Scan results history – first network

 101

Figure 68: Scan results hosts – first network

Figure 69: First network scan report

 102

The second network took the first one and expanded to accommodate more virtual

machines. For the first and second router, 5 vulnerable machines were added, 3 Metasploit

and 2 Owasp. On the third router, 4 machines were added, 3 Metasploit and 1 Owasp.

However, during launch of all the network, the computer could not handle the execution of

so many virtual machines at once, so 5 of them (from the second router) displayed an error

and stopped executing. Even so, this network simulation counted with 22 hosts to perform

the scans (Figure 70). Running a custom scan from the port 1 to 8080, a total of 2613

vulnerabilities were found, of which, 138 Critical, 1077 High, 1287 Medium, 153 Low and 4

Informative (Figure 71 and Figure 72).

Figure 70: Phase three network

 103

Figure 71: Scan results history – second network

Figure 72: Scan report – second network

 104

A comparation of the time taken for each scan is illustrated on the Table 14. The tests of

each scan were conducted 3 times to obtain a reasonable number of samples and an

average time was calculated. The first three rows of the table correspond to the first

simulated network with only 13 hosts and the time taken in each scan was roughly the same,

only the basic scan had a slight advantage taken 2 minutes less to complete. On the last

three rows, the time taken was largely increased as the number of hosts went from 13 to

22. Despite the basic scan having a smaller time, the time gap to the full and custom scan

is not surprisingly much bigger. The possible reason has to do with the basic scan

performing the detection in the top 1000 most common ports, and the vulnerable machines

having all or almost all of the services associated with those 1000 ports. Its also worth

noticing that only one API (NVD) was active during these tests, since the VulDB API did not

allow the number of requests necessary to perform all the existing scans.

Table 14: Comparation of scan time

Type of scan Number of hosts Time

Basic 13 ~ 18 minutes

Full 13 ~ 20 minutes

Custom (1-8080 ports) 13 ~ 20 minutes

Basic 22 ~ 46 minutes

Full 22 ~ 51 minutes

Custom (1-8080 ports) 22 ~ 50 minutes

 105

6.4. LIMITATION

During the first tests with only two vulnerable machines, it was found that only the NVD API

could be used for the remaining experiments. As it can be seen on the Figure 73, when

executing a scan without the VulDB API and only 1 host, 102 vulnerabilities are found. With

2 hosts the number increases to 325. In contrast, when the VulDB API is active, the number

of vulnerabilities increases to 487 and 690, respectively.

On one side, this is extremely good, as it finds even more vulnerabilities, having a complete

overview of the real vulnerabilities these machines may have. So, if it even increases the

number of vulnerabilities, why it is a limitation to the application. The answer lies on the

maximum number of requests a user can perform to the VulDB API on a free license. The

current number is 50 requests per 24h, but this number was reduced to 30 requests due to

penalizations by exceeding a few times the maximum number and continuing to make

requests (this happens during the scan process, as only at the end its possible to visualize

the exciding occurrence).

Realizing this limitation, the following experiments carried out without the use of the VulDB

API since with only 2 hosts it already exceeds the limit, the addition of extra hosts will only

further aggravate the problem. In conclusion, the number of vulnerabilities displayed

throughout the chapter 7 is smaller than it could possibly be.

Figure 73: Comparation of API results

 107

7. CONCLUSIONS

This final chapter details all the conclusions are achievements done throughout this project.

The goal is to link the previously set objectives with the accomplishments that have been

done. It will also consider the limitations and future work, which can be included as an

enhancement of the Risk Management web application.

7.1. OBJECTIVES ACHIEVED

It is important to denote that this thesis started later, with the actual beginning at around

April and required a lot of research from the author to understand a variety of topics that

were covered throughout the thesis and, were necessary in order to execute them in a

successful way. Despite the slight shift in the Master’s degree subject, the introduction into

the cybersecurity world was well accepted.

The goal of displaying a functional Risk Management web application that could scan a

network and detect vulnerabilities in different assets, was successfully achieved.

Furthermore, the results have shown that the implementation of the project into any network

is simple and does not require any special configuration besides the ones stated on this

document.

In continuation of the objectives, it was proposed and well completed the integration of a

database with all the vulnerabilities detected, and a way to connect through an API to two

 108

well-known vulnerability databases, in order to validate the existence of vulnerabilities in

different assets. Even though both APIs were initially used, the VulDB API had to be

excluded given the maximum number of requests permitted per day. This limited the actual

output number of vulnerabilities found as it could be seen on chapter 7.

The addition of a scan comparation between the hosts to validate the correction of

vulnerabilities was introduced later into the project but was successfully executed, giving an

extra feature to the application.

Lastly the initial objective of implementing a simulated network based on an existing

simulated hospital network, was greatly reduced to a network of three routers and more

than a dozen hosts, given the complexity of a bigger network and the hardware limitations.

7.2. LIMITATIONS

Regarding the limitations encountered while developing the thesis’s main components, it is

viable to deduce that the following restraints played a role in the implementation:

• Hardware limitations: Despite the fact that the computer used to perform the

simulations was a fairly recent one, it was not enough to expand further the number

of virtual machines that can be executed at once and grow the developed simulated

network.

• Time limitations: Even though this thesis took some months to complete, the time

required given the initial knowledge of the author on this topic, to expand further the

application, was not enough, as a few more months would be needed for this

accomplishment.

• API limitations: Despite the initial use of two APIs to better complete the detection

of vulnerabilities, the VulDB ended up not being as useful as initially planned

because of the maximum number of requests allowed, having to be excluded from

the rest of the experiments.

 109

7.3. FUTURE WORK

Following the completion and documentation of this project, it was verified that a simple

Risk Management web application can be built with the junction of different tools and

methods, in order to achieve a full network scan.

A simulated network was used for the testing and as a proof-of-concept of the functionality

of the application. By applying this project to a real-world network, some features could be

better enhanced and tuned so that a better performance would be upgraded, and a broader

range could be covered.

Given the limitation of one of the APIs used, an enhancement to this project would be the

addition of another vulnerability database to validate and discover new vulnerabilities on the

scanned hosts.

The feature of the comparation of scans, could and should be used to validate other

technologies in the effectiveness of correcting vulnerabilities in different hosts of a network.

The main idea would be to experiment and train neural network models that had a network

environment to patch vulnerabilities and an application to validate if changes were indeed

made and some vulnerabilities corrected.

Since nowadays any security application involves the cooperation of different teams and

also includes the management department by displaying concrete data of the security

performance put into place, a good addition to the application would be a graphical interface

that would show not only, a diagram of all the hosts found and how they are connected

through the network, but also a way to measure the possibility of a vulnerability in a single

host to spread to others. This method could easily identify hosts that have known

vulnerabilities that have the consequence of affecting others hosts and would serve as a

way to know which hosts should be isolated and taken care of as a top priority.

As stated on the introduction, this application was initially thought to be built into an existing

React application and expand the capabilities by adding the vulnerability scanning and

detection methods. For a future work, the integration could be possible to achieve. In this

integration, the process could be moved to an automated one, without the need for manual

input from the user and instead have scheduled periodic scans. This was initially thought to

be implemented on this thesis but later discarded.

 110

7.4. FINAL CONSIDERATIONS

As a final note, since most of the objectives have been achieved, the author considers this

thesis to be a successful journey. It is important to highlight that the author had to learn a

big portion of concepts and technologies used since the cybersecurity field was not the main

area of the Master’s degree. Given this and the results obtained, it can be said that the

project conclusion was pretty satisfactory.

The author expects that this application can be expanded and integrated into more complex

projects, to make a real risk management impact.

This was an appealing project that challenged the author to think of the best way to conduct

research and how to successfully manage the thesis and the consequently implementation

of the various components. Ultimately, the author views this project as a substantial step

into the cybersecurity field and a highly satisfying opportunity for the author to reflect on his

own growth.

 111

Bibliography

[1] H. Hanif, M. H. N. Md Nasir, M. F. Ab Razak, A. Firdaus, and N. B. Anuar, “The rise of

software vulnerability: Taxonomy of software vulnerabilities detection and machine

learning approaches,” J. Netw. Comput. Appl., vol. 179, no. November 2020, p.

103009, 2021, doi: 10.1016/j.jnca.2021.103009.

[2] L. A. B. Sanguino and R. Uetz, “Software Vulnerability Analysis Using CPE and CVE,”

pp. 217–231, 2017, [Online]. Available: http://arxiv.org/abs/1705.05347

[3] T. M. Corporation, “Mitre ATT&CK,” 2015. https://attack.mitre.org/ (accessed Oct.

13, 2022).

[4] B. Ampel, S. Samtani, S. Ullman, and H. Chen, “Linking Common Vulnerabilities and

Exposures to the MITRE ATT&CK Framework: A Self-Distillation Approach,” Work. AI-

enabled Cybersecurity Anal. 2021 ACM Conf. Knowl. Discov. Data Min., pp. 1–5, 2021.

[5] J. Sun, K. Pan, X. Chen, and J. Zhang, “Security Patterns from Intelligent Data: A Map

of Software Vulnerability Analysis,” Proc. - 3rd IEEE Int. Conf. Big Data Secur. Cloud,

 112

BigDataSecurity 2017, 3rd IEEE Int. Conf. High Perform. Smart Comput. HPSC 2017

2nd IEEE Int. Conf. Intell. Data Secur., pp. 18–25, 2017, doi:

10.1109/BigDataSecurity.2017.9.

[6] MITRE, “Common Vulnerabilities and Exposures.” http://cve.mitre.org (accessed

Sep. 20, 2022).

[7] “Microsoft Security Advisories and Bulletins,” 2022.

https://technet.microsoft.com/en-us/library/security (accessed Sep. 10, 2022).

[8] “HP IT Resource Center.” http://itrc.hp.com (accessed Oct. 23, 2022).

[9] IBM, “IBM Internet Security Systems Ahead of the threat.” http://xforce.iss.net

(accessed Oct. 23, 2022).

[10] “Bugtraq.” http://www.securityfocus.com/ (accessed Jun. 13, 2022).

[11] “US-CERT.” https://www.us-cert.gov (accessed Jun. 13, 2022).

[12] I. FIRST.org, “Common Vulnerability Scoring System, V3 Development Updat,” 2017.

https://www.first.org/cvss/ (accessed Oct. 23, 2022).

[13] W. F. Chong, R. Feng, H. Hu, and L. Zhang, “Cyber Risk Assessment for Capital

Management,” 2022, [Online]. Available: http://arxiv.org/abs/2205.08435

[14] M. E. Paté-Cornell, M. Kuypers, M. Smith, and P. Keller, “Cyber Risk Management for

Critical Infrastructure: A Risk Analysis Model and Three Case Studies,” Risk Anal., vol.

38, no. 2, pp. 226–241, 2018, doi: 10.1111/risa.12844.

[15] M. McShane, M. Eling, and T. Nguyen, “Cyber risk management: History and future

research directions,” Risk Manag. Insur. Rev., vol. 24, no. 1, pp. 93–125, 2021, doi:

10.1111/rmir.12169.

[16] E. Humphreys, “Information security management standards: Compliance,

governance and risk management,” Inf. Secur. Tech. Rep., vol. 13, no. 4, pp. 247–

255, 2008, doi: 10.1016/j.istr.2008.10.010.

 113

[17] J. Moteff, “Risk Management and Critical Infrastructure Protection : Assessing ,

Integrating , and Managing Threats , Vulnerabilities and Consequences,” Sci.

Technol., pp. 1–29, 2005.

[18] S. Furnell, A. I. Awad, M. Paprzycki, and S. K. Sharma, “Security in Cyber-Physical

Systems - Foundations and Applications,” Stud. Syst. Decis. Control, vol. 339, 2021,

doi: 10.1007/978-3-030-67361-1_8.

[19] R. Böhme, S. Laube, and M. Riek, “A Fundamental Approach to Cyber Risk Analysis,”

Variance. Adv. Sci. Risk, vol. 12, no. 2, pp. 161–185, 2019.

[20] E. Sapori, M. Sciutto, and G. Sciutto, “A quantitative approach to risk management

in critical infrastructures,” Transp. Res. Procedia, vol. 3, no. July, pp. 740–749, 2014,

doi: 10.1016/j.trpro.2014.10.053.

[21] H. Holm, “Performance of automated network vulnerability scanning at remediating

security issues,” Comput. Secur., vol. 31, no. 2, pp. 164–175, 2012, doi:

10.1016/j.cose.2011.12.014.

[22] I. Lee, “Cybersecurity: Risk management framework and investment cost analysis,”

Bus. Horiz., vol. 64, no. 5, pp. 659–671, 2021, doi: 10.1016/j.bushor.2021.02.022.

[23] F. Kim, “How to make sense of cybersecurity frameworks,” 2019.

https://www.frankkim.net/blog/how-to-make-sense-of-cybersecurity-frameworks

[24] NIST, “NIST SP 800-53,” 2020. https://www.nist.gov/privacy-framework/nist-sp-

800-53 (accessed Oct. 23, 2022).

[25] ISO, “ISO/IEC 27001 and related standards.” https://www.iso.org/isoiec-27001-

information-security.html (accessed Oct. 23, 2022).

[26] S. Almuhammadi and M. Alsaleh, “Information Security Maturity Model for Nist

Cyber Security Framework,” pp. 51–62, 2017, doi: 10.5121/csit.2017.70305.

[27] D. Maclean, “The NIST Risk Management Framework: Problems and

recommendations,” Cyber Secur. A Peer-Reviewed J., vol. 1, pp. 207–217, 2017.

 114

[28] P. Radanliev, “Cyber Risk Management for the Internet of Things,” Univ. Oxford

Comb. Work. Pap. Proj. reports Prep. PETRAS Natl. Cent. Excell. Cisco Res. Cent., no.

April, pp. 1–27, 2019, doi: 10.20944/preprints201904.0133.v1.

[29] V. McCoy, “FAIR On-A-Page: Same Great Model, Fresh New Look,” 2017.

https://www.fairinstitute.org/blog/fair-model-on-a-page (accessed Oct. 23, 2022).

[30] A. nationale de la sécurité des Systèmes and D’information, “EBIOS — Expression

des Besoins et Identification des Objectifs de Sécurité.”

[31] P. B. Nassar, Y. Badr, K. Barbar, and F. Biennier, “Risk Management and Security in

Service-based Architectures,” 2017 IEEE 7th Annu. Comput. Commun. Work. Conf.,

pp. 214–218, 2009, doi: 10.1109/CCWC.2017.7868444.

[32] B. Fatima and T. Rabat, “Risk analysis in Internet of Things using EBIOS Berrehili

Fatima zahra,” Zahra, Berrehili Fatima Belmekki Abdelhamid. “Risk Anal. Internet

Things using EBIOS.” 2017 IEEE 7th Annu. Comput. Commun. Work. Conf. 1-7., 2017,

doi: 10.1109/CCWC.2017.7868444.

[33] J. Mcdonald, A. Hecker, and F. Planchon, “Application of EBIOS for the risk

assessment of ICT use in electrical distribution sub-stations,” 2010.

[34] S. S. Alizadeh and P. Moshashaei, “The Bowtie method in safety management system

- A literature review,” Sci. J. Rev., vol. 4, no. 9, pp. 133–138, 2015, doi:

10.14196/sjr.v4i9.1933.

[35] “Bow tie analysis,” 2019. https://broadleaf.com.au/resource-material/bow-tie-

analysis/ (accessed Oct. 23, 2022).

[36] W. J. Chun, “History of Python - Core Python Programming [Book],” December 2000.

https://www.oreilly.com/library/view/core-python-

programming/0130260363/0130260363_ch01lev1sec2.html

[37] P. S. Foundation, “Python.” https://www.python.org/ (accessed Sep. 10, 2022).

[38] “Flask.” https://flask.palletsprojects.com/en/2.1.x/ (accessed Sep. 10, 2022).

 115

[39] D. S. Foundation, “Django.” https://www.djangoproject.com/ (accessed Sep. 10,

2022).

[40] “Nmap.” https://nmap.org/ (accessed Sep. 10, 2022).

[41] Oracle, “VirtualBox.” https://www.virtualbox.org/ (accessed Sep. 10, 2022).

[42] M. Bose, “VirtualBox Network Modes,” NAKIVO, 2019.

https://www.nakivo.com/blog/virtualbox-network-setting-guide/ (accessed Sep.

13, 2022).

[43] SolarWinds, “GNS3.” https://www.gns3.com/ (accessed Sep. 10, 2022).

[44] SolarWinds, “GNS3 docs.” https://docs.gns3.com/docs/ (accessed Jun. 13, 2022).

[45] Nmap, “Nmap Scan types.” https://nmap.org/book/host-discovery-techniques.html

(accessed Oct. 13, 2022).

[46] Nmap, “Syn Scan Nmap.” https://nmap.org/book/synscan.html (accessed Oct. 13,

2022).

[47] Nmap, “ACK Scan Nmap.” https://nmap.org/book/scan-methods-ack-scan.html

(accessed Oct. 13, 2022).

[48] R. Hat, “What is an API?,” 2022. https://www.redhat.com/en/topics/api/what-are-

application-programming-interfaces (accessed Oct. 10, 2022).

[49] N. V. Database, “CVE API,” 2022. https://nvd.nist.gov/developers/vulnerabilities

(accessed Oct. 10, 2022).

[50] V. pyxyp Inc, “VulDB,” 2022. https://vuldb.com/?kb.api (accessed Oct. 16, 2022).

[51] I. Tenable®, “SSL expired date,” 2022.

https://www.tenable.com/plugins/nessus/15901 (accessed Oct. 19, 2022).

[52] I. Tenable®, “SSL Protocol Version,” 2022.

https://www.tenable.com/plugins/was/112546 (accessed Oct. 19, 2022).

 116

[53] C. Willis, “OWASP Project,” 2015. https://owasp.org/www-project-broken-web-

applications/migrated_content (accessed Oct. 13, 2022).

[54] Metasploit, “Metasploitable 2.”

https://docs.rapid7.com/metasploit/metasploitable-2/ (accessed Oct. 13, 2022).

[55] B. Linkletter, “How to emulate a network using VirtualBox,” July 4, 2016.

https://www.brianlinkletter.com/2016/07/how-to-use-virtualbox-to-emulate-a-

network/ (accessed Oct. 22, 2022).

[56] O. V. VirtualBox, “Cloning VirtualBox.”

https://docs.oracle.com/en/virtualization/virtualbox/6.0/user/clone.html

(accessed Oct. 23, 2022).

[57] P. Jakma, “Quagga,” 2018. https://www.nongnu.org/quagga/ (accessed Oct. 22,

2022).

[58] E. Maia, D. Lancelin, J. Carneiro, T. Oudin, Á. Dória, and I. Praça, “Intelligent

Cyberattack Detection on SAFECARE Virtual Hospital,” Lect. Notes Networks Syst.,

vol. 470 LNNS, no. 787002, pp. 327–337, 2022, doi: 10.1007/978-3-031-04829-6_29.

 117

