
Integrated and Decentralized Project
Management

XAVIER DA ROCHA BARBOSA
Outubro de 2022

Integrated and Decentralized Project
Management

Xavier Rocha Barbosa

A dissertation submitted to obtain the degree of Master of
Science in Engineering, Specialization Area of Software

Engineering

Supervisor: Dr. Paulo Maio

Evaluation Committee:
President:
- , -

Members:
- , -

Porto, October 15, 2022

iii

Abstract

Software has become a prominent aspect of the modern world, as it is present and constantly
aids people in their daily lives. Consequently, the software development industry has grown
in size and competitiveness. Software companies, more than ever, need to keep the best
practices for quick and efficient delivery, low maintenance, and overall better profit to succeed
in such market.

For this very reason, several project management techniques have been developed and put
into practice over the years. Nevertheless, its utmost focus has to generate effective arrang-
ing of resources and tasks and turn it into the desired end product. Moreover, the selection
of an adequate management techniques (taking into account the company and the project’s
background) allows the result to better fit into the defined requirements and objectives and
improve workflow and productivity along the way.

However, the software development field and the project management itself became complex,
containing several steps, rules, and involved parties. All this can lead to unorganized data,
and an easy disruption of the management workflow.

These problems, not only depend on the company’s culture but also on the multiple tools
used to ensure proper planning and coordination. Thus, the correct and justified integration
to other company’s tools create a synergistic environment from which the firm would benefit.
In other words, the integration of specialized systems would enable a better project manage-
ment - as not only the relevant and necessary information would be up-to-date throughout
all systems, but also, workload would be correctly distributed by all employees.

This report demonstrates a possible approach to this problem and describes the several
phases to achieve the solution - from requirements gathering, analysis and research, and the
design and development of a software project management system.

Subsequently, the conceptualized solution is based in the current project management appli-
cation used in Armis. However, it now integrates with the company’s customer relationship
management application, as well as the financial software. Moreover, it provides a better,
more controlled and organized sequence of actions of the management processes.

The developed application comprises of a proof of concept based on the conceptualized
solution. It was later evaluated and tested to assess its suitability and conformity with the
proposed goals.

Keywords: Project Management, Tool integration, Software Development

v

Resumo

Produtos de software tornaram-se peças fundamentais do mundo atual, estando presente e
auxiliando as pessoas até na mais pequena tarefa. Consequentemente, a indústria de de-
senvolvimento de software tem crescido consideravelmente, tornando-se assim um ambiente
bastante competitivo. De forma a garantir a sua sobrevivência e sucesso no mercado, estas
organizações precisam de adotar as melhores práticas para que exista não só uma entrega
de produto rápida e eficiente, mas também baixos custos de manutenção do mesmo e maior
lucro.

Assim, ao longo do tempo foram desenvolvidas e testadas várias técnicas de gestão de proje-
tos. É de extrema importância a adoção de uma boa técnica de gestão, sempre considerando
as práticas exercidas e a experiência da empresa, assim como o projeto em questão. Desta
forma, o resultado final enquadrar-se-á nos requisitos e objetivos estabelecidos, consequente
de um aumento da produtividade e melhor fluxo de trabalho.

No entanto, a área de desenvolvimento de software e também da gestão de projetos tem-se
tornado mais complexa ao longo dos anos, incluindo cada vez mais passos, regras e pessoas
envolvidas no processo. Tudo isso pode levar à desorganização da informação relevante e à
fácil interrupção do fluxo de trabalho na gestão de projetos.

Esses problemas não dependem apenas da cultura organizacional, mas também das várias
ferramentas utilizadas na gestão e coordenação de recursos. Assim, a integração correta
e justificada às outras ferramentas da empresa cria um ambiente sinérgico, o qual seria
vantajoso para a organização. Por outras palavras, a integração de sistemas especializados
permitiria uma melhor gestão dos projetos - sendo que, não só as informações relevantes
e necessárias estariam atualizadas em todos os sistemas, mas também a carga de trabalho
seria distribuída corretamente por todos os funcionários.

Este documento descreve uma solução possível ao problema exposto e descreve as várias
fases para alcançar a solução - desde o levantamento de requisitos, análises e pesquisas, e
design e desenvolvimento de um sistema de gestão de projetos de software.

Posteriormente, a solução preconizada é baseada na ferramenta de gestão de projetos atual-
mente utilizada na Armis. No entanto, a solução integra agora outras ferramentas utilizadas
pela empresa: a aplicação de gestão de clientes, assim como o software financeiro. Além
disso, proporciona uma sequência melhor, mais controlada e organizada de ações relativos
aos processos de gestão.

A aplicação desenvolvida corresponde a uma prova de conceito baseada na solução idealizada,
que, posteriormente, foi avaliada e devidamente testada para confirmar a sua adequabilidade
e conformidade com os objetivos previamente definidos.

vii

Acknowledgement

Agradeço, em primeiro lugar, aos meus pais e irmão, por todo o apoio durante estes longos
5 anos. E à Floki que me proporcionou as necessárias pausas.

Ao Pedro, que tem sido um porto de abrigo e uma ajuda imensa. Não teria conseguido
metade sem ti.

Chica, Daniela, Ana, Farofa, Bruna, Rita e todos os (muitos) outros que me acompanham
desde o primeiro ano e viveram esta montanha-russa ao meu lado.

À Tuna Académica de Oliveira do Douro e todos os seus membros (especialmente à Sara)
que foram, e continuam a ser, o meu refúgio.

Por fim, agradeço à Armis por esta oportunidade e a todos os restantes intervenientes deste
projeto: professor doutor Paulo Maio e Márcio Ribeiro.

ix

Contents

Acknowledgement v

List of Figures xiii

List of Tables xv

Code Snippets xvii

List of Acronyms xix

1 Introduction 1
1.1 Context . 1
1.2 Problem . 2
1.3 Objectives . 2
1.4 Approach and methodology . 3
1.5 Document Structure . 4

2 State of the Art 5
2.1 Project . 5

2.1.1 Project Success and Constraints 5
2.1.2 Project Phases . 6

2.2 Project Management . 7
2.2.1 Project Management Importance 7
2.2.2 Limitations of Project Management 8
2.2.3 Project Manager and other roles 8
2.2.4 Project Management Stages . 9
2.2.5 Evolution of Project Management 10

2.3 Project Management Systems . 12
2.3.1 Systems as a response to Project Complexity 13
2.3.2 Advantages and Limitations . 13
2.3.3 Scope of Project Management Systems 14

2.4 Relevant Project Management Systems 14
2.4.1 Microsoft Project . 14
2.4.2 Trello . 15
2.4.3 Jira . 15
2.4.4 Wrike . 16
2.4.5 Company’s Technological Standpoint 16
2.4.6 Comparison of Project Management Systems 17

3 Value Analysis 19
3.1 Innovation Process . 19

x

3.1.1 New Concept Development Model 20
3.1.2 Opportunity Identification . 21
3.1.3 Opportunity Analysis . 21
3.1.4 Idea Genesis . 22
3.1.5 Idea Enrichment and Selection . 22
3.1.6 Concept Definition . 25

3.2 Value . 25
3.2.1 Value Proposition . 26

3.3 Business Model Canvas . 26

4 Requirements Analysis 29
4.1 Domain . 29

4.1.1 Project Management Context . 31
4.1.2 Invoice Context . 32
4.1.3 Budget Context . 33
4.1.4 Task Context . 33
4.1.5 Itinerary Context . 34
4.1.6 Hour Imputation Context . 34
4.1.7 Employee Expenses Imputation Context 35
4.1.8 Proposal Context . 36
4.1.9 Corporation Structure Context . 37

4.2 Requirements . 38
4.2.1 Functionality . 38
4.2.2 Usability . 42
4.2.3 Reliability . 43
4.2.4 Performance . 43
4.2.5 Supportability . 43
4.2.6 Others (+) . 43

4.3 Further Notes . 44

5 Design 45
5.1 Design Approach . 45
5.2 Level 1 - System Context . 46

5.2.1 Logical View . 46
5.2.2 Process View . 47

5.3 Level 2 - Container Context . 48
5.3.1 Logical View . 48

First Alternative . 48
Second Alternative . 49

5.3.2 Process View . 51
First Alternative . 51
Second Alternative . 52

5.3.3 Physical View . 55
First Alternative . 55
Second Alternative . 55

5.4 Level 3 - Component Context . 57
5.4.1 Logical View . 57
5.4.2 Development View . 58

xi

6 Development 59
6.1 Database . 59
6.2 Back-end . 62

6.2.1 Technologies . 62
6.2.2 Implemented requirements . 62
6.2.3 Application’s structure . 63

Controllers . 63
Data Transfer Object (DTO)s . 64
Services . 65
Domain . 67
Repositories . 68

6.3 Front-end . 70
6.3.1 Technologies . 70
6.3.2 Application’s Structure . 70

Authentication Components . 70
Commons Components . 71
List and Filter Projects Components 74
Create Project Components . 76
Display and Edit Project Components 77

7 Evaluation of the Solution 81
7.1 User’s Satisfaction and Application’s Usability 81

7.1.1 Goal . 81
7.1.2 Process . 81
7.1.3 Results . 82
7.1.4 Result Analysis . 82

7.2 Reliability of the System . 83
7.2.1 Goal . 83
7.2.2 Process . 83
7.2.3 Results . 83

Metrics 1 and 3 . 83
Metric 2 . 84

7.2.4 Result Analysis . 84

8 Conclusion 85
8.1 Requirements Completion . 85
8.2 Limitations . 87
8.3 Future Improvements . 87

Bibliography 89

A AHP Method 93
A.1 Saaty Fundament Scale . 93
A.2 IR Values Index . 94
A.3 Normalized Relative Priorities . 94
A.4 Consistency of Relative Priorities . 94
A.5 Normalized Parity Comparison Matrices 95

B Survey on User Satisfaction and Application’s Usability 97

xii

C Functional Requirements 101
C.1 Project Management . 101
C.2 Hour Imputation . 112
C.3 Employee Expense Imputation . 114
C.4 Alerting . 119

xiii

List of Figures

2.1 Representation of a Successful Project Integration 6
2.2 Project Management Phases . 10
2.3 Gantt Chart Example . 11
2.4 Armis Domains . 17

3.1 Innovation Process . 19
3.2 NCD . 21
3.3 hierarchical decision tree . 23
3.4 Canvas Model . 28

4.1 Domain Model . 30
4.2 Domain Model . 31
4.3 Domain Model General Expenses . 32
4.4 Domain Model Project Others . 32
4.5 Domain Model Project . 33
4.6 Domain Model Budget . 33
4.7 Domain Model Task . 34
4.8 Domain Model Itinerary . 34
4.9 Domain Model Hours . 35
4.10 Domain Model Employee Expenses . 36
4.11 Domain Model Proposal . 37
4.12 Domain Model Resources . 37
4.13 Use Cases PM . 41
4.14 Use Cases HI . 41
4.15 Use Cases EEI . 42

5.1 Level 1 - Logical View . 46
5.2 Level 1 - Process View: Create Project 47
5.3 Level 1 - Process View: Impute Hours . 48
5.4 Level 2 - Logical View (1st alternative) 48
5.5 Level 2 - Logical View (2nd alternative) 49
5.6 Level 2 - Process View: Create Project 51
5.7 Level 2 - Process View: Impute Hours . 52
5.8 Level 2 - Process View (1st alternative): Create Project 53
5.9 Level 2 - Process View (1st alternative): Create Project (Broker) 54
5.10 Level 2 - Process View (1st alternative): Impute Hours 54
5.11 Level 2 - Physical View . 55
5.12 Level 2 - Physical View (1st option) . 55
5.13 Level 2 - Physical View (2nd option) . 56
5.14 Level 2 - Physical View (3th option) . 56
5.15 Level 3 - Logical View: Front-end . 57
5.16 Level 3 - Logical View: Back-end . 57

xiv

5.17 Level 3 - Development View: Front-end 58
5.18 Level 3 - Development View: Backend . 58

6.1 Entity Relational Model . 60
6.2 User Interface - Navigation Bar . 73
6.3 User Interface - User Drop-down Menu 73
6.4 User Interface - List and Filter Projects 76
6.5 User Interface - Create a New Project . 78
6.6 User Interface - Display Project Summary 78
6.7 User Interface - Display Project Budget 80

B.1 Survey - Initial Statement . 97
B.2 Survey - Questions I . 98
B.3 Survey - Questions II . 99

xv

List of Tables

2.1 Project Management Systems’ Comparison Table 18

3.1 Comparison Matrix of Selected Criteria 23
3.2 Relative Priorities Vector . 23
3.3 Development Cost Matrix . 24
3.4 Development Time Matrix . 24
3.5 Implementation Simplicity Matrix . 24
3.6 Future Profitability Matrix . 24

7.1 Results from Survey for user’s satisfaction and application’s usability 82

8.1 Final state of the gathered requirements - Part I 85
8.2 Final state of the gathered requirements - Part II 86

A.1 Saaty Fundamental Scale [Source:(Nicola 2022)] 93
A.2 IR Values for Square Matrices of order n [Adapted from (Nicola 2022)] . . 94
A.3 Normalized Criteria Comparison Matrix 94
A.4 Normalized Development Cost Comparison Matrix 95
A.5 Normalized Development Time Comparison Matrix 95
A.6 Normalized Implementation Simplicity Comparison Matrix 95
A.7 Normalized Future Profitability Comparison Matrix 95

xvii

Code Snippets

6.1 Create Department Table . 60
6.2 Create Task_Stack Table . 61
6.3 Create Resource_Expense_Budget Table 61
6.4 Back-end Component: Projects Controller 63
6.5 Back-end Component: Project DTO . 64
6.6 Back-end Component: Project Service - GET 65
6.7 Back-end Component: Project Service - POST 65
6.8 Back-end Component: Project Service - PUT 66
6.9 Back-end Component: Project Domain 67
6.10 Back-end Component: Repositories - Database Context 68
6.11 Back-end Component: Base Repository 68
6.12 Back-end Component: Project Repository 69
6.13 Front-end: App Component . 70
6.14 Front-end: Access Profile Component . 71
6.15 Front-end: Form Page Component . 71
6.16 Front-end: Form Drop-down Component 72
6.17 Front-end: App Router Component . 73
6.18 Front-end: List Projects Component . 74
6.19 Front-end: Filter Projects Component . 74
6.20 Front-end: Create Project Component . 76
6.21 Front-end: Define Proposal Component 77
6.22 Front-end: General Project Data . 79

xix

List of Acronyms

AHP Analytic Hierarchy Process.
API Application Programming Interface.

CRM Customer Relationship Management.

DAO Data Access Object.
DDD Design Driven Development.
DTO Data Transfer Object.

EF Entity Framework.

FEE Front End Engeneering.

IT Information Technology.

NCD New Concept Development.

PMI Project Management Institute.
PoC Proof of Concept.

SOA Service Oriented Architecture.

VA Value Analysis.

1

Chapter 1

Introduction

The project described in the present document was developed within the scope of the
"Tese/Dissertação/Estágio (TMDEI)" course. This first chapter’s objective is to offer
an overview of the project and what content to expect across the whole document. Firstly,
it introduces the context where this work is set, followed by the explanation of the problem
trying to be solved. Then, the main goals for this project are determined, as well as the
chosen approach and methodology to be used throughout the development. The chapter
ends with an overview of the document structure.

1.1 Context

The world is facing a technological revolution, widely known as Industry 4.0. Its main
objective is to further develop production processes by implementing autonomous decision-
making operations, which monitor and process data in real-time, integrate all stakeholders,
and increase productivity and efficiency (Ustundag and Cevikcan 2018). In order to achieve
its goal, digitalization and embedded software systems usage are emerging in every aspect
of our daily lives.

Consequently, as companies try to accompany every challenge it conveys, new market oppor-
tunities arise, especially to software development companies (Khin and Kee 2022). However,
as much positive influence this may have on an economic standpoint, it shapes a highly com-
petitive environment for those companies to endure (Adamik and Sikora-Fernandez 2021).
For a company to stand out, it should provide better, more efficient, and quicker results
than the competition.

As the need for software increases, these software products are becoming more and more
specialized. This implies higher dependence with other (also specialized) systems that, in
whole, provide a more capable and complete product.

Hence, their development grows more complex, and consequently, its management requires
more attention. Moreover, project management is an already intricate process that includes
several stages - from planning objectives and tasks at hand; to constant monitoring of the
progress, resources, and people (Venczel, Berényi, and Hriczó 2021).

Additionally, as the number of stakeholders and the array of their responsibilities increase,
communication between people with different roles within the company becomes a vital fac-
tor for its good performance. Thus, their input is fundamental for good project management.
Although it seems trivial, in light of the pandemic situation the world has faced in recent
years, it has been proven that clear contact through remote work has been a challenging
aspect of teamwork (Yang et al. 2021), and it affected directly projects’ management.

2 Chapter 1. Introduction

Undoubtedly, data discrepancy or duplication are common problems in software development,
especially when several parties with different backgrounds converge. Furthermore, bad data
processing and manipulation or lack of control versioning might lead to poor project man-
agement (Rodrigues and Williams 2017). This would imply high risk and significant losses
to those companies, as it affects not only the product development, but also other company
areas and activities (e.g. hiring, training, invoicing, and others).

All previous discussed elements impact directly the management of any project. When these
items are considered and correctly handled, the designed goals can then be efficiently and
safely achieved, within the defined schedule and budget.

However, keeping up with such detailed procedures still presents to be a challenge to humans
(Rodrigues and Williams 2017). In the spirit of the fourth industrial revolution, Project
Management Systems need to gather and analyse all provided information, to decrease this
tasks’ complexity and automate such processes.

1.2 Problem

Armis is a company in the Information Technology (IT) field and offers several services, such
as consulting and developing new digital solutions for several business areas. this company
has been growing significantly in the previous years - not only the number of employees, but
also the project’s business areas, and even from a global perspective.

It manages all their projects mainly through an intranet/portal, which has accompanied
Armis’ growth and to respond to those needs, it has been poorly updated along the years.
Nowadays, the application is considered disorganized, has missing essential functionalities,
and does not allow a good workflow regarding project management processes.

For that reason, software teams are currently using additional software to assist them in
management functions, such as Microsoft Project and Azure DevOps. Thus, information is
duplicated, possibly imprecise, and scattered across the company, badly interfering with the
overall company workflow.

Additionally, one of the most significant issues in Armis’ standpoint is the lack of integration
between these several used tools across the whole company - project managing system,
custom relationship management application, financial software, the intranet, and others.
Thus, the company requires a new module to replace the current intranet’s management
functions, which will group all necessary tools and allow easy access and controlled data
manipulation. With this approach, data will be more coherent, and the overall management
functions will be improved.

1.3 Objectives

The current project’s primary goal is to gather requirements, analyse, design, and develop
a platform that supports all project management steps. It should integrate all tools used
within the company to assist the planning, monitoring, and development processes (e.g.,
Microsoft365, customer relationship management applications, financial management appli-
cations, intranet, and others).

Additionally, the system needs to incorporate automatic alarms that bring attention to the
disruptive events on the company’s workflow - such as the low performance of team members

1.4. Approach and methodology 3

in specific projects, the non-compliance with the previously defined budget, missing invoices,
and others.

Moreover, this approach enables users to register their actions in a decentralized manner.
In other words, project management data is introduced, not only by the manager, but also
by all project employees. Thus, everyone is involved directly in their project’s management.

Therefore, considering all previous information, the current goals are:

• obtain the platform’s requirements and priorities from the company;

• analyse and study different approaches, methods, tools, and technology to develop
this system;

• evaluate the suitability and relevance of the studied approaches, methods, tools, and
technology to the problem’s solution;

• propose an abstract solution that answers the business requirements;

• build and evaluate a proof of concept that integrates some of the gathered require-
ments, following the previous conceptualized solution.

1.4 Approach and methodology

The Agile methodology was the selected approach to create a logical separation of the
several phases present in the project’s development. This method loops through the steps
of planning, implementation, and assessment. Each cycle enables the team to adjust and
mature the plan and design through the whole project.

Customers define the project’s overall objectives, but the final deliverable changes as the
project advances. This systematic incremental deliveries to the client and progress reviews
lead to continuous advancement. Moreover, it allows the solution to better fit the client’s
requirements, and it also denotes continuous attention to technical excellence and good
design practices. Therefore, the collaboration between the team and stakeholders is critical.

The agile method is favoured when the project does not have the most precise scope and
requirements at the starting point, which would hinder other traditional project management
methods. Additionally, it emphasizes product quality and constant improvement, which is
highly important given the purpose of this project and its use within the company.

With this in mind, one of the first steps of this project is meeting with the internal client.
Their feedback helps to capture the project’s requirements and clarify some questions re-
lated to design approaches and tools to be used. Afterward, a short period for planning,
technological and scientific search, analysis of the possible approaches, and design occur.
The development of the solution and its evaluation and assessment phases would then be
the main focus.

During the project’s life span, some meetings with all stakeholders took place, concerning
its objectives and progress. Additionally, weekly meetings were held with the supervisor to
manage the project’s advancement, and help solving possible problems that might arise.

4 Chapter 1. Introduction

1.5 Document Structure

The document is split into eight chapters bearing content related to the developed project,
complemented by the appendices and bibliographic references. Its layout and order of the
chapters accompany a logical and chronological sequence of thought for easier understanding
on the matter.

This first chapter provides the reader the necessary information to comprehend the present
document. It introduces the problem to be addressed and the project where it is introduced.
Moreover, the project’s primary goals are established, as well as the used work methodology,
including planning strategies and chosen approaches.

Secondly, the next chapter carries out the context in which the developed project is estab-
lished, going through some key domain concepts. It also contains an analysis of the current
state of the art project management tools.

The third chapter includes a value analysis of the achieved application, identifying all involved
parties, related business processes, and target-audience criteria.

Then, the next chapter, presents the proposed base language, the problem’s domain, which
allows everyone to understand undoubtedly all aspects discussed in this report. It is followed
by all gathered requirements.

The fifth chapter shapes the possibilities for designing the solution for this report’s problem.
It is followed by the development chapter, which entails all technical aspects for implementing
such solution.

The seventh chapter contains the evaluation of the resulted proof of concept.

Finally, the last one, the conclusion, serves as a report’s summary and this project’s final
argument.

5

Chapter 2

State of the Art

This second chapter firstly gathers theoretical knowledge related to fundamental concepts
of the developed project. It is followed by an analysis of solutions used in the current industry
and a brief comparison of those. It also presents the company’s current solution in practice
and an analysis of its technology.

2.1 Project

A project is a substantial undertaking that attempts to achieve a specific goal through related
activities and the effective use of significant funds, personnel, and tools.

Some characteristics of a project include:

• its temporary nature, as they are set to start and end on specific dates. In fact, a
considerable part of the planning stage is devoted to guaranteeing the project ends
within the selected finite time frame. The project’s conclusion is usually associated
with fulfilling its objectives. However, it might also represent that they will not or
cannot be achieved or that the project’s existence is no longer necessary (Watt 2014).

• its uniqueness, in the sense that their result brings either a new product or service that
has never been endeavoured before or because of the customization required.

• a clear objective - usually a tangible end product, which requires completing the work
scope and deliverables definition within the time and budget (Gido and Clements 2015).

• several resources to be used throughout the activities (e.g., people, organizations,
tools, materials, and facilities) (Gido and Clements 2015).

• a customer or sponsor to provide the necessary funds for the project.

2.1.1 Project Success and Constraints

For a project to succeed, its objectives need to be achieved, and the result should satisfy both
stakeholders and customers. Undoubtedly, the project’s defined goals drive it forward along
with all the planning and implementation efforts. Consequently, to achieve them efficiently,
partakers should seek good planning skills, effective communication, and actively monitor
risks and manage resources during the execution (Watt 2014).

However, whichever the project, constraints will invariably be present in it, and they are
usually dependent on each other. Thus, special attention is needed. The most typical and
more identifiable are (Gido and Clements 2015):

6 Chapter 2. State of the Art

• Scope: all the work to be accomplished for tangible items to be provided within the
requirements and acceptance criteria.

• Time: the schedule is a timetable with each activity.

• Cost: the budget is the amount agreed to be paid by the sponsor based on estimated
costs that include salaries, material costs, facilities rents, subcontractors fees, and
others.

• Resources: needed to perform project activities (e.g., people, materials, equipment,
facilities)

• Quality: mechanisms (e.g., standards, inspections, audits, and other techniques) cre-
ated to assure quality expectations are fulfilled and not just inspected in the end.

• Risk: threats that might affect the completion of the project objective, such as using
new technology that could have untreated bugs.

To achieve project success, the project manager should balance all these constraints’ needs,
plus the stakeholders’ demands (Gido and Clements 2015), such as represented in figure
2.1.

Figure 2.1: Representation of a Successful Project Integration

Moreover, the primary triple constraints - scope, time, and cost - involve exchanges between
themselves. For example, to fulfil the scope or time plan, an increase in the budget might
be needed (Schwalbe 2016). Nevertheless, other limitations might arise that are equally
important. A project might meet the triple constraints but fail to meet quality standards
and satisfy the sponsor.

2.1.2 Project Phases

Four major phases comprise the standard project workflow:

• Initiation: firstly, the purpose or need is defined (a business problem or opportunity).
Although it might take some time to gather all necessary data, it is imperative to
define the correct need. Moreover, although a particular need exists, it might not
be viable to pursue all of them (Gido and Clements 2015). A study is conducted
for each goal’s suitability regarding this project, resulting in a final definition of those
(Watt 2014). Then, a project manager is usually designated alongside workgroups
and essential deliverables.

2.2. Project Management 7

• Planning: further detailing of the project takes place in this step. A plan is assembled
outlining all activities and tasks, dependencies, and timeframes. Besides, the strat-
egy for producing the solution, possible threats, and the leadoff budget are defined.
Furthermore, this step is ideal for identifying the stakeholders and depicting a commu-
nication plan, as their input is fundamental. At last, a quality plan is defined, including
quality targets, assurance, control measures, and customer criteria acceptance (Watt
2014).

• Implementation: during this stage, the plan is put into motion. The plan should be
updated regularly, and individuals’ performance is measured through regular meetings.
Control and communication are essential to keep the project on the correct path,
allowing the team to apply corrective activities when needed (Watt 2014). Changes
are usual in this stage, but they should be managed immediately, so there is no neg-
ative impact later (Gido and Clements 2015). Also, whenever a project deliverable is
developed, it should be reviewed for quality and acceptance.

• Closure: the final deliverable is handed over to the customer, handing over all docu-
mentation, terminating contracts, releasing resources, and communicating the end of
the project to all stakeholders. Additionally, studies can be conducted to examine the
project’s workflow and why/when it thrived or failed (Watt 2014).

2.2 Project Management

Project Management is a set of procedures that include planning, coordination, execution,
leading, and control of progress and performance to accomplish the project’s goals (Gido
and Clements 2015). It conveys an effective way to arrange tasks and ultimately convert
resources into products or services. It differs from the general management as projects are
more schedule intensive, and the teams do not necessarily report to the project manager
(Heagney 2016).

Project management is the application of knowledge, skills, tools, and techniques
to project activities to achieve project requirements. Project management is ac-
complished through the application and integration of the project management
processes of initiating, planning, executing, monitoring and controlling, and clos-
ing. (PMI 2022)

Several factors are to be considered in the project’s environment. For example, the inter-
national and political environment requires attention to possibly different cultures and their
customs, courtesies, and protocols (Watt 2014). Furthermore, the physical environment
might include different time zones or discrepant remote working conditions. Managers must
consider all these factors and how they might affect the project’s completion, scheduling,
scope, and cost.

2.2.1 Project Management Importance

In a fast-changing industry with high demand, organization and control will dictate the future
of those projects. Thus, its management allows a better understanding of how to continue
its work (Jiang and Klein 2014). Indeed, making a suitable plan is essential to accomplish
the project scope within budget and schedule (Gido and Clements 2015).

Overall advantages for the use of project management include (Schwalbe 2016):

8 Chapter 2. State of the Art

• Quicker development

• Decreased costs and better productivity

• Higher quality and improved reliability

• Taller profit margins

• Adequate internal coordination

• Higher employee morale

However, good project management practice will only decrease - but not remove entirely
- problems and risks. Therefore, still having so many projects following a poorly designed
guide causes it to miss the intended goals. Consequently, it leads to overall low performance,
disregarding schedule, or even running over budget (Watt 2014).

Evidence that companies waste billions of dollars on failed projects is in the Standish Group
CHAOS report of 2009. According to that information, $250 billion were spent in IT appli-
cation development (about 175,000 projects), but 24% of those failed (Watt 2014). Eight
years later, in 2017, according to Project Management Institute (PMI)’s Pulse of the Profes-
sion report, the funds allocated to IT projects worldwide increased to $3.5 trillion. However,
the same 24% of wasted money continue to exist (Schwalbe 2016).

2.2.2 Limitations of Project Management

Thinking individually for each project creates limitations to an organization and overuses its
resources. Accordingly, adequate coordination between similar projects or even between the
use of teams and resources will remove ambitious and imprecise results (Jiang and Klein
2014). For example, in the IT industry, a critical barrier to successful projects is their high
dependence on each other. That will lead to resource restraints, clashing necessities, and
high ambiguity.

Additionally, globalization adds an extra unique and complex layer to managing projects.
Participants need to consider possible cultural differences and need an overall extra set
of competencies (Gido and Clements 2015). However, the internet and technology have
resolved many problems related to this issue, allowing international cooperation better than
ever.

Other reasons for project failure might be related to the little planning time allocated for
project managers. Moreover, some of them are regular technical development team mem-
bers. They might find themselves stuck in attending to their colleagues’ needs and conse-
quently not being able to advance on their own work. Also, the sponsor’s demands can be
somewhat unattainable within the time, budget and scope presented, being one of the most
common causes of project failures (Heagney 2016).

2.2.3 Project Manager and other roles

Project managers are responsible for guiding the project in the correct direction. They are
the primary cause why the developed product is completed on time, within the budget, and
meeting the quality specifications (Watt 2014).

2.2. Project Management 9

Their activities might include building the plan, assigning tasks, engaging stakeholders, man-
aging budgets, and others. Above all, project managers are leaders and need to provide vi-
sion, distribute work and build a positive environment. They need to attend to other people’s
needs and motivate different people within the team and stakeholders (Schwalbe 2016).

Ultimately, project managers are responsible for making sure the customer is satisfied, not
only on the finish line but also throughout the undertaking (Gido and Clements 2015). Addi-
tionally, stakeholders might influence the project, so a good relationship should be maintained
for better trust, respect, and support. The earlier these individuals are identified, the better,
as their interests, needs, expectations and concerns are better included in the process (Gido
and Clements 2015).

Depending on which industry and projects they are set into, they might need to have a
broad knowledge of several business areas (e.g., financial management, accounting, procure-
ment, sales, distribution, logistics, strategic planning, operations management, and others)
(Schwalbe 2016).

Moreover, they are not expected to have a detailed understanding of the skills to produce
the solution, as they have a more technical team to support them. Similarly, an orchestra
conductor is not expected to play all musical instruments, but he should have some knowledge
required to guide and help them (Schwalbe 2016).

Nonetheless, they should know the project environment and have a good set of soft skills
- highly valuable in this function, as they spend most of their time communicating (Watt
2014).

Several other roles use project management skills. Like customer business interactions,
engineers need those skills to specify functional requirements while considering quality when
assessing design’s effectiveness, cost, feasibility, and risk (Watt 2014). On the other hand,
software developers, for example, might use them to develop functionalities, track tasks,
communicate with the team and clients, test cases, and manage quality, schedule, and
resources.

2.2.4 Project Management Stages

The traditional organizational structure followed top-down, centralized management, con-
trol, and communication, which became no longer practical in a horizontal workflow. There-
fore, the stage-gate process was designed, where stages represented activities to be per-
formed sequentially or in parallel, and gates were pinpointed decision moments at the end
of each gate. Project management was used to handle the stages within gates and, when
possible, to shorten its duration. Nowadays, the stage-gate process has been replaced in
most companies by life-cycle phases (Kerzner 2017), which, when clearly defined, allow clear
delineation of work, ease the estimation and pricing activities, and allow better resource us-
age.

The stages can be named or grouped differently depending on the authors, but their sequence
and purposes are the same.

The first stage to project managing is composed of the initiation and planning procedures,
where (Badiru et al. 2011; Gido and Clements 2015):

1. the objective is established;

10 Chapter 2. State of the Art

2. the project’s scope is defined and contains customer requirements, a work statement,
and a list of deliverables and their acceptance criteria;

3. develop a work breakdown structure to divide the scope into several pieces;

4. delegate responsibilities, especially management ones;

5. depict activities needed for each piece of work;

6. sequence activities and dependent relationships;

7. estimate skills needed for each activity;

8. estimate activity timetables;

9. estimate activity costs;

10. define a budget.

After schedule and budget definition, a decision is made regarding whether the project can
be completed within those attributes. Then, after the plan is done, it is executed. The
work is conducted following the project’s schedule and technical specifications (Gido and
Clements 2015).

It is followed by constant monitoring and control. Depending on the project’s methodology,
these steps can be done iteratively and repeatedly along the execution stage. Some actions
that characterize both steps are: (Gido and Clements 2015; Kerzner 2017):

1. conducting the work following the project’s schedule and technical specifications;

2. observe and control the progress, actively comparing if everything is going according
to the plan;

3. if needed, corrective measures are taken to get the project back to the proper path
within the defined scope;

4. control changes.

The final closing processes might include several administrative activities, such as archiving
files, documenting new lessons learned, and receiving formal acceptance of the delivered
work by the customer (Schwalbe 2016).

All the previously discussed steps are represented in figure 2.2.

Figure 2.2: Project Management Phases, based on (Gido and Clements 2015)

2.2.5 Evolution of Project Management

Projects have existed since the prehistoric era, and people are still undertaking them. For
example, hunting parties are projects with the goal of obtaining food for the community

2.2. Project Management 11

(Watt 2014). A little bit further in time, several infrastructure projects such as the Great
Wall of China, the Egyptian pyramids, or Stonehenge are another example.

Even if not studied or understood, project managing has been part of the world’s history
since the beginning. In fact, it allowed those massive projects to be created by leaders, who,
at the same time, supervised labour, funds, and materials within a certain period of time
(Watt 2014).

As the world modernized, project management became more relevant and noticed. Later
during the 19th century, big government projects were developed (e.g., the transcontinental
railroad in 1860), laying a foundation for project management methodology (Watt 2014).

Around 1910, Henry Gantt created the Gantt charts by studying the order and dependence
of operations on an industrial environment. These bar charts, similar to the one presented
in figure 2.3, allow to present a project schedule and its stages, enabling a broader audience
to comprehend them more easily. A century after, projects were managed mainly by Gantt
charts and other informal techniques (Watt 2014). Some projects developed based on this
method were, for example, the Hoover Dam and the interstate highway system.

Figure 2.3: Gantt Chart Example

During the second world war, the allied forces pushed to create the first nuclear weapons.
This project was designated the Manhattan Project, and it involved more than 30 differ-
ent simultaneous projects spread around different countries, involving thousands of workers
(Watt 2014). Nonetheless, besides taking several years, the project succeeded, resulting in
developing and detonating three nuclear weapons in 1945. Undoubtedly, project manage-
ment took an essential role in this project, synchronizing all teams and classified information
and supporting a controlled administration of resources.

The mid-20th century - or the origin of modern project management - was marked by the
creation of two mathematical project-scheduling models (Watt 2014):

• The Program Evaluation and Review Technique (PERT), developed by Booz-Allen
and Hamilton, was part of the Navy’s Polaris missile submarine program. It organizes
tasks, times, and dependencies and calculates the minimum time to complete the
whole project.

• Critical Path Method (CPM) was developed by the DuPont Corporation and Reming-
ton Rand Corporation to handle plant maintenance projects. This method, calculating
the earliest and latest starting and ending times, allows people to figure out the timing
for complex projects and their critical tasks.

12 Chapter 2. State of the Art

Admittedly, around 1960, companies realized the benefits of organizing their projects’ work
and how vital it was to communicate and incorporate work across multiple units and careers
(Watt 2014).

Until 1980, the project management area was mainly focused on providing schedule and
resource management for the military, construction, and computer industries. As computer
hardware became cheaper and software became more user-friendly and affordable, these
processes became more readily available to all industries and people.

Today, two organizations influence the most the practice of project management: the PMI
and the International Project Management Association (IPMA). PMI issued manuals to
project management (e.g., Project Management Body of Knowledge (PMBOK) Guide and
PMI Code of Ethics and Professional Conduct), which provide guidelines for the previously
debated concepts and techniques (Gido and Clements 2015). Project management is now a
distinct profession with many opportunities, and several colleges, universities, and companies
offer courses and degrees/certifications (Schwalbe 2016).

2.3 Project Management Systems

Data is a crucial element to efficient project management. After its gathering and analysis,
that information is applied to accomplish good planning, alert on pending concerns, and im-
pact assessments of certain activities (Kerzner 2017). Consequently, the selected approach
might be reconsidered, and other alternate plans and actions can occur.

However, even in 1956, Professor Kenneth Boulding could already identify an issue concern-
ing the subsystem specializations languages, as each own communicated in their own way.
Undoubtedly, there was a need for a ubiquitous language for better workflow between all
elements (Kerzner 2017).

Systems are collections of those subsystems that, when organized, can provide a synergistic
output. They were created to combine and unify information from several domains of
knowledge. This way, by looking at the whole picture, problems related to segregation
and the individualized components are solved more effortlessly (Badiru et al. 2011; Kerzner
2017), and allows dealing with the project’s complexity raised from multiple perspectives
and relationships (Sheffield, Sankaran, and Haslett 2012).

Project management systems and tools are vital so that a project accomplishes its goals
within the context of SMART principles. SMART is an acronym representing five principles
defined to help setting and achieving clear and reachable goals. Those are (Badiru et al.
2011):

1. Specific - seek precise outputs;

2. Measurable - design outputs that are trackable, measurable, and can be assessed;

3. Achievable - outputs aligned with the organizational objectives;

4. Realistic - pursue only the realistic result oriented goals;

5. Timed - timed outputs for accountability.

An acronym representing five principles defined to help setting and achieving clear and
reachable goals: specific, measurable, achievable, realistic, and timed.

2.3. Project Management Systems 13

2.3.1 Systems as a response to Project Complexity

Projects are becoming more and more complex because of political, social, technological,
and environmental issues. Additionally, the end-user expectations that modify throughout
the project’s life-cycle can add to the existing workload or redirect to a new path. Even
minor projects can become intricate due to unnecessary competitive corporate arrangements
and bad business planning (Botchkarev and Finnigan 2014).

Thus, we can define a complex project by having a constantly changing boundary in response
to the surrounding environment. The interactions with stakeholders and constant effort to
stabilize mutual agreement; the search to achieve a strong structure that allows competing
requirements and that is responsive to new emerging requirements; the inputs on the oper-
ations for achieving complex outputs - all present examples for the needed adaptability of
such systems (Sheffield, Sankaran, and Haslett 2012).

Therefore, even though capable project governance and managerial skills are still important
aspects to successful project management, several software tools are available today to ease
the complex tasks of project track and control.

2.3.2 Advantages and Limitations

The use of these types of tools is important because it delivers structures that align deliv-
erables to the organizational goals, leading to better achievement of projects outputs and
business strategies objectives (Too and Weaver 2014).

In fact, project management systems increase coordination of both technical and managerial
endeavours leading to strengthened functions, cost reduction, productivity boost, and better
resource usage (Kerzner 2017).

Ultimately, the provided efficiency and effectiveness are of great interest across the whole
organization, but also to stakeholders. All become fully involved more easily and can track
the improvement effort across the company (Badiru et al. 2011).

Nonetheless, besides all positive contributions provided, performance issues are almost in-
evitable when facing projects due to ambiguity, complexity, and conflicts (Too and Weaver
2014). To rush into the project execution phases without good planning and analytical
studies is a frequent mistake in project management (Badiru et al. 2011).

Moreover, numerous project managers base their decisions exclusively on subjective experi-
ence and intuition, failing to benefit from a key feature of such systems that allow presenting
several strategic views and analyses that result in alternative solutions. Admittedly, project
managers and upper-level management present a significant difficulty in implementing these
tools, as they fear systems are viewed as a substitute for their interpersonal skills (Kerzner
2017).

Additionally, the current fast-paced industry pressures companies to take on a significant
number of projects simultaneously and, consequently, its complex interdependences and
multiple implementations. Many projects fail when managed independently and operated in
isolation, thus not using other correlated undertakings and not reusing valuable resources
and intel (Too and Weaver 2014). Consequently, in this situation, it can lead to a lack
of traceability of the scattered information, lousy process control, unrealized potential, and
higher operating costs (Badiru et al. 2011).

14 Chapter 2. State of the Art

2.3.3 Scope of Project Management Systems

Generally, a system will not be satisfactory in all aspects, and a fair barter on characteristics
is vital for a project’s success (Too and Weaver 2014). Moreover, the type of project often
dictates what functions are needed to execute it by the project manager, the team, and
stakeholders (Kerzner 2017).

However, besides variations of some features such as storage, display, analysis, interoper-
ability, and user-friendliness, others are offered similarly across most tools (Kerzner 2017):

• Planning, tracking, and monitoring project tasks, resources, and costs. It allows anal-
ysis of all data and compares the project’s technical and financial status against the
original plan;

• Overall project data summary;

• Flexible reporting on several capabilities (e.g., budgeted costs, actual versus planned
details, performance issues, critical path analysis, standard reports, and others). It can
be supported by managerial or business-oriented charts, diagrams, tabular summaries,
and graphics, depending on the needed sophistication;

• Scheduling of work hours and days;

• What-if analysis by performing comparative searches of the several project plans;

• Multi-project analysis and tracking allow oversight of interrelated variables and tasks,
and integration between individualized projects. It minimizes data inconsistency, re-
dundancy, costs, and scheduled work.

Additionally, some also include early-warning systems to alert and prevent some events that
might jeopardize the successful status of the project (Kerzner 2017).

All in all, project management systems must ensure the correct project’s organization takes
place and that all details are formally documented. It allows easier decision-making processes
by providing access to consistent information (Too and Weaver 2014).

2.4 Relevant Project Management Systems

This section presents some project management systems that are used in the current industry
and is followed by a description of the existing situation in Armis. Finally, it compares all
tools to have a better understanding of the market.

2.4.1 Microsoft Project

This tool belongs to the Microsoft Office 365 ecosystem, allowing easy integration and use
of the other Microsoft tools. Its scope allows any type of project to be dealt with by this
tool, not constraining it to few business and knowledge areas (Microsoft 2022).

Microsoft Project uses task lists, kanban boards, project roadmaps, and Gantt charts to
prioritize and schedule tasks. During the task detailing, several elements can be filled, such
as task duration, which allows easier tracking throughout the project. In fact, that data allow
resource management and tracking, from working hours, materials, and costs. Moreover,
custom calendars can be set for all project members to handle timelines and lengthy and
complex task lists (Microsoft 2022).

2.4. Relevant Project Management Systems 15

Regarding the security aspect, it has two-factor authentication, single sign-on process, and
account permissions to restrict access to the correct users. Other available functionalities
are the budget report creation and the submission of custom timesheets that allow dealing
with invoicing and payroll within the same solution (Microsoft 2022).

However, it lacks file storage and communication capabilities, becoming dependent on other
tools such as Microsoft Teams and Dropbox. Additionally, its pricing can be inadequate for
smaller companies, as it better suits an enterprise setting with larger teams and budgets
(Microsoft 2022).

Finally, Microsoft is known for having good customer support, but also the learning curve
associated with its tools (Microsoft 2022).

2.4.2 Trello

It is also suitable for any project or team, as long as it does not require native budgeting or
invoicing tools (Trello 2022).

It presents very simple, visual, and intuitive basic project management functionalities. In fact,
this not extensive project management software can be seen more as task management and
collaboration tool. It allows easy integration with several additional features, such as metrics,
issue tracking, or live chats (Trello 2022).

Trello uses a kanban board system for planning, scheduling, and prioritizing tasks. It offers
an add-on shared team calendar with relevant information for each task assignee and owner.
Time tracking is also available as a "power-up" option (Trello 2022).

Each Trello card allows attaching and uploading files and images and connecting them to
services such as Dropbox, OneDrive, and Google Drive. Every card also contains a comment
section that allows to tag people or references other cards, providing limited communication
within the app (Trello 2022).

The pricing for this tool is quite reasonable, and it has basic functionalities for free. Moreover,
it also has two-factor authentication as a security measure. Atlassian owns Trello, and their
customer support structure is done via ticket forms (Trello 2022).

2.4.3 Jira

Jira was first developed as an issue-tracking tool built for software development teams, and it
gradually became a general project management system for any project and team (Atlassian
2022).

This tool uses kanban and Gantt systems for planning, managing, and executing tasks within
the software. It also includes reporting features that include time tracking leading to easier
problem-solving. However, it does not provide any budgeting or invoicing features (Atlassian
2022).

Every task has a file upload section that allows documents, spreadsheets, and images to
be saved. Each task also has a comment and activity section that promotes collaboration
between the team, but it misses other communication settings, such as a live chat (Atlassian
2022).

16 Chapter 2. State of the Art

As for security features, it contains all Microsoft Project’s features plus a password policy
control that establishes password guidelines for users. Its pricing varies significantly according
to users’ demands, allowing smaller teams to have basic functionalities (Atlassian 2022).

It is ideal for software development users, but its flexibility is shown right from the setup
process, where the user can use the best structure for its needs. As it is owned by the same
company as Trello, customer support is the same (Atlassian 2022).

2.4.4 Wrike

Wrike offers several features expected for project management software, but it also provides
different integrations and add-ons to fill what is not native to the solution. Any type of
project and any team size would be able to use this project (Wrike 2022).

Its standard task-creation system manages several details, as seen in other tools. It provides
a shared team calendar for real-time project plan updates. Resource management and Time
tracking are obtained through add-ons via timesheets and workloads. Like the other tools,
tasks contain both a file upload system and a comment section, and it does not contain a
live chat. Additionally, budget reports can be created with previously defined custom fields
(Wrike 2022).

This tool offers the same security measures as Microsoft Project, but it also has encryption
key management and integration with Cloud Access Security Broker (CASB) to monitor
suspicious user activity. Moreover, there are several packages with different prices, but there
is a free tier with the basic functionalities, and the other ones are relatively affordable (Wrike
2022).

Finally, Wrike offers customers interactive training sessions, video tutorials, monthly webi-
nars, an user community forum, release notes, best practice guidelines, and email or phone
support for paid tiers (Wrike 2022).

2.4.5 Company’s Technological Standpoint

The companies project management activities can be divided into several domains, as seen in
figure 2.4. Moreover, each part has its own technological tool, which, as described through-
out this document, presents problems regarding data incoherence and duplication and lack
of integration and consistency across the company and its different software development
teams.

The proposition domain handles all customer interactions and contains every detail of the
proposed projects for the company. It is currently managed through an internal tool - a
Customer Relationship Management (CRM) system.

Reporting of commercial activities, team and project data, and financial details are executed
by tools such as Microsoft Power BI and other Microsoft Office 365 tools. Moreover, each
team uses its own tools for project management, which compile several data for their projects
(e.g., Microsoft Project, Azure DevOps, and others).

The project domain is scattered across several platforms. The details of each project are
both in the CRM system and on the intranet. Budget planning, predictions, and control are
currently being created using Microsoft Excel and Microsoft Power BI.

2.4. Relevant Project Management Systems 17

Figure 2.4: Armis’ Project Management Activity Distribution

Working hours and expenses registering are introduced by each company member via an
intranet, but also it is duplicated into the several project management tools used in each
software development tool.

Documentation is currently being saved on Microsoft SharePoint, Microsoft Teams and
other file hosting services.

2.4.6 Comparison of Project Management Systems

For this comparison, Armis technologies are not considered, as its current solution is scat-
tered into several tools, and this project goal is to have a unified and centralized system
that provides all those different functionalities.

Thus, the assessed tools are the other ones described in this section. The comparison
criterion were common basic functionalities that are present in project management tools,
such as: business and team adaptability, file sharing, collaborative tools, budgeting tools,
security aspects, pricing, and customer support. All this information is summarized in table
2.1.

After further analysis, it can be concluded that all systems are flexible to different business
areas and team sizes. However, according to the previous tool descriptions, Microsoft Project
is oriented to bigger enterprises due to its learning curve, whereas Trello is the opposite.
Both Jira and Wrike are prepared for both environments.

Only Microsoft Project does not have file sharing and collaborative tools for team communi-
cation associated with tasks like the other three. However, it is the one that presents better
budgeting functionalities, followed by Wrike. Both Trello nor Jira have any financial tools,
which are crucial aspects for most projects.

18 Chapter 2. State of the Art

Table 2.1: Project Management Systems’ Comparison Table

Criteria Microsoft
Project Trello Jira Wrike

Business and Team Adaptability

File Sharing x

Collaborative Tools x

Budgeting x x

Security

Pricing Paid Freemium Paid Freemium

Customer Support

Moreover, all present security features include two-factor authentication. However, Mi-
crosoft Project and Jira have a few more components than Trello, but the tool most focused
on security is Wrike.

Microsoft Project and Jira do not have a free tier, but the first provides more value per price
as it brings all the other Microsoft ecosystem tools. Trello and Wrike both are freemiums,
which means they offer free basic features to users but charge for supplemental features.

Ultimately, all provide good customer support. Microsoft excels by its extensive documen-
tation as it is a widely used tool. Yet, Wrike seems to present the same amount or more
ways to help its users when a problem arises.

All in all, Trello is a very simple tool, providing fewer functionalities than the others. On the
other hand, besides Jira providing more, it still falls short compared to the pricing it requires.
Microsoft Project would be the worse tool when analysed independently of its Microsoft
environment. However, it integrates easily with the other many tools, boosting it forward
against the competition. Finally, Wrike seems to present all criteria required within the same
framework, even if not exceeds in all aspects. Therefore, it could be considered to be the
best choice and the most similar to the objective of this project’s solution.

19

Chapter 3

Value Analysis

The following chapter carries out a Value Analysis (VA) for the solution presented in this
document. VA is a standard and methodical process with the primary goal to enhance
profitability when developing a product or service (Rich and Holweg 2000).

This approach examines the designed goods and compares the client’s needs with the over-
all development costs. Hence, it is possible to outline which functions are essential and
which could be modified or eliminated, consequently reducing production (NPD 2016) costs
without compromising performance and reliability.

Firstly, an analysis of the innovation process is conducted, focusing on the new concept
development model and its applicability in this project’s solution. There, the Analytic Hier-
archy Process (AHP), resorting to qualitative and quantitative criteria to evaluate all ideas,
is ultimately used to facilitate the idea selection process.

Then, the concepts of value, value for the customer, and perceived value are defined within
the project’s context. Finally, the CANVAS model is presented to better overview the
business areas.

3.1 Innovation Process

According to P. A. Koen et al. (2002)’s innovation process, as it can be seen in figure 3.1,
it is divided into three different categories:

• Fuzzy Front End or Front End Engeneering (FEE);

• New Product Development;

• Commercialization.

Figure 3.1: Innovation Process Steps Representation (P. A. Koen et al. 2002)

20 Chapter 3. Value Analysis

In FEE, concepts are gathered and defined to be used in the more elaborate and structured
next step activities. Consequently, its primary focus should be on increasing the value,
quantity, and success likelihood of entering concepts (P. A. Koen et al. 2002). Thus, this
first stage is usually known as having the best opportunities to improve the whole innovation
process (P. Koen et al. 2016; P. A. Koen et al. 2002).

However, some major problems regarding dubious language and definitions used by different
people in this first step were identified. To address this, the New Concept Development
(NCD) model was created, defining a common ground for people to communicate more
efficiently during the FEE stage.

3.1.1 New Concept Development Model

The NCD model is the first step of the innovation process. It is represented in the following
figure 3.2, is composed of three distinct parts (Belliveau, Griffin, and Somermeyer 2002;
Gassmann and Schweitzer 2014):

• The engine: the central part that represents the primary features within the company
(e.g., management, vision, leadership, strategy, resources, culture, teams, and others)
that support the entire process;

• The inner spoke area: five key activity elements of the FEE. In particular:

1. Opportunity identification
Opportunities that the company might pursue are detected. These can be related
to an existing product or provide a new business direction for the organization.
The selection made by the company in this part is critical, as there is an eventual
efficient and adequate distribution of resources to the most profitable area. In
fact, several tools and methodologies can be used during this step, such as mind
mapping, brainstorming, causal analysis, theory of constraints, and others. The
chosen one defines the essence of this element;

2. Opportunity analysis
Characterized by the addition of business and technical information related to
the previously identified opportunities, it allows corroborating or disproving their
suitability. It can correspond to a formal or iterative analysis process;

3. Idea genesis
Element where the idea first emerges and is studied, developed, and matured.
Some methods might include client communication, other institutions’ coopera-
tion, brainstorming sessions, and others;

4. Idea enrichment and selection
The ideal choice of an idea is fundamental for the future of any company. How-
ever, this process is not regularized, as it can be the simple selection between the
several options or a more strict methodology.
Nonetheless, it is crucial to understand that ideas should be given time to expand
and mature. Thus, this selection process might be less strict than others;

5. Concept definition
The final element involves developing a business case that incites investment in
the designed proposal. It is based on the industry potential, customer require-
ments, project risk, and others.

3.1. Innovation Process 21

• The influencing factors: external environmental factors that affect the company and
the other two previous segments (e.g., political, economic, social, technological, and
legal).

Figure 3.2: Innovation Process with the New Concept Development (NCD),
based on P. Koen et al. (2016) and P. A. Koen et al. (2002)

The model was designed as a circle to suggest flow and iteration between elements. The
initial states should always be either opportunity identification or idea genesis, but the process
should continue randomly and in a non-sequential manner (P. Koen et al. 2016).

3.1.2 Opportunity Identification

Armis is a company that produces software in several business areas. Thus, to support project
management, the firm uses several individually contained tools that might contain duplicate
information, allowing incoherent data manipulation. Consequently, this could misinform
project managers, waste resources, increase costs, delay client deliveries, and compromise
product quality.

Therefore, the company seeks to upgrade its current tools to remove this problem. Ad-
ditionally, it could also provide partial automation of specific processes, alarms regarding
important notices and information, and integration with new tools used by several different
development teams.

3.1.3 Opportunity Analysis

For software development companies, projects are the foundation for their businesses. Projects
allow delivering products to clients that achieve the required goals and quality within a spe-
cific time frame and cost. However, they often present as complex undertakings that need
organization and cooperation to be completed.

22 Chapter 3. Value Analysis

Thus, project management significance has been increasing with time as the world becomes
more and more technological, and software is required in most day-to-day tasks. In such a
fast-pacing and competitive industry, companies need to provide solutions and keep them
updated efficiently.

The fact that the current solution presented by Armis is not practical for their needs means
that the software they develop will suffer either in delivery time, overwork, or other avoidable
aspects. An opportunity arises to create such a system that ensures fast and improved
software development and integration with up-to-date, valuable tools used throughout the
company.

Although this tool’s current market target is software companies, several others use similar
mechanisms. Thus, if the software is developed flexibly to adjust to other companies and
even other business areas’ needs, it would provide a new product for commercialization.

3.1.4 Idea Genesis

The company first introduced the idea regarding this document’s project as their need for a
better project management tool increased.

However, it is important to consider that the investment in a product for the company itself
delineates possible economic sacrifices, as resources are being used that could elsewhere
provide more income. Regardless, bad project management could potentially lead to worse
conditions for the company in the future.

For that reason, the firm has to analyse whether a new tool should be developed from
scratch, updating the used technology and creating overall better and more concise work,
or implement the needed functionalities in the current solution.

3.1.5 Idea Enrichment and Selection

Two ideas were defined for this project: either create a new tool or update the existing
one. In a software development environment, most people would agree that trying to reuse
unorganized programming code and fit new requirements into outdated infrastructures would
require more work than simply creating a new one. However, although the choice seems
instinctive for most, it does not mean that a selection method should not be used to further
corroborate the decisions taken (Golden, Wasil, and Harker 1989).

The use of the AHP allows one to intuitively and quickly analyse and make decisions. It
was developed by Thomas Saaty, and its primary goal is to aid multi-criteria decisions by
following a logical thought flow (Golden, Wasil, and Harker 1989; Nguyen 2014).

AHP divides the problem into several hierarchical levels for better interpretation and appli-
cability, and it resorts to qualitative and quantitative processes to assist decision-making.
Strategical options and their objectives are initially defined to be applied in an analytical
hierarchy, ultimately comprehending their significance and effect in the project (Nguyen
2014).

Firstly, the hierarchical decision tree (figure 3.3) is structured, where some elements are
depicted:

• Objective: Which strategy to choose;

3.1. Innovation Process 23

• Criteria: Development costs, development time, implementation difficulty, future prof-
itability;

• Alternatives: Either create a new tool or update the currently existing one.

Figure 3.3: Hierarchical Decision Tree

Then, a comparison of the importance between the selected criteria is represented in the
following table 3.1.

Table 3.1: Comparison Matrix of Selected Criteria

Development
Cost

Development
Time

Implementation
Simplicity

Future
Profitability

Development
Cost

1 6 5 3

Development
Time

1/6 1 1/4 1/3

Implementation
Simplicity

1/5 4 1 4

Future
Profitability

1/3 3 1/4 1

Taking into consideration the values defined in the previous table, the relative priority to
each of the criteria was calculated (consult Appendix A.3), as seen in table 3.2.

Table 3.2: Relative Priorities Vector

Criteria Relative Priority

Development Cost 0.497

Development Time 0.068

Implementation Simplicity 0.313

Future Profitability 0.122

24 Chapter 3. Value Analysis

The following step would be to evaluate the consistency of the relative priorities. The
calculation of the consistency ration, as shown in appendix A.4, concludes that the results
are valid and viable because its value is lower than 0.1.

Therefore, the relevance of the criteria (table 3.2), from higher to lower importance, are:
Development Cost; Implementation Simplicity; Future Profitability; and Development Time.

Then, the parity comparison matrix is developed for each criterion, and it assesses both
alternative strategies being considered.

Table 3.3: Development Cost Matrix

Update Existing
Solution

Develop New
Software Priority

Update Existing Solution 1 3 3/4

Develop New Software 1/3 1 1/2

Table 3.4: Development Time Matrix

Update Existing
Solution

Develop New
Software Priority

Update Existing Solution 1 1/3 1/2

Develop New Software 3 1 3/4

Table 3.5: Implementation Simplicity Matrix

Update Existing
Solution

Develop New
Software Priority

Update Existing Solution 1 1/4 1/5

Develop New Software 4 1 4/5

Table 3.6: Future Profitability Matrix

Update Existing
Solution

Develop New
Software Priority

Update Existing Solution 1 1/5 1/6

Develop New Software 5 1 5/6

For the calculations of the priorities presented in the four previous tables 3.3, 3.4, 3.5, and
3.6 the same prior method was used: normalize the matrices (Appendix A.5) followed by
the average for each table line. The chosen strategy priority result from the multiplication
of the priorities matrix and the criteria vector:

3.2. Value 25

[
3/4 1/2 1/5 1/6

1/2 3/4 4/5 5/6

]
∗

0.497

0.068

0.313

0.122

 =
[
0.49

0.65

]

We can finally conclude, according to the selected criteria and their impact, the best imple-
mentation approach would be to create a new product.

3.1.6 Concept Definition

The main goal of this project would be to create a new tool that allow the partial automation
of the project management processes. Furthermore, it will integrate useful tools for that
same purpose and allow data coherence introduced by different members of the company in
different settings. The currently used platform would then be replaced by the new system.

3.2 Value

Value definition is not as straightforward as expected. In fact, there are several meanings and
ways to describe it, depending on one’s perspective upon the product we are analysing the
value for (Rich and Holweg 2000). Thus, we can say that each person has their own value
system for different value offers, which implies distinct satisfaction levels and prioritization
for different people (Ulaga and Eggert 2018).

"Satisfaction is the customer’s perception of the value received in a transaction or relation-
ship." (Woodall 2003)

Therefore, the perceived value differs on a subjective part besides its cost value (Neap and
Celik 1999). Rich and Holweg (2000) defined it as utility value - how beneficial the product
is; and esteem value - importance given by the customer to certain aspects unrelated to
usefulness, such as aesthetic.

From a supplier standpoint, value can be simplified as the fraction of the worth of the
presented function (performance and capability) and their cost (NPD 2016).

V alue =
Worth

Cost
=
(Per f ormance + Capabi l i ty)

Cost
=
Benef its

Costs
(3.1)

From the client’s perspective, the project’s functionalities should be advantageous in order
to be profitable to invest. To define the value for the customer on a product or service,
several approaches could be used, such as (Woodall 2003):

• Results from the usage and experience outcomes;

• Perceived product attributes;

• The price for the product/service;

• Discrepancy from the realistic reference point price.

26 Chapter 3. Value Analysis

Moreover, value can be expressed rather as a balance between benefits (delivers and out-
comes for the client) and overall acquisition costs or sacrifices (Walters and Lancaster 2000;
Woodall 2003).

This project aims to develop a project management system for Armis, which is positioned
in the software development industry. In this case, the company acts both as the supplier
of the product and the customer.

The company’s current solution demands unnecessary work, and data can easily become in-
consistent, risking projects to lousy managing practices and consequently waste of resources
and high expenses. Therefore, this tool is vital for the company, as its culture defends
that good management is one key to a successful company. Moreover, the automation of
processes and integration between several useful management tools lessens the work of a
project manager, which most of the time is a software development team member.

The definition of a project has a vast aspect, which might cause many other future cus-
tomers, even from other business areas, to become interested in this solution. The more
complex the projects they deal with, the more useful this tool would be.

Thus, not only this tool increases value regarding its own use within the company - allowing
to increase productivity, better management of resources, and more efficiently delivers to
their clients - but it also provides new market opportunities.

3.2.1 Value Proposition

A value proposition supplies an overview of the whole pack of products and services, as
well as complimentary value-added services, offered by the company and seen as valuable to
customers. It represents why it distinguishes the company from the competition and why
customers seek their services (Osterwalder and Pigneur 2003).

When modelling value propositions, a formal approach proves more beneficial than other
methods, such as mental models. This way, there is a better interpretation and communica-
tion regarding these propositions, improving their execution and allowing an adequate com-
parison with their competitors, eventually promoting innovation (Osterwalder and Pigneur
2003).

Ultimately, value propositions must undoubtedly provide the advantages of the products or
services, the target market, and the overall benefits of acquiring them instead of the rival
firms. For that, questions such as "what", "who", "how", and "how much" should be
answered(Osterwalder and Pigneur 2003).

The value proposition for this project offers an intuitive software tool that integrates several
useful managing, communication, and software development tools available in the market.
This solution allows data to become consistent throughout the several systems and partially
automates the project management processes.

3.3 Business Model Canvas

The main goal of a business model is to depict how an organization develops and provides
value. Furthermore, the Canvas model provides a shared, simple, and intuitive language so
everybody can better understand and communicate regarding the business model (Oster-
walder and Pigneur 2010).

3.3. Business Model Canvas 27

With the difficult task of defining a model that simplified the whole process without missing
out on details about how the firm works, nine basic blocks were defined. These cover four
primary areas of any business: customers, offers, infrastructures, and financial viability. The
nine blocks are (Osterwalder and Pigneur 2010):

• Customer Segments - the organization’s different customer groups will target and
act towards;

• Value Propositions - the bundle of products or services that tend to customers’
problems and needs;

• Channels - definition of means to deliver the products and communicate with cus-
tomers;

• Customer Relationships - identification and nourishment of the several types of re-
lationship with clients;

• Revenue Stream - financial remuneration from the successful offers of value propo-
sitions to customers;

• Key Resources - critical elements needed for the execution of previously defined
blocks;

• Key Activities - the necessary activities for the overall workflow, which allow the
company to operate correctly;

• Key Partnerships - the network of suppliers and partners that assist the company;

• Cost Structure - all the costs involved in executing the previous blocks.

The canvas model was applied to the project described in this document and shown in the
following figure 3.3.

28 Chapter 3. Value Analysis

Figure 3.4: Canvas Model

Key
Partnerships

Business and
Human
Resources
Departments;

Software
development
teams;

Key
Activities

Development
and maintenance

of software;

Key
Resources

Existing solutions;

Technological
tools;

Department Chiefs;

Value
Proposition

Project
Management
Processes;

Tools
Integration;

Cost
reduction;

More efficient
administrative

processes
and client
delivers;

Customer
Relationships

Internal
clients;

Dedicated
support;

Channels

Presentation
to Client;

Microsoft
Teams;

Customer
Segments

Software Project
Companies;

Project Managers;

Cost Structure

Software development team;
Development of the software solution;

Resources for deployment;

Revenue Stream
Quicker delivers to clients create

more market opportunities;
Less resource usage and workflow optimization;

29

Chapter 4

Requirements Analysis

The chapter ahead first defines a base language that addresses the conceptual domain of
the problem described in this report. As such, the client requirements for the solution, that
are subsequently presented, can be clearly understood by everyone.

4.1 Domain

The following section contains an analysis of the necessary domains to manage a project
within the company. It settles the ubiquitous language used throughout the requirements’
definition. Correspondingly, it first deconstructs the project management domains - the main
project domain, followed by the adjacent employee imputations domains. Furthermore, it
grazes other domains that are necessary for project management but do not need as much
detailing as the previous.

All domain model diagrams presented later in this section were fairly based in Design Driven
Development (DDD) concepts. This set of practices help to create a basic and shared
understanding between all stakeholders and aims to ease the system’s modification and
maintainability (Evans 2003).

The most relevant concepts for this document are:

• Entities - represent an object in the domain, and it is characterized by an identity
rather than its attributes. It might comprise other entities, as well as value objects
(Mouratidis and Kang 2019).

• Value object - by contrast, they represent an immutable object, where there are no
identities, as they are defined only by their value (Mouratidis and Kang 2019).

• Aggregates - consist of a bundle of associated objects, that is handled as a unit. It
organizes both entities and value objects in a tighter model with less complex associa-
tions, where the main goal is a clearer architecture. Each has a boundary, that defines
which elements are inside the aggregate; and a root, a single entity that serves as a
reference outside the unit. The rest of the entities inside the aggregate, must have a
unique local identity, as outside objects should never see it out of the circumstances
of the root (Evans 2003).

Even though most aggregates presented in the diagrams follow DDD rules, some could not
see fit to have only one root entity. In those cases, entities are grouped by context to
ease the reading of the diagram. Such is the case of budgeting, employee expenses, and
corporation structure, in figure 4.1.

30 Chapter 4. Requirements Analysis

Additionally, colours have been used in the domain model to better understand to which
contexts the entities and aggregates belong to:

• Orange - Project Context

• Red - Proposal Context

• Yellow - Budget Context

• Brown - Invoice Context

• Dark blue - Task Context

• Purple - Itinerary Context

• Pink - Hour Imputation Context

• Gray - Employee Expense Context

• Light Blue - Technology Context

• Green - Corporation Structure Context

Figure 4.1: Domain Model

The previous figure 4.1 presents the domain model in a higher abstraction level. The proposal
aggregate, presented in red, while inside the scope of project management and containing
vital information for any project, it is not further detailed, as its management is outside this
report’s concern. Moreover, the corporate structure, coloured green, is also important for
most domains in the project management area, but not administered within.

4.1. Domain 31

The project domain, in orange, is the main focus, hence the many connections to several
others. A project has a budget, represented in yellow, which broadly slates the project’s
predicted expenses. The budgeted resource expenses will serve as an outline of for the project
financial execution. From each, one or more project’ tasks (in dark blue) can be extracted -
materializing the project’s backlog. Additionally, a project defines a set of technologies, the
light blue aggregate, to be used during its lifetime. These can be referenced by each task,
allowing a better depiction of each employee’s workload. Also, each task contains several
hour imputations, illustrated in pink, for the same effect.

Finally, several expenses, coloured gray, can be associated to a project (e.g. travel expenses,
subsistence allowance expenses, etc.). Some expenses reference a project directly, but the
travel expense refers to a specific itinerary, in purple, associated to the project.

4.1.1 Project Management Context

The project aggregate was divided into several diagrams for better readability, specially with
lower abstraction level diagrams.

By examining figure 4.2, we see all connections made to the project aggregate, some of
which have been previously explained. Moreover, it presents what attributes it entails, both
value objects and entities.

Figure 4.2: Domain Model - Project Aggregate

Despite the project’s identity, it has other ways to be intuitively recognized, in particular, a
code, a name, and a description. Additionally, it is assigned the company and department
in which the project is being developed, originating a cost centre - mainly used for invoicing.

32 Chapter 4. Requirements Analysis

To specify the content of the project itself, the company uses elements such as the "Type",
which categorizes the project (e.g. Project, Product, Maintenance, etc.); the "Scope", to
define the purpose of carrying out the project (e.g. Client, Internal Client, Internship, etc.);
the Field, describing its chosen business area (e.g, Data Analysis, Web and Mobile, etc.);
and its "Status", to check in which phase the project is in (e.g., To be started, Warranty,
Closed, etc.). In parallel to the last described element, several dates must be stored, to
know exactly when it happened, such as the initial or starting date, the warranty period, and
others.

Besides the employee expenses and the resource expenses, the project might have what is
defined as general expenses. Those were made to accommodate several types of expenses
into one object. Through the analysis of figure 4.3, a general expense can be defined by its
"Type" (e.g. Licenses, Books and documentation, etc.), the entity and document number
of the purchase, and its price and quantity.

Figure 4.3: Domain Model - Project Aggregate: General Expense

Furthermore, other simpler entities were combined into the following diagram (figure 4.4).
Contrasting to the other elements such as Type, Scope, etc., project fields have a flag to
define whether they are active or not, as its usage is more volatile.

Figure 4.4: Domain Model - Project Aggregate: Other Entities

4.1.2 Invoice Context

Each invoice, is defined through the attributes presented in figure 4.5. The invoiced client
might not be the same as the project’s client, therefore being different domain elements.
As before, invoice dates need to be recorded for management purposes, for example, to
know when the invoice was set, and the payment deadline. Moreover, depending on the
internationalization of the project, the country details, including its currency may vary.

4.1. Domain 33

Figure 4.5: Domain Model - Project Aggregate: Invoice

4.1.3 Budget Context

For budgeting, we have a group of entities bounded by their context, therefore presented
this way in figure 4.6.

A resource expense ties to an organizational role, as a major level of abstraction during the
financial resource planning for the project. It also defines a prediction for its necessary work
hours. Similarly, the general expense only bases its attributes on what type of expense it
would be, and a prediction of its cost value.

Figure 4.6: Domain Model - Budgeting

4.1.4 Task Context

The task aggregate represents the predicted cost planning made in a project, and it is based
in a budgeted resource expense. As seen in figure 4.7 the task entity defines an employee
assignment, hence the connections to an employee and a description. For management
control, the period of work time and the overall predicted cost of the task are required.
The predicted resource cost, through tasks, is the foundation for the real resource cost,
calculated by hour imputations, posteriorly documented.

34 Chapter 4. Requirements Analysis

Figure 4.7: Domain Model - Task Aggregate

4.1.5 Itinerary Context

An itinerary entity is used in the employee expenses domain, namely the travel expense type.
For that reason, it defines its own aggregate (figure 4.8), even though its data structure is
quite shortened.

Figure 4.8: Domain Model - Itinerary Aggregate

4.1.6 Hour Imputation Context

The real current cost of a project’s resource expenses is the sum of the cost for each of its
employee, which in turn is calculated by their working hours times their pricing per hour. To
decentralize and ease the managerial functions, the company asks each employee to register
their working hours on their own, to later be reviewed.

As seen in figure 4.9 that imputation would require to be based on a previously defined
project Task to which the employee has been assigned. One single imputation represents
the working hours for a period of time, whether it is one or multiple days. Moreover, during
the project’s lifetime, the assignee can register hours more than once for the same task.

Afterwards, the project manager reviews those imputations, and define the sale hours - the
total of approved hours from those inserted by the employee. This information is important
to understand the productivity of each person within the company.

4.1. Domain 35

Figure 4.9: Domain Model - Hour Imputation Aggregate

4.1.7 Employee Expenses Imputation Context

Besides the hour imputations, employees might have extra costs due to the involvement in
a project or the company itself, which they are able to register as well. For that, and to
better organize them, each month they require to create a new expense map, which will
group the different types of expenses. Eventually, these are also approved by the manager
and the company’s administration.

Armis defines four different types of employee expenses, as seen in the following figure 4.10.

Through its analysis we have:

• Subsistence Allowance Expense - is a supplement to the base salary, and represents
the costs to when the employee has to travel (during the working hours), and stay
there for a certain period of time. It is a mandatory type of expense as it is regulated
through the portuguese law.

• Invoice Expense - similar to the previous one, this expense is also a project’s expense.
It encompasses all the other expenses due to a project, such as office supplies, meals
with clients, parking, fuel supply, and many others.

• Travel Expense - represents car expenses when traveling with the employee’s personal
vehicle due to a project’s involvement. However, the employee can only introduce this
kind of expense if they had worked previously on the project. For that reason, the
travel expense is associated to a project’s task. Moreover, the itineraries made with
the car need to be specified, but they can only choose between the project’s defined
itineraries.

• GALP Fleet Expense - this is a company’s expense rather than a project’s expense.
Some employees might use the company’s cars and the expenses had with it are defined
through this type.

36 Chapter 4. Requirements Analysis

Figure 4.10: Domain Model - Employee Expenses

4.1.8 Proposal Context

Previous to the creation of a project, a proposal must be defined. Currently, the company
manages proposals through a Customer Relationship Manager (CRM) application. There-
fore, that domain is not further explained in this report, as the proposal management is not
within the scope of project management.

However, it still holds some value to the current report since the project is dependant on
some information that must come from it - such as the adjudication date, sale price, the
client, some invoice details, and a possible budget (figure 4.11).

Previous to the analysis made for this report, the company used a work-around when it
came to the definition of proposals for projects such as internships, or projects for the own

4.1. Domain 37

Figure 4.11: Domain Model - Proposal Aggregate

company, where a client proposal negotiation is not required. In such instances, when there
is no need for a proposal management, the proposal is defined within project management.
In other terms, it was established that, for those cases, a proposal must still be created
beforehand, but in a simplified matter, with only the details presented in the previous diagram.

4.1.9 Corporation Structure Context

This group of entities is used throughout the whole domain and it contains the information
related to the companies and their structures. It contains information about its departments,
what roles are defined within the organization, and their employees.

Figure 4.12: Domain Model - Corporation Structure

38 Chapter 4. Requirements Analysis

As seen in figure 4.12, both organizational roles and employees must have a price per working
hour to later calculate the resource costs of a project. Moreover, the employee has the most
connections as it broadly encompasses all workers that ultimately will register working hours
and expenses, are assigned to tasks, manage projects, etc.

4.2 Requirements

The client requirements are presented and explained in this second section. To organize
them, the FURPS+ model was used, which categorizes both functional and non-functional
requirements. The name of the model is an acronym for each category: Functionality, Us-
ability, Reliability, Performance, Supportability. The "+" symbol covers every other category
that might be relevant, such as development restrictions, design restrictions, and others
(Larman 2005; Vasquez and Simões 2016).

4.2.1 Functionality

Functional requirements describe the software’s behaviour in light of the services or tasks
needed and offered to the user (Vasquez and Simões 2016).

This section first identifies and lists all the required business processes, categorized by their
own context. Then, it presents the system’s actors and their connections to the business
processes, with the help of use case diagrams. Finally, it presents the cross-contextual
functionalities.

If, later in this section, a reference to a title of a group of processes is made, all of those
that are within are included.

Project Management (PM)

• PM01 - Create new project.

• PM02 - List all projects.

• PM03 - Search and filter list of projects.

• PM04 - Display project details.

– PM04.1 - Display project’s summary.

– PM04.2 - Display project’s base details.

– PM04.3 - Display project’s budget.

– PM04.4 - Display project’s tasks.

– PM04.5 - Display project’s current resource costs.

– PM04.6 - Display project’s employee expenses.

– PM04.7 - Display project’s general expenses.

– PM04.8 - Display project’s invoices.

– PM04.9 - Display project’s documents.

• PM05 - Edit project.

– PM05.1 - Edit project’s summary.

4.2. Requirements 39

∗ PM05.1.1 - Add project’s technical advancement.

∗ PM05.1.2 - Remove project’s technical advancement.

– PM05.2 - Edit project’s base details.

∗ PM05.2.1 - Modify project’s base details.

∗ PM05.2.2 - Add new project’s itinerary.

∗ PM05.2.3 - Remove project’s itinerary.

∗ PM05.2.4 - Add new project stack’s technology.

∗ PM05.2.5 - Remove project stack’s technology.

∗ PM05.2.6 - Add new project type.

∗ PM05.2.7 - Change project type to active or inactive.

– PM05.3 - Edit project’s budget.

∗ PM05.3.1 - Add new budget’s general expense.

∗ PM05.3.2 - Remove budget’s general expense.

∗ PM05.3.3 - Add new budget’s resource expense.

∗ PM05.3.4 - Remove budget’s resource expense.

– PM05.4 - Edit project’s tasks.

∗ PM05.4.1 - Add new task.

∗ PM05.4.2 - Remove task.

– PM05.5 - Edit project’s general expenses.

∗ PM05.5.1 - Add new general expense.

∗ PM05.5.2 - Remove general expense.

– PM05.6 - Edit project’s invoices.

∗ PM05.6.1 - Modify project’s invoice details.

∗ PM05.6.2 - Add new project’s invoice.

∗ PM05.6.3 - Remove project’s invoice.

– PM05.7 - Edit project’s documents.

∗ PM05.7.1 - Add project’s document.

∗ PM05.7.2 - Remove project’s document.

Hour Imputation (HI)

• HI01 - Display imputed hours.

• HI02 - Impute hours.

• HI03 - Edit imputed hours.

• HI04 - Approve imputed hours.

40 Chapter 4. Requirements Analysis

Employee Expense Imputation (EEI)

• EEI01 - Create employee expense map.

• EEI02 - List employee expense maps.

• EEI03 - Display employee expenses.

– EEI03.1 - Display employee expense summary.

– EEI03.2 - Display invoice expenses.

– EEI03.3 - Display travel expenses.

– EEI03.4 - Display GALP fleet expenses.

– EEI03.5 - Display subsistence allowance expenses.

• EEI04 - Impute employee expense.

– EEI04.1 - Impute invoice expense.

– EEI04.2 - Impute travel expense.

– EEI04.3 - Impute GALP fleet expense.

– EEI04.4 - Impute subsistence allowance expense.

• EEI05 - Edit employee expense.

– EEI05.1 - Edit invoice expense.

– EEI05.2 - Edit travel expense.

– EEI05.3 - Edit GALP fleet expense.

– EEI05.4 - Edit subsistence allowance expense.

• EEI06 - Approve imputed employee expenses.

As seen in figure 4.13 there is only one actor for the project management context, despite
it representing several groups of people. Managers - and everyone above them in the orga-
nizational hierarchy - are able to execute all project management processes. If a superior
role is in charge of other managers, they are able to manage not only their own projects,
but also their subordinates’ projects.

Moreover, regarding the creation of a new project (PM01), depending on its scope, it may
require either the a priori definition of a simplified proposal, or the selection of a proposal
created and managed by the CRM.

Concerning all use cases on both Hour Imputation (figure 4.14) and Employee Expenses Im-
putations (figure 4.15) contexts, there are two actors: the manager/superior role previously
presented, and the employee that represents a project worker. As the manager and above
are also considered active members of the projects, they are also allowed to execute the
same processes as the employees.

Furthermore, the manager has an additional use case, where it has to approve or disapprove
the hours and expenses registered by the employees into their projects (IH04 and EEI06).
However, the approvals mean different things for each context. Approved hour imputations
(or sale hours) are defined only for productivity analysis, as the hours registered by the

4.2. Requirements 41

Figure 4.13: Use Case - Project Management

user are the ones considered for project’s cost. On the other hand, approved expenses are
considered for project’s costs, while the disapproved are not.

Additionally, both previously registered hours and expenses cannot be edited if they have
already been through the approval process by its manager.

Figure 4.14: Use Case - Hour Imputation

Uniquely to the expense context (figure 4.15), all registered expenses are grouped into
expense maps. If those have been analysed and closed by the administration or financial
department, there can be no more expense imputations (EEI04), neither its editing (EEU05).
Likewise, there can be no further approval of those expenses either (EEI06) - when a map is
closed it means that all expenses have been analysed and approved, if not by the manager,
by a superior.

Cross-Contextual Functionalities

In addition to the previous functionalities, there is also a set of processes that are present
in the whole system, particularly, the authentication and authorization, and the notification
processes.

The system’s authentication and authorization are required and important features, since
they not only provide security, but also allow to distinguish users and their actions within
the system.

42 Chapter 4. Requirements Analysis

Figure 4.15: Use Case - Employee Expense Imputation

Moreover, the current company’s system lacks processes that alert and notify the managers
regarding certain missing or important details. In other words, it leaves the manager to
remember and organize all that information, which would become an arduous task, specially
when managing several projects.

Thus, to better control this problem and narrow the failure possibility, the system is to include
notifications in certain moments within the process flows. These were settled to be defined
later during this project’s lifetime, and would not be part of the report in a detailed manner.
However, as an example of what could be considered, the manager should be alerted when:

• there is missing documentation according to the project status;

• there is pending of missing invoicing;

• it project’s warranty period ends;

• when a technical advancement has not been registered in the previous month;

• the current project cots are surpassing the planned values;

• the lack of hour imputations for a project task, from the assigned employee.

4.2.2 Usability

Usability requirements define non-functional requirements related to the ease of the software
usage. It includes decisions related to the aesthetic and consistency of the user interface,
as well as other human factors.

For the idealized solution documented throughout this report, the usability requirements are:

• There should be a single user interface: the company’s portal.

• The interface must be simple, intuitive and efficient.

4.2. Requirements 43

4.2.3 Reliability

Reliability requirements look upon the compliance, interoperability, and integrity aspects of
the system. Within this project, they are:

• The final product must be fault tolerant;

• The system must be up at all times.

4.2.4 Performance

Performance is all about the system’s speed and efficiency, responsiveness timing, resource
usage, and other related aspects. This project’s performance requirements are:

• Endpoint’s response time must be less that 1 second;

• The service’s endpoints must be able to process up to 10 requests per second;

• Average user interface’s page load must be less than 3 seconds.

4.2.5 Supportability

The solution’s scalability, adaptability, maintainability, compatibility, and testability are de-
fined in this part of the FURPS+ model. The supportability requirements defined for this
project are:

• The solution must be able to scale up when necessary, by adding new modules to the
company’s portal.

• The development should be done in a generic way so that new future changes do not
impact the already implemented features. For that, good practices should always be
taken into consideration for a better maintenance, adaptability and configuration.

4.2.6 Others (+)

The plus symbol includes several other type of requirements: from implementation, hardware,
design, interface, or even legal restrictions, along with others.

This project considers two of those categories - design and implementation restrictions.

Design Restrictions

These requirements restrict the software architecture in any way. Regarding this solution,
there are the following:

• Data must be persisted in a relational database.

Implementation Restrictions

Conversely, implementation restrictions requirements limit a development aspect of the so-
lution. The following list presents the implementation restrictions for within this project.

• The relational database must be hosted in Microsoft SQL Server and managed through
other Microsoft auxiliary products (or the command-line).

• The back-end component must be developed using .NET technologies.

• The back-end Application Programming Interface (API) must be RESTful.

44 Chapter 4. Requirements Analysis

• The back-end component must integrate Swagger.

• The front-end components must be implemented using ReactJS.

• The authentication must be processed by Azure Active Directory.

4.3 Further Notes

Even though all requirements have been brought up from the client meetings and analysis of
the company’s current system, not every one is to be considered for the developing phase
of this report. The reason for that is mostly due to time constraints, but also some were
labeled as unfit for a proof of concept’s effort and goal.

45

Chapter 5

Design

The fifth chapter shapes a possible design solution to the problem raised by previously
presented requirements.

Firstly, it describes the design approach, which details the chosen design models and patterns.
Then, it presents the design through different level of abstractions and architectural views,
which are addressed in the chosen approach.

5.1 Design Approach

The software design entails the whole structure of the system, including all its elements,
their relationships, and properties. Therefore, it can be quite complex and of difficult com-
prehension. For that reason, the chosen approach for this report consists on two models:
Brown’s C4 model and Krutchen’s 4+1 architectural view model.

The first, Brown’s C4 Model, aims to ease the understanding of the software architecture
through different levels of detail:

• Level 1: the system’s context within its surrounding environment;

• Level 2: shows the container context;

• Level 3: presents the component context;

• Level 4: further details the component context.

Within this model, a container can be seen as a boundary to some applications or data
sets. Each container corresponds to different execution environments, that can be run in its
own processing space. Moreover, a component is a group of features represented through
a well-defined interface.

In regard to this report, level 4 was not considered, as it felt unnecessary to further detail
any component existent in the previous context.

Secondly, the Krutchen’s 4+1 Model sketches the system over different perspectives:

• Logical View: focuses on the provided functionalities and relationships between each
software component. It can be represented by component diagrams;

• Process View: includes the responsibilities and communication of the logical elements,
and focuses on the run time behaviour. It can be depicted via sequence diagrams;

46 Chapter 5. Design

• Development View: through a programmer’s perspective, it contains the dependen-
cies and coupling between the several software packages. Usually represented through
package diagrams;

• Physical View: it is concerned with the deployment of the processes and components
to a physical layer, and can be defined by deployment diagrams.

• Scenarios: sums the architecture by using use cases or scenarios. Use case diagrams
are used to identify, illustrate and validate the architecture design.

Throughout the following sub-chapters, all the relevant views are presented at different
levels of abstraction (from the highest to the lowest abstraction levels, respectfully), to
better understand the conceptual solution.

5.2 Level 1 - System Context

This section contains the design in its simplest and most general form, allowing a broad
understanding of the system.

5.2.1 Logical View

Figure 5.1 is the highest abstraction level for the logical view. It contains the three main
systems related to the project management area:

• CRM - system responsible for managing the client relationships and all its data, and
all proposals’ details;

• Finance - system accountable for all financial information within the company, whether
it is invoicing, employee wages, etc.;

• Project Management - a system which main focus is the company’s projects and all
the information - its expenses, tasks, working employees, and others - that allows its
management;

• Azure Active Directory (AD) - as a client’s requirement, previously stated, the
system’s authentication must be done by this component, which is also represented in
the following diagram.

Figure 5.1: Level 1 - Logical View

The project management system calls the CRM system to fetch proposals and clients in-
formation. Similarly, the first calls the Finance system to get the needed employee details.

5.2. Level 1 - System Context 47

Finally, the latter should communicate with the project management system to fetch the
necessary data to create invoices.

The project management is the core system, as it represents the one being further studied
in this report, and later developed. Additionally, the other two systems are a part of this
project in the design phase, but they are discarded in the implementation.

Each system contains its own user interface, and it is to be used by different roles within
the company. The CRM system is to be used by the workers employed in the business
department, and the financial department has access to the Finance system. On the other
hand, the Project Management System is usually handled by both project managers, and
every employees that work on a project - programmers, designers, etc. Additionally, the
administration team (not represented in the diagram), has access to all systems.

5.2.2 Process View

The process view, allows to see the relationships of the previously discussed systems, within
a run-time example of an use case.

Namely, figure 5.2 represents the successful scenario for creating a new project.

Figure 5.2: Level 1 - Process View: Create Project

As briefly mentioned during the functional requirements definition (section 4.2.1), the project
manager is able to choose to associate either an existing proposal, or create a new, sim-
plified version of a proposal. The later containing the necessary information for project
management. Regarding the first option, the system communicates with the CRM to fetch
all necessary information for that action.

Similarly, a new hour imputation (figure 5.3), introduced by managers or project employees,
requires communication to an external system - the Finance system. Particularly, to calculate
the imputation total cost, the project management system needs to obtain its employee
information, such as their cost per hour.

48 Chapter 5. Design

Figure 5.3: Level 1 - Process View: Impute Hours

5.3 Level 2 - Container Context

This section focuses on the Project Management system’s design, identifying its containers
and their relationships. Two alternatives were considered when designing the system. The
following view sections further details each one.

5.3.1 Logical View

First Alternative

A first approach for this view (figure 5.4), regarding the project management system, is
to separate it into three components. The first, the Front-end, is responsible for all user
interactions, whereas the Back-end attends to the server-side and processing of data. Fur-
thermore, the second is also responsible for communicating to external systems, such as the
CRM and finance. Finally, the database component represents a data storage that persists
all required information.

Figure 5.4: Level 2 - Logical View (1st alternative)

This first alternative follows a monolithic architecture, where the system’s components
are tightly coupled into a single program. The result is a large application, with many
responsibilities, and difficult maintainability (Newman 2015).

5.3. Level 2 - Container Context 49

Even though its development is simple, this kind of applications can be troublesome (Newman
2015; Richardson 2019): it becomes hard to scale it up; each minor change means the entire
application’s deployment; a single error shuts down the whole application; etc.

Nonetheless, certain types of applications (e.g. simpler applications, proof of concepts, and
others), can take advantage of such architecture.

Second Alternative

Nonetheless, a second approach, presented in figure 5.5, can also be considered. Given the
extensiveness of the project management system, it might be reasonable to separate it into
several services, each with its own responsibility.

In contrast to the previous monolithic architecture, this alternative follows Service Oriented
Architecture (SOA).This design approach appeared as a way to combat the difficulties pre-
sented by a monolith application (Richardson 2019). Its strategy is to decompose a system
into multiple services that cooperate to provide certain functionalities (Newman 2015).

Overall, SOA narrows the service responsibilities, making it easier not only to develop such
systems, but also to maintain them, as they are quite simpler than larger counterparts
(Newman 2015; Richardson 2019).

Figure 5.5: Level 2 - Logical View (2nd alternative)

The diagram presents three possible services:

• Planning - manages all processes and data regarding the planning state of a project,
such as budgets and tasks;

• Expense - accountable for all real project’s monetary expenses (e.g. hour imputations,
and employee expenses);

• Management - contains all other information related to a project and its management.

50 Chapter 5. Design

Nonetheless, this is only a suggestion, as there are many ways to decompose a system
into several services, such as "decomposition by business capability"1, "decomposition by
subdomain"2. This report does not further investigate this issue.

Even though the diagram shows only one database connected to all services, there is a
possibility of attributing one database for each service. This is also known as "database per
service pattern" and ensures that services do not share any data, keeping databases private
to each service, and avoiding data corruption (Richardson 2022a).

However, there are several drawbacks: managing multiple databases is an arduous task;
queries with joint data and transactions that span along multiple services are not possible
to create without an extra component (e.g. API composer) (Richardson 2022a).

Re-focusing on the decoupled services, it is necessary to ensure proper coordination between
all of them. Therefore, an API gateway component was added to this diagram.

As defined by IBM (2022a), this component "provides a single entry point for all API calls
that come into an application". A gateway should route the user’s requests, and for each,
orchestrate3 the needed services.

There are some inherent advantages in centralising its responsibilities, such as (IBM 2022a;
Nadareishvili et al. 2016):

• Security - a gateway serves as an extra layer, hiding the application’s endpoints, and
authenticating API calls. Therefore, it creates less risk of attacks and data breaches;

• Routing - it guides requests to the correct services, which means less traffic, load
balancing, and overall better performance resulting in faster response times;

• Monitoring - as all requests come through the gateway, it can create reports, traffic
logs, and provide insight on how to fix infrastructure problems;

• Extensibility - it helps to extend and update essential legacy applications.

Additionally, a message broker was introduced, so that services could communicate between
them in a more organized fashion.

This component is a middleware that allows messaging between internal application services.
A sender would publish its message to the message broker and the latter is responsible for its
delivery to the receiver (Richardson 2019). As a result, developers can then focus only on
the core logic of the service, and count on an intermediary to handle the data flow between
all components (IBM 2022b).

Using broker-based messaging leads to loose coupling of the components - the sender com-
ponent is unaware of the receiver’s network location. Moreover, it is responsible for buffering
all messages until the consumer is able to process them (IBM 2022b; Richardson 2019).

1Decomposition by Business Capability: divides by business capabilities, taking into account the com-
pany’s purpose and business model (Richardson 2022b)

2Decomposition by Sub-Domain: divides by bounded contexts. Establishing a Bounded Context goes
through identifying project terminology (and different contexts, in which they can be used - their boundary)
and the functions/responsibilities that these business terminologies entail (Richardson 2022c)

3Orchestration - the services rely on a central component to coordinate them, just as a conductor
coordinates an orchestra (Newman 2015).

5.3. Level 2 - Container Context 51

Contrasting the possibility of a central coordinator that controls what participants do, in
orchestration of services, the message broker allows the services to manage their own com-
munication, following the choreography of services 4.

5.3.2 Process View

First Alternative

In comparison to level 1, the process view now encases more containers, as the project
management system was decomposed in this level’s logical view. Additionally, with the
introduction of the database component, it also has its own representation within this view.

Figure 5.6: Level 2 - Process View: Create Project

4Choreography - services are subscribed to each other’s events, and carry out their job, accordingly, when
needed. Just as dancers reacting to others around them in a ballet (Newman 2015; Richardson 2019).

52 Chapter 5. Design

In figure 5.6 it follows the first - monolithic-like - approach. The user communicates with the
front-end container, which will pass it on to the back-end. There, the necessary information
for the user interactions is assured (either from other systems, or the database), but it also
processes data to create new entities and requests to persist them.

The whole process of creating a project is more detailed, stating which exact information
is required from other components (e.g. a list of clients from CRM, invoice details from
the Finance system, possible managers from the database, and so on). It also outlines the
creation of a new budget if the user decided to create a new proposal, and a default technical
advancement.

As an alternative, the creation of these entities, in the database, could be automatically
triggered by a new project’s insertion. This approach would lower the processing time and
simplify the back-ends duties for this process. However, such case would merge the business
logic into the persistence component, failing to meet the segregation responsibility principle.

The same logic used to create the previous diagram, was applied to the hour imputation
process (fig. 5.7): further detailing of the needed information and its sources (e.g. employee
data), separation of the project management system into two containers, and introduction
of the database.

Figure 5.7: Level 2 - Process View: Impute Hours

Second Alternative

The second approach, which decomposes the project management into several services, is
represented in figure 5.8. The front-end communicates with the gateway, which will pass
the information to the correct service or system. Those will then process data and access
the database.

5.3. Level 2 - Container Context 53

Figure 5.8: Level 2 - Process View (1st alternative): Create Project

Subsequently, if needed, the services can initiate a sequence of choreographed actions by
publishing a message to the message broker (as exemplified by the project creation action).

As shown in figure 5.9 the message broker will receive the project creation message and
communicate between services to define other entities, such as the budget, and technical
advancement.

54 Chapter 5. Design

Figure 5.9: Level 2 - Process View (1st alternative): Create Project (Broker)

Accordingly, the hour imputation process (fig. 5.10) is another example of how this system
would perform by following this second approach.

Figure 5.10: Level 2 - Process View (1st alternative): Impute Hours

5.3. Level 2 - Container Context 55

5.3.3 Physical View

First Alternative

Given the objective to decouple services into several autonomous containers, each with its
own responsibility, an obvious alternative would be to deploy them separately.

As shown in figure 5.11, the front-end, back-end and database components are separated,
each within its own machine/container.

Figure 5.11: Level 2 - Physical View

A major advantage to this approach is the possibility to change the components and its
deployment, without the risk of affecting others. However, such choice would imply a bigger
effort when maintaining the system. Since the communication between containers would be
done through the internet, there would be a bigger concern regarding its security, and the
application of fail safe mechanisms.

Second Alternative

Following the same logic as the first alternative, the diagram in figure 5.12 also presents the
separation in the deployment of all containers.

Figure 5.12: Level 2 - Physical View (1st option)

In the case where the previous approach becomes impractical - whether for the costs of
having those many machines/containers, or due to its high maintenance, etc. - there are
other possibilities for this system’s deployment. As shown in figure 5.13, all services within
the Project Management system were coupled, as well as the gateway.

However, this approach is not ideal, as in case of one service failure, the whole system would
be down, lessening the service decoupling effort.

56 Chapter 5. Design

Additionally, even though the individual deployment of the gateway component was possible,
it was considered to be a nonviable option. Its container would not be able to properly load
balance between the services, as they are grouped in a single deployment container.

Figure 5.13: Level 2 - Physical View (2nd option)

Furthermore, another possibility is to include the message broker within the same container
as the services and the gateway. In other words, the system’s back-end would be deployed
altogether, just as presented in the first alternative.

Nonetheless, as components’ coupling grows, each deployment becomes more cost-intensive,
since a small modification implies a full back-end deployment.

Moreover, as previously stated, the message broker serves as an intermediary and decou-
ples services so that they are independent from each other. Thus, when deploying them
collectively, its purpose is hindered.

Finally, this approach also sustains the same problem as the previous diagram - when a single
component fails, all of them fail.

Figure 5.14: Level 2 - Physical View (3th option)

5.4. Level 3 - Component Context 57

5.4 Level 3 - Component Context

Considering the brief lifetime of this internship, and the extensiveness of this project, the
monolithic architecture, presented in the previous section, was chosen by the company. This
section issues the further designing of that approach.

5.4.1 Logical View

The front-end component, presented in the following figure 5.15, contains three components:

• App - represents the starting component, that encompasses the other components,
and contains all the information to run the application;

• Components - broadly represent all the components that might exist to present in-
formation to the user;

• Services - represent all components that act as a communication point with other
external containers to the front-end.

Figure 5.15: Level 3 - Logical View: Front-end

Regarding the back-end component, it communicates to other external components by ex-
posing a REST API. The components in figure 5.16 are categorized based on some common
design patterns (e.g controller, service layer, data transfer object, and repository) - used for
better responsibility distribution and decoupling, and overall increased maintainability.

Figure 5.16: Level 3 - Logical View: Back-end

As illustrated in the previous diagram, the back-end components are the following:

• Controllers - responsible for the communication to the outside components. They
handle data through Data Transfer Object (DTO);

58 Chapter 5. Design

• Services - from controllers, the requests are then forward to service components,
which will process data and orchestrate the whole process;

• Domain - responsible for validating that their data conforms to the business rules;

• DTOs - represent objects which focus is to present only the necessary data, and are
oblivious to business rules;

• Repositories - are an intermediary to the database access point, mapping the domain
objects to persisted data.

5.4.2 Development View

Similar to the logical view, as seen in figure 5.17, the front-end will contain packages named
"components" and "services", that will group components with the same responsibilities
as previously explained. Moreover, it also encloses a domain package, containing all object
entities used in the front-end component.

Figure 5.17: Level 3 - Development View: Front-end

The packages presented in figure 5.18 follow the same logic previously explained in the logical
view for the back-end component.

Figure 5.18: Level 3 - Development View: Backend

59

Chapter 6

Development

As a first step towards the idealized solution, and to check its feasibility, Proof of Concept
(PoC) application was developed. This chapter focuses on the implementation of that PoC.

The first presented section contains the designing and elaboration of the database compo-
nent. Then, it follows the documentation regarding the creation process for the back-end
and front-end components, respectively.

6.1 Database

The database component was firstly developed, by request of the company itself. This step
allowed to gather further information regarding the domain entities and their attributes,
previously presented in this report (section 4.1).

Furthermore, it allowed to plan how that data was to be stored. Its representation is depicted
in an entity relational model, represented in figure 6.1. This type of diagrams can serve as
blueprints of the databases, which allow better understatement of their structural logic.

The entities in the diagram are categorized through colours. Similarly to the domain model,
these entities fall into the contexts that were previously declared in section 4.1. This way,
we have a direct correlation between this two different perspectives, that, on the whole,
present the same type of information.

Each entity in the entity relational model diagram corresponds to a relational database table.
These, from a domain perspective, either correspond to an entity or to a specific set of value
objects.

The latter are cases when the value itself is to be selected from a list of possibilities, such
as project scope, invoice type, fuel type, and others. Such is considered a good practice,
since they not only better organize the data set, but also allow these to be re-used by other
entities. The other value objects that are not represented through a database table, are set
as an attribute to the entity’s table.

Finally, there are also some examples where the tables might have been originated from
a many-to-many relationship. The "Project_Stack" table is an example from this, since
one technology can be referenced by several projects, and each project has a list of many
technologies.

For the database implementation, the Microsoft technologies were chosen as a company’s
requirement. Microsoft SQL Server is a relational database management system used to

60 Chapter 6. Development

Figure 6.1: Entity Relational Model

create and persist data for this report. It was deployed into Microsoft Azure Database
services, so that it was available and accessible through the internet.

The following examples present some of the database table’s creation queries, based in SQL
language.

Firstly, snippet 6.1 details the creation query for the Department table. Its identity, "de-
partment_id", is auto generated - meaning that there are no duplicate values. Additionally,
its description attribute has two data constraints - written "Not Null" and "Unique" in its
definition. Conversely, there are other ways to write constraints. Such is the case of the
presented primary and foreign keys.

1 CREATE TABLE Department
2 (
3 department_id integer IDENTITY (1,1),
4 department_description varchar (100) NOT NULL UNIQUE ,
5 company_id integer NOT NULL ,
6

7 CONSTRAINT PK_Department PRIMARY KEY(department_id),
8 CONSTRAINT FK_Department_company_id FOREIGN KEY(company_id) REFERENCES

Company(company_id)

6.1. Database 61

9)

Code Snippet 6.1: Create Department Table

Furthermore, the Task Stack table creation in snippet 6.2 is an example of an intermediary
table, created from a many-to-many relationship. Tasks can have many technologies from
the project stack, and those can be represented in more than one of that project’s tasks.

However, this table’s identity is a set of attributes, that are also foreign keys (both "task_id"
from Task, and "project_stack_id" from Project_Stack). Constraints were added to define
this criteria. Also, it is to be noted that there is no "Identity" keyword definition. These
ids reference already existing table entries, thus they are not to be set automatically as the
previous example.

1 CREATE TABLE Task_Stack
2 (
3 task_id integer ,
4 project_stack_id integer ,
5

6 CONSTRAINT PK_Technology_Task PRIMARY KEY(task_id , project_stack_id),
7 CONSTRAINT FK_Technology_Task_task_id FOREIGN KEY(task_id) REFERENCES

Task(task_id),
8 CONSTRAINT FK_Technology_Task_project_stack_id FOREIGN KEY(

project_stack_id) REFERENCES Project_Stack(project_stack_id)
9)

Code Snippet 6.2: Create Task_Stack Table

Finally, this third example in snippet 6.3, presents the creation of a Resource Expense Budget
entity. Although it is more detailed, this table creation is not much different to the first
example. However, it has additional constraints, such as:

• Check constraint: only allows data to be added to a column, if it validates the passed
condition. For example, the first check constraint in the snippet, checks if the imputed
final date comes after the initial date’s value.

• Unique constraint: it shows another way to declare this type of constraints. In
particular, to a set of attributes, rather than a single one.

1 CREATE TABLE Resource_Expense_Budget
2 (
3 resource_expense_budget_id integer IDENTITY (1,1),
4 budget_id integer NOT NULL ,
5 expense_description varchar (100) NOT NULL ,
6 organizational_role_id integer NOT NULL ,
7 initial_date date NOT NULL ,
8 final_date date NOT NULL ,
9 resource_hours integer NOT NULL ,

10 total_cost decimal (10,2) NOT NULL ,
11

12 CONSTRAINT PK_Resource_Expense_Budget PRIMARY KEY(
resource_expense_budget_id),

13 CONSTRAINT FK_Resource_Expense_Budget_organizational_role_id FOREIGN
KEY(organizational_role_id) REFERENCES Organizational_Role(
organizational_role_id),

14 CONSTRAINT FK_Resource_Expense_Budget_budget_id FOREIGN KEY(budget_id)
REFERENCES Budget(budget_id),

62 Chapter 6. Development

15 CONSTRAINT CHK_Resource_Expense_Budget_final_date CHECK(final_date >
initial_date),

16 CONSTRAINT CHK_Resource_Expense_Budget_total_cost CHECK(total_cost >=
0),

17 CONSTRAINT UQ_Resource_Expense_Budget_budget_id_expense_description
UNIQUE(budget_id , expense_description)

18)

Code Snippet 6.3: Create Resource_Expense_Budget Table

6.2 Back-end

This section contains all decisions and process of creating the back-end component for the
solution’s proof of concept.

Thus, it first describes the used technologies, followed by the definition of which requirements
were implemented. Finally, it describes the logic on structuring of the application, and
provides some examples of how a use case is implemented within the component.

6.2.1 Technologies

The back-end application was developed using the Microsoft’s ASP.NET Core web frame-
work, a requirement made by Armis. It is build in a modular fashion, and when extra features
are needed they can be added through NuGet packages. This not only keep the application
light, but it also allows a quicker deployment and better overall performance. For that rea-
son, this technology presents an easy and fast way to create simple applications, such as
this proof of concept.

6.2.2 Implemented requirements

Despite all the client requirements presented in section 4.2, some were not implemented in
this application. The reason for that is due to time constraints for the development phase,
as well as the added complexity it would bring to a simple PoC.

Furthermore, the following list presents the implemented requirements:

• PM01 - Create new project.

• PM02 - List all projects.

• PM03 - Search and filter list of projects.

• PM04 - Display project details.

• PM05 - Edit project.

– PM05.1 - Edit project’s summary.

– PM05.2 - Edit project’s base details.

∗ PM05.2.1 - Modify project’s base details.

∗ PM05.2.2 - Add new project’s itinerary.

∗ PM05.2.3 - Remove project’s itinerary.

∗ PM05.2.4 - Add new project stack’s technology.

6.2. Back-end 63

∗ PM05.2.5 - Remove project stack’s technology.

– PM05.3 - Edit project’s budget.

– PM05.4 - Edit project’s tasks.

– PM05.5 - Edit project’s general expenses.

– PM05.6 - Edit project’s invoices.

– PM05.7 - Edit project’s documents.

As it can be seen, implemented requirements were only within the project management
context.

Moreover, if a requirement integrates the list, but its nested ones do not, then it is considered
that all its children elements are implemented. For example, requirement PM04 contains
several nested requirements in section 4.2, but here, they are not declared, as all were
implemented.

On the other hand, when those nested elements are presented, it is because some were not
implemented. Such is the case of PM05.2, as PM05.2.6 and PM05.2.7 are not part of this
PoC.

6.2.3 Application’s structure

The project structure follows the package diagram presented in section 5.4.2. Some contain
packages within, named after the domain model context, to better organize all classes.

Furthermore, it contains a "config" package, with configuration files, and a "utils" one, that
contain utilitarian functions to be used through the whole application.

Controllers

When a request is first received by the back-end API, the controller is responsible for its
guidance to the correct set of actions. For this, by identifying the request’s HTTP method
and URL, native annotations route the requests to the defined API endpoints within those
controllers. Moreover, the request’s received data (both in its body or URL) is converted
by the controller into objects and value types.

The code snippet 6.4 presents an example of an implemented controller class - the Projects
Controller.

By its analysis, in some cases the controller might receive, and always returns a DTO. It
contains three functions to three different HTTP methods: Get, to retrieve information;
Post, to create new entities; and Put, which updates an existing entity). The functions
simply direct the request by calling a services class, where data is to be processed.

1 [...]
2 [Route("api/[controller]")]
3 [ApiController]
4 public class ProjectsController : ControllerBase
5 {
6 [...]
7 [HttpGet("{id}")]
8 public async Task <ProjectDTO > GetProject(int id)

64 Chapter 6. Development

9 {
10 return await services.getById(id);
11 }
12

13 [HttpPost]
14 public async Task <ActionResult <ProjectDTO >> PostProject(ProjectDTO

ProjectDTO)
15 {
16 ProjectDTO result = await services.create(ProjectDTO);
17 return CreatedAtAction("GetProject", new { Id = result.Id },

result);
18 }
19

20 [HttpPut("{projectId}")]
21 public async Task <ActionResult <ProjectDTO >> UpdateProject(int

projectId , ProjectDTO ProjectDTO)
22 {
23 ProjectDTO result = await services.update(projectId ,

ProjectDTO);
24 return CreatedAtAction("GetProject", new { Id = result.Id },

result);
25 }
26 }
27 }

Code Snippet 6.4: Back-end Component: Projects Controller

DTOs

As discussed earlier in this report, a Data Transfer Object is a simple entity used for com-
municating information disregarding all business rules.

Following the example of the Project context, snippet 6.5 contains the Project DTO class.
Firstly, it declares all its attributes, and then all its required constructors.

1 [...]
2 public class ProjectDTO
3 {
4 public int? Id { get; init; }
5 public string? Code { get; init; }
6 public string? Name { get; init; }
7 public string? Description { get; init; }
8 public int? Manager { get; init; }
9 public string? InitialDate { get; init; }

10 public string? FinalDate { get; init; }
11 public int? Type { get; init; }
12 public int? Field { get; init; }
13 public int? Scope { get; init; }
14 public int? Company { get; init; }
15 [...]
16

17 public ProjectDTO(string name , string description , int scope , int
manager , int year , string initialDate , string finalDate , int proposal)

18 {
19 Name = name;
20 Description = description;
21 Scope = scope;
22 [...]

6.2. Back-end 65

23 }
24 }

Code Snippet 6.5: Back-end Component: Project DTO

Services

The most work is done in services classes. These orchestrate all the actions necessary to
perform the requested process.

If a service receives a DTO from the controller, it has to transform it into a domain object,
so that data is handled according to business logic. Services might also call the repositories
- which are later discussed in this section - to either retrieve some information or to save
the now processed data. Its last step is to build a new DTO, with the necessary data, to be
returned to the controller.

Due to the extensiveness of the project services class, it was separated into three code
snippets - one for each method presented in the controller.

The first, snippet 6.6 presents a function that gets a project information through its identity.
For that, it is needed a simple call to the repository and convert the received domain entity
to a DTO.

1 [...]
2 public class ProjectServices
3 {
4 [...]
5 public async Task <ProjectDTO > getById(int id){
6 Project project = await projectRepository.findById(id);
7 if (project == null)
8 return null;
9 return toDTO(project);

10 }
11 [...]

Code Snippet 6.6: Back-end Component: Project Service - GET

Then, snippet 6.7’s function shows the creation process for a new project. However, it is
shortened due to its size.

In the first place, the service validates the database existence of the project attribute’s
identification, sent through the DTO. Subsequently, the new project is converted into a new
domain entity, which is sent to the repository to be persisted.

The next set of actions depends if the manager previously decided to associate an existing
proposal and budget, or created a new simplified proposal. The first option requires an
update to that budget, whereas the second one means the creation of a new budget entity
and its persistence.

Moreover, a new technical advancement entity is created, with its percentage to zero, as
the project has not yet started.

Finally, a DTO is created from the new project domain entity to be retrieved to the controller.

1 [...]
2 public async Task <ProjectDTO > create(ProjectDTO dto){

66 Chapter 6. Development

3 Employee manager = await employeeRepository.findById(dto.Manager.
Value);

4 Proposal proposal = await proposalRepository.findById(dto.Proposal
.Value);

5 [...]
6

7 Project project = new Project(code , dto.Name , dto.Description ,
scope , manager , dto.Year.Value , defaultStatus , dto.InitialDate , dto.
FinalDate);

8 Project result = await Task.FromResult(projectRepository.save(
project).Result);

9

10 Budget budget;
11 if (dto.Budget.HasValue) {
12 budget = await updateBudget(dto.Budget.Value , proposal , result

);
13 } else {
14 budget = await createBudget(proposal , result);
15 }
16

17 TechnicalAdvancementDTO defaultAdvancement = new
TechnicalAdvancementDTO (0, "", result.Id);

18 await advancementServices.create(defaultAdvancement);
19

20 return toDTO(result);
21 }
22 [...]

Code Snippet 6.7: Back-end Component: Project Service - POST

The last example for the service class is the update project function (snippet 6.8).

The identity sent as a parameter is used to fetch the project from the repository. Then, the
received domain entity’s attributes are updated according to the information present in the
DTO.

The repository is called to update the entity, and just as previous examples, a new DTO is
set as a return statement.

1 [...]
2 public async Task <ProjectDTO > update(int id, ProjectDTO dto) {
3 Project project = await projectRepository.findById(id);
4 [...]
5 project.Name = dto.Name ?? project.Name;
6 project.Description = dto.Description ?? project.Description;
7 if (dto.Company.HasValue) {
8 Company newCompany = await companyRepository.findById(dto.

Company.Value);
9 project.Company = newCompany;

10 project.CompanyId = newCompany.Id;
11 }
12 [...]
13 return toDTO(await Task.FromResult(projectRepository.update(id,

project).Result));
14 }
15 [...]
16 }

Code Snippet 6.8: Back-end Component: Project Service - PUT

6.2. Back-end 67

Domain

For business logic validation, classes that represent value objects were created. Those were
to be used as the domain entities’ attributes, but due to some problems risen by the use of
Entity Framework, the attributes are now primitive values. Value objects were still used to
check business rules, but, as seen in snippet 6.9, they are handled in the entity’s constructor.

1 [...]
2 public class Project
3 {
4 [Key , DatabaseGenerated(DatabaseGeneratedOption.Identity)]
5 [Column("project_id")]
6 public int Id { get; set; }
7

8 [Column("project_code")]
9 public string Code { get; set; }

10

11 [ForeignKey("ManagerId")]
12 public Employee Manager { get; set; }
13 [Column("manager_id")]
14 public int ManagerId { get; set; }
15

16 [Column("initial_date")]
17 public DateTime InitialDate { get; set; }
18

19 [...]
20

21 public Project(string code , string name , string description ,
ProjectScope scope , Employee manager ,

22 int year , ProjectStatus status , string initialDate , string
finalDate)

23 {
24 Code = new Code(code).Value;
25 Name = new Name(name).Value;
26 Description = new Description(description).Value;
27 Scope = scope;
28 ScopeId = scope.Id;
29 [...]
30 string [] finalDateSplit = finalDate.Split("/");
31 FinalDate = new Date(
32 Int32.Parse(finalDateSplit [2]),
33 Int32.Parse(finalDateSplit [1]),
34 Int32.Parse(finalDateSplit [0])
35).Value;
36 }
37 [...]
38 }
39 }

Code Snippet 6.9: Back-end Component: Project Domain

The Entity Framework (EF) is an ASP.NET module that serves as an Object-Relational
Mapping (ORM) - which converts domain objects into persistence objects. This conversions
were done over the domain entities through annotations - keywords (such as Column, Key,
Foreign Key, etc.) that allow to map attributes into table columns. EF will be further
explained later in the repositories section.

An alternative to solve this problem is the use of Data Access Object (DAO). These type

68 Chapter 6. Development

of entities represent the persisted objects and are oblivious to the business logic. Moreover,
it creates a layer between the domain and the repositories, and allows to better follow the
single responsibility principle. Therefore, Entity Framework would manipulate DAO, and the
domain entities could then use value objects as their attributes. Nevertheless, this strategy
could not be followed up due to time restrictions.

This PoC’s first approach to domain entities followed a code-first method, where the domain
model served as a blueprint to the coded entities. However, it was changed to database-first
because of the use of EF and its mappings. This new alternative follows the entity relational
model as a base for the coded entities, instead of the domain model.

Repositories

Finally, repository classes are responsible for accessing and handling database requests.

The entity Framework module was used to map between domain entities and database tables.
As presented in snippet 6.10, a Database Context was set for that purpose.

The "Project_Stack" table, as discussed in section 6.1, is made of two keys that are also
foreign keys. For that case, the "OnModelCreating" function was to be used, as domain
annotations are not sufficient.

1 [...]
2 public class DatabaseContext : DbContext
3 {
4 public DatabaseContext(DbContextOptions <DatabaseContext > options)

: base(options) { }
5

6 public DbSet <Project > Project { get; set; }
7 public DbSet <ProjectScope > Project_Scope { get; set; }
8 public DbSet <Budget > Budget { get; set; }
9 public DbSet <Proposal > Proposal { get; set; }

10 public DbSet <ProjectTask > Task { get; set; }
11 public DbSet <TaskStackEntry > Task_Stack { get; set; }
12 [...]
13

14 protected override void OnModelCreating(ModelBuilder modelBuilder)
15 {
16 modelBuilder.Entity <TaskStackEntry >()
17 .HasKey(entry => new { entry.TaskId , entry.

ProjectTechnologyId });
18 }
19 }

Code Snippet 6.10: Back-end Component: Repositories - Database Context

The repositories basic functionalities (e.g. get by identity, create, update, etc.) are guaran-
teed by an abstract class, shown in code snippet 6.11

1 [...]
2 public abstract class BaseRepository <E, PK> : Repository <E, PK> where

E : class
3 {
4 private DatabaseContext context;
5 public BaseRepository(DatabaseContext context)
6 {

6.2. Back-end 69

7 this.context = context;
8 }
9

10 [...]
11 public virtual async Task <E> findById(PK id)
12 {
13 return await context.Set <E>().FindAsync(id);
14 }
15

16 public async Task <E> save(E entity)
17 {
18 await context.Set <E>().AddAsync(entity);
19 await context.SaveChangesAsync ();
20 return entity;
21 }
22

23 public async Task <E> update(PK id, E entity)
24 {
25 context.Set <E>().Update(entity);
26 await context.SaveChangesAsync ();
27 return await findById(id);
28 }
29 }
30 }

Code Snippet 6.11: Back-end Component: Base Repository

Additionally, when new functionalities need to be added, those base repositories can be
extended or overwritten. Such is the case of the Project Repository, snippet 6.12, where a
new function was added to find the project entity through a task identity.

1 [...]
2 public class ProjectRepository : BaseRepository <Project , int >
3 {
4 private DatabaseContext context;
5 public ProjectRepository(DatabaseContext context) : base(context)
6 {
7 this.context = context;
8 }
9

10 public int findProjectByTask(int taskId)
11 {
12 string projectByTask = @"
13 SELECT p.*
14 FROM Project p, Budget b, Resource_Expense_Budget reb ,

Task t
15 WHERE t.task_id = " + taskId + @"
16 AND t.resource_expense_budget_id = reb.

resource_expense_budget_id
17 AND reb.budget_id = b.budget_id
18 AND b.project_id = p.project_id";
19

20 return context.Project.FromSqlRaw(projectByTask).First ().Id;
21 }
22 }
23 }

Code Snippet 6.12: Back-end Component: Project Repository

70 Chapter 6. Development

6.3 Front-end

Similarly to the back-end section, this one contains an introduction to the used technologies.
It is followed by the application’s structure, which details its creation process. Moreover,
the implemented requirements are the same as in the back-end application, thus they are
not listed in this section.

6.3.1 Technologies

Regarding the front-end application, it was developed using the ReactJS library. This tech-
nology is used to build user interfaces in a modular style, as, when needed, it can aggregate
new libraries to provide even more functionalities.

This library was also a required technology by the company. It generally presents a small
learning curve, due to the general knowledge of the JavaScript language by most program-
mers. Moreover, its a highly flexible and scalable technology that can allow a fast de-
velopment, and easy maintainability, due to its component-based architecture. The latter
creates the possibility to break down large and complex applications, into more organized
and structured small contained pieces of code.

Additionally, Typescript was also applied to the front-end. It is a JavaScript super-set
language, with a strict syntax that integrates object types. Thus, it helps to handle the
correct data and lower error possibilities.

6.3.2 Application’s Structure

This component’s architecture and configuration is based on the design presented in section
5.4.2, under the front-end component example.

Users will directly interact with the components, which will gather the necessary data. That
information is stored within the Domain package classes - objects that represent entities
similar to the back-end DTO. Finally, components will call upon services, that are responsible
for the communication to other APIs, such as the back-end component, or other external
ones.

Authentication Components

The user’s authentication within this application was guaranteed by Azure Active Directory
and APIs provided by Microsoft for that purpose.

The App component - the main parent component, represented in snippet 6.13 - checks,
through added libraries from Microsoft, if there is data regarding a still valid previous login.

1 function App() {
2 return (
3 <div className="App">
4 <AuthenticatedTemplate >
5 <PageLayout >
6 </PageLayout >
7 </AuthenticatedTemplate >
8

9 <UnauthenticatedTemplate >
10 <SignInLayout />

6.3. Front-end 71

11 </UnauthenticatedTemplate >
12 </div >
13);
14 }

Code Snippet 6.13: Front-end: App Component

If there is no authentication data, the "SignInLayout" Component is rendered. There, the
log-in page is defined, containing the button to redirect to Microsoft’s provided log-in page.

Furthermore, Microsoft Graph API was used to get all necessary details regarding the logged
user, as seen in code snippet 6.14.

1 export default function AccessProfile () {
2 const {instance , accounts} = useMsal ();
3 const {loggedUser , setLoggedUser} = useContext(UserContext);
4

5 function RequestProfileData () {
6 FetchProfileData(instance , accounts)
7 .then((response: {user: LoggedUser , token: string , photo:

string }) => {
8 response.user.accessToken = response.token;
9 response.user.picture = response.photo;

10 setLoggedUser(response.user);
11 });
12 }
13

14 return (
15 <>
16 {useEffect (() => {loggedUser.accessToken ===’’ ?

RequestProfileData () : <></>})}
17 </>
18);
19 }

Code Snippet 6.14: Front-end: Access Profile Component

The last snippet contains React hooks, such as the "useState" and "useContext". These
are helpful tools for developing within the React components, and are used throughout the
whole front-end application.

The first allows functional components to have state variables. Even after rendering and
during run-time, if a variable changes because of user interactions, the state of that object
can be updated, and all components using that state are re-rendered.

Moreover, the context hook is used to define common data between several hierarchically
related components, without the need to pass them down as a parameter to each level.

Commons Components

The components under the package Commons are the ones that are built in a generic way,
so that they can be re-used within the whole application. As an example, forms are used in
the same way in multiple instances.

Code snippet 6.15 shows the page form definition, where division of HTML tags and their
styling is set.

72 Chapter 6. Development

1 type Props = {
2 children: JSX.Element | JSX.Element [];
3 title: string;
4 };
5

6 function PageForm ({ children , title }: Props) {
7 return (
8 <div id="wizard -card">
9 <div id="wizard -card -title" >{title}</div >

10 <form className="wizard -card -form"> {children} </form >
11 </div >
12);
13 }

Code Snippet 6.15: Front-end: Form Page Component

The children defined in the previous snippet can be any sort of combination of elements. To
better control those, it was created several generic input types for to be used in the form
page: Simple Input, Number Input, Drop-down Input, Date Input, and so on.

As an example, the drop-down input is presented in code snippet 6.16. This component
receives a label, to present as its title; an initial value, in case the dropdown must present
an already selected option; a list of objects with an id and a presentation string; and a
"onValueChange" function that defines what happens to the selected option’s id.

1 interface DropDownInputProps extends InputProps <any > {
2 options: TabledValue [];
3 isDisabled ?: boolean;
4 }
5

6 function DropDownInput ({ label , value , options , onValueChange , isDisabled
= false }: DropDownInputProps) {

7 return (
8 <div className="simple -input -wrapper">
9 <div className="simple -input -label" >{label}</div >

10 <div >
11 <select
12 className="dropdown -input"
13 value={ value ?? 0}
14 onChange ={(e) => {
15 onValueChange(options.find(option => option.id.toString () ===

e.currentTarget.value));
16 }}
17 disabled ={ isDisabled}
18 >
19 <option ></option >
20 {options.map((option) => (
21 <option key={ option.id} value ={ option.id}>
22 {option.value}
23 </option >
24))}
25 </select >
26 </div >
27 </div >
28);
29 }

Code Snippet 6.16: Front-end: Form Drop-down Component

6.3. Front-end 73

Additionally, the Commons package contains all navigation related components. An impor-
tant one is the "AppRouter" (snippet 6.17) that, with the use of extra libraries, it coordinates
to which component to redirect when a certain URL is written.

1 export default function AppRouter () {
2 const [projectId , setProjectId] = useState <number >(1);
3

4 return (
5 <>
6 <Routes >
7 {<Route path="/" element={<></>} />}
8 {<Route path="/projects" element={< ListProjectsFilter

setProjectId ={ setProjectId} />} />}
9 {<Route path={"/project/summary"} element={<Project ><

Summary projectId ={ projectId} /></Project >} />}
10 [...]
11 </Routes >
12 </>
13)
14 }

Code Snippet 6.17: Front-end: App Router Component

Still within the navigation scope, this package contains the navigation bars that are presented
at the top of the page, as seen in figure 6.2. It is composed of two bars, one with the
background image, and the other with the multiple buttons that provide different actions
within the system.

Figure 6.2: User Interface - Navigation Bar

When the user clicks on its name at the top right corner of the previous navigation bar, a
drop-down menu is shown. As observed in figure 6.3, it displays some user information, a
button for user information configuration, and a sign-out button.

Figure 6.3: User Interface - User Drop-down Menu

74 Chapter 6. Development

List and Filter Projects Components

All projects that the logged-in manager has access to are listed in a table. Some details are
listed so that the manager has a better perception to which project it refers to (e.g. project
code and name, its manager, year, and scope), and to which project need tending without
opening them all (e.g. the project status, the last month that had a technical advancement
imputation, and financial details).

As seen in code snippet 6.18, whenever a specific line of the project’s table is clicked, the
application redirects the user to that project’s details display.

1 export default function ListProjects ({ list , setProjectId }: Props) {
2 return (
3 <div className="projectList">
4 <table >
5 <thead >
6 <tr className="listHeader">
7 <td > Codigo </td>
8 <td > Nome </td >
9 [...]

10 <td > Custo Previsto </td>
11 </tr>
12 </thead >
13 <tbody >
14 {list.map(project => (
15 <tr className="listContent" key={ project.id}>
16 <td ><a href={"/project/summary/"} onClick ={()

=> setProjectId(project.id)}>
17 {project.code}
18 </td >
19 <td ><a href={"/project/summary/"} onClick ={()

=> setProjectId(project.id)}>
20 {project.name}
21 </td >
22 [...]
23 <td ><a href={"/project/summary/"} onClick ={()

=> setProjectId(project.id)}>
24 {project.predictedExpense}
25 ({ CalculateMarginPercentage(project.

predictedExpense , project.saleValue)}%)
26 </td >
27 </tr>
28))}
29 </tbody >
30 </table >
31 </div >
32)
33 }

Code Snippet 6.18: Front-end: List Projects Component

As the managers can have multiple projects assigned to them along their years in the com-
pany, there might be a need to filter them.

For that, as shown in code snippet 6.19, it was developed a search bar, for the project’s
code and name, and a filter menu with drop-down options to the other values.

1 export default function ListProjectsFilter ({ setProjectId }: Props) {

6.3. Front-end 75

2 const [refresh , setRefresh] = useState(true);
3 const [allProjects , setAllProjects] = useState <ProjectList [] >([]);
4 const [filteredProjects , setFilteredProjects] = useState <ProjectList

[] >([]);
5 [...]
6

7 return (
8 <>
9 <div className="actions -bar">

10 <ListProjectsNavBar setRefresh ={ setRefresh} />
11 </div >
12

13 <div className=’search -filter ’>
14 <input id="filterProjects -searchBar" className="search -bar

" type="text" onKeyUp ={ filter} placeholder="Pesquisar Projetos" />
15 setOpen (!open)}>
16 <img className=’filter -projects -button ’ src={"/assets/

images/filter_2.png"} alt="" />
17
18 </div >
19 {
20 open &&
21 <div className="filter -tab">
22 <label className=’filter -box -small ’>
23 Gestor:
24 <input id="filterProjects -manager" onKeyUp ={ filter

} type="text"
25 className="filter -options" />
26 </label >
27 [...]
28 <label className=’filter -box -small ’>
29 mbito :
30 <select id="filterProjects -scope" className="

filter -options" onChange ={ filter}>
31 <option ></option >
32 {scopes.map(scope => (
33 <option key={ scope.id}>{scope.value}</

option >
34))}
35 </select >
36 </label >
37 [...]
38 </div >
39 }
40 <ListProjects list={ filteredProjects} setProjectId ={

setProjectId} />
41 </>
42)
43 }

Code Snippet 6.19: Front-end: Filter Projects Component

Figure 6.4 displays the end result of the user interface that shows and filters the managers
list of projects.

76 Chapter 6. Development

Figure 6.4: User Interface - List and Filter Projects

Create Project Components

The previous presented page (list and filter projects) contains a menu with a button to
create a new project. When that option is clicked, a Modal page is set, with the needed
information to create the project. A modal is a message box that has an overlay on the
screen. Therefore, they take visual precedence over all the other elements presented on the
screen.

The create Project component, snippet 6.20, uses the generic page sequence component
within the modal. This way, the proposal and project definition can be set into separate
components.

1 [...]
2 export default function CreateProject ({ showCreate , setShowCreate ,

setRefresh }: Props) {
3 const [proposal , setProposal] = useState <Proposal >();
4 const [budget , setBudget] = useState <Budget >();
5 const [project , setProject] = useState <Project >();
6

7 return (
8 <Modal isOpen ={ showCreate} className="createProject -Modal">
9 <PageSequence onCancelClick ={ cancelCreate} onFinishClick ={

finishCreate} canClickNext ={[canClickNext]} canClickFinish ={
canClickFinish}>

10

11 <DefineProposal proposal ={ proposal} setProposal ={
setProposal} budget ={ budget} setBudget ={ setBudget} />

12 <DefineProject project ={ project} setProject ={ setProject}
/>

13

14 </PageSequence >
15 </Modal >
16)
17 [...]

Code Snippet 6.20: Front-end: Create Project Component

Firstly, the user must associate a proposal to the project they are creating. By default, it
shows the already existing proposals and their budgets in drop-down selection. However, if
wanted, the user might choose to fill the information to a new simplified proposal.

On code snippet 6.21, this process can be followed, as the check-box input manages the
isActive boolean variable. If isActive is true it presentes two drop-down inputs for existing

6.3. Front-end 77

proposals and budgets. However, if isActive is false, other input configuration is defined for
the creation of a new proposal.

1 [...]
2 return (
3 <PageForm title="Definir Proposta">
4 <CheckBoxInput
5 label="Associar Proposta Existente?"
6 value={ isActive}
7 [...]
8 />
9

10 <>
11 {isActive && <div >
12 <DropDownInput
13 label="Proposta"
14 value={ proposal ?.id}
15 options ={ proposals}
16 onValueChange ={ proposal => selectProposal(proposal)}
17 />
18

19 <DropDownInput
20 label="Orcamento"
21 value={ budget ?.id}
22 options ={ budgets}
23 onValueChange ={ budget => selectBudget(budget)}
24 isDisabled ={ proposal === undefined}
25 />
26 </div >}
27

28 {! isActive && <div >
29 <NumberInput
30 label="Preco de Venda"
31 value={ proposal ?. salePrice}
32 onValueChange ={(value) => setProposal ({ ... proposal , salePrice

: value })}
33 min ={0}
34 />
35 [...]
36 </div >}
37 </>
38 </PageForm >
39);
40 [...]

Code Snippet 6.21: Front-end: Define Proposal Component

After all proposal details are filled, the next page presents the project details definition page.
It contains all the required data to create a new project, as depicted in figure 6.5.

Display and Edit Project Components

These use cases are represented through different tabs within the project information display
page, as it can be observed in figure 6.6.

Moreover, in that figure is presented the Summary tab, where several details are presented in
a table form. It contains the required information to identify the project, and its development

78 Chapter 6. Development

Figure 6.5: User Interface - Create a New Project

and financial status. Furthermore, it calculates the possible project’s final total cost -
through the current costs and the percentage of the last technical advancement.

Figure 6.6: User Interface - Display Project Summary

The next tab, the general details tab, groups several relevant information of this project,
such as: its identification information, the associated proposal, its development details, and
all its possible itineraries for future employee expenses.

All those details are editable, except the proposal ones. The project stack and itineraries
lists can be edited by removal of an item, or by adding new ones through a modal page,
similar to the one presented before.

Code snippet 6.22 presents this tab’s code source, and the calls to each table’s section
components. Moreover, it presents the "save edited data" button, that becomes active

6.3. Front-end 79

when data is different from the one persisted in the database.

Even though the React’s useEffect functionality is only being presented in this snippet, it
is used in most components. It allows to perform side effects to the component after its
rendering - the most general one being data fetching from the services, as shown in the
example.

1 [...]
2 export default function GeneralData ({ projectId }: Props) {
3 const [updatedProject , setUpdatedProject] = useState <Project >();
4 const [currentProject , setCurrentProject] = useState <Project >();
5 const [refresh , setRefresh] = useState <boolean >(true);
6

7 useEffect (() => {
8 if (refresh) {
9 fetchProject(projectId).then(project => {

10 setUpdatedProject(project);
11 setCurrentProject(project);
12 });
13

14 setRefresh(false);
15 }
16 }, [refresh]);
17

18 return (
19 <>
20 <div className="generalData -top -wrapper">
21 <button className="generalData -update -button" disabled ={

cannotUpdate ()} onClick ={() => updateProjectDetails ()}>
22 Guardar Dados Alterados
23 </button >
24 </div >
25

26 <table className="generalData -table">
27 <ProjectData project ={ updatedProject} setProject ={

setProject} />
28 <ProposalData projectId ={ projectId} />
29 <DevelopmentData projectId ={ projectId} project ={

updatedProject} setProject ={ setUpdatedProject} />
30 <ItineraryData projectId ={ projectId} />
31 </table >
32 </>
33);
34 [...]

Code Snippet 6.22: Front-end: General Project Data

The third tab contains the project’s budget information. Its information is set into tables,
and each entry, representing a single expense, can be removed. Additionally, expenses can
be added by clicking the "Add Expense" button, which creates a new form inside a modal
page, with the required details. Figure 6.7 demonstrates the user interface for this project’s
tab.

The following tabs are very similar (in its logic, structure, implementation and end-result)
to the last Budget one. Thus they are not further presented in this report.

80 Chapter 6. Development

Figure 6.7: User Interface - Display Project Budget

81

Chapter 7

Evaluation of the Solution

The project’s goal is to create a highly important and beneficial tool for the stakeholders.
Therefore, the quality control and assurance of a good development process and delivery are
imperative.

The following chapter delivers the evaluation and experimentation of the developed solution
presented throughout this document. Firstly, the user’s satisfaction and application’s usabil-
ity is measured and presented. Afterwards, certain metrics are used to define the reliability
of this solution.

7.1 User’s Satisfaction and Application’s Usability

Stakeholders are characterized by their interest in the company or in the product that is being
developed. They can influence or be affected by the conducted activities that ultimately
achieve their interest and reason to be involved in the process.

In this case, the users for the project’s resulting tool are also considered to be the stake-
holders. Thus, when analysing the satisfaction and usability regarding the developed proof
of concept, these people are the primary target, as their feedback is the most reliable and
crucial.

7.1.1 Goal

The main goal is to understand if the general satisfaction and usability of this application
fulfil the stakeholders’ needs and requirements.

7.1.2 Process

The chosen method to reach the previous objective is through a survey. This was distributed
to each relevant participant, consequently acquiring their opinions concerning the newly
developed solution.

The survey participants are the employees that contributed to this project along the intern-
ship’s duration. These people were present in meetings to shape the work that has been
written in this report, and have tried out the developed solution. Within the group we have
two project managers, an employee of the planning and human resources department, and
a member of the business development department.

When devising such inquiries, it had to be considered that the group of enquired parties have
different roles within the company, and that their activities might not be based on more

82 Chapter 7. Evaluation of the Solution

technical knowledge (regarding the scope of a software development project). Therefore,
questions were done in a way that are accessible to everyone but still gather enough relevant
data to carry out this evaluation.

The survey (which can be seen in appendix B) contains seven questions, that evaluate from
a scale of 1 to 5 (5 being the desirable outcome). This way, it is possible to measure
objectively and doubtlessly the considered criteria.

In order to test the satisfaction level, the hypothesis defined is that stakeholders agree
with the value and need of fulfilment of the newly developed system. The null hypothesis
represents the average acceptable value for each form’s question.

It was defined that each question can only have a maximum of 25% of answers with a value
below 3. Moreover, because there were only four people involved in this project, there should
be no questions with less than 1 answer with the value of 4 or 5.

The comparison, for each question, between the average acceptable value and the average
of all answers, makes it possible to conclude if users are satisfied with this solution.

7.1.3 Results

The following table 7.1 contains the questions made in the survey, and their answers’ oc-
currences for each scale’s level (1 to 5).

Table 7.1: Results from Survey for user’s satisfaction and application’s us-
ability

Question 1 2 3 4 5

Is the application intuitive? 0 0 0 2 2

Is the solution stable (regarding failures and bugs)? 0 0 2 2 0

In comparison to the current project management
tools in Armis, did this new application correct some
of the other’s problems?

0 0 1 2 1

Does this tool allow a good project management? 0 0 2 2 0

Do you agree with the further development of this
solution by Armis, for future use within the company,
and possible commercialization?

0 0 1 1 2

Would this be a good tool and asset to add to the
company?

0 0 0 1 3

7.1.4 Result Analysis

By analysis of the previous results, it can be deduced the level of user satisfaction and
understood which characteristics need further improvement.

From the results, we conclude that:

• the solution GUI is intuitive.

• the application needs to be more stable and bug-proof.

7.2. Reliability of the System 83

• it should provide more functionalities for a better project management.

• the application should be further developed and it would be a good asset to the com-
pany.

Overall, since the developed solution is a proof of concept, there are further implementa-
tions and improvements to be done. Furthermore, stakeholders seem interested to continue
this project, having in mind that the next solution must pay more attention to possible
failures/bugs and provide better tools for project management.

7.2 Reliability of the System

Another method to check the quality of a system is to evaluate its reliability in accordance
with some defined metrics. This section contains the collected data and its analysis.

7.2.1 Goal

The defined metrics to guarantee this solution’s reliability are:

• Metric 1 - Average user interface’s page load must be less than 3 seconds;

• Metric 2 - The service’s endpoints must be able to process up to 10 requests per
second;

• Metric 3 - Endpoint’s response time must be less that 1 second.

The null hypothesis would be the completion of such metrics.

7.2.2 Process

Each component was deployed on a windows server, whereas the database is located on an
SQL Server, all within the Microsoft Azure services. This constitutes the quality environment
in which end users were able to test the system.

The acquired data, during the testing period, from support tools for these methods, is
processed and analysed, which allows benchmarking with the ideal values. Thus, a deduction
about the conformity of the system and the client requests can be made.

7.2.3 Results

Metrics 1 and 3

Regarding metric 1, the following service’s endpoints were selected: create project, update
project, list all projects, delete task, update proposal.

Statful is a tool that allows to gather this kind of data, and provide the necessary information
to perform a good analysis on them. For that reason, it was the selected tool to be used
for this report’s section.

Throughout the testing period, Statful called upon those endpoints, at least 15 calls for
each one. All response times were between 400 and 900 milliseconds, but never exceeded
the maximum limit.

84 Chapter 7. Evaluation of the Solution

Concerning metric 3, the testing was done on "List all projects" page, the "Delete task"
page, as well as the "Create a new project" page.

Using the same tool evaluation software, the data retrieved indicated that the page loading
time oscillated between 600 and 1000 milliseconds.

Metric 2

The second metric was carried out by a multi-thread test. Each thread is responsible for
sending a request to the endpoint (update proposal) and collect the due data.

The Statful tool only allows, for this type of tests, 10 simultaneous requests. These were
performed manually several times over the testing period, and the service was able to respond
positively to all.

7.2.4 Result Analysis

Metric 1 resulted in a long time range, which is caused by the different complexities of the
called services. As an example, the "update proposal" does a simple entity update, while
the "list all projects" require several database calls and data processing.

Moreover, regarding metric 3, pages "delete task" and "create project" loaded faster than
the "List all projects" page. This is in conformity with the first metric, as data fetching is
slower in the last one, as well.

Nonetheless, the system is within the defined metrics, and is, therefore, reliable.

However, some limitations can be identified within this testing environment. For metrics
1 and 3, only the more complex service’s endpoints were selected. Thus, it is not known
within all available ones, which are the most time-consuming.

85

Chapter 8

Conclusion

This final chapter takes on the conclusions regarding this project, presented throughout the
document. It first sums up the requirements and their due state, followed by the limitations
and future improvements.

In a general way, the development of this internship project allowed to deepen the knowledge
concerning software project management, and refined my soft skills, specially by the direct
and constant communication with the client.

8.1 Requirements Completion

All objectives defined for this project (section 1.3) were dully carried out and accomplished.

Importantly, a substantial part of the work to be done was the update and expansion of the
current tool. The latter was an old product that has accompanied the growth of the company
along the decade, and it has been poorly updated as needed. Therefore, some details were
needed to be better organized and the managerial functions needed to be upgraded (e.g.
adding a task stack to create a better knowledge of which technologies employees have
handled; the imperative existence of a proposal associated to all projects; a proposal having
several budgets to each project that it brought up; etc).

Regarding the gathered client requirements, some were not suitable for this proof of concept
(e.g. the notification system). Nonetheless, the ones proposed for this first development
were fully achieved, as seen in the following tables 8.1 and 8.2:

Table 8.1: Final state of the gathered requirements - Part I

Requirement Result
PM01
PM02
PM03
PM04.1
PM04.2
PM04.3
PM04.4
PM04.5
PM04.6
PM04.7

86 Chapter 8. Conclusion

Table 8.2: Final state of the gathered requirements - Part II

Requirement Result
PM04.8
PM04.9
PM05.1.1
PM05.1.2
PM05.2.1
PM05.2.2
PM05.2.3
PM05.2.4
PM05.2.5
PM05.2.6 x
PM05.2.7 x
PM05.3.1
PM05.3.2
PM05.3.3
PM05.3.4
PM05.4.1
PM05.4.2
PM05.5.1
PM05.5.2
PM05.6.1
PM05.6.2
PM05.6.3
PM05.7.1
PM05.7.2
HI01 x
HI02 x
HI03 x
HI04 x
EEI01 x
EEI02 x
EEI03.1 x
EEI03.2 x
EEI03.3 x
EEI03.4 x
EEI03.5 x
EEI04.1 x
EEI04.2 x
EEI04.3 x
EEI04.4 x
EEI05.1 x
EEI05.2 x
EEI05.3 x
EEI05.4 x
EEI06 x

8.2. Limitations 87

As depicted in these tables, the requirements for both hour imputation context and em-
ployee expense context were not developed, as well as two others in project management
context. These, as explained before in this document, were left out of the PoC due to the
extensiveness of the application.

8.2 Limitations

A great step-back during the requirements phase was the difficulty to have meetings with
all of four interested parties simultaneously (due to their roles and responsibilities within the
company, and busy schedules). For that reason, it became an arduous task to discuss topics
with all people, and come up to an agreed decision. Nevertheless, individual meetings with
the supervisor were also held - which made it possible to identify the various problems in
their multiple contexts faster.

Since the scope of project management is of a considerable extent, initially, it was difficult
to define the focus for this proof of concept. This ended up taking some of the time needed
for a more complete implementation. However, the client (the company) was satisfied with
the collection of requirements presented.

In addition, the company is a Microsoft partner, and it might be beneficial to keep these
relationships in mind when defining the technologies to be used. Even though they are state
of the art technologies, and it did not become a disadvantage in this particular case, the
company’s technology stack could have been proven to be a major limitation, in terms of
the approach taken to the problem.

8.3 Future Improvements

The proof of concept itself is complete, but the scope of the company’s goals encompasses
many more tasks. The most obvious - and what should be the next step - is to develop the
product itself.

Furthermore, this PoC could be used as a base for that product. However, it is suggested
that another architecture - divided into multiple services - is considered. Moreover, efforts
towards more research on the division of such services (monolithic decomposition patterns)
and their development should be made.

Additionally, if the PoC is used as a foundation, the other non-included requirements need
to be implemented.

Also, some modifications should be done to the developed proof of concept. These changes
were mostly discussed throughout this report - presented as alternatives for PoC improve-
ment, but for reasons that were previously explained, they could not be carried out for now.
Some examples of those changes are:

• The use of Data Acess Objects;

• The use of value objects as entity attributes;

• Rethinking database mapping and its direct relationship with tables;

• A more abstract front-end implementation, so that it can be reused in other circum-
stances (including its use within the company, but outside of this project).

89

Bibliography

Adamik, Anna and Dorota Sikora-Fernandez (Mar. 2021). “Smart Organizations as a Source
of Competitiveness and Sustainable Development in the Age of Industry 4.0: Integration
of Micro and Macro Perspective”. In: Energies 2021, Vol. 14, Page 1572 14 (6), p. 1572.
issn: 19961073. doi: 10 . 3390 / EN14061572. url: https : / / www . mdpi . com / 1996 -
1073/14/6/1572.

Atlassian (2022). Jira Documentation | Atlassian Support | Atlassian Documentation. url:
https://confluence.atlassian.com/jira/jira-documentation-1556.html.

Badiru, Adedeji B et al. (Dec. 2011). Project Management : Systems, Principles, and Appli-
cations. 2nd ed. CRC Press, p. 558. isbn: 9781315183145. doi: 10.1201/9781315183145.
url: https://www.taylorfrancis.com/books/mono/10.1201/9781315183145/
project-management-adedeji-badiru.

Belliveau, Paul, Abbie Griffin, and Stephen Somermeyer (2002). The PDMA ToolBook 1
for New Product Development. Wiley.

Botchkarev, Alexei and Patrick Finnigan (Dec. 2014). “Complexity in the Context of Systems
Approach to Project Management”. In: Organisational Project Management 2 (1), p. 15.
doi: 10.5130/opm.v2i1.4272. url: http://arxiv.org/abs/1412.1027%20http:
//dx.doi.org/10.5130/opm.v2i1.4272.

Evans, E (2003). Domain-Driven Design: Tackling Complexity in the Heart of Software.
Vol. 7873. Addison-Wesley Professional, p. 529.

Gassmann, Oliver and Fiona Schweitzer (Aug. 2014). Management of the Fuzzy front end
of innovation. Vol. 9783319010564. Springer International Publishing, pp. 1–339. isbn:
9783319010564. doi: 10.1007/978-3-319-01056-4.

Gido, Jack and Jim Clements (2015). Successful Project Management. 6th. Cengage Learn-
ing.

Golden, Bruce L., Edward A. Wasil, and Patrick T. Harker (1989). The Analytic Hierarchy
Process. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-50244-6.

Heagney, Joseph (Aug. 2016). Fundamentals of Project Management. 5th. Amacom.
IBM (2022a). What Are API Gateways? | IBM. url: https://www.ibm.com/cloud/blog/
api-gateway.

– (2022b). What are Message Brokers? | IBM. url: https://www.ibm.com/cloud/learn/
message-brokers.

Jiang, James J. and Gary Klein (July 2014). Special section: IT project management. doi:
10.2753/MIS0742-1222310101.

Kerzner, Harold (2017). Project Management: A Systems Approach to Planning, Scheduling,
and Controlling. John Wiley Sons, Inc.

Khin, Sabai and Daisy Mui Hung Kee (2022). “Factors influencing Industry 4.0 adoption”. In:
Journal of Manufacturing Technology Management. issn: 1741038X. doi: 10.1108/JMTM-
03-2021-0111/FULL/XML.

Koen, P. et al. (2016). “Providing Clarity and A Common Language to the “Fuzzy Front
End””. In: http://dx.doi.org/10.1080/08956308.2001.11671418 44 (2), pp. 46–55. issn:

90 Bibliography

08956308. doi: 10.1080/08956308.2001.11671418. url: https://www.tandfonline.
com/doi/abs/10.1080/08956308.2001.11671418.

Koen, Peter A et al. (2002). “FuzzyFrontEnd: Effective Methods, Tools, and Techniques”.
In: The PDMA toolbook 1. url: https://scholar.google.com/citations?view_op=
view_citation&hl=en&user=xRlifD4AAAAJ&citation_for_view=xRlifD4AAAAJ:u-
x6o8ySG0sC.

Larman, Craig (2005). Applying UML and Patterns: An Introduction to Object-oriented
Analysis and Design and Iterative Development. Prentice Hall PRT.

Microsoft (2022). Project Online Admin Documentation - ProjectOnline | Microsoft Docs.
url: https://docs.microsoft.com/en-us/projectonline/project-online.

Mouratidis, Haralambos and Miao Kang (2019). Secure by Design, pp. 120–138. isbn:
9781617294358. doi: 10.4018/978-1-61350-456-7.ch108.

Nadareishvili, Irakli et al. (June 2016). Microservice Architecture. Ed. by Brian MacDonald
and Holly Bauer. 1st. O’Reilly Media, Inc.

Neap, Halil Shevket and Tahir Celik (1999). “Value of a Product: A Definition”. In: In-
ternational Journal of Value-Based Management 1999 12:2 12 (2), pp. 181–191. issn:
1572-8528. doi: 10.1023/A:1007718715162. url: https://link.springer.com/
article/10.1023/A:1007718715162.

Newman, Sam (Feb. 2015). Building microservices : designing fine-grained systems. Ed. by
Brian Loukides MikeMacDonald. 1st. O’Reilly Media. isbn: 9781491950357.

Nguyen, Giang Huong (2014). The Analytic Hierarchy Process: A Mathematical Model for
Decision Making Problems. url: https://openworks.wooster.edu/independentstudy/
6054.

Nicola, Susana (2022). ANÁLISE DE VALOR - Aula AHP.
NPD (2016). Value Analysis and Function Analysis System Technique.
Osterwalder, Alexander and Yves Pigneur (2003). “Modeling value propositions in e-business”.

In: ACM International Conference Proceeding Series 50, pp. 429–436. doi: 10.1145/
948005.948061.

– (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and
Challengers. Ed. by Tim Clark. John Wiley Sons, Inc.

PMI, Project Management Institute ∥ (2022). What is Project Management. url: https:
//www.pmi.org/about/learn-about-pmi/what-is-project-management.

Rich, Nick and Matthias Holweg (Jan. 2000). Value analysis, Value Engineering. EC funded
project.

Richardson, Chris (2019). Microservices Patterns. Ed. by Marina Michaels et al. Manning.
– (2022a). Database per service. url: https://microservices.io/patterns/data/
database-per-service.html.

– (2022b). Decompose by business capability. url: https://microservices.io/patterns/
decomposition/decompose-by-business-capability.html.

– (2022c). Decompose by subdomain. url: https : / / microservices . io / patterns /
decomposition/decompose-by-subdomain.html.

Rodrigues, Alexandre G. and Terry M. Williams (2017). “System dynamics in software
project management: towards the development of a formal integrated framework”. In:
https://doi.org/10.1057/palgrave.ejis.3000256 6 (1), pp. 51–66. issn: 14769344. doi:
10.1057/PALGRAVE.EJIS.3000256. url: https://www.tandfonline.com/doi/abs/
10.1057/palgrave.ejis.3000256.

Schwalbe, Kathy (2016). Information Technology Project Management. 8th. Cengage Learn-
ing.

Bibliography 91

Sheffield, Jim, Shankar Sankaran, and Tim Haslett (May 2012). “Systems thinking: Tam-
ing complexity in project management”. In: On the Horizon 20 (2), pp. 126–136. issn:
10748121. doi: 10.1108/10748121211235787/FULL/XML.

Too, Eric G. and Patrick Weaver (Nov. 2014). “The management of project management: A
conceptual framework for project governance”. In: International Journal of Project Man-
agement 32 (8), pp. 1382–1394. issn: 0263-7863. doi: 10.1016/J.IJPROMAN.2013.07.
006.

Trello (2022). Trello API documentation - Trello Help. url: https://help.trello.com/
article/756-trello-api-documentation.

Ulaga, Wolfgang and Andreas Eggert (Oct. 2018). “Value-Based Differentiation in Business
Relationships: Gaining and Sustaining Key Supplier Status:” in: https://doi.org/10.1509/jmkg.70.1.119.qxd
70 (1), pp. 119–136. issn: 0022-2429. doi: 10.1509/JMKG.70.1.119.QXD. url: https:
//journals.sagepub.com/doi/full/10.1509/jmkg.70.1.119.qxd?casa_token=
gXZL5sYTgv4AAAAA%3AFrtGme7iMdEtlaJ5WspxE8lDZmpieD4lhpltkacZdmz3E05bXvfw5Te_
50vYHtfjD-94mJNh0F0.

Ustundag, Alp and Emre Cevikcan (2018). Industry 4.0: Managing The Digital Transforma-
tion. 1st ed. Springer, Cham, p. 286. isbn: 978-3-319-57869-9. doi: 10.1007/978-3-
319-57870-5.

Vasquez, Carlos Eduardo and Guilherme Siqueira Simões (2016). Engenharia de Requisitos:
Software Orientado ao Negócio. 1st. Brasport.

Venczel, T. B., L. Berényi, and K. Hriczó (June 2021). “Project Management Success Fac-
tors”. In: Journal of Physics: Conference Series 1935 (1). issn: 17426596. doi: 10.1088/
1742-6596/1935/1/012005. url: https://www.researchgate.net/publication/
352043540_Project_Management_Success_Factors.

Walters, David and Geoff Lancaster (Apr. 2000). “Implementing value strategy through
the value chain”. In: Management Decision 38 (3), pp. 160–178. issn: 00251747. doi:
10.1108/EUM0000000005344/FULL/XML.

Watt, Adrienne (Aug. 2014). Project Management. BCcampus.
Woodall, Tony (2003). “Conceptualising ’Value for the Customer’: An Attributional, Struc-

tural and Dispositional Analysis”. In: url: http://www.amsreview.org/articles/
woodall12-2003.pdf.

Wrike (2022). Wrike Documentation. url: https://www.wrike.com/project-management-
guide/faq/tag/documentation/.

Yang, Longqi et al. (Sept. 2021). “The effects of remote work on collaboration among
information workers”. In: Nature Human Behaviour 2021, pp. 1–12. issn: 2397-3374. doi:
10.1038/s41562-021-01196-4. url: https://www.nature.com/articles/s41562-
021-01196-4.

93

Appendix A

AHP Method

A.1 Saaty Fundament Scale

Table A.1: Saaty Fundamental Scale [Source:(Nicola 2022)]

Significance Level Definition Explanation

1
Same

Importance
The two activities contribute equally to

the objective.

3
Little

Importance
Experience and opinion support one

activity more than the other.

5 High Importance
Experience and opinion support one

activity more than the other.

7
Very High
Importance

An activity is highly favourable than the
other.

9
Absolute

Importance
Evidence favours one activity with a level

of absolute certainty.

2, 4, 6, 8
Intermediate

Levels
Used when considering a compromise
ground between the two activities.

94 Appendix A. AHP Method

A.2 IR Values Index

Table A.2: IR Values for Square Matrices of order n [Adapted from (Nicola
2022)]

1 2 3 4 5 6 7 8 9 10
0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51

A.3 Normalized Relative Priorities

For better readability, it was replaced:

• C - Development Costs;

• T - Development Time;

• S - Implementation Simplicity;

• P - Future Profitability;

Table A.3: Normalized Criteria Comparison Matrix

C T S P
C 12/23 3/7 30/53 8/17

T 2/23 1/14 3/53 1/17

S 6/23 5/14 15/53 6/17

P 3/23 1/7 5/53 2/17

A.4 Consistency of Relative Priorities

The Priority Vector (PV) is defined by calculating the average for each line of the normalized
relative priority matrix (NM) (Anexo A.3). Thus, the calculation:

NM =

12/23 3/7 30/53 8/17

2/23 1/14 3/53 1/17

6/23 5/14 15/53 6/17

3/23 1/7 5/53 2/17

 PV =

0.497

0.068

0.313

0.122

 (A.1)

Now that the PV is calculated, it is possible to compute the relative priority consistency
value. The consistency ratio (CR) should be below 0.1 so that the AHP method values are
reliable. To conclude this, the following calculations are:

M ∗ V P = λmax ∗ V P ⇔

2.0190

0.2744

1.2675

0.4866

 = λmax ∗

0.497

0.068

0.313

0.122

 (A.2)

⇔ λmax = (
2.0190

0.497
+
0.2744

0.068
+
1.2675

0.313
+
0.4866

122
)/4 = 4.034 (A.3)

A.5. Normalized Parity Comparison Matrices 95

For the CR calculation:

CR =
IC

IR
IC =

λmax − 4
4− 1 = 0, 0113 (A.4)

Since the matrix is a square matrix of order 3, IR = 0,90 (Appendix A.2).

CR =
0, 0113

0, 90
≃ 0, 0126 < 0.1 (A.5)

A.5 Normalized Parity Comparison Matrices

Table A.4: Normalized Development Cost Comparison Matrix

Update Existing
Solution

Develop New
Software

Update Existing Solution 3/4 3/4

Develop New Software 1/4 3/4

Table A.5: Normalized Development Time Comparison Matrix

Update Existing
Solution

Develop New
Software

Update Existing Solution 3/4 1/4

Develop New Software 3/4 3/4

Table A.6: Normalized Implementation Simplicity Comparison Matrix

Update Existing
Solution

Develop New
Software

Update Existing Solution 1/5 1/5

Develop New Software 4/5 4/5

Table A.7: Normalized Future Profitability Comparison Matrix

Update Existing
Solution

Develop New
Software

Update Existing Solution 1/6 1/6

Develop New Software 5/6 5/6

97

Appendix B

Survey on User Satisfaction and
Application’s Usability

Figure B.1: Survey - Initial Statement

98 Appendix B. Survey on User Satisfaction and Application’s Usability

Figure B.2: Survey - Questions I

Appendix B. Survey on User Satisfaction and Application’s Usability 99

Figure B.3: Survey - Questions II

101

Appendix C

Functional Requirements

This appendix represents a document written for the company, containing all the gathered
requirements. It was updated after all meetings with the clients, and was not updated after.
Therefore, its structure may have slight discrepancies from the list of requirements presented
in this report.

C.1 Project Management

PM01 - Create Project

As a project manager (or a superior role), I want to create a new project so that I can easily
manage it.

Action sequence:

1. Click on the “Create Project” button.

2. Associate a proposal.

(a) If it already exists, choose a proposal from a list.

(b) If the proposal does not exist, define the necessary proposal details.

3. Define the necessary project details.

4. Save the data.

5. Redirect to the project’s summary page.

The parameters that must come from the proposal’s association/creation are:

• Proposal code

• Selling value

• Adjudication date

• Project’s name (only on association)

• Project’s client

• Invoice type

• Invoice conditions

The following parameters must be defined at project’s creation:

102 Appendix C. Functional Requirements

• Project’s code

• Project’s name

• Project’s description

• Manager

• Project’s year

• Initial date

• Final date

PM02 - List Projects

As a project manager (or a superior role), I want to list the projects me and my subordinates
are managing, so I can choose which project to tend to. The projects presented to each
employee depend on its access permissions (hierarchical position on the organization). All
columns must be sortable.

Action sequence:

1. Access “Projects” page.

The parameters that must be shown in the list for each project are:

• Project’s code

• Project’s name

• Manager

• Project’s client

• Project’s year

• Project’s scope

• Project’s status

• Month of the last technical advancement

• Sales Margin

• Current Margin

• Predicted Margin

PM03 – Search and Filter List of Projects

As a project manager (or a superior role), I want to search and filter the list of projects, so
I can see it in a more organized way that is customized to my needs.

Action sequence:

1. Access the search or filter options on the page where all projects are listed.

The parameters that can be used to filter the project’s list are all the parameters presented
in PM02.

PM04 – Display Project Details

C.1. Project Management 103

As a project manager (or a superior role), I want to see all the details of the project, so I
can control the project and take decisions.

Action sequence:

1. Click on the project presented in the project’s list.

2. Redirect to the project’s summary page.

3. Select the different specialized project details tabs.

PM04.1: Display project’s summary This tab shows a summary of the project,
containing some base project information and other quick-access details to ease
the managerial function.

The information that is detailed in this tab contains:

• Project code

• Project name

• Project client

• Project scope

• Budget Planning:

– Selling value

– Total of resource expense budget

– Total of general Expense budget

– Total of budget

– Margin in €

– Margin in %

• Project Planning:

– Total invoiced

– Total of envisioned resource expense

– Total of current resource expense

– Total of employee expenses

∗ Total of subsistence allowance expenses

∗ Total of travel expenses

∗ Total of invoice expenses

– Total of general expenses

– Total expense cost

– Margin in €

– Margin in %

• Predicted Planning:

104 Appendix C. Functional Requirements

– Project status

– Technical advancement

– Predicted total expense cost

– Predicted margin in €

– Predicted margin in

– Deviation

• Technical advancement entry (for each one):

– Entry date

– Percentage of technical advancement

– Total imputed hours

– Total current resource expense cost

– Total expenses cost

– Current margin

– Predicted cost

– Predicted margin in €

– Predicted margin in

– Comment (optional)

PM04.2: Display project’s base details

This tab shows the base details of the project.

The information that is detailed in this tab contains:

• Project code

• Project name*

• Project description*

• Project year

• Project client

• Manager*

• Company*

• Department*

• Project type*

• Project field*

• Project scope*

• Technology stack*

• Proposal code

C.1. Project Management 105

• Adjudication date

• Selling value

• Project status*

• Initial date*

• Final date*

• Warranty date*

• Closing date*

• Website*

• Itinerary (for each one):

– Departure location

– Arrival location

– Kms

PM04.3: Display project’s budget

This tab shows the project’s budget, both for resource expenses and general
resource expenses.

The information that is detailed in this tab contains:

• Resource Expense Budget (for each expense):

– Organizational role

– Expected working hours

– Initial date

– Final date

– Price per hour

– Total cost

• General Expense Budget (for each expense):

– Expense type

– Cost

– Sale price

– Comment (optional)

PM04.4: Display project’s tasks

This tab shows the project’s envisioned. For each budgeted resource expense,
it lists the tasks of each employee.

The information that is detailed in this tab contains:

• Task (for each one):

– Resource expense budget reference

106 Appendix C. Functional Requirements

– Employee

– Employee’s organizational role

– Task description

– Expected working hours

– Initial date

– Final date

– Price per hour

– Total cost

PM04.5: Display project’s current resource costs

This tab shows the project’s current. Is shows the total imputed hours for each
employee’s task.

The information that is detailed in this tab contains:

• Employee (for each one):

– Organizational role

– Task (for each one):

∗ Initial date

∗ Final date

∗ Total task’s imputed hours

∗ Price per hour

∗ Total task’s sale hours

– Total imputed hours

– Total sale hours

PM04.6: Display project’s employee expenses

This tab shows all the imputed employee expenses (invoice expenses, travel
expenses, and subsistence allowance expenses) related to this project.

The information that is detailed in this tab contains:

• Employee (for each one):

– Expense (for each one):

∗ Expense type

∗ Expense date

∗ Cost value

– Total cost

C.1. Project Management 107

PM04.7: Display project’s general expenses

This tab shows all the project’s general expenses. Those expenses are not directly
related to the employees, such as the allocation of servers, physical materials,
and others.

The information that is detailed in this tab contains:

• General expense (for each one):

– Expense type

– Expense date

– Entity

– Document number

– Unitary cost

– Quantity

– Total cost

– Comment (optional)

PM04.8: Display project’s invoices

This tab shows the project’s invoice information, as well as all the invoices.

The information that is detailed in this tab contains:

• Invoice type

• Invoice conditions

• Invoice (for each one):

– Purchase order

– Invoice client

– Country

– Currency

– Price

– Invoice status

– Issue date

– Payment term

– Due date

– Paid value

– Payment date

– Comment (optional)

108 Appendix C. Functional Requirements

PM04.9: Display project’s documents

This tab shows all the project’s documents.

The information that is detailed in this tab contains:

• Document (for each one):

– Title

– Document

PM05 – Edit project

As a project manager (or a superior role), I want to edit the project, so I can
keep it up to date.

Action sequence:

1. Click on the project presented in the project’s list.

2. Redirect to the project’s summary page.

3. Select the different specialized project details tabs.

4. Click in the “Edit” button.

5. Change the project’s information.

6. Save data.

PM05.1: Edit project’s summary

The only editable information under the project’s summary tab is the
technical advancement, which is a list. To edit it, elements can be
added or removed from that list.

PM05.1.1: Add technical advancement to project’s base
details

Action sequence:

1. Click on “Add Technical advancement” button.

2. Introduce all necessary information.

3. Save data.

The parameters needed for each technical advancement are
described in PM04.1 under “Technical advancement entry
(for each one)”.

PM05.1.2: Remove technical advancement to project’s
base details

Action sequence:

1. Check the elements from the lists to be removed.

2. Click on “Remove Technical Advancement(s)” button.

C.1. Project Management 109

Check the elements from the lists to be removed.

PM05.2: Edit project’s base details

The information that can be edited is represented in PM04.2
with an asterisk – “*”. Moreover, this tab contains a list of
itineraries. To edit it, elements can be added or removed
from that list.

PM05.2.1: Add itinerary to project’s base details

Action sequence:

1. Click on “Add Itinerary” button.

2. Introduce all necessary information.

3. Save data.

The parameters needed for each itinerary are de-
scribed in PM04.2 under “Itinerary (for each one)”.

PM05.2.2: Remove itinerary to project’s base de-
tails

Action sequence:

1. Check the elements from the lists to be removed.

2. Click on “Remove Itinerary(s)” button.

PM05.2.3: Add project type to project’s base de-
tails

Action sequence:

1. Check the “Add” button next to the project type’s
dropdown menu.

2. Define the new Project Type.

3. Save data.

PM05.2.4: Change project type to active or in-
active

As a superior role from the project managers, I want
to set a project type to active/inactive, so project
managers can either use it again or cannot use it
anymore.

Action sequence:

1. Click the “Edit” button next to the project type’s
dropdown menu.

2. Show pop-up box with a list of project types.

3. Check the elements from the lists to be changed.

4. Click on “Change Project Type(s)” button.

110 Appendix C. Functional Requirements

PM05.3: Edit project’s budget

As the budget is composed by two lists (one of re-
source expenses and other of general expenses), to
edit them, elements can be added or removed from
those lists.

PM05.3.1: Add expense to project’s budget

Action sequence:

1. Click on either on “Add Resource Expense” or
“Add General Expense” button.

2. Introduce all necessary information.

3. Save data.

The parameters needed for each expense are de-
scribed in PM04.3.

PM05.3.2: Remove expense to project’s bud-
get

Action sequence:

1. Check the elements from the lists to be re-
moved.

2. Click on “Remove Expense(s)” button.

PM05.4: Edit project’s tasks

As the envisioned plan contains a list of resource
tasks, to edit it, elements can be added or re-
moved from that list.

PM05.4.1: Add task to project’s tasks

Action sequence:

1. Click on “Add Task” button.

2. Introduce all necessary information.

3. Save data.

The parameters needed for each expense
are described in PM04.4.

PM05.4.2: Remove task to project’s task

Action sequence:

1. Check the elements from the lists to be
removed.

2. Click on “Remove Task(s)” button.

PM05.5: Edit project’s general expenses

C.1. Project Management 111

As the general expenses contains a list of
expenses, to edit it, elements can be added
or removed from that list.

PM05.5.1: Add expense to project’s
general expenses

Action sequence:

1. Click on “Add General Expense” but-
ton.

2. Introduce all necessary information.

3. Save data.

The parameters needed for each ex-
pense are described in PM04.7.

PM05.5.2: Remove expense to project’s
general expenses

Action sequence:

1. Check the elements from the lists to
be removed.

2. Click on “Remove Expense(s)” but-
ton.

PM05.6: Edit project’s invoices The
invoice tab contains the general invoice
details and a list of invoices. To edit
the list elements can be added or re-
moved from that list.

The parameters needed to edit the gen-
eral invoice details are:

• Invoice type

• Invoice conditions

PM05.6.1: Add invoice to project’s
invoices

Action sequence:

1. Click on “Add Invoice” button.

2. Introduce all necessary informa-
tion.

3. Save data.

The parameters needed for each
invoice are described in PM04.8
under “Invoice (for each one)”.

112 Appendix C. Functional Requirements

PM05.6.2: Remove invoice to
project’s invoices

Action sequence:

1. Check the elements from the
lists to be removed.

2. Click on “Remove Invoice(s)” but-
ton.

PM05.7: Edit project’s docu-
ments

As the project’s documents is a
list, to edit it, elements can be
added or removed from that list.

PM05.7.1: Add document
to project’s documents

Action sequence:

1. Click on “Document” but-
ton.

2. Introduce all necessary in-
formation.

3. Save data.

The parameters needed for each
expense are described in PM04.9.

PM05.7.2: Remove docu-
ment to project’s documents

Action sequence:

1. Check the elements from
the lists to be removed.

2. Click on “Remove Document(s)”
button.

C.2 Hour Imputation

HI01 – Display imputed hours

As an employee, I want to see my imputed working hours for all
projects, so that I can check them visually. Different views can be
chosen: the employee may choose whether to see the calendar by
month, by week, by working week, by day or today.

Action sequence:

1. Access the hour imputation page.

C.2. Hour Imputation 113

To present imputed hours the following information is needed for each
one:

• Project code

• Task

• Initial date

• Final date

• Hours worked

• Approved status

Impute hours

As an employee, I want to impute hours, so that the company can
keep track of my work.

Action sequence:

1. Click “Impute hours” button.

2. Introduce all necessary data.

3. Save data.

The following parameters are the necessary information to impute
hours:

• Project code

• Task

• Initial date

• Final date

• Hours worked

• Comment (optional)

HI03 – Edit imputed hours

As an employee, I want to edit previously imputed hours, so that
my work registration is up to date. The employee can only edit the
imputed hours that have yet to be approved by the manager.

Action sequence:

1. Click on the imputed hours presented in the calendar.

2. Change the desired data.

3. Save data.

The editable parameters are the ones presented in HI02.

HI04 – Approve imputed hours

114 Appendix C. Functional Requirements

As a project manager (or a superior role), I want to approve the
employee’s imputed hours, so that the project’s management is more
accurate.

Action sequence:

1. Click “Approve Imputed Hours” button.

2. Redirect to the imputed hours approval page.

3. Select the item(s) to be approved.

4. If necessary, change the sale hours and add a comment for each
item.

5. Save data.

The following parameters are the necessary information to each im-
puted hour:

• Employee

• Project code

• Task

• Initial date

• Final date

• Imputed hours

• Sale hours

• Comment (optional)

C.3 Employee Expense Imputation

EEI01 – Create employee expense map

As an employee, I want to create a new expense map, so that all my
expenses are organized.

Action sequence:

1. Access “Employee Expense Maps” page.

2. Click on “Create Expense Map” button.

3. Define the necessary parameters.

4. Save data.

The necessary information to create an expense map are:

• Year

• Month

C.3. Employee Expense Imputation 115

EEI02 – List employee expense maps

As an employee, I want to list all my expense maps, so that I can see
the ones that exist.

Action sequence:

1. Access “Employee Expense Maps” page.

2. Choose the Year.

The necessary information to list an expense map is:

• Year

• Month

• Expense map status

EEI03 – Display employee expenses

As an employee, I want to see all expenses within a specific expense
map, so that I can manage them.

Action sequence:

1. Access “Employee Expense Maps” page.

2. Choose the Year.

3. Click on the desired expense map.

4. Redirect to the “Expense map summary” page.

EEI03.1 – Display employee expense summary

This tab shows a summary of the expense map and all its expense
types.

The information detailed is:

• Map Status

• Total for Invoice Expenses

• Total for Travel Expenses

• Total for Galp Fleet Expenses

• Total for Subsistence Allowance Expenses

EEI03.2 – Display invoice expenses

This tab lists all invoice expenses added by the employee.

The shown information of this page is:

• Invoice expense (for each one):

– Expense type

– Expense date

– Unitary cost

116 Appendix C. Functional Requirements

– Quantity

– Total cost

– Associated project

– Approved status

• Total cost

EEI03.3 – Display travel expenses

This tab lists all travel expenses added by the employee.

The shown information of this page is:

• Travel expense (for each one):

– Expense date

– Registration plate

– Project

– Task

– Itinerary

– Fuel type

– Total cost

– Approved status

• Total cost

EEI03.4 – Display GALP fleet expenses

This tab lists all GALP Fleet expenses added by the employee.

The shown information of this page is:

• Galp Fleet expense (for each one):

– Expense date

– Registration plate

– Receipt

– Current car’s km

– Litres

– Fuel type

– Total cost

– Approved status

• Total cost

C.3. Employee Expense Imputation 117

EEI03.5 – Display subsistence allowance expenses

This tab lists all subsistence allowance expenses added by the
employee.

The shown information of this page is:

• Subsistence allowance expense (for each one):

– Project

– Service description

– Service type

– Initial date

– Final date

– Region

– Cost

– Approved status

• Total cost

EEI04 – Impute Employee Expense

As an employee, I want to impute an expense, so that it reflects
on my expense map and the company can keep track of my ex-
penses.

Action sequence:

1. Access “Expense Map Summary” page.

2. Select the tab, according to the type of expense to impute.

3. Click on “Add new expense” button.

4. Fill all the necessary information.

5. Save data.

EEI04.1 – Impute Invoice Expense

The necessary information to add a new invoice expense is:

• Expense type

• Expense date

• Unitary cost

• Quantity

• Associated project

EEI04.2- Impute Travel Expense

A travel expense can only be added if the defined task already
has imputed hours associated to it.

118 Appendix C. Functional Requirements

The necessary information to add a new travel expense is:

• Expense date

• Registration plate

• Project

• Task

• Itinerary

• Fuel type

EEI04.3 – Impute Galp Fleet Expense

The necessary information to add a new galp fleet expense
is:

• Expense date

• Registration plate

• Receipt

• Current car’s km

• Litres

• Fuel type

EEI04.4 – Impute Subsistence Allowance Expense

The necessary information to add a new subsistence allowance
expense is:

• Service description

• Service type

• Initial date

• Final date

• Region

• Project

EEI05 – Edit employee expense

As an employee, I want to edit the previously imputed ex-
penses, so that they are up to date for better management.
Employee expenses can only be edited if they are yet to be
approved by a manager.

Action sequence:

1. Access “Expense Map Summary” page.

2. Select the tab, according to the type of expense to impute.

3. Click on the expense.

4. Change all desired information.

C.4. Alerting 119

5. Save data.

EEI05.1 – Edit invoice expense

The editable information for the invoice expense is de-
fined in EEI04.1.

EEI05.2 – Edit travel expense

The editable information for the travel expense is de-
fined in EEI04.2.

EEI05.3 – Edit galp fleet expense

The editable information for the galp fleet expense is
defined in EEI04.3.

EEI05.4 – Edit subsistence allowance expense

The editable information for the subsistence allowance
expense is defined in EEI04.4.

EEI06 – Approve imputed employee expenses

As a project manager (or superior role), I want to ap-
prove the employee expenses associated to my project,
so I can have more information to better manage my
project.

Action sequence:

1. Access the “Employee Expense Approval” page.

2. Select the expenses to be approved.

3. Click in the “Approve” button.

The necessary information shown for each expense is:

• Project code

• Employee

• Expense type

• Expense date

• Cost

C.4 Alerting

AL01 – Notify in the lack of documentation when
the project status progresses

AL02 – Notify pending or missing invoicing

AL03 – Notify the end of warranty period AL04 –
Notify the absence of the last month’s technical ad-
vancement

120 Appendix C. Functional Requirements

AL05 – Notify the lack of hour imputation by a spe-
cific employee associated to a project

AL06 – Notify if the current costs of the project are
about to reach or already exceeded the expected or
budgeted costs

