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Abstract 
Context Road impacts on biodiversity are increasing 
worldwide. Few attempts have been made to integrate 
multiple taxonomic groups into roadkill mitigation 
plans, while using remotely sensed habitat suitability 
and functional connectivity.
Objectives We pinpoint high-risk road locations 
(road planning units) for 19 woodland species from 
different taxonomic groups (non-flying mammals, 
birds, and bats) to enhance prioritisation and versatil-
ity of roadkill mitigation plans.

Methods In Southern Portugal, we collected species 
occurrence data, roadkill, and high-resolution satel-
lite imageries, along 15 years. We identified remotely 
sensed habitat metrics, in turn weighted together with 
functional connectivity models and road metrics to 
estimate roadkill vulnerability, using random forests. 
The roadkill cumulative risk across species is then 
estimated, as well the likelihood variation within 
and between taxonomic groups to verify prediction 
consistency.
Results Remote sensing information thoroughly 
explained habitat suitability, identifying similar met-
rics within each group, and non-uniform environ-
mental tolerance across species. Functional connec-
tivity and habitat suitability significantly explained 
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mortality, highlighting connected woodlands and 
neighbouring matrices. The roadkill cumulative risk 
endorses a conspicuous prioritisation of road plan-
ning units for implementing mitigation structures use-
ful for multiple species, with high precision and low 
probability variation within each group. Some dis-
crepancies in prediction consistency still emerge after 
group comparisons regarding bats.
Conclusions We provide novel insights for multi-
taxa ecological responses and roadkill evaluations, 
demonstrating a possible spatial prioritisation in 
mortality patterns from species with different traits. 
The identified road units support resilience and mul-
tifunctionality over long-term, enabling to assist 
cost-effective mitigation plans. Findings ultimately 
offer versatility during the mitigation planning phase 
throughout  the identification of road sub-optimal 
units, and opportunity costs given their potential for 
different taxa.

Keywords Multiple species · Roads · Mortality 
risk · Remote sensing · Landscape connectivity · 
Species distribution models · Wildlife crossing · 
Fencing

Introduction

Landscapes, with associated ecosystems and spe-
cies, exert a major positive influence on life quality 
of human societies, given the variety of benefits they 
provide (Díaz et  al. 2018), although on the contrary 
human activities often clash with the welfare of eco-
systems and landscape multifunctionality. In particu-
lar, the pervasiveness of some landscape elements 
such as roads, as well their expansion, are affecting 
ecosystems and ecological communities around the 
world, contributing to the impoverishment of terres-
trial biodiversity and nature sustainability (Laurance 
et  al. 2014). This global proliferation of the infra-
structure network can lead to increased fragmenta-
tion and traffic volumes, in turn exacerbating direct 
wildlife mortality through collisions with vehicles, 
commonly known as roadkill (Forman and Alexan-
der 1998; Grilo et al. 2009). Over the past two dec-
ades, increasing mortality rates have been reported, 
prompting unprecedented research efforts to under-
stand and mitigate road-related wildlife casualties 
(Pagany 2020). Yet on European roads alone, around 

194 million birds and 29 million mammals are killed 
annually (Grilo et  al. 2020), a significant loss that 
possibly threatens the viability of populations (van 
der Grift 2017; Oddone Aquino 2021), even though 
this may vary according to species and location 
(Grilo et al. 2009). To both reduce wildlife mortality 
and to restore connectivity (“the degree to which the 
landscape facilitates or impedes movements”; Taylor 
et al. 1993), mitigation structures (e.g over and under-
passes; fences) are being designed and planned along 
roads (Clevenger and Huijser 2011; van der Grift 
2017). However, structures are routinely criticised for 
having limited effectiveness, being most frequently 
directed to a particular taxonomic group (Rytwinski 
et al. 2016).

To ensure long-term sustainability, landscape 
approaches have been developed at the interface 
between biodiversity conservation and human devel-
opment goals, and several principles have been pro-
posed for future improvements: the need to deal with 
landscape dynamic processes, to include resilient and 
multifunctional solutions, as well to move towards 
more adaptative and negotiable strategies (Sayer 
et  al. 2013). Among landscape approaches, roadkill 
risk models (RRMs) are being used as guidance to 
effectively enhance sustainability by applying mitiga-
tion measures at mortality hotspots (i.e. “segments of 
roads with particularly high animal-vehicle collision 
rates”; Santos et al. 2015) and/or movement corridors 
of target species (Gunson et al. 2011; Fabrizio et al. 
2019). Decisions about site implementation are cru-
cial during the strategic planning phase, and deter-
mine the effectiveness of mitigation structures. Such 
decisions are yet a challenge for prioritisation plans 
when targeting multiple species with distinct habi-
tat requirements and movement abilities (Polak et al. 
2019). When informing strategic plans, a key habitat, 
as well as functional connectivity, can be approxi-
mated for a wildlife group without relying on ecologi-
cal information, through a so-called species-agnostic 
framework (sensu Marrec et al. 2020). In road ecol-
ogy, this analytical approach may offer advantages 
as multifunctional roadkill proxy whenever a wide 
range of species is examined for planning initiatives 
(Koen et al. 2014). Still, it has long been argued that 
functional connectivity may diverge between species 
(Zeller et al. 2012), with research efforts still requir-
ing to address multiple habitats and corridors (Bren-
nan et  al. 2020). Undoubtedly, wildlife is unevenly 
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distributed across landscapes in light of diverse 
ecological requirements and movement capabili-
ties. Such an ecological perspective makes defining 
multifunctional corridors a demanding task, but one 
deserving greater consideration in spatial conserva-
tion prioritisation (Brennan et  al. 2020; Salgueiro 
et al. 2021), especially when multiple taxa are taken 
into account (Marrec et al. 2020). Furthermore, a sec-
ond neglected theoretical issue is that even if studies 
have extensively focused on habitat elements as main 
mortality drivers within RRMs (Gunson et al. 2011; 
Pagany 2020), road-related mortality might also be 
expected from dispersal movements in non-habitat 
matrix (Vasudev et al. 2015). This suggests that when 
relating roadkill to multifunctional corridors, various 
movement costs should be accommodated, since spe-
cies’ willingness to move within the matrix, such as 
during dispersal, may differ than within habitat (Zel-
ler et  al. 2012). Therefore, to bridge this knowledge 
gap and improve the efficiency of mitigation meas-
ures, it is crucial to approach functional connectivity 
with a focus on dispersal capabilities (Vasudev et al. 
2015; Diniz et  al. 2020), as well as to disentangle 
the effects of habitat and functional connectivity on 
RRMs (e.g Fabrizio et al. 2019).

In addition to the need to account for multifunc-
tional solutions, another relevant aspect for enhanc-
ing the prioritisation of site selection for mitigation 
structures concerns to deal with landscape dynamic 
processes over long periods (Clevenger and Huijser 
2011). From an ecological standpoint, dealing with 
landscape dynamics has been gradually recognised as 
an important step in conservation planning and man-
agement since the last decade, although it has still 
limited integration in road ecology (Oddone Aquino 
2021). Indeed, while this issue has been recently 
explored in some study cases (e.g Medinas et  al. 
2021), most RRMs-based studies have still focused on 
a spatio-temporally limited representation of a land-
scape, namely through categorical land cover classes 
(Gunson et  al. 2011; Pagany 2020). Some authors 
(Cushman et al 2010; Herrera et al. 2016) have also 
questioned categorical landscape conceptualisations 
to be able to represent the complexity of biological 
communities, while others have pointed to an under-
estimation of unique habitat elements (Kerr and 
Ostrovsky 2003; Coops and Wulder 2019). To over-
come these drawbacks, as well as to incorporate land-
scape dynamics over time, a turning point is possible 

thanks to continuous and more informative landscape 
descriptors from satellite remote sensing data (Coops 
and Wulder 2019), and to pixel-based methods pre-
serving unique spectral/radar information (Schulte to 
Bühne and Pettorelli 2017). Despite these advantages 
and the increased available information from online 
repositories, a limitation remains in how to combine 
satellite against field data to determine key habitat 
elements, resulting in an interdisciplinary area with 
little consensus (Pettorelli et al. 2014).

There is still limited empirical evidence on whether 
similar ecological responses to satellite-derived habi-
tat metrics can be expressed across a group of wild-
life species with similar characteristics, which could 
be beneficial in RRM approaches. This is because a 
road may impact different species in similar ways, 
resulting in similar ecological responses (Santos et al. 
2016a; Polak et al. 2019). Implications for connectiv-
ity, which are typically considered species-specific 
(Zeller et al. 2012), may also arise, arguably converg-
ing for a group of species with similar environmental 
preferences and characteristics, as well as dispersal 
capabilities. The main advantage here lies in prior-
itising conservation measures on planning units (e.g., 
pixels; see Margules and Pressey 2000) along roads 
(road planning units; RPUs), by capitalising on the 
capacity for ’mortality prevention’ within a wildlife 
taxonomic group, even though this condition may not 
hold when considering groups of species with diver-
gent ecological needs and movement capabilities. To 
ensure the effectiveness of mitigation measures, in 
addition to understanding the relative importance of 
habitat, functional connectivity, and anthropogenic 
pressures (e.g., road traffic) influencing road mortal-
ity, it is also imperative to ascertain whether quanti-
tative models can accurately represent this exposure 
risk for various species from different groups, as their 
comprehensive integration into management plans 
continues to be neglected today (Polak et al. 2019).

In this study, conducted in southern Portugal, we 
make use of long-term (15 years, from 2005 to 2020) 
monitoring datasets on species occurrences and road-
kill to optimise RRMs that offer support and guid-
ance in identifying high-priority road locations for 
multispecies to implement concrete and effective 
mortality mitigation measures. We selected 19 ver-
tebrate species belonging to three taxonomic groups: 
non-flying mammals, birds, and bats, each ranging 
from habitat specialists to generalists. In detail, to 
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ameliorate prioritisation and versatility of roadkill 
mitigation plans, we aimed to: (1) evaluate the util-
ity of remotely sensed habitat metrics in describing 
species occurrence; (2) quantify the relative contribu-
tion of species-specific habitat, functional connectiv-
ity and road metrics in explaining spatial patterns of 
road mortality; and (3) identify priority road locations 
with the highest agreement in long-term mortality 
risk predictions, for the greatest number of species in 
each group and across groups.

Materials and methods

Study area

The study area is located in the Évora district (≅110 
km E from Lisbon; Fig.  1) and it is bisected by a 
highway corridor linking Lisbon to Madrid. The area, 
characterised by a Mediterranean climate, encom-
passes more than 621,000 ha of a topographically 
gentle terrain, with a landscape dominated by the 
so-called montado agroforestry system, composed of 
a mosaic of open areas (pastures) and evergreen for-
ests (mostly Quercus suber and Quercus rotundifo-
lia) (Godinho et al. 2018; Pinto-Correia and Godinho 

Fig. 1  Map of the study area. a The three left panels illustrate 
the number of roadkill events per species and monitored peri-
ods for each road stretch. b The road stretches, defined accord-
ing to sampling effort, are layered with cities, and with a true-
color satellite image composition (Landsat path 203 rows 33 
and 34, and path 204 row 33 footprints). While occurrence 
sampling events are not directly depicted within the map, the 

distribution of sampled species is shown in the marginal histo-
grams, in turn geographically covering the entire area follow-
ing the longitudinal (South-North) and latitudinal (West–East) 
axes. Here, marginal histograms are depicted according to the 
number of sampled species (richness) pooled into three classes 
(1–4, 5–6 and >= 9 species), and the frequency of such classes. 
c Location of the study area within SW Europe
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2013). The montado is classified as "High Nature 
Value farming system", meaning that it holds high 
biodiversity, while also being of remarkable socio-
economic value (Pinto-Correia and Godinho 2013). 
Other land uses present in the study area include olive 
groves and vineyards, while pine and eucalyptus plan-
tations occur sparsely.

Major threats to the montado system are some 
landscape dynamic processes attributable to the 
intensification of agricultural practices, but also 
inappropriate forest management. Along with roads, 
this is leading to increased disturbance, fragmenting 
the landscape and compromising functional connec-
tivity (Carvalho and Mira 2011; Pinto-Correia and 
Godinho 2013; Machado et al. 2020).

Methodological framework

A framework conceived the prime methodology 
(Fig. 2).

Data acquisition

Environmental information relied on high-resolu-
tion Landsat satellite imagery (Online Appendix 
S1.2; Fig.  2a). Occurrence data for the selected 
species were gathered for the entire study area 
encompassing the roads on which roadkill events 
were monitored (Fig.  1b). Collection of each data 
source (remotely sensed data, species occurrences 
and roadkill) was carried out over a long-time span, 
from 2005 to 2020 by the University of Évora team, 
and same persons when applicable for systematic 
surveys (e.g., Santos et  al. 2015). We targeted dif-
ferent taxonomic groups (non-flying mammals, 
birds, and bats), corresponding to 19 focal forest-
dwelling species (Online Appendix S.1.1), with var-
ying degrees of habitat specialisation and dispersal 
capabilities. Non-flying mammals occurrence data 
was mostly obtained from linear transects targeting 
species’ presence signs (e.g., footprints) and from 
camera traps (Herrera et al. 2016). Bird occurrences 
were obtained from 10 min point counts conducted 
during the breeding season at early dawn and with 
suitable weather conditions (Salgueiro et al. 2018). 

Bat activity data came from surveys that combined 
linear transects, point counts conducted after dusk, 
and roost surveys (Medinas et al. 2013, 2021). Bat 
detectors were used in these campaigns, followed 
by a classification of echolocation calls for species 
identification.

Regarding data acquisition and primary processing 
steps, further details are provided in Supporting infor-
mation (Online Appendix S.1.2–S.1.5).

Remote sensing-based habitat metrics

Intra-annual time series of habitat metrics were devel-
oped to secure spatio-temporal information on land-
scape patterns (Fig. 2a). Metrics were pooled into six 
predictor groups: "Spectral bands" (Online Appendix 
S1.2), given the efficiency in optical spectral proper-
ties for identifying landscape elements at high spatial 
resolution (Valerio et  al. 2020); "Spectral indices", 
describing vegetation phenological patterns such 
as biomass (BNDVI, NDVI, EVI, MSAVI2), water 
content (NDII, NDWI, MSI) and senescence (PSRI, 
SWIR32); and "Thermal infrared", utilised to infer 
land surface temperature (LST). Also, horizontal veg-
etation complexity was characterised to reflect habitat 
heterogeneity in more open montado areas (Herrera 
et  al. 2016), in the form of second‐order “Textural 
indices” (GLCM_H, GLCM_E, GLCM_M; Haral-
ick 1979), and parameterised according to Godinho 
et  al. (2018). Finally, radar-derived predictors were 
identified as "Topographic", describing wetness index 
(TWI), as well "L-band SAR polarisations" through 
the PALSAR predictors (HH, HV), that allow to pen-
etrate the vegetation overstorey to infer vertical veg-
etation complexity (Le Toan et al. 1992). This portfo-
lio dataset of remotely sensed habitat metrics covered 
prime biogeophysical aspects of the montado agro-
forest ecosystem (Godinho et al. 2018; Valerio et al. 
2020), including ecological inferences on the target 
wildlife species, in geographically close areas (Santos 
et al. 2016b; Medinas et al. 2021). Time series were 
repeatedly collated within each year using the median 
across habitat metrics, resulting in 315 fine-grained 
predictors (21 metrics per year), developed in GEE 
and stored as data cube (Fig.  2a). Metric details are 
provided in Supporting information (Online Appen-
dix S1.6).
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Determining significant habitat metrics for species 
and taxonomic groups

Quantifying species-specific meaningful habitat met-
rics involved building species distribution models 

(SDMs; Fig.  2a; Elith and Leathwick 2009; Synes 
et  al. 2016) with Random Forests classifiers (Brei-
man 2001). These were performed in R statisti-
cal environment (v.3.6.3; R Core Team 2016) using 
"Boruta" (v.7.0.0) and "randomForest" (v.4.6-14) 

Fig. 2  The schematic methodological framework, with arrows 
guiding the development of the three main sub-tasks (a, b, c). 
The upper scheme (a) illustrates the satellite data processing, 
habitat metrics calculation, and data modelling for SDMs. The 
central scheme (b) illustrates the preparation of input data for 
functional connectivity models, namely nodes, resistance sur-
faces, along with lists of connected nodes, to compute func-

tional connectivity scenarios. The lower scheme (c) illustrates 
the final task, namely the preparation of roadkill data and 
RRMs analysis including species-specific habitat, functional 
connectivity, and road predictors; then, the processing of road-
kill risk overlap and probability variation (CV) within and 
between taxonomic groups. The numbers  (1,2,3) in the figure 
refer to the three main goals of the research



Landsc Ecol 

1 3
Vol.: (0123456789)

packages. The response variable (species occur-
rence data, namely presence/absence set with 0.5 
of prevalence; Online Appendix S1.7) temporally 
matched remotely sensed habitat metrics during data 
extraction (Fig.  2a). Then, to identify significant 
metrics describing habitat suitability, Boruta calcu-
lation was applied to ’confirm’ or ’reject’ predictors 
(Kursa and Rudnicki 2010), through 2000 runs with 
as many trees, and by a mean Z-score (0.01 P-value 
threshold; Valerio et  al 2020). Predictors’ signifi-
cance was assessed by comparison with their ran-
domised copies (Kursa and Rudnicki 2010). Mul-
ticollinearity problems were reduced by discarding 
predictors until values of Variance Inflation Factor 
(VIF) were negligible (VIF  ≤  5), and Pearson cor-
relation coefficient indicated no strong correlation 
among predictors (|r|  <  0.9) (Christophe 2011; Mil-
lard and Richardson 2015). Following a parameter 
tuning for SDMs interesting best number of trees 
(ntree) and the number of available predictors split 
at each tree node (mtry) (detailed in Supplementary 
material; Fig.  2a), then sensitivity, specificity, error 
rate (%), and area under the receiver operating char-
acteristic curve (AUC; Fielding and Bell 1997) were 
estimated through 10-fold cross-validation runs, 
to assess the performance of the multivariate Ran-
dom Forests models. We employed AUC threshold 
scores of 0.6 ≥ AUC ≥ 0.7, 0.7 ≥ AUC >≥ 0.8, and 
AUC ≥ 0.9, to define model discrimination capacity 
as ‘acceptable’, ‘excellent’ and ’outstanding’, respec-
tively. The relative contribution was obtained from 
each SDM to determine the top-performing predic-
tors influencing species occurrence. In addition, we 
selected the average of relative contribution between 
predictors to identify those potentially useful for 
further analysis (RRMs). Partial dependence plots 
were also computed, to assess the species’ ecological 
responses to predictors (response curves).

Functional connectivity analysis

We performed inter-annual collations of habitat met-
ric time series by using their median. This allowed 
species-specific SDMs’ predictions to integrate, over 
the entire 15-year period, spatiotemporal environ-
mental variability of landscape dynamic processes. 
Remote sensing was incorporated into connectiv-
ity via SDMs, from whose resistance surfaces and 
nodes were constructed (Fig. 2b). In detail, regarding 

resistance surfaces, linear and non-linear transforma-
tion functions (Eq. S1.1; Trainor et  al 2013) were 
employed to assess potential connectivity (sensu 
Fletcher et  al. 2016). Those functions were applied 
on the SDMs at 3-degree scores (c = 0.25, c = 0.5, 
c = 8; Valerio et al. 2019), which represent movement 
scenarios reflecting progressively reduced costs on 
resistance surfaces, such as within matrix during dis-
persal (Diniz et  al. 2020). Second, regarding nodes, 
those were derived from habitat patches by convert-
ing each SDM into a categorical, species-specific 
binary (habitat/matrix; Fig. 2b) classification (Online 
Appendix S1.8) (Moilanen 2011). The "SeSpeql" 
approach was selected as threshold, thereby soften-
ing the absolute difference between sensitivity and 
specificity (Nenzén and Araújo 2011). The connec-
tivity analysis for each species was performed in a 
two-step process. First, a graph-based approach ana-
lysed the landscape spatial configuration, identify-
ing the strength of connections between each pair of 
habitat nodes (Diniz et  al. 2020). The probability of 
connectivity (PC) (Equations S1.2; Saura and Pas-
cual-Hortal 2007) between each pair of nodes was 
calculated in Conefor-Sensinode (v.2.2; Saura and 
Torné 2009), by weighing the habitat amount within a 
node and species dispersal distances (Online Appen-
dix S1.9), and the functional distance between nodes, 
in turn dependent on the selected resistance surface 
(Fig. 2b; e.g., Salgueiro et al. 2021). Using this pro-
cedure, only resulting linkages with PC > 50% were 
retained for further analyses, and compiled as a list of 
pairwise linked nodes. Second, following the omnis-
cape method, with circuit-theoretic analysis (McRae 
et  al. 2008) we evaluated multiple alternative routes 
as current flow between the list of linking nodes (Sal-
gueiro et al. 2021). Current was set to flow between 
each set of linked nodes subjected to the resistance 
surface (Fig. 2b) using GFlow (v.0.1.7; Leonard et al. 
2016). In total, we produced 57 fine-grain potential 
connectivity models (19 species * 3 movement cost 
scenarios).

Quantifying intra and inter-group roadkill risk 
optimisation efficacy

RRMs multiscale models were performed to spatially 
prioritise road planning units (RPUs), and exam-
ine the agreement in mortality predictions within and 
between taxonomic groups. Roadkill events were used 
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as a response variable (presences and pseudo-absences; 
Online Appendix S1.10) and independent validation 
dataset (Synes et al. 2016) to quantify the relative con-
tribution of species-specific selected "Habitat predic-
tors", "Connectivity predictors" and "Road predictors" 
in explaining spatial mortality patterns. "Road predic-
tors" (Fig. 2c) included road and culvert features (traf-
fic density percentage, culverts density percentage, 
distance from culverts, and road width) (Carvalho and 
Mira 2011; Medinas et  al. 2013; Online Appendix 
S1.11). To identify the functional scale at which road-
kill occur, multiple scales were systematically applied 
through moving windows over "Habitat predictors" and 
"Connectivity predictors" (Fig.  2c), with windows of 
3 × 3 (≈100m) and 16 × 16 (≈500m) sizes according 
to previous studies (Carvalho and Mira 2011; Medinas 
et  al. 2013). The modelling procedure was performed 
using Boruta, as previously mentioned. Multivariate 
Random forests classifications to perform RRMs were 
conducted with "randomForest" (v.4.6-14) package 
(Fig. 2c). We determined the top-performing predictors, 
and correspondent predictor group, by calculating their 
relative contribution to the models. Predictors were 
then screened for multicollinearity and model evalua-
tion was performed as for SDMs (Fig. 2c). Within each 
taxonomic group (Fig. 2c), the binary RRM maps (see 
Online Appendix S1.10 for the thresholding procedure) 
were overlaid to obtain a cumulative distribution fre-
quency of RPUs, to spatially inform about the maxi-
mum number of species subject to high roadkill risk, 
here conceived as mortality richness and utilised as 
priority ranking method. Secondly, by using the previ-
ous threshold, high-risk probability values from RRMs 
were aggregated to analyse RPUs agreement in cover-
ing mortality for multiple species and taxa (e.g., intra- 
and inter-groups). For this purpose, we only considered 
RPUs where at least one species of each taxonomic 
group was identified with high risk. To ensure versatil-
ity in spatial planning, the variation in risk probability 
(RRMs), within each group, was assessed by using the 
coefficient of variation percentage (%CV; Fig. 2c). The 
lower the variability in the probability of RRMs, the 
higher the agreement among species and the higher the 
intra-group flexibility of mitigating impacts beyond pri-
oritised RPUs. That said, for this study, we considered 
a CV of 30% as an ’acceptable’ flexibility threshold. 
Statistical differences in %CV of RRMs probabilities 
within RPUs were further investigated for inter-group 

flexibility in spatial mitigation planning, utilising the 
D’AD test (Feltz and Miller 1996) in the R package 
"cvequality" (v.0.2.0, Marwick and Krishnamoorthy 
2019), wherein a P ≤ 0.05 was set to reject the hypoth-
esis of no difference in variance between groups.

Results

Habitat suitability drivers among wildlife taxonomic 
groups

SDMs, based on remotely sensed habitat met-
rics, resulted in good performances for most of the 
selected species. Non-flying mammals achieved 
’excellent’ accuracy scores (AUC μ  =  0.75; error 
rate μ = 31.42%), together with birds (AUC μ = 0.7; 
error rate μ  =  35%), whereas bats had the lowest, 
albeit still ’acceptable’ scores (AUC μ = 0.67; error 
rate μ = 38.16%) (Online Appendix S2.1). "Spectral 
indices" predictors (MSAVI2, EVI, NDVI, BNDVI, 
NDWI, NDII) were all identified as top-performing 
for describing occurrence patterns in non-flying 
mammals, followed by “L-band SAR polarisations” 
predictors (HV) (66.6% of species). The latter group 
was also the most representative for birds (62.5% 
of species), followed by "Spectral indices" (PSRI 
and SWIR32) (62.5% of species)."Thermal infra-
red" (LST) was the top-performing predictor for bats 
(Fig. 3) (80% of species), followed by “Spectral indi-
ces” (PSRI and SWIR32) (80% of species).

We found similar ecological responses among spe-
cies in each group (Fig. 4).

Non-flying mammals held positive relationships 
with higher vegetation biomass (MSAVI2, EVI, 
NDVI, and BNDVI) and structure (HV), while higher 
habitat suitability was observed with areas of low 
vegetation water stress (lower values of NDWI and 
NDII). The occurrence of birds responded positively 
to vegetation structure (HV), as well to low vegeta-
tion stress and senescence (lower values of NDWI, 
PSRI and SWIR32). Bats responded negatively to 
high temperatures (LST), while again showing a 
similar response to non-flying mammals and birds for 
stressed areas (PSRI and SWIR32). Also, for analo-
gous metrics detected in each group, differences in 
environmental tolerance (amplitude) are observable, 
showing varying habitat specialisations.
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Disentangling habitat, connectivity and 
anthropogenic influence on roadkill

After retaining the best scales from uncorrelated 
predictors (see Online Appendix S2.2 in the RRMs 
section), evaluation metrics for the RRMs models 
indicated ’excellent’ performances in predicting road-
kill, with slight differences detected between species 
(AUC μ = 0.84 and error rate μ = 22.3; further details 
in Online Appendix S2.2). "Habitat predictors", 

which were selected as influencing species occur-
rence (SDMs), were also significant for predict-
ing roadkill patterns (RRMs) (in Online Appendix 
S2.2). Similar ecological responses to those observed 
in SDMs were detected in RRMs, along with posi-
tive responses for the two most important predic-
tors considered, namely "Connectivity predictors” 
and "Road predictors" (Online Appendix S2.2). As 
depicted in Fig. 5, "Connectivity predictors" were the 
best performers in explaining roadkill for non-flying 

Fig. 3  The relative contribution (%) of predictors in explain-
ing species occurrence: non-flying mammal, bird, and bat spe-
cies. Bar colours indicate the predictor group, while the ver-

tical dashed lines (averaged importance values) were used to 
discriminate predictors to use for further RRMs analysis (the 
ones at the right side of the line)
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mammals (66.6% of species), while for bird and bat 
species, "Connectivity predictors” and "Habitat pre-
dictors" shared the same importance.

Functional connectivity performed better when 
high function scores (c  =  8; lower movement cost) 
were applied for non-flying mammals (75% of spe-
cies), while for birds and bats the function scores that 
performed better were low (c  =  0.25; higher move-
ment cost) (60% of species) and medium-high (c = 2 
and c = 8) (50% of species), respectively. Regarding 
the importance of "Road predictors", traffic density 
percentage, was the most important in explaining 
mortality only for two species, red fox and Kuhls’ 
pipistrelle.

RPUs prioritisation and roadkill risk uncertainties 
assessment between wildlife taxonomic groups

RPUs with the highest richness scores, which pin-
point high-risk locations across taxonomic groups, 
were predominantly found in the southern part of the 
study area (road N114), as well as in the south-west-
ern and, to a lesser extent the northern areas (road 
N4), with the lowest risk values occurred in the east-
ern area (road N18) (Fig. 6a).

All groups showed a decreasing trend in RPUs 
frequency as richness increases, where RPUs with 
maximum species richness represented a remarkably 
small proportion compared to others (9.1% for non-
flying mammals, 8.9% for birds, whilst 11.6% for bats) 

Fig. 4  Partial dependence plots, scaled on occurrence prob-
ability (SDMs), showing interactions between the two most 
important habitat metrics for non-flying mammal, bird, and bat 
species. High probabilities of species occurrence are coded in 

yellow, while low probabilities are coded in dark blue. Further 
details on the response curves for relevant predictors pertaining 
SDMs are supplied in Online Appendix S2.1
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(Fig.  6b), corresponding to prioritised RPUs with an 
ameliorated focus for allocating resources for roadkill 
mitigation. Within RPUs representing the three groups 
with at least one species, priority locations for multi-
taxa mitigation planning were identified by considering 
the overall species richness across all groups (Fig. 6c). 
Also, the median %CV showed a relatively low vari-
ability for non-flying mammals and birds (%CV ≅ 14), 

which was higher for bats (%CV ≅ 27) (Fig. 6d). Gen-
erally, those values indicated an ’acceptable’ score, and 
hence intra-group flexibility beyond prioritised RPUs 
for resource allocation. Between taxonomic groups, 
there were significant differences in variability (%CV) 
of RRMs probabilities between non-flying mam-
mals and bats, and between birds and bats. Variability 
differences were not significant between non-flying 

Fig. 5  The relative contributions (%) of Habitat, Connectivity 
and Road predictors in explaining roadkill patterns (RRMs) of 
non-flying mammal, bird and bat species. Bar colours indicate 
the typology of the predictors, listed in order of importance. In 
the predictors’ name, the "Ct" prefix indicates that a species-

specific connectivity scenario was used, with the score of the 
"log" suffix corresponding to the selected degree of the trans-
formation function (0.25, 2, 8). The "sc" suffix is relative to the 
selected spatial scale (0, 100, 500), which is applicable to both 
habitat and connectivity predictors
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mammals and birds, here supporting inter-group flex-
ibility for allocating resources beyond prioritised RPUs 
(Fig. 6d).

Discussion/conclusions

Usefulness of remotely sensed habitat metrics in 
describing species occurrence

By combining remote sensing information with wild-
life occurrences, this study showed that SDMs can 
significantly benefit from the use of complemen-
tary habitat metrics derived from optical multispec-
tral and radar data. Such data fusion approaches for 
mapping species distributions have recently been 
highlighted in the literature, yet their use is still in 
its infancy (Schulte to Bühne and Pettorelli 2017). 

Here, for non-flying mammals, the use of spectral 
indices related to ecosystem productivity (MSAVI2, 
EVI, NDVI, and BNDVI) has been shown essential 
in explaining species occurrence. In general, higher 
values of MSAVI2, EVI, NDVI, and BNDVI are 
related to environments with high levels of produc-
tivity, which may reflect greater vegetation cover and 
resource availability (e.g., shelter and food; Kerr and 
Ostrovsky 2003; Pettorelli et al. 2011). Nevertheless, 
the relative importance of each vegetation index var-
ied across species. For the common genet, a forest 
specialist, the low occurrence probabilities are pre-
dicted over a low range of MSAVI2 values, reflecting 
the reluctance of this species to occur in areas with 
scarce vegetation cover (Valerio et al. 2019). This was 
better captured by the MSAVI2 index than by EVI, 
NDVI, or BNDVI, likely due to its superior ability to 
minimise the influence of soil on the spectral signal 

Fig. 6  RPUs with the number of species (richness) subject to 
high mortality risk (a), and histograms showing the RPUs fre-
quency according to richness scores, for each group (b). RPUs 
covering all the taxonomic groups indicating multispecies 
mortality risk for mitigation planning, layered with RGB bands 
from Landsat (7/8) images. Darker areas, notably vegetated 

areas (e.g., forests, riparian habitats), correspond to higher 
roadkill risk locations for multiple species (dark violet) (c). For 
each group, %CV boxplots are depicted with the interquartile 
range, minimum, maximum, median, and outliers, together 
with D’AD scores, wherein the *symbol indicates P ≤ 0.05, 
hence no agreement in variation between groups (d)
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from the sparse vegetation cover component (Qi et al. 
1994). The stronger relationship of the EVI index 
with the occurrences of stone martens and European 
badgers agrees with previous work (Santos et  al. 
2016b), and can be explained by their similarities 
in preferring forests with high canopy cover condi-
tions, mixed with open habitat mosaics of lower cover 
conditions (Santos and Santos-Reis 2010). On this 
issue, species with more opportunistic habits, namely 
Egyptian mongoose, red fox, and wild boar, showed 
a higher tolerance to sparse vegetation conditions as 
evidenced by the importance of NDVI and BNDVI 
indices to explain their occurrence, where both indi-
ces are characterised by a weaker sensitivity to can-
opy density compared to EVI (Pettorelli et al. 2011). 
Forest vertical structural attributes, as described by 
the L-band SAR HV polarisation, showed a relevant 
predictive capacity for non-flying mammals. The pos-
itive relationship observed between HV backscatter 
values and the presence of these species may reflect 
a general favourability of mature forests, in the sense 
that the higher the HV values, the higher the trees, 
canopy cover, as well as aboveground biomass levels 
(Pettorelli et  al. 2014; Yu and Saatchi 2016; Flores-
Anderson et al. 2019). Bird occurrence is also greatly 
influenced by the L-band SAR HV index, showing a 
stronger forest dependence. This is particularly true 
in forest specialists (e.g., nuthatch, crested tits) when 
compared to more generalist species (e.g., great tit, 
European serin), which have a higher tolerance for 
lower HV values. These findings suggest that for-
est vertical structure relates to habitat requirements, 
demonstrating that the inclusion of radar informa-
tion, in particular L-band HV polarisation, is useful 
in predicting the occurrence of bird species (Bergen 
et al. 2007). Despite this study being focused on using 
PALSAR’s L-band backscatter data for SDMs, the 
obtained results highlight the relevance of the upcom-
ing NASA Indian Space Research Organisation 
(ISRO) Synthetic Aperture Radar (NISAR) mission 
(to be launched in 2022), which will provide L-band 
data at a higher spatiotemporal resolution (NISAR 
2020). The current findings additionally highlighted 
a general avoidance of stress areas (NDWI, PSRI, 
SWIR32), possibly attributable to drought stress in 
Mediterranean ecosystems (Santos et  al. 2016b). 
Besides water-deficient areas, bats also avoided pro-
hibitively warm areas (LST), for which the most gen-
eralist species (e.g., soprano, common pipistrelle) 

exhibited the greatest thermal tolerance. This raises 
the hypothesis that the warmest areas identified by 
LST might hold scarcer resources (Friedl 2002), 
and in Mediterranean regions, a higher favourabil-
ity towards cooler areas may relate to greater water 
availability and woodland cover, but also with forag-
ing opportunities and proximity to riparian habitats 
(Dietz and Kiefer 2016; Medinas et al. 2021). Over-
all, the first gap of knowledge that this research aimed 
to solve was that species belonging to the same taxo-
nomic group responded similarly to a particular group 
of habitat metrics. Our data in this sense, constitutes 
a novel finding, supporting future multitaxa research 
in a plethora of contexts, in semi-arid Mediterranean 
areas and beyond. Also, some divergences emerged 
in environmental tolerance across metrics, supporting 
in the Iberian context, the theoretical perspective of 
landscapes as multi-dimensional gradients as opposed 
to mosaics of discrete units, being the former more 
adequate to describe multiple species’ ecological 
responses (Herrera et al. 2016).

Contributing factors to roadkill

Our findings revealed that roadkill patterns are not 
randomly distributed and can be predicted by different 
types of habitat and connectivity metrics. For non-fly-
ing mammals, the higher explanatory strength of low 
movement cost scenarios, from RRMs, can be asso-
ciated with periods characterised by greater mobil-
ity, such as during dispersal (Grilo et al. 2009), with 
lower landscape resistance, and roadkill additionally 
occurring in non-habitat matrix (Vasudev et al. 2015; 
Diniz et al. 2020). In Mediterranean systems, this is 
explained for ungulates and mesocarnivores by a high 
roadkill risk that is not merely circumscribed to for-
est areas, but also to the surrounding matrix of more 
open areas (Malo et al. 2004). Birds showed stronger 
performances associated with higher movement cost 
scenarios, which may derive from a more pronounced 
matrix avoidance during road-crossing events. For 
some species (e.g., crested tit, great tit, chaffinch), 
the higher explanatory strength of habitat metrics 
may be explained by their foraging behaviour strate-
gies near roads, namely foliage/bark gleaning, which 
was previously described in the literature as among 
the strongest roadkill drivers (Santos et  al. 2016a). 
Regarding bats, for opportunistic species (e.g., com-
mon pipistrelle) we found roadkill events more 
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related to movements in non-habitat matrix (given 
the low movement cost scenarios), including open 
areas, also used for hunting (Dietz and Kiefer 2016). 
Conversely, for less generalist species (e.g., Soprano 
pipistrelle), mortality was more pronounced in areas 
of high connectivity closer to woodlands, as well as 
riparian corridors, since both are used as landmarks 
during flight orientation, and with a pronounced bat 
activity (Dietz and Kiefer 2016). For cases of higher 
mortality risk associated with habitats, this might be 
due to habitat elements influencing movements along 
roads, which may be the case for edge-adapted spe-
cies (e.g., serotine bat) (Tink et  al. 2014), and/or 
deriving by the difficult representation of suitable 
roosting conditions (e.g., lesser horseshoe bat; Dietz 
and Kiefer 2016). Road predictors (road traffic) were 
more relevant in explaining roadkill for some species 
(e.g., for red fox, Kuhls’ pipistrelle), and despite this 
being an aspect deserving further investigation, it is 
possible that some characteristics, such as being gen-
eralists and common species with a wide distribution, 
may have softened the influence of landscape patterns 
in driving roadkill (e.g.; Santos et al. 2013). Our find-
ings meet Fabrizio et  al. (2019) remarks about the 
usefulness of integrating habitat, connectivity met-
rics, and road predictors within RRMs, extending 
this approach for more species. Our results were also 
in agreement with previous approaches investigat-
ing landscape characteristics and ecological scales in 
shaping wildlife roadkill of studied taxonomic groups 
(Malo et al. 2004; Carvalho and Mira, 2011; Gunson 
et al. 2011), even though we provided and described 
novel ecological insights from sensitive and continu-
ous remote sensing products.

Mitigation optimisation of RPUs over long-term

This is the first attempt to predict road mortality 
across multiple taxa at a high resolution (30 × 30m 
pixels), and over a long study period. Results for each 
taxonomic group showed that for RPUs integrating 
both high mortality risk and richness scores, represent 
9 to 12% (depending on the group) of all RPUs, hence 
effectively enhancing prioritisation of roadkill mitiga-
tion plans for species with different degrees of habi-
tat specialisation, home-ranges and dispersal abili-
ties. Additionally, to optimise resource allocation in 
mitigation structures and maximise financial return, 
overlap across all taxonomic groups identified RPUs 

potentially offering comprehensive mortality protec-
tion, including species from all the three studied taxo-
nomic groups. The simultaneous inclusion of differ-
ent taxonomic groups represents an unprecedented 
step in road ecology that may also be of relevance 
in environmental impact assessment, particularly for 
other infrastructures-derived anthropogenic mortality, 
such as from railways, electric power lines, and wind 
turbines (Forman and Alexander 1998; Bernardino 
et  al. 2018). This prioritisation step is fundamen-
tal when considering the need for broad biodiversity 
representation in conservation planning (Margules 
and Pressey 2000), and scarce mitigation resources 
should be applied rigorously and efficiently (Polak 
et al. 2019). Besides, when investigating the mortality 
risk prediction ability of RPUs, results revealed rela-
tively low variation scores within each group. Moreo-
ver, no significant differences in variation were found 
between non-flying mammal and bird groups. Our 
findings suggest an intra and inter-group agreement 
in mortality prediction, which may be explained by 
an overlap between habitats in Mediterranean forest 
ecosystems (Santos and Santos-Reis 2010), combined 
with woodland connectivity that similarly accommo-
dates species, at least those with ’medium’ dispersal 
abilities (see Machado et al. 2020). Those results may 
increase the versatility of mitigation plans, offering 
opportunities during the strategic planning phase in 
implementing mitigation measures beyond best RPU 
sites, thus fostering negotiations between conserva-
tionists and road managers (Rytwinski et  al. 2015; 
van der Ree et al. 2015). In fact, when allocating con-
servation resources, unexpected factors can influence 
the application of designed structures on desirable 
sites (van der Grift 2017), for example due to over-
looked topographic conditions, or when it is more 
costly-efficient to adapt existing structures, such as 
culverts (Rytwinski et  al. 2015; van der Ree et  al. 
2015). Culverts are often supplemented with fencing 
for non-flying mammal species (e.g., mesocarnivores; 
Clevenger and Huijser 2011), and results suggest that 
strategically applied fences can simultaneously help 
to reduce mortality for birds as well, factoring into 
advantageous opportunity costs for applied measures 
(Rytwinski et al. 2015; White et al. 2022). Neverthe-
less, further frameworks need to include opportunity 
costs with social costs and benefits (Kujala et  al. 
2018; White et al. 2022), whereas at the design level 
of structures, is required further support for post-hoc 
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mitigation effectiveness regarding multiple taxa (i.e., 
BACI; Rytwinski et  al. 2016). Bats show greater, 
albeit acceptable, intra-group variation in mortality 
risk, but significant divergence emerged when com-
pared to other groups. The latter may derive from the 
larger home-range sizes and travelled distances (Dietz 
and Kiefer 2016), which may have led to divergent 
mortality patterns. Overall, our method is applicable 
to define mitigation measures that benefit as many 
species as possible, while suggesting a degree of flex-
ibility (sensu Rytwinski et al. 2015) in the logistic of 
mitigation plans for single or multi taxonomic groups 
without hindering the main goals of the conservation 
plan. Still, in specific cases when mismatches occur 
within or between taxonomic groups, prioritisation of 
RPUs with highest predicted richness is preferable, 
even at the expense of flexibility towards sub-optimal 
ones. We further advise caution towards species-
agnostic connectivity frameworks, as this may not 
always be generalisable as mitigation guidance for 
multiple taxa.

The Mediterranean basin is a biodiversity reser-
voir (Pinto-Correia and Godinho 2013), and a social-
ecological challenge remains to secure its resilience 
over long-term, notably through conservation plan-
ning efforts. Remote sensing information can help to 
address landscape dynamic processes and fragmenta-
tion effects, while its integration into fine-grain con-
nectivity can enable the characterisation of habitats 
sufficiently large and persistent to infer immigration/
emigration rates between wildlife populations, and 
thus viability. In our study, we were able to contextu-
alise RPUs into a larger corridor network composed 
of multiple meaningful and durable pathways, which 
is key for optimal road mitigation planning for mul-
tiple species (Clevenger and Huijser 2011). Biodi-
versity can constitute a solid guideline for determin-
ing the conservation value of a planning unit during 
prioritisation (Margules and Pressey 2000), and the 
present systematic planning framework is practicable 
as conceived with cost-efficient data, which seems 
of special relevance in a world of limited funds for 
conservation. In Mediterranean habitats, we first 
recommend that conservation planners should con-
sider landscape heterogeneity from forest-to-open 
gradients, in turn identified with top-performing 
habitat metrics, and consider them with connectiv-
ity and road predictors for more comprehensive 
RRMs evaluations. We then advocate to encompass 

both developments from different research fields 
and encourage evidence-based territorial solutions 
for effective management optimisation, as well as to 
increase nature sustainability. This is here exempli-
fied by the precise identification of resilient and mul-
tifunctional RPUs for mortality mitigation, encom-
passing woodlands and adjacent matrices, which also 
ensures planning versatility and opportunity costs, 
and supports scrutiny on models’ predictions (Pressey 
et  al. 2017). Finally, our findings incentivise trans-
disciplinary collaborations in wildlife ecology, con-
servation science, and remote sensing, as may be ben-
eficial to guide practitioners, inform policy-makers, 
and improve transparency on uncertainty problems 
(Pettorelli et al. 2014; Rose et al. 2019).
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