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To identify natural bioactive compounds (NBCs) as potential inhibitors of spike (S1) by means of in silico assays. NBCs with 
previously proven biological in vitro activity were obtained from the ZINC database and analyzed through virtual screening 
and molecular docking to identify those with higher affinity to the spike protein. Eight machine learning models were used to 
validate the results: Principal Component Analysis (PCA), Artificial Neural Network (ANN), Support Vector Machine (SVM), 
k-Nearest Neighbors (KNN), Partial Least Squares-Discriminant Analysis (PLS-DA), Gradient Boosted Tree Discriminant 
Analysis (XGBoostDA), Soft Independent Modelling of Class Analogies (SIMCA) and Logistic Regression Discriminate Analysis 
(LREG). Selected NBCs were submitted to drug-likeness prediction using Lipinski’s and Veber’s rule of five. A prediction of 
pharmacokinetic parameters and toxicity was also performed (ADMET). Antivirals currently used for COVID-19 (remdesivir and 
molnupiravir) were used as a comparator. A total of 170,906 compounds were analyzed. Of these, 34 showed greater affinity with 
the S1 (affinity energy < -7 kcal mol-1). Most of these compounds belonged to the class of coumarins (benzopyrones), presenting 
a benzene ring fused to a lactone (group of heterosides). The PLS-DA model was able to reproduce the results of the virtual 
screening and molecular docking (accuracy of 97.0%). Of the 34 compounds, only NBC5 (feselol), NBC14, NBC15 and NBC27 
had better results in ADMET predictions. These had similar binding affinity to S1 when compared to remdesivir and molnupirvir. 
Feselol and three other NBCs were the most promising candidates for treating COVID-19. In vitro and in vivo studies are needed 
to confirm these findings. 
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INTRODUCTION

Several attempts have been made to manage the coronavirus 
disease 2019 (COVID-19) pandemic, caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), including the 
recent vaccination programs rolled out worldwide.1 However, there is 
still a need to identify effective treatments, considering that to this day 
there is not even a drug with proven efficacy data. Current treatments 
are limited to treating symptoms only, they are palliative treatments.2-8 

The scarce knowledge of the pathogenesis and immunological 
peculiarity of SARS-CoV-2, especially regarding the interaction 
between viral antigens and human receptors and the triggering of 
cytokine storms, poses additional challenges for the development of 
successful treatments.5,9 Although details of the cellular responses to 
this virus are unknown, a probable course of events can be postulated 
based on past studies with SARS-CoV-2.5,9,10 Infections are initiated 
by the virus binding to the angiotensin-converting enzyme receptor-2 
(ACE-2) cell-surface receptors, which is followed by fusion of the 
virus and cell membranes to release the virus RNA genome into the 
host cell through receptor-mediated endocytosis.5,6 Both receptor 
binding and membrane fusion activities are mediated by the ‘spike 
glycoprotein’ of the virus.10 As with other class-I membrane-fusion 
proteins (alpha-helical), the spike protein is post-translationally 
cleaved, in this case by furin, into the S1 and S2 components that 

remain associated after cleavage. Each S1 component consists of 
two large domains, the N-terminal domain (NTD) and the receptor-
binding domain (RBD).11 The interaction between viral antigens and 
host immune cells finally results in the induction of pro-inflammatory 
responses that trigger vasodilation, increased vascular permeability 
and the accumulation of humoral factors, causing fever and 
interrupting gas exchange (i.e., respiratory distress).9 

Given the global emergency caused by COVID-19, there is great 
interest in drug repurposing (i.e., drug repositioning or rediscovery) 
to accelerate the identification of drugs that can cure or prevent this 
disease.1,8 One of the key drivers for the repositioning of drugs is the 
serendipitous discovery of pharmacological activity on new targets, 
which would then suggest a possible new indication of use. High-
throughput screening of potential compounds available in databases 
is an emerging strategy that has already supported the discovering 
of new indications for marketed drugs (e.g., lopinavir/ritonavir for 
HIV) and the development of additional therapeutic options against 
Ebola, hepatitis C and Zika virus infection.10,12 

To accelerate the drug discovery process, several open source 
in silico platforms are available in the literature for the prediction of 
pharmacokinetic parameters (absorption, distribution, metabolism 
and elimination), toxicity and drug-likeness. These platforms were 
built using machine learning models. For example, the SwissADME 
in silico platform, built using the Support Vector Machine (SVM) 
machine learning algorithm, allows for drug-likeness predictions (for 
example, Lipinski’s rule), and pharmacokinetic parameters, with an 
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accuracy between 0.77 to 0.83.13 The other in silico platform (also 
available online) is ADMETlab 2.0, which uses the algorithm of 
Artificial Neural Networks (deep learning) to predict pharmacokinetic 
and toxicity parameters, with an accuracy of > 85%.14 The Pred-hERG 
platform uses the SVM algorithm to predict the probability of cardiac 
toxicity with an accuracy of 84%.15 Finally, there is the PROTOX-II 
platform that combines three algorithms, SVM, Random Forest and 
Naive Bayes to predict different types of toxicity (organ-specific 
toxicity, acute toxicity and chronic toxicity), whose accuracy 
varies between 82-93%.16 As noted, these platforms are based on 
mathematical models, and do not guarantee 100% certainty, so their 
interpretation must be done with caution.

Several computer-aided drug design/discovery (CADD) studies 
for COVID-19 are available in the literature, with remdesivir, 
hydroxychloroquine, and some anti-HIV/herpes, anti-inflammatories 
and immunomodulators being the most repositioned against 
COVID-19, and studies of their effectiveness are still ongoing.17,18 
Despite this great diversity, most of these studies were conducted 
using a small number of ligands (usually n < 100 ligands), which 
may exclude other bioactive compounds that may also be promising 
against COVID-19.19-24 Thus, our aim was to assess the potential 
effects of over 170,000 natural bioactive compounds (obtained 
from the ZINC database using the following filters: substances/in 
vitro/biogenic) as inhibitors of the spike protein (S1) of COVID-19 
by means of in silico assays (virtual screening based on the ligand 
structure, molecular docking, drug-likeness, pharmacokinetics and 
toxicity) combined with machine learning. 

MATERIAL AND METHODS

Target protein selection

The structure of the spike glycoprotein (S1) (determined by 
electron microscopy) was obtained from the Research Collaboratory for 
Structural Bioinformatics (RCSB PDB) public database, where three-
dimensional structures of macromolecules, including all SARS-CoV-2 
proteins, are available. The PDB assists in the acquisition of 3D 
structures of therapeutic targets, which enables CADD studies to be 
conducted.25 The S1 target was selected because of its SARS-CoV-2-
RBD fragment that interacts with human ACE-2, which is responsible 
for the recognition and penetration of the virus in the lung cells.26 

Several S1 glycoproteins obtained from the RCSB PDB database 
(PDB ID: 6M17, 7BZ5, 6VW1, 6LVN, 6VXX, 6YLA, 6LXT, SLGZ 
and 6M0J) were pre-evaluated, considering: (i) the result of the 
validation percentage ranking, (ii) the availability of information on 
the RBD with human ACE-2, (iii) the presence of a complete amino 
acid sequence and (iv) availability of the published article. 

Protein target preparation

The 3D structure of the S1 glycoprotein (PDB ID: 6M17), in PDB 
format, was prepared in the AutoDock tools software, where (i) all 
water molecules were removed to avoid steric hindrance at the time 
of docking with the ligands, (ii) the polar hydrogens were added, 
and (iii) the Kolman charges were included.27 After preparation, the 
molecule file was converted to PDBQT format, which is a suitable 
format for performing virtual screening and molecular docking. 
Discovery Studio Visualizer software was used to visualize the 
prepared protein structure.26

Collection and preparation of ligands

A total of 170,906 commercially available natural bioactive 

compounds (NBC) were obtained from the ZINC15 database. Of 
the 171,000 compounds obtained, we selected only those that were 
commercially available, which were a total of 72,885 compounds. 
These 72,885 commercially available compounds were the ones that 
were used for the in silico analysis. In the ZINC database, the NBC 
were obtained using the following filters: substances/for sale/in vitro/
biogenic.28 These are compounds that have shown biological activity 
against other diseases in in vitro studies. These compounds were 
obtained in 3D structure in a mol2 format file, which is recognized 
in most in silico study software. 

All ligands were prepared in PyRx virtual screening tolls using 
two steps.29 The first step was the minimization of the energy of 
each ligand using the following parameters: (i) force field: UFF; (ii) 
optimization algorithm: conjugate gradients; (iii) total number of 
steps: 200; (iv) number of steps for update: 1; stop if energy difference 
is less than 0.1, in order to obtain its most stable conformation, 
which could be used to interact with the target protein. The second 
step was the conversion of the format of the binder files, from mol2 
to the PDBQT format, using the AutoDock Vina software, which is 
coupled with the PyRx virtual screening tolls software.

Virtual screening and molecular docking

Before performing the virtual screening (PyRx virtual screening 
tolls), the coordinates of the center X, Y, Z and the size (angstrom) 
of X, Y, Z of the grid box and the exhaustiveness of AutoDock Tools 
and AutoDock Vina were adjusted. The most promising bioactive 
compounds were those that had both lower protein and ligand binding 
energy values.30 

The ligands that had the highest binding affinity for spike protein 
(S1) identified in the virtual screening were docked using AutoDock 
Tools 4.2.0 and AutoDock Vina software.27,31,32 In this study, the protein 
and ligand binding energy results were compared with the root-mean-
square deviation of atomic positions (RMSD) values, aiming to validate 
the results obtained in the virtual screening. RMSD measures the quality 
of different conformations (poses) of a ligand that bind to a single 
target protein.33 In general, RMSD values less than 2 are considered 
acceptable.27 In our study, docking modeling (AutoDock Tools and 
AutoDock Vina) was done using the random search function called 
genetic algorithm, and the scoring function, sum of parameterized 
energies. As the molecular docking results for each ligand show nine 
conformations (poses) that interacted with the molecular target (in 
this case the spike protein), the analysis of ligand-molecular target 
interactions was performed only using the conformation of ligand with 
the highest stability, that is, conformation with RMSD values < 2.27

Machine learning

In order to reproduce the results of virtual screening and molecular 
docking, the following machine learning (ML) algorithms were used 
to classify molecules with higher affinity with the spike (binary 
classification) and those with lower affinity: Principal Component 
Analysis (PCA), Artificial Neural Network (ANN), Support Vector 
Machine (SVM), k-Nearest Neighbors (KNN), Partial Least 
Squares-Discriminant Analysis (PLS-DA), Gradient Boosted Tree 
Discriminant Analysis (XGBoostDA), Soft Independent Modelling 
of Class Analogies (SIMCA) and Logistic Regression Discriminate 
Analysis (LREG).34,35 

Different physicochemical descriptors of the lipid solubility and 
water solubility of the compounds with high and low affinity with 
S1 were used as predictors for classification by the ML algorithms 
(Table 1S in the supplementary material). These descriptors were 
obtained from the SwissADME web server.27 
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The performance of the ML algorithms was evaluated using the 
following metrics: sensitivity (Equation 1), specificity (Equation 2), 
accuracy (Equation 3) and area under the ROC curve (receiver 
operating characteristic).34 It is important to highlight that for the 
development of the ML algorithms, the physicochemical parameters, 
hydrosolubility and liposolubility were used. Decoy analysis was 
not performed.

 Sensitivity = TP / (TP + FN) (1)
 Specificity = TN / (TN + FP) (2)
 Accuracy = (TP+TN) / (TP + TN +FP + FN) (3)

where: TP: true positive; TN: true negative; FP: false positive; FN: 
false negative.

Evaluation of the influence of the stereoisomeric, tautomeric 
and protonation state at physiological pH on protein-binding 
affinity

Considering that the drug’s stereoisomeric and tautomeric states 
and its protonation state at physiological pH (pH = 7.4) are paramount 
for protein-binding affinity, an in-depth study was performed on the 34 
ligands that had the highest affinity for the spike protein (S1) obtained 
from the virtual screening results.36,37 The 3D structures of molecules 
in the protonated state at physiological pH, and of all stereoisomers 
and tautomers were automatically predicted using Marvin Sketch 
software. All converted chemical structures were also analyzed by 
molecular docking using AutoDock Tools 2.4.0, and the results were 
compared with those from the docking of the leader molecule.

Drug-likeness and pharmacokinetics 

Drug-likeness is an important parameter that should be fulfilled by 
a synthetic molecule or natural product in order to be approved for use 
in clinical trials.38 This criteria was evaluated in all natural products 
that showed a higher binding affinity with the S1 glycoprotein 
according to the rule of five of Lipinski and Veber.39 In this study, 
the drug-likeness prediction was made using the SwissADME in 
silico platform which is based on the Support Vector Machine (SVM) 
algorithm with a predictive accuracy between 77-83%. The consensus 
between rules was used to consider a natural product as having drug-
likeness characteristics.

For the natural compounds that proved to be drug-like, the 
pharmacokinetic parameters were predicted using the ADMETlab 
2.0 (version 2021) in silico (online) platform. In the ADMETlab 2.0 
platform, predictions are made by an Artificial Neural Networks (deep 
learning) model with accuracy greater than 85%. Thus, the following 
pharmacokinetic parameters were predicted: (i) Absorption: human 
intestinal absorption, transport by P-glycoprotein and bioavailability; 
(ii) Distribution: plasma protein binding, volume distribution (L kg-1) 
and blood-brain barrier; (iii) Metabolism: biotransformation by 
cytochrome P450 enzymes (CYP1A2, CYP3A4, CYP2C9, CYP2C19 
and CYP2D6); and (iv) Elimination: half life time (T1/2) and clearance 
rate (mL/min/kg).14

Acute and chronic toxicity 

For the natural compounds with better drug-likeness and 
pharmacokinetic predictions, the following types of toxicity were 
predicted on the Pred-hERG and ProTox-II online platforms. For 
Pred-hERG platform, these predictions are made using the Support 
Vector Machine (SVM) algorithm with an accuracy of 84%. For 
ProTox-II, these predictions are made using the following machine 

learning models: Suport Vector Machine, Random Forest and Naive 
Bayes with accuracy between 82-93%. For cardiac toxicity, the 
Pred-hERG platform was used, while ProTox-II was used for the 
remaining types of toxicity. Thus the following types of toxicity 
were predicted: (i) Organ-specific toxicity: hepatotoxicity and cardiac 
toxicity; (ii)  Toxicity endpoint: carcinogenicity, immunotoxicity, 
mutagenicity and cytotoxicity; (iii) Stress response pathway: aryl 
hydrocarbon receptor (AhR), androgen receptor (AR), androgen 
receptor ligand binding domain (AR-LBD), peroxisome proliferator 
activated gamma receptor (PPAR-Gamma), estrogen receptor alpha 
(ER), androgen receptor ligand binding domain (AR-LBD) and 
aromatase; (iv) Nuclear receptor signaling pathways: ATPase family 
AAA domain containing protein 5 (ATAD5), Nuclear factor (erythroid-
derived 2)-like 2/antioxidant responsive element (nrf2/ARE),  
phosphoprotein (tumor suppressor) p53, mitochondrial membrane 
potential (MMP) and heat shock factor response element (HSE).15,16

RESULTS

In this study, the spike protein was found to be complexed with 
ACE-2. PDB ID:  6M17 (resolution 2.9Å) was the only structure 
selected; given its completeness with the three above mentioned 
criteria (material and methods section).26 This complex was formed 
by 22 peptide chains, alphabetically encoded from A-V. The “E” chain 
was selected for analysis because it corresponds to the RBD portion 
of the spike S1 of SARS-CoV-2 (Figure 1S, supplementary material).

Virtual screening and molecular docking

The virtual screening and molecular docking were performed 
using the following parameters: (i) exhaustiveness of 8, (ii) coordinates 
of the center of the grid-box were optimized at x = 178.9, y = 109.6 
and z = 260.1 and the grid-box size was optimized at x = 48.3 Å, 
y = 42.6 Å, z = 56.5Å. Table 2S (see in supplementary material) 
shows the results of the virtual screening and molecular docking of 
the 170,906 ligands (bioactive natural compounds) and S1 protein. A 
total of 34 compounds showed greater affinity with this glycoprotein 
(Table 2S in supplementary material). Of the 34 compounds, only 
4 compounds, BNC5 (feselol), BN14, BN15 and BN27 showed 
better pharmacokinetic and toxicity results (Table 1). In terms of 
structural similarities, the four compounds belong to the class of 
coumarins (benzopyrones), as they have a benzene ring fused to a 
lactone (heterosides). Another structural similarity is that the four 
compounds present the benzopyrone ring that forms an ether bond 
with a polyhydroxylated cyclic alcohol group. Furthermore, these 
four compounds had similar binding affinity to spike (S1) with the 
antiviral drugs currently used in the treatment of COVID-19, namely, 
remdesivir and molnupinavir (Table 1). The four natural bioactive 
compounds (BNC5, BNC14, BN15 and BN27) and the standard 
antivirals (remdesivir and molnupinavir) both had affinity to block 
the following amino acid residues from the S1 region of the spike 
protein: R454, W436, N437, F464, E516, G482, F456, F374, S373, 
T430, R509 and V367 (Table 1), and this is illustrated in Figure 2S 
(supplementary material). The most important chemical interactions 
were hydrogen bonds (Table 1).

Machine learning
As only 34 chemical compounds had the highest affinity for the 

spike protein (see Table 2S), the machine learning models (including 
PCA) were built using these 34 compounds with the highest affinity 
for the spike protein. Still in the machine learning model, we also 
included 34 compounds that had lower affinity for the spike protein. 
The reason for choosing the 34 compounds with lower affinity for 
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the spike protein was in order to balance the number of the two 
groups of compounds. The median values of the descriptors used 
for the implementation of ML models for classifying high and low 
compounds with S1 are summarized in Table 2.

The PCA model was able to differentiate between natural 
compounds (samples) with higher and lower affinity with the S1 
protein of SARS-CoV-2 and to reproduce the results obtained by 
virtual screening and molecular docking (Figure 1(A)). 

The leverage versus student residuals graph was built to detect 
outliers. In this graph, a sample is considered outliers, if it presents 
simultaneously high values of leverage and student residuals. Thus, 
sample 48, despite having a higher leverage value, cannot be considered 
outlier because it is within ± 2.5 standard deviations (Figure 1(B)).

For the training and testing of the classification models (ANN, 
DT, KNN, PLS-DA, LDA and SIMCA), two latent variables were 
selected, as they presented smaller calibration errors (RMSEC) and 
cross validation errors (RMSECV) (Figure 1(C)). Table 3 shows the 
performance evaluation of the seven machine learning models (ANN, 
DT, KNN, PLS-DA, LDA and SIMCA). The PLS-DA model had the 
best performance for the classification of compounds of greater and 
lower affinity with S1 (higher accuracy, sensitivity and specificity 

values) (Table 3). The most important variables (physicochemical 
properties) in the prediction of high- and low-affinity compounds 
with the spike protein (S1) of SARS-CoV-2 by the PLS-DA model 
is illustrated in Figure 3S (see in supplementary material).

Drug-likeness 
According to Lipinski’s rule,39 a molecule is considered to have 

drug-likeness if it meets at least three of the four established criteria; 
whereas, by Veber’s rule, the drug should meet all three pre-defined 
criteria. In our study, consensus between the two rules was used 
to define a molecule as having drug-likeness. From the 34 natural 
products, 24 (70.5%) had drug-likeness characteristics. Thus, the 
remaining 10 compounds were not considered for further studies.

Pharmacokinetics
Table 4S shows the pharmacokinetic analysis (absorption, 

distribution, metabolism and excretion) of the 24 natural compounds 
that simultaneously showed greater affinity with spike S1 and presented 
drug-likeness characteristics. Of these, 21 (80.7%) had a significant 
probability of human intestinal absorption and bioavailability of 20-
30%. Although all compounds presented distribution volume values 

Table 1. Comparison of the four most promising natural bioactive compounds against spike (S1) with the antiviral drugs currently used to treat COVID-19 
(Remdesivir and Molnupiravir)

Name/ZINC ID
Molar weight 

(g mol-1)
Chemical structure

Affinity energy 
(kcal mol-1)

Amino acid Chemical interations

Remdesivir* 602.6

 

-8.5
F456, R454, W436, 
N437, R509, V367, 

F464, E516

Hydrogen bounds, 
Pi-alkyl, Pi-pi T-shaped, 
Carbon-hydrogen bound

Molnupiravir* 329.31

 

-8.4
G482, F456, F374, 
S373, T430, R509, 

V367

Hydrogen bounds, 
Pi-alkyl, Pi-pi T-shaped, 
Carbon-hydrogen bound

BNC5 
(ZINC000000704424)

382.5

 

-8.5 G482, F456, R454 Hydrogen bounds

BNC14 
(ZINC000008662732)

446.4

 

-8.7
D364, V367, L368, 
W436, N437, N343, 

F374, S373

Hydrogen bounds, 
Pi-alkyl, Pi-pi T-shaped, 
Carbon-hydrogen bound

BNC15 
(ZINC000013374469)

490.5

 

-8.4 T430, R355, F464, E516
Hydrogen bounds, 

Pi-pi T-shaped

BNC27 
(ZINC000003022621)

382.5

 

-8.2 R509, V367
Hydrogen bounds, 

Pi-alkyl

*These compounds are antiviral drugs traditionally used for the treatment of COVID-19. In this study, they were used as a control group.
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within the recommended range (0.04-20 L kg-1), compounds NBC3, 
NBC5, NBC12, NBC14, NBC15, NBC21, NBC27 and NBC33 were 
the only ones less likely to cross the human blood-brain barrier (i.e., 
avoiding central nervous system toxicity). The fraction of the molecules 
of NBC3, NBC5, NBC12, NBC14, NBC15, NBC21, NBC27 and 
NBC33 that would be transported by plasma proteins during the 
distribution process was estimated to be within the recommended range 
(< 90%). Regarding the fraction of molecules not bound to plasma 
proteins, only six compounds (NBC3, NBC5, NBC12, NBC14, NBC15 
and NBC33) were within the recommended range (Fu > 5%).14

According to the results of predictions made on the ADMETlab 
2.0 in silico (online) platform shown in Table 4S, the compounds 
NBC3, NBC5, NBC12, NBC14, NBC15, NBC27 and NBC33 were 
more likely to act as substrates of the cytochrome P-450 enzymes 
(CYP1A2, CYP3A4, CYP2C9, CYP2C19 and CYP2D6), meaning 
that they can be biotransformed into soluble metabolites, which are 
easily eliminated by the body. Only the NBC5, NBC12, NBC14, 
NBC15, NBC27 and NBC34 compounds had clearance values 
(> 5 mL/min/kg) and an elimination half-life (T1/2 > 0.5 h) within the 
recommended ranges (i.e., acceptable pharmacokinetic properties).

Acute and chronic toxicity 
Given the pharmacokinetic results, compounds NBC5, NBC12, 

NBC14, NBC15, NBC27 and NBC33 were the only ones submitted 
for the toxicity predictions. NBC12 showed a high probability of 
causing two types of toxicity via nuclear receptor signalling pathways 

(estrogen receptor alpha and peroxisome proliferator activated 
receptor gamma) and stress response pathways (mitochondrial 
membrane potential and phosphoprotein tumor suppressor p53. 
NBC33 was more likely to cause carcinogenicity, mutagenicity and 
toxicity by stress response pathways [Nuclear factor (erythroid-
derived 2)-like 2/antioxidant responsive element (nrf2/ARE) and 
Heat shock factor response element (HSE)]. The compounds NBC5, 
NBC14, NBC15 and NBC27 were the only ones that did not show 
a probability of causing any type of the evaluated toxicities (see 
Table 5S in the supplementary material). 

The predicted lethal dose (acute toxicity dose) of NBC5, NBC14, 
NBC15 and NBC27 was estimated to be 3200 mg kg-1, 5000 mg kg-1, 
3000 mg kg-1 and 3200 mg kg-1, respectively (Table 1S in the 
supplementary material), showing that these compounds have low 
toxicity (i.e., the LD50 is greater than 500 mg kg-1), which means 
that they are promising candidates for evaluation in preclinical trials.

The poses (most stable conformations resulting from molecular 
docking results) of NBC5, NBC14, NBC15 and NBC27 bound to the 
spike S1 protein of SARS-CoV-2 are shown in Figure 2. The hydrogen 
bond-type bonds were the most important in the ligand-target protein 
interaction (Figure 3).

These four compounds (NBC5, NBC14, NBC15 and NBC27) are 
commercially available from AKos Consulting & Solutions (Germany) 
and Beijing FutureCeed Biotechnology Co., Ltd (China), which means 
they can be easily obtained for performing in vitro and in vivo assays. 
Company data are shown in Table 6S in supplementary material.

Table 2. Physicochemical, liposolubility and water solubility descriptors of natural products and their affinity with the S1 glycoprotein of SARS-CoV-2. These 
descriptors were predicted by the SwissADME online platform

Descriptors 
NP with low affinity for spike - S1 (n = 34) NP with high affinity for spike - S1 (n = 34) p-value*

Median IQ1 IQ3 Median IQ1 IQ3

Physicochemical ….. ….. ….. ….. ….. ….. …..

Molecular weight (g mol-1) 106.17 83.62 140.60 444.51 375.46 470.62 0.000

Number of heavy atoms 6.50 5.00 9.00 31.50 28.00 34.25 0.000

Number of aromatic heavy atoms 0.00 0.00 0.00 12.00 3.75 16.00 0.000

Carbon fraction sp3 hybridization 0.85 0.67 1.00 0.44 0.24 0.745 0.000

Number of rotatable bonds 2.00 1.00 3.00 3.00 1.75 4.25 0.041

Number of hydrogen-bond acceptors 1.50 1.00 3.00 6.00 4.00 9.25 0.000

Number of hydrogen-bond donors 1.00 0.00 2.00 2.00 1.00 5.00 0.003

Molar refractivity 28.70 22.01 38.37 111.73 102.45 125.46 0.000

Topological polar surface area (Å2) 46.84 20.23 67.46 82.56 57.27 155.14 0.000

Liposolubility ….. ….. ….. ….. ….. ….. …..

Log Po/w (iLOGP) 1.37 0.67 1.65 3.18 2.80 3.69 0.000

Log Po/w (XLOGP3) 0.06 -1.23 1.31 3.35 1.90 4.53 0.000

Log Po/w (WLOGP) 0.30 -0.65 1.38 3.51 1.71 4.98 0.000

Log Po/w (MLOGP) -0.14 -1.13 1.09 2.65 -0.40 3.83 0.000

Log Po/w (SILICOS-IT) 0.35 -0.65 1.44 3.37 1.92 4.87 0.000

Consensus Log Po/w 0.09 -0.56 1.51 3.08 1.61 4.48 0.000

Water solubility ….. ….. ….. ….. ….. ….. …..

Log S (ESOL) -0.46 -1.27 0.55 -4.38 -5.28 -3.87 0.000

Solubility (mol L-1) 0.35 0.05 3.58 0.00 0.00 0.00 0.000

Log S (Ali) -0.41 -1.71 0.72 -4.78 -5.75 -4.23 0.000

Solubility (mol L-1) 0.39 0.02 5.44 0.00 0.00 0.00 0.000

Log S (SILICOS-IT) -0.24 -1.53 0.18 -4.55 -6.47 -3.70 0.000

Solubility (mol L-1) 0.58 0.02 1.54 0.00 0.00 0.00 0.000

*Mann Whitney test. Values less than 0.05 indicate that there was a difference between low and high affinity compounds with spike S1. (NP): natural product.
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Evaluation of stereoisomeric, tautomeric and protonation states
NBC5 predominates as a neutral molecule (i.e., the same 

structure previously used in docking analysis), with no stereoisomer 
nor dominant tautomer at physiological pH (pH = 7.4). On the other 
hand, 46.18% of NBC14 predominates as neutral microspecies, and 
the remaining 53.72% correspond to deprotonated microspecies (two 
dominant tautomers were found: one neutral tautomer with 46% 
dominance and a deprotonated specie with 54% dominance). A total 
of 32 stereoisomers were identified in compound NBC14. 

For the compounds NBC15 and NBC27, both the protonation 
state at physiological pH and the dominant tautomer were in their 

neutral forms. A total of 128 and 16 stereoisomers were identified 
in NBC15 and NBC27, respectively. All stereoisomers were docked 
with the protein and showed similar affinity to spike S1 (Figure 2), 
meaning that these compounds can be used as racemic drugs.

DISCUSSION

In this study, more than 170,000 NBCs were evaluated against the 
spike (S1) of COVID-19, using various in silico and machine learning 
methods. According to the virtual screening and molecular docking 
analysis, out of more than 170,000 compounds, only 34 compounds 

Table 3. Evaluation of the performance of the seven machine learning models for classification of low and high affinity bioactive natural compounds from the 
spike (S1) protein of SARS-CoV-2. The PLS-DA model showed the highest performance (accuracy)

Model TP FN TN FP Accuracy Sensitivity Specificity

ANN 23 11 25 9 0.71 0.68 0.74

SVM 29 5 22 12 0.75 0.85 0.65

PLS-DA 33 1 34 0 0.99 0.97 1.00

XGboost 24 10 27 7 0.75 0.71 0.79

SIMCA 19 15 21 13 0.59 0.56 0.62

KNN 28 6 20 14 0.71 0.82 0.59

LOGREG 25 9 22 12 0.69 0.74 0.65

(TP): true positive. (TN): true negative. (FN): false negative. (FP): false positive. (ANN): artificial neural networks. (KNN): k-nearest neighbors. (DT): decision 
tree. (PLS-DA): discriminant analysis by partial least squares. (LDA): linear discriminant analysis. (SIMCA): soft independent modelling of class analogies. 

Figure 1. Machine learning models. In (A), the PCA model is shown in which it was possible to discriminate high affinity natural bioactive compounds (BNC) 
(represented by red coloured triangles) and low affinity (represented by green coloured squares) with the protein spike (S1) of SARS-CoV-2. In (B) is the graph 
of leverage versus student residues for sample detection (BNC) outliers. In this graph, a sample is considered outliers, if it presents simultaneously high values 
of leverage and student residuals. Thus, sample 48, despite having a higher leverage value, cannot be considered outlier because it is within ± 2.5 standard 
deviations. In (C) and (D), are the PLS-DA models for prediction of compounds of high (represented by red triangles) and low (represented by green squares) 
affinity with the spike protein (S1) of SARS-CoV-2, respectively. The dashed red line is the threshold of the models, and the BNC that are above the threshold 
line are the BNC of interest that are in classification. In (E), it is the graph of errors versus the number of latent variables. Two latent variables were selected 
for simultaneously showing lower values of calibration (RMSEC) and cross validation errors (RMSECV). In (F) and (G), are the areas under the ROC curve, 
of the accuracy of the PLS-DA models of classification of high-affinity (AUC = 0.97) and low-affinity (AUC = 1.00) compounds with the spike protein (S1) of 
SARS-CoV-2
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(Table 1) were identified as having higher binding affinity with the 
spike protein, and these results were also reproduced by the machine 
learning models PCA and PLS-DA, the latter with an accuracy of 
96%. However, according to drug-likeness and ADMET analysis, 
only four chemical compounds, namely NBC5, NBC14, NBC15 and 
NBC27 (See IUPAC names in the abbreviation list or in Table 1) were 
the most promising against the spike protein of COVID-19. 

According to the literature, nearly 80% of the world’s 
population depend on traditional medicines to manage a range of 
diseases. Past experience with the influenza outbreak, MERS-CoV 
and HIV infections has proven that natural products, including 
medicinal plants and their derivatives, are a valuable source for 
the synthesis of new antiviral drugs due to their availability and 
variety of substances with therapeutic potential. About 50% of 
all drugs approved and marketed worldwide between 1981 and 
2014 were derived from natural products.40,41 Substances such as 
flavonoids (e.g., neohesperidin, hesperidin, baicalin, kaempferol 

3-O-rutinoside, rutin, neoandrographolide and 14-desoxy-11,12-
dideshydroandrographolide), xanthones (e.g., substances from the 
Swertia genus plants) and alkaloids (e.g., ergotamine, nigellidine, 
noscapine and quinadoline B) have antiviral, antibacterial and anti-
inflammatory activities.42,43

The availability of the virus RNA genome sequence (GenBank 
ID: MN908947.3) represents a valuable starting point for the 
identification of effective treatments against COVID-19 infections. 
Most importantly, SARS‐CoV‐2 features 82% similarity with 
SARS‐CoV (GenBank ID: NC_004718.3), with a 90% resemblance 
in various essential enzymes.43-46 The critical residues for receptor 
binding that were identified in the RBD of the SARS-CoV spike 
protein and the C-terminal SD-1 domain (CTD) of the SARS-CoV-2 
spike protein, as well as in the interacting partner (hoster ACE-2), 
make them targets for the discovery and development of vaccines 
and drugs for the prevention and treatment of COVID-19 and other 
coronavirus infections.47-50 This is important, because previous studies 

Figure 2. Results of docking analysis of poses of compounds with higher affinity with the spike (S1) of SARS-CoV-2. Only the docking of ligands that showed 
drug-likeness, and which also presented better results in the ADMET analysis, are shown (NBC5, NBC14, NBC15 and NBC27). (A): all four ligands (NBC5, 
NBC14, NBC15 and NBC27) are shown docked in the same cavity of the spike surface (S1), according to hydrogen bonds. (B): all stereoisomers, all dominant 
tautomers and all microspecies in the protonation state at physiological pH (pH = 7.4) of the four ligands that have been shown to be promising against COVID-19 
(NBC5, NBC14, NBC15 and NBC27) are bound in the same cavity of the spike, showing the large selectivity for the S1 site. The docking of the NBC5 ligand is 
illustrated in (C), and the chemical structure of the NBC5 ligand is illustrated in (D). The docking of the NBC14 ligand is illustrated in (E), and the chemical 
structure of the NBC14 ligand is illustrated in (F). The docking of the NBC15 ligand is illustrated in (G), and the chemical structure of the NBC15 ligand is 
shown in (H). The docking of the NBC27 ligand is illustrated in (I), and the chemical structure of the NBC27 ligand is shown in (J)
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have reported that subjects with severe SARS-CoV-2 infection exhibit 
a larger antibody response against the spike and nucleocapsid protein 
and epitope, spreading to subdominant viral antigens (with a larger 
memory B cell response against the spike).51

Although we initially found 34 compounds with greater affinity 
with the spike (hydrogen bonds), only four (NBC5, NBC14, NBC15 
and NBC27) were found to have drug-likeness characteristics, had 
promising pharmacokinetic profiles and low acute and chronic 
toxicities in in silico assays. Overall, the results suggest compounds 
NBC5, NBC14, NBC15 and NBC27 as potential drug candidates to 
be tested against COVID-19.39,52

Compound NBC5 is commonly known as feselol, a natural 
product found in plants of the genus Ferula (e.g., Ferula gummosa 
Boiss. and Ferula galbaniflua Boiss.).53 However, studies on the 
biological activities of this substance are limited in the literature. 
Only in vitro studies showing antimicrobial effects against 
P. aeruginosa, S. epidermidis and S. aureus and antiparasitic activity 
against P.  falciparum are available.54,55 In vitro studies show that 
the combination of feselol with antineoplasics have potentiated 
anticancer effects; this can be explained due to its ability to inhibit 
the P-glycoprotein, which is the main protein responsible for the 
resistance mechanism of many drugs (including anticancer drugs), 
favouring an increase of absorption rates and bioavailability of these 
drugs, and consequently obtaining the desired therapeutic activity.56-58 
No studies on the antiviral activities of feselol were found. Similarly, 
to our knowledge, no studies assessing the effects of the natural 

compounds NBC14, NBC15 and NBC27 (see Table 1 for IUPAC 
names) exist, suggesting the need for further evaluations of the 
biological antiviral activities of these natural substances.

From a molecular point of view, the antiviral activity of the 
phytochemical compounds NBC5, NBC14, NBC15 and NBC27 (see 
Table 1 for IUPAC names) can be justified by the fact that they have 
carboxyl groups and hydroxyl groups whose oxygen and hydrogen 
atoms intermolecularly link by hydrogen bonds with the residues from 
the glycoprotein spike (S1) amino acids of SARS-CoV-2, namely, 
Gly482, F454, Arg454, N343, Ser373, W436, N437, Thr430, Arg355, 
F456, E471 and Arg454.59,60

The structural determination of ligands in their stereoisomeric, 
tautomeric states both at physiological pH (pH = 7.4) is very 
important in a docking study, as it would simulate the conditions of 
the human organism.36,37 This analysis is feasible only in situations 
where the number of docked ligands is small, as this determination 
is performed manually by making one ligand at a time through 
specific software (e.g., Chemdraw or Marvinsketch).61,62 In situations 
where there are thousands (or even millions) of molecules to be 
docked, which is the case of our study (we used 171 thousands of 
ligands), it is not feasible to carry out the determination of ligands 
at physiological pH (pH = 7.4), due to the large volume of existing 
ligands in the database, there are even several similar studies in 
the literature.63,64,65 In this situation of greater number of ligands 
(thousands or millions of ligands), the first task to be performed is 
virtual screening, which is a process that consists of investigating 

Figure 3. 2D structures of protein-ligand interactions. Only the structures of the ligands that were most promising against the spike protein of SARS-CoV-2 (NBC5, 
NBC14, NBC15 and NBC27) are shown. The interactions of the ligands NBC5, NBC14, NBC15 and NBC27 are shown in Figures A, B, C and D, respectively
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which compounds have a greater binding affinity with the molecular 
target. After identifying the ligands with the greatest affinity with 
the molecular target (which are generally in small numbers), a 
docking analysis is then carried out using very rigorous criteria, 
which include the determination of the ligands structures at pH = 7.4, 
the influence of tautomery, stereoisomerism, drug-likeness, among 
others. In our study, we followed the same strategy; where initially 
we performed a virtual screening of 171 thousands of ligands, in 
which we selected 34 compounds. The 34 ligands were determined 
their structures at pH  =  7.4, their stereoisomeric and tautomeric 
states and then performed a new consensual docking analysis (using 
two programs AutoDock Tools and AutoDock Vina) and machine 
learning to validate the results. We additionally demonstrated through 
stereoisomeric, tautomeric and protonation states (at physiological 
pH),66,67 that NBC5, NBC14, NBC15 and NBC27 could be used as 
racemic drugs, meaning that no advanced technology is needed for 
the isolation of stereoisomers. Enantiomerically pure drugs (e.g., 
naproxen, labetalol, warfarin) require high costs for development and 
production technologies (pure enantiomer with biological activity), 
which can be an important barrier in most countries.68 

Renal toxicity is one of the very important toxicity that must be 
evaluated in compounds that have greater water solubility, such as the 
case of the coumarin derivatives identified in our study (for example, 
feselol).69 However, the few online platforms (machine learning 
models) available in the literature that perform these predictions 
have low predictive accuracy. In addition, only a few recent studies 
are available that have developed machine learning models for 
predicting renal toxicity with greater accuracy, but the authors have 
not developed an application for the models to be used in practice, as 
can be seen in the recent study by Gong.69,70 These were the reasons 
why it was not possible to make in silico predictions of the renal 
toxicity of the coumarin compounds identified in this study. This 
constituted one of the limitations of our study.

Considering that our study was based on in silico assays, 
several factors were not taken into account, such as the existence of 
multienzymatic systems and other biological factors that may interfere 
with the pharmacokinetics and pharmacodynamics of a drug candidate 
molecule. Considering these limitations, in vitro and in vivo studies 
are necessary in order to consolidate our findings.

CONCLUSION

Machine learning-combined in silico predictions of a database 
containing over 170,000 phytochemical compounds revealed four 
substances as the most promising inhibitors of the spike (S1) protein 
of SARS-CoV-2: NBC5 (feselol), NBC14, NBC15 and NBC27. In 
terms of structural similarities, the four compounds belong to the class 
of coumarins (benzopyrones), as they have a benzene ring fused to 
a lactone (heteroside group). Another structural similarity is that the 
four compounds present the benzopyrone ring that forms an ether 
bond with a polyhydroxylated cyclic alcohol group. Additionally, 
other similar characteristics among these compounds were: molecular 
weight less than 500 g mol-1, LogP < 5.0, number of hydrogen donor 
and acceptor groups less than 10, number d and rotatable bonds less 
than 10, polar surface area (TPSA) less than 140. These compounds 
had binding affinity for spike (S1) similar to drugs currently used in 
the treatment of COVID-19 (remdesivir and molnupinavir). 

Additionally, our machine learning model (PLS-DA) was able to 
classify compounds with low and high affinity with the spike protein 
(S1), with an accuracy of 99%, reproducing the results of molecular 
docking. This shows that the use of in silico methods combined with 
machine learning, provides more accurate and robust predictions in 
the design of new drug candidates. 

In vitro and in vivo studies with these natural compounds are 
needed to confirm our findings and to support the development of 
drugs against COVID-19.

SUPPLEMENTARY MATERIAL

Figures 1S to 3S and Tables 1S to 6S are available at  
http://quimicanova.sbq.org.br in pdf format, with free access.
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