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Abstract—The detection of evil waveforms (EWF) in GNSS
signals is crucial to refrain from using anomalous signals in the
PVT solution, which could degrade significantly its accuracy.
The EWF detectors are, in general, based on the computation
of the distortion of the code autocorrelation function. Thus, the
multipath effect, an independent mechanism that also distorts the
autocorrelation shape, can be incorrectly assumed by the EWF
detector as the presence of EWF, leading to a major increase
of the probability of false alarm. In the paper we analyze the
robustness of the main EWF detectors and modulations to the
presence of multipath.

Index Terms—evil waveform, multipath, threat models

I. INTRODUCTION

Evil waveform (EWF) detection comprises algorithms to
detect the presence of different types of distortion in the
transmitted signals provoked by electric anomalies that occur
in the signal generators aboard the GNSS space vehicles [1]-
[4]. The processing of EWF distorted signals by the GNSS
receiver may lead to a significant loss of accuracy in the PVT
solution, thus preventing its utilization in most applications
[5]. Three different types of EWFs are usually considered in
the literature [1], [3]: threat models TM-A, TM-B and TM-
C, which are associated with digital, analog and digital plus
analog distortion, respectively.

According to [3], [7], the main EWF detection algorithms
are based on three tests: T1 (simple ratio), T2 (difference ratio)
and T3 (sum ratio). These tests measure the distortion of the
code autocorrelation shape, namely the flatness of the main
peak or the correlation asymmetry. As such, they require the
use of a bank of early/late correlators plus a central correlator
aligned with the autocorrelation main peak.

Often the incoming signals are also affected by multipath
which consists of receiving more than one replica of the
transmitted signal with different delays and phases due to
reflection in mountains, buildings, etc. Both effects, EWF and
multipath, tend to distort the code autocorrelation function
in a way that jeopardizes the identification of each effect.
As a result, when EWF detection algorithms are used in the
presence of multipath distorted signals, the probability of false
alarm (Pfa) tends to increase significantly. Simulations have
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shown that the probability of missing detection (Pmd) is also
affected by the existence of multipath, although the changes
are typically less important.

In this paper we analyze the robustness of the different
EWF detectors to the presence of multipath. The following
modulations are tested: BPSK, BOCs and CBOC pilot, which
are currently used in GPS, Galileo and Beidou. As the prob-
ability of false alarm is prone to increase more significantly
than the probability of missing detection in the presence of
multipath, we propose to use a chain of physically separate
receivers to minimize the degradation of performance, by
taking into account the different statistical nature of the EWF
and multipath events.

II. SIGNAL MODELS

A. Multipath

Assume that, in the absence of EWF distortion, the received
signal, v(t)+µv(t− t1)+w(t), is constituted by a direct ray,
a single reflected (multipath) ray and white Gaussian channel
noise w(t). The direct ray is v(t) = A0c(t)b(t) cos(ωct +
ωdt + θ0), where A0 > 0 is the amplitude, c(t) and b(t)
are, respectively, the code and the data signals, ω0 is the
nominal carrier frequency and ωd is the Doppler frequency.
The reflected ray is characterized by the extra delay t1 and
the multipath parameter µ, which typically takes values in the
interval −1 < µ < 1. This allows the reflected ray to have the
amplitude A0|µ| < A0 and the phase θ1 equal to θ0 (inphase)
or θ0 + π (opposite phase).

Consider now specifically the processing of a pilot signal,
i.e., b(t) = 1. The received signal is heterodyned to baseband
using the local carrier cos(ωct+ ωdt), yielding r(t) = s(t) +
µs(t−t1)+n(t), with s(t) = A0c(t) cos θ0 and n(t) indicating
lowpass noise. The response of the early/late correlators is

[
IE(e)
IL(e)

]
= A0

[
Rc (e−∆EL/2)
Rc (e+∆EL/2)

]
cos θ0

+ µA0

[
Rc (e−∆EL/2− t1)
Rc (e+∆EL/2− t1)

]
cos θ1 +

[
NE

NL

]
(1)

with ∆EL denoting the E-L spacing, e the code discriminator
tracking error, Rc(·) the code autocorrelation and [NE NL]

T

is the noise vector. The equilibrium solution for the code
discriminator corresponds to the value of e for which the
equality IL(e) = IE(e) holds.978-1-6654-1616-0/22/$31.00 ©2022 IEEE
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B. Evil waveform

The threat Model A (TM-A) was originally defined for C/A
GPS signals where the positive chips have a falling edge that
leads or lags relative to the correct end-time for that chip [8].
This threat model is associated with a failure in the navigation
data unit (NDU), the digital partition of the satellite.

The threat model TM-A1 corresponds to the digital dis-
tortion (type 1) described in [6]: a lead/lag on every falling
transitions after modulation by the code signal. For this model
of distortion only one lead/lag parameter, d, is required.
Typical waveforms for TM-A1 with BPSK(m) signals and
BOCs(m,m) signals are represented in Fig. 1 and Fig. 2,
respectively (Tc denotes the chip duration).

t

t

s(t-d) s(t)

s(t-d) -s(t)| |

0 Tc Tc2

t

ε(t)

Tc Tc4 Tc7 

d

Tc8

0

Tc8
s(t)~ s(t)= + ε(t)

Tc5Tc3
t

Fig. 1: Typical waveforms for TM-A1 with BPSK(m) signals
and |d| ≤ Tc.
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Fig. 2: Typical waveforms for TM-A1 with BOCs(1,1) signals
and |d| ≤ Tc.

The EWF distorted signal is s̃(t) = s(t) + ǫ(t), where the
error signal is

ǫ(t) =
1

2
[s(t− d)− s(t)][1 + sign{s(t− d)− s(t)}] (2)

with sign(x) equal to −1, 0 and +1, if x < 0, x = 0 and
x > 0, respectively. Defining q(t) ≡ s(t− d)− s(t), we have

ǫ(t)s(t− τ) =
1

2
q(t)s(t − τ) +

1

2
|q(t)|s(t − τ). (3)

The signals s(t) and ǫ(t) are periodic random processes
with period T (spreading code period). Their means, E{s(t)}

and E{ǫ(t)}, and autocorrelation functions, Rs(t, t − τ) ≡
E{s(t)s(t−τ)} and Rǫ(t, t−τ) ≡ E{ǫ(t)ǫ(t−τ)}, depend, in
general, on t and τ , and have period T . That is, E{s(t+T )} =
E{s(t)}, Rs(t+T, τ+T )} = Rs(t, τ), etc. Consequently, s(t)
and ǫ(t) are cyclostationary processes. For a cyclostationary
process, the average cross-correlation function is defined as
the average of the cross-correlation function over one period
[9]. For instance

Rs(τ) = 〈Rs(t, t− τ)〉 = 1

T

∫ T

0

Rs(t, t− τ) dt (4)

with 〈·〉 denoting the time average operator. The (average)
power spectral density for a cyclostationary process is defined
as Gs(f) = F{Rs(τ)}, with F denoting the Fourier trans-
form.

In the same way we can define the cross-correlation of ǫ(t)
and s(t) as

Rǫs(τ) = 〈s(t)ǫ(t− τ)〉 = 1

T

∫ T

0

Rǫs(t, t− τ) dt (5)

with T denoting the correlation interval. In the sequel, we
obtain by time averaging (3)

Rǫs(τ) =
1

2
Rs(τ − d)− 1

2
Rs(τ) +

1

2
〈|q(t)|s(t− τ)〉 (6)

and

〈|q(t)|s(t− τ)〉 = 〈q(t)s(t − τ)× Prob{s(t− d) > s(t)}
− q(t)s(t − τ)× Prob{s(t− d) < s(t)}〉. (7)

But, for practical codes we have Prob{s(t− d) > s(t)} ≈
Prob{s(t − d) < s(t)} and 〈|q(t)|s(t − τ)〉 = 0. Thus,
Rǫs(τ) = [Rs(τ − d) − Rs(τ)]/2 and the cross-correlation
of s̃(t) and s(t) is

R
s̃s
(τ) = 〈E{s̃(t)s(t− τ)}〉 = 〈E{[s(t) + ǫ(t)]s(t− τ)}〉

= Rs(τ) + Rǫs(τ) =
1

2
[Rs(τ) +Rs(τ − d)] . (8)

The cross-spectrum corresponding to R
s̃s
(τ) is

G
s̃s
(f) =

1

2
Gs(f)[1 + exp(−j2πfd)] (9)

where Gs(f) = F{Rs(τ)} is the power spectrum of s(t).
Consider now the effect of lowpass filtering the distorted

received signal r(t), as shown in Fig. 3, with H(f) indicating
the filter transfer function. The filter output is

y(t) = r(t) ∗ h(t) =
∫ ∞

−∞

r(λ)h(t − λ) dλ (10)

where h(t) is the filter impulse response. The correlator output
is given by

z(τ) =
1

T

∫ T

0

y(t)g(t− τ) dt (11)
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Fig. 3: Cross-correlation of the incoming filtered and distorted
signal y(t) and the local non-distorted replica g(t−τ) for EWF
detection.

with the receiver generated signal being

g(t− τ) =

{
s(t− τ), BPSK
sBOC(t− τ), BOC, CBOCp.

(12)

That is, the correlation is carried out with the distorted and
filtered signal and the corresponding locally-generated non-
distorted and unfiltered version of the signal but, in the case of
transmission of the CBOCpilot signal, we perform instead the
correlation with the BOCs(1,1) local carrier with the purpose
of simplifying the receiver implementation.

In the following analysis we neglect the effect of the channel
noise for the sake of simplicity. The correlator output in Fig.
3 is an instance of the correlation RA(τ) ≡ E{z(τ)}, where
the average E{·} is carried out over all the code sequences,
with

RA(τ) =
1

T

∫ T

0

∫ ∞

−∞

h(t− λ)E{r(λ)g(t − τ)}dλ dt

=
1

T

∫ T

0

∫ ∞

−∞

h(α)R
s̃g
(τ − α)dα dt (13)

+
µ

T

∫ T

0

∫ ∞

−∞

h(α)R
s̃g
(τ − α− t1)dα dt

= R
s̃g
(τ) ∗ h(τ) + µR

s̃g
(τ − t1) ∗ h(τ − t1)

or in the frequency domain

GA(f) = G
s̃g
(f)H(f)[1 + µ exp(−j2πft1)]. (14)

Consider that g(t) = s(t). Taking the inverse Fourier
transform and using (8) yields

RA(τ)=

∫ ∞

−∞

G
s̃s
(f)H(f)[1 + µ exp(−j2πft1)] exp(j2πfτ) df

=
1

2

∫ ∞

−∞

Gs(f)[1 + exp(−j2πfd)]H(f) (15)

· [1 + µ exp(−j2πft1)] exp(j2πfτ) df.

For the rectangular (ideal) filter of bandwidth B and group
delay τ0 we have

H(f) =

{
exp(−j2πfτ0), |f | < B
0, otherwise.

(16)

Doing τ ′ ≡ τ − τ0 yields

RA(τ
′) =

1

2

∫ B

−B

Gs(f) cos(j2πfτ
′) df

+
1

2

∫ B

−B

Gs(f) cos(j2πf(τ
′ − d)) df (17)

+
µ

2

∫ B

−B

Gs(f) cos(j2πf(τ
′ − t1)) df

+
µ

2

∫ B

−B

Gs(f) cos(j2πf(τ
′ − d− t1)) df.

C. BPSK(m) signals

Define the triangular pulse ΛL(x− x0) as

ΛL(x− x0) =

{
1− |x−x0|

L , |x− x0| < L
0, otherwise

(18)

with L denoting the pulse half-duration and x0 its center.
Thus Rs(τ) = ΛTc

(τ) and Gs(f) = Tc sinc
2(fTc), where

Tc = Tc0/m, m = 1, 2, . . ., is the chip duration of the generic
BPSK(m) signal, with Tc0 = 10−3/1023 s denoting the chip
duration of the GPS C/A code.

Consider fTc = x (normalized frequency) and d/Tc = D
(normalized delay) in (17). We obtain

RA(τ
′) =

1

2

∫ BTc

−BTc

sinc2(x) cos

[
2π

(
τ ′

Tc

)
x

]
dx

+
1

2

∫ BTc

−BTc

sinc2(x) cos

[
2π

(
τ ′

Tc
−D

)
x

]
dx (19)

+
µ

2

∫ BTc

−BTc

sinc2(x) cos

[
2π

(
τ ′ − t1
Tc

)
x

]
dx

+
µ

2

∫ BTc

−BTc

sinc2(x) cos

[
2π

(
τ ′ − t1
Tc

−D

)
x

]
dx.

Each of the integrals in the previous expression can be
expressed by means of the Is2c function [17], which is readily
computed in terms of sine integral functions, as described in
Appendix A. The use of the Is2c function allows to accelerate
the processing speed in semi-analytic simulations and clarifies
the role of each of the parameters in the EWF/multipath sce-
nario, such as the normalized bandwidth BTc or the anomalous
level transition delay D.

The resulting expression for (19) is

RA,BPSK(τ ′) =
1

2
Is2c

(
1, 2π

(
τ ′

Tc

)
, BTc

)

+
1

2
Is2c

(
1, 2π

(
τ ′

Tc
−D

)
, BTc

)
(20)

+
µ

2
Is2c

(
1, 2π

(
τ ′ − t1
Tc

)
, BTc

)

+
µ

2
Is2c

(
1, 2π

(
τ ′ − t1
Tc

−D

)
, BTc

)
.
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When BTc ≥ 2 each term of (20) is well approximated by a
triangle function spanning 2Tc.

Fig. 4 exhibits several cross-correlations RA(τ) for
BPSK(m) modulation and BTc = 5, obtained with multipath
and/or EWF effects. The solid lines concern the reception
without multipath (µ = 0), the dash-dotted lines correspond
to multipath scenarios with µ = −0.25 and the dashed lines
correspond to multipath with µ = 0.25. The blue and red lines
are associated, respectively, with transmissions with or without
EWF distortion (D = 0.1 and D = 0).
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c
=5

BPSK(m)

TM-A1

Fig. 4: Cross-correlations RA(τ) for BPSK(m) modulation and
BTc = 5 with multipath and EWF effects.

D. BOCs(m,m) signals

The autocorrelation function for BOCs signals can be ex-
pressed in terms of triangular pulses as [12]

Rs(τ) = ΛTc/2(τ) −
1

2
ΛTc/2

(
|τ | − Tc

2

)
(21)

with ΛL(|x| − x0) = ΛL(x+ x0) +ΛL(x− x0) denoting two
triangles centered at positions ±x0.

From [12] we have for the power spectrum of the
BOCs(m,m) modulation

Gs(f) = Tc sinc
2(fTc) tan

2

(
πfTc

2

)

=
Tc

2
sinc2

(
fTc

2

)
[1− cos(πfTc)]. (22)

Using now (17), with fTc = x and d/Tc = D and taking
into account that cos a cos b = cos(a + b)/2 + cos(a − b)/2,
yields

RA,BOC(τ
′) =

1

4
Is2c

(
1

2
, 2π

τ ′

Tc
, BTc

)

− 1

8
Is2c

(
1

2
, π

(
1 + 2

τ ′

Tc

)
, BTc

)

− 1

8
Is2c

(
1

2
, π

(
1− 2

τ ′

Tc

)
, BTc

)

+
1

4
Is2c

(
1

2
, 2π

(
τ ′

Tc
−D

)
, BTc

)
(23)

− 1

8
Is2c

(
1

2
, π

(
1 + 2

τ ′

Tc
− 2D

)
, BTc

)

− 1

8
Is2c

(
1

2
, π

(
1− 2

τ ′

Tc
+ 2D

)
, BTc

)

+
µ

4
Is2c

(
1

2
, 2π

τ ′ − t1
Tc

, BTc

)

− µ

8
Is2c

(
1

2
, π

(
1 + 2

τ ′ − t1
Tc

)
, BTc

)

− µ

8
Is2c

(
1

2
, π

(
1− 2

τ ′ − t1
Tc

)
, BTc

)

+
µ

4
Is2c

(
1

2
, 2π

(
τ ′ − t1
Tc

−D

)
, BTc

)

− µ

8
Is2c

(
1

2
, π

(
1 + 2

τ ′ − t1
Tc

− 2D

)
, BTc

)

− µ

8
Is2c

(
1

2
, π

(
1− 2

τ ′ − t1
Tc

+ 2D

)
, BTc

)
.
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Fig. 5: Cross-correlations RA(τ) for BOCs(m,m) modulation
and BTc = 12 with multipath and EWF effects.

Fig. 5 exhibits several cross-correlations RA(τ) for
BOCs(m,m) modulation and BTc = 12, obtained with multi-
path and/or EWF effects. The black lines concern the reception
without multipath (µ = 0) and the blue lines correspond
to a multipath scenario (µ = 0.25). The dash-dotted and
solid lines are associated, respectively, with transmissions
with or without EWF distortion (D = 0.1 and D = 0).
Comparison of Fig. 4 and 5 reveals the differences of the cross-
correlation functions RA(τ) introduced by the EWF effect.
In the BPSK(m) modulation the cross-correlation is shifted
rightward by the EWF distortion whereas in the BOCs(m,m)
modulation the shift is not apparent: only the rightmost part
of the shapes are modified.

E. CBOCpilot signal

The CBOC(6,1,1/11) pilot signal is defined by [13]

scboc,p(t) = [αp11(t)−βp61(t)]c(t) = αs11(t)−βs61(t) (24)

where α =
√
10/11, β =

√
1/11, p11(t) is the BOCs(1,1)

sub-carrier, p61(t) is the BOCs(6,1) sub-carrier, c(t) is the
code signal and s11(t) = c(t)p11(t) is the BOCs(1,1) signal.
The receiver correlation scheme is the one sketched in Fig.
3 with the local generator given by s(t − τ) = s11(t − τ).
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Notice that this correlation scheme is different from those
of the BPSK and BOCs modulations, as the signal of the
local oscillator is not a replica of the nominal transmitted
signal. It is shown in [12] that the power spectrum of the
CBOCpilot(6,1,1/11) modulation is given by

GCBOCp(f) = α2GBOCs(1,1)(f) + β2GBOCs(6,1)(f)

− 2αβG61,11(f) (25)

with

GBOCs(1,1)(f) = Tc sinc
2(fTc) tan

2

(
πfTc

2

)

GBOCs(6,1)(f) = Tc sinc
2(fTc) tan

2

(
πfTc

12

)
(26)

G61,11(f) =
Tc

36
sinc2

(
fTc

12

) sin2
(

πfTc

2

)
sin(πfTc)

sin
(

πfTc

6

) .

Using the results in [14] it can be shown that

RA,CBOCp(τ
′) = αRA,BOC(τ

′)− βC(τ ′) (27)

with RA,BOC(τ
′) determined by (23) and

C(τ ′) =
1

144

3∑

i=1

Is2c2

(
1

12
,
π(2i− 1)

6
, 2π

τ ′

Tc
;BTc

)

+
1

144

3∑

i=1

Is2c2

(
1

12
,
π(2i− 1)

6
, 2π

(
τ ′

Tc
−D

)
;BTc

)

− 1

144

3∑

i=1

Is2c2

(
1

12
,
π(2i+ 5)

6
, 2π

τ ′

Tc
;BTc

)

− 1

144

3∑

i=1

Is2c2

(
1

12
,
π(2i+ 5)

6
, 2π

(
τ ′

Tc
−D

)
;BTc

)

+
µ

144

3∑

i=1

Is2c2

(
1

12
,
π(2i− 1)

6
, 2π

τ ′ − t1
Tc

;BTc

)
(28)

+
µ

144

3∑

i=1

Is2c2

(
1

12
,
π(2i− 1)

6
, 2π

(
τ ′ − t1
Tc

−D

)
;BTc

)

− µ

144

3∑

i=1

Is2c2

(
1

12
,
π(2i+ 5)

6
, 2π

τ ′ − t1
Tc

;BTc

)

− µ

144

3∑

i=1

Is2c2

(
1

12
,
π(2i+ 5)

6
, 2π

(
τ ′ − t1
Tc

−D

)
;BTc

)
.

The function Is2c2(·) is described in Appendix B. Fig.
6 exhibits the receiver cross-correlations RA(τ

′) for CBOC
pilot signals with BTc = 12 and with or without multipath
and EWF effects. As expected, Figs. 5 and 6 are similar.
In fact, when the CBOCpilot signals are processed with a
lowpass filter with normalized bandwidth BTc = 12, the
high-frequency components, corresponding to the modulation
BOCs(6,1), are practically filtered out.
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Fig. 6: Cross-correlations RA(τ) for CBOCpilot modulation
and BTc = 12 with multipath and EWF effects.

III. SIGNAL QUALITY MONITORING

Signal Quality Monitoring (SQM) is a set of algorithms
that allow to detect the threatening EWF distortions in the
code autocorrelation function. The SQM is necessary to protect
users with high requirements in terms of integrity, accuracy,
availability, and continuity, such as civil aviation users [3].

To improve the reliability of the SQM mechanism, multiple
combinations of pairs of correlators can be used with simple
ratio, difference ratio and sum ratio metrics. This requires that
the receiver includes a bank of 2N+1 correlators, with N pairs
of early/late correlators plus a prompt correlator, as sketched
in Fig. 7. In the figure r(t) is the received signal containing the
GNSS signal of power P and additive white Gaussian noise
of power spectral density N0/2. The separation ∆ between
correlators is typically lower-bounded by ≈ 10 ns because
lower values require sampling rates above 100 MHz, which is
more difficult to achieve by the ADCs.
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Fig. 7: EWF detector using a bank of correlators.

The correlator outputs in the scheme of Fig. 7 are

Zi =
√
2PRA(e− i∆) + ni, i = 0,±1, · · · ,±N (29)

where the noises ni are correlated, zero-mean, Gaus-
sian random variables, with common variance E{n2

i } =
(N0/T )Rg(0), with Rg(τ) denoting the autocorrelation
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of g(t). The cross-correlations between the noises are
E{nink} = (N0/T )Rg((i− k)∆).

SQM consists of one or more tests to determine if the
incoming signal is affected by EWF distortion or not. The two
hypotheses are H0 (non-distorted signal) and H1 (distorted
signal). For a given metric M let T denote the test variable
generically defined by

T = (Mmea −Mnom)/λ (30)

where Mmea is the measured value of the metric, which is
disturbed by thermal noise and may or not be affected by
signal distortion (anomaly), and Mnom is the nominal value
of the metric (no additive noise or distortion). Typically, the
random variable T has Gaussian distribution with zero mean
for hypothesis H0. Parameter λ is used to adjust the variance
of T , such that Prob{T ≥ 1|H0} = Pfa, where Pfa is the
desired probability of false alarm.

To detect EWF distortion, the test variable T is compared to
the unity decision threshold: if T < 1 hypothesis H0 is con-
sidered, otherwise hypothesis H1 is assumed. The probability
of missing detection is defined as Pmd = Prob{T < 1|H1}.
It is not possible to minimize simultaneously Pfa and Pmd by
shifting the unity decision threshold, as illustrated in Fig. 8.
An workable solution is the Neyman-Pearson criterion which
consists of fixing Pfa at a preselected value, by adjusting
parameter λ. Then, for each EWF scenario a different value
of Pmd is obtained [15].

Pmd
P
fa

0 m
1

without
anomaly

with
anomaly

Fig. 8: Probabilitiy density functions of test variable T with
and without signal anomaly.

In [3], three tests based on different ratio metrics were
proposed. The metrics considered are: simple ratio metric,
difference ratio metric and sum ratio metric. Associated with
those metrics we build tests T1, T2 and T3, respectively.

A. Simple ratio test (T1 test)

With 2N + 1 correlators we can form 2N simple ratio
metrics

M
(i)
1 = Zi/Z0, i = ±1, . . . ,±N (31)

and the corresponding test variables T (i)
1 , according to (30).

These variables are used to build a decision criterion, where
we assume hypothesis H1 if, at least, one pair of correlators

verifies T (i)
1 > 1. The overall probability of false alarm is then

given by

PFA = Prob{
N⋃

i=−N

i6=0

T (i)
1 ≥ 1|H0}

= 1− Prob{
N⋂

i=−N

i6=0

T (i)
1 < 1|H0} (32)

where
⋃

and
⋂

mean, respectively, the union and the inter-
section of events. It can be shown [16] that the normalization

parameters λ
(i)
1 are given by

λ
(i)
1 =

erfc−1(PFA/(2N))

RA(0)

√
(1 + ρ2i )Rs(0)− 2ρiRs(i∆)

(C/N0)T
(33)

with ρi ≡ RA(i∆)/RA(0), i 6= 0. The overall probability of
missing detection is

PMD = Prob{
N⋂

i=−N

i6=0

T (i)
1 < 1|H1}. (34)

B. Difference ratio test (T2 test)

With N pairs of early/late correlators we can form N
difference ratio metrics

M
(i)
2 = (Z−i − Zi)/Z0, i = 1, . . . , N. (35)

and the corresponding test variables T (i)
2 . The overall proba-

bility of false alarm is given by

PFA = 1− Prob{
N⋂

i=−N

i6=0

|T (i)
2 | < 1|H0} (36)

and the overall probability of missing detection is

PMD = Prob{
N⋂

i=−N

i6=0

|T (i)
2 | < 1|H1} (37)

The normalization parameters λ
(i)
2 are [16]

λ
(i)
2 =

√
2 erfc−1(PFA/N)

RA(0)

√
Rs(0)−Rs(2i∆)

(C/N0)T
. (38)

C. Sum ratio test (T3 test)

With N pairs of early/late correlators we can also form N
difference ratio metrics

M
(i)
3 = (Z−i + Zi)/Z0, i = 1, . . . , N. (39)

and the corresponding test variables T (i)
3 . The overall probabil-

ity of false alarm and missing detection are given, respectively,

by (32) and (34) with T (i)
1 replaced by T (i)

3 . The normalization

parameters λ
(i)
3 are [16]

λ
(i)
3 =

√
2 erfc−1(2PFA/N)

RA(0)

×
√

Rs(0) +Rs(2i∆)− 2R2
s(i∆)/Rs(0)

(C/N0)T
. (40)
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IV. SIMULATION RESULTS

In this section we present Monte Carlo simulation results for
tests T1, T2 and T3, obtained in the presence of multipath: a
direct ray plus one reflected ray with relative delay t1/Tc and
normalized amplitude µ. In order to permit the determination
of the robustness of EWF detectors to the presence of multi-
path, we plot in Fig. 9 the curves of the overall probabilities
of missing detection versus D for the modulations BPSK(m),
BOCs(m,m) and CBOCpilot when no multipath is present
(µ = 0). We have considered N = 4, ∆ = 0.02Tc, BTc = 12,
(C/N0) = 50 dB-Hz and T = 20 ms. The figure shows that
for all the tests the EWF detectors have the best performance
with CBOCpilot signals and the worse performance with
BPSK(m) signals. In general, the best performing test is T3,
as it requires the smallest values of EWF parameter D to
achieve, for instance, PMD = 10−3. Test T2 fails to detect
the presence of EWF distortion for all reasonable values of
D. As a consequence, we will discard test T2 in the following
assessment of test performance. Note, also, that the results
herein obtained for T1 and T3 tests must be treated with
caution as they may not hold for more complicated multipath
scenarios, constituted, for instance, by a larger number of
reflectors.
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Fig. 9: Probabilities of EWF missing detection for different
tests and modulations in a scenario without multipath versus
the EWF parameter D.

Figs. 10 and 11 present the probabilities of EWF missing
detection, respectively for tests T1 and T3, with different
modulations, in a scenario with multipath: t1/Tc = 0.1 and
µ = ±0.25. The performance of BPSK(m,m) for µ = 0.25
is unacceptable with both tests. Besides, for CBOCpilot and
µ = −0.25 the results are unacceptable when using test T3 and
D ≥ 0.18. Test T3 was repeated in Fig. 12 but with N = 6.
The existing degradation for CBOCpilot disappeared but the
performance of the BPSK(m,m) remains poor. Therefore,
only modulations BOCs(m,m) and CBOCpilot can provide
conveniently low values of PMD for D ≥ 0.07.

The performance of tests T1 and T3 in terms of false alarm
(multipath present but no EWF) is displayed in Figs. 13 and
14 for BPSK(m), in Figs. 15 and 16 for BOCs(m,m), and
in Figs. 17 and 18 for CBOCpilot. The white regions of the
plots correspond to PFA < 10−4 and the various levels of
probability are indicated by log10(PFA). Except for small
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Fig. 10: Probabilities of EWF missing detection for test T1
with different modulations in a scenario with multipath versus
the EWF parameter D.
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Fig. 11: Probabilities of EWF missing detection for test T3
with N = 4 and different modulations in a scenario with
multipath versus the EWF parameter D.

amplitudes of the reflected ray (|µ| ≤ 0.05), all the values
of PFA are unacceptably high regardless of the values of the
normalized multipath delay t1/Tc. The different extensions of
the colored regions for tests T1 and T3 show that, globally, T3
outperforms T1. Notice the asymmetry of the figures relative to
µ = 0; this means that the probability of false alarm depends
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Fig. 12: Probabilities of EWF missing detection for test T3
with N = 6 and different modulations in a scenario with
multipath versus the EWF parameter D.
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also on the sign of the multipath intensity µ.
The figures reveal that the EWF detection techniques under

analysis are very sensitive to the presence of multipath.
This fact was expected as multipath and EWF anomalies,
although being generated by entirely independent mechanisms,
provoke similar distortions in the autocorrelation function of
the received signals, as evidenced by eqs. (20), (23) and (27)-
(28). Since the probability of false alarm is more significantly
affected by multipath than the probability of missing detection,
a possible solution to the problem of multipath interference
consists of making a decision based on a set of m monitoring
stations located at separate places, such that the multipath ef-
fect in each one is independent from the others. The following
decision criterion could then be applied: an EWF anomaly is
declared present if the m receivers detect simultaneously the
presence of the anomaly.

In each receiver the false alarm results from the contri-
bution of two independent mechanisms: channel noise and
multipath, with probabilities respectively equal to PFA and
Pmult. Assuming a typical scenario with Pmult ≫ PFA, then
the probability of false alarm in the presence of multipath and
thermal noise is P ′

FA ≈ Pmult. For that scenario, the overall
probability of false alarm for the m receivers is given by the
probability of the following intersection of independent events

P̃FA = Prob{z1 > Vth, z2 > Vth, . . . , zm > Vth|H0} (41)

where zi is the decision random variable (r.v.) in receiver i
and Vth is the decision threshold (adjusted to the case of no
multipath and no EWF). Since z1, z2, . . . are independent r.v.
we obtain

P̃FA =

m∏

i=1

Prob{zi > Vth} = (P ′
FA)

m ≈ Pm
mult. (42)

That is, using the m independent receivers the overall prob-
ability of false alarm will be much smaller than Pmult. For
instance, assuming that Pmult = 0.2 and using m = 6
receivers yields P̃FA ≈ 6.4× 10−5.

As for the overall probability of missing detection we have

P̃MD = 1− Prob{z1 > Vth, z2 > Vth, . . . , zm > Vth|H1}
(43)

where zi = A+ ρi +ni. A is a positive quantity that depends
on the EWF, ρi is a zero-mean r.v. due to the multipath and
ni is a zero-mean Gaussian r.v. with variance σ2

n depending
on the thermal noise. Thus

P̃MD = 1−
m∏

i=1

Prob{ni > Vth −A− ρi}

= 1−
m∏

i=1

Q

(
Vth −A− ρi

σn

)
(44)

with Q(·) denoting the error function

Q(x) =
1√
2π

∫ ∞

x

exp(−y2/2) dy. (45)

Fig. 19 displays the values of P̃MD versus the number m of
receivers for different intensities S of multipath, obtained with

Monte Carlo simulation. It is considered that A = Vth+3.08,
which corresponds to P̃MD = 10−3 when m = 1 and
multipath is absent (ρ1 = 0). The quantities ρi are modeled
as independent zero-mean uniformly distributed r.v. in the
interval −S/2 ≤ ρi ≤ S/2, with the case S = 0 referring
to the scenario without multipath. The figure shows that, for
every value of the multipath intensity S, the overall probability
of missing detection increases linearly with the number of
receivers, whereas the overall probability of false alarm is
shown in (42) to decrease with a power of exponent m.
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Fig. 13: Probabilities of false alarm for test T1 and BPSK(m)
versus the multipath delay t1/Tc (white region: PFA < 10−4).
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Fig. 14: Probabilities of false alarm for test T3 and BPSK(m)
versus the multipath delay t1/Tc.

V. CONCLUSION

Detection of evil waveforms (EWF) in GNSS is an impor-
tant way to avoid the use of anomalous signals that could
degrade the accuracy of the PVT solution. EWF detectors
are usually based on the determination of asymmetries and
other type of distortions that occur in the code autocorrelation
function of the received signals due to malfunction of the satel-
lite equipment. However, similar distortions are obtained with
healthy signals in multipath scenarios, making the distinction
between EWF and multipath very difficult.

In this work we analyzed the effect of multipath on the
performance of EWF detectors, having concluded that the
probability of false alarm in a multipath scenario with no
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Fig. 15: Probabilities of false alarm for test T1 and
BOCs(m,m) versus the multipath delay t1/Tc.
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Fig. 16: Probabilities of false alarm for test T3 and
BOCs(m,m) versus the multipath delay t1/Tc.

EWF is prone to increase by an unacceptable amount and the
probability of missing detection is also aggravated, although
in a smaller scale. This suggests a solution to mitigate the
problem that resorts to a set of independent receivers located
in separate places. The idea is to make use of the fact that
multipath is a local effect, contrarily to the EWF anomaly,
which is a global effect. As a result, making decisions based
on the whole set of receivers produces a significant decrease
of the probability of false alarm with only a fair increase in
the probability of missing detection.

Due to the lack of space only the TM-A1 model was
analyzed herein. Suggested future work includes the analysis
of the remaining threat models. The assumed multipath model
scenario, which is constituted by a direct and a reflected ray
is, of course, overly simplistic, and in future research more
realistic statistical multipath models should be considered.

APPENDIX A
COMPUTATION OF INTEGRAL Is2c

The integral is defined as

Is2c(a, b;L) ≡
∫ L

−L

sinc2(ax) cos(bx) dx (46)

with sinc(x) ≡ sin(πx)/(πx). But sin2 x = (1− cos(2x))/2.
Thus
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Fig. 17: Probabilities of false alarm for test T1 and CBOCpilot
versus the multipath delay t1/Tc.
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Fig. 18: Probabilities of false alarm for test T3 and CBOCpilot
versus the multipath delay t1/Tc.

Is2c(a, b;L) =
1

2π2a2

∫ L

−L

cos(bx)

x2
dx

− 1

2π2a2

∫ L

−L

cos(2πax) cos(bx)

x2
dx. (47)

Since cos a cos b = [cos(a+ b) + cos(a− b)]/2, we have
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Fig. 19: Overall probabilities of missing detection versus the
number of receivers with different intensities of multipath.
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Is2c(a, b;L) =
1

4π2a2

∫ L

−L

cos(bx)− cos[(2πa+ b)x]

x2
dx

+
1

4π2a2

∫ L

−L

cos(bx)− cos[(2πa− b)x]

x2
dx. (48)

It is known that [11] (3.784)

∫ ∞

−∞

cos(αx) − cos(βx)

x2
dx = π(|β| − |α|) (49)

and

∫ ∞

L

cos(µx)

x2
dx = −π|µ|

2
+ µSi(µL) +

cos(µL)

L
, L > 0

(50)
where Si(·) is the sine integral function [10]. Define now the
integral

Icc(α, β;L) ≡
∫ L

−L

cos(αx) − cos(βx)

x2
dx (51)

which can be simplified to

Icc(α, β;L) = 2

[
βSi(βL) +

cos(βL)

L
− αSi(αL)−

cos(αL)

L

]
.

(52)
Using (52) in (48) leads to

Is2c(a, b;L) =
1

4π2a2
[Icc(b, 2πa+ b;L) + Icc(b, 2πa− b;L)] .

(53)
This result permits to compute the integral Is2c(a, b;L) in
terms of trigonometric and sine integral functions.

From (49) and (53) it can be shown that the asymptotic
value for the integral Is2c is the triangle function

lim
L→∞

Is2c(a, b;L) =
1

a
Λ2πa(b), a > 0. (54)

Fig. 20 displays the function Is2c(1, b;L) versus b for different
values of L. Note that, for L ≥ 2, the function is well
approximated by a triangle spanning 2π with unity height.

APPENDIX B
COMPUTATION OF INTEGRAL Is2c2

The integral is defined as

Is2c2(a, b, c;L) ≡
∫ L

−L

sinc2(ax) cos(bx) cos(cx) dx (55)

and can be written in terms of the integrals Is2c as

Is2c2(a, b, c;L) =
1

2

∫ L

−L

sinc2(ax) cos[(b + c)x] dx

+
1

2

∫ L

−L

sinc2(ax) cos[(b − c)x] dx (56)
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Fig. 20: Plot of function Is2c(a, b;L) versus b for a = 1 and
different values of L.

or

Is2c2(a, b, c;L) =
1

2
[Is2c(a, b+c;L)+Is2c(a, b−c;L)]. (57)
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