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Abstract—Detecting and diagnosing the root cause of failures
in mobile networks is an increasingly demanding and time-
consuming task, given its technological growing complexity. This
paper focuses on predicting and diagnosing low User Downlink
(DL) Average Throughput situations, using supervised learning
and the Tree Shapley Additive Explanations (SHAP) method.
To fulfill this objective, Boosting classification models are used
to predict a failure/non-failure binary label. The influence of
each counter on the overall model’s predictive performance is
performed based on the TreeSHAP method. From the implemen-
tation of this technique, it is possible to identify the main causes
of low throughput, based on the analysis of the most critical
counters in fault detection. Furthermore, from the identification
of these counters, it is possible to define a system for diagnosing
the most probable throughput degradation cause. The described
methodology allowed not only to identify and quantify low
throughput situations in a live network due to the occurrence
of misadjusted configuration parameters, radio problems and
network capacity problems, but also to outline a process for
solving them.

Index Terms—Mobile Networks, KPIs, PM Indicators, Super-
vised Learning, Boosting Classification Models, TreeSHAP

I. INTRODUCTION

The exponential complexity growth of mobile networks and
its technology has brought challenges in performing the Root
Cause Analysis (RCA) of network performance degradation
resorting only to human input. For this reason, Mobile Net-
work Operators (MNOs) have turned their attention to au-
tomating this analysis, by introducing Self-Healing functions
divided into three primary areas: Detection, Diagnosis and
Compensation [1]. These functions are based on correlation
and statistical analysis of alarms, mobile traces, configuration
parameters, network counters and Key Performance Indica-
tors (KPIs), collected from faulty cells [2]. Thus, Machine
Learning (ML) techniques have emerged as a powerful tool
to develop Self-Healing networks, due to their ability to learn
from the available data to effectively reproduce the decisions
made by human experts.

Consequently, some research has already been conducted
to design systems capable of performing the RCA of Integrity
KPIs failures using ML techniques. Namely, in [3] the au-
thors propose a Deep Neural Network (DNN) architecture
to perform the RCA of poor throughput in mobile networks.
Furthermore, the importance of each feature was computed by
applying the Local Interpretable Model-Agnostic Explanations
(LIME) method.

Thus, the main objective of this work is to contribute to the
detection and diagnosis of the network Integrity KPIs failures,
through the identification of the Performance Management
(PM) counters with the greatest influence on low User DL
Average Throughput predictions. While ”Boosting” classifi-
cation models are used to predict failures, the identification
of the most important PM counters to anticipate failures is
performed using the SHAP method. In this context, the main
contributions of this paper can be summarized as follows:
i) Implementation of a low User DL Average Throughput
diagnostic system based on PM counters measured from a
real mobile network and ii) Introduction of a feature filtering
method that speeds up the low throughput diagnosis process
by reducing the total number of influential PM counters to be
analysed by network engineers.

This work is organized as follows: Section II summarizes
the proposed research methodology; Section III presents the
obtained results for the failure prediction models and the
respective SHAP method implementation; Section IV analyzes
the output of the SHAP method in order to identify the most
critical PM counters used in the elaboration of a failure RCA
flowchart. Ultimately, Section V presents the final conclusions
and research guidelines for future work.

II. METHODOLOGY

The PM counters used in the elaboration of this work were
obtained from a real MNO, having been collected from a live
Long Term Evolution (LTE) network. The data extraction was
performed with an hourly granularity, over a period of 28
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days, from 51 local cells, divided by 19 sites, supporting the
LTE800, LTE900, LTE1800 and LTE2100 (MHz) frequency
bands. The resulting dataset comprised a total of 337 PM coun-
ters. Through the combination of the collected PM counters,
the User DL Average Throughput (Mbps) KPI was calculated
using the following equation:

UserDLAvgThp = UserDLRmvLastTTITrafficV olume
UserDLRmvLastTTITransferT ime (1)

given by the ratio between the total DL traffic volume
and the DL data transmission duration, excluding the data
scheduled in the last Transmission Time Interval (TTI) before
the DL buffer is empty [4].

The proposed methodology considers the following steps,
described in the next sub-sections.

A. Data Pre-Processing and Feature Selection

Since the data was collected from a live network, being
subject to extraction failures, it was necessary to perform
data pre-processing and some feature selection processes first.
These processes were implemented considering the following
steps:

• Removal of PM counters with high percentage of missing
values;

• Removal of rows with missing values;
• Elimination of data artifacts;
• Elimination of PM counters with null variance;
• Elimination of one of two PM counters if the mutual

Pearson correlation is equal to one.

B. Labelling

The failures detection techniques using classification prob-
lems imply the existence of a discrete dependent variable.
Thereby, a binary faulty/not faulty label was defined, by
applying degradation threshold values provided by the MNO.
Therefore, label 1 was assigned to failures, while label 0 was
assigned to not faulty samples. After defining the dependent
discrete variable for the User DL Average Throughput KPI, the
counters used in its calculation, as well as counters redundant
to these, were eliminated from the feature set to avoid the
occurrence of overfitted models.

C. Machine Learning Techniques

Although ML classification algorithms are a powerful tool
in detecting network failures, there are still challenges related
to their implementation that need to be considered [5]:

• Cost Insensitivity: Although the ultimate goal of clas-
sification models is to obtain a reduced detection error
rate, different misclassification errors may have different
impact on mobile operators, being essential to assign
variable costs to different errors.

• Data Imbalance: Since cellular network’s severe degra-
dation are infrequent events, the collected training data
tend to be significantly imbalanced. As a result, the

minority class tends to be misclassified more often than
the majority class.

Regarding the implementation of supervised learning mod-
els, only Boosting classification algorithms were tested, since
these models present a greater performance for several use
cases when compared not only to other ML classification
algorithms, but also to DNN for tabular data. Thereby, the
Boosting classification models tested throughout this work
were the following: AdaBoost, Gradient Boosting, XGBoost,
Catboost and LightGBM.

Regarding the performance evaluation metric it was required
to choose a technique that took into account the non-balancing
between classes. To address this issue, the F1-score metric was
selected, as suggested by [6]. This function is given by the
harmonic mean of precision and recall:

F1score = 2× Precision×Recall

Precision+Recall
(2)

reaching its best value at 1 and worst score at 0.
Lastly, the Stratified 10-Fold Cross-Validation technique

was implemented, in order to evaluate the model’s gener-
alization performance, by detecting overfitted models. This
technique has the particularity of ensuring that when splitting
the dataset, the class distribution in each subset matches
the class distribution in the total training set, avoiding the
existence of folds with few or no data belonging to the
minority class [7].

D. Shapley Additive Explanations

In this final phase, the SHAP method is applied to interpret
the outputs of the selected models by computing the contri-
bution of each input feature in the produced predictions. This
method calculates the Shapley values given by the average of
all features contributions, considering all possible coalitions.
The Shapley values are represented as an additive feature
attribution method. In this work, it was used a variant of SHAP
for tree-based ML models, designated TreeSHAP [8] [9].

III. FAILURES DETECTION

After proceeding with the data pre-processing and feature
selection phases, the number of input features was reduced to
223 PM counters. Hereupon, the binary failure labelling pro-
cess and the ML classification models mentioned in Section II
were implemented. Table I summarizes the obtained results for
the five boosting classification models applied to the User DL
Average Throughput KPI.

TABLE I
OBTAINED RESULTS FOR THE CLASSIFICATION BOOSTING ALGORITHMS.

KPI Failure Binary Model F1 10-Fold cross
threshold labelling score validation

AdaBoost 0.849 0.823
User Downlink 0 : 26789 samples GradientBoosting 0.863 0.838

Average Throughput < 7 Mbps XGBoost 0.867 0.849
(Mbps) 1 : 7480 samples CatBoost 0.852 0.838

LightGBM 0.877 0.853
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Finally, the TreeSHAP method was implemented. This
SHAP method variant is used since the decision-tree-based en-
semble LightGBM algorithm was the best performing model,
achieving a maximum F1-score of 0.87. Table II illustrates the
obtained confusion matrix.

TABLE II
CONFUSION MATRIX OBTAINED FOR USER DL AVERAGE THROUGHPUT.

Predicted Label
0 (Non failure) 1 (Failure) Total

True Label 0 (Non failure) 6448 226 6674
1 (Failure) 237 1657 1894

Total 6685 1883 8568

In turn, Fig. 1 illustrates the respective SHAP Summary
Plot, which provides a high-level analysis for each feature
importance, sorted in descending order.

Fig. 1. SHAP summary plot for User DL Average Throughput prediction.

While the x-axis represents the Shapley values, in which
the positive values are indicative of label 1 and the negative
values of label 0, the y-axis represents each feature. In turn,
the color illustrates the feature’s values, with the highest ones
being represented in pink and the lowest ones in blue. For
example, analyzing the L.ChMeas.CCE.DLUsed counter, it
is verified that higher values of this feature contribute to
the attribution of label 1. That is, the pink samples of this
feature are mostly on the positive x-axis. On the other hand,
lower values contribute to the attribution of label 0, since the
blue samples are mostly distributed in the negative x-axis.
This happens since the Physical Downlink Control Channel
(PDCCH) uses aggregation layers in groups of 1, 2, 4 or 8
Control Channel Elements (CCEs), based on radio conditions.
Thus, while a User Equipment (UE) in good radio condition
requires 1 CCE, a UE in poor radio coverage may require 8
CCEs.

IV. FAILURES DIAGNOSIS

Diagnosing the causes of low throughput is a complex
process that requires in-depth knowledge of the network
operation, being often a time-consuming task for the network
engineers. Thus, the following analysis aims to identify three
main causes of throughput degradation, listed in Table III, from
the analysis of the obtained SHAP Summary Plot.

TABLE III
MAIN CAUSES FOR THROUGHPUT DEGRADATION.

Failures Typical causes
Configuration problems Misadjusted configuration parameters

Radio link problems Lack of coverage or high interference
Capacity problems Low capacity in traffic and control channels

The User DL Average Throughput specifies the average DL
throughput assigned to each UE in a cell. Thereby, increasing
the L.Traffic.ActiveUser.DL.Avg counter, given by the average
number of activated UEs in DL, leads to a decrease in the
DL throughput, since the resource usage is shared within the
available bandwidth, as illustrated by the SHAP dependence
plot of Fig. 2.

Fig. 2. SHAP dependence plot between the L.Traffic.ActiveUser.DL.Avg and
5L.ChMeas.PRB.DL.Used.Avg counters.

Fig. 2 shows that when the average number of activated UEs
in DL increases, the L.ChMeas.PRB.DL.Used.Avg counter,
given by the average number of used Physical Downlink
Shared Channel (PDSCH) Physical Resource Blocks (PRBs)
in DL, also increases, contributing to User DL Average
Throughput degradation, since these points are mostly dis-
tributed on the positive SHAP values axis. In this situation, so
that each user’s experience is not affected, it may be necessary
to increase the Inactivity Timer, which controls the transition
from RRC CONNECTED to RRC IDLE state. Thereby, an
UE is connected if it has at least one established Dedicated
Radio Bearer (DRB). Once there is no more traffic in the
transmit buffer, the UE continues in the RRC CONNECTED
state for a defined period of time. If in this period of time it
does not detect any traffic, the UE switches to the RRC IDLE
state. Thus, by decreasing the value of the Inactivity Timer
parameter, it is possible to support more UEs in the connected
state, which can lead to network congestion. On the other
hand, by increasing the value of this parameter, it is possible
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to improve the overall throughput. However, if this parameter
assumes very high values, it is also possible that some UEs
use more resources than necessary. Thus, this parameter must
be optimized by balancing these two situations. Therefore,
engineers’ first approach to solving low-throughput problems
caused by a high number of users should be to adjust the
Inactivity Timer configuration parameter.

Still regarding Fig. 2, it is possible to verify the existence
of some pink dots, that is, a high average number of used
PDSCH PRBs, for low L.Traffic.ActiveUser.DL.Avg values,
corresponding to a degradation of the User DL Average
Throughput KPI. This situation corresponds to a problem of
low network capacity, in which the number of available PRBs
for DL is not enough to meet throughput requirements.

Continuing to analyse Fig. 1, it is possible to verify that
when the L.ChMeas.PDSCH.MCS.QPSK counter, which mea-
sures the number of times that Quadrature Phase Shift Keying
(QPSK) Modulation and Coding Scheme (MCS) indexes are
scheduled on the PDSCHs, increases, the model detects more
failures in User DL Average Throughput. On the other hand,
when the L.ChMeas.PDSCH.MCS.64QAM counter, which
measures the number of times that 64-Quadrature Ampli-
tude Modulation (QAM) MCS indexes are scheduled on the
PDSCHs, increases, the model detects fewer low throughput
situations. Although most of the times, these counters indicate
radio problems as the cause of severe throughput degradation,
in a first analysis, the problem resolution must be initialized
by trying to adjust Channel Quality Indicator (CQI) reports
configuration parameters, as will be explained below. The
deterioration of the channel’s radio conditions, either due to
lack of coverage or due to high interference, is identified by
a low Signal-to-Interference-plus-Noise Ratio (SINR) value,
measured by the UE. This value is converted into a lower CQI
to the E-UTRAN NodeB (eNB), which results into a lower
MCS index, as illustrated by the SHAP dependence plot of
Fig. 3.

Fig. 3. SHAP dependence plot between the L.ChMeas.PDSCH.MCS.QPSK
and Average.DL.CQI counters.

However, this decrease in throughput may not correspond
to a permanent scenario since some vendors use conservative
CQI selection algorithms. Therefore, the eNB may use a
most conservative CQI value during some transmissions, while
continuously monitoring the Block Error Rate (BLER) value.

If after some transmissions the CQI value is maintained, the
eNB converges its value to the one initially reported by the
UE. The convergence of the CQI and MCS to their actual
values results in increased DL throughput. Additionally, the
configuration of the CQI reports periodicity must be verified,
in order to ensure that it is adapted to the characteristics of
each UE. If these solutions do not allow to increase the User
DL Average Throughput, the next approach is to try to identify
a radio link problem. In this case, some possible solutions
to overcome these failures are to optimize the antennas’
tilts and azimuths or increase the inter-site distance. This
failure resolution strategy should also be followed for low
throughput situations identified by an increased value of the
L.ChMeas.PDSCH.MCS.29 counter, or a reduced value of
the L.ChMeas.PDSCH.MCS.31 counter, which indicate the
number of times that MCS is changed to QPSK and 64-QAM,
respectively, during re-transmissions.

In turn, the L.ChMeas.MIMO.PRB.CL.Rank1 and
L.ChMeas.MIMO.PRB.CL.Rank2 counters, which measure
the number of used DL PRBs in closed-loop Rank 1 and
2, respectively, have a leading role in detecting throughout
degradation. Namely, while an increased number of Rank
1 reports favors the detection of throughput failures, an
increased value of Rank 2 reports is associated with higher
DL throughput. Thereby, the Rank Indicator (RI) value gives
information about the antenna layer reception, being only
reported if the UE is in Multiple Input Multiple Output
(MIMO) mode. While for Rank 1 a single antenna signal
is transmitted, for Rank 2 spatial multiplexing is used.
Thus, when the number of Rank 1 reports increases, radio
engineers must first ensure that the switching system between
transmission modes is correctly configured and that each
UE has access to the highest possible throughput. If once
again it is not possible to solve the throughput degradation
by re-configuring network parameters, the radio channel
degradation troubleshooting already presented should be
tested.

Lastly, analysing once again Fig. 1, it is verified that the
L.ChMeas.CCE.DLUsed.DRB and L.ChMeas.CCE.DLUsed
counters, related with the number of used CCEs per PD-
CCH, are critical features for the model decision making. As
explained above, a increased number of PDCCH resources
usage leads to a reduced number of available resources for
the PDSCH, which implies a decrease in DL throughput. In
this way, these counters may alert radio engineers to situations
of low DL throughput caused by radio link problems or high
PDCCH capacity consumption. A possible solution that can be
implemented to the last problem is the addition of new cells.

Once defined the most critical PM counters to detect failures
in the User DL Average Throughput KPI, and taking into
account the work developed in [10], as well as the documen-
tation in [11], the flowchart of Fig.4 was created to determine
the most probable DL throughput degradation cause for each
site. Thus, this flowchart aims to categorize the 7480 DL
throughput failures, measured in the 19 sites, in configuration,
radio and capacity problems.
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Fig. 4. RCA flowchart for User DL Average Throughput failures.

Fig. 5 not only illustrates the number of failures per site,
but also their most likely causes. It was also possible to verify
that the failures due to misadjusted configuration are the most
frequent, being responsible for 78.12% of the total failures,
while radio link and capacity problems are responsible for
17.16% and 4.72%, respectively. This method also allowed
the identification of areas of high interference between cells.

Fig. 5. Distribution of the most likely causes of DL throughput failures across
the 19 sites.

V. CONCLUSIONS

The main objective of this work was to detect and diag-
nose User DL Average Throughput KPI degradation. For this
purpose, ”Boosting” algorithms and the TreeSHAP method
were used to identify the three most recurrent causes of low
DL throughput in LTE technology: misadjusted configuration
parameters, radio link problems and network capacity limita-
tion, as reported by Network Operations Center’s engineers.
To this end, the most critical counters to detect failures in each
of these categories were identified. Based on these counters, a

failure categorization system was created to diagnose problems
in 19 sites. Thus, it was concluded that misadjusted configu-
ration was responsible for 78.12% of the total failures, while
17.16% and 4.72% occurred due to radio link and capacity
problems.

Regarding future research, the readjustment of Configura-
tion Management (CM) parameters, based on the failure pre-
dictions made by the model, could be tested. In addition, Fault
Management (FM) data could be added to the PM counters
in order to not only improve the diagnosing performance, but
also to determine its accuracy, since the scarcity of diagnostic
records for live operation network problems is one of the main
limitations in training ML models capable of assisting in RCA.
Furthermore, it is intended to extend this diagnostic system to
other categories of failures. Lastly, the implementation of this
methodology to PM data from 5G networks will be of utmost
interest in the near future.
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