
Citation: Frutuoso, M.I.; Neto, H.C.;

Véstias, M.P.; Duarte, R.P.

Energy-Efficient and Real-Time

Wearable for Wellbeing-Monitoring

IoT System Based on SoC-FPGA.

Algorithms 2023, 16, 141. https://

doi.org/10.3390/a16030141

Academic Editor: Grammati

Pantziou

Received: 29 January 2023

Revised: 22 February 2023

Accepted: 2 March 2023

Published: 4 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Energy-Efficient and Real-Time Wearable for
Wellbeing-Monitoring IoT System Based on SoC-FPGA
Maria Inês Frutuoso 1, Horácio C. Neto 1 , Mário P. Véstias 2,* and Rui Policarpo Duarte 2

1 INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
2 INESC-ID/Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa,

1959-007 Lisbon, Portugal
* Correspondence: mario.vestias@inesc-id.pt

Abstract: Wearable devices used for personal monitoring applications have been improved over the
last decades. However, these devices are limited in terms of size, processing capability and power
consumption. This paper proposes an efficient hardware/software embedded system for monitoring
bio-signals in real time, including a heart rate calculator using PPG and an emotion classifier from
EEG. The system is suitable for outpatient clinic applications requiring data transfers to external
medical staff. The proposed solution contributes with an effective alternative to the traditional
approach of processing bio-signals offline by proposing a SoC-FPGA based system that is able to
fully process the signals locally at the node. Two sub-systems were developed targeting a Zynq 7010
device and integrating custom hardware IP cores that accelerate the processing of the most complex
tasks. The PPG sub-system implements an autocorrelation peak detection algorithm to calculate
heart rate values. The EEG sub-system consists of a KNN emotion classifier of preprocessed EEG
features. This work overcomes the processing limitations of microcontrollers and general-purpose
units, presenting a scalable and autonomous wearable solution with high processing capability and
real-time response.

Keywords: electroencephalography; hardware/software co-design; photoplethysmography; SoC
FPGA; wearable monitoring devices

1. Introduction

Over the last decades, wearable monitoring systems have been researched, developed
and progressively enhanced to support healthcare needs and fit for real-time bio-signals
processing, including heart rate measurement and emotional state recognition. As a result,
wearable devices are becoming more portable, user friendly, accurate and reliable, which
minimizes disturbance to the user’s daily routine. Moreover, combined with access to
wireless Internet, these devices are being used in remote subject monitoring. The main
advantages are real-time requirements, security, privacy, diversity of services, etc. This
paper proposes a wearable solution that can assist different groups of people, as it can
provide remote healthcare tracking, overcoming the state-of-the-art systems.

The system uses a ZYNQ7010 system-on-chip (SoC) field-programmable gate array
(FPGA) to take advantage of high processing speed and reconfigurable logic at low cost.
This kind of device is useful to create flexible and customized hardware solutions with high
performance and low power consumption. It is intended to perform signal processing tasks
locally and online, instead of transmitting the collected raw sensor data to be processed by
an external server, as conventional systems do. By performing the computations locally,
at the node, the required bandwidth and power consumption are minimized. Furthermore,
this architecture offers parallel computation, which is suitable to handle multiple biometric
signals at a time. Such functionalities overcome the limitations of conventional wearable
solutions that use general-purpose processors. The proposed system intends to measure a
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person’s heart rate using photoplethysmography (PPG) and to assess the emotional state
via electroencephalography (EEG). The concept of the proposed system architecture is
sketched in Figure 1.

PPG
IP core

EEG
IP core

Programmable Logic

Processing System

AXI AXI

XADC

AXI

PPG
digital sensor

I2Cconnection
to host

EEG
analog sensor
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Figure 1. Proposed system architecture.

The system has a dual-core ARM processor and a programmable logic area, where
dedicated hardware cores are implemented. Both hardware and software are fully pro-
grammable, permitting to adapt the system to other applications and to upgrade already
implemented applications. An I2C interface is used to communicate with the PPG digital
sensor and a XADC (analog to digital converter from Xilinx) core is used to read the analog
data from an ECG sensor.

2. Background on Biometric Signals Processing

The underlying framework of the proposed work includes biometric techniques, EEG
and PPG, which are introduced next.

2.1. EEG

EEG is a non-invasive technique for probing the electric activity of human brain
neurons by attaching electrodes on the scalp that detect voltage fluctuations upon ion
flow [1]. Five major frequency bands can be identified in brain waves, depending on the
neural activity— delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma
(31–50 Hz) [1] —whose frequency pattern changes may denote a response to an external
stimulus, or some brain disorder. Activities such as sleeping, exercising or meditation can
also be detected in brain waves.

The positioning of electrodes is crucial for accurate signal acquisition, given the
scope of the application. The standardization is set by the International 10/20 System [2],
represented in Figure 2.

A common application of EEG is emotion classification, which maps and recognizes
patterns on features of EEG signals from different known emotions. Russell [3] defined
arousal as the metric for awareness or unawareness during an activity, and valence as the
metric for pleasure or displeasure. Both quantities are described as a 2D plane, where
arousal is in the horizontal axis and valence in the vertical axis. The resulting emotion in
each quartile is a combination of the two.

Processing the EEG signal comprises several steps, namely, noise reduction, signal
enhancement, feature extraction and classification. During the acquisition via the electrode,
the recorded signal is attenuated by skin tissues and bones but also subject to noise caused
by muscular activities, eye movements, eye blinks and cardiac signals [4]. In fact, the
normal EEG signal amplitude ranges microvolts, although a single neuron promotes
voltage changes of millivolts. Therefore, in order to remove this noise, the EEG signal is
pre-processed and its quality is improved [5]. After signal pre-processing, features are
extracted, that is, patterns are identified in order to reduce dimensional space without
losing essential information. Classification is performed by, for example, support vector
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machine (SVM), linear discriminant analysis (LDA), neural network (NN) or k-nearest
neighbor (KNN) [5].

Figure 2. Electrode-positioning standard by International 10/20 System [2]. ‘Pg’ stands for pharyn-
geal area, ‘Fp’ for fronto polar, ‘F’ for frontal, ‘T’ for temporal, ‘C’ for central, ‘P’ for parietal, ‘O’ for
occipital and ‘Cb’ for cerebellar.

2.2. PPG

PPG is an optical technique that detects blood volume changes in a microvascular
tissue [6]. PPG uses a light source for emitting light to the tissue and a photodetector for
measuring the consequent received light, by transmission or reflection, from which the
blood volume variation is estimated. The principle of PPG is as follows. During the cardiac
cycle, arteries suffer blood volume reduction when transiting from the systolic phase to
the diastolic phase. The PPG sensor detects this change optically, and its photodetector
converts the received light energy into an electrical current. A waveform can be acquired
and some physiological parameters extracted; for instance, the variability of the time
between heartbeats [7].

A PPG signal comprises two components: a pulsatile (AC), given by cardiac varia-
tions in blood volume caused by heartbearts, and a superimposed (DC), variable with
some anatomic factors, such as respiration, thermoregulation, vasomotor and sympathetic
nervous system activities [6].

The monitoring and analysis of PPG signal unveils a wide set of clinical applications,
namely, the measurement of heart rate, blood pressure, respiratory rate, blood oxygen
saturation and several vascular assessments [6].

PPG is regarded as a non-invasive and low-cost method, and can be integrated in a
portable, ready-to-use and convenient device from the user point of view. PPG sensors
can be placed on different anatomical positions, but PPG signal has higher quality at the
earlobes or fingertips [8].

2.3. Related Work

FPGA-based works aiming at emotion identification from EEG signals are emerging
in the literature. Fang et al. [9] implemented a convolutional neural network (CNN) in a
Virtex-7 FPGA for emotion detection from EEG signals from six channels. The classifier
was integrated in a complete system containing an acquisition headset and a MATLAB
program for feature extraction. Two experiments were conducted, one in real time and a
second one offline using the DEAP dataset. During the real-time experiment, the system



Algorithms 2023, 16, 141 4 of 16

took 450 ms to detect an emotion, from the acquisition node. The offline processing of
DEAP dataset resulted in a valence–arousal classification accuracy of 76.67%.

The system proposed in [9] contributes with a complete execution of the classification
process. However, the system is oriented to operate in a laboratory environment, rather
than targeting a wearable device for daily use. This is a gap in the literature of emotion
recognition, and represents an opportunity to develop a novel FPGA-based system with
this scope.

Wearable systems for biosignal acquisition and monitoring with reconfigurable tech-
nology were proposed in [10–12]. They monitor ECG, EEG, oxygen saturation and motion.
However, these systems only acquire signal data to be processed by another computing
system and are unable to make real-time decisions.

In [13], the authors proposed a hardware/software system for acquisition and process-
ing of EEG biosignals. A algorithm based on a convolutional neural network (CNN) is used
to improve the classification accuracy. A hardware accelerator is proposed to speed up
inference.When executed in a PYNQ-Z2 board with ZYNQ7020 FPGA, the system executes
an inference in 0.22 s with 3.1 W of power. The system consumes a large percentage of
on-chip memories and cannot be implemented on lower density FPGAs and only considers
one type of application.

The system proposed in this paper targets very low-density FPGAs and integrates
two types of monitoring signals. The system can be straightforwardly implemented
with a soft processor instead of hard processing to target non-SoC FPGAs with reduced
power requirements.

3. Proposed Biometric System

The proposed biometric system conceptualized in Figure 1 comprises two intellectual
property (IP) cores implementing a heart rate calculator and an emotion detector.

3.1. Heart Rate Calculator Using PPG

The heart rate calculator algorithm operates over two channels of the PPG signal,
the red (RED) and the infra-red (IR), probed by distinct LEDs and photosensors. The com-
putation of the hear rate comprises two main stages: preprocessing and periodicity search
of both RED and IR signals. The computational operations included in the first one are the
following:

1. DC mean calculation: a loop over a buffer containing N signal samples computes the
sum of their values, and then the average by dividing the accumulated sum by N.

2. DC mean subtraction: the computed average is subtracted from each channel sample
by an iterative loop.

3. Linear regression calculation: a dot product between the sample set and corresponding
shifted sample indexes is computed, then divided by a constant.

4. Linear regression subtraction: the computed value is multiplied by each shifted
sample indexes and subtracted from each channel sample.

5. Mean square calculation: the sum square of all sample values is calculated and divided
by N.

6. Pearson correlation calculation: a dot product (Equation (1)) between both channels’
samples is determined and then divided by N.

The Pearson correlation is a quality metric and denotes the linear association between
two variables—in this case, RED and IR channels. Graphically, it measures the feasibility of
drawing a line to best fit both data. Values range [−1, 1], where−1 and 1 mean, respectively,
the strongest negative and positive associations, that is, a perfect linear fit with negative and
positive slopes. The absence of the linear correlation corresponds to 0. A correlation besides
these key values means a linear association that does not fit all data. In short, the closer the
absolute value of the Pearson correlation to 1, the more linear the association between the
two variables. The Pearson correlation coefficient r is calculated using Equation (1):
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r = ∑N
n=1(xn − x̄)(yn − ȳ)√

∑N
n=1(xn − x̄)2 ∑N

n=1(yn − ȳ)2
(1)

where

• N is the number of samples;
• xn denotes a preprocessed IR sample;
• x̄ is the mean value of preprocessed IR samples, which is 0, because of DC removal;
• yn denotes a preprocessed RED sample;
• ȳ is the mean value of preprocessed RED samples, which is also 0.

A good quality signal must have a Pearson correlation equal or greater than 0.8.
Otherwise, the sample set is discarded, and a new collection is recorded.

From this stage, the algorithm initiates an iterative process of finding the signal period-
icity, via peak detection. In this step underlies the concept of autocorrelation, a function that
allows to identify patterns in a signal. More specifically, it consists of the correlation—or
similarity—between a signal and its delayed copy. As such, taking into account that PPG is
a periodic signal, this property is advantageous to determine heart rate, especially in noisy
environments, such as probing data using bio-sensors. Mathematically, the autocorrelation
R at a given delay m is the sum of the products between each sample (X(n)) and its delayed
one (X(n + m)), over all N samples of set X, shown in Equation (2):

R(m) =
N

∑
n=1

X(n)X(n + m) (2)

Figure 3 shows the result of computing the values of autocorrelation for all possible
sample delays, from 0 to N − 1, where N = 100, and after normalizing the values relatively
to the autocorrelation at delay N = 0.

0 20 40 60 80 99
-1

-0.5

0

0.5

1

1.5

2

Sample delay

Relative autocorrelation (to delay=0)

min_autocorrelation_ratio

k

Figure 3. Autocorrelation of PPG signal for different delays.

The shift k corresponding to the index of the closest local maximum matches the
number of samples containing a complete heart beat. This peak, marked in Figure 3 by
green, is sufficient to determine PPG signal periodicity. Therefore, pulse period THR is
calculated multiplying the number of samples k by the time gap between two samples, that
is, sample period Ts. This way, the heart rate is the inverse of the pulse period, represented
in Equation (3):
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HRbps =
1

THR
=

1
k× Ts

=
1

k× 1
fs

=
fs

k
(3)

where fs denotes the sampling rate, inverse of Ts. This result corresponds to beats per
second (bps), so the beats per minute (bpm) are given by Equation (4):

HRbpm =
fs × 60

k
(4)

3.2. Emotion Detector from EEG

The K-nearest neighbors (KNN) algorithm is a supervised learning classifier, meaning
that a training set containing multiple input–output data observations determines the
inference of the output of an unseen input object, the test set. In practice, KNN maps
objects into images, given a collection of previously memorized training object–image
pairs (instances). The principle of KNN is to find the K closest memorized instances to the
recently observed set of features, in other words, to find the known instances that are the
most similar to the feature set to be classified. Once the most suitable instances are assessed,
the emotion classes that each instance is associated with are registered. The modal class is
declared as the predicted emotion of the queried test set.

Measuring the similarity of training and test sets is the distance between their points,
considering that the feature sets can be viewed as arrays. This KNN version uses the
method of the Canberra distance, mathematically defined in Equation (5) as dC, where u
and v denote two points in n-dimensional space:

dC(u, v) =
n

∑
i=1

|ui − vi|
|ui|+ |vi|

(5)

The input objects of the classifier are EEG features that are normalized to [0, 1]. This
way, the distances between test and training instances are not biased by a dominant feature.
Normalization methods vary, but a common approach is the rescaling from minimum and
maximum values, as stated in Equation (6). There, x represents the whole feature set to
be normalized; xij is the j-th element of the i-th array of EEG features; and fij denotes a
normalized EEG feature. The equation applies a linear transformation to the vector space
containing the set of EEG features:

fij =
xij −min(x)

max(x)−min(x)
(6)

In short, to classify an unobserved test instance, the algorithm determines its K most
similar instances from the observed training set. This step implies two tasks: the computa-
tion of the Canberra distance, dC, between the test and every training instance, and then sort-
ing those distances to obtain the K shortest distances. The K training instances that present
more similarity with the test instance correspond to the K shortest Canberra distances. The
wider the training set, the more Canberra distances are calculated and compared, and thus
the higher the computational cost. Once the K shortest Canberra distances are found,
the corresponding K training instances are selected to proceed with the algorithm. The next
step is to register the emotion classes associated with the selected K instances, finding the
most common class. In other words, the K training instances vote for a class. The most
voted class determines the emotion prediction output. Figure 4 shows the mapping of
emotions into the Russell’s Cartesian model, where emotions are obtained combining three
levels of intensities of valence and arousal.
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Figure 4. Graphical representation of the five-emotion mapping. Blue area represents four different
emotion domains. Gray area corresponds to the neutral emotion.

4. PPG IP Core

The process of designing the PPG IP core was iterative and involved the development
of seven design iterations that gradually incorporated more algorithm functionalities inside
the core. The idea was to study the performance improvement as more operations were
added or the IP accesses were more efficiently managed. The first version corresponds
to a software-only implementation. The final version implements the operations of the
preprocessing stage, described in Section 3.1, and computes autocorrelation values, using
programmable logic components. Throughout the process, seven versions were designed.
Figure 5 depicts one of the metrics considered to compare the developed versions, showing
the elapsed time of processing a buffer containing 100 PPG samples. The reference is the
software-only implementation. The stages of preprocessing and periodicity search can be
distinguishable. This figure shows that the gradual inclusion of functionalities inside the
core decreases the execution time. Table 1 presents the improvement added for each design
iteration. The features added on each iteration can be summarized as the integration of
more operations of the algorithm in hardware and optimizing data transfers to reduce the
overall latency.

Execution times of processing a 100-sample buffer
by V1-V7 cores, compared to SW baseline

46
89

433

1182

292

841

246

711

191
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209
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SW V1 V2 V3 V4 V5 V6 V7

Version
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200

400

600

800

1000

1200

E
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Preprocessing
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Figure 5. Execution times of seven IP core versions, compared to the software baseline, after process-
ing a 100-sample buffer.
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Table 1. Main improvement added on each design iteration.

Design Iteration Description

0 software-only
1 dot-product
2 array dot-product
3 data access optimization
4 internal cache
5 linear regression, mean square and Pearson correlation functions
6 DC subtraction routine
7 DC mean computation task

The design iteration #7 is used in a further design process of defining a finite data
resolution such that the resulting error—the difference between exact and optimized
values—is acceptable for a given context. Every variable dimension must be specified,
as the ultimate goal is to design an optimized hardware solution. Allocating specific word
lengths to variables leads to a discrete range of their assigned values. An advantage of
this process is finding the optimal balance between both system precision and required
hardware resources. Most variables declared in the software implementation, of type float,
are now represented by a fixed point. This notation allows to represent a real number
with a specific amount of fractional bits and integer bits. It is implicit that a binary point
divides both parts, similar to the decimal point used in decimal numbers. A variable can
be represented by fixed-point notation as <W,I>, where W identifies the total number of
bits and I specifies the number of bits of the integer part. The number of fractional bits
corresponds to the difference W-I. In brief, the methodology consists of designing, at first,
the pessimistic version that leads to null word length conversion errors. This version
is taken as reference from which the number of bits is reduced. This means that every
variable is initially assigned a wide number of bits, determined by holding the precision of
the arithmetic operations between variables. Multiple versions were created, where most
variables were provided, at least, 12, 8, 4, 2 and 0 fractional bits. The evaluation of the
impact of progressively neglecting the arithmetic precision, by reducing the word length,
can be discussed in terms of errors, resource utilization and execution time.

To assess the accuracy of heart rate detection by the designed versions, the 2015 IEEE
SP Cup competition database [14] was used, containing wrist-type signals. This dataset
includes records of eight subjects performing physical activities, namely walking and
running. The original dataset with 1.355.776 samples was sampled at a frequency of 125 Hz,
and split into 1024-sample sets, resulting in 1324 sets (1.355.776/1024 = 1324). The dataset
was processed by the software version and optimized cores. The results showed that the
compared versions present similar absolute errors of the computed heart rates. Therefore,
precision loss over the fixed-point versions does not interfere much with the final result.
More specifically, the least conservative version (0 fractional bits) obtained only 7 results
differing from the SW baseline, out of 1324 comparisons. This means that the discarding of
the fractional bits by this version led to an accuracy loss of 0.5%, when compared to the
conservative version. A simpler core design, rejecting fractional bits, is seen as the solution
that minimizes the hardware resource usage.

5. EEG IP Core

The objective of creating the EEG IP core is to perform the classification of EEG signals
in hardware, without intervention from the CPU. The KNN classifier comprises three main
tasks. The first one is the Canberra distance computation, the second one is sorting the
computed distances, and the third one is the translation of the shortest distances into a
predicted emotion. The candidate tasks to be integrated into a hardware specification are
the calculation of distances between test and training instances and the retrieval of the K
shortest values. The assessment of the emotion class does not execute significant processing
tasks, and thus it may be assured by software-only instructions. This section addresses
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the implementation of the module that receives instances of feature sets to output the K
nearest ones.

The approach to tackle the problem is to design two independent IP cores imple-
menting each task. This design concept implies that an output channel of the first core
is connected to an input channel of the second core. The block diagram of the core,
EEG_CALCDIST, is depicted in Figure 6. The module that computes distances is simplified
by a green box named Canberra. The diagram allows to visualize the data flowing from the
incoming stream channel down to the output port. In the hardware perspective, 8 Canberra
blocks are instantiated so that partial distances can be computed in parallel and added to
an accumulator.

Canberra ... (x8)
(x8)

+

distance

DEMUX1

stream
IN

training test

Canberra

stream
OUT

8

64

...

(x20)
......

MUX1

ctrl1

ctrl2

ADD1

/   64

/   64 /   64

/   8 /   8 /   8 /   8

/   16

/   8

Figure 6. Block diagram of calculate distances core.

Canberra boxes implement the computation of a partial distance between two features.
In other words, given two arrays, x and y, a partial result is the distance between xi and
yi, regarding a specific arrays’ dimension i. To obtain a Canberra distance, this box must
iterate over two complete test and training arrays. Then, the final result is the sum of
all terms.

In more detail, the Canberra boxes implement the logic written in Figure 7. It consists
of the computation of a partial distance between two features. In other words, given two
arrays, x and y, a partial result is the distance between xi and yi, regarding a specific arrays’
dimension i. To obtain a Canberra distance, this box must iterate over two complete test
and training arrays. Then, the final result is the sum of all terms.
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input: featureTest, featureTraining
output: partialDistance
begin
num $\gets$ $|$ featureTest - featureTraining $|$
den $\gets$ featureTest + featureTraining
if den $=$ 0
partialDistance $\gets$ 0
else
partialDistance $\gets$ num / den
end
return partialDistance
end

Figure 7. Pseudo-code of Canberra block.

The second module of the EEG IP core is the EEG_SORTDIST, designed to sort the
outcome of EEG_CALCDIST. A possible method to sort distances is to pass the input values
through all memory elements, comparing the distances to the stored values. The idea
is to, at each memory address (cell), update or hold the stored value, depending on its
comparison to the received value. If the received distance is less than the distance stored at
a given cell, the cell is updated. Before being overwritten, the stored value is passed to the
next cell. Otherwise, the stored value is held, and the input value is propagated to the next
cell, where the logic repeats. This iterative procedure can be seen as a chain, or an array,
transferring values between adjacent cells, or elements. This logic guarantees that, for each
received distance, a precise number of instructions is executed to complete an iteration of
the insertion sort. The design diagram of sort distances core is depicted in Figure 8.

This provides a graphical view of the datapath that implements the insertion sort of
distances and indexes.

In parallel, the control logic represented by ctrl is also taken to manage indexes
memory, represented by a purple chain, on the bottom half of Figure 8. Whenever a
distance_i is updated, index_OUT carries the value stored in index_i, and index_i is
pushed the value passed by index_IN. Otherwise, index_i holds the same value and
index_OUT pushes index_IN. Once the insertion sort algorithm is completed, the values
stored inside each index_i register are transferred via an AXI4-Lite interconnection.
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<

   distance_i

...stream
IN (x21)

MUX1

MUX2

   index_i

... (x21)

MUX3

MUX4index_IN

ctrl

distances

indexes

COMP1

ctrl

dist_OUTdist_IN

index_OUT

/
16

/
16

/
10

Figure 8. Block diagram of sort distances core, inspired from [15].

6. HW/SW Implementation

The proposed system is demonstrated using the ZYBO development board and the
custom hardware, which includes designed IP cores. ZYBO is a low-cost board containing
the Zynq-7010 All-Programmable SoC, and features a 650 MHz dual-core ARM Cortex-A9
processor.

6.1. Embedded Software

Embedded software targeting the created hardware design is required to coordinate
the IP cores with the software instructions and to control specific accesses to the device.
The embedded software application is developed using the Vitis IDE tool and run by the
processing system. The application coordinates software instructions with IP core calls,
being responsible for several tasks, such as the following:

• Specifying the memory addresses and IP core interfaces where data is loaded or
retrieved;

• Enabling data transfers through Direct Memory Access (DMA);
• Triggering the execution of the cores;
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• Executing software-only instructions;
• Measuring the execution time of IP cores and pieces of code.

6.2. Block Diagram

A block diagram containing the final arrangement of the involved components inside
the biometric system is represented in Figure 9.
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Figure 9. Block diagram representing the integration of the biometric system, obtained in Vivado IDE.
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The Zynq’s PS, located at the bottom right of the diagram, is the diagram’s main block.
This component is the software interface responsible for managing the data flow between
the cores.

The AXI buses are represented by two AXI Interconnect blocks connected to the HP
ports of the PS. These blocks establish a bridge between PS and PL ports. In the diagram
of Figure 9, AXI Interconnects link the PS HP ports to the AXI4-Stream port of AXI direct
memory access (DMA) blocks located in the PL. Additionally, AXI connects the PS GP ports
to the AXI DMA AXI4-Lite ports.

AXI DMA provides a direct high-bandwidth access to the external memory for a
AXI4-Stream port. This feature allows to transfer volumes of data without the control
of the PS, speeding up data transfers. The block diagram contains two AXI DMA block
with different configurations. The bottom one provides a one-way channel to transfer EEG
features from the memory to the EEG_CALCDIST IP core via AXI4-Stream. The top AXI DMA
block is a two-way channel that allows the transfer of PPG samples from the memory to
the PPG IP core but also to return the PPG IP core’s products to the PS.

6.3. Hardware Resources Utilization

The hardware resources consumed by the integrated system are listed in Table 2.
The utilization rates are reported to the available resources of the Zynq-7010 PL. Some
observations can be highlighted:

• LUTs are the most used resource, with a 51% occupation rate, when compared to FF
(30%), DSP (20%) and BRAM (14%);

• The EEG_CALCDIST IP core takes 32% of the used LUTs and 31% of the used FFs;
• DSPs are only occupied by the PPG IP core;
• The three custom IP cores represent 60% of the consumed LUTs, 53% of the FFs, 47%

of the BRAMs and 100% of the DSPs, and this shows that DMA and AXI peripherals
demand significant hardware resources;

• Overall, the Zynq is not fully occupied, which means that further functionalities may
be added to the biometric system.

Table 2. Hardware resources used by the complete monitoring system.

Group Block Name LUT FF BRAM DSP

ppg_stream1_0 1319 995 2 16

PPG ps7_0_axi_periph_1
sub-system axi_dma_1 2409 3318 3 0

axi_mem_intercon_1

eeg_calc_dist_0 2913 3307 1 0
EEG eeg_sort_0 1225 1325 1 0

sub-system ps7_0_axi_periph_0
axi_dma_0 1101 1549 1.5 0

axi_mem_intercon_0

Processing processing_system7_0 0 0 0 0
system rst_ps7_0_100M 16 33 0 0

Total used 8983 10,527 8.5 16
(Zynq-7010) Total available 17,600 35,200 60 80

6.4. Acceleration Results

The processing of raw PPG signals by the PPG sub-system comprises two main
stages: preprocessing and periodicity search. The first stage is executed by the designed
IP core, present at the PL. The second stage is executed by the PS and recurring calls
of the IP core. Table 3 shows the total elapsed time of a complete execution of the PPG
algorithm, discriminating the split times of both stages. The times are referred to input
PPG signals comprising two buffers of 1024 16-bit samples. These buffers are shared
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with the channels of an optoelectronic sensor that collects PPG data. The values of the
table include the application of O0 and O3 optimizations. Regarding the non-optimized
versions, the embedded system (HW/SW O0) outperforms the results of the software-only
version (SW O0). The overall execution time was reduced by 64%, while the preprocessing
and periodicity search stages were respectively reduced by 86% and 58%. These values
correspond to a speedup ranging between 2.4 and 7.4. The O3 optimization applied to
the HW/SW design (HW/SW O3) increased the overall execution time of the equivalent
software-only (SW O3) by 58%. This is due to the 90% increase in the execution time of
the periodicity search stage. However, the preprocessing stage is outperformed, and its
execution time reduced by 50% (speedup of 2 times).

Table 3. Execution times (µs) obtained by software-only and HW/SW implementations of the
PPG sub-system.

Processing Stage
SW HW/SW (Speedup)

O0 O3 O0 O3

Preprocessing 451 99 61 (7.4) 48 (2.1)
Periodicity search 1709 340 722 (2.4) 645 (0.53)

Total 2160 439 783 (2.8) 693 (0.63)

The EEG embedded system is a KNN classifier composed by a pair of IP cores, dedi-
cated to the calculation and sorting of Canberra distances between sets of EEG features.
Because of the direct connection between first core’s output and second core’s input, the PS
does not interact with the results obtained by the first core. Therefore, the measurement
of the execution time of calculation and sorting stages is performed jointly. The PS is
responsible for assessing the classification given the results produced by the IP cores pair.
Table 4 summarizes the execution times of the processing steps, applied to optimized and
non-optimized implementations. The high number of operations to be executed over a
memory (training set) containing 1024 sets of 160 EEG features created an opportunity for
acceleration via HW. The results show that the HW/SW co-design outperforms the SW-only
O0 baseline by 100 times and the O3 version by 40. The problem of calculating distances
was approached by launching eight instances of Canberra blocks to execute in parallel the
correspondent arithmetic instructions. Moreover, the sorting task was unlocked by the
concept of a chain of sorting cells through which data (distances) propagated continuously.

Table 4. Execution times (µs) obtained by software-only and hardware/software implementations of
the EEG sub-system.

Processing Stage
SW HW/SW (Speedup)

O0 O3 O0 O3

Distances calculation 24,130 8593 235.4 217.9

Distances sort 896.6 309.6 (100) (41)

Classification 1.67 0.51 14.67 (0.11) 4.23 (0.12)

Total 25,028 8903.3 250.03 (100) 222.22 (40)

6.5. Prototype Concept

To build an operational prototype, besides the PPG and EEG IP cores, it is necessary to
develop an additional block that processes raw EEG signals and obtains EEG features. This
block, called “EEG preprocessing”, works as a digital signal processor (DSP) integrated in
the PS, for instance. Taking into account that EEG signals are collected by analog sensors,
an analog-to-digital converter is also required. Moreover, a connection to the sensors and a
connection to a Bluetooth module to support wireless communication must be established.
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This technology presents low power consumption, being advantageous for transferring
reduced data buffers in the proximity of a host computer or mobile phone. Assuming that
a user’s heart rate is computed each second and their emotional state is assessed every five
seconds, it means that, per second, the following are sent:

• 1 byte representing a 8-bit heart rate value;
• 3

5 bytes corresponding to emotion classes of 3 bits.

In this example, the prototype throughput is 1.6 bytes per second.
The biometric sensors recommended to be used are the Maxim Integrated MAX3010x

(MAX3010x webpage: https://www.maximintegrated.com/en/design/technical-documents/
userguides-and-manuals/6/6409.html; accessed on 5 January 2023.) and Olimex’s passive
EEG electrodes (EEG-PE webpage: https://www.olimex.com/Products/EEG/Electrodes/
EEG-PE/; accessed on 5 January 2023.). MAX3010x is a low-cost pulse oximeter operated
by light reflection, thus enabling PPG digital signal acquisition.

7. Conclusions

The main goal of this work was to design and implement an efficient wearable HW/SW
embedded system to accelerate the execution of a heart rate calculator and an emotion
classifier. The design process involved several iterations, in which the architecture was
improved for performance. Furthermore, it addressed the implementation of an efficient
and compact implementation of a kNN classifier.

The classification of a single emotion by the proposed EEG sub-system outperformed
the software benchmark by 40 times. However, the results showed that the proposed
PPG sub-system executed the preprocessing stage two times faster than the software-only
system and performed the periodicity search two times longer.

Regarding the hardware utilization, the proposed biometric system is feasible to be
implemented with the resources available in the targeted platform. The occupation of a
low-end/low-cost programmable logic device, the Zynq-7010 was only 36%.

There is room for upgrading the developed IP cores and for implementing additional
processing modules. The IP cores were designed to be reused in further monitoring systems.
The PPG IP core may be integrated in different algorithms besides heart rate calculation.
For instance, the specification of the preprocessing task can be exploited in multiple PPG-
based applications. Moreover, the EEG IP core is prepared to process data from up to
32 EEG electrodes, supporting the implementation of multi-channel systems in portable
devices. This work is a starting point of the development of more complex biometric
systems that may offer autonomy, portability and high processing capability for wearable
monitoring devices.

Future Work

A possible improvement regarding the EEG sub-system is the development of a
processing module of EEG signals. This module would handle the preprocessing stage,
which includes noise removal, signal enhancement and decomposing the signal into the
major frequency bands to extract the relevant patterns. The preprocessing module returns
the EEG features that are loaded into the KNN classifier.

The results obtained by the developed PPG IP core suggest a future improvement of
the PPG sub-system. The algorithm’s routine of detecting the peak of PPG signals alternates
between control instructions and the computation of autocorrelation values. This behavior
explains the deceleration obtained by the PPG IP core. An alternate approach would be
to start by tackling the computational tasks necessary to obtain autocorrelation values,
followed by the execution of the control instructions. This would allow the execution of the
autocorrelation function concurrently and leaving the peak detection for a later stage.

https://www.maximintegrated.com/en/design/technical-documents/userguides-and-manuals/6/6409.html
https://www.maximintegrated.com/en/design/technical-documents/userguides-and-manuals/6/6409.html
https://www.olimex.com/Products/EEG/Electrodes/EEG-PE/
https://www.olimex.com/Products/EEG/Electrodes/EEG-PE/
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