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Abstract: The very good results achieved with recent algorithms for image classification based on
deep learning have enabled new applications in many domains. The medical field is one that can
greatly benefit from these algorithms in order to help the medical professional elaborate on his/her
diagnostic. In particular, portable devices for medical image classification are useful in scenarios
where a full analysis system is not an option or is difficult to obtain. Algorithms based on deep
learning models are computationally demanding; therefore, it is difficult to run them in low-cost
devices with a low energy consumption and high efficiency. In this paper, a low-cost system is
proposed to classify skin cancer images. Two approaches were followed to achieve a fast and accurate
system. At the algorithmic level, a cascade inference technique was considered, where two models
were used for inference. At the architectural level, the deep learning processing unit from Vitis-AI
was considered in order to design very efficient accelerators in FPGA. The dual model was trained
and implemented for skin cancer detection in a ZYNQ UltraScale+ MPSoC ZCU104 evaluation kit
with a ZU7EV device. The core was integrated in a full system-on-chip solution and tested with the
HAM10000 dataset. It achieves a performance of 13.5 FPS with an accuracy of 87%, with only 33k
LUTs, 80 DSPs, 70 BRAMs and 1 URAM.

Keywords: deep learning; smart health; cascade inference; FPGA

1. Introduction

Convolutional neural networks (CNNs) achieve very good results in image clas-
sification, which opens new areas of applicability not possible with previous machine
learning algorithms. The medical domain is one where high accuracy is fundamental;
therefore, the good accuracy of CNNs can help the medical professional to elaborate on
their diagnostic [1].

The analysis of healthcare data in remote scenarios depends on the availability of
communication bandwidth, network reliability, and data security. To address these lim-
itations, portable low-cost devices for medical image classification are useful whenever
using a central server for data analysis is not an option. The deployment of deep learn-
ing models on handheld medical devices allows for real-time clinical insights toward a
broader population.

Accurate deep learning models are very computational and memory-demanding and
therefore hard to design in low-cost embedded systems with scarce resources. Different
approaches were followed to run accurate deep learning models with an acceptable runtime
on resource-constrained devices. One line of research consists of reducing the number and
complexity of operations using data quantization [2] and data reduction or pruning [3].
Data quantization considers custom representations for the weights and the activations
to reduce memory and computational footprints. Instead of using a single-precision
floating-point to represent parameters and activations, data are converted to small custom
floating-points, like 8-bit floating-points [4], fixed-points or integer representations with
only a few bits. Data pruning reduces the number of parameters and operations by pruning
some parameters or filters with a minimal accuracy impact. While effective, pruning
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introduces sparsity, which is hard to deal with in hardware, while quantization keeps
the processing regularity but requires computing all operations. Another line of research
consists of using a less complex model by trading complexity for accuracy.

In this work, a cascade inference technique was explored in order to reduce the compu-
tational requirements of deep learning models for image classification while keeping a high
accuracy. The method considers two convolutional neural network models. One model has
a lower complexity but is less accurate than the other. For most images, the classification
can be accurately determined with the less complex model. When the model is unable
to classify the image with a particular certainty, the more accurate model is used. Thus,
the large model is only used for a subset of images that are harder to classify.

The idea of considering a cascade of classifiers with incremental complexity was
proposed for real-time face detection [5]. In this work, several classifiers with different
performances were cascaded. The prediction confidence of a particular classifier determines
the execution of the next. In the case of a high prediction confidence, it stops. Otherwise,
the next more confident classifier is used. In the context of convolutional neural networks
(CNNs) for image classification, Kouris et al. [6] proposed a two-stage cascade CNN.
The most accurate CNN is trained and the less accurate model is obtained from the first
using dynamic data quantization. For each image, the system runs the inference with the
less accurate model. Images not classified with a high confidence are sent to the second
most accurate model. The architecture requires device reconfiguration, which is expensive
in terms of performance. In [7], a multi-model inference was applied to binarized neural
networks using a configurable CNN model. These works have shown good results using
cascade classifiers.

To further improve the execution time and the energy consumption, a dedicated
hardware accelerator in field-programmable gate arrays (FPGAs) is considered for the
design of the system. FPGAs allows for the design of customized architectures in order to
run deep learning models. Several FPGA-based designs for CNNs have been constructed
for high-performance systems [8] and embedded systems [9]. All of these solutions use
data quantization to reduce the hardware footprint, with minimal accuracy degradation.

Mapping CNN models on FPGAs is a difficult task; therefore, many tools [10] have
been proposed to help in this task. A recent tool, Vitis-AI from Xilinx (https://github.
com/Xilinx/Vitis-AI, accessed on 22 January 2023), was deployed to map neural network
models on FPGAs using a configurable deep learning processing unit (DPU). The DPU
is configured with the resources necessary to run the model and the model is optimized
and compiled to run in the DPU. The Vitis-AI flow provides a fast way to deploy CNN
accelerators in FPGAs, allowing the designer to explore different models and different
hardware architectures to find an improved solution.

In this paper, we considered a dual-model inference technique that uses two different
network models to classify skin cancer images. One of the models is more accurate,
whereas the other is less complex. All images are classified with the less complex and less
accurate model. Then, a confidence predictor determines which images were classified
with insufficient confidence. These are sent to be classified by the second model. With a
good confidence predictor, the method provides a faster classifier with a final accuracy
close to that achieved by the most accurate model. Several model pairs were tested and a
dual-model based on ResNet [11] was chosen. The dual model was designed and tested in
FPGA using the Vitis-AI flow. Several architectures were tested with different throughputs
and accuracies.

The final system was implemented in a ZYNQ UltraScale+ MPSoC ZCU104 evaluation
kit with a ZU7EV device. The smaller design has a classification throughput of 13.5 FPS
with an accuracy of 87%, with only 33k LUTs, 80 DSPs, 70 BRAMs and 1 URAM.

The main contributions of this work are:

1. Tool for dual-model design: an automatic tool for generating a dual-model infer-
ence solution. It receives two trained models and determines the entropy threshold,
constrained by the accuracy tolerance, and estimates of the accuracy and speedup;

https://github.com/Xilinx/Vitis-AI
https://github.com/Xilinx/Vitis-AI
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2. Vitis-AI integration: the integration of the dual-model inference with Vitis-AI. It
automatically quantizes the solutions, compiles both models, and generates the
runtime application;

3. Design space exploration with ResNet: a systematic design space exploration of
ResNet models by changing the repetition pattern of layers and the number of filters
and resizing the input;

4. System for skin cancer classification: a low-cost implementation of a system for skin
cancer classification with a high accuracy.

The paper is organized as follows. Section 2 introduces the background and related
work. Section 3 describes the dual-model design. Section 4 presents the results of the
proposed system for skin cancer classification. Finally, Section 5 concludes the work.

2. Background and Related Work
2.1. Convolutional Neural Networks

A convolutional neural network (CNN) is a type of deep neural network used to ana-
lyze images. It has been applied successfully for image classification, image segmentation
and object detection.

The main layer of a CNN is the convolutional layer. Given a set of input maps, the con-
volutional layer runs the convolution of several kernels of weights of size (nout, inz, kxy, kxy)
and a bias vector of size (1, nout), where nout is the number of different filters, inz is the
depth of each filter, equal to the depth of the input image, and kxy is the size of the filter.

Each convolution between one kernel and the input maps generates an output map.
After running the convolution with multiple kernels, the result is a 3D map of size
(nout, nyin − kxy + 1, nxin − kxy + 1).

The behavior of each convolutional layer can be modified by two parameters: the
stride and the padding. The stride determines the sliding size of the convolution; that is,
the number of input pixels that each kernel slides over the map. In a normal convolution,
where the filter slides through all input pixels, the stride is one. The stride is used to reduce
the size of output maps relative to the size of the input map. Padding is used to preserve
the size of the output map. One form of padding adds zeros at the border of the image.

Convolutional layers are used to extract features of an image. These features are
then forwarded, for example, to a classifier to determine the class that the image belongs
to in image classification problems. This classifier is usually implemented with a dense
layer that determines the matrix multiplication between a matrix of weights, w, of size
(nin, nout), and the input map flattened to a vector of size 1× nin followed by an addition
with a bias vector, b, with size (1, nout). Its output function is A(x.w + b), where A(·) is an
activation function.

Equation (1) illustrates the multiply and accumulate operation required to calculate
the nout outputs.

outj =
nin

∑
i=1

xi · wij + bj, out ∈ Rnout (1)

An important operation of deep neural networks is batch normalization [12], a method
used to accelerate the training of the neural network model. It normalizes the layer inputs
to a mean of 0 and variance of 1, and then scales and shifts the normalized inputs with
learnable variables, γ and β.

During training, the training dataset is partitioned into batches. Batch normalization
estimates a vector of means, µ ∈ RN , and a vector of variances, σ2 ∈ RN , for each channel
of the input image for each batch. The input shape will be (M, C, Y, X), where M is the
batch size and C is the number of X×Y planes.
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First, as seen in Equation (2), where I represents the inputs, X×Y values are averaged
per channel, resulting in an I, shaped as (M, C). Then, the mean and variance values are
calculated using Equations (3).

I(m, c) =
1

X.Y

Y

∑
i=1

X

∑
j=1

I(m, c, i, j) (2)

µ(c) =
1
M

M

∑
i=1

I(i, c)

σ2(c) =
1
M

M

∑
i=1

(I(i, c)− µ(c))2

(3)

The mean and variance determined during training are used to normalize, scale and
shift the inputs according to Equation (4), where γ and β are the variables learned during
the training process and ε is a small constant value, commonly 10−5, used for numerical
stability [12].

Î =
I − µ√
σ2 + ε

IBN = γ · Î + β

(4)

Another common layer is the pooling layer that is used to downsample the input
maps, reducing the size of the next input channels, with the same effect of the stride. Each
window of a set elements of an input channel is replaced by the maximum (maxpooling) or
the mean (average pooling) of all elements of the window.

2.2. Mapping CNNs on FPGAs

Several custom designed FPGA accelerators have already been proposed in the past
using hardware description languages with very efficient core units. In [13], a CNN
accelerator with an average performance of 400 GFLOPS was implemented in a low-density
ZYNQ7020 FPGA. These handwritten hardware accelerators are very efficient in terms of
performance and energy. However, the design of hardware accelerators using hardware
description languages to run a deep learning model is a time-consuming task and difficult
to redesign for other network models.

To avoid these long design times, designers started using high-level synthesis (HLS),
which allows for the generation of hardware descriptions from the high-level specification
of the algorithm in a programming language, like C, C++, OpenCL. Examples include the
Xilinx Vivado HLS and the Intel FPGA OpenCL SDK.

Convolutional neural networks are well-defined structures with well-defined config-
urable layers. This regularity permits the development of domain-specific tools to map
CNN on FPGA and the exploration of the design space.

The framework DNNWEAVER [14] automatically generates a Verilog description of
an accelerator given a neural model and a target FPGA. The model is specified in Caffe [15]
and the Verilog description uses hand-optimized templates. The framework includes an
optimization tool to reorganize and batch the model operations to improve the utilization
of internal resources of the FPGA.

fpgaConvNet [16] is another framework that automatically maps CNNs onto FPGAs.
The tool receives a high-level description model in a custom representation and maps the
layers in a streaming architecture with one processing unit per layer. It considers the most
common type of layers, like convolutional, dense and pooling, and accepts application
constraints, including throughput and latency. DeepBurning [17] follows a similar structure
but, instead of a fixed schedule generated at compile time, like in fpgaConvNet, it requires
control logic to dynamically schedule the operations.
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FINN [18] was designed by Xilinx and supports the automatic mapping of neural
models onto ZYNQ SoC FPGAs. The tool generates a streaming architecture in HLS and is
particularly efficient for the design of low-quantization network models. The computing
resources per layer can be customized to specific throughput requirements of the designer.

ALAMO [19] is a compiler that produces a configurable accelerator for the sequential
implementation of layers in both FPGAs and application-specific integrated circuits (ASICs).
The compiler automatically integrates computing primitives that accelerate the operations
of deep neural models. It also optimizes the throughput for a given resource constraint.

HLS4ml [20] is an open-source software–hardware workflow used to automatically
implement DNNs in FPGA or ASIC. The flow includes optimization techniques, like
quantization and pruning, whose outcomes are supported by the automatic mapping on the
target technology. The last version extends the tool to consider low-power implementations
and a better reusability of the hardware. The designer controls the type of implementation
to be generated, parallel or serial, and different precisions of the model are allowed.
The performance, latency and resource utilization are the metrics considered in the design
of the accelerator.

Vitis-AI (https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html, accessed
on 22 January 2023) is a development platform for Xilinx devices used to generate an ac-
celerator for the inference of deep neural network models. It supports models specified
in Pytorch, TensorFlow and Caffe. The approach considers a specialized configurable
hardware core that supports the sequential execution of the most common layers. A set of
custom instructions are used to dynamically configure the core to fit the specific needs of
each layer. For this purpose, Vitis-AI has a compiler tool that transforms a neural network
inference into a sequence of instructions. The communication between the core and the
software is headed by a run-time application.

In this work, the objective is to design a low-area architecture. Therefore, streaming-
like solutions are not an option since they occupy too much area and memory. Instead,
a single configurable accelerator should be used. In addition, the solution should be
flexible enough to allow for the execution of different models. Considering this, the Vitis-AI
platform was adopted due to its flexibility and ease of utilization, the possibility to design
different architectures with different performance–area ratios based on a single configurable
accelerator and its support for Pytorch, the training framework adopted.

2.3. Skin Cancer Detection Using Deep Learning

The most common type of cancer is skin cancer, and it is spreading [21]. Detecting
skin cancer at an early stage increases the survival rate to around 97% [22]. The medical
procedure for skin cancer detection is time-consuming and aggressive to the patient when
lesions must be biopsied [21].

Recently, AI-based algorithms have brought significant contributions to medical di-
agnosis; in particular, those based on medical imaging. Recent techniques, such as der-
moscopy, have improved the visualization of lesions, improving the accuracy with which
dermatological diagnosis are made. Many applications based on deep learning are already
used to detect breast cancer, lung cancer, skin lesions, etc.

A dermatologist follows a sequence of steps to diagnose skin cancer, from direct
observation to a biopsy. However, this is a time-consuming process that compromises an
early cancer detection [23].

Image classification with deep learning has therefore been applied to help the medical
diagnosis. Popescu et al. [24] considered several CNN-based models to classify images
in the HAM10000 dataset. Each individual output is combined into a decision fusion
module. The results report an accuracy of 86.71%, 3% higher than the best individual
model. The better accuracy has a high cost in terms of computing resources and energy
and, therefore, is not appropriate for portable devices. Srinivasu et al. [25] proposed a
deep-learning model as a combination of MobileNet and a long short-term memory model.
The combined model achieved an accuracy of 85% on the HAM10000 dataset.

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
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In [26], Khan et al. considered a mask recurrent neural network and a pyramid neural
network to classify images from the HAM10000 dataset, with a precision of 87%. The work
was improved to an accuracy of 90.7% [27] using a color-controlled histogram, a new
saliency segmentation technique with a CNN. Finally, a kernel extreme learning machine
classifier was used.

Karl and Enrique [28] also considered the skin cancer identification problem. The
solution applies transfer learning to a CNN, obtaining a validation accuracy of 87.8%.
Saket et al. [29] used the MobileNet model and transfer learning to classify HAM10000
images, with a final accuracy of 83.1%. Ameri et al. [30] and Khushi et al. [31] also consid-
ered deep learning and transfer learning for skin cancer classification. The second only
distinguished between melanoma and non-melanoma images, instead of classifying among
the seven possible classes of HAM10000.

In general, deep neural models and transfer learning are used to train models for
skin cancer classification. Most solutions have an accuracy of around 87%, with lower-
complexity models such as MobileNet achieving 85% and more complex models achieving
almost 91%.

In this work, the family of ResNet models was considered and explored in order to
implement the classification problem with incremental inference. However, other models
could be considered, such as MobileNet. The proposed incremental inference can also
be run with different models. For example, a MobileNet could be used for the lowest
complexity model and a ResNet for the more accurate model.

2.4. Vitis AI

The Vitis AI development environment includes optimized IP cores, tools, libraries
and pre-trained models. It is designed for a high design efficiency and ease of use in order
to unleash the full potential of AI acceleration on Xilinx FPGAs. With Vitis AI, the network
intended for implementation on the FPGA can be quantized and pruned.

Vitis-AI compiles the model to be implemented in a programmable engine (DPU—
deep learning processing unit) dedicated to the acceleration of the inference of a neural
network (see Figure 1).

AI Optimizer 
(optional)

Custom 
Hardware 

Design

AI Quantizer

AI Compiler

Custom 
Hardware 

Design

FPGA

Pre-trained 
Floating-point 
Model

DPU 
Instructions

Hardware 
Configuration

Vitis-AI Vivado

Figure 1. Project flow using Vitis-AI.
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Vitis-AI receives a pre-trained model and applies quantization (8-bit fixed-point).
Pruning can also be applied optionally. The quantized model is then compiled to the target
DPU architecture to generate an executable to run in the DPU. The hardware/software
system architecture with the DPU can be designed in the Vivado or Vitis frameworks.

Several parameters of the DPU can be configured to meet the performance require-
ments of different applications. This reduces the space occupied by the FPGA as much as
possible. The set of parameters includes:

• Number of cores: A DPU instance can include up to four different cores. The greater
the number of cores, the greater the implementation performs, but the amount of
resources used increase accordingly;

• Architecture: Different types of architectures based on the level of parallelism. A num-
ber of designs are available based on the number of operations that they can perform
per clock cycle: B512, B800, B1024, B1152, B1600, B2304, B3136 and B4096. This
value is directly correlated with the level of parallelism. In particular, the higher the
parallelism, the higher the number of executable operations and necessary resources;

• RAM usage: To increase performance, on-chip RAM memory is used to store weights,
bias, and intermediate results. When instantiating the DPU module, it is possible to
choose the amount of RAM that will be reserved for the CNN. This can be done by
selecting between the high RAM usage and low RAM usage option;

• Channel augmentation: An approach that exploits the fact that, in some models,
the number of input channels is lower than the parallelism between the channels in
the architecture. By enabling this option when this condition is met, the performance
can be improved at the cost of using more resources;

• Depth-wise convolution: With standard convolution, each input channel needs to
perform some operations with one specific kernel. Then, all of the results of all of
the channels are combined to obtain the final result. When depth-wise convolution
is enabled, the convolution operation is split into two parts: depth-wise and point-
wise. The former allows for processing the input channels in parallel, whereas the
latter performs convolution with a 1 × 1 kernel. This combines the results of the
previous step to obtain the final value. With this approach, the parallelism of the
depth-wise convolution is lower than that of pixel parallelism, allowing for more than
one activation map to be evaluated per clock cycle.

DPU implementations can be customized to find the best balance between resources
and performance by combining the above features. As soon as the configuration process
is complete, it is necessary to save the enabled options so that the compiler can correctly
select the instructions. This step is automatically performed after the synthesis of the DPU.

2.5. Embedded Systems for Portable Health Devices

Portable health devices are changing people’s lives by providing a monitoring and
prevention tool [32]. The recent advances in deep learning and its applicability in the health
domain have changed these health devices from passive, monitoring solutions to smart
active real-time analysis of many health aspects. Running complex and accurate models on
embedded and portable systems is challenging. In addition, many of these solutions must
be customized to the users’ needs. Therefore, it is important to provide accessible tools and
devices that allow for the deployment of smart custom health devices.

The system proposed in this paper is an effort made toward this type of solutions.
It proposes a solution to increase the classification throughput while keeping the high
accuracy, and a user-friendly design tool to design and map the dual model in an FPGA for
a low-cost, low-power custom embedded solution.

3. Dual-Model Design

The objective of using two models incrementally during inference is to have a system
with a performance and energy consumption close to that of the smaller model and an
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accuracy close to that of the larger model. The pair of models determines the performance,
energy and accuracy of the final system.

An important component of the dual-model inference is the confidence predictor,
which determines the confidence of image classification. An image classified with low
confidence needs to be classified again with the more accurate model. The confidence
predictor requires a function to determine the confidence of a classification and a threshold
that establishes the border between confident and non-confident.

Some works consider the softmax output probabilities and calculate the difference
between the highest probability and the accumulation of a subset of the remaining proba-
bilities to assess the confidence of the model outcome [6]. This metric, however, is relatively
weak in determining the robustness of the model. Instead, entropy is considered to be a
more robust metric [33]. Both methods were analyzed and tested in the context of this work
and the entropy metric provided better results. In addition, calculating the entropy for a
small set of classes is quick.

In this work, the confidence of a classification, con ftop1, was calculated as the absolute
value of the entropy of the probability output array of the final layer as follows:

Con ftop1 = | −∑
i

pi × log(pi)| (5)

where pi is the probability associated with a class. The classification of an image is con-
sidered confident if Con ftop1 ≤ thentropy, where thentropy is the entropy threshold of the
confidence. The threshold determines the ratio between the accuracy and inference runtime.
As the threshold is reduced, the number of images that need to be classified with the more
accurate model increases, which increases the accuracy of the dual model. However, since
the more accurate and slower model is executed more times, the average runtime of the
dual-model inference increases.

Given a pair of models and an accuracy tolerance, Tacy (relative to the accuracy of
the most accurate model), a tool was developed to find the confidence threshold with an
accuracy within the accuracy error and a lower inference runtime. The final dual model
should be faster and within the accuracy tolerance.

The tool developed in Python receives two trained models with different accuracy
levels and the accuracy range. It then finds the fastest multi-model configuration with an
accuracy within the accuracy range, according to the design flow illustrated in Figure 2.

The design flow has the following steps:

1. Trained Models—The models are previously trained;
2. Set minimum entropy threshold—The minimum initial entropy threshold and the

entropy increment are defined. As explained above, this threshold is used by the
confidence predictor. In this work, both parameters were initialized at 0.1;

3. Run dual inference—The dual-model inference is run with the entropy threshold
set previously. The task runs the inference with the smaller model and the training
dataset. For each sample, it finds the entropy. If the entropy is higher than the entropy
threshold, it runs the second model. This process allows us to determine the accuracy
of the dual model;

4. Determine accuracy—The accuracy corresponds to the number of samples correctly
classified by the first model and by the second model, whenever it runs, divided
by the total number of samples. If the accuracy is within the accuracy tolerance,
the entropy threshold is increased by 0.1 and the process repeats;

5. Estimate speedup and accuracy—The speedup is estimated as follows:

M2OPS
M1OPS + M2OPS × S2

where MXOPS is the number of operations of the model, and SX is the percentage of
inputs executed by model X. The accuracy is given by the previous step.
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Set minimum 

entropy threshold

Run dual inference

Determine 

Accuracy

< Tacy
Increase entropy 

threshold

Estimate dual-model 

speedup and 

accuracy

Trained models

Speedup Accuracy

Figure 2. Design flow used to find the best dual model.

4. Results

The dual-model design flow was integrated with the Vitis-AI platform. The deep
learning framework used was Pytorch, with all code developed in Python. The tool
was then applied to the design of an FPGA-based system for skin cancer classification.
The models were trained in an NVIDIA RTX2080Ti GPU with 12 GB of memory, and the
system was implemented in a ZYNQ UltraScale+ MPSoC ZCU104 evaluation kit with a
ZU7EV device.

4.1. HAM10000 Dataset

The training of neural networks for the automated diagnosis of pigmented skin lesions
is hampered by the small size and lack of diversity of available dataset of dermatoscopic
images. It was decided to use the HAM10000 dataset [34] as it consists of a collection of
dermatoscopic images from a variety of populations, acquired and stored through various
methods. Upon completion, the final dataset consists of 10,015 dermatoscopic images,
which can be used for academic machine learning experiments. In addition, it is the dataset
used in most of the previous works about this subject.

In more than half of the cases, histopathology confirms the diagnosis, and, for the
remainder, follow-up examination, expert consensus or in vivo confocal microscopy was
used [34].

Additionally, the dataset includes a metadata file where each case is identified by a
diagnosis representation, which includes all of the important classifications in pigmented
lesions and correlates them with the dataset images. The seven categories and their
corresponding abbreviations that are evaluated by our network are listed in Table 1.
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Table 1. Image classes of HAM10000 dataset.

Lesion Name Lesion Abreviation

Actinic keratoses and intraepithelial carcinoma akiec
basal cell carcinoma bcc

benign keratosis-like lesions bkl
dermatofibroma df

melanoma mel
melanocytic nevi nv
vascular lesions vasc

There is also an unbalanced sample size across the classes, with 67% of the samples
coming from the “melanocytic nevi” or “nv” class, followed by 11% for the “melanoma”
class and the remaining five classes accounting for the remaining 22%. Asymmetry occurs
as a result of how common some of these diseases are, as well as how different populations
are affected by them. “Benign keratosis-like lesions” are a good example, and are more
prevalent among older people.

4.2. Single Network Model

Several known CNN models can be utilized to classify skin cancer lesions. The most
adequate for the problem at hand depends on the tradeoffs between the classification accu-
racy, complexity and facility to be quantized. Three variants of ResNet (ResNet18, ResNet50
and ResNet101) were considered for this purpose. The metrics used to compare the models
were accuracy, precision, recall, and F1-score. These metrics are defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score = 2× Recall × Precision
Recall + Precision

where

1. True Positive (TP): Correctly predicted positive values;
2. True Negative (TN): Correctly predicted negative values. Both predicted and actual

values are negative;
3. False Positive (FP): The predicted value is positive but the correct value is negative;
4. False Negative (FN): The predicted value is negative but the correct value is positive.

Accuracy is the most intuitive measure and is simply a ratio of correctly predicted
observations to total observations. This metric is enough for symmetric datasets where
values of false positives and false negatives are almost the same. The precision determines
how much of the images identified as positive detections are correct. Recall determines
how many positive cases were detected out of all of the positive cases. Finally, the F1-score
is useful when there is an uneven class distribution.

The four network models were trained for 50 epochs with the HAM10000 dataset
and the results of the four metrics were determined (see results in Table 2). In the first
experiment, all images used in the network were resized to 224× 224.
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Table 2. Training results for three variants of ResNet.

Model Param (×106) FLOPS (×109) Accuracy Precision Recall F1-Score

ResNet18 11.18 1.83 0.88 0.87 0.88 0.86
ResNet50 23.5 4.13 0.89 0.88 0.88 0.87
ResNet101 44.5 7.61 0.90 0.90 0.89 0.88

The table includes the number of parameters (Param) and the number of floating-point
operations (FLOPS) of a single inference. As can be seen from the results, ResNet18 is
close to the results of ResNet50, using only half of the parameters and less than half of
the operations.

Since the results obtained with the models are close to each other, smaller variants of
ResNet18 model were considered. These are identified as ResNet18-X-Y-M:

1. X: Indicates the repetition pattern of the basic block. Two repetition patterns are
considered: (F) the original ResNet18 repetition pattern, [2, 2, 2, 2], and (S) a reduced
repetition pattern, [1, 1, 1, 1];

2. Y: Indicates the number of filters. Three different variations are considered: the
original (F), one with half of the filters in all layers (S) and another with a quarter of
the filters in all layers (VS);

3. M: Indicates the size of the images. Three different resizes are considered: 224× 224 (F),
112× 112 (S) and 56× 56 (VS).

All variants were trained and evaluated with the HAM10000 dataset. The dataset was
divided into two parts: 80% of the images for training and 20% for evaluation. The models
were trained for 50 epochs with a batch size of 32 using the Adam optimization algorithm
and a cross entropy loss function. The learning rate was initially set to 0.001 and a cosine
annealing learning rate adjustment strategy was used. The results of the four metrics were
determined (see results in Table 3).

Table 3. Training results for the four network models.

Model Param (×106) MOPS (×109) Accuracy

ResNet18-F-F-F 11.18 1.83 0.88
ResNet18-F-F-S 11.18 0.49 0.86

ResNet18-F-F-VS 11.18 0.13 0.85
ResNet18-F-S-F 2.82 0.58 0.84
ResNet18-F-S-S 2.82 0.15 0.85

ResNet18-F-S-VS 2.82 0.04 0.84
ResNet18-F-VS-F 0.72 0.25 0.87
ResNet18-F-VS-S 0.72 0.07 0.85

ResNet18-F-VS-VS 0.72 0.02 0.84
ResNet18-S-F-F 4.90 0.90 0.88
ResNet18-S-F-S 4.90 0.24 0.86

ResNet18-S-F-VS 4.90 0.06 0.87
ResNet18-S-S-F 1.25 0.35 0.86
ResNet18-S-S-S 1.25 0.09 0.85

ResNet18-S-S-VS 1.25 0.02 0.84
ResNet18-S-VS-F 0.33 0.20 0.86
ResNet18-S-VS-S 0.33 0.05 0.86

ResNet18-S-VS-VS 0.33 0.01 0.84
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As can be seen from the results in the table, there is a small accuracy penalty (up to 5%)
for the less accurate model compared to ResNet50 due to the large reduction in the number
of parameters and operations of the model. For example, ResNet18-S-VS-VS needs 73×
fewer parameters and around a 5× lower number of operations compared to ResNet50.
These results are very important for the dual model since there is a notable reduction in
the complexity of the smaller model compared to the larger one, with only a 5% reduction
in accuracy.

4.3. Dual Model

After training all variants of ResNet, the design flow for the dual model design was
applied, considering all variants as the smaller model and ResNet50 as the larger model.
The accuracy and the theoretical speedup were determined for all cases (see Figures 3–5).

As expected, the accuracy decreases as we increase the entropy threshold, since the
confidence of the smaller model increases, which consequently increases the number of
images wrongly classified. On the other side, the speedup increases since fewer images are
sent for reclassification with the larger model.

Considering the accuracy, it is interesting to observe that the dual model is able to
improve the accuracy of the ResNet50 model and still achieve some speedup. For example
the combination of ResNet18-F-F-F with ResNet50 achieves an accuracy of 90% with a
speedup of 1.5. To further understand why this happens, a detailed analysis of the outcomes
of both models was carried out. This could only happen if the lower-accuracy model was
correctly classifying some instances that were incorrectly classified by the higher-accuracy
model. This fact was observed, and it also slightly compensates for some false positives.
This observation is also valid for other entropy thresholds but, as we increase this threshold,
the false positives also increase, and the peak accuracy is no longer observed.

High speedups are possible using the very small models. However, these models
lose some accuracy. In fairness, in the comparison, only those dual models with the same
accuracy as or a higher accuracy than model ResNet50 were considered (see Figure 6).

83

84

85

86

87

88

89

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Ac
cu

ra
cy

Entropy Threshold
ResNet18-F-F-F ResNet18-F-F-S ResNet18-F-F-VS
ResNet18-F-S-F ResNet18-F-S-S ResNet18-F-S-VS
ResNet18-F-VS-F ResNet18-F-VS-S ResNet18-F-VS-VS

Figure 3. Accuracy of the dual model for different combinations of a small model with ResNet50.
The small models in the graphic are all variants of ResNet18 described above restricted to the
repetition pattern of the original ResNet18.
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The highest speedup (×4.7) is achieved with ResNet-S-F-VS, with an accuracy of 89%.
A similar analysis can be performed for any accuracy. For example, with an accuracy of
88%, architecture ResNet18-S-F-VS has a speedup of ×7.4 compared to ResNet50.

4.4. Performance of the Accelerator

The models were quantized and mapped in a ZYNQ UltraScale+ MPSoC ZCU104
platform using Vitis-AI.

The first implementation was with a single model without model reduction, ResNet18-
F-F-F. The system was executed with different DPU configurations running at 300 MHz.
The area occupation and the throughput (frames per second—FPS) are reported in Table 4
for different DPU configurations. The DPU reference indicates the number of operations
per second (OPSs).

Table 4. Occupation of resources and throughput for different architectures of the DPU running the
inference of ResNet18-F-F-F.

DPU LUT FF DSP BRAM URAM FPS

B4096 54533 99952 528 254 1 220
B2304 46718 72314 304 166 1 121
B1024 38696 51848 144 102 1 51
B512 33374 39540 80 70 1 24

As expected, smaller DPUs require fewer resources but are also slower. The throughput
reduces proportionally with the number of parallel operations.

All dual models were tested in software to measure the accuracy and to later be
compared with the onboard results. The results show a small range of results between
86.4% and 87.1%, with the mean being 86.8%. Therefore, the accuracy degradation caused
by quantization is very small.

Considering that the application is to be run in an embedded system, the following
experiments considered only the hardware solution with a B512 DPU.

All dual models using the ResNet50 as the more accurate model were generated. Dual
models with the same accuracy as or higher accuracy than ResNet50 after quantization
were considered to run and test on the board. All dual models were compiled using the
developed flow and run on the board. A script was written to automatically run all dual
models serially in the DPU and to save the results. The synthesis tool reports a power
ranging from 3 to 4 W for the whole FPGA. An extra 1 W was considered for the access
to the external memory of the board. Thus, a total maximum of 5 W is reported for the
system. The comparison metrics were the accuracy, the throughput and the energy per
frame (see Table 5).

From the results, it is possible to identify two solutions with an accuracy higher
than ResNet50 and a higher performance. The best dual model, with an accuracy of 88%,
includes the architecture ResNet18-S-F-F. With an accuracy of 87%, the best dual model
(ResNet18-S–F-VS/ResNet50) achieves a performance of 13.5 FPS (speedup of ×4.3).

As far as we know, there are no previous FPGA implementations for the classifica-
tion of the HAM10000 dataset. There are a few FPGA implementations for skin cancer
identification, with only two classes (cancer/no cancer) using an SVM classifier [35].
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Table 5. Accuracy and performance of dual models running in the FPGA.

Param (×106) Performance (FPS) Energy/Frame (J)

Model Acc = 88% Acc = 87% Acc = 87%

ResNet50 23.5 — 3.1 1.61
ResNet18-F-F-F 34.7 4.6 5.0 1.00
ResNet18-F-F-S 34.7 — 10.8 0.46

ResNet18-F-F-VS 34.7 — 8.8 0.57
ResNet18-F-S-F 26.3 — 7.6 0.66
ResNet18-F-S-S 26.3 — 9.8 0.51

ResNet18-F-S-VS 26.3 — 9.4 0.53
ResNet18-F-VS-F 24.2 — 10.3 0.49
ResNet18-F-VS-S 24.2 — 10.1 0.50

ResNet18-F-VS-VS 24.2 — 6.8 0.74
ResNet18-S-F-F 28.4 6.2 8.1 0.62
ResNet18-S-F-S 28.4 — 12.7 0.39

ResNet18-S-F-VS 28.4 — 13.5 0.37
ResNet18-S-S-F 24.8 — 10.2 0.49
ResNet18-S-S-S 24.8 — 10.3 0.49

ResNet18-S-S-VS 24.8 — 7.9 0.63
ResNet18-S-VS-F 23.8 — 10.8 0.46
ResNet18-S-VS-S 23.8 — 13.1 0.38

ResNet18-S-VS-VS 23.8 — 8.2 0.61

5. Conclusions and Future Work

This paper describes the design of a low-cost system for skin cancer classification
implemented in an FPGA. The deep learning model considers two models with different
accuracies and complexities. The more accurate model only runs in the case of a low
confident classification of the less complex model.

The models were quantized and mapped to the FPGA using a Vitis-AI design flow.
The system achieves 13.5 FPS with an accuracy of 87% with minimal resources, and 6.2 FPS
with an accuracy of 88%. The proposed solution is accurate and can run in low-density
devices with an acceptable throughput. It helps in achieving solutions with the same
accuracy as highly accurate models with a higher throughput or a smaller device.

Only networks within the ResNet family were considered in this work. However,
other models, like MobileNet, can be considered. The dual-model technique is now being
applied to an object detection problem.
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27. Khan, M.A.; Sharif, M.; Akram, T.; Damaševičius, R.; Maskeliūnas, R. Skin Lesion Segmentation and Multiclass Classification

Using Deep Learning Features and Improved Moth Flame Optimization. Diagnostics 2021, 11, 811. [CrossRef]
28. Thurnhofer-Hemsi, K.; Domínguez, E. A Convolutional Neural Network Framework for Accurate Skin Cancer Detection. Neural

Process. Lett. 2021, 53, 3073–3093. [CrossRef]

http://doi.org/10.1016/j.cmpb.2022.106874
http://www.ncbi.nlm.nih.gov/pubmed/35588660
http://dx.doi.org/10.3390/informatics8040077
http://dx.doi.org/10.1145/3474597
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://dx.doi.org/10.1109/FPL.2018.00034
http://dx.doi.org/10.3390/electronics11233966
http://dx.doi.org/10.1109/FPL.2018.00016
http://dx.doi.org/10.3390/a12080154
http://dx.doi.org/10.1145/3186332
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1016/j.micpro.2020.103136
http://dx.doi.org/10.1109/FCCM.2016.22
http://dx.doi.org/10.1145/2897937.2898002
http://dx.doi.org/10.1007/978-3-319-64550-6_18
http://dx.doi.org/10.1016/j.det.2017.06.003
http://dx.doi.org/10.3390/s22124399
http://dx.doi.org/10.3390/s21082852
http://dx.doi.org/10.1016/j.compeleceng.2020.106956
http://dx.doi.org/10.3390/diagnostics11050811
http://dx.doi.org/10.1007/s11063-020-10364-y


Future Internet 2023, 15, 52 17 of 17

29. Chaturvedi, S.S.; Gupta, K.; Prasad, P.S. Skin Lesion Analyser: An Efficient Seven-Way Multi-class Skin Cancer Classification
Using MobileNet. In Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; pp. 165–176. [CrossRef]

30. Ameri, A. A Deep Learning Approach to Skin Cancer Detection in Dermoscopy Images. J. Biomed. Phys. Eng. 2020, 10, 801–806.
[CrossRef] [PubMed]

31. Khushi, M.; Shaukat, K.; Alam, T.M.; Hameed, I.A.; Uddin, S.; Luo, S.; Yang, X.; Reyes, M.C. A Comparative Performance
Analysis of Data Resampling Methods on Imbalance Medical Data. IEEE Access 2021, 9, 109960–109975. [CrossRef]

32. Mukherjee, S.; Suleman, S.; Pilloton, R.; Narang, J.; Rani, K. State of the Art in Smart Portable, Wearable, Ingestible and
Implantable Devices for Health Status Monitoring and Disease Management. Sensors 2022, 22, 4228. [CrossRef] [PubMed]

33. Tornetta, G.N. Entropy Methods for the Confidence Assessment of Probabilistic Classification Models. Statistica 2021, 81, 383–398.
[CrossRef]

34. Tschandl, P. The HAM10000 Dataset, a Large Collection of Multi-Source Dermatoscopic Images of Common Pigmented Skin Lesions,
Harvard Dataverse, V3; Medical University of Vienna: Vienna, Austria, 2018. [CrossRef]

35. Afifi, S.; GholamHosseini, H.; Sinha, R. A system on chip for melanoma detection using FPGA-based SVM classifier. Microprocess.
Microsyst. 2019, 65, 57–68. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-981-15-3383-9_15
http://dx.doi.org/10.31661/jbpe.v0i0.2004-1107
http://www.ncbi.nlm.nih.gov/pubmed/33364218
http://dx.doi.org/10.1109/ACCESS.2021.3102399
http://dx.doi.org/10.3390/s22114228
http://www.ncbi.nlm.nih.gov/pubmed/35684847
http://dx.doi.org/10.6092/issn.1973-2201/11479
http://dx.doi.org/10.7910/DVN/DBW86T
http://dx.doi.org/10.1016/j.micpro.2018.12.005

	Introduction
	Background and Related Work
	Convolutional Neural Networks
	Mapping CNNs on FPGAs
	Skin Cancer Detection Using Deep Learning
	Vitis AI
	Embedded Systems for Portable Health Devices

	Dual-Model Design
	Results
	HAM10000 Dataset
	Single Network Model
	Dual Model
	Performance of the Accelerator

	Conclusions and Future Work
	References

