
INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Departamento de Engenharia de Electrónica e Telecomunicações e de
Computadores

Characterizing and Providing Interoperability to Function as
a Service Platforms

Pedro Miguel Fialho Rodrigues

Bachelor’s degree

Dissertação para obtenção do Grau de Mestre
em Engenharia Informática e de Computadores

Orientadores : Prof. Doutor Filipe Freitas

Prof. Doutor José Simão

Júri:

Presidente: Prof. Doutor Carlos Jorge de Sousa Gonçalves

Vogais: Prof. Doutor Manuel Martins Barata
Prof. Doutor Filipe Bastos de Freitas

December, 2022

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Departamento de Engenharia de Electrónica e Telecomunicações e de
Computadores

Characterizing and Providing Interoperability to Function as
a Service Platforms

Pedro Miguel Fialho Rodrigues

Bachelor’s degree

Dissertação para obtenção do Grau de Mestre
em Engenharia Informática e de Computadores

Orientadores : Prof. Doutor Filipe Freitas

Prof. Doutor José Simão

Júri:

Presidente: Prof. Doutor Carlos Jorge de Sousa Gonçalves

Vogais: Prof. Doutor Manuel Martins Barata
Prof. Doutor Filipe Bastos de Freitas

December, 2022

Aos meus pais por toda a educação que me deram, ao meu
irmão por ser a referência que é, e aos meus amigos pelos

momentos inesquecíveis que passámos juntos.

Agradecimentos

As competências demonstradas num trabalho final de mestrado são o culminar de um
percurso académico com vários anos de aprendizagem, esforço e dedicação. Contudo,
tal não seria possível sem a ajuda e o apoio incondicional de um conjunto de pessoas.

Nesse sentido, gostaria de deixar, em primeiro lugar, um agradecimento especial aos
meus orientadores, Exmo. Professor Doutor Filipe Freitas e Exmo. Professor Doutor
José Simão, pela confiança que depositaram em mim desde o começo do projeto, e
pela boa cooperação que mantivemos no decurso do mesmo. A sua entrega e disponi-
bilidade diária deram-me as forças necessárias para me manter motivado e com uma
ambição de autossuperação. Graças a eles, pude experienciar novos desafios na área
da investigação e atingir metas que sem a sua ajuda dificilmente seriam alcançáveis.

Ao Instituto Superior de Engenharia de Lisboa, por ter sido a minha segunda casa nos
últimos cinco anos. Irei para sempre recordar excelentes memórias da família iseliana,
da qual me orgulho em fazer parte. Ao corpo docente da LEIC e do MEIC, não só pela
transmissão de conhecimentos teórico-práticos, mas também por me terem ajudado a
desenvolver um pensamento crítico direcionado para a resolução de problemas que
transcende a área da engenharia informática. Aos não docentes, por cuidarem de nós,
alunos, da instituição, e por serem, acima de tudo, ótimos profissionais. Deixo tam-
bém uma palavra de agradecimento ao Instituto Politécnico de Lisboa, pela atribuição
da bolsa de iniciação à investigação, com referência IPL/2021/FaaS-IntOp_ISEL, e por
continuarem a apostar neste tipo de iniciativas.

Aos meus amigos, que nas etapas de maior ansiedade me permitiram descontrair e
abstrair-me temporariamente do mundo académico.

Por último, mas não menos importante, agradecer aos meus pais, irmão e restante
família, por nunca me terem falhado com nada ou colocado barreiras em quaisquer
que fossem as minhas decisões académicas e profissionais.

vii

Abstract

Serverless computing hides infrastructure management from developers and runs code
on-demand automatically scaled and billed during code’s execution time. One of
the most popular serverless backend services is called Function-as-a-Service (FaaS), in
which developers are many times confronted with cloud-specific requirements. Func-
tion signature requirements, and the usage of custom libraries that are unique to cloud
providers, were identified as the two main reasons for portability issues in FaaS ap-
plications. Such reduced control over the infrastructure and tight-coupling with cloud
services amplifies various vendor lock-in problems.

In this work, we introduce QuickFaaS, a multi-cloud interoperability desktop tool
targeting cloud-agnostic functions development and FaaS deployments. QuickFaaS
substantially improves developers’ productivity, flexibility and agility when creating
serverless solutions to multiple cloud providers, without requiring the installation of
extra software. The proposed cloud-agnostic approach enables developers to reuse
their serverless functions in different cloud providers with no need to rewrite code.
The solution aims to minimize vendor lock-in in FaaS platforms by increasing the
portability of serverless functions, which will, therefore, encourage developers and
organizations to target different providers in exchange for a functional benefit.

Keywords: cloud computing; serverless computing; Function-as-a-Service; vendor
lock-in; cloud interoperability; cloud orchestration; cloud-agnostic; FaaS portability.

ix

Resumo

A computação sem servidor abstrai o controlo da infraestrutura dos programadores e
executa código a pedido com escalonamento automático onde apenas se é cobrado pela
quantidade de recursos consumidos. Um dos serviços mais populares da computação
sem servidor é a Função como Serviço (Function-as-a-Service ou FaaS), onde os progra-
madores são muitas vezes confrontados com requisitos específicos dos prestadores de
serviços de nuvem. Requisitos de assinatura das funções, e o uso de bibliotecas ex-
clusivas ao prestador de serviços, foram identificados como sendo as principais causas
de problemas de portabilidade das aplicações FaaS. O controlo reduzido da infraestru-
tura e a elevada dependência para com o prestador de serviços dá origem a diversos
problemas de aprisionamento tecnológico.

Neste trabalho, introduzimos o QuickFaaS, uma ferramenta para desktop de interope-
rabilidade multi-cloud com foco principal no desenvolvimento de funções agnósticas à
nuvem e na criação das mesmas na respetiva plataforma. O QuickFaaS permite melho-
rar substancialmente a produtividade, flexibilidade e agilidade no desenvolvimento de
soluções sem servidor para múltiplos prestadores de serviços, sem o requisito de ins-
talar software adicional. A abordagem agnóstica à nuvem irá permitir que os progra-
madores reutilizem as suas funções em diferentes prestadores de serviços sem terem
a necessidade de reescrever código. A solução visa a minimizar o aprisionamento tec-
nológico nas plataformas FaaS através do aumento da portabilidade das funções sem
servidor, incentivando assim programadores e organizações a apostarem em diferentes
prestadores de serviços em troca de um benefício funcional.

Palavras-chave: computação na nuvem; computação sem servidor; Função como Ser-
viço; aprisionamento tecnológico; interoperabilidade na nuvem; orquestração de nu-
vem; agnóstico à nuvem; portabilidade FaaS

xi

Contents

List of Figures xvii

List of Listings xix

Acronyms xxi

Glossary xxiii

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Problem . 2

1.4 Contributions . 3

1.5 Research papers . 3

1.6 Document outline . 3

2 Background and Related work 5

2.1 Serverless computing . 5

2.1.1 Function-as-a-Service . 6

2.1.2 Event-driven architecture . 8

2.2 FaaS providers . 8

2.2.1 MsAzure – Azure Functions . 9

xiii

xiv CONTENTS

2.2.2 Google Cloud Platform – Cloud Functions 9

2.3 Vendor lock-in . 10

2.4 Multi vs. Poly cloud strategies . 10

2.5 Related work . 11

2.5.1 Terraform . 11

2.5.2 Serverless Framework . 12

2.5.3 Pulumi . 12

2.5.4 OpenFaaS . 13

2.5.5 SEAPORT method . 14

2.5.6 TOSCA modeling . 15

2.6 Summary . 15

3 Models 17

3.1 Overview . 17

3.2 Challenges . 18

3.3 Cloud-agnostic models . 20

3.3.1 Cloud interoperability . 21

3.3.2 FaaS portability . 22

3.4 Use cases . 24

3.5 Summary . 26

4 Implementation 29

4.1 QuickFaaS . 29

4.1.1 Architecture . 30

4.1.2 Technologies . 31

4.2 Uniform programming model . 31

4.2.1 Authentication mechanism . 32

4.2.2 Function definition . 34

4.2.3 FaaS deployment . 39

4.3 Summary . 43

CONTENTS xv

5 Evaluation 45

5.1 Metrics definition . 45

5.2 Function execution environment . 48

5.3 Cold starts . 48

5.3.1 Measurement methodology . 49

5.3.2 Measurement analysis . 50

5.4 Warm starts . 52

5.4.1 Measurement methodology . 53

5.4.2 Measurement analysis . 53

5.5 ZIP deployments . 55

5.5.1 Measurement methodology . 55

5.5.2 Measurement analysis . 56

5.6 Adversities . 56

5.7 Summary . 58

6 Conclusions 59

6.1 Achievements . 59

6.2 Drawbacks . 60

6.3 Future work . 61

References 63

A Appendix A i

A.1 QuickFaaS screenshots . i

A.2 Complete uniform programming model ii

List of Figures

2.1 Generic FaaS architecture . 7

3.1 Abstract ERM of the cloud-agnostic solution 18

3.2 Authentication Mechanism ERM . 21

3.3 FaaS Deployment ERM . 22

3.4 Function Definition ERM . 23

3.5 Use case 1 – thumbnail generation . 24

3.6 Use case 2 – store translation . 25

3.7 Use case 3 – search blobs . 26

4.1 Deployment diagram . 30

4.2 Authentication Mechanism class diagram 32

4.3 OAuth 2.0 sequence diagram . 33

4.4 Function Definition class diagram . 36

4.5 FaaS Deployment class diagram . 39

4.6 FaaS deployment to GCP for Java runtime 41

5.1 Cold start execution time . 50

5.2 Cold start memory usage . 51

5.3 Warm start execution time . 53

5.4 Warm start memory usage . 54

xvii

xviii LIST OF FIGURES

5.5 ZIP deployment time . 56

A.1 Resource configuration screenshot . i

A.2 Cloud-agnostic function definition screenshot ii

A.3 FaaS deployment screenshot . ii

A.4 Uniform programming model . iii

List of Listings

3.1 Java "Hello world!" – Azure function, MsAzure 20

3.2 Java "Hello world!" – Cloud function, GCP 20

3.3 Java cloud-agnostic signature skeleton . 24

3.4 JavaScript cloud-agnostic signature skeleton 24

4.1 GCP template function – HTTP trigger . 35

4.2 Hook (cloud-agnostic) function – HTTP trigger 35

4.3 Configurations file content example . 37

4.4 Use case 1 function definition – thumbnail generation 38

xix

Acronyms

API Application Programming Interface. 6, 7, 9, 10, 13, 17, 18,
19, 25, 33, 34, 35, 39, 41, 42, 46, 47, 61

AWS Amazon Web Services. 11, 12, 13, 19, 21, 22, 40, 61

CI/CD Continuous Integration / Continuous Delivery. 19
CLI Command-line. 9, 10, 12, 18, 19, 31
CPU Central Processing Unit. 19
CRUD Create, Read, Update and Delete. 8

DB Database. 8, 25

EDA Event-Driven Architecture. 8
ERM Entity-Relationship Model. 18, 26, 27, 29, 31, 32, 35, 37, 39,

59

GCP Google Cloud Platform. 8, 9, 10, 12, 13, 19, 21, 22, 35, 40,
41, 42, 49, 50, 51, 54, 55, 56, 57

gRPC Google Remote Procedure Call. 46
GUI Graphical User Interface. 18, 30

HTTP Hypertext Transfer Protocol. 7, 8, 14, 20, 25, 26, 30, 31, 32,
33, 34, 35, 42, 45, 46, 55, 56, 57

I/O Input/Output. 36, 51, 54
IaC Infrastructure as Code. 11, 12, 13

xxi

xxii Acronyms

JAR Java Archive. 40
JDK Java Development Kit. 23, 31
JRE Java Runtime Environment. 23
JSON JavaScript Object Notation. 23, 31, 36, 37, 38, 42, 51, 54
JVM Java Virtual Machine. 23, 31, 48

MB Megabyte. 46, 55
MiB Mebibyte. A mebibyte equals to 220 or 1,048,576 bytes. 46

OS Operating System. 7

POM Project Object Model. 42

REST Representational State Transfer. 46, 47
RFC Request For Comments. 60

SQL Structured Query Language. 6, 8, 25

UCI Unified Cloud Interface. 17
UI User Interface. 31, 33
UML Unified Modeling Language. 30, 31, 32
URL Uniform Resource Locator. 21, 33

VM Virtual Machine. 2, 7

XML Extensible Markup Language. 23

YAML Yet Another Markup Language. 12, 13

Glossary

auto-scaling the system’s ability to accommodate larger loads, either
by making hardware stronger (scale-up), or by creating
additional nodes (scale-out). 7, 9, 52, 53

booting time the time it takes for a device to be ready to operate
after being turned on. This involves loading the startup
instructions, followed by the operating system. 2, 48

debug to identify and remove errors from computer hardware or
software. 60, 61

elasticity the ability to grow or shrink infrastructure resources
dynamically as needed. 1

garbage collector an automatic process to free unreachable objects from
heap memory, relieves programmers from having to mark
objects to be deleted explicitly. 34, 52

hardcoded a software development practice of embedding data
directly into the source code. 51

heap space in Java, the heap is utilized for dynamic memory allo-
cation of objects and Java Runtime Environment (JRE)
classes at runtime. 34, 52

xxiii

xxiv Glossary

load balancing a core solution used to distribute workload across multi-
ple backend servers. 1

programmatically something that is feasible to be automated using source
code, rather than via direct user interaction. 9, 42, 46

reverse engineering the process of analysing and understanding how an exist-
ing device, process, system, or piece of software works by
breaking it down into its core components. 60

serverful an architectural model for building long-living backend
services that are usually less cost-effective than serverless
solutions. 5, 52

stateless the application doesn’t rely on in-memory state set by
previous interactions. 6, 7

timestamp a digital record of the time a particular event occurred. 55,
56

1
Introduction

This chapter will start by contextualizing this work with the introduction of the
serverless computing paradigm together with its most popular implementation, called
Function-as-a-Service (FaaS). Then, a list of some major motivations behind its adop-
tion is given. Moreover, the central problem concerning FaaS solutions is described.
The main contributions of this work are then provided to emphasize its significance.
Furthermore, a couple of research conferences in which we had the opportunity to par-
ticipate are mentioned. Finally, the document outline is presented, where the contents
of the remaining chapters are briefly described.

1.1 Context

Serverless computing was a major technological breakthrough that has been drawing
interest from the industry as well as academic institutions, largely due to the recent
shift of enterprise application architectures to containers and microservices [70].

Serverless potential is sustained by the great abstraction of server management chal-
lenges with low costs [67]. Function-as-a-Service, or simply FaaS, is known as the pop-
ular implementation of the serverless computing model, where developers can com-
pose applications using arbitrary, event-driven functions to be executed on demand.

Cloud providers assume most of the responsibilities when it comes to serverless com-
puting. Thus, the development of systems can be more focused on business logic and
less on non-functional aspects, such as elasticity, redundancy and load balancing.

1

1. INTRODUCTION 1.2. Motivation

1.2 Motivation

The main idea behind cloud serverless computing is to mitigate the need for infrastruc-
ture management while keeping control of the system configurations. Summarized
below, we point out some extra reasons to embrace serverless solutions:

• Faster deployment and delivery. Developers can easily deploy serverless appli-
cations without the requirement for server administration experience [69].

• Auto-scaling. Serverless platforms assume responsibility for scaling applications
in case there’s an increase in demand, but also scale them back to zero to reduce
costs [4, 5]. In some platforms, the scaling boundaries can be specified.

• Cost efficiency. Follows the pay as you go pricing model [66], where customers
only pay for the consumed computational resources. There’s no need to pay for
idle servers or the overhead of servers creation and destruction [65], such as VMs
booting time.

• Greener computing. The usage of computational resources is more efficient, less
computing power is wasted on idle state.

1.3 Problem

Developers are many times confronted with cloud-specific requirements when devel-
oping FaaS applications. The noticeable tight-coupling between providers and server-
less function services amplifies various vendor lock-in problems that discourage de-
velopers and organizations to migrate or replicate their FaaS applications to differ-
ent platforms. Cloud orchestration tools can as well be contributing to the increase
of multi-cloud complexity by continuously adding more and more provider-specific
modules. As mentioned by the Research Cloud group of the Standard Performance
Evaluation Corporation (SPEC) [74]:

“There is a need for a vendor-agnostic definition of both the basic cloud-function and
of composite functions, to allow functions to be cloud-agnostic.”

Otherwise, migrating a FaaS application from one provider to another would imply
rewriting all the functions that make up that application, causing an impact at opera-
tional level in addition to costs. This happens mainly due to function signature require-
ments and the usage of custom libraries that are unique to cloud providers, resulting
in non-portable solutions.

2

1. INTRODUCTION 1.4. Contributions

1.4 Contributions

This work focuses on characterizing and describing high-level cloud-agnostic models
that compose FaaS platforms. These models were materialized into a multi-cloud in-
teroperability desktop tool named QuickFaaS, where users can develop and deploy
cloud-agnostic functions to a set of cloud providers.

By adopting a cloud-agnostic approach, developers can provide better portability to
their FaaS applications, and would, therefore, contribute to the mitigation of vendor
lock-in in cloud computing.

1.5 Research papers

Throughout the course of this work, we managed to do several research contributions.
The resulting papers were entitled “QuickFaaS: Providing Portability and Interoperability
between FaaS Platforms”, and are referenced below:

• Accepted for publication by MDPI in the peer-reviewed scientific journal Fu-
ture Internet, within the special issue “Distributed Systems for Emerging Computing:
Platform and Application” [60].

• Included in the proceedings of the 9th European Conference On Service-Oriented
And Cloud Computing (ESOCC), in the projects track, to be published by Springer
in the Communications in Computer and Information Science (CCIS) book se-
ries [75]. The conference was hosted in an online format, where we got the chance
to present this work and receive valuable feedback from research experts.

• Presented as a poster at the 17th Iberian Conference on Information Systems and Tech-
nologies (CISTI), held in the Technical University of Madrid (UPM), Spain.

1.6 Document outline

The remainder of this document is organized into five main chapters as follows: Chap-
ter 2 gives a general overview of how serverless computing operates today, and how
cloud providers handle both the development and deployment of FaaS applications.
It also provides some background to the problems that need to be addressed for the
purposes of this work. In the last part of the chapter, several tools and related works

3

1. INTRODUCTION 1.6. Document outline

concerning multi-cloud interoperability and FaaS portability are described. Chapter 3
defines a cloud-agnostic approach to model FaaS applications using entity-relationship
models, together with a number of challenges to be taken into account when doing so.
This is followed by the illustration of a set of use cases that highlight the main bene-
fits of cloud-agnostic functions. Chapter 4 introduces the desktop tool QuickFaaS and
details the proposed solution to achieve interoperability and portability between FaaS
platforms. This includes an explanation of different class diagrams that compose the
uniform programming model. Chapter 5 evaluates different metrics to measure the
impact of a cloud-agnostic approach on the function’s performance by comparing it
to a cloud-non-agnostic one. It goes into detail on what metrics were utilized, how
were the tests performed, and an analysis of the obtained results is given. At the end
of the chapter, the main adversities faced during the data collection process are de-
scribed. Chapter 6 summarizes the project’s primary achievements but also presents
some drawbacks to the proposed solution. The future work concludes the chapter by
addressing feasible improvements to the tool and its models.

4

2
Background and Related work

For this chapter, we will be detailing how serverless computing operates today, with
emphasis on Function-as-a-Service. We also survey how some of the most popular
cloud providers deal with the development and deployment of FaaS applications.
Moreover, we provide some background to the problems that need to be addressed
for the purposes of this work. Finally, several existing tools and closest related works
concerning multi-cloud interoperability and FaaS portability are described.

2.1 Serverless computing

Serverless computing is emerging as a new and successful paradigm that promotes
total absence of control over the deployment and execution of services. Even though
we call it serverless, these platforms do run servers, but only for short periods of time.
In contrast to serverful architectures, the entire lifespan of a server only exists within
the life cycle of a given execution request.

It is also known for being very cost-efficient, where customers only pay for what
it’s consumed in terms of computational resources — pay as you go pricing model.
When running small, simple, self-contained applications, it makes no sense to use our
own hardware or implement our own provisioning for these types of applications. In
serverless technologies, cloud providers take responsibility for dynamically allocat-
ing servers as demand spikes or drops, with the possibility of scaling them back to

5

2. BACKGROUND AND RELATED WORK 2.1. Serverless computing

zero. Because servers aren’t always running, there’s no need to pay for idle or inactive
servers, unlike on-premises machines, shared servers, or rented virtual machines.

Nowadays, we can find all kinds of services based on serverless computing. For in-
stance, Amazon DynamoDB and Google Cloud Firestore, are two of the most popular
NoSQL database serverless services. Even full-stack serverless applications can be de-
ployed in just a few minutes. Google Cloud provides a practical tutorial on how Cloud
Run service and MongoDB come together to enable a completely serverless applica-
tion development experience using the MEAN stack (MongoDB–Express.js–AngularJS–
Node.js) [13].

This work focuses on the most basic and commonly used serverless service, called
Function-as-a-Service. This service popularized the serverless computing paradigm,
and it’s explained in more detail in the upcoming subsection.

2.1.1 Function-as-a-Service

Serverless functions are the general purpose element in serverless computing today,
and lead the way to a simplified programming model for the cloud. At the very start,
everyone used to build monoliths, with N-tier architectures. Monoliths are heavy-
weight, less scalable, and have a tight coupling between components. We then broke
these down into microservices. They are single-purpose services focused on being
composable, fault-tolerant and easy to scale-up. Serverless functions are the next step
in the evolution. These functions are usually lightweight, short-lived, and stateless.

Typically, serverless functions are deployed with the help of a popular cloud server-
less service called Function-as-a-Service (FaaS), where applications and all their busi-
ness logic can be constructed as a composition of multiple functions. These functions
are executed in response to various types of events. FaaS provides high-level abstrac-
tions of distributed computing elements, reducing the need for users to be experts
in distributed systems, or to manage complex microservice-based architectures them-
selves [22]. Some of the most popular use cases for FaaS are APIs for web and mobile
applications, multimedia processing, data processing, and the Internet of Things (IoT).

In Figure 2.1, we present the generic FaaS architecture that reveals what mechanisms
are involved between the occurrence of an event and the function getting executed.

6

2. BACKGROUND AND RELATED WORK 2.1. Serverless computing

Figure 2.1: Generic FaaS architecture

Triggering events are often generated by user actions. In the above example, two HTTP
requests were made. The first one, triggers the execution of the books function, while
the second one, triggers the execution of the authors function. The API gateway com-
ponent acts as a single entry point to provide an external route to the deployed FaaS
resources. Then, a mechanism checks for the availability of warm/idle container in-
stances. If there are none, a new container instance must be allocated to serve the
recently arrived execution request [17].

Containers are self-contained sealed units of software that package everything that
is necessary to run the code, this includes dependencies, runtimes, etc. Containers
virtualize at the OS level and share the same kernel of the host computer, while VMs
virtualize at the hardware level. They are also much more lightweight than VMs. The
time between checking for existing warm containers, and starting up a new instance,
including the preparation of the execution environment, is known as the cold start
latency.

The books function goes through a cold start in order to get executed, while the authors
function wastes no time in cold boots by reusing an existing container from recent ex-
ecutions. To reduce costs and resource wastage, container instances are offloaded after
remaining idle for a certain period of time, meaning that the next invocation will result
in a cold start. This is done by an auto-scaling mechanism responsible for monitoring
the demand and supply by elastically adding or removing container instances.

The execution of a serverless function is intrinsically stateless — one function invo-
cation should not rely on in-memory state set by a previous invocation — although a
container may last for more than one invocation. This is due to the number of container
instances, and the respective lifetime, being fully managed by the cloud infrastructure.
If there’s a need to share state across function invocations, then a secondary service
dedicated to persist shared data should be accessed during execution.

7

2. BACKGROUND AND RELATED WORK 2.2. FaaS providers

2.1.2 Event-driven architecture

Event-Driven Architecture (EDA) is an architectural paradigm that supports the pro-
duction, detection and reaction to a system state change, known as events. The execu-
tion of a serverless function can be triggered by the occurrence of many different types
of events, most of them being generated within the cloud infrastructure. In the EDA
system, events can be transmitted between components and services, such as FaaS and
a Storage Service, whenever a storage triggering event occurs [21].

Defined below, are the more commonly used types of event triggers offered by cloud
providers:

• HTTP. Serverless functions that rely on this type of trigger can be invoked us-
ing the primary HTTP methods (CRUD operations). These functions can require
some sort of authentication since they can be invoked by different kinds of iden-
tities, originating in different places. Usually, this type of triggering event is not
originated by the cloud infrastructure.

• Storage. A serverless function can be triggered in response to uploads, updates,
or deletes of blobs in a storage resource. Useful blob information can then be read
during execution.

• Database. Database events can also trigger the execution of serverless functions.
Usually, these are NoSQL databases due to being less complex and easier to de-
tect changes in a particular document (e.g. Cloud Firestore, Azure Cosmos DB).

• Pub/Sub. The publication of messages to Pub/Sub topics is one of the most
used mechanisms to trigger serverless functions. This pattern uses asynchronous
messaging, which is an effective way of decoupling senders from consumers. It
also facilitates the implementation of per-message parallelism, by having multiple
serverless function instances (subscribers) processing messages of the same topic.

Events can carry a state or data to be read using the function’s signature parameters,
thus the types of parameters can vary depending on the configured event.

2.2 FaaS providers

Every provider imposes its own prerequirements that need to be established before
enabling the deployment of FaaS applications. In this section, we enumerate those
requirements for two of the most popular cloud providers: MsAzure and GCP.

8

2. BACKGROUND AND RELATED WORK 2.2. FaaS providers

2.2.1 MsAzure – Azure Functions

The developer will be asked to provide details about the following items before be-
ing able to deploy a FaaS resource to MsAzure: (i) a Microsoft account, (ii) an Azure
account, (iii) at least one active subscription associated with the Azure account, (iv) a
resource group to hold various types of resources, and (v) a storage account, responsible
for storing function sources. After all these requirements are met, the developer is fi-
nally able to create a function app, in a specified location, capable of holding multiple
azure functions for a single runtime.

Most configurations used by azure functions are established during the creation of
the function app. Some of these configurations are common between cloud providers,
e.g., the runtime and respective version, the instance location, etc. While others are
specific to MsAzure, such as the subscription ID, the hosting plan type (consumption
plan, premium plan, dedicated plan), the option to enable the Azure Monitor Applica-
tion Insights, and others. The event trigger is only specified when deploying an azure
function to the function app.

The deployment environment for azure functions varies depending on the selected
runtime. For instance, the deployment of azure functions for Node.js can be done di-
rectly on the Azure portal, while for Java or Python, this is not possible. To overcome
these restrictions, the developer must install the Azure Functions Core Tools, together
with the provider-specific tool Azure CLI [45]. The Azure Functions Core Tools in-
cludes a version of the same runtime that powers Azure Functions runtime, meaning
that developers are able to test their azure functions locally, before being deployed.
This can be done using the command prompt, or by installing the Azure Functions
extension in Visual Studio Code.

2.2.2 Google Cloud Platform – Cloud Functions

In order to deploy cloud functions to GCP, developers will first need: (i) a Google ac-
count, (ii) a project responsible for managing all types of services, (iii) a billing account,
that can be linked to multiple projects, and (iv) the Cloud Functions API enabled. The
solution we propose will also require developers to enable the Cloud Resource Man-
ager API [12], which allows to programmatically manage metadata for GCP resources.

Apart from the usual resource configurations, such as the name or the location, the
developer can also specify how much memory the function can use, the timeout du-
ration of the function, and the auto-scaling boundaries (maximum/minimum number

9

2. BACKGROUND AND RELATED WORK 2.3. Vendor lock-in

of instances). This time, serverless functions don’t need to be aggregated in a parent
resource, such as the function app from MsAzure.

Moreover, there are no restrictions to what runtimes should be used in order to develop
and deploy cloud functions directly on the portal, which avoids the need to install
extra software. GCP offers a provider-specific tool, called gcloud, that enables FaaS
deployments through the command-line. However, it’s not mandatory to be installed
in order to do so, unlike Azure CLI for certain runtimes.

2.3 Vendor lock-in

Systems migration to cloud computing environments has been gaining attraction from
organizations over the past few years. Cloud providers offer organizations proprietary
cloud-based services that have different specifications from one provider to another,
such as specific technology solutions, remote APIs, etc. [84]. As a consequence of this,
clients become dependent (locked-in) on certain services and are unable to move seam-
lessly from one vendor to another [24, 83].

For the ongoing work, the effects of vendor lock-in are relevant to point out:

• Struggle when switching between cloud providers due to the impact at opera-
tional level, in addition to costs.

• If the provider’s quality of service declines, or never meets the desired require-
ments to begin with, the client will have no choice other than to accept the con-
ditions.

• A provider may impose price increases for the services, knowing that their clients
are locked-in.

Multi-cloud solutions tend to attenuate some of these issues by distributing workloads
and making them more independent of the underlying cloud infrastructure.

2.4 Multi vs. Poly cloud strategies

Organizations can provide better reliability to their services by adopting a multi-cloud
strategy. In a scenario of a cloud provider going down, some services deployed in
another cloud provider can still be available for usage [50], preventing single points of
failure (SPOF).

10

2. BACKGROUND AND RELATED WORK 2.5. Related work

Poly cloud is often mistaken for multi-cloud. In a poly cloud approach, the system
benefits from services of different cloud providers that best suit a specific use case.
It targets different cloud providers in exchange for a functional benefit [54, 55]. For
some applications, adopting a poly cloud strategy is a must in order to get access to
specific services that are exclusive to a single cloud provider. Also, when using poly
cloud, organizations can pick the most affordable services from different providers,
thus reducing costs.

Both strategies require developers to learn about multiple service providers and how
they differ. Cloud professionals are in high demand, the recruitment process for cloud
engineers with expertise in a single cloud provider is getting more and more compet-
itive, so, it becomes even more problematic when the recruitment targets experts in
multiple cloud environments. There’s a need for developing solutions that can help in
managing multi-cloud complexity, rather than amplifying it.

For the purposes of this work, we will consider both strategies in the same manner
from now on, and use the term “multi-cloud” in application of either scenario.

2.5 Related work

The future evolution of serverless computing will presumably be guided by efforts to
provide abstractions that simplify cloud programming [26]. To the best of our knowl-
edge, no published work suggests a uniform approach to model FaaS applications or
a way to characterize cloud-agnostic functions development and deployment, while
avoiding the installation of provider-specific tooling.

There are already a couple of tools and studies concerning cloud orchestration that
have an important role in providing developers a better management of multi-cloud
environments by solving some of the problems discussed in this work. Provider-
specific modeling tools, such as AWS Cloud-Formation [6], focuses solely on their own
platform. As a result, additional software is required for the coordination and deploy-
ment on multi-cloud environments. The following subsections detail various related
tools and mechanisms that facilitate multi-cloud usage.

2.5.1 Terraform

Terraform [76] is probably the developer’s number one choice for an infrastructure
as code (IaC) tool. It provides open-source software for cloud service management

11

2. BACKGROUND AND RELATED WORK 2.5. Related work

with a consistent CLI workflow. However, when it comes to FaaS development and
deployment, it is far from being cloud-agnostic.

Each cloud provider has its own dedicated configuration file (*.tf), that needs to be
strictly followed in order to successfully deploy a serverless function to the cloud.
Folder structures that contain the function’s source code are also cloud-specific. No
custom libraries or signatures are provided to facilitate the development of serverless
functions either.

The authentication process also varies depending on the cloud provider we want to
work with. For instance, Terraform suggests the installation of the CLI tool gcloud
as the primary authentication method for GCP [78]. While for MsAzure, Terraform
recommends the usage of Azure Active Directory to generate secret authentication to-
kens [77]. This makes developers having to adapt their systems to a specific authenti-
cation process every time there’s a switch to a new cloud provider.

2.5.2 Serverless Framework

Another example of a cloud orchestration tool is Serverless Framework [68]. Just like
in Terraform, this framework enables the automation of infrastructure management
through code, this time using YAML syntax instead of Terraform language. Serverless
Framework focuses on app-specific infrastructure, while Terraform allows the man-
agement of a full-fledged infrastructure (e.g. defining networking, servers, storage,
etc.).

The framework supports deployments to AWS out of the box, deploying to other cloud
providers requires the installation of extra plugins. Even though Serverless Frame-
work is dedicated to managing serverless applications, the deployment models are
not cloud-agnostic. The models describe provider-specific services, event types, etc.,
ending up sharing the same problems highlighted previously with Terraform [24].

2.5.3 Pulumi

Pulumi [56] is a modern infrastructure as code platform that allows developers to use
familiar programming languages and tools to build, deploy, and manage cloud infras-
tructure. As a language-neutral IaC platform, Pulumi doesn’t force developers to learn
new programming languages, nor does it use domain-specific languages. Just like pre-
vious tools, it requires the installation of provider-specific software for authentication
and deployment purposes.

12

2. BACKGROUND AND RELATED WORK 2.5. Related work

Pulumi introduces a new approach for simplifying the development of serverless func-
tions in the form of lambda expressions, they call it Magic Functions [59]. Still, both the
function signatures and event trigger libraries that are required by Magic Functions are
not cloud-agnostic.

Developers from Pulumi have also worked on a new framework named Cloud Frame-
work [57], which lets users program infrastructure and application logic, side by side,
using simple, high-level, cloud-agnostic building blocks. It provides a Node.js abstrac-
tion package called @pulumi/cloud [58], which defines common APIs to all providers.
At the moment, the library is in preview mode, where only AWS is supported. MsAzure
support is currently being worked on, and it’s in an early preview state. They also in-
tend to support GCP in the future.

Nonetheless, we found Pulumi’s solution to be a step ahead of the previous IaC tools,
in the sense that it makes a real attempt to provide a cloud-agnostic way to develop
cloud applications, with Cloud Framework, as well as offering a flexible and simple path
to serverless, using Magic Functions. The ability to specify every deployment configu-
ration using familiar programming languages is also very convenient for developers,
avoiding the need to use YAML configuration files.

2.5.4 OpenFaaS

OpenFaaS is a framework for building serverless functions on the top of containers
through the use of docker and kubernetes [51]. With OpenFaaS, serverless functions
can be managed anywhere with the same unified experience. This includes on the
user’s laptop, on-premises hardware, or by creating a cluster in the cloud.

Kubernetes do the heavy work by enabling developers to build a scalable,
fault-tolerant, and event-driven serverless platform for applications. There’s even a
tutorial explaining how to install and use OpenFaas on an Azure Kubernetes Service
(AKS) cluster [47]. GCP offers a similar service called Cloud Run, where OpenFaaS
functions can be deployed as well [33]. This tool contrasts with the ones presented
before, in the sense that it doesn’t provide any sort of cloud orchestration mechanism
to abstract the complexity of provider-specific tools.

Technically, OpenFaaS’s solution enables serverless functions to run on multiple cloud
environments without the need to change a single line of code, by providing custom
function signatures and libraries. Function templates for various programming lan-
guages can be found in their templates GitHub repository [53].

13

2. BACKGROUND AND RELATED WORK 2.5. Related work

However, despite supporting many different kinds of events [52], OpenFaaS functions
cannot be directly triggered by the majority of events originating within the cloud in-
frastructure, such as storage or database events. Workarounds can be implemented,
but wouldn’t be as optimized as triggering a function using the default FaaS platform
from cloud providers. Most OpenFaaS use cases rely on HTTP events for triggering
serverless functions.

The OpensFaaS framework does not provide portability to serverless functions using
the existing FaaS from cloud providers; it instead creates a custom FaaS platform on top
of a different service to do so. Hence, that is the reason why we did not consider this
to be a valid solution for the problem we intend to solve with this work. For instance,
the usage of a kubernetes cluster service may be inappropriate for developers that start
from scratch and want to build a less complex FaaS application.

2.5.5 SEAPORT method

Manual portability assessment is inefficient, error-prone, and requires significant tech-
nical expertise in the domains of serverless and cloud computing. To simplify this
process, a work from the University of Stuttgart [63] specifies a method called SEA-
PORT (SEreverless Applications PORtability assessmenT) that automatically evaluates the
portability of serverless orchestration tools with respect to a chosen target provider or
platform. The method can be optimized over time by testing more and more heteroge-
neous serverless use case applications.

The SEAPORT method introduces a CAnonical SErverless (CASE) model, which is the
result of transforming the obtained deployment model from a certain serverless orches-
tration tool into a provider-agnostic format. Yet, we find the represented CASE model
far too abstract for our needs, making it non-reusable. For instance, the model doesn’t
detail the various composing elements of a function definition, it only specifies the
function’s programming language and the event category that triggers its execution.
Furthermore, it doesn’t illustrate the abstraction of different types of authentication
mechanisms used by cloud orchestration tools in order to get access to resources from
different providers. Lastly, the model represents some extra entities that are only con-
venient to facilitate the portability evaluation of a serverless application, making them
unrelated to this work.

14

2. BACKGROUND AND RELATED WORK 2.6. Summary

2.5.6 TOSCA modeling

Some cloud orchestration tools, such as Cloudify [10] and Alien4Cloud [1], follow
the Topology and Orchestration Specification for Cloud Applications (TOSCA) stan-
dard [82], created by the industry group OASIS. TOSCA defines the interoperable de-
scription of services and applications hosted on the cloud, thereby enabling portabil-
ity and automated management across cloud providers regardless of the underlying
platform or infrastructure. TOSCA modeling could be an alternative to the entity-
relationship models presented in this work, there is even a work that promotes the
usage of TOSCA standard to build deployment models for serverless applications [71].

However, TOSCA models are usually focused on representing the interactions between
technologies and services hosted in different cloud providers using normative relation-
ship types, such as connectsTo or hostedOn, but also the operations that each node type
may have: create, configure, start, stop, and delete. FaaS deployments don’t usually re-
quire interaction with many different types of services, nor require communication be-
tween nodes hosted in different providers, making TOSCA modeling not very suitable
to represent our cloud-agnostic solution.

2.6 Summary

This chapter provided a general overview of serverless computing, with a special fo-
cus on Function-as-a-Service. A description on how some cloud providers handle the
development and deployment of FaaS applications was given. We also considered sev-
eral closest related works and tools to check whether they propose a valid solution to
the problems addressed in this work.

For the next chapter, we will be introducing some models that identify key character-
istics for achieving interoperability and portability between FaaS platforms, together
with some challenges and use cases.

15

3
Models

The current chapter will start by giving an overview of the cloud-agnostic approach
and respective modules that need to be unified in order to achieve interoperability
and portability between FaaS platforms. Next, several challenges that are experienced
with the adoption of FaaS applications are described. We then reveal and detail the
various entities that model each module of the cloud-agnostic solution. The last section
defines a number of use cases that exemplify the usage of cloud-agnostic functions in
a practical scenario to highlight their main benefits.

3.1 Overview

From the analysis of cloud interoperability by Parameswaran and Chaddha [11], two
major approaches have emerged to ensure the developer needs are met:

1. Creation of a unified cloud interface (UCI).

2. Creation of a cloud orchestration platform.

A UCI is an API about APIs, in the sense that it provides an interface which a developer
can make use of, while under the hood it is interacting with unique APIs from different
cloud providers to execute specific operations. The proposed solution is considered to
be an UCI, since it abstracts the complexity of multiple cloud providers into a single
tool.

17

3. MODELS 3.2. Challenges

We decided to design a few entity-relationship models (ERMs) so that we could have
a visual starting point of the cloud-agnostic solution. An ERM represents the infor-
mation structure of the problem domain in terms of entities and relationships. We
adopted a top-down approach when designing the ERMs, the more general one can be
found in Figure 3.1. This model illustrates the three main modules that compose the
cloud-agnostic solution. Each module is then described in Section 3.3.

Figure 3.1: Abstract ERM of the cloud-agnostic solution

Achieving interoperability between FaaS platforms requires a certain number of per-
missions for accessing platform-specific APIs. These permissions can only be granted
by the user, thus, an authentication mechanism needs to be provided before being able
to interact with any of those APIs (AUTHMECHANISM entity).

Furthermore, each cloud provider uses its own strategies and services to enable FaaS
deployments using a certain mechanism — manual GUI deployment, ZIP deployment,
CLI deployment, etc. — hence the need to establish a deployment process for each
platform, preferably a common one (FaaSDEPLOYMENT entity).

Finally, for every FaaS deployment, a function definition needs to be provided for
execution (FUNCDEFINITION entity). This definition should be as independent as
possible from the selected cloud provider in order to improve the portability of FaaS
applications.

3.2 Challenges

Described below, are several challenges that are faced by developers when adopting
FaaS solutions. These challenges need to be taken into account when designing a uni-
form model for FaaS applications as well:

18

3. MODELS 3.2. Challenges

• Custom function signatures. Every cloud provider imposes its own function sig-
nature depending on the programming language and trigger selected by the de-
veloper. The function’s implementation can become deeply dependent on the
provider’s specific requirements [24], resulting in portability-related issues.

• Unique libraries. There are no common libraries shared between cloud providers
that could attenuate portability issues when developing serverless functions to
multiple platforms. Library dependencies are introduced not only for process-
ing custom data types but also for interacting with provider-specific APIs [24].
Switching between cloud providers requires the developer to adapt and study
new documentation, making him less productive.

• Provider-specific deployment environments. Each cloud provider decides where
and how service deployments can be performed. For instance, up until this date,
the cloud provider MsAzure does not support the deployment of a serverless
function written in Java or Python directly on the Azure portal [9], while Google
Cloud Platform does. The workaround requires the installation of the provider-
specific tool named Azure CLI. Each provider offers its own CLI tool to manage
cloud resources: AWS CLI, Azure CLI, gcloud from GCP, etc. The variety of
tooling is also not ideal for CI/CD pipelines that require multi-cloud usage.

• Discrepancy in deployment configurations. During a service deployment config-
uration stage, developers are confronted with different payment plans and de-
tailed hardware specifications to set up, such as the size of the allocated memory,
or the number of CPU cores available [72]. The amount of providers and their
intrinsic variability results in a discrepancy between configurations that do not
facilitate multi-cloud usage [73].

• Different service naming terminologies. Service naming terminologies vary be-
tween cloud providers, even when they have the same resource type and offer
similar features. Cloud developers may struggle to make correlations between
services from different providers. In FaaS, the differences are not that noticeable,
a function in GCP is called a cloud function, while in AWS they call it a lambda func-
tion. In other services, it can be a bit more unclear, a storage resource in MsAzure
is called a container (associated with a storage account), while in GCP they call it a
bucket.

To evidence the differences between function signatures, exemplified below, in List-
ings 3.1 and 3.2, are two simple use cases of serverless functions written in Java. Both

19

3. MODELS 3.3. Cloud-agnostic models

functions are triggered by HTTP requests and can be deployed to MsAzure and Google
Cloud Platform, respectively. The end result will be the same for both functions.

Listing 3.1: Java "Hello world!" – Azure function, MsAzure
1 public class Function {
2 @FunctionName("HttpExample")
3 public HttpResponseMessage run(
4 @HttpTrigger(name = "req", methods = {HttpMethod.GET},
5 authLevel = AuthorizationLevel.ANONYMOUS)
6 HttpRequestMessage<String> request,
7 ExecutionContext context) {
8 return request
9 .createResponseBuilder(HttpStatus.OK)

10 .body("Hello world!").build();
11 }
12 }

Listing 3.2: Java "Hello world!" – Cloud function, GCP
1 public class Function implements HttpFunction {
2 @Override
3 public void service(HttpRequest request, HttpResponse response)
4 throws IOException {
5 BufferedWriter writer = response.getWriter();
6 writer.write("Hello world!");
7 }
8 }

By introducing such wrapping around the actual business logic, functions can become
deeply dependent on provider’s requirements.

3.3 Cloud-agnostic models

This section reveals the cloud-agnostic entities that compose each module of the ab-
stract model illustrated previously in Figure 3.1. The models were separated into two
subsections, cloud interoperability and FaaS portability. Both the authentication mech-
anism and the FaaS deployment models relate to cloud interoperability due to requir-
ing the exchange of information between two systems, the application and the cloud
provider. On the other hand, the function definition model represents the entities and
respective attributes that determine the definition of a cloud-agnostic function, thus
being related to the portability of FaaS applications.

20

3. MODELS 3.3. Cloud-agnostic models

3.3.1 Cloud interoperability

Establishing a proper authentication mechanism is usually the very first step towards
achieving interoperability with cloud providers. In Figure 3.2, we represent the enti-
ties and respective attributes that model the authentication mechanism based on the
OAuth 2.0 protocol. This protocol is commonly used by different types of applica-
tions to authenticate users in various platforms, such as the three most popular cloud
vendors: AWS, GCP and MsAzure.

Figure 3.2: Authentication Mechanism ERM

The trust relationship between the tool and the provider’s identity platform is estab-
lished once the developer registers it as an application in the respective cloud provider.
This trust is unidirectional, the application trusts the provider identity platform, and
not the other way around. After registration, a client ID and a client secret are ran-
domly generated (clientId and clientSecret attributes from CLOUDAUTH entity). The
client ID is a public identifier for the application within the identity platform, while
the client secret is confidential to the application and should be kept private. Other-
wise, a malicious software could reuse the client secret to impersonate the application
and gain access to the user’s data [64].

With OAuth 2.0, an application can request one or more scopes (SCOPE entity), this
information is also presented in the consent screen during the user authentication pro-
cess. Once the user is successfully authenticated, an access token is requested and
issued to the application (accessToken attribute from SESSION entity) using a specific
token URL (tokenUrl attribute from CLOUDAUTH entity). The extent of the applica-
tion’s access is limited by the scopes granted. OAuth access tokens normally last for
about an hour in both GCP and MsAzure [80, 81]. Once expired, a refresh token can
be requested (refreshToken attribute from CLOUDAUTH entity). Refresh tokens usually
have a much longer lifetime that can last for several days before expiring.

21

3. MODELS 3.3. Cloud-agnostic models

Facilitating cloud service deployments to multiple providers helps in managing multi-
cloud complexity, thus contributing to cloud interoperability. Considering that this
work focuses on characterizing interoperability to FaaS platforms, Figure 3.3 only il-
lustrates cloud entities that participate in the deployment of a FaaS application.

Figure 3.3: FaaS Deployment ERM

Usually, a function needs to be linked to a storage resource. We adopted the same
naming terminology from AWS and GCP by calling it a bucket (BUCKET entity). These
buckets can have various purposes: storing every version of the function’s source code,
storing execution logs, etc. The user must have at least one bucket created before being
able to deploy the FaaS resource to a certain location (location attribute from FUNC-
TION entity). A resource location is wherever the resource resides, preferably as close
as possible to the end user. As for the entryPoint attribute, from the FUNCTION entity,
it specifies the entry point to the FaaS resource in the source code. This is the code
that will be executed when the function runs. A project (PROJECT entity), is simply a
holder for various types of resources from different cloud services.

When adopting this model, developers have to consider the differences in service nam-
ing terminologies. In MsAzure, a PROJECT corresponds to a resource group, a FUNC-
TION to a function app, and a BUCKET to a container associated with a storage account.

3.3.2 FaaS portability

The usage of provider-specific function signatures, as well as libraries, can be consid-
ered as the two main causes for portability issues that limit a serverless function to
only work on a single cloud provider. To counter these problems, we propose a model
for the development of cloud-agnostic functions, that is, functions that can be reused
in multiple cloud providers with no need to change a single line of code.

22

3. MODELS 3.3. Cloud-agnostic models

The entities and respective attributes that model a cloud-agnostic function definition
are represented in Figure 3.4.

Figure 3.4: Function Definition ERM

The FUNCTION entity is the exact same entity as the one illustrated in Figure 3.3,
and should not be confused with the HOOKFUNC entity, which is the cloud-agnostic
function defined by the developer (definition attribute from HOOKFUNC entity).

Starting a new function instance involves loading a runtime environment (RUNTIME
entity), capable of running code from multiple programming languages (LANGUAGE
entity). For instance, Kotlin JVM and Java programming languages both use the Java
Development Kit (JDK), which includes the Java Runtime Environment (JRE).

The developer has the option to specify a list of external dependencies (dependencies
attribute from HOOKFUNC entity), which needs to be analyzed before every deploy-
ment to check whether there are any missing dependencies to be downloaded from a
remote repository. These should follow the appropriate syntax when specified, which
can vary depending on the chosen runtime (dependsSyntax attribute from RUNTIME
entity). For instance, Maven dependencies for Java projects are specified in the POM
file using XML, while Node.js dependencies are specified in the package.json file using
JSON.

For every programming language, a cloud-agnostic function signature needs to be es-
tablished (signature attribute from LANGUAGE entity). Defined below, in Listings 3.3
and 3.4, are two examples of cloud-agnostic function signature skeletons used for Java
and JavaScript programming languages, respectively.

23

3. MODELS 3.4. Use cases

Listing 3.3: Java cloud-agnostic signature skeleton
1 <packages>
2

3 public class MyFunctionClass {
4 public void myFunction(<parameters>) {
5 <definition>
6 }
7 }

Listing 3.4: JavaScript cloud-agnostic signature skeleton
1 <packages>
2

3 module.exports = function(<parameters>) {
4 <definition>
5 }

The words between the angle brackets represent the mutable parts of a function, thus,
they can change from one deployment to another. Both the parameters and packages
are established based on the trigger and programming language selected by the devel-
oper (packages and parameters attributes from the LANGUAGE Ø TRIGGER relation).
These should be referencing the cloud-agnostic libraries for a specific event trigger.
Both of them are defined using the appropriate language-specific syntax (paramSyntax
and pkgSyntax attributes from LANGUAGE entity). For instance, in Kotlin, function pa-
rameters are specified using the “name: type” syntax, while Java follows the “type name”
syntax instead.

3.4 Use cases

We defined three use cases that exemplify the usage of cloud-agnostic functions in a
practical scenario to highlight their main benefits. The first use case, illustrated in Fig-
ure 3.5, was based on a frequently-described example of an event-driven FaaS-based
application, called the thumbnail generation [24].

Figure 3.5: Use case 1 – thumbnail generation

24

3. MODELS 3.4. Use cases

The use case starts with the upload of an image file to be persisted in a storage bucket
(Bucket1). The upload action triggers the execution of a cloud-agnostic function respon-
sible for generating and storing a new image thumbnail in a second storage bucket
(Bucket2). Prior to the thumbnail generation, the function makes a remote call to the
provider’s storage service to read the uploaded image bytes that triggered its execu-
tion. The thumbnail generation operation simply consists in cutting the image width
in half using common Java libraries.

This first use case intends to demonstrate the high portability of a full cloud-agnostic
function between different cloud providers (multi-cloud approach), even when being
triggered by an event originated within the cloud infrastructure (storage event).

The second use case, represented in Figure 3.6, illustrates two cloud-agnostic functions
that interact with each other in a poly cloud approach. The purpose of the use case is
to translate and store short pieces of text into a database, we named it store translation.

Figure 3.6: Use case 2 – store translation

The use case starts by sending an HTTP request with a piece of text to be translated
by the first cloud-agnostic function deployed in Google Cloud Platform. Because we
are already in Google’s environment, no extra authentication is required when access-
ing the Cloud Translation API [14]. The translation result is then sent, once again, via
HTTP, to a second cloud-agnostic function, this time deployed in MsAzure. The sec-
ond function has the single task of storing the translation result into a NoSQL database,
using the Azure Cosmos DB service.

Because both functions are using the same event trigger type, their function signatures
will be the same as well. With this use case, we intend to demonstrate that even when

25

3. MODELS 3.5. Summary

using a poly cloud approach, cloud-agnostic functions can help developers to focus
more on business logic and less on provider-specific requirements, such as following a
sophisticated function signature.

The third and last use case is called search blobs, represented in Figure 3.7. This use
case was designed exclusively for the purpose of the performance testing evaluated in
Chapter 5.

Figure 3.7: Use case 3 – search blobs

The cloud-agnostic function gets triggered via HTTP requests, in which the users must
specify the blob name they want to search for, together with the bucket name. The list-
Blobs operation, found in the cloud-agnostic libraries, is then executed to retrieve a list
of blobs contained in a given bucket, which requires a remote call to the storage ser-
vice. Finally, a simple search is made to check whether any of the blob names include
the requested string. The search results are then sent as a response to the execution
request.

No other use case described in this work gets triggered by HTTP requests while be-
ing fully cloud-agnostic, making them inappropriate for performance testing. For in-
stance, if the thumbnail generation use case was chosen instead, it would take an ex-
cessive amount of time to do multiple storage trigger executions when compared to
a HTTP-triggered function. This happens as a result of the extra file upload time,
plus the latency experienced during the communication between the two cloud ser-
vices (FaaS Ø S torageS ervice).

3.5 Summary

In this chapter, we introduced several ERMs that compose the cloud-agnostic solution
to achieve interoperability and portability between FaaS platforms. We also specified
different challenges that need to be taken into account when doing so. To conclude
this chapter, a number of use cases were presented with the purpose of highlighting
the main benefits that cloud-agnostic functions can offer in a practical scenario.

26

3. MODELS 3.5. Summary

The next chapter will be detailing the proposed solution by introducing a desktop tool
as well as the uniform programming model for FaaS applications. The model comes as
a result of the ERMs illustrated in this chapter.

27

4
Implementation

For this chapter, we will be detailing the proposed cloud-agnostic solution to achieve
interoperability and portability between FaaS platforms, by introducing the desktop
tool QuickFaaS. It will start by describing the system’s architecture and technologies.
Furthermore, the uniform programming model materialized by QuickFaaS is charac-
terized and divided into three smaller class diagrams. Each diagram corresponds to a
specific ERM, previously illustrated in Section 3.3. The full programming model can
be found in Appendix A.2

4.1 QuickFaaS

QuickFaaS is a multi-cloud interoperability desktop tool targeting cloud-agnostic func-
tions development and FaaS deployments. Our mission, with QuickFaaS, is to sub-
stantially improve developers’ productivity, flexibility and agility when developing
serverless computing solutions to multiple providers. The cloud-agnostic approach
allows developers to reuse their serverless functions in different cloud environments,
with the convenience of not having to rewrite code. This solution aims to minimize
vendor lock-in in FaaS platforms while promoting interoperability between them.

Initially, the tool will support automatic cloud-agnostic function packaging and FaaS
deployments to MsAzure and Google Cloud Platform. The expansion to other cloud
providers is feasible. For the following subsections, we describe the system’s architec-
ture, as well as the technologies utilized by QuickFaaS.

29

4. IMPLEMENTATION 4.1. QuickFaaS

4.1.1 Architecture

An overview of the system’s architecture can be visualized in Figure 4.1. This type
of diagram is known as deployment diagram, typically designed using UML, which is a
visual language for specifying, constructing, and documenting the artifacts of systems.
Deployment diagrams are often used for describing the hardware components where
software is deployed. In our case, the diagram focuses on revealing the main software
components and technologies behind QuickFaaS, and how these components interact
with each other and with remote services.

Figure 4.1: Deployment diagram

We adopted a design pattern that is commonly used in various types of GUI applica-
tions, called Model-View-Controller (MVC). An effective use of this pattern follows the
separation of concerns (SoC) principle, meaning that the domain model, the presenta-
tion, and the controller are divided into three separate components. In QuickFaaS,
the Controller manages the flow of the application mainly during the start-up process,
where the HTTP server, as well as the View, are initialized. The Model manages the
behaviour and data of the application domain, responds to requests for information
about its state (usually from the View), and responds to instructions to change state.
The View simply defines how the data should be displayed to the user.

30

4. IMPLEMENTATION 4.2. Uniform programming model

4.1.2 Technologies

As regards to technologies, the Kotlin-Gradle plugin from JetBrains was chosen to
compile the Kotlin code, targeted to JVM. Gradle also offers a highly-customizable
resolution engine for dependencies specified in the build.gradle file. The majority of
dependencies required by QuickFaaS are Ktor dependencies. This framework allowed
us to instantiate the HTTP server on a certain port. It also includes an asynchronous
HTTP client to make requests and handle responses. We extended the dependencies
functionalities with the addition of a few extra plugins provided by Ktor, such as the
authentication plugin to the server [40], and the JSON serialization to the client [39].

Finally, the View was developed using Compose for Desktop [16], a relatively new UI
framework that provides a declarative and reactive approach to create desktop user
interfaces with Kotlin. Even though the JDK 11 is the minimum required version to
develop Compose for Desktop applications, JDK 15 or later must be used in order to
do a native distribution packaging. This is due to the jpackage packaging tool only
becoming available starting from JDK 14, and considered to be a permanent feature in
JDK 16 [35].

Notice that no extra provider-specific CLI tools nor cloud orchestration frameworks
are required by QuickFaaS for authentication or deployment purposes. QuickFaaS
relies solely on the HTTP protocol to establish communications and exchange data
with cloud providers. However, developers should still install the necessary runtime-
related software for their functions, such as Maven together with JDK 11, to build Java
projects, or npm to download Node.js modules, which is not yet supported.

4.2 Uniform programming model

The following subsections map out the structure of the application through class dia-
grams designed using UML. Class diagrams tend to model software applications that
follow an object-oriented programming approach, just like QuickFaaS does.

We divided the full programming model into three smaller class diagrams. Each dia-
gram is individually detailed in a dedicated subsection and has a corresponding ERM
already described in Section 3.3. The full programming model, connecting all class di-
agrams together, can be found in Appendix A.2. The standard way of designing a class
block is to have the class name at the top, attributes in the middle, and operations or
methods at the bottom.

31

4. IMPLEMENTATION 4.2. Uniform programming model

Classes named with the word Cloud, are actually interfaces in QuickFaaS that are
mandatory to be implemented for a cloud provider to be considered as being sup-
ported. We instead represented these as common classes so that we could exemplify
how a neutral cloud provider would implement them. For the time being, QuickFaaS
will only support interoperability to MsAzure and Google Cloud Platform, meaning
that for each Cloud class/interface, two implementation classes were developed and
are missing from the programming model.

Some operations are marked with Kotlin’s suspend modifier. These operations can only
be executed from a coroutine or within another suspend function. A coroutine [36], is
a feature of Kotlin that enables the developer to write asynchronous sequential code
to manage potential long-running tasks in background threads, such as performing
HTTP requests. QuickFaaS also takes advantage of Data Classes [37], which is a concept
introduced by Kotlin whose main purpose is to simply hold data and make model
classes cleaner and more readable.

4.2.1 Authentication mechanism

Both MsAzure and Google Cloud Platform share similar implementations of services
based on the industry-standard protocol for authorization OAuth 2.0: Google Identity
and Microsoft Identity Platform. QuickFaaS benefits from this common mechanism to
authenticate its users in those providers, avoiding the need to require the installation
of extra software for authentication purposes.

The programming classes that resulted from the ERM previously illustrated in Fig-
ure 3.2, are now represented in Figure 4.2. To better understand the usage of the
OAuth 2.0 protocol, we designed a sequence diagram using UML, which can be found
in Figure 4.3. Sequence diagrams are primarily used for representing the interactions
between entities/objects in the sequential order that those interactions occur.

Figure 4.2: Authentication Mechanism class diagram

32

4. IMPLEMENTATION 4.2. Uniform programming model

Figure 4.3: OAuth 2.0 sequence diagram

The authentication process starts once the user decides which cloud provider he wants
to work with. After selecting one of the available cloud providers through QuickFaaS’s
UI, the user is redirected to the provider’s authentication web page. In order to receive
tokens sent by providers, QuickFaaS launches an HTTP server that starts listening for
requests to the callback API locally, on a certain port.

A few OAuth 2.0 server settings need to be specified before being able to establish a
connection between the application and the vendor’s identity platform. The settings
are defined in the CloudAuth class, using the getOAuthSettings operation. This opera-
tion returns an object of type OAuth2ServerSettings, which is a class provided by the
Ktor authentication plugin. These settings include the authorization page URL, the
access token request URL, the scopes, and the application’s client ID and client secret.
These last two are randomly generated during the application registration process,
usually done in the provider’s platform.

33

4. IMPLEMENTATION 4.2. Uniform programming model

The operation setBearerToken, from the CloudRequests class, is invoked once the access
token arrives to the callback API after the user authentication. CloudRequests classes
define several other methods responsible for making HTTP requests to the respective
cloud APIs. They all hold a reference to the same HTTP client instance defined in the
Controller.

The CloudCompanion class holds static properties that are necessary for the authentica-
tion mechanism to work properly. Some of these properties are also used by the View
to show basic information about the cloud provider, such as its name. This technique
avoids the creation of unnecessary CloudProvider instances that would remain unused
in heap space for long periods of time.

By the time the application supports more and more cloud providers, it’s expected
that most users won’t work with the majority of them. For that reason, CloudProvider
classes only get instantiated at the start of the function creation process, which is en-
abled once the user completes a successful authentication. This same instance will be
automatically handled by the garbage collector whenever the user decides to exit the
function creation process, usually after getting it deployed.

4.2.2 Function definition

Serverless functions need to follow provider-specific signatures in order to get trig-
gered by the occurrence of events, so how can cloud providers handle the execution
of cloud-agnostic functions? To overcome this constraint, we adopted the behavioural
design pattern, identified by Gamma, called the Template Method Pattern [19, 20]:

“The Template Method lets subclasses redefine certain steps of an algorithm without
changing the algorithm’s structure.”

In our case, the template method/function is the entry point of the deployed FaaS, that
is, the function that follows a provider-specific signature and gets triggered by a certain
event. The cloud-agnostic function, developed by the QuickFaaS user, corresponds to
the hook function, specified in the Template Method Pattern. The term “hook”, is applied
to functions that are invoked by template functions at specific points of the algorithm.
Template functions are predefined in QuickFaaS, and don’t require any modification
by the user. Template functions, unlike hook functions, are specific to a cloud provider
due to requiring the usage of custom function signatures and unique libraries.

QuickFaaS provides a built-in code editor for the development of hook (cloud-agnostic)
functions, which can be visualized in Figure A.2.

34

4. IMPLEMENTATION 4.2. Uniform programming model

Below, in Listings 4.1 and 4.2, we exemplify the usage of the Template Method Pattern
for the provider GCP, by implementing both the template function and a hook function,
respectively, using the Java programming language. The template function follows the
provider-specific signature that enables it to be triggered by HTTP requests.

Listing 4.1: GCP template function – HTTP trigger
1 import ...
2 import quickfaas.triggers.http.HttpRequestQf;
3 import quickfaas.triggers.http.HttpResponseQf;
4

5 public class GcpHttpTemplate implements HttpFunction {
6 @Override
7 public void service(HttpRequest request, HttpResponse response) {
8 HttpRequestQf reqQf = new GcpHttpRequest(request);
9 HttpResponseQf resQf = new GcpHttpResponse(response);

10 // Calls hook function
11 new MyFunctionClass().myFunction(reqQf, resQf);
12 }
13 }

Listing 4.2: Hook (cloud-agnostic) function – HTTP trigger
1 import quickfaas.triggers.http.HttpRequestQf;
2 import quickfaas.triggers.http.HttpResponseQf;
3

4 public class MyFunctionClass {
5 public void myFunction(HttpRequestQf req, HttpResponseQf res) {
6 res.send(200, "Hello world!");
7 }
8 }

The developer should embrace the libraries provided by QuickFaaS when writing a
fully cloud-agnostic function definition. In the above example, the HTTP event classes
HttpRequestQf and HttpResponseQf are bundled into the quickfaas-triggers.jar file. Even
though the libraries may look cloud-agnostic from the user’s perspective, under the
hood they are interacting with unique APIs from cloud providers to execute specific
operations.

The following class diagram was based on the ERM previously illustrated in Figure 3.4.

35

4. IMPLEMENTATION 4.2. Uniform programming model

Figure 4.4: Function Definition class diagram

To start the cloud-agnostic function development, the user must first choose which
runtime environment he wants to work with. For now, we only support function de-
ployments for Java runtime, despite Node.js being defined as a constant in the Runtime
enumeration class.

Once a runtime is selected, two file I/O operations are executed. The first one reads
the respective language configurations file, written in JSON (configsFile from the Lan-
guage enumeration class), using the getConfigs operation from the Language enumera-
tion class. This operation populates an instance of the LanguageConfigsData class to-
gether with the rest of the subclasses using Ktor’s serialization plugin. The second file
I/O operation obtains the function signature skeleton by reading the language signa-
ture file (signatureFile from the LanguageConfigsData class), using the getSignature oper-
ation from the Language enumeration class. Signature files contain a definition similar

36

4. IMPLEMENTATION 4.2. Uniform programming model

to the ones defined in Listings 3.3 and 3.4. Then, the defaultDefinition, the packages and
the parameters, are determined according to the selected trigger. All of them are de-
fined in a TriggerConfigsData class instance, that by this point is already populated. The
defaultDefinition is usually only one or two lines of code.

Although an object of type CloudBucket is being referenced in the CloudFunction class,
the CloudBucket class is missing from the illustrated model. This is due to the bucket en-
tity not being a part of the function definition ERM, so the CloudBucket class is instead
included in the FaaS deployment programming model, which is detailed in the next
subsection.

The user can also define useful JSON configurations and extra dependencies to be
downloaded right before deployment (configurations and dependencies properties from
the HookFunction class, respectively). The configurations file allows users to specify
JSON properties that can be accessed during function’s execution time. In some cases,
a few configurations are mandatory to be specified, otherwise, certain cloud-agnostic
libraries won’t work properly. For instance, a bucket access key needs to be provided
in configurations when using the cloud-agnostic storage libraries for MsAzure. An
example of these configurations can be found below in Listing 4.3, written in JSON.

Listing 4.3: Configurations file content example
1 {
2 "resources": [
3 {
4 "id": "my−bucket−name",
5 "type": "storage",
6 "properties": {
7 "accessKey": "my−private−key"
8 }
9 }

10],
11 "fruits": ["apple", "banana", "orange"]
12 }

The accessKey property is mandatory for accessing the respective bucket deployed in
MsAzure, while the fruits array exemplifies a custom property that can be added by
the user. Configurations that are required by certain libraries need to be marked as
mandatory in QuickFaaS’s documentation. The fruits array can be obtained using the
getConfiguration static operation from the ConfigurationsQf class. This operation re-
ceives the property name as an argument and returns an instance of the respective
JSON element, in this case, of type JsonArray.

37

4. IMPLEMENTATION 4.2. Uniform programming model

QuickFaaS takes advantage of the Gson library from Google when doing these types of
operations, which is a Java serialization/deserialization library to convert Java objects
into JSON and back [34]. For the time being, the configurations file is always read
during cold starts, regardless of whether the JSON properties are used or not. The
impact of this operation on the function’s performance is evaluated in Section 5.3.

Finally, to demonstrate a more complete use of the cloud-agnostic libraries, we provide
the implementation of the thumbnail generation use case in Listing 4.4.

Listing 4.4: Use case 1 function definition – thumbnail generation
1 import ...
2 import quickfaas.resources.storage.BucketQf;
3 import quickfaas.resources.storage.StorageQf;
4 import quickfaas.triggers.storage.BlobQf;
5 import quickfaas.triggers.storage.BucketEventQf;
6

7 public class MyFunctionClass {
8 public void myFunction(BucketEventQf event, BlobQf blob) {
9 BucketQf bucket1 = StorageQf.newBucket(event.getBucketName());

10 byte[] source = bucket1.readBlob(blob.getName());
11 byte[] thumbnail = generateThumbnail(source, "jpeg");
12 BucketQf bucket2 = StorageQf.newBucket("bucket2thumbnails");
13 bucket2.createBlob("thumbnail−" + blob.getName(), thumbnail, "image/jpeg");
14 }
15 public byte[] generateThumbnail(byte[] source, String type) {...}
16 }

There are two cloud-agnostic operations that remote call the provider’s storage service,
these are the readBlob and the createBlob operations from the BucketQf class (lines 10 and
13, respectively). The first one reads all the bytes from the specified blob stored in the
referenced bucket, while the second one creates a blob in the referenced bucket. The
blob name, as well as the content of bytes, need to be provided as arguments to the blob
creation operation. The getBucketName operation, from the BucketEventQf class (line 9),
returns the bucket name where the storage event occurred. It’s also worth mentioning
that the newBucket static operation, from the StorageQf class (lines 9 and 12), returns a
reference to an existing bucket, it doesn’t create a new one.

The generateThumbnail operation definition was omitted due to being irrelevant in this
context (line 15), but it simply consists in cutting the image width in half using common
Java libraries.

38

4. IMPLEMENTATION 4.2. Uniform programming model

4.2.3 FaaS deployment

FaaS deployments can be challenging when dealing with multiple cloud providers
that require setting up different types of configurations and environments. Even when
two providers offer an identical type of service configuration, it doesn’t necessarily
imply that the available values associated with that configuration are the same in both
providers. For instance, not all cloud providers support the deployment of a service to
the same locations nor support the same runtimes for executing serverless functions.

QuickFaaS tries to overcome these types of adversities by only enabling the set-up of
fundamental configurations that are present in most cloud providers. Nevertheless,
QuickFaaS allows the modification of some provider-specific configurations, but only
those that are considered relevant or may affect the function’s performance, e.g., the
configuration to specify the memory allocated for each function is not available in ev-
ery provider.

Similarly to the authentication process previously detailed, QuickFaaS benefits once
again from a common mechanism available in the supported cloud providers, avoid-
ing the need to install extra provider-specific tooling for deployment purposes. The
deployment mechanism works by uploading a ZIP archive using provider-specific
HTTP APIs. The following model, represented in Figure 4.5, shows what program-
ming classes are involved during the function’s source code build process and subse-
quent deployment of the ZIP archive. These are the resulting programming classes of
the ERM previously illustrated in Figure 3.3.

Figure 4.5: FaaS Deployment class diagram

39

4. IMPLEMENTATION 4.2. Uniform programming model

QuickFaaS requires most deployment configurations to be established by the user be-
fore enabling the cloud-agnostic function development. The standard configurations
include: (i) the project that manages the FaaS resource (project property from the Cloud-
Provider class), (ii) the function name, (iii) the resource location, and (iv) the bucket
used to store function related files, such as the function’s source code, execution logs,
etc., (name, location and bucket properties from the CloudFunction class, respectively).

However, as stated before, cloud providers can require extra and unique configurations
to be established by the user. This happens with the azure subscription ID field, which
is mandatory to be specified when deploying resources for the majority of services
in MsAzure, including FaaS resources (function apps). Cloud-specific properties are
declared in cloud-specific data classes. For instance, the subscription ID is declared in
the MsAzureProjectData class, which extends the ProjectData class. This class is missing
from the diagram due to declaring cloud-specific properties.

The ZIP deployment strategy requires the implementation of a dedicated deployment
script for each of the supported cloud providers. Functions are packaged and de-
ployed differently, e.g., AWS allows having multiple functions in one package, whereas
MsAzure allows only one function per package. Described below, are the two main op-
erations, from the CloudFunction class, responsible for the function’s deployment to a
FaaS platform:

1. buildAndZip
This operation starts by building the function’s source code, if needed, into an
executable file. The template function file, together with the created hook (cloud-
agnostic) function file, make up the function’s source code. We used Maven when
building Java-based projects. As for JavaScript sources, no build tool would be
necessary, only a package manager tool, such as npm, to download the required
node modules.

The executable JAR file, which results from the Maven build, is then packaged to-
gether with the downloaded dependencies. These packages should be organized
using the provider’s specific folder structure, which varies depending on the
function’s runtime [7, 29]. Runtime build scripts are defined per cloud provider,
by implementing the CloudBuildScripts operations. This modular approach al-
lows QuickFaaS to expand and integrate new environments efficiently. Since
Node.js is not yet supported, only the javaBuildScript operation is implemented
for both GCP and MsAzure cloud providers.

The buildAndZip operation terminates once everything is zipped and ready to be
deployed.

40

4. IMPLEMENTATION 4.2. Uniform programming model

2. deployZip
The last operation of the process is the ZIP archive deployment to the FaaS plat-
form. Cloud providers offer different APIs and services to enable FaaS deploy-
ments. For instance, MsAzure requires the deployment of a function app first [85],
which is where the ZIP archive gets deployed afterwards. Additionally, MsAzure
ZIP archives can contain multiple azure functions to be deployed to a single func-
tion app at once, while in GCP there can only be one function per FaaS deploy-
ment. Because function apps can only support one runtime at a time, QuickFaaS
reuses existing function apps, that were configured with the same runtime, when
deploying new azure functions, resulting in faster deployment times. The Kudu
API was used to perform ZIP deployments to function apps [41, 42].

As for GCP, we first used the Cloud Storage API to initiate a resumable upload of
the ZIP archive to the selected storage bucket [62]. The create operation, from the
Cloud Functions API, is then invoked to deploy the FaaS resource [18]. The ZIP
sources are automatically loaded during deployment using the sourceArchiveUrl
property, provided in the request body. This property specifies the exact location
of the ZIP archive within the storage bucket.

As shown in Figure 4.6, the ZIP archive contains all the necessary artifacts to success-
fully launch the serverless function in the cloud. In this example, we illustrate the
deployment process of a cloud-agnostic function written in Java to GCP, where Maven
is used as the build tool.

Figure 4.6: FaaS deployment to GCP for Java runtime

41

4. IMPLEMENTATION 4.2. Uniform programming model

Below, we describe the purpose of each artifact that is bundled into the ZIP archive:

• pom.xml – includes information about the Java project and configuration details
used by Maven to build the project, such as the build directory, source directory,
dependencies, etc. The only modification allowed to the POM file is the addition
of custom dependencies.

• MyFunctionClass.java – contains the cloud-agnostic function defined by the de-
veloper (hook function). This file is created during the buildAndZip operation.

• GcpHttpTemplate.java – contains the template function to be triggered by the
occurrence of events. In the above example, the template function is triggered by
HTTP requests. Template function files are predefined in QuickFaaS and use the
following file naming syntax.

[cloudProvider][eventTrigger]Template[.languageFileExtension]

• function-configs.json – contains user defined JSON properties to be accessed dur-
ing function’s execution time, using QuickFaaS’s libraries.

• quickfaas-triggers.jar – establishes event trigger contracts between cloud-agnostic
classes and provider-specific implementation classes.

• quickfaas-gcp-trigger-http.jar – implements cloud-agnostic HTTP trigger con-
tracts using provider-specific event libraries. In this case, Google Cloud Platform
event libraries are used for implementation.

• quickfaas-resources.jar – establishes contracts between cloud-agnostic classes and
provider-specific implementation classes for interaction with common cloud re-
sources and services.

• quickfaas-gcp-resources.jar – implements cloud-agnostic resource contracts us-
ing provider-specific libraries of services from Google Cloud Platform.

For GCP in particular, QuickFaaS requires developers to enable the Cloud Resource
Manager API [12]. This will allow QuickFaaS to programmatically manage resource
metadata.

42

4. IMPLEMENTATION 4.3. Summary

4.3 Summary

This chapter covered the proposed solution to achieve interoperability and portability
between FaaS platforms, including the system and software design decisions taken
when developing QuickFaaS. We then went into detail to describe the mechanisms as
well as the uniform programming model materialized by QuickFaaS.

For the next chapter, we will be presenting several metrics to evaluate and compare
the execution performance of a use case implemented using both a cloud-agnostic and
a cloud-non-agnostic approach.

43

5
Evaluation

Measuring the performance of computer systems is a challenging task, especially when
dealing with distributed systems managed by cloud providers. Different design as-
pects from FaaS infrastructures need to be taken into account when planning the eval-
uation experiments.

This chapter introduces different metrics that measure the impact of a cloud-agnostic
approach on the function’s performance, by comparing it to a cloud-non-agnostic one.
To do this, we made several deployments and executions of the search blobs use case
in MsAzure and Google Cloud Platform. The search blobs use case, represented in Fig-
ure 3.7, was written in Java, and it’s the only one out of the three described in this
work that gets triggered by HTTP requests, while at the same time being fully cloud-
agnostic. Being triggered through HTTP, helped in the development of automated
tests, whose purpose is to automatically generate and collect data for evaluation.

The automated tests were developed using the Kotlin language, together with JUnit 5
testing framework and Gradle build tool [38]. For each of the given tests, we describe
the data collection methodology and do some analysis of the obtained results.

5.1 Metrics definition

Having established the appropriate use case for evaluation, we now had to decide what
were the key metrics that could best characterize the performance of the function’s
deployment and execution.

45

5. EVALUATION 5.1. Metrics definition

The execution time is commonly recognized as the primary metric for measuring a
function’s performance. When cold started, the function’s execution time includes an
extra latency derived from the container’s startup process, thus producing higher ex-
ecution times than warm starts. The execution time was measured in milliseconds,
while the second performance metric, the function’s memory usage, was measured in
megabytes (MB). The memory usage refers to the total amount of memory consumed
during the function’s execution.

When measuring for Google Cloud Platform, both metrics can be programmatically
obtained using the MetricService from the Cloud Monitoring gRPC API [43]. Within
this service, the operation ListTimeSeries can then be used to capture sets of metrics
data that match certain filters, for a given time frame. The following filters need to
be specified when capturing the execution time and the memory usage, respectively:
function/execution_times and function/user_memory_bytes [31].

An extra cloud service is also required when capturing the function’s execution time
in MsAzure, called the Application Insights. Application Insights is a feature of Azure
Monitor that provides extensible application performance management and monitor-
ing for live applications, including function apps. We created as many Application In-
sights resources as function apps deployed. The Query operation, from the Application
Insights REST API [3], can then be invoked to request a set of execution times (Func-
tionExecutionTimeMs) within a given time frame. This is done by sending the following
log query as the body of the HTTP request:

requests| project timestamp, customDimensions[’FunctionExecutionTimeMs’]

Unfortunately, the measurement of memory usage per function execution isn’t a metric
currently available through Azure Monitor. There are, however, several other related
metrics [8]:

• Working set – the current amount of memory used by the app (function app), in
mebibytes (MiB).

• Private bytes – the current size, in bytes, of memory that the app process has
allocated that can’t be shared with other processes. Useful for detecting memory
leaks.

• Function execution units – a combination of execution time and memory usage,
measured in MB-milliseconds.

46

5. EVALUATION 5.1. Metrics definition

Both the Working set and the Private bytes consist of measuring the app’s memory as a
whole, they are not exclusive to serverless functions, making them inadequate metrics
for this study. Additionally, any sort of interaction with the app via its REST APIs, or
through the Azure Portal, can cause memory spikes, even when no functions were re-
cently executed. As a consequence, the data collection process would have difficulties
in distinguishing accurately the memory consumed during the function’s execution
time from the one spent in processing secondary app operations.

The Function execution units is the one out of the three specified metrics that best meets
our needs, for different reasons: (i) gets measured for every function execution, (ii)
doesn’t include memory consumption from secondary app operations, and (iii) the
calculation formula is defined in official documentation [25]. The Function execution
units per function execution are calculated according to Equation 5.1.

FunctionExecutionUnits “ execution_time ˆ memory_usage (5.1)

Even though this formula is being applied once every function execution by Azure
Monitor, the units are presented as a time-based aggregation, meaning that they can’t
be obtained individually for a particular function execution. To be more specific, Azure
Monitor aggregates units of function executions made within the same minute, so that
it can be obtained as an average, minimum, maximum, sum, or count.

A set of FunctionExecutionUnits averages, for a particular time frame, can be requested
using the Metrics operation from the Application Insights REST API [2]. The time frame
and the Average aggregation are specified using the timespan and the aggregation query
parameters, respectively. Then, using the formula specified above, the average mem-
ory consumption is determined by simply doing the average of the set of FunctionEx-
ecutionUnits averages, divided by the average of the respective set of execution times.
Because cold starts evaluation only requires the measurement of one execution per
FaaS resource, the two generated sets only include a single value each, so the division
can be applied straight away. The count property was also useful to keep track of the
number of executions each FunctionExecutionUnits average value corresponded to.

An article published in CODE Magazine, detailing various aspects regarding Azure
Functions, also follows the same approach when measuring the function’s memory
usage [15]. In their case, the memory usage is relevant for the calculation and compar-
ison of consumption costs between different azure pricing models.

Because the FunctionExecutionTimeMs is not recognized as a metric by Azure Monitor
in the same way as FunctionExecutionUnits, the execution of a log query had to be used
as an alternative to the Metrics operation.

47

5. EVALUATION 5.2. Function execution environment

5.2 Function execution environment

The specifications for the execution environments are presented below in Table 5.1.
Apart from the location and the runtime, these are the default values recommended by
providers when deploying a serverless function [30, 49].

Specification
Google Cloud

Platform
Microsoft Azure

Location
europe-west1

(Belgium)
west europe

(Netherlands)

Runtime Java 11 Java 11

Memory allocated 256 MB 1.5 GB

Min/Max instance count 0 – 3000 0 – 200

Operating system Ubuntu 18.04 Windows

Table 5.1: Function execution environment specifications

The aim of the current study is to evaluate and compare the performance of different
functions hosted within the same cloud provider. For that reason, we didn’t make an
effort in configuring machine specifications as similar as possible for the two providers.

5.3 Cold starts

Every time a function’s triggering event occurs, a gateway component checks whether
there’s already a container instance in an idle (warm) state that could serve the recently
arrived execution request. If there’s no idle container, the gateway must allocate a new
one and direct the execution request to the respective machine [17]. The process of
starting up a new container, together with the preparation of the function’s execution
environment that serves the newly arrived request, is called a cold start.

Cold starts are one of the most critical performance challenges in FaaS applications due
to its overwhelmingly expensive latency caused by the booting time, which can easily
dominate the function’s total execution time [65]. While languages such as JavaScript
use an interpreter, Java requires a more complex environment to be set up in the con-
tainer with JVM, leading to a higher latency most of the time.

The time it takes for an inactive container to be deallocated varies depending on the
cloud provider. For instance, MsAzure offers three types of hosting plans for azure

48

5. EVALUATION 5.3. Cold starts

functions that affect the frequency of cold starts: consumption plan, premium plan
and dedicated (App Service) plan [46]. The consumption plan is the default hosting
plan where clients only pay for compute resources when functions are running. As
for the premium plan, function apps are running continuously, or nearly continuously,
avoiding cold starts with perpetually warm instances. Finally, the dedicated plan is
best for long-running scenarios and billing is made regardless of how many function
apps are running in the plan. This last one differs from the other two hosting plans, that
have consumption-based cost components. The hosting plan that best suits our needs
is the consumption plan, given that the search blobs use case doesn’t require heavy
operations for execution, and we also don’t want to avoid cold starts for the purposes
of this evaluation like the premium plan does. When using the consumption plan,
container resources are deallocated after roughly 20 minutes of inactivity, meaning
that the next invocation will result in a cold start [44].

Cold starts can also be avoided in Google Cloud Platform by setting a minimum num-
ber of instances greater than zero [32]. We kept the minimum number of instances at
zero during the evaluation. Even though no official documentation specifies for how
long a container stays in an idle state (idle timeout) before being offloaded, some studies
have argued that container instances are recycled after 15 minutes of inactivity [28].

This evaluation will enable us to verify whether the usage of cloud-agnostic libraries,
in addition to the execution of a few extra operations in template functions, have an
evident impact on the function’s performance when cold started.

5.3.1 Measurement methodology

The established measurement methodology consists in generating and collecting 300
cold start execution records of both the cloud-agnostic and the cloud-non-agnostic
functions, in each cloud provider. This methodology requires a waiting time of at
least 15 to 20 minutes after the latest execution to get a single data record. This inter-
val allows the container to have enough time to transition from an idle to a stopped
(cold) state. Which means that if we were to trigger a FaaS resource to obtain a single
cold start execution record at a time, each function test would take around 100 hours
to retrieve the 300 data records (300 ˆ 20 minutes).

To overcome this issue, we first deployed 100 FaaS resources in each cloud provider,
that is, 100 cloud functions in GCP and 100 function apps in MsAzure. We then used
three batches of 100 invocations to trigger the 100 deployed functions one at a time in
each cloud provider. The invocation batches were separated by an interval of about an
hour to ensure that cold starts would occur.

49

5. EVALUATION 5.3. Cold starts

In MsAzure, cold starts happen per function app, meaning that once an azure function
is cold started, any other function within the same app can be warm started if executed
shortly after the cold start. Therefore, the fastest way of collecting 100 cold start execu-
tion records is by cold starting 100 different function app instances, each one containing
a single azure function. Due to some unanticipated problems in cold starting each
function app, to be discussed in Section 5.6, we ended up only doing 50 executions per
batch in MsAzure for 50 function apps. This issue caused the process of data collection
in MsAzure to take the double the amount of time of GCP. Nevertheless, we were still
able to retrieve the 300 records for each function.

5.3.2 Measurement analysis

Given the nature of cold starts, not all 300 records per function definition were con-
sidered when determining the average execution time. Each function bar, illustrated
in Figure 5.1, only takes into account the best 75% of the total measured records, in
other words, the 225 lowest execution times, to perform the average calculation. This
reduces the probability of presenting misleading results, known as outliers, that occur
frequently in cold starts due to latency issues.

Figure 5.1: Cold start execution time

From the results illustrated above, we can conclude that the cloud-agnostic function
definition had an increase in execution time of 3.2% in Google Cloud Platform and 3.8%
in Microsoft Azure, when compared to the cloud-non-agnostic one. The slight increase
in execution times was inevitable for cold starts, given that template functions start by

50

5. EVALUATION 5.3. Cold starts

reading the configurations JSON file, ending up causing some overhead due to being a
file I/O operation. The configurations file allows users to specify JSON properties that
can be accessed during function’s execution time. The only configuration specified by
the search blobs use case is the bucket’s access key when deployed to MsAzure, which
is a requirement for accessing the storage service. The same access key is hardcoded in
the respective cloud-non-agnostic definition so that we can have a clear perception of
the impact on execution time when performing the file I/O operation.

For the time being, the configurations file is always read in cold starts, regardless of
whether the JSON properties are used or not. No extra authentication is required to
cloud functions deployed to GCP in order to interact with other services, meaning that
the execution time could be improved by not reading the configurations file, since no
storage access key is needed.

We can also point out that around 17% of the total number of cold start execution
times measured in MsAzure (cloud-agnostic and cloud-non-agnostic), with no exclu-
sions, were above three seconds. While in Google Cloud Platform, no record reached
the two-second mark. This can be attributed to different hardware, but also to the un-
derlying operating system and virtualization technology. Perhaps Ubuntu containers,
from GCP, have faster start-up times on average when compared to Windows contain-
ers from MsAzure [86].

As for the memory usage, represented in Figure 5.2, no records were ignored when
determining the average memory consumption.

Figure 5.2: Cold start memory usage

51

5. EVALUATION 5.4. Warm starts

The difference in memory usage between the two function definitions is practically
non-existent in both providers. This difference was expected to be close to zero, since
there are no extra heavy allocated objects or operations executed by cloud-agnostic
libraries that could cause the memory usage to increase drastically.

5.4 Warm starts

The time wasted in cold booting new containers is considered to be the main drawback
of serverless computing. Warm starts have an important role in keeping execution
times balanced and as close as possible to serverful services. Without them, the com-
putational costs of processing a batch of several consecutive execution requests would
be much higher, considering that it would require the start-up of a new container for
every newly arrived request.

A warm start happens whenever an existing execution environment (container) is
reused in subsequent executions of the same function. A container is considered to
be in an idle (warm) state after having recently served one or more execution requests
prior to the current one. To reduce costs, FaaS containers are offloaded after remaining
idle for a certain period of time. The lifetime of a warm instance varies depending on
the cloud provider.

Some developers decide to force their FaaS containers to stay warm for long periods of
time by warm starting them frequently. Their goal is to prevent cold starts from hap-
pening, and it’s often recommended for FaaS applications that experience a substantial
amount of latency in execution times when cold booted (>10 seconds). Keeping con-
tainers alive can, however, consume valuable computational resources from servers,
and will most likely increase costs [23]. Additionally, cold starts can still occur when
the function is auto-scaling to handle capacity, causing a new instance to be created.

By measuring multiple consecutive warm starts, we will be able to evaluate whether
QuickFaaS’s cloud-agnostic libraries produce any kinds of memory leaks as the execu-
tions go by. A memory leak is a scenario where objects present in the heap space are
no longer needed, but the garbage collector is unable to remove them from memory
because they’re still being referenced, therefore, they’re unnecessarily maintained. As
for execution times, it’s expected the difference between the two function definitions
to be close to zero milliseconds.

52

5. EVALUATION 5.4. Warm starts

5.4.1 Measurement methodology

The established measurement methodology consists in generating and collecting 200
warm start execution records of both the cloud-agnostic and the cloud-non-agnostic
functions, in each cloud provider. The 200 records are a combination of two batches
of 100 execution records, each batch being measured at separate times. The very first
function execution of each batch originates a cold start, and for that reason, it was not
considered as one of the data records.

To be able to retrieve the 100 records for each batch, a randomly selected FaaS resource
from the previous test was triggered around 400 consecutive times (4 ˆ 100 records),
with a delay of 10 seconds between invocations. The reason for the high number of
executions, as well as the delay between them, is explained in Section 5.6. As a result,
the warm starts test was the one that took the longest amount of time to be completed.

5.4.2 Measurement analysis

We experienced considerably fewer outliers while measuring execution times from
warm starts. Warm starts are less likely to have high latency issues when compared to
cold starts, since they don’t have to deal with cold booting operations as often. There-
fore, the percentage of best records to be taken into consideration when calculating
the average was increased from 75% to 85%. Because we’re triggering the same func-
tion multiple times, cold boots can still occur due to auto-scaling, which causes a new
instance to be created. The warm starts test results can be found in Figure 5.3.

Figure 5.3: Warm start execution time

53

5. EVALUATION 5.4. Warm starts

The test results show minor differences in execution times, despite the greater ab-
straction provided by cloud-agnostic libraries, which also simplifies code complexity.
Even though there’s no guarantee that the state of serverless functions is preserved be-
tween consecutive invocations, the execution environment can be often recycled dur-
ing warm starts. QuickFaaS libraries take advantage of this characteristic by caching
certain objects that may be expensive to recreate on each function invocation [79]. For
instance, whenever a cold start happens, the JSON text of the configurations file is
cached in a global variable, avoiding the need to repeat the file I/O operation in subse-
quent warm starts. By adopting this strategy, we are able to close the gap in execution
times between the two function definitions, which was much higher in cold starts.

It’s also worth mentioning the difference in execution times between cloud providers.
GCP functions took approximately the double the amount of time of MsAzure func-
tions to finish execution. One of the factors that may have contributed to this time
difference is the amount of memory allocated to MsAzure containers, which is much
higher than in GCP. Low memory capacity can increase the function’s execution time.

As shown in Figure 5.4, there was also a considerable difference in memory usage. No
records were excluded this time when determining the average memory consumption.

Figure 5.4: Warm start memory usage

The measurements reveal that cloud-agnostic functions made better use of the avail-
able memory when compared to cloud-non-agnostic ones. We were unable to find a
reasonable answer to justify these differences in memory consumption. Despite the

54

5. EVALUATION 5.5. ZIP deployments

difference, both functions from GCP reached a maximum of 145 MB in memory con-
sumption during testing. The same analysis can’t be made for azure functions, given
that Function execution units are presented as a time-based aggregation and not indi-
vidually for a particular execution.

Despite the noticeable increase in memory usage when compared to cold starts, there
were no signs of memory leaks. This increase is a natural consequence of warm starting
the same container instance several times.

5.5 ZIP deployments

To conclude the evaluation, we will do a comparison between ZIP deployment times
to check whether the usage of QuickFaaS’s libraries have a negative impact in this
regard. The collected records derive from the deployments made during the previous
tests. The evaluation consists in comparing ZIP sizes and deployment times of the
search blobs use case in both cloud providers.

5.5.1 Measurement methodology

The established measurement methodology consists in collecting data from 100 FaaS
resource deployments of both the cloud-agnostic and the cloud-non-agnostic func-
tions, in each cloud provider. The same deployment scripts developed for QuickFaaS
were reused by the automated tests. The deployment time was determined based on
the formula specified in Equation 5.2.

DeploymentT ime “ zip_upload_time ` resource_deployment_time (5.2)

The zip_upload_time corresponds to the HTTP request duration that is responsible for
the upload of the ZIP archive to the cloud provider. While the resource_deployment_time,
indicates the time it took for the FaaS resource to be available for access after being
requested to be deployed.

In Google Cloud Platform, a cloud function is ready to be accessed once the resource’s
updateTime attribute is defined with the deployment timestamp [27]. As for MsAzure,
a function app is considered to be successfully deployed once a record with the Create
value attached to the changeType attribute appears in the activity logs [48]. By accessing
this record, we can then retrieve the deployment timestamp.

55

5. EVALUATION 5.6. Adversities

Each timestamp is then used to calculate the resource_deployment_time, by subtracting
the respective HTTP deployment request timestamp, stored previously.

5.5.2 Measurement analysis

The 100 deployments of each function were made in a sequential order, with an aver-
age upload speed of 21 megabits per second (mbps). For the next chart, two distinct
data types are included in each function bar. The first one being the average ZIP de-
ployment time in seconds (s), at the top of the function bar, and the second one being
the ZIP archive size in kilobytes (KB), at the middle of the function bar.

Figure 5.5: ZIP deployment time

As shown in Figure 5.5, cloud-agnostic libraries only add a few extra kilobytes of space
to ZIP archives, 16 KB for GCP and 20 KB for MsAzure to be more precise. As expected,
the size difference had almost no impact on the function’s deployment time.

Nonetheless, as the libraries become more and more complete over time, ZIP archives
will become larger in size, resulting in higher deployment times. By that time, Quick-
FaaS should be capable of minimizing the number of its own dependencies as much as
possible, not only to lower deployment times, but most importantly, to optimize cold
starts.

5.6 Adversities

Described below, are the main adversities we came across while collecting performance
metrics data, together with an explanation on how we managed to overcome them.

56

5. EVALUATION 5.6. Adversities

They are sorted based on the time period in which they occurred:

1. Function apps unavailable.

The fastest way of collecting 100 cold start execution records in MsAzure is by
cold starting 100 different function app instances. However, while triggering each
azure function, we noticed that the last 30 or so functions were responding with
a 503 HTTP status code, indicating that the function app service was unavailable.
The function apps were redeployed a few times, but the same problem persisted.
We also verified that the consumption plan allowed a maximum number of 100
function apps [49], meaning that the limit wasn’t being surpassed. Unfortunately,
we were unable to determine the exact reason behind this problem.

To overcome this issue, we decided to only cold start the first 50 azure functions
twice, causing the process of data collection in MsAzure to take the double the
amount of time of GCP.

2. Unregistered executions.

The warm starts evaluation included a total of 800 warm start execution records,
meaning that we had to do at least 200 consecutive invocations for each func-
tion definition. It turns out that not all warm start executions are registered by
Google Cloud Platform metrics. For instance, out of 100 consecutive function
invocations, less than 10 got registered by the metrics service.

We tried to mitigate this issue by adding a ten-second delay between consecutive
function invocations. The purpose of this delay is to give some extra time to the
metrics service to register execution metrics. With this strategy, we were able
to reduce the number of necessary invocations from 10ˆ to 4ˆ the number of
desired records. Therefore, in order to generate the 200 execution records, each
function had to be warm started around 800 times (4 ˆ 200 records). If no delay
was applied while generating the 200 execution records, each function would
have to be warm started around 2000 times (10 ˆ 200 records).

On the other hand, the Application Insights, from MsAzure, is capable of register-
ing every function execution time. However, a zero-second delay for warm starts
could no longer be used as well. Otherwise, most execution times with a zero-
second delay would be much lower than the ones registered using a ten-second
delay, which would lead to unfair comparisons between the two providers. To
verify this analysis, we made an extra test in MsAzure using a zero-second delay
between warm start invocations of the cloud-agnostic function. We came to the

57

5. EVALUATION 5.7. Summary

conclusion that most execution times ranged from 20 to 40 ms, while with a ten-
second delay, as shown in Figure 5.3, the average execution was around 75 ms,
with most execution times ranging from 60 to 80 ms.

3. Measurements inconsistency.

Latency can’t be ignored when evaluating the performance of FaaS applications.
The highest latency is usually experienced in cold starts, during the preparation
of the execution environment. For the search blobs use case in particular, the re-
mote calls to the storage service also contribute with some network latency.

All things considered, execution times can therefore be volatile, causing the re-
sults to be inconsistent when measured at separate times. To increase the reliabil-
ity of measurements, various tests had to be repeated multiple times on different
days during off-peak hours (i.e., between 2 p.m. and 6 p.m.), in an effort to avoid
network congestion.

5.7 Summary

This chapter described different metrics to measure the impact of a cloud-agnostic ap-
proach on the function’s performance, by comparing it to a cloud-non-agnostic one.
For every test that was developed, we specified the purpose of its metrics, followed by
a detailed explanation on how it was performed, and lastly, an analysis of the obtained
results was provided. We also described the main adversities that were faced during
the data collection.

The sixth and final chapter summarizes the key points of this work and explains how
do these contribute to solving the problems addressed before. We also point out some
drawbacks to the proposed solution. Finally, the future work is presented to briefly
discuss in what ways we believe QuickFaaS can be improved.

58

6
Conclusions

This chapter concludes this work by mentioning its main achievements and explaining
why are these significant to solve or minimize the problems addressed. We also point
out some drawbacks to the proposed solution. The future work sums up this chapter
by briefly discussing in what aspects we believe QuickFaaS can be improved, along
with our expectations for the future regarding cloud computing.

6.1 Achievements

The overall goal of this work was to characterize a solution to provide portability and
interoperability between FaaS platforms. We started by designing a few ERMs to give
an overview of the cloud-agnostic approach to the problem. A uniform programming
model was then established as a result of the ERMs. The programming model was
later materialized into a multi-cloud interoperability desktop tool, which we called
QuickFaaS, developed using Kotlin.

QuickFaaS targets the development of cloud-agnostic functions as well as FaaS de-
ployments to multiple cloud environments, without requiring the installation of extra
provider-specific software. The proposed cloud-agnostic approach enables developers
to reuse their serverless functions in multiple cloud providers, with the convenience
of not having to change a single line of code. The solution aims to minimize vendor
lock-in issues in FaaS platforms, and will, therefore, encourage developers and organi-
zations to target different cloud providers in exchange for a functional benefit.

59

6. CONCLUSIONS 6.2. Drawbacks

We also provided an evaluation to validate the proposed solution by measuring the
impact of a cloud-agnostic approach on the function’s performance, when compared
to a cloud-non-agnostic one. The study has shown that the cloud-agnostic approach
doesn’t have a significant impact neither in the function’s execution time nor in mem-
ory usage.

The main contributions of this work were made publicly available on a GitHub
repository [61]. In terms of code development, the repository includes the uniform
programming model for authentication and FaaS deployments, and finally, the cloud-
agnostic libraries and respective documentation in the wiki page. The data supporting
the reported results for evaluation is also included in the form of Excel spreadsheets,
together with the implementation of the search blobs use case using a cloud-agnostic
and a cloud-non-agnostic approach. Being an open-source project will allow us to re-
ceive feedback or even accept new contributions from the community.

6.2 Drawbacks

Throughout the course of the project, we were able to identify a number of drawbacks
to the proposed cloud-agnostic solution provided by QuickFaaS. These can be found
below:

• Unauthorized access to OAuth 2.0 client secrets.

QuickFaaS tries to obfuscate OAuth 2.0 client secrets through the usage of crypto-
graphic keys stored in a protected format to prevent unauthorized access. How-
ever, trying to obfuscate a secret in installed applications can be seen as a futile
effort, since it can always be recovered using the abundance of reverse engineer-
ing and debugging tools.

More details regarding OAuth 2.0 threat model and security considerations are
described in RFC 6819 [64].

• OAuth 2.0 not ideal for automation.

Despite being a popular industry-standard authorization protocol, OAuth 2.0
comes with the trade-off of being hard to integrate with automation scripts. Con-
tinuous Integration (CI) pipelines are often adopted by organizations when de-
livering cloud-native apps to clients. The automation using QuickFaaS’s de-
ployment scripts is possible, but the authentication process is not ideal. The
workaround would probably require the usage of provider-specific mechanisms,
which would go against the idea of providing a uniform authentication model.

60

6. CONCLUSIONS

• Unsupported operations by cloud-agnostic libraries.

Serverless functions have access to a wide variety of libraries offered by cloud
providers. QuickFaaS’s cloud-agnostic libraries only provide a uniform access
to operations that are considered relevant or that are commonly found in most
provider-specific libraries for a particular resource or event trigger. Meaning
that operations that are unique to a specific provider will probably be left out
of QuickFaaS’s libraries for the sake of providing a full cloud-agnostic usage.

Additionally, if for some reason a certain cloud-agnostic operation can’t be im-
plemented for a particular provider, the documentation should show a warning
specifying that the operation is incompatible with that cloud provider.

• Cloud-agnostic functions can be even harder to debug.

Because QuickFaaS’s cloud-agnostic libraries are exposing an abstract layer over
provider-specific APIs, errors can become even harder to understand when they
originate from provider-specific operations. Cloud-agnostic libraries try to pre-
vent this from happening by handling exceptions and informing users of what
went wrong during execution.

There’s also no feature to check whether cloud-agnostic functions will run as
expected before being deployed. Azure Functions Core Tools, for instance, offers
this feature.

6.3 Future work

As part of the future work, we plan on publishing a scientific journal article to continue
to raise awareness concerning the issues identified with FaaS platforms and to explain
how QuickFaaS attempts to solve them.

Further development of QuickFaaS will consist on supporting more cloud providers,
runtimes, and adding extra features. At the moment, Amazon Web Services (AWS) is
the cloud provider with the highest priority. As for new function runtimes, Java is the
only one supported for now, we intend to support Node.js next. New possible features
include enabling the automation of FaaS deployments through the command-line and
providing users a way to test their cloud-agnostic functions before being deployed.

We strongly believe that this work will inspire other developers to create their own
solutions that could somehow improve the portability of cloud applications for any
kind of service. Contributions resulting from new projects will be fundamental to help
us take major steps towards the mitigation of vendor lock-in in cloud computing.

61

References

[1] “Alien4Cloud – TOSCA”. Last accessed 17/07/2022, [Online]. Available: https
://alien4cloud.github.io/#/documentation/2.0.0/concepts/

tosca.html.

[2] “Metrics – Application Insights REST API”. Last accessed 03/07/2022, [Online].
Available: https://docs.microsoft.com/en-us/rest/api/applicati
on-insights/metrics/get.

[3] “Query – Application Insights REST API”. Last accessed 30/06/2022, [Online].
Available: https://docs.microsoft.com/en-us/rest/api/applicati
on-insights/query/execute.

[4] Mariano Ezequiel Mirabelli, Pedro García-López, and Gil Vernik, “Bringing Scal-
ing Transparency to Proteomics Applications with Serverless Computing”, in
Proceedings of the 2020 Sixth International Workshop on Serverless Computing, 2020,
pages 55–60. DOI: 10.1145/3429880.3430101.

[5] Samuel Ginzburg and Michael J. Freedman, “Serverless Isn’t Server-Less: Mea-
suring and Exploiting Resource Variability on Cloud FaaS Platforms”, in Pro-
ceedings of the 2020 Sixth International Workshop on Serverless Computing, 2020,
pages 43–48. DOI: 10.1145/3429880.3430099.

[6] “AWS CloudFormation”. Last accessed 17/07/2022, [Online]. Available: https:
//aws.amazon.com/cloudformation/.

[7] “Folder structure of an Azure Functions Java project”. Last accessed 05/01/2022,
[Online]. Available: https://docs.microsoft.com/en-us/azure/azure
-functions/functions-reference-java?tabs=bash%2Cconsumptio

n#folder-structure.

63

https://alien4cloud.github.io/#/documentation/2.0.0/concepts/tosca.html
https://alien4cloud.github.io/#/documentation/2.0.0/concepts/tosca.html
https://alien4cloud.github.io/#/documentation/2.0.0/concepts/tosca.html
https://docs.microsoft.com/en-us/rest/api/application-insights/metrics/get
https://docs.microsoft.com/en-us/rest/api/application-insights/metrics/get
https://docs.microsoft.com/en-us/rest/api/application-insights/query/execute
https://docs.microsoft.com/en-us/rest/api/application-insights/query/execute
https://doi.org/10.1145/3429880.3430101
https://doi.org/10.1145/3429880.3430099
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption#folder-structure
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption#folder-structure
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption#folder-structure

REFERENCES

[8] “Supported metrics with Azure Monitor”. Last accessed 01/07/2022, [Online].
Available: https://docs.microsoft.com/en-us/azure/azure-monit
or/essentials/metrics-supported#microsoftwebsites.

[9] “Language support details”. Last accessed 28/12/2021, [Online]. Available: htt
ps://docs.microsoft.com/en-us/azure/azure-functions/functi

ons-create-function-app-portal#language-support-details.

[10] “Cloudify – TOSCA”. Last accessed 17/07/2022, [Online]. Available: https:
//cloudify.co/tosca/.

[11] A. Parameswaran and Asheesh Chaddha, “Cloud Interoperability and Standard-
ization”, SETLabs Briefings, vol. 7, 2009.

[12] “Cloud Resource Manager API”. Last accessed 26/08/2022, [Online]. Available:
https://cloud.google.com/resource-manager/reference/rest.

[13] “Serverless MEAN stack”. Last accessed 01/08/2022, [Online]. Available: http
s://cloud.google.com/blog/topics/developers-practitioners/

serverless-with-cloud-run-mongodb-atlas.

[14] “Cloud Translation API”. Last accessed 20/07/2022, [Online]. Available: http
s://cloud.google.com/java/docs/reference/google- cloud-

translate/latest/com.google.cloud.translate.

[15] “Digging into Azure Functions: It’s Time to Take Them Seriously”. Last accessed
02/07/2022, [Online]. Available: https://www.codemag.com/article/
1711071/Digging-into-Azure-Functions-It%E2%80%99s-Time-to-

Take-Them-Seriously.

[16] “Compose for Desktop”. Last accessed 19/07/2022, [Online]. Available: https:
//www.jetbrains.com/lp/compose-desktop/.

[17] David Bermbach, Ahmet-Serdar Karakaya, and Simon Buchholz, “Using Ap-
plication Knowledge to Reduce Cold Starts in FaaS Services”, in Proceedings of
the 35th Annual ACM Symposium on Applied Computing, 2020, 134–143. DOI: 10.
1145/3341105.3373909.

[18] “Create cloud function”. Last accessed 28/07/2022, [Online]. Available: https:
//cloud.google.com/functions/docs/reference/rest/v1/projec

ts.locations.functions/create.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Longman Publish-
ing Co., Inc., 1995.

64

https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/metrics-supported#microsoftwebsites
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/metrics-supported#microsoftwebsites
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal#language-support-details
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal#language-support-details
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal#language-support-details
https://cloudify.co/tosca/
https://cloudify.co/tosca/
https://cloud.google.com/resource-manager/reference/rest
https://cloud.google.com/blog/topics/developers-practitioners/serverless-with-cloud-run-mongodb-atlas
https://cloud.google.com/blog/topics/developers-practitioners/serverless-with-cloud-run-mongodb-atlas
https://cloud.google.com/blog/topics/developers-practitioners/serverless-with-cloud-run-mongodb-atlas
https://cloud.google.com/java/docs/reference/google-cloud-translate/latest/com.google.cloud.translate
https://cloud.google.com/java/docs/reference/google-cloud-translate/latest/com.google.cloud.translate
https://cloud.google.com/java/docs/reference/google-cloud-translate/latest/com.google.cloud.translate
https://www.codemag.com/article/1711071/Digging-into-Azure-Functions-It%E2%80%99s-Time-to-Take-Them-Seriously
https://www.codemag.com/article/1711071/Digging-into-Azure-Functions-It%E2%80%99s-Time-to-Take-Them-Seriously
https://www.codemag.com/article/1711071/Digging-into-Azure-Functions-It%E2%80%99s-Time-to-Take-Them-Seriously
https://www.jetbrains.com/lp/compose-desktop/
https://www.jetbrains.com/lp/compose-desktop/
https://doi.org/10.1145/3341105.3373909
https://doi.org/10.1145/3341105.3373909
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions/create
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions/create
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions/create

REFERENCES

[20] Dirk Riehle, “Design Pattern Density Defined”, SIGPLAN Notices, vol. 44, no. 10,
pages 469–480, 2009, ISSN: 0362-1340. DOI: 10.1145/1639949.1640125.

[21] Lina Lan, Fei Li, Bai Wang, Lei Zhang, and Ruisheng Shi, “An Event-Driven
Service-Oriented Architecture for the Internet of Things”, in Proceedings of the
IEEE Asia-Pacific Conference on Services Computing (APSCC), 2014, pages 68–73.
DOI: 10.1109/APSCC.2014.34.

[22] Erwin van Eyk, Johannes Grohmann, Simon Eismann, André Bauer, Laurens
Versluis, Lucian Toader, Norbert Schmitt, Nikolas Herbst, Cristina L. Abad, and
Alexandru Iosup, “The SPEC-RG Reference Architecture for FaaS: From Microser-
vices and Containers to Serverless Platforms”, IEEE Internet Computing, vol. 23,
no. 6, pages 7–18, 2019. DOI: 10.1109/MIC.2019.2952061.

[23] Alexander Fuerst and Prateek Sharma, “FaasCache: keeping serverless comput-
ing alive with greedy-dual caching”, in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, 2021, pages 386–400. DOI: 10.1145/3445814.3446757.

[24] Vladimir Yussupov, Uwe Breitenbücher, Frank Leymann, and Christian Müller,
“Facing the Unplanned Migration of Serverless Applications: A Study on Porta-
bility Problems, Solutions, and Dead Ends”, in Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing, 2019, pages 273–283. DOI:
10.1145/3344341.3368813.

[25] “Consumption plan costs”. Last accessed 01/07/2022, [Online]. Available: http
s://docs.microsoft.com/en-us/azure/azure-functions/functio

ns-consumption-costs?tabs=portal#consumption-plan-costs.

[26] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,
Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson, “What Serverless Computing is and Should Become: The
next Phase of Cloud Computing”, Communications of the ACM, vol. 64, no. 5,
pages 76–84, 2021, ISSN: 0001-0782. DOI: 10.1145/3406011.

[27] “Cloud Function resource”. Last accessed 12/07/2022, [Online]. Available: htt
ps://cloud.google.com/functions/docs/reference/rest/v1/

projects.locations.functions#CloudFunction.

[28] “Cold Starts in Google Cloud Functions”. Last accessed 11/06/2022, [Online].
Available: https://mikhail.io/serverless/coldstarts/gcp/.

65

https://doi.org/10.1145/1639949.1640125
https://doi.org/10.1109/APSCC.2014.34
https://doi.org/10.1109/MIC.2019.2952061
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3344341.3368813
https://docs.microsoft.com/en-us/azure/azure-functions/functions-consumption-costs?tabs=portal#consumption-plan-costs
https://docs.microsoft.com/en-us/azure/azure-functions/functions-consumption-costs?tabs=portal#consumption-plan-costs
https://docs.microsoft.com/en-us/azure/azure-functions/functions-consumption-costs?tabs=portal#consumption-plan-costs
https://doi.org/10.1145/3406011
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions#CloudFunction
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions#CloudFunction
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions#CloudFunction
https://mikhail.io/serverless/coldstarts/gcp/

REFERENCES

[29] “Structuring source code for Java”. Last accessed 05/01/2022, [Online]. Avail-
able: https://cloud.google.com/functions/docs/writing#struct
uring_source_code.

[30] “Cloud Functions – Memory limits”. Last accessed 08/07/2022, [Online]. Avail-
able: https://cloud.google.com/functions/docs/configuring/
memory.

[31] “Cloud function metrics”. Last accessed 20/06/2022, [Online]. Available: https
://cloud.google.com/monitoring/api/metrics_gcp#gcp-cloudfu

nctions.

[32] “Cloud Functions – Using minimum instances”. Last accessed 04/08/2022, [On-
line]. Available: https://cloud.google.com/functions/docs/config
uring/min-instances.

[33] “Run OpenFaaS Functions on Cloud Run”. Last accessed 05/08/2022, [Online].
Available: https://www.openfaas.com/blog/openfaas-cloudrun/.

[34] “Gson library”. Last accessed 26/07/2022, [Online]. Available: https://gith
ub.com/google/gson.

[35] “Significant Changes in JDK 16 Release”. Last accessed 20/07/2022, [Online].
Available: https://docs.oracle.com/en/java/javase/16/migrate/
significant-changes-jdk-release.html#GUID-327C39ED-C3FD-

4637-906A-36C6697E85D5.

[36] “Kotlin coroutines”. Last accessed 27/07/2022, [Online]. Available: https://
kotlinlang.org/docs/coroutines-overview.html.

[37] “Kotlin Data classes”. Last accessed 24/09/2022, [Online]. Available: https:
//kotlinlang.org/docs/data-classes.html.

[38] “Test code using JUnit in JVM”. Last accessed 10/06/2022, [Online]. Available:
https://kotlinlang.org/docs/jvm-test-using-junit.html.

[39] “Ktor – JSON serializer”. Last accessed 20/07/2022, [Online]. Available: https:
//ktor.io/docs/serialization-client.html#register_json.

[40] “OAuth – Ktor”. Last accessed 20/07/2022, [Online]. Available: https://kto
r.io/docs/authentication.html#oauth.

[41] “Kudu API”. Last accessed 27/07/2022, [Online]. Available: https://gith
ub.com/MicrosoftDocs/azure-docs/blob/main/articles/app-

service/deploy-zip.md#kudu-api.

66

https://cloud.google.com/functions/docs/writing#structuring_source_code
https://cloud.google.com/functions/docs/writing#structuring_source_code
https://cloud.google.com/functions/docs/configuring/memory
https://cloud.google.com/functions/docs/configuring/memory
https://cloud.google.com/monitoring/api/metrics_gcp#gcp-cloudfunctions
https://cloud.google.com/monitoring/api/metrics_gcp#gcp-cloudfunctions
https://cloud.google.com/monitoring/api/metrics_gcp#gcp-cloudfunctions
https://cloud.google.com/functions/docs/configuring/min-instances
https://cloud.google.com/functions/docs/configuring/min-instances
https://www.openfaas.com/blog/openfaas-cloudrun/
https://github.com/google/gson
https://github.com/google/gson
https://docs.oracle.com/en/java/javase/16/migrate/significant-changes-jdk-release.html#GUID-327C39ED-C3FD-4637-906A-36C6697E85D5
https://docs.oracle.com/en/java/javase/16/migrate/significant-changes-jdk-release.html#GUID-327C39ED-C3FD-4637-906A-36C6697E85D5
https://docs.oracle.com/en/java/javase/16/migrate/significant-changes-jdk-release.html#GUID-327C39ED-C3FD-4637-906A-36C6697E85D5
https://kotlinlang.org/docs/coroutines-overview.html
https://kotlinlang.org/docs/coroutines-overview.html
https://kotlinlang.org/docs/data-classes.html
https://kotlinlang.org/docs/data-classes.html
https://kotlinlang.org/docs/jvm-test-using-junit.html
https://ktor.io/docs/serialization-client.html#register_json
https://ktor.io/docs/serialization-client.html#register_json
https://ktor.io/docs/authentication.html#oauth
https://ktor.io/docs/authentication.html#oauth
https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/app-service/deploy-zip.md#kudu-api
https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/app-service/deploy-zip.md#kudu-api
https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/app-service/deploy-zip.md#kudu-api

REFERENCES

[42] “Deploying from a zip file or url – Kudu”. Last accessed 27/07/2022, [Online].
Available: https://github.com/projectkudu/kudu/wiki/Deploying-
from-a-zip-file-or-url.

[43] “MetricService”. Last accessed 19/06/2022, [Online]. Available: https://clo
ud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.

v3#metricservice.

[44] “Understanding serverless cold start”. Last accessed 11/06/2022, [Online]. Avail-
able: https://azure.microsoft.com/en-us/blog/understanding-
serverless-cold-start/.

[45] “Azure Functions Core Tools”. Last accessed 11/03/2022, [Online]. Available:
https://docs.microsoft.com/en-gb/azure/azure-functions/

functions-run-local?tabs=v4%2Cwindows%2Ccsharp%2Cportal%

2Cbash#prerequisites.

[46] “Azure Functions – Overview of plans”. Last accessed 11/06/2022, [Online].
Available: https://learn.microsoft.com/en- us/azure/azure-
functions/functions-scale#overview-of-plans.

[47] “Using OpenFaaS on AKS”. Last accessed 05/08/2022, [Online]. Available: htt
ps://docs.microsoft.com/en-us/azure/aks/openfaas.

[48] “Get resource changes”. Last accessed 12/07/2022, [Online]. Available: https:
//learn.microsoft.com/en- us/azure/governance/resource-

graph/how-to/get-resource-changes.

[49] “Azure Functions – Service limits”. Last accessed 13/06/2022, [Online]. Avail-
able: https://docs.microsoft.com/en-us/azure/azure-functions
/functions-scale#service-limits.

[50] Dana Petcu, “Multi-Cloud: expectations and current approaches”, in Proceedings
of the International Workshop on Multi-Cloud Applications and Federated Clouds, 2013,
pages 1–6. DOI: 10.1145/2462326.2462328.

[51] “OpenFaaS”. Last accessed 05/08/2022, [Online]. Available: https://www.
openfaas.com/.

[52] “Triggers – OpenFaaS”. Last accessed 05/08/2022, [Online]. Available: https:
//docs.openfaas.com/reference/triggers/#cloudevents.

[53] “Templates – OpenFaaS”. Last accessed 06/08/2022, [Online]. Available: https
://github.com/openfaas/templates.

[54] “Polycloud”. Last accessed 03/12/2021, [Online]. Available: https://www.
thoughtworks.com/radar/techniques/polycloud.

67

https://github.com/projectkudu/kudu/wiki/Deploying-from-a-zip-file-or-url
https://github.com/projectkudu/kudu/wiki/Deploying-from-a-zip-file-or-url
https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#metricservice
https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#metricservice
https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#metricservice
https://azure.microsoft.com/en-us/blog/understanding-serverless-cold-start/
https://azure.microsoft.com/en-us/blog/understanding-serverless-cold-start/
https://docs.microsoft.com/en-gb/azure/azure-functions/functions-run-local?tabs=v4%2Cwindows%2Ccsharp%2Cportal%2Cbash#prerequisites
https://docs.microsoft.com/en-gb/azure/azure-functions/functions-run-local?tabs=v4%2Cwindows%2Ccsharp%2Cportal%2Cbash#prerequisites
https://docs.microsoft.com/en-gb/azure/azure-functions/functions-run-local?tabs=v4%2Cwindows%2Ccsharp%2Cportal%2Cbash#prerequisites
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#overview-of-plans
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#overview-of-plans
https://docs.microsoft.com/en-us/azure/aks/openfaas
https://docs.microsoft.com/en-us/azure/aks/openfaas
https://learn.microsoft.com/en-us/azure/governance/resource-graph/how-to/get-resource-changes
https://learn.microsoft.com/en-us/azure/governance/resource-graph/how-to/get-resource-changes
https://learn.microsoft.com/en-us/azure/governance/resource-graph/how-to/get-resource-changes
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#service-limits
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#service-limits
https://doi.org/10.1145/2462326.2462328
https://www.openfaas.com/
https://www.openfaas.com/
https://docs.openfaas.com/reference/triggers/#cloudevents
https://docs.openfaas.com/reference/triggers/#cloudevents
https://github.com/openfaas/templates
https://github.com/openfaas/templates
https://www.thoughtworks.com/radar/techniques/polycloud
https://www.thoughtworks.com/radar/techniques/polycloud

REFERENCES

[55] Volker Ziegler, Peter Schneider, Harish Viswanathan, Michael Montag, Satish
Kanugovi, and Ali Rezaki, “Security and Trust in the 6G Era”, IEEE Access, vol. 9,
pages 142 314–142 327, 2021. DOI: 10.1109/ACCESS.2021.3120143.

[56] “Pulumi”. Last accessed 17/07/2022, [Online]. Available: https://www.pulu
mi.com.

[57] “Cloud Framework (Preview)”. Last accessed 23/09/2022, [Online]. Available:
https://www.pulumi.com/docs/tutorials/cloudfx/.

[58] “@pulumi/cloud”. Last accessed 23/09/2022, [Online]. Available: https://
www.npmjs.com/package/@pulumi/cloud.

[59] “Magic Functions in Pulumi”. Last accessed 12/03/2022, [Online]. Available: ht
tps://www.pulumi.com/blog/lambdas-as-lambdas-the-magic-of-

simple-serverless-functions/#magic-functions.

[60] Pedro Rodrigues, Filipe Freitas, and José Simão, “Quickfaas: Providing portabil-
ity and interoperability between faas platforms”, Future Internet, vol. 14, no. 12,
2022, ISSN: 1999-5903. DOI: 10.3390/fi14120360.

[61] “QuickFaaS Essentials repository”. Last accessed 18/10/2022, [Online]. Avail-
able: https://github.com/Pexers/quickfaas-essentials.

[62] “Perform resumable uploads”. Last accessed 28/07/2022, [Online]. Available: h
ttps://cloud.google.com/storage/docs/performing-resumable-

uploads.

[63] V. Yussupov, U. Breitenbücher, A. Kaplan, and F. Leymann, “SEAPORT: Assess-
ing the Portability of Serverless Applications”, in Proceedings of the 10th Inter-
national Conference on Cloud Computing and Services Science, 2020, pages 456–467.
DOI: 10.5220/0009574104560467.

[64] “OAuth threats – Obtaining Client Secrets”. Last accessed 23/07/2022, [Online].
Available: https://datatracker.ietf.org/doc/html/rfc6819#secti
on-4.1.1.

[65] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot, “Benchmarking, Analysis, and Optimization of Serverless Function Snap-
shots”, in Proceedings of the 26th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, 2021, pages 559–572. DOI:
10.1145/3445814.3446714.

68

https://doi.org/10.1109/ACCESS.2021.3120143
https://www.pulumi.com
https://www.pulumi.com
https://www.pulumi.com/docs/tutorials/cloudfx/
https://www.npmjs.com/package/@pulumi/cloud
https://www.npmjs.com/package/@pulumi/cloud
https://www.pulumi.com/blog/lambdas-as-lambdas-the-magic-of-simple-serverless-functions/#magic-functions
https://www.pulumi.com/blog/lambdas-as-lambdas-the-magic-of-simple-serverless-functions/#magic-functions
https://www.pulumi.com/blog/lambdas-as-lambdas-the-magic-of-simple-serverless-functions/#magic-functions
https://doi.org/10.3390/fi14120360
https://github.com/Pexers/quickfaas-essentials
https://cloud.google.com/storage/docs/performing-resumable-uploads
https://cloud.google.com/storage/docs/performing-resumable-uploads
https://cloud.google.com/storage/docs/performing-resumable-uploads
https://doi.org/10.5220/0009574104560467
https://datatracker.ietf.org/doc/html/rfc6819#section-4.1.1
https://datatracker.ietf.org/doc/html/rfc6819#section-4.1.1
https://doi.org/10.1145/3445814.3446714

REFERENCES

[66] S. Eismann, J. Grohmann, E. van Eyk, N. Herbst, and S. Kounev, “Predicting
the Costs of Serverless Workflows”, in Proceedings of the ACM/SPEC International
Conference on Performance Engineering, 2020, pages 265–276. DOI: 10.1145/335
8960.3379133.

[67] Adam Eivy and Joe Weinman, “Be Wary of the Economics of "Serverless" Cloud
Computing”, IEEE Cloud Computing, vol. 4, no. 2, pages 9–11, 2017. DOI: 10.
1109/MCC.2017.32.

[68] “Serverless Framework”. Last accessed 17/07/2022, [Online]. Available: https:
//www.serverless.com.

[69] Hai Duc Nguyen, Chaojie Zhang, Zhujun Xiao, and Andrew A. Chien, “Real-
Time Serverless: Enabling Application Performance Guarantees”, in Proceedings
of the 5th International Workshop on Serverless Computing, 2019, pages 1–6. DOI:
10.1145/3366623.3368133.

[70] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski,
“The Rise of Serverless Computing”, Communications of the ACM, vol. 62, no. 12,
page 44, 2019, ISSN: 0001-0782. DOI: 10.1145/3368454.

[71] M. Wurster, U. Breitenbücher, K. Képes, F. Leymann, and V. Yussupov, “Mod-
eling and Automated Deployment of Serverless Applications using TOSCA”, in
Proceedings of the IEEE 11th Conference on Service-Oriented Computing and Applica-
tions (SOCA), 2018, pages 73–80. DOI: 10.1109/SOCA.2018.00017.

[72] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni, “FaaSdom:
A Benchmark Suite for Serverless Computing”, in Proceedings of the 14th ACM
International Conference on Distributed and Event-based Systems, 2020, pages 73–84.
DOI: 10.1145/3401025.3401738.

[73] Eelco Dolstra, Martin Bravenboer, and Eelco Visser, “Service Configuration Man-
agement”, in Proceedings of the 12th international workshop on Software configuration
management, 2005, pages 83–98. DOI: 10.1145/1109128.1109135.

[74] Erwin van Eyk, Alexandru Iosup, Simon Seif, and Markus Thömmes, “The SPEC
cloud group’s research vision on FaaS and serverless architectures”, in Proceed-
ings of the 2nd International Workshop on Serverless Computing, 2017, 1–4. DOI: 10.
1145/3154847.3154848.

[75] “ESOCC 2022 Conference proceedings”. Last accessed 22/12/2022, [Online]. Avail-
able: https://link.springer.com/book/9783031232992.

[76] “Terraform”. Last accessed 17/07/2022, [Online]. Available: https://www.
terraform.io.

69

https://doi.org/10.1145/3358960.3379133
https://doi.org/10.1145/3358960.3379133
https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.1109/MCC.2017.32
https://www.serverless.com
https://www.serverless.com
https://doi.org/10.1145/3366623.3368133
https://doi.org/10.1145/3368454
https://doi.org/10.1109/SOCA.2018.00017
https://doi.org/10.1145/3401025.3401738
https://doi.org/10.1145/1109128.1109135
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1145/3154847.3154848
https://link.springer.com/book/9783031232992
https://www.terraform.io
https://www.terraform.io

REFERENCES

[77] “Authenticating using a Service Principal with a Client Secret”. Last accessed
04/12/2021, [Online]. Available: https://registry.terraform.io/prov
iders/hashicorp/azurerm/latest/docs/guides/service_princip

al_client_secret#creating-a-service-principal.

[78] “Terraform configuration reference”. Last accessed 04/12/2021, [Online]. Avail-
able: https://registry.terraform.io/providers/hashicorp/goog
le/latest/docs/guides/provider_reference#authentication.

[79] “Use global variables to reuse objects in future invocations”. Last accessed
07/07/2022, [Online]. Available: https://cloud.google.com/functio
ns/docs/bestpractices/tips#use_global_variables_to_reuse_

objects_in_future_invocations.

[80] “Token types”. Last accessed 21/09/2022, [Online]. Available: https://cloud
.google.com/docs/authentication/token-types#access.

[81] “Configurable token lifetimes in the Microsoft identity platform”. Last accessed
21/09/2022, [Online]. Available: https://learn.microsoft.com/en-
us/azure/active-directory/develop/active-directory-configu

rable-token-lifetimes#access-tokens.

[82] Paul Lipton, “Escaping Vendor Lock-in with TOSCA, an Emerging Cloud Stan-
dard for Portability”, CA Technology Exchange 4, pages 49–55, 2013.

[83] “Vendor lock-in and cloud computing”. Last accessed 07/11/2021, [Online]. Avail-
able: https://www.cloudflare.com/en-gb/learning/cloud/what-
is-vendor-lock-in/.

[84] Justice Opara-Martins, Reza Sahandi, and Feng Tian, “Critical review of vendor
lock-in and its impact on adoption of cloud computing”, in Proceedings of the
International Conference on Information Society (i-Society 2014), 2014, pages 92–97.
DOI: 10.1109/i-Society.2014.7009018.

[85] “Web Apps – Create Or Update”. Last accessed 28/07/2022, [Online]. Available:
https://docs.microsoft.com/en-us/rest/api/appservice/web-

apps/create-or-update.

[86] Garrett McGrath and Paul R. Brenner, “Serverless Computing: Design, Imple-
mentation, and Performance”, in Proceedings of the IEEE 37th International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW), 2017, pages 405–410.
DOI: 10.1109/ICDCSW.2017.36.

70

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/service_principal_client_secret#creating-a-service-principal
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/service_principal_client_secret#creating-a-service-principal
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/service_principal_client_secret#creating-a-service-principal
https://registry.terraform.io/providers/hashicorp/google/latest/docs/guides/provider_reference#authentication
https://registry.terraform.io/providers/hashicorp/google/latest/docs/guides/provider_reference#authentication
https://cloud.google.com/functions/docs/bestpractices/tips#use_global_variables_to_reuse_objects_in_future_invocations
https://cloud.google.com/functions/docs/bestpractices/tips#use_global_variables_to_reuse_objects_in_future_invocations
https://cloud.google.com/functions/docs/bestpractices/tips#use_global_variables_to_reuse_objects_in_future_invocations
https://cloud.google.com/docs/authentication/token-types#access
https://cloud.google.com/docs/authentication/token-types#access
https://learn.microsoft.com/en-us/azure/active-directory/develop/active-directory-configurable-token-lifetimes#access-tokens
https://learn.microsoft.com/en-us/azure/active-directory/develop/active-directory-configurable-token-lifetimes#access-tokens
https://learn.microsoft.com/en-us/azure/active-directory/develop/active-directory-configurable-token-lifetimes#access-tokens
https://www.cloudflare.com/en-gb/learning/cloud/what-is-vendor-lock-in/
https://www.cloudflare.com/en-gb/learning/cloud/what-is-vendor-lock-in/
https://doi.org/10.1109/i-Society.2014.7009018
https://docs.microsoft.com/en-us/rest/api/appservice/web-apps/create-or-update
https://docs.microsoft.com/en-us/rest/api/appservice/web-apps/create-or-update
https://doi.org/10.1109/ICDCSW.2017.36

A
Appendix A

A.1 QuickFaaS screenshots

The following Figures A.1, A.2 and A.3 illustrate screenshots of the desktop application
in action.

Figure A.1: Resource configuration screenshot

i

A. APPENDIX A

Figure A.2: Cloud-agnostic function definition screenshot

Figure A.3: FaaS deployment screenshot

A.2 Complete uniform programming model

For this section, the full uniform programming model is provided in Figure A.4.

ii

A. APPENDIX A

Figure A.4: Uniform programming model

iii

	Contents
	List of Figures
	List of Listings
	Acronyms
	Glossary
	Introduction
	Context
	Motivation
	Problem
	Contributions
	Research papers
	Document outline

	Background and Related work
	Serverless computing
	Function-as-a-Service
	Event-driven architecture

	FaaS providers
	MsAzure – Azure Functions
	Google Cloud Platform – Cloud Functions

	Vendor lock-in
	Multi vs. Poly cloud strategies
	Related work
	Terraform
	Serverless Framework
	Pulumi
	OpenFaaS
	SEAPORT method
	TOSCA modeling

	Summary

	Models
	Overview
	Challenges
	Cloud-agnostic models
	Cloud interoperability
	FaaS portability

	Use cases
	Summary

	Implementation
	QuickFaaS
	Architecture
	Technologies

	Uniform programming model
	Authentication mechanism
	Function definition
	FaaS deployment

	Summary

	Evaluation
	Metrics definition
	Function execution environment
	Cold starts
	Measurement methodology
	Measurement analysis

	Warm starts
	Measurement methodology
	Measurement analysis

	ZIP deployments
	Measurement methodology
	Measurement analysis

	Adversities
	Summary

	Conclusions
	Achievements
	Drawbacks
	Future work

	References
	Appendix A
	QuickFaaS screenshots
	Complete uniform programming model

