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Abstract Let M be a closed 3-dimensional Riemannian manifold. We exhibit a
C1-residual subset of the set of volume-preserving 3-dimensional flows defined on
very general manifolds M such that, any flow in this residual has zero metric entropy,
has zero Lyapunov exponents and, nevertheless, is strongly chaotic in Devaney’s sense.
Moreover, we also prove a corresponding version for the discrete-time case.

1 Introduction

What is chaos? confusion, lots of periodic motions and inability to predict what might
happen (since small errors in the initial states imply large deviations in the future) are
the common definitions for this phenomenon. As far as we know the first time the
nomenclature chaos appeared with the purely mathematical focus was in Li-York’s
mid 1970s article Period Three Implies Chaos [29]. After that, the interest in the matter
exploded and we have a wide variety of definitions for this concept. Unfortunately, due
to the excessive and abusive use along recent years in all types of strange applications
in science and literature, the term chaos became dubious. Actually, the magic word
chaos can be used almost for everything, for instance, one can prove how a complex
fern is created just by picking the right rule and then do a few iterations. You will get
a pretty fern, well, sort of...

Indeed, considering two different definitions of chaos is a very interesting task to
try to find examples that meet a definition, but not the other.

In this work we are interested in discussing two of the most readily accepted defini-
tions of chaos: Chaos in the sense of Devaney (see [23, Definition 8.5]) and existence of
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chaos in the sense that the metric entropy is positive. By metric (or measure-theoretic)
entropy we mean Kolmogorov-Sinai’s entropy (see [22]). Moreover, we establish the
link between two, a priori, unrelated concepts—topological constraints on the mani-
fold and chaoticity of flows on those manifolds.

We would like to find an example of a C1 volume-preserving dynamical system in
a 3-dimensional closed manifold M such that (see next section for full details on the
definitions):

(a) periodic orbits are dense in M ;
(b) it is sensitive to initial conditions;
(c) it has a dense orbit;
(d) the metric entropy is zero and
(e) the Lyapunov exponents are all equal to zero.

In conclusion, this example would be chaotic in Devaney’s sense but, nevertheless
displays zero entropy and zero Lyapunov exponents.

Here, despite not presenting any example, we show that this task has many possi-
bilities to be successful and we explain where are the adequate manifolds to find these
examples. Actually, in Theorem 1, we will prove that most volume-preserving flows in
certain (very general) 3-dimensional closed manifolds do not satisfy both definitions
simultaneously which is quite counterintuitive.

Our result, although it seems simple and direct, is a consequence of several deep
recent and old results in C1-generic theory of volume-preserving flows. Because of
this we will spend some time with the basic settings so that the reader can easily follow
our proof.

Finally, in Theorem 2, we also present an analogous result for volume-preserving
diffeomorphisms on 3-dimensional manifolds.

2 Volume-Preserving Flows on 3-Manifolds

2.1 Notation and Basic Definitions

Let M be a 3-dimensional closed and connected C∞ Riemannian manifold and we
endowed it with a volume-form ω. Let μ denote the measure associated to ω and call
μ the Lebesgue measure. We say that a vector field X : M → T M is divergence-
free if ∇ · X = 0 or equivalently if the measure μ is invariant for the associated
flow, Xt : M → M , t ∈ R. In this case we say that the flow is incompressible or
volume-preserving. Incompressible flows have plenty of applications, namely to fluid
dynamics (see e.g. [30,24]). We denote by Xr

μ(M) (r ≥ 1) the space of Cr divergence-
free vector fields on M and we endow this set with the usual Cr Whitney topology.
Denote by dist (·, ·) the distance in M inherited by the Riemannian structure.

Given X ∈ X1
μ(M) let Sing(X) denote the set of singularities of X and R :=

M \ Sing(X) the set of regular points. Given x ∈ M , if there exists τ > 0 such that
X τ (x) = x and τ is the minimum number with this property, then the orbit of x ,
denoted by O(x) := ∪t∈R Xt (x), is said to be closed or periodic.
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2.2 Hyperbolicity for the Linear Poincaré Flow

The vector field X : M → T M induces a decomposition of the tangent bundle TRM
in a way that each fiber Tx M has a splitting Nx ⊕ RX (x) where Nx = RX (x)⊥ is the
normal 2-dimensional subbundle for x ∈ R.

Consider the automorphism of vector bundles DXt : TRM −→ TRM such that
we have DXt (x, v) = (Xt (x), DXt (x) · v) and �Xt (x) the canonical projection on
NXt (x). The linear map Pt

X (x) : Nx −→ NXt (x) defined by Pt
X (x) = �Xt (x) ◦ DXt (x)

is called the linear Poincaré flow at x associated to the vector field X . The map Pt
X is the

differential of the standard Poincaré map P t
X (x) : Vx ⊂ Nx → NXt (x), where NXs (x),

for s = 0, t , is a surface contained in M whose tangent space at Xs(x) is NXs (x) for
s = 0, t and Vx is a small neighborhood of x . By using the implicit function theorem
we can guarantee the existence of a continuous time-t arrival function τ(x, t)(·) from
Vx into NXt (x). Of course that, due to the presence of singularities, Vx may be very
small.

Let � be a Xt -invariant subset of M . The splitting N 1 ⊕ N 2 of the normal bundle N
is an m-hyperbolic splitting for the linear Poincaré flow if it is Pt

X -invariant and there
is a uniform m ∈ N such that for any point x ∈ � the following inequalities hold:

‖P−m
X (x)|N 1

x
‖ ≤ 1

2
and ‖Pm

X (x)|N 2
x
‖ ≤ 1

2
. (1)

2.3 Anosov Flows and Topological Restrictions on the Manifolds

A flow is said to be Anosov if the tangent bundle T M splits into three continuous
DXt -invariant nontrivial subbundles E0 ⊕ E1 ⊕ E2 where E0 is the flow direction,
the sub-bundle E2 is uniformly contracted by DXt and the sub-bundle E1 is uni-
formly contracted by DX−t for all t > 0. Of course that, for an Anosov flow, we have
Sing(X) = ∅ which follows from the fact that the dimensions of the subbundles are
constant on the whole manifold. It is well-known that, on compact sets, the hyperbol-
icity for the linear Poincaré flow is equivalent to the hyperbolicity of the tangent map
DXt . Thus, to prove that a flow is Anosov it is sufficient to prove that M is hyperbolic
for the linear Poincaré flow, i.e., (1) holds for all x ∈ M .

Since, in our context, the stable (or unstable) manifold is one-dimensional we can
apply the results of Plante and Thurston (see [34]) to conclude that if M supports an
Anosov flow, then its fundamental group π1(M) must have exponential growth.

In rough terms a finitely generated fundamental group π1(M) has exponential
growth, if for any given system of generators of π1(M), the number of elements
α ∈ π1(M) that are represented by words of length at most n grows exponentially
with n. More formally, we define the functions:

�n = {distinct group elements which words have length ≤ n},

where the length of the word is computed using the (finite number of) generators and

	r = {homotopically distinct curves in M of length ≤ r}.
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We say that a finitely generated group π1(M) has exponential growth if there exist
constants C, D > 0 such that #�n ≥ CeDn . Equivalently, π1(M) has exponential
growth if there exist constants A, B > 0 such that #	r ≥ AeBr .

Remark 2.1 Given a compact manifold M which admits a metric of negative sectional
curvature, then π1(M) has exponential growth (see [31, Theorem 2]). Surfaces of
genus 2 or higher admit also exponential growth (see examples on [31, page 5]). See
also Remark 4.1.

2.4 Lyapunov Exponents, Entropy and Chaoticity in the Metric Sense

The next result, due to Oseledets [32], is a cornerstone in smooth ergodic theory.
We state here Oseledets’ theorem for the linear Poincaré flow of 3-dimensional flows.

Theorem 2.1 (Oseledets) Let X ∈ X1
μ(M). For μ-a.e. x ∈ M there exists the upper

Lyapunov exponent λ+(X, x) defined by the limit limt→+∞ 1
t log ‖Pt

X (x)‖ that is a
non-negative measurable function of x. For μ-a.e. point x with a positive exponent
there is a splitting of the normal bundle Nx = N u

x ⊕ N s
x which varies measurably with

x and is such that:

• If v ∈ N u
x \ {�0}, then limt→±∞ 1

t log ‖Pt
X (x) · v‖ = λ+(X, x).

• If v ∈ N s
x \ {�0}, then limt→±∞ 1

t log ‖Pt
X (x) · v‖ = −λ+(X, x).

• If �0 �= v /∈ N u
x , N s

x , then

(i) limt→+∞ 1
t log ‖Pt

X (x) · v‖ = λ+(X, x) and
(ii) limt→−∞ 1

t log ‖Pt
X (x) · v‖ = −λ+(X, x).

Given X ∈ X1
μ(M) the number hμ(X) stands for the metric entropy (see [28] for

a detailed exposition on this concept) of X and is defined by hμ(X1), where X1 is the
time-one of its associated flow. By Abramov’s formula [3] we know that the metric
entropy of the time-t map Xt is |t |hμ(X1) for any t ∈ R.

Definition 2.1 A flow Xt is said to be chaotic in the measure-theoretic sense if
hμ(X) > 0.

2.5 Devaney’s Definition of Chaos

The forward orbit of x is defined by O+(x) = ∪t>0 Xt (x) and we say that Xt has a
dense orbit if, for some x ∈ M , we have M = ∪t>0 Xt (x), where A stands for the
closure of the set A. In this case we say that the flow Xt is transitive. An equivalent
definition for a transitive flow is the following: given any nonempty open sets U, V ⊆
M , there exists τ > 0 such that X τ (U ) ∩ V �= ∅. Now we consider a less general
definition. We say that a flow Xt is topologically mixing if given any nonempty open
sets U, V ⊆ M , there exists τ > 0 such that, for all t ≥ τ we have X τ (U ) ∩ V �= ∅.

We recall the classic definition of chaos due to Devaney [23] and here we adapted
it to the continuous-time context.
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Definition 2.2 A flow Xt is said to be chaotic in the sense of Devaney if:

(a) Xt is transitive;
(b) the closed orbits are dense in the whole manifold and
(c) Xt is sensitive to the initial conditions, i.e., there exists δ > 0 such that for all

x ∈ M and all neighborhood of x , Vx , there exists y ∈ Vx and t > 0 where
d(Xt (y), Xt (x)) > δ.

In this case we also say that Xt is chaotic in the topological sense. If we switch
(a) by “Xt is topologically mixing” then we say that Xt is strongly chaotic in the
topological sense or Xt exhibits stronger Devaney chaos.

It was proved in [10] that condition (c) follows from conditions (a) and (b), and so,
in order to be (strongly) chaotic in the sense of Devaney, the system only has to satisfy
the (topologically mixing) transitivity property and the density of closed orbits.

2.6 Examples

Example 1 (Volume-preserving C2 Anosov flows) Let Xt be a volume-preserving C2

Anosov flow. Recall that, in [4], Anosov proved that the set of closed orbits of an
Anosov flow is dense in the non-wandering set. Moreover, by Poincaré’s recurrence
theorem the non-wandering set equals the whole manifold. Hence, condition (b) in
Definition 2.2 is true. We know that there exists non-transitive Anosov flows (see e.g.
[25]). However, also in [4], its is proved that, within the volume-preserving class,
the Anosov flows are ergodic, thus transitive.1 Hence, volume-preserving C2 Anosov
flows are chaotic in the topological sense. Observe also that they form an open class.
Since a volume-preserving 3-dimensional flow is Anosov if and only if it is structurally
stable (see [14, Theorem 1.3]) their metric entropy is locally constant. Since, by Pesin’s
formula and ergodicity, the entropy equals the positive Lyapunov exponents we get
that these flows are chaotic in the measure-theoretic sense.

Example 2 (Suspension flows) Given a measure space 	, a map f : 	 → 	 and a
ceiling function h : 	 → R

+ satisfying h(x) ≥ β > 0 for all x ∈ 	 we consider the
space Mh ⊆ 	 × R

+ defined by

Mh = {(x, t) ∈ 	 × R
+ : 0 ≤ t ≤ h(x)}

with the identification between the pairs (x, h(x)) and ( f (x), 0). The semiflow defined
on Mh by Ss(x, r) = ( f n(x), r + s − ∑n−1

i=0 h( f i (x))), where n ∈ N0 is uniquely
defined by

n−1∑

i=0

h( f i (x)) ≤ r + s <

n∑

i=0

h( f i (x))

is called a suspension semiflow. Actually, if f is invertible, then (St )t∈R is a flow.

1 We observe if a measure that gives positive measure to non-empty open sets is ergodic, then the system
is transitive.
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If we choose f (x) = 1, then the suspension flow cannot be topologically mixing.
To see this just observe that the integer iterates of 	 × (0, 1/2) are disjoint from
	 × (1/2, 1). However, our choice for f is very restrict and generically we obtain
that suspension flows are topologically mixing. A suspension (with a generic ceiling
bounded function) over an Anosov area-preserving diffeomorphism is strongly chaotic
in the topological sense. Moreover, the chaoticity in the measure-theoretical sense is
direct (see e.g. [16, §1.3]).

It is interesting also to point out that the suspension flow of the Anosov linear
automorphism with matrix

A =
(

2 1
1 1

)

and with constant ceiling function equal to 1 is not defined on a 3-torus. Moreover, the
quotiented manifold where the suspension evolves has, in fact, a fundamental group
with exponential growth.2

Example 3 (Incompressible flows with positive Lyapunov exponents) The next con-
struction, suggested to me by Jairo Bochi, allows us to obtain that C1-dense incom-
pressible three-dimensional flows have subsets with positive Lebesgue measure with
nonzero Lyapunov exponents (except, of course, the flow-direction). See also [21].

By, [12], we know that C1-denselly we have an Anosov flow or else we have
dense elliptic closed orbits. If the flow is Anosov (Example 1), then a.e. point in M
has nonzero exponents. Otherwise, we consider an elliptic closed orbit p with period
π and using the pasting lemma [6] we can perturb it in order to obtain that Pπ

X (p)

is a rotation with rational angle and the action of the vector field in linear. Clearly
P
π

X (p) = id for some 
 ∈ N and Abramov’s formula [3] the metric entropy of the
time-t map Pt

X is |t |hμ(P1
X ) for any t ∈ R. Now, we glue, inside the small invariant

disc in the transversal section the Hu–Pesin–Talitskaya continuous-time Katok’s map
(cf. [26]) which is a small perturbation diffeotopic to the identity map.

2.7 Two-Dimensional Area-Preserving Flows

For area-preserving flows on certain surfaces the scenario is quite well understood
(see the book [30]). For example, the classification of the limit set of regular orbits of
divergence-free vector fields in the two-sphere is given by the celebrated Poincaré–
Bendixson theorem ([30, Theorem 1.1.5.]). This type of strong results can only be
achieved due to topological arguments typical of the two-dimensional case. We also
point out the result by Ulcigrai [37] where it is proved that typical (in the measure-
theoretical sense) area-preserving flows are not mixing (also in the measure-theoretical
sense).

2 Recall that, by Plante and Thurston theorem (see [34]), we know that Anosov flows on three-manifolds
are necessarily defined on manifolds with fundamental group displaying exponential growth (see also the
Appendix by Margulis, Y-flows on three-dimensional manifolds on [5]).
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3 Generic Results for Flows

In this section we give a brief description of some C1-generic results to be used in
the sequel. Since it is not reasonable to give a complete description of all dynamical
systems we usually look for properties which hold for open and dense subsets of all the
systems, or, properties which hold for residual subsets. Residual subsets are sets that
contain a countable intersection of open and dense sets (i.e. Baire’s second category
sets). Properties that hold residually are typical from a topological viewpoint. The set
X1

μ(M) endowed with the C1 topology is a Baire space, hence C1-residual subsets are
dense.

In [11] was proved that there exists a C1-residual subset of the set X1
μ(M) (but

without singularities), such that any vector field in this residual is Anosov or else, for
Lebesgue almost every point, its Lyapunov exponents are equal to zero. In [7] was
obtained the same statement for X1

μ(M). Recently, in [16], was proved that, for the
3-dimensional setting, there exists a C1-residual set R ⊂ X1

μ(M) such that any vector
field X ∈ R, satisfy the Pesin’s entropy formula, that is the metric entropy is equal to
the integral, over M , of the positive Lyapunov exponent.

It is a consequence of the celebrated C1-closing lemma (see [35] the version for
volume-preserving flows) that, for a C1-residual subset of X1

μ(M), the non-wandering
set is equal to the closure of the closed orbits. This result is known as the Pugh–
Robinson’s general density theorem.

Finally, inspired by [1] and [17], it was obtained in [13] that there exists a C1-
residual subset of the set R ⊂ X1

μ(M) such that any vector field inside this residual is
topologically mixing.

We observe that all the results stated above hold for the setting of volume-preserving
diffeomorphisms.

4 Rare Coexistence of Different Definitions of Chaos

Let us now prove the following result.

Theorem 1 There exists a residual R ⊂ X1
μ(M) such that, if π1(M) does not have

exponential growth, then any X ∈ R
(a) has zero metric entropy;
(b) has zero Lyapunov exponents and
(c) is strongly chaotic in Devaney’s sense.

Proof Let R1 be the residual subset of X1
μ(M) formed by those vector fields such that,

if X ∈ R1, then X is Anosov or else Lebesgue almost every point has zero Lyapunov
exponent (cf. [11,7]). Since π1(M) does not have exponential growth we conclude
that M cannot support Anosov flows and so Lebesgue almost every point in M has
zero Lyapunov exponents.

We use [16] and pick R2 ⊂ X1
μ(M) defined by the residual set of vector fields such

that Pesin’s entropy formula holds, i.e.,

hμ(X) =
∫

M

λ+(X, x) dμ(x),
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for any X ∈ R2. Of course that if X ∈ R1 ∩ R2, then conditions (a) and (b) of the
theorem hold (recall that the intersection of residual sets is itself a residual).

Moreover, by Pugh-Robinson’s general density theorem (see [35]), we get that there
exists a residual subset R3 ⊂ X1

μ(M) such that if X ∈ R3, then the closed orbits of
X are dense in the nonwandering set, hence in the whole manifold M .

Now, it was proved in [13], that there exists a residual R4 ⊂ X1
μ(M) such that any

X ∈ R4 is topologically mixing.
Finally, using [10] we conclude that any X ∈ R3 ∩ R4 is sensitive to the initial

conditions, thus strongly chaotic in Devaney’s sense.
The theorem is proved once we define

R = R1 ∩ R2 ∩ R3 ∩ R4.

��
Remark 4.1 We observe that manifolds like the 3-tori and the 3-spheres are in the
hypotheses of Theorem 1 (see examples on [31, page 4]). Confront with the suspension
flow of the linear Anosov automorphism in Example 2.

Remark 4.2 It was proved in [6] that a volume-preserving flow on three-manifolds
is robust transitive if and only of it is an Anosov flow. Thence, the property (c) in
Theorem 1 is not C1-stable. Therefore, if a flow is strongly chaotic in Devaney’s sense
and, moreover, any flow C1-close to it is also strongly chaotic in Devaney’s sense, then
the flow must be Anosov. Thus, this flow cannot live in a manifold M where π1(M)

does not have exponential growth.

We recall the definition of chaos in the sense of Auslander and Yorke [8]: the
dynamical system must be transitive and sensitive to the initial conditions. We easily
obtain the following result.

Proposition 4.1 There exists a residual subset of R ⊂ X1
μ(M) where the definitions

of chaotic in the sense of Auslander and Yorke and in the sense of Devaney coincide.

Proof The proof is straightforward. Just consider the residual subset R obtained by
the intersection of both residual subsets given by [13] and [35]. Any vector field in R
is transitive (actually topologically mixing) and the closed orbits are dense in M . Once
again we recall that in [10] we obtain that condition (c), of the definition chaoticity in
the sence of Devaney, follows from conditions (a) and (b). The proposition is proved.

��

5 Towards to Generalizations and Some Open Questions

5.1 Volume-Preserving Flows on 4-Dimensional Manifolds

We start by understanding how would the corresponding statement could be for con-
servative flows defined in 4-dimensional manifolds. First, we observe that Pugh-
Robinson’s general density theorem is true for higher-dimensions. The result in [10] is
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abstract and also valid regardless of the dimension. Second, due to recent results by Sun
and Tian (see [36]) the result in [16] can be extended to the n-dimensional flow setting.

Proposition 5.1 Pesin’s entropy formula holds for C1-generic volume-preserving
flows in n-dimensional manifolds (n ≥ 4).

We make an interlude to introduce the definition of dominated splitting. Take a
Xt -invariant set � and fix m ∈ N. A nontrivial Pt

X -invariant and continuous splitting
N� = U� ⊕ S� is said to have an m-dominated splitting for the linear Poincaré flow
of X over � if the following inequality holds for every x ∈ �:

‖Pm
X (x)|Sx ‖

m
(
Pm

X (x)|Ux

) ≤ 1

2
, (2)

where m stands for the co-norm of the operator, i.e., m(A) = ‖A−1‖−1.
Now, with respect to the Anosov versus zero Lyapunov exponents dichotomy in

[11,7], the best we have for n-dimensional volume-preserving flows is the (non-
global) result in [15]. In that paper it is proved that there exists a residual subset
of n-dimensional volume-preserving flows (n ≥ 4) such that for any element in this
residual we have, for almost every point x in the manifold, that x has zero Lyapunov
exponents or else the orbit of x is dominated. Unfortunately, these two properties may
coexist and the whole manifold may be decomposed in regions with zero Lyapunov
exponents and regions with dominated splitting. Even worst, the constant m associated
to the domination may vary from orbit to orbit.

Nevertheless, the biggest challenge for the extension of the Theorem 1 is not the
difficulty described in the last paragraph. In fact, we might even assume the most
favorable circumstances, i.e., there exists a global dichotomy (zero exponents or else
dominated splitting in M). The problem is that there is a total lack of knowledge
about the topological constraints on the manifolds if we assume that some flow has a
dominated splitting over M . Below we will return to this issue (Questions 2 and 3).

We say that X ∈ X1
μ(M) is nonuniformly Anosov (adapting the definition in

[9, pp. 4]) if the system is nonuniformly hyperbolic (all Lyapunov exponents are
different from zero) and with a global (i.e. over M) dominated splitting separating the
positive exponents from the negative ones. Let A(M) ⊂ X1

μ(M) stands for the subset

of nonuniformly Anosov and ergodic volume-preserving vector fields and by A(M)

its C1-closure.
Recently (see [27]), it was proved a conjecture stated in [9, Conjecture p. 2887],

namely that C1-generically 3-dimensional volume-preserving diffeomorphisms have
zero Lyapunov exponents at Lebesgue almost every point or else the system is nonuni-
formly Anosov and ergodic (the definitions are the analogous obvious couterpart for
the discrete case).

To obtain a correspondent version for volume-preserving flows there is a non-trivial
extra work to do and related to this we present the following question.

Question 1 Given a 4-dimensional manifold M , is there a residual R ⊂ X1
μ(M) such

that any X ∈ R is in A(M) or else Lebesgue almost every point has zero Lyapunov
exponents?
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We say that a flow in M is (uniformly) partially hyperbolic for the linear Poincaré
flow if there exists an P X

t -invariant dominated splitting N = N u ⊕ N c ⊕ N s in M
such that N u is hyperbolic expanding, N s is hyperbolic contracting, N u dominates
N c ⊕ N s and N s is dominated by N u ⊕ N c.

Although there are know some deep results about the topological constraints on
the manifolds which support partial hyperbolic diffeomorphisms [19,20,33] nothing
is known when we refer to the continuous-time counterpart. To be more precise, we
may ask:

Question 2 What are the topological obstructions on a closed 4-dimensional manifold
if it supports some partially hyperbolic (volume-preserving) flow?3

Question 3 What are the topological obstructions on a closed 4-dimensional manifold
if it supports some flow in A(M)?4

If we answer positively to Question 1, then, using also Proposition 5.1, we have
proved the following:

Conjecture 1 Let M be a closed Riemannian smooth 4-dimensional manifold. There
exists a residual R ⊂ X1

μ(M) \ A(M) such that any X ∈ R,

(a) has zero metric entropy;
(b) has zero Lyapunov exponents and
(c) is strongly chaotic in Devaney’s sense.

5.2 Volume-Preserving Diffeomorphisms on 3-Dimensional Manifolds

Let us denote by Diff1
μ(M) the set of C1 volume-preserving diffeomorphisms defined

in a 3-dimensional manifold M . Observe that Diff1
μ(M) endowed with the C1-topology

is a Baire space.
We say that a diffeomorphism f : M → M is (uniformly) partially hyperbolic if

there exists an D f -invariant dominated splitting T M = Eu ⊕ Ec ⊕ Es in M such that
Eu is hyperbolic expanding, Es is hyperbolic contracting, Eu dominates Ec ⊕ Es and
Es is dominated by Eu ⊕ Ec.

Remark 5.1 If there exists a dominated splitting E1 ⊕ E2 ⊕ E3 over M , (where each
Ei is, of course, 1-dimensional), such that E1 dominates E2, and E2 dominates E3.
Then, using [18, Lemma 7.10], we conclude that the splitting E1⊕E2⊕E3 is partially
hyperbolic, i.e., E1 is uniformly expanding and E3 is uniformly contracting.

Theorem 2 There exists a residual R ⊂ Diff1μ(M) such that, if the universal cover of

M is not homeomorphic to R
3, then any f ∈ R

3 Since, partially hyperbolic flows cannot have singularities [38], one obvious conclusion is that the Euler
characteristic of M is equal to zero.
4 The restrictions should come from the dominated splitting hypothesis instead of the nonuniformly property
because it is well-known that, due to Hu–Pesin–Talitskaya’s theorem [26], any compact manifold supports
a nonuniformly hyperbolic flow (eventually without any domination).
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(a) has zero metric entropy;
(b) has zero Lyapunov exponents and
(c) is strongly chaotic in Devaney’s sense.

Proof Let R1 be the residual subset of Diff1
μ(M) formed by those diffeomorphisms

such that, if f ∈ R1, then f is nonuniformly Anosov (and ergodic) or else Lebesgue
almost every point has zero Lyapunov exponent (cf. [27]). Since the universal cover of
M is not homeomorphic to R

3 we conclude, using [33, Theorem 1.14], that M cannot
support partially hyperbolic diffeomorphisms and so Lebesgue almost every point in
M has zero Lyapunov exponents.

Using [36] we consider the residual subset R2 ⊂ Diff1
μ(M) such that Pesin’s

entropy formula holds and, for any f ∈ R2, we have hμ( f ) = 0. Then, for f ∈
R1 ∩ R2, the conditions (a) and (b) of the theorem hold.

By Pugh-Robinson’s general density theorem (see [35]), we get that there exists a
residual subset R3 ⊂ Diff1

μ(M) such that if f ∈ R3, then the periodic orbits of f are
dense in the whole manifold M .

Now, we use [2], and obtain that there exists a residual R4 ⊂ Diff1
μ(M) such that

any f ∈ R4 is topologically mixing.
Finally, using [10] we conclude that any f ∈ R3 ∩ R4 is sensitive to the initial

conditions, thus chaotic in Devaney’s sense. We define R = R1 ∩ R2 ∩ R3 ∩ R4 and
the proof is completed. ��
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