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EXPLOSION OF DIFFERENTIABILITY FOR EQUIVALENCIES

BETWEEN ANOSOV FLOWS ON 3-MANIFOLDS

MÁRIO BESSA, SÉRGIO DIAS, AND ALBERTO A. PINTO

(Communicated by Yingfei Yi)

Abstract. For Anosov flows obtained by suspensions of Anosov diffeomor-
phisms on surfaces, we show the following type of rigidity result: if a topolog-
ical conjugacy between them is differentiable at a point, then the conjugacy
has a smooth extension to the suspended 3-manifold. This result generalizes
the similar ones of Sullivan and Ferreira-Pinto for 1-dimensional expanding
dynamics and also a result of Ferreira-Pinto for 2-dimensional hyperbolic dy-

namics.

1. Introduction, preliminary definitions

and statement of the results

1.1. Introduction. There is an established theory in hyperbolic dynamics that
studies properties of the dynamics and of the topological conjugacies that lead
to additional regularity for the conjugacies. In the early seventies Mostow (see
[18]) proved that if H/ΓX and H/ΓY are two closed hyperbolic Riemann surfaces
covered by finitely generated Fuchsian groups ΓX and ΓY of finite analytic type,
and φ : H → H induces the isomorphism i(γ) = φ ◦ γ ◦ φ−1, then φ is a Möbius
transformation if, and only if, φ is absolutely continuous. Later, in [21], Shub and
Sullivan proved that for any two analytic orientation preserving circle expanding
endomorphisms f and g of the same degree, the conjugacy is analytic if, and only
if, the conjugacy is absolutely continuous. Furthermore, they proved that if f and
g have the same set of eigenvalues, then the conjugacy is analytic. After these
results, de la Llave [13] and Marco and Moriyón [15, 16] proved that if Anosov
diffeomorphisms have the same set of eigenvalues, then the conjugacy is smooth.
For maps with critical points, Lyubich (see [14]) proved that C2 unimodal maps
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with Fibonacci combinatorics and the same eigenvalues are C1 conjugate. Later
on, de Melo and Martens [17] proved that if topological conjugate unimodal maps,
whose attractors are cycles of intervals, have the same set of eigenvalues, then the
conjugacy is smooth. More recently, Dobbs (see [3]) proved that if a multimodal
map f has an absolutely continuous invariant measure, with a positive Lyapunov
exponent, and f is absolutely continuous conjugate to another multimodal map,
then the conjugacy is Cr in the domain of some induced Markov map of f .

In the present paper we study the explosion of smoothness for topological conju-
gacies, i.e. the conditions under which the smoothness of the conjugacy in a single
point extends to the whole manifold. Tukia, in [24], extended the aforementioned
result of Mostow proving that if H/ΓX and H/ΓY are two closed hyperbolic Rie-
mann surfaces covered by finitely generated Fuchsian groups ΓX and ΓY of finite
analytic type, and φ : H → H induces the isomorphism i(γ) = φ ◦ γ ◦φ−1, then φ is
a Möbius transformation if, and only if, φ is differentiable at one radial limit point
with non-zero derivative. Sullivan [23] proved that if a topological conjugacy be-
tween analytic orientation preserving circle expanding endomorphisms of the same
degree is differentiable at a point with non-zero derivative, then the conjugacy is
analytic. Extensions of these results for Markov maps and hyperbolic basic sets on
surfaces were developed by de Faria [4], Jiang [11, 12] and Pinto, Rand and Fer-
reira [6, 20], among others. For maps with critical points, Jiang [7–10] proved that
quasi-hyperbolic 1-dimensional maps are smooth conjugated in an open set with
full Lebesgue measure if the conjugacy is differentiable at a point with uniform
bound. Very recently (see [1]), Alves, Pinheiro and Pinto proved that if a topolog-
ical conjugacy between multimodal maps is C1 at a point in the nearby expanding
set of f , then the conjugacy is a smooth diffeomorphism in the basin of attraction
of a renormalization interval.

In the present work we begin the generalization of these types of results for
continuous-time dynamical systems by proving the corresponding result for Anosov
flows obtained by suspensions of Anosov diffeomorphisms on surfaces. More pre-
cisely, we prove that if a topological conjugacy between two Anosov flows, obtained
from the suspension of Anosov maps in surfaces, is differentiable at a point, then
the conjugacy has a smooth extension to the suspended 3-manifold.

1.2. Statement of the results. Let M be a d-dimensional closed and connected
C∞ Riemannian manifold. In this paper d = 2 when we consider diffeomorphisms
and d = 3 when considering vector fields/flows. Any C1 vector field X : M → TM
can be integrated into a flow Xt : M → M which is a time-parameter group of
diffeomorphisms. A flow is said to be Anosov if the tangent bundle TM splits into
three continuous DXt-invariant non-trivial subbundles E0 ⊕ Eu ⊕ Es where E0

is the flow direction, the subbundle Es is uniformly contracted by DXt and the
subbundle Eu is uniformly contracted by DX−t for all t > 0. Of course, for an
Anosov flow, we have Sing(X) = ∅ which follows from the fact that the dimensions
of the subbundles are constant on the whole manifold. The first example was
obtained studying the geodesic flow of surfaces with negative curvature (cf. [2]).
Anosov systems for discrete dynamical systems are defined in an analogous way
and the prototypical example is given by hyperbolic linear automorphisms of tori.

Our main result is the following (see §2 for detailed definitions):

Theorem 1. Let f : M −→ M and g : N −→ N be two C∞ surface Anosov
diffeomorphisms. Assume that there exists a topological conjugacy h : M −→ N
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between them and, moreover, h is differentiable in a single point. Let cf and cg be
two ceiling functions over M and N , respectively. If cf and cg are differentiable,

then the function ĥ : Mcf −→ Ncg defined in (2.2) is differentiable.

In [19] Plante showed that codimension-1 Anosov flows on compact and con-
nected manifolds M are known to admit global cross sections, provided the funda-
mental group of M is solvable. Clearly, Anosov flows on 3-dimensional manifolds
are codimensional. In [19] it is also obtained that when M is a bundle over S1

fibered by a 2-torus T2, then any Anosov flow on M is topologically equivalent to
the suspension of a hyperbolic automorphism on T

2.
As a direct consequence of [6] and Theorem 1 we obtain:

Corollary 1. Let Xt : M → M and Yt : M → M be Anosov flows on a closed 3-
manifold M which is a bundle over S1 with fiber bundle T2 and denote M = S1×T2.
If h : M → M is an equivalence between the two flows which is differentiable in
x ∈ T2, then h is differentiable in the whole M .

2. Proof of Theorem 1

2.1. Suspension flows. Let f : M −→ M be a diffeomorphism and c : M −→ R
+

a continuous function such that c(x) ≥ a > 0 for all x ∈ M . We consider also the
subspace of M × R+ defined by:

M̃ = {(x, t) ∈ M × R
+ : x ∈ M , 0 ≤ t ≤ c(x)}.

LetMc stand for the quotient space Mc = M̃/ ∼, where ∼ is an equivalence relation

in M̃ defined by (x, c(x)) ∼ (f(x), 0). The suspension of f with ceiling (or roof)
function c is the flow

ϕt : Mc −→ Mc

(x, s) 
−→
(
fn(x), s′

)
where n is univocally determined by

(2.1)

n−1∑
i=0

c(f i(x)) ≤ t+ s <

n∑
i=0

c(f i(x))

when t+ s ≥ c(x); in this case we define s′ = s+ t−
∑n−1

i=0 c(f i(x)). If t+ s < c(x),
we take n = 0 and s′ = s+t. In brief, we travel with velocity equal to one and along
{x} × [0, c(x)]; then we jump to (f(x), 0) and travel through {f(x)} × [0, c(f(x))]
and so on until we spend the time t. We observe that the flow is well defined
because (2.1) implies

0 ≤ s+ t−
n−1∑
i=0

c(f i(x))

︸ ︷︷ ︸
s′

≤ c(fn(x)).
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Remark 2.1. Let us show that ϕ defined above is a flow; ϕ0(x, s) = (x, s), since
n = 0. For the group property we have:

ϕt

(
ϕr(x, s)

)
= ϕt

(
fn(x), r + s−

n−1∑
i=0

c
(
f i(x)

))

=

(
fm

(
fn(x)

)
, t+ r + s−

n−1∑
i=0

c
(
f i(x)

)
−

m−1∑
i=0

c
(
f i(fn(x))

))

=

(
fn+m(x), r + s+ t−

n+m−1∑
i=0

c
(
f i(x)

))

= ϕt+r(x, s)

where n and m are such that

n−1∑
i=0

c
(
f i(x)

)
) ≤ r + s <

n∑
i=0

c
(
f i(x)

)
and

m−1∑
i=0

c
(
f i(fn(x))

)
≤ r + s+ t−

n−1∑
i=0

c
(
f i(x)

)
<

m∑
i=0

c
(
f i(fn(x))

)
.

The last inequality follows from

m−1∑
i=0

c
(
f i(fn(x))

)
≤ r + s+ t−

n−1∑
i=0

c
(
f i(x)

)
<

m∑
i=0

c
(
f i(fn(x))

)
⇓

n+m−1∑
i=0

c
(
f i(x)

)
≤ r + s+ t <

n+m∑
i=0

c
(
f i(x)

)
.

2.2. Topological equivalences and conjugacies. Two flows ϕ : R×M −→ M
and ψ : R × N −→ N are said to be topologically equivalent if there exists a
homeomorphism h : M −→ N such that h sends orbits of ϕ into orbits of ψ, and
preserves the orientation. Two flows ϕ and ψ are said to be topologically conjugated
if there exists a homeomorphism h : M −→ N sending orbits of ϕ into orbits of ψ,
preserving the orientation and also the time parametrization. Clearly, if ϕ and ψ
are conjugated, then they are also equivalent, just take τx(t) = t.

Let there be given two diffeomorphisms f : M −→ M and g : N −→ N . We con-
sider the suspensions of f and g associated to ceiling functions cf : M −→ R+ and
cg : N −→ R+, respectively. Let ϕt and ψt be the respective suspension flows. As-
sume that f and g are topologically conjugated, i.e., there exists a homeomorphism
h : M −→ N such that g ◦ h(x) = h ◦ f(x) for all x ∈ M .

A natural question is to ask if ϕt and ψt are still topologically conjugated. The
answer, in general, is negative. However, we will see that the flows are topologically

equivalent. In order to prove it we must define a homeomorphism ĥ : Mcf −→ Ncg
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which conjugates both flows and preserves the fixed orientation. We define ĥ :
Mcf −→ Ncg in the following way:

(2.2) ĥ(x, s) = ψ
s
cg(h(x))

cf (x)

h ◦ ϕ−s(x, s)︸ ︷︷ ︸
(x,0)︸ ︷︷ ︸

(h(x),0)︸ ︷︷ ︸(
h(x),s

cg(h(x))

cf (x)

)

where we consider that h : M −→ N extends to h : M × {0} −→ N × {0} and
we abuse and keep the same notation. Roughly, we travel by {x} × [0, cf (x)] until
(x, 0), apply h and travel along the segment {h(x)}× [0, cg(h(x))] the corresponding
time. Given s, t ∈ R

+
0 , we consider the following function:

ns,t : M −→ N0

x 
−→ ns,t(x)

where ns,t(x) is the only integer such that

(2.3)

ns,t(x)−1∑
i=0

cf
(
f i(x)

)
≤ t+ s <

ns,t(x)∑
i=0

cf
(
f i(x)

)
or ns,t(x) = 0, when s + t < cf (x). The map t 
→ ns,t(x) is piecewise constant
and increasing, for s and x fixed. We would like to find τ(x,s) : R −→ R strictly
increasing such that, for all t ∈ R,

(2.4) ĥ
(
ϕt(x, s)

)
= ψτ(x,s)(t)

(
ĥ(x, s)

)
.

Let t′ = τ(x,s)(t). The equation (2.4) is equivalent to

ĥ

(
fns,t(x)(x), s+ t−

ns,t(x)−1∑
i=0

cf
(
f i(x)

))
= ψt′

(
h(x), s

cg(h(x))
cf (x)

)

�

⎛
⎜⎜⎜⎝h

(
fns,t(x)(x)

)
︸ ︷︷ ︸

gns,t(x)(h(x))

,

⎡
⎣s+ t−

ns,t(x)−1∑
i=0

cf
(
f i(x)

)⎤⎦ cg
(
h
(
fns,t(x)(x)

))
cf

(
fns,t(x)(x)

)
⎞
⎟⎟⎟⎠

= ψt′

(
h(x), s

cg (h(x))

cf (x)

)
.

The equality holds if and only if t′ is such that

(2.5)

ns,t(x)−1∑
i=0

cg
(
gi (h(x))

)
≤ t′ + s

cg (h(x))

cf (x)
<

ns,t(x)∑
i=0

cg
(
gi (h(x))

)
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and

t′ + s
cg (h(x))

cf (x)
−

ns,t(x)−1∑
i=0

cg
(
gi (h(x))

)

=

⎡
⎣s+ t−

ns,t(x)−1∑
i=0

cf
(
f i(x)

)⎤⎦ cg
(
h
(
fns,t(x)(x)

))
cf

(
fns,t(x)(x)

) .

From the previous equality it follows that

τ(x,s)(t) =

⎡
⎣s+ t−

ns,t(x)−1∑
i=0

cf
(
f i(x)

)⎤⎦ cg
(
h
(
fns,t(x)(x)

))
cf

(
fns,t(x)(x)

)
− s

cg (h(x))

cf (x)
+

ns,t(x)−1∑
i=0

cg
(
gi (h(x))

)
.

From (2.3), we get

0 ≤ s+ t−
ns,t(x)−1∑

i=0

cf
(
f i(x)

)
< cf

(
fns,t(x)(x)

)
,

thence

0 ≤
cg

(
h
(
fns,t(x)(x)

))
cf

(
fns,t(x)(x)

)
⎡
⎣s+ t−

ns,t(x)−1∑
i=0

cf
(
f i(x)

)⎤⎦
< cg

(
h
(
fns,t(x)(x)

))
= cg(g

ns,t(x) (h(x))).

Overall,
∑ns,t(x)−1

i=0 cg
(
gi (h(x))

)
is less than or equal to

cg
(
h
(
fns,t(x)(x)

))
cf

(
fns,t(x)(x)

)
⎡
⎣s+ t−

ns,t(x)−1∑
i=0

cf
(
f i(x)

)⎤⎦+

ns,t(x)−1∑
i=0

cg
(
gi (h(x))

)
︸ ︷︷ ︸

t′+s
cg(h(x))

cf (x)

and this expression is less than
∑ns,t(x)

i=0 cg
(
gi (h(x))

)
, where the inequalities on

(2.5) follow. Then,

n
s
cg(h(x))

cf (x)
,t′

(h(x)) = ns,t(x),

like we wanted.
Clearly, τ is continuous and strictly increasing because for all (x, s) ∈ Mcf we

have

dτ(x,s)(t)

dt
=

cg
(
h
(
fns,t(x)(x)

))
cf

(
fns,t(x)(x)

) > 0.
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c1(f
3(x))

c1(f
2(x))

t

c1(f(x))

c1(x)
c1

(x, s)
s

xM f3(x)

ϕt(x,s)

ns,t(x)=3

ĥ

c2(g
2(h(x)))

c2(g(h(x)))

tʹ

c2(h(x))c2

h(x,s)ˆ

h(x) h(f3(x))=g3(h(x)) N

h(ϕt(x,s))=Ψt’(h(x,s))ˆ

c2(g
3(h(x)))

ˆ

Figure 1. Topological equivalence between suspension flows.

If ĥ : Mcf −→ Ncg is a homeomorphism, then ϕ and ψ are topologically equiva-
lent flows. In fact:

• ĥ is continuous because it is the composition of continuous functions;

• ĥ is invertible with inverse

ĥ−1(y, t) := ϕ
t
cf (h−1(y))

cg(y)

◦ h−1 ◦ ψ−t(y, t) =

(
h−1(y), t

cf
(
h−1(y)

)
cg(y)

)
;

• ĥ−1 is continuous.

In conclusion we have just proved the following:

Proposition 2.2. The flows ϕ and ψ are topologically equivalent, ĥ being the
equivalency between them.

We begin by obtaining a preliminary result on piecewise differentiability:

Proposition 2.3. Let f : M −→ M and g : N −→ N be two C∞ surface Anosov
diffeomorphisms. Assume that there exists a topological conjugacy h : M −→ N
between them and, moreover, h is differentiable in a single point. Let cf and cg be
two ceiling functions over M and N , respectively. If cf and cg are differentiable,

then the function ĥ : Mcf −→ Ncg described above is piecewise differentiable.

Proof. The homeomorphism ĥ is given by

ĥ(x, s) =

(
h(x), s

cg
(
h(x)

)
cf (x)

)
,

for all (x, s) ∈ Mcf . Assume that (x, s) /∈ M × {0}. Then,

Dĥ(x,s) =

(
Dhx 0

∗ � �

)
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where

∗ = s
∂
(

cg(h(x))
cf (x)

)
∂x1

, � = s
∂
(

cg(h(x))
cf (x)

)
∂x2

and � =
cg (h(x))

cf (x)
,

being x = (x1, x2). But, Dhx exists by the main theorem in [6] ∗ and � exist since
cf and cg are both differentiable. �

The lack of differentiability in our construction lies in the way ĥ acts in the

sections M and N . Next, we carefully reparametrize ĥ in order to achieve the

differentiability of ĥ in the whole suspension manifold. We begin by proving a
useful and elementary result about bump functions.

Lemma 2.4. Given a < b and c ∈ R, there is a C∞ function F c
a,b : R −→ R such

that F c
a,b(t) = 0 for all t /∈ (a, b) and

∫∞
−∞ F c

a,b(s) ds = c.

Proof. Consider the map

fa,b(t) =

{
e

−1
(a−t)(b−t) , t ∈ (a, b)

0, otherwise

and now define

F c
a,b(t) =

c · fa,b(t)∫ b

a
fa,b(s) ds

.

Then, F c
a,b is C∞ and, since

∫∞
−∞ F c

a,b(s) ds =
∫ b

a
F c
a,b(s) ds, we are done. �

Recall that cf : M −→ R
+
0 and cg : N −→ R

+
0 are differentiable functions such

that cf (x), cg(y) ≥ α > 0, for all x ∈ M and y ∈ N . Let ε = α/3. Fix x ∈ M and
let ϕx : R+

0 −→ R be a C∞ map such that

i. ϕx(t) = 0 for all t ∈ [0, ε];
ii. ϕx(t) = 0 for all t ≥ cf (x)− ε and

iii.
∫ cf (x)−ε

ε
ϕx(s) ds = cg

(
h(x)

)
− cf (x).

The existence of such a function is guaranteed by Lemma 2.4.

Now, consider φx(t) =
∫ t

0
ϕx(s) + 1 ds. We have:

i. φx(t) =
∫ t

0
1 ds = t, for all t ∈ [0, ε];

ii. for all t ≥ cf (x) we have

φx(t) =

∫ ε

0

(ϕx(s) + 1) ds+

∫ cf (x)−ε

ε

(ϕx(s) + 1) ds+

∫ t

cf (x)−ε

(ϕx(s) + 1) ds

= ε+ cg
(
h(x)

)
− cf (x) + cf (x)− ε− ε+ t− cf (x) + ε

= cg
(
h(x)

)
− cf (x) + t;

iii. φx ∈ C∞.

Let M̂ = {(x, s) ∈ M × R : s ∈ [0, cf (x)]} and define the following equivalence

relation:
(
x, cf (x)

)
∼

(
f(x), 0

)
. Let Mcf = M̂/ ∼. Similarly, we define Ncg . Now,

consider ĥ : Mcf −→ Ncg defined by ĥ(x, s) =
(
h(x), φx(s)

)
. If h is differentiable

at a point, then ĥ is differentiable.
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cg(h(x))

cg(h(x))−ε

ε

ε cf(x)−ε cf(x)

Φx

Figure 2. The reparametrization φx on each fiber at x.
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