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Abstract
We prove that Pesin’s entropy formula holds generically within a broad subset of volume-
preserving bi-Lipschitz homeomorphisms with respect to the Lipschitz–Whitney topology.
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1 Introduction

The metric entropy is a central concept in ergodic theory and has connections with several
areas of physics (like thermodynamic formalism and statistic mechanics) and computer sci-
ence (information theory), among others. The concept of metric entropy requires a measure
in a given state space and a measurable map keeping that measure invariant and, some sense,
it measures the complexity of this system. A very complete survey on entropy can be found
in [16].

Lyapunov exponents are key objects in smooth ergodic theory. In rough terms these expo-
nentsmeasure the asymptotic growth rate of the tangentmap of a diffeomorphism along orbits
and restricted to certain fixed directions. Positive or negative exponents ensures, respectively,
exponential divergence or convergence of nearby orbits and zero exponents warrant no expo-
nential behavior. Since orbits drifting away to the future or to the past is a topological property
it is expected to find several ways to define a similar notion for maps that are only continuous.
On the other way, considering maps which are only measurable, as we did above when con-
sidering metric entropy, seems to be very poor to develop an interesting theory of Lyapunov
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exponents. Furthermore, as a quite completed theory for C1 maps is available since the late
sixties [22], it is common to consider smooth maps when dealing with Lyapunov exponents.

The problem of relating these two concepts is an old question in dynamical systems. In the
late seventies Ruelle [26] obtained an upper bound to the metric entropy of a C1 measurable
map preserving a probabilitymeasure. This upper bound is precisely the integral, with respect
to the given measure, of the positive Lyapunov exponents. Indeed, Pesin [23] has already
proved that the metric entropy is precisely the integral of the positive Lyapunov exponents
as long as the map is C2 (actually C1+α where α > 0 is the Hölder exponent is enough) and
the invariant measure is equivalent to the Lebesgue measure. In order to obtain this equality,
nowadays called Pesin’s entropy formula, Pesin developed an important invariant manifold
theory which is central in modern dynamics and the basis of nonuniform hyperbolicity.
Clearly, the Morse-Smale systems are examples which attest that Ruelle inequality may be
strict. We notice that in [18] Mañé cleverly was able to bypass the Pesin invariant manifold
theory approach to prove Pesin’s entropy formula. The literature connecting this topic with
Statistical Physics is immense (see e.g., [27,28] and references therein).

Despite the fact that Pesin’s entropy formula requires a C2 hypothesis on the map and
also the fact that C1-generically (meaning a dense Gδ) C1 maps are not of class C2, Tahzibi
obtained in [30] a simple but somehow alluring result: a C1-generic area-preserving diffeo-
morphism satisfy Pesin’s entropy formula. Later, Tahzibi theorem was generalized to any
dimension by Sun and Tian [29] and to volume-preserving flows and low dimension Hamil-
tonians by the first author and Varandas [5]. In [29] the authors were able to follow Mañé
arguments in [18] on the proof of Pesin’s entropy formula using only C1 regularity of the
diffeomorphisms, but with an additional hypothesis of a dominated splitting for almost every
point. See also [32] for a proof of this formula for a class of maps between C1 and C1+α .

In overall, we saw that metric entropy requires only measurable regularity, Lyapunov
exponents need C1 assumptions on the map and, finally, Pesin’s entropy formula demands
for C1+α regularity. What about the Lipschitz class which lies in between the measurable
maps and theC1 ones? Is there any chance to stretch out the generic Pesin’s entropy formula up
to the broader class of volume-preserving bi-Lipschitz homeomorphisms but with the coarse
Lipschitz–Whitney topology? In the present paper we discuss this problem (Theorem 1). We
point out that whenworkingwithin spaces of Höldermapswe run serious risks with respect to
the regularity of the composition operator (see [12]). Moreover, in general, bi-Lipschitz maps
are not approximated (with respect to a Lipschitz–Whitney topology) by diffeomorphisms
and this represent an obstacle to obtain several results. For example, contrary to the C1 case,
in the bi-Lipschitz class we cannot deduce that Pesin’s entropy formula holds Lipschitz–
Whitney-densely through approximating those maps by C2-diffeomorphisms. To overcome
the crucial use of the continuity of the derivative map in previous strategies we introduce
instead an extra regularity property (the �-property) in order to obtain Pesin’s formula in a
subset of bi-Lipschitz maps.

Altogether, our main result broadly widened the scope of this very important formula in
dynamical systems and we expect to have applications in contexts where we have lack of dif-
ferentiability. There are several examples of applications and activity in Lipschitz dynamics:
(i) When working with differential equations in order to have Picard–Lindelöf uniqueness
of integrability into a flow we impose only Lipschitz regularity. So is is natural to ask if
C1-type results also work in the broader regularity class of Lipschitz dynamical systems. (ii)
The interest on ‘real-world’ systems, usually non smooth, lead to the study of Lipschitz map-
pings on compact sets and a generalization of the notion of hyperbolicity (cf. [13, §3.1.3]).
(iii) The structural stability issues which are a cornerstone in the whole theory of dynamical
systems are still valid for Lipschitz dynamics (see [3,33]). (iv) A new theory of Lyapunov
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exponents in this class is available [6,20] shedding a light on the phenomenon of having,
contrary to the classical theory, the Lyapunov spectrum with cardinality above the dimension
of the manifold (see [6, Example 1]). This can be somehow related to the aforementioned
semi-hyperbolicity. (v) Also the expansive maps which are smooth except at finitely many
points (aka pseudo-Anosov maps) and which were introduced by Thurston [31] are included
in our setting. (vi) From a perspective of topological dynamical systems we recall that global
hyperbolicity for homeomorphisms was defined in [1, §11.3] to be expansive maps display-
ing also the shadowing property. These are the so called Anosov homeomorphisms which
contain the Lipschitz homeomorphisms and it would be quite interesting to figure out about
the values of its Lyapunov exponents and its entropy in the subclass of volume-preserving
Lipschitz ones.

Besides conceptual topological and analytical issues concerning the class of bi-Lipschitz
maps which will be treated in Sects. 2.2 and 2.3 respectively, the main ingredients to prove
Theorem 1 are stated at Sect. 2.5 and they are the Lipschitz version of Ruelle’s inequality
(Proposition 1; Sect. 3), the Lipschitz version of Bochi–Mañé–Viana dichotomy (Theorem 2;
Sect. 5) and also the Sun and Tian strategy for the particular case of dominated splitting
(Theorem 3; Sect. 6). The proof of main Theorem 1 is given in Sect. 7. We finally remark that
for the main Theorem 1 we consider a measure induced by a volume form. This follows from
the use of the Lipschitz version ofBochi-Mañé-Viana dichotomy (Theorem2) as intermediate
step, which is stated under this condition. However, Proposition 1 and Theorem 3 hold for
any smooth measure.

2 Definitions andMain Results

2.1 Preliminaries

Consider a compact connected boundaryless C∞ manifold M of dimension d ≥ 2 and a
reference Lebesgue probability measure μ on M . Let C(M) be the set of continuous maps
on M endowed with the usual metric defined by

d+
0 ( f , g) = max

x∈M
{d( f (x), g(x)) : x ∈ M}.

We also consider the space of homeomorphisms on M , denoted by Homeo(M), with the
metric

d0( f , g) = d+
0 ( f , g) + d+

0

(
f −1, g−1) .

Notice that (C(M), d+
0 ) and (Homeo(M), d0) are complete metric spaces. We say that f ∈

C(M) is Lipschitz if there exists a constant L ≥ 0 such that

d( f (x), f (y)) ≤ L d(x, y),

for all x, y ∈ M . The infimum of such constants is called the Lipschitz constant of f , that
we denote by lip( f ):

lip( f ) = sup
x �=y

d( f (x), f (y))

d(x, y)
.

We say that a homeomorphism f : M → M is bi-Lipschitz or a lipeomorphism if both f and
its inverse f −1 are Lipschitz maps.We denote by Lips(M) the set of all Lipschitz maps on M
and by Lipeo(M) the set of all lipeomorphisms on M . Finally, we denote by Diff1(M) the set
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of C1 diffeomorphisms on M . Clearly, Diff1(M) ⊂ Lipeo(M) ⊂ Homeo(M) ⊂ C(M). We
are interested in conservative dynamics, so that we denote by Diff1μ(M), Homeoμ(M) and
Lipeoμ(M) the set of maps f ∈ Diff1(M), f ∈ Homeo(M) or f ∈ Lipeo(M), respectively,
that preserves the measure μ.

We recall that by Rademacher’s theorem [25] (see also [14]) the derivative of a Lipschitz
map f is defined for a full μ-measure subset M̃ f ⊆ M . In particular, μ(M \ M̃ f ) = 0, and,
since f is μ-invariant we conclude that μ( f n(M \ M̃ f )) = 0 for all n ∈ Z. Therefore the set
of orbits with points where f is not differentiable is the zero measure set ∪n∈Z f n(M \ M̃ f ):

μ
(
∪n∈Z f n

(
M \ M̃ f

))
≤

∑

n∈Z
μ

(
f n

(
M \ M̃ f

))
= 0.

In view of this we may consider M̃ f ⊂ M invariant by f , and the existence of D fx implies
the existence of D f f n(x) for all n ∈ Z.

FromMoser’s theorem (see [21]) we may use charts (U , ϕ) such that the induced measure
ϕ∗μ coincides with the Lebesgue measure in ϕ(U ) ⊂ R

d . Moreover, given a point x we will
use once and for all preferred charts (U , ϕ) and (V , ϕ), with x ∈ U and f (x) ∈ V , to define
the chart representative map f̂ = ϕ−1 ◦ f ◦ ψ . For instance we may enumerate the (finite)
charts and take always the chart with lowest index.

If A : Tx M → Ty M is a linear map, the norm ‖A‖ is defined in the usual way

‖A‖ = sup
0 �=v∈Tx M

‖Av‖
‖v‖ .

Using charts we may consider A as a linear map A : R
d → R

d . In particular, letting
(Ui , ϕi ), be the established charts associated to xi ∈ Ui , i = 1, . . . , 4, for linear maps
A : Tx1 M → Tx2 M and B : Tx3 M → Tx4 M we have

‖A − B‖ = ‖Dϕ2A(Dϕ1)
−1 − Dϕ4B(Dϕ3)

−1‖.

2.2 The3-topology for Lipeomorphisms

We are going to introduce the Lipschitz–Whitney topology on the set of lipeomorphisms in
M . Given a map h : W ⊂ R

d → R
d we write lipW (h) for the corresponding euclidean

Lipschitz constant:

lipW (h) = sup
u �=v,u,v∈W

‖h(u) − h(v)‖
‖u − v‖ .

Let ‖ · ‖C0(Rd ) denote the usual uniform norm on the space C0(Rd) of continuous maps
f : Rd → R

d .We notice that the spaceLips(Rd) of Lipschitzmaps fromR
d toRd has a linear

structure, and that ‖ f ‖Lips := ‖ f ‖C0(Rd ) + lipRd ( f ) defines a complete norm. Similarly,
‖ f ‖Lipeo := max{‖ f ‖Lips, ‖ f −1‖Lips} define a complete norm on the space Lipeo(Rd) of
bi-Lipschitz maps from R

d to R
d .

Wewill set now a topology for Lipeo(M). Since any smoothmetric is Lipschitz equivalent
to the Euclidean metric, f is a Lipschitz map if and only if for any pair of charts (U , ϕ) and
(V , ψ) the map f̂ = ψ ◦ f ◦ϕ−1 is Lipschitz on the Euclidean domain W = ϕ(U ∩ f −1(V )),
that is lipW ( f̂ ) < ∞.We notice that if for x ∈ U ∩ f −1(V ) the derivative D fx is well defined,
then also is ‖D f̂ϕ(x)‖, and moreover we have ‖D f̂ϕ(x)‖ ≤ lipW ( f̂ ) < ∞.
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Given f ∈ Lipeo(M) consider: charts (U , ϕ), (V , ψ) on M such that f (U ) ∩ V �= ∅;
compact sets K ⊂ U ∩ f −1(V ) and L ⊂ f (U ) ∩ V ; and 0 < ε ≤ ∞. Define a (weak)
subbasic neighborhood

N ( f ; (U , ϕ), (V , ψ), K , L, ε) (1)

to be the set of maps g ∈ Lipeo(M) such that g(K ) ⊂ V , g−1(L) ⊂ U , d0( f , g) < ε, and
moreover

lipϕ,ψ( f − g) := lipϕ(K )(ψ ◦ f ◦ ϕ−1 − ψ ◦ g ◦ ϕ−1) < ε,

and
lipψ,ϕ( f −1 − g−1) := lipψ(L)(ϕ ◦ f −1 ◦ ψ−1 − ϕ ◦ g−1 ◦ ψ−1) < ε.

We stress that, unless M is a linear space, the expression f − g has no meaning, and its use
is only to remind the relation between the corresponding charts representatives of f and g.
Let � be the topology generated by the (weak) subbasic neighborhoods (1). This topology
is similar to the (weak) Cr -Whitney topology, with the distance between the derivatives on
each chart being here replaced by the control of the Lipschitz constant of the difference of
the chart representatives of the maps; see [15]. In view of this, we also call � the (weak)
Lipschitz–Whitney topology. This topology was also stated in [11] that we also refer for
some comments on this subject.

Consider a finite family {Ni }i∈I = {N ( f ; (Ui , ϕi ), (Vi , ψi ), Ki , Li , εi )}i∈I of subbasic
neighborhoods such that both families {Ki }i∈I and {Li }i∈I cover M , and all εi are smaller
than some ε0 for which d( f (Ki ), ∂Vi ) > 2ε0, for all i ∈ I . Let N be a neighborhood of f
obtained as the intersection of the subbasic setsNi . There is a metric d� compatible with its
topology that for each f , g ∈ N assigns

d�( f , g) = max

{
d0( f , g),max

i∈I

{
lipϕi ,ψi

( f − g), lipψi ,ϕi

(
f −1 − g−1)}

}
.

The closure N̄ of N is then a complete metric space and thus a Baire space. From a well
know fact, since each f ∈ Lipeo(M) has a neighborhood which is a Baire space then
(Lipeo(M),�) is itself a Baire space.

2.3 The �-Property

Given x0 ∈ M̃ f , the linearization of f̂ = ψ ◦ f ◦ϕ−1 at u0 = ϕ(x0) is given for u ∈ B(u0, r),
r > 0, by

f̂ (u) = f̂ (u0) + D f̂u0(u − u0) + ρ(u),

and the remainder ρ = ρ( f , x0, r) : B(u0, r) → R
d varies Lipschitz continuously on the

variable u ∈ B(u0, r).
We are interested in lipeomorphisms such that the Lipschitz constant of the remainder

vanishes as we consider smaller radius for the corresponding domain. We say that f ∈
Lipeoμ(M) satisfies the �-property at x0 ∈ M̃ if

lim
r→0

lipB(u0,r)

(
ρ

(
f ±1, u0, r

)) = 0. (2)

We denote by Lipeo�
μ(M) ⊂ Lipeoμ(M) the set of lipeomorphisms such that for μ almost

every (a.e.) x0 ∈ M the �-property holds. Notice that the �-property is algebraically closed
with respect to the composition.
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We say that f ∈ Lipeoμ(M) is almost C1 (with respect toμ) if both D f ±1
(·) are continuous

when restricted to M̃ f . Notice that this is weaker then saying that D f ±1
x is continuous μ-a.e.

x on M , because D f ±1
x could not be even defined in some points x of M in the almost C1

case.

Lemma 2.1 If f ∈ Lipeo�
μ(M) then f is almost C1 (w.r.t. μ).

Proof We want to show that for x ∈ M̃ f , ‖D fx − D fy‖ goes to zero as y goes to x , with
y ∈ M̃ f . Assume already that x, y are close enough such that both lie in the same chart
domain U and ϕ(y) ∈ B(ϕ(x), r) for small r > 0. For v ∈ B(ϕ(x), r) we have, writing f̂
for ψ ◦ f ◦ ϕ−1,

f̂ (v) = f̂ (ϕ(x)) + D f̂ϕ(x)(v − ϕ(x)) + ρ(v),

where ρ = ρ( f , x, r), and then

D f̂ϕ(y) = D f̂ϕ(x) + Dρϕ(y).

Thus, ∥
∥∥D f̂ϕ(x) − D f̂ϕ(y)

∥
∥∥ ≤ ∥

∥Dρϕ(y)

∥
∥ ≤ lipB(ϕ(x),r)(ρ),

which goes to 0 as r → 0. This implies that ‖D fx − D fy‖ also goes to to 0 as r → 0. The
computations for f −1 are similar. ��

As we notice in the following example, the �-property everywhere is not universal among
lipeomorphisms.

Example 1 Define an area-preserving lipeomorphism in R
2 by F(x, y) = (x, y +

x2 sin(1/x)) for (x, y) �= (0, 0) and F(0, 0) = (0, 0). Notice that F is differentiable every-
where; DF(0,0) = I d , DF(x,y) ·(u, v) = (u, v+[2x sin(1/x)−cos(1/x)]u) and det DF = 1.
Clearly, F /∈ C1 and F ∈ Lipeoμ(R2) but F /∈ Lipeo�

μ(R2). More precisely,

F(x, y) = (0, 0) + DF(0,0)(x, y) + ρ(x, y) = (x, y) + (0, x2 sin(1/x)),

being ρ(x, y) = (0, x2 sin(1/x)), which does not satisfy property (2).

Given f ∈ Lipeo(M) we recall the neighborhood N of f obtained as the intersection of
the subbasic sets {Ni }i∈I , and which closure N̄ has a complete metric d�.

Lemma 2.2 Lipeo�
μ(M) ∩ N̄ is a �-closed subset of N̄ .

Proof By Lebesgue’s lemma, there exists δ0 > 0 such that for all x ∈ M , the ball B(x, δ0) is
contained at least in one of the domain Ui of the charts, and similarly its image f (B(x, δ0)),
just by taking δ0 to be the minimal of the two Lebesgue numbers of the covers {Ui } and
{ f −1(Ui )}.

Set N̄ � = Lipeo�
μ(M) ∩ N̄ . Let ( fn) be a sequence of maps in N̄ � converging to f ∈ N̄ .

For each n there is a μ-full measure subset M̃n ⊂ M of points a where D( fn)a is defined.
Similarly, there is a μ-full measure subset M̃ f ⊂ M of points a where D f a is defined. Let
a be any point in the μ-full measure subset M̃ = M̃ f

⋂
n M̃n . There are suitable i, j ∈ I

such that for all v ∈ B(ϕi (a), r), r > 0, with B(ϕi (a), r) ⊂ ϕi (Ui ), and writing f̂ for
ψ j ◦ f ◦ ϕ−1

i , we have

f̂ (v) = f (ϕi (a)) +
(

D f̂
)

ϕi (a)
(v − ϕi (a)) + ρ(v)
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and, for each n, writing f̂n for ψ j ◦ fn ◦ ϕ−1
i ,

f̂n(v) = f̂n(ϕi (a)) + (D f̂n)ϕi (a)(v − ϕi (a)) + ρn(v),

where ρ = ρ( f , a, r) and ρn = ρ( fn, a, r).
Since fn ∈ Lipeo�

μ(M) we have for all n that limr→0 lipB(ϕi (a),r)(ρn) = 0. We are

going to prove that f ∈ Lipeo�
μ(M), that is, for any given ε > 0 there is R > 0 such that

lipB(ϕi (a),R)(ρ) < ε (and consequently the same holds for all 0 < r < R). Let ε > 0 be given.
We may found N0 > 0 such that d�( fN0 , f ) < ε/3 and R0 such that lipB(ϕi (a),R0)

(ρN0) <

ε/3. Hence

lipB(ϕi (a),R)(ρ) ≤ lipB(ϕi (a),R0)
(ρN0) + lipB(ϕi (a),R0)

(ρ − ρN0)

<
ε

3
+ lipϕi (Ui )

( f̂ − f̂N0) +
∥
∥
∥D( f̂ − f̂N0)ϕi (a)

∥
∥
∥

≤ ε

3
+ 2 lipϕi (Ui )

( f − fN0) < ε.

In an analogous way we perform the same computation for f −1. The closure of μ-invariant
maps follows straightforward. We conclude that f ∈ N̄ �. ��

Since N̄ is a complete metric space, from Lemma 2.2 we conclude that the same holds
for N̄ �. We then have the following.

Corollary 2.3 (Lipeo�
μ(M),�) is a Baire space.

In the following simple example we show that the �-closure of Diff 1μ(S2) is not equal to

Lipeo�
μ(S2). Thus, any attempt of using �-approximation by smooth maps to study volume-

preserving lipeomorphisms is doomed to failure.

Example 2 Take the area-preserving lipeomorphism f (x, y) = (x + |y|, y) on the annu-
lus S

1 × (− 1, 1) and assume, by contradiction, that exists a C1 area-preserving map
g(x, y) = (g1(x, y), g2(x, y)) such that d�(g, f ) < 1. Let us define α(y) = g1(0, y),
β(y) = f1(0, y) = |y| and

y := |α(y) − β(y) − (α(0) − β(0))|
|y − 0| .

Clearly

y =
∣∣∣∣
α(y) − α(0)

|y| −
(

β(y) − β(0)

|y|
)∣∣∣∣ =

∣∣∣∣
α(y) − α(0)

|y| − 1

∣∣∣∣ .

We observe that

lim
y→0+

α(y) − α(0)

|y| = α′(0) = ∂g1
∂ y

|(0,0) and lim
y→0−

α(y) − α(0)

|y| = −α′(0) = −∂g1
∂ y

|(0,0).

Hence one of these numbers α′(0) or −α′(0) is ≤ 0, contradicting d�(g, f ) < 1. Finally,
we extend in a volume-preserving fashion to S

2 by considering two centers (− 1, 0, 0) and
(0, 0, 1) obtaining a smooth map on S2 except along the ‘equator’ on which is only Lipschitz
but still satisfying �-property.

Remark 2.1 Despite the fact that Lipeo�
μ(M) is a Baire space it is not separable. Indeed, it is

easy to show that existence of countable and dense subsets cannot be achievable within our
context. For ŷ ∈ [0, 1] take the family of area-preserving lipeomorphisms f ŷ(x, y) = (x, |y−
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ŷ|) on R
2. For ŷ1 �= ŷ2 we have d�( f ŷ1 , f ŷ2) ≥ 2 + |ŷ2 − ŷ1|. Thus we obtain a discrete

subset of area-preserving lipeomorphisms satisfying the �-property but with cardinality equal
to the cardinality of R, thus cannot be separable.

2.4 Lyapunov Exponents and Domination

Since for all x ∈ M̃ f ∩ M̃ f −1 we have
∥
∥D f ±1

x

∥
∥ ≤ lip

(
f ±1

)
< ∞, we have

∫

M
log+ ∥

∥D f ±1
x

∥
∥ dμ(x) < +∞.

Furthermore, the map D f : M̃ f × Z → SL(d,R), given by D f (x, n) = D f n
x is a cocycle,

where SL(d,R) stand for the d-dimensional special linear group with entries in R. Indeed,
D f (x, 0) = I d for all x ∈ M̃ f and, by using the chain rule for Lipschitz maps (see [17]),
we get D f (x, n + m) = D f ( f n(x), m) · D f (x, n) for all n, m ∈ Z and x ∈ M̃ f . Under
these assumptions we can may apply Oseledets’ theorem to the dynamical cocycle D f (see
e.g., [4]).

Theorem 2.4 (Oseledets)Let f ∈ Lipeoμ(M), then there is a μ full measure subsetO f ⊂ M
such that, for all x ∈ O f there exist

(1) (Oseledets’ splitting) a D f -invariant splitting of the fiber Tx M = E1
x ⊕· · ·⊕ Ek(x)

x along
the orbit of x, and

(2) (Lyapunov exponents) real numbers λ̂1( f , x) > · · · > λ̂k(x)( f , x), with 1 ≤ k(x) ≤ d,
such that

lim
n→±∞

1

n
log ‖D f n

x · v‖ = λ̂i ( f , x),

for any v ∈ Ei
x \ {0} and i = 1, . . . , k(x).

Letλ1( f , x) ≥ · · · ≥ λd( f , x) denote de d Lyapunov exponents countedwithmultiplicity
and set λ+

i ( f , x) = max{λi ( f , x), 0}d
i=1. The set {λi ( f , x)}i=1,...,d is called the Lyapunov

spectrum of f at x . When all Lyapunov exponents are equal (in our setting this means all
equal to zero), we say that the Lyapunov spectrum is trivial.

We recall now the definition of a dominated splitting associated with f ∈ Lipeoμ(M).
Letm(A) = ‖A−1‖−1 denotes the co-norm of a linear map A. Consider m ∈ N. A nontrivial
D f -invariant μ-measurable splitting TDM = ED ⊕ FD , with D ⊂ M̃ f , is said to be an
m-dominated splitting for D f over D if the following inequality holds for any x ∈ D:

‖D f m
x |Ex ‖

m(D f m
x |Fx )

≤ 1

2
. (3)

Sometimes we write Dm to emphasize that the rate of time needed to observe (3) is m.

2.5 Main Results

In this section we establish our main result that Pesin’s entropy formula holds generically in
Lipeo�

μ(M) and give also the major results evolved. Let hμ( f ) stands for the metric entropy
of f with respect to the measure μ (for full details see e.g., [19, Chapter IV]).
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Theorem 1 There exists a �-residual subset R ⊂ Lipeo�
μ(M) such that for all f ∈ R

hμ( f ) =
∫

M

d∑

i=1

λ+
i ( f , x) dμ(x). (4)

To prove (4) we start by obtaining Ruelle’s inequality for Lipschitz maps which is proved
in Sect. 3.

Proposition 1 For all f ∈ Lips(M) preserving the measure μ we have

hμ( f ) ≤
∫

M

d∑

i=0

λ+
i ( f , x) dμ(x).

In order to obtain the inverse inequality we start with a Lipschitz version of the celebrated
Bochi-Mañé-Viana theorem [9, Theorem 1].

Theorem 2 There exists a �-residual subset R ⊂ Lipeo�
μ(M) such that for all f ∈ R there

exists a μ full measure subset N = Z ∪ D ⊂ M̃ f such that λ( f , x) = 0 for all x ∈ Z, and
for all x ∈ D the Oseledets splitting is an mx -dominated splitting for D f along the orbit of
x, for some mx ∈ N.

The proof of this dichotomy is given in Sect. 5 and relies on the upper semicontinuity
of the integrated Lyapunov exponents map with respect to the Lipschitz–Whitney topology
(Proposition 2 in Sect. 4.2) and that a continuity point of the integrated Lyapunov exponents
have either an Oseledets’ dominated splitting or a trivial spectrum (Theorem 4 in Sect. 5). To
deal with the dominated component D on the previous result we obtain a Lipschitz version
of a result by Sun and Tian ([29, Theorem 2.2]) that we prove in Sect. 6.

Theorem 3 Let f ∈ Lipeo�
μ(M) and m : M → N to be an f -invariant measurable function.

If for μ-a.e. x ∈ M there is an m(x)-dominated splitting E ⊕ F for D f on the orbit of x,
then

hμ( f ) ≥
∫

M

dim(F)∑

i=1

λi ( f , x) dμ(x).

Observe that in Theorem 3 if F is associated to the non-negative Lyapunov exponents
and E is associated to the negative Lyapunov exponents (or F is associated to the positive
Lyapunov exponents and E is associated to the non-positive Lyapunov exponents), then (4)
holds for f ∈ Lipeo�

μ(M) with dominated splitting. This theorem is proven in Sect. 6.

Remark 2.2 We stress that Proposition 1 and Theorem 3 hold if we replace the Lebesgue
measure by a smooth measure.

The proof of Theorem 1 is given in Sect. 7.

3 Ruelle’s Inequality for Lipeomorphisms

Margulis stated in a unpublished work an inequality relating the metric entropy with the
integral of positive Lyapunov exponents for C1 diffeomorphisms and for smooth measures.
Later this resultwas extended to arbitraryC1 maps byRuelle [26]. Several proofs can be found
in the literature, as well as some variations and extensions of the statement. In particular,
a version for piecewise Lipschitz interval maps can be found at [7, Theorem 7.1]. In the
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following we write down a proof of the Ruelle inequality for Lipschitz maps on a manifold.
Besides the mentioned work of Ruelle, we also borrow some ideas from [19] and [24]. Also,
the Rademacher theorem is vital in order to obtain this inequality in the present setting.

Proof of Proposition 1 We recall that by Rademacher’s theorem we may assume that the
derivative D fx is defined in a full μ-measure subset M̃ f ⊂ M . Since M is compact, there is
ζ > 0 such that for every x ∈ M the exponential map

expx : B(0, ζ ) ⊂ Tx M → B(x, ζ ) ⊂ M

is a C∞ diffeomorphism. Fix n ∈ N. There is 0 < ε < ζ/2 such that f n(B(x, ε)) ⊂
B( f n(x), ζ/2) and, for any x ∈ M̃ f , y ∈ M with d(x, y) ≤ ε we have

d( f n(y), exp f n(x) ◦D f n
x ◦ exp−1

x (y)) ≤ d(x, y). (5)

For each m ∈ N let Sm be a maximal ε/m-separated set of M . We define a finite partition
Pm = {Pm(x0) : x0 ∈ Sm} of M such that Pm(x0) ⊂ int(Pm(x0)) and

int(Pm(x0)) = {
y ∈ M : d(y, x0) < d(y, x ′

0), ∀x ′
0 ∈ Sm \ {x0}

}
.

For any x ∈ M , let Pm(x) be the element of Pm containing x . We have B(x0, ε/2m) ⊂
Pm(x) ⊂ B(x, 2ε/m) for some x0 ∈ Sm and diam(Pm(x)) ≤ 2ε/m which goes to 0 as
m → ∞. Set now

νn,m(x) = #{P ∈ Pm : f n(Pm(x)) ∩ P �= ∅} and νn(x) = lim sup
m→∞

νn,m(x).

Note first that for every n, m ≥ 1,

νn,m(x) ≤
(
Lips( f n)2ε/m

ε/2m

)d

≤ 4d Lips( f )nd . (6)

We claim that

hμ( f n,Pm) ≤
∫

M
log νn,m(x) dν(x). (7)

To obtain the inequality in (7) we notice that

hμ( f n,Pm) = lim
k→∞ Hμ

⎛

⎝Pm |
k∨

j=1

f −nj (Pm)

⎞

⎠

≤ Hμ(Pm | f −n(Pm)) (since we have a decreasing sequence)

=
∑

A∈ f −n(Pm )

μ(A)

⎛

⎝
∑

Q∈Pm :Q∩A �=∅
−μ(Q ∩ A)

μ(A)
log

μ(Q ∩ A)

μ(A)

⎞

⎠

=
∑

B∈Pm

μ( f −n(B))

⎛

⎝
∑

Q∈Pm : f n(Q)∩B �=∅
−μ(Q ∩ f −n(B))

μ( f −n(B))
log

μ(Q ∩ f −n(B))

μ( f −n(B))

⎞

⎠

≤
∑

B∈Pm

μ( f −n(B)) log #{Q ∈ Pm : f n(Q) ∩ B �= ∅}

=
∫

M
log νn,m(x) d( f n∗ μ)(x)

=
∫

M
log νn,m(x) dμ(x).
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Denote by Vδ(A) the δ-neighborhood of a set A ⊂ M (or A ⊂ T f n(x)M). By (5) we have

f n(Pm(x)) ⊂ V2ε/m
(
exp f n(x)

(
D f n

x (B(0, 2ε/m))
))

.

If f n(Pm(x)) ∩ Pm(x ′
0) �= ∅ for some x ′

0 ∈ Sm , then

B(x ′
0, ε/2m) ⊂ Pm(x ′

0) ⊂ V4ε/m
(
exp f n(x)(D f n

x (B(0, 2ε/m)))
)
.

We recall that there is b = b(ζ ) ≥ 1 such that for any x ∈ M , if x, y ∈ B(x, ζ ) then

b−1d(y, z) ≤ ∣
∣exp−1

x (y) − exp−1
x (z)

∣
∣ ≤ b d(y, z).

Thus

B(exp−1
f n(x)(x ′

0), ε/2bm) ⊂ V4bε/m
(
D f n

x (B(0, 2ε/m))
)
.

Since B(x ′
0, ε/2m) are disjoint with x ′

0 ∈ Sm , also does B(exp−1
f n(x)(x ′

0), ε/2bm). Hence

νn,m(x) ≤ vol
(
V4bε/m

(
D f n

x (B(0, 2ε/m))
))

min
x ′
0∈Sm

vol
(

B(exp−1
f n(x)(x ′

0), ε/2bm)
) .

Given a linear map A, denote by χi (A) the non-negative square root of the i th eigenvalue of
A∗ A where A∗ is the conjugate transpose of A.

Lemma 3.1 Given a linear map A : X → Y is between d-dimensional Euclidean spaces
and a positive constant �, there exists a constant C = C(d, �) such that, for any r > 0 we
have

vol (V�r (A(Br (0)))) < Crd
d∏

i=1

max{χi (A), 1}.

Lemma 3.1 implies that there is a constant C depending only on d and the geometry of
M such that for each n, m ≥ 1 and x ∈ M̃

νn,m(x) ≤ C
d∏

i=0

max{χi (D f n
x ), 1}.

In particular, we conclude that for μ-a.e. x ∈ M we have

lim sup
n→∞

1

n
log νn(x) ≤

d∑

i=0

λ+
i ( f , x), (8)

Now, for every n ≥ 1 we have

hμ( f ) = 1

n
hμ( f n).
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Hence, from (6) and dominated convergence theorem we get

hμ( f ) = lim
m→∞

1

n
hμ( f n,Pm)

≤ lim sup
m→∞

∫

M

1

n
log νn,m(x) dμ(x)

≤
∫

M
lim sup
m→∞

1

n
log νn,m(x) dμ(x)

=
∫

M

1

n
log νn(x) dμ(x),

and also

hμ( f ) ≤
∫

M
lim sup

n→∞
1

n
log νn(x) dμ(x).

By (8) we conclude the proof of Proposition 1. ��

4 Continuity of Domination and Integrated Lyapunov Exponents

4.1 Dominated Splittings

Throughout this sectionwe consider f ∈ Lipeo�
μ(M) and TDM = ED⊕FD anm-dominated

splitting for D f overD ⊂ M̃ f . The proof of the next result is essentially similar to the smooth
case (see e.g. [10, pp. 292]). Note that in the smooth case analogous of Lemma 4.1 below,
the continuity of the derivative plays a decisive role. We can reproduce the argument in our
case since, by Lemma 2.1, f is almost C1 with respect to μ. The next result will be used in
Sect. 6.

Lemma 4.1 (Continuous dependence and extension to the closure) The maps D � x �→ Ex

and D � x �→ Fx are continuous for x ∈ D. Moreover if x ∈ M is such that its orbit is
accumulated by points in D and D fy is defined for all y = f i (x), then the orbit of x has an
m-dominated splitting.

By Lemma 4.1 the set Dm is closed in the sense that its closure displays an m-dominated
splitting in where D f is defined. Within this open/closeness in measure theoretic sense we
have that the set �m := M \ Dm is open. The index of the splitting is the dimension of the
bundle FD . The dominated splitting structure is a ‘weak’ form of uniform hyperbolicity, in
fact it behaves like a uniform hyperbolic structure in the projective space R Pn−1.

Remark 4.1 (Transversality) There exists α > 0 such that �(Ex , Fx ) > α for all x ∈ D.
Indeed, we prove that there exists α > 0 such that ‖u − s‖ > α for any unitary vectors
u ∈ Fx , s ∈ Ex and x ∈ D. Otherwise, there exists xn ∈ D such that un ∈ Fxn , sn ∈ Exn

and ‖un − sn‖ → 0. As D f is essentially bounded we can choose mn → +∞ such that

1

2
<

∥∥D f mn
xn · sn

∥∥
∥∥D f mn

xn · un
∥∥ < 2,

contradicting the domination.

It is easy to see that given a periodic point p ∈ M with a dominated splitting for some
f ∈ Lipeo�

μ(M), then for any g ∈ Lipeo�
μ(M) with d�( f , g) < δ, for small δ, has the

periodic point pg which is the continuation of p. Nevertheless, Dg may no longer exists
along the g-orbit of pg (see also [33, p. 271] which is somehow related to this issues).
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4.2 Upper Semicontinuity of the Integral of Lyapunov Exponents

In this section we prove the upper semicontinuity of the integral of the sum of first Lyapunov
exponents with respect to the Lipschitz–Whitney topology on Lipeo�

μ(M). For k = 1, . . . , d

define the kth integrated Lyapunov exponent of f ∈ Lipeo�
μ(M) by

Lk( f ) =
∫

M

k∑

i=1

λi ( f , x)dμ(x).

It was proved in [6, §4] that when f ∈ Homeoμ(M) then Lk cannot be upper semicon-
tinuous w.r.t. the C0-topology. Moreover, in [8, Proposition 2.1] is was proved that when
f ∈ Diff1μ(M) thenLk is upper semicontinuous w.r.t. C1-topology. In our setting we are able
to prove that Lk is �-upper semicontinuous.

Lemma 2.1 is fundamental to overcome the absence of continuity of the derivative and,
therefore, to be able to use the general result on the upper semicontinuity for cocycles in the
L p-norm [2, Theorem 2].

Proposition 2 The function Lk : Lipeo�
μ(M) � f → Lk( f ) ∈ [0,∞) is upper semicon-

tinuous with respect to the Lipschitz–Whitney topology for all k = 1, . . . , d − 1, that is,
for every f ∈ Lipeo�

μ(M) and ε > 0 there exists δ > 0 such that if d�( f , g) < δ then
Lk(g) < Lk( f ) + ε. Moreover, Ld is �-continuous.

Proof Consider any ε > 0. Lemma 2.1 implies that there exists 0 < δ < ε/4 such that
if d�( f , g) < δ then d0( f , g) < δ and ‖D(g−1) f (x) − D(g−1)g(x)‖ < ε/4 for μ-a.e. x .
Moreover, by similar arguments of that on the proof of Lemma 2.1 one can see that, by
reducing δ if necessary, we have ‖D f ±1

z − Dg±1
z ‖ < ε/4, for all z ∈ M̃ f ∩ M̃g . Then

‖D f − Dg‖1 :=
∫

M
‖D fx − Dgx‖ dμ(x) <

ε

4
,

and

‖(D f )−1 − (Dg)−1‖1 :=
∫

M
‖(D fx )

−1 − (Dgx )
−1‖ dμ(x)

≤
∫

M

∥∥D( f −1) f (x) − D(g−1) f (x)

∥∥ dμ(x)

+
∫

M

∥∥D(g−1) f (x) − D(g−1)g(x)

∥∥ dμ(x)

<
ε

4
+ ε

4
= ε

2
.

Hence ‖D f − Dg‖1+
∥∥(D f )−1 − (Dg)−1

∥∥
1 < ε. In view of this wemay apply [2, Theorem

2] that, we recall, do not require the maps to be ergodic. ��

5 The Bochi–Mañé–Viana Theorem for the Lipschitz Cass

5.1 Proof of Theorem 2

In the present section we prove Theorem 2. As in [9] we will first prove a result which,
together with Proposition 2, directly implies Theorem 2.
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Theorem 4 If the map

f ∈ Lipeo�
μ(M) �→ (L1( f ), . . . ,Ld−1( f )) ∈ R

d−1

is continuous at f0 then for μ-almost every x ∈ M, the Oseledets splitting of f0 is either
dominated along the orbit of x or else the Lyapunov spectrum of f at x is trivial.

At first glance, and since the Lipschitz–Whitney topology is coarser than the C1 topology,
it seems that Theorem 4 follows from [9, Theorem 2]. Nevertheless, the naive approach of
approximating f ∈ Lipeo�

μ(M) by g ∈ Diff1μ(M) and then use [9] directly will not work

because Diff1μ(M) is not �-dense in Lipeo�
μ(M) (recall Example 1). What we will do in the

next few pages is to present a skeleton of the hard, long and highly technical proof made by
Bochi and Viana in order to perform the proof in the Lipeo�

μ(M) case.
Like in the smooth case the perturbations of a map f are made by composing it with a

map h with small support and close to the identity. However, the composition map h �→ f ◦h
can be discontinuous (see [12, Example 6.4]) with respect to � and then f could be �-far
from g := f ◦ h. Fortunately, as our perturbations are always carefully cooked ones we can
choose h smooth enough in order to achieve the continuity and this will be crucial to obtain
the Bochi-Mañé-Viana theorem for the Lipschitz class.

We begin with a major concept regarding the perturbation framework which is the realiz-
able sequences. Observe that our Definition 5.1 differs from [9, Definition 2.10] slightly as
we need to adapt it to the non smooth case. For x ∈ M and small r > 0 we define

b(x, r) = ϕ−1(B(ϕ(x), r)
)
.

Wewill always assume that r is small enough so that b(x, r) ⊂ U , where, we recall, U ⊂ M
is the domain of ϕ. The sets b(x, r) will be called disks.

Definition 5.1 Given f ∈ Lipeo�
μ(M), ε0 > 0, κ ∈ (0, 1) and a non periodic point x ∈ M̃ f ,

we call a sequence of volume-preserving linear maps Li : T f i (x)M → T f i+1(x)M (i =
0, . . . , n − 1) an (ε0, κ)-realizable sequence of length n at x if the following holds: for
every γ > 0, there is r > 0 such that the iterates f j (b(x, r)) are two-by-two disjoint for
j = 0, . . . , n and given any nonempty open set U ⊂ b(x, r) there are g ∈ Lipeo�

μ(M)

satisfying d�( f , g) < ε0 and a measurable set K ⊂ U ∩ M̃ f , such that:

(1) g equals f outside the disjoint union ∪n−1
j=0 f j (U);

(2) μ(K) > (1 − κ)μ(U) and
(3) if y ∈ K, then ‖Dgg j (y) − L j‖ < γ for every j = 0, . . . , n − 1.

The Lemma 5.1 bellow is the basic perturbation tool that will be used to construct all our
realizable sequences in the two-dimensional context (cf. Lemma 5.2). This low dimensional
setting contain all the main differences between the smooth case and the Lipschitz one.
Lemma 5.3 bellow (see [9, Lemma 3.4]) is the basic perturbation tool that will be used to
construct all our realizable sequences in the higher dimensional context (cf. Lemma 5.4).
Lemma 5.4 will be stated without proof.

Let Rα : R2 → R
2 denote the rotation of angle α ∈ R inR2 which in canonic coordinates

can be written as Rα(u, v) = (u cos(α) − v sin(α), u sin(α) + v cos(α)).

Lemma 5.1 [8, Lemma 3.2] Let ε1 > 0 and κ ∈ (0, 1). Then there exists α0 > 0 with
the following properties. If |α| ≤ α0 and r > 0, then there exists a C∞ area-preserving
diffeomorphism h : R2 → R

2 such that:
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(i) |z| ≥ r implies h(z) = z;
(ii) |z| ≤ √

kr implies h(z) = Rα(z);
(iii) |h(z)| = |z| for all z;
(iv) |h(z) − z| ≤ αr for all z;
(v) ‖Dh − I‖ ≤ ε1 for all z.

Given x ∈ M and θ ∈ R, we consider the the rotation of angle θ at x to be the linear map
R̂θ = (Dϕx )

−1Rθ Dϕx : Tx M → Tx M .

Lemma 5.2 Given f ∈ Lipeo�
μ(M), ε0 > 0 and κ ∈ (0, 1), there is an α1 > 0 with the

following properties. Suppose that x ∈ M̃ f is not periodic and |θ | ≤ α1. Then D fx Rθ =
L0 : Tx M → T f (x)M is an (ε0, κ)-realizable sequence of length 1 at x.

Proof Let γ > 0 be given. Using standard Vitali covering arguments we only need to
construct perturbations supported in disks U = b(y, r ′) ⊂ b(x, r). Recall charts (U , ϕ)

and (V , ψ), with x ∈ U and f (x) ∈ V , and the chart representative of f given by f̂ =
ψ ◦ f ◦ ϕ−1 : ϕ(U ) → R

d . Assume r to be small enough such that b(x, r) ⊂ U . For
simplicity, we assume that ϕ(y) = 0. Using Lemma 5.1 we find, for each small angle θ , a
map g ∈ Lipeo�

μ(M), whose chart representative is f̂ ◦ h, and K ⊂ U ∩ M̃ f satisfying the
three properties:

(1) g equals f outside U;
(2) μ(K) > (1 − κ)μ(U) and
(3) if z ∈ K, then ‖Dgz − L0‖ < γ .

Properties (1) and (2) are obvious by construction. As h is C∞ and f is derivable almost
surely we get that Dgz exists for z ∈ K. For the last one we have

‖Dgz − L0‖ = ‖D f̂h(ϕ(z)) Dhϕ(z) − D f̂ϕ(x) Rθ‖ ≤ ‖D f̂h(ϕ(z)) − D f̂ϕ(x)‖ ‖Rθ‖
which, accordingly Lemma 2.1, can be made smaller than any γ > 0 once we take α1 > 0
and r > 0 sufficiently small. We are left to see that d�( f , g) < ε0. Clearly, for small α1 > 0
and r > 0 we have d0( f , g) < ε0. Let K ⊂ U be a compact set such that f (K )∪g(U ) ⊂ V .
Let us take r and ε1 (depending on f and ε0) such that d0( f , g) < ε0 and

(lipϕ(K )( f̂ ) + lipϕ(K )(h))ε1 < ε0.

Now, observing that

lipϕ(K )( f̂ ) = ess supu∈ϕ(K ) ‖D f̂u‖,
we have

lipϕ,ψ( f − g) = ess supu∈ϕ(K ) ‖D( f̂ − f̂ ◦ h)u‖
≤ ess supu∈ϕ(K ) ‖D f̂u − D f̂u Dhu‖ + ‖D f̂u Dhu − D f̂h(u) Dhu‖
≤ ess supu∈ϕ(K ) ‖D f̂u‖ · ‖D(I − h)u‖ + ‖D f̂u − D f̂h(u)‖ · ‖Dhu‖
≤ lipϕ(K )( f̂ )ε1 + ε1 lipϕ(K )(h) ≤ ε0.

In an analogous way we perform the same computation in order to have lipψ,ϕ( f −1 −
g−1) < ε0, which leads to d�( f , g) < ε0. ��

Now, let us see what we do when we are in dimension greater than 2. Next result is a key
step to obtain Lemma 5.4. It plays the same role of Lemma 5.1 in the proof of Lemma 5.2.
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Lemma 5.3 [9, Lemma 3.4] Given ε0 > 0 and σ ∈ (0, 1), there is ε > 0 with the following
properties: suppose there is a splitting R

n = X ⊕ Y with X ⊥ Y and dim(Y ) = 2, a right
cylinder A⊕B centered at the origin with A ⊂ X and B ⊂ Y , and a linear map R̂ : Y → Y
such that R̂(B) = B and ‖R̂ − I‖ < ε. Then, there exists τ > 1 such that the following
holds: let us consider the linear map

R : Rn = X × Y −→ R
n = X × Y

(u, v) �−→ R(u + v) = u + R̂v

for a, b > 0 consider the cylinder C = aA ⊕ bB. If a > τb and diam(C) < ε0, then there
is h ∈ Diff 1μ(Rn) satisfying:

(i) h(z) = z for every z /∈ C and h(z) = R(z) for every z ∈ σC;
(ii) ‖Dhz − I‖ < ε0 for all z.

Next result is [9, Lemma 3.3] readapted to our setting. Its proof is basically following [9,
Lemma 3.3] and compute the distance d� just like we did in Lemma 5.2. For full details on
the quotient spaces along the proof see [9, p. 1441].

Lemma 5.4 Let f ∈ Lipeo�
μ(M), ε0 > 0, κ > 0, there exists ε > 0 with the following

properties: suppose there are a non periodic point x ∈ M, n ∈ N, and for j = 0, . . . , n − 1

(1) codimension 2 spaces X j ⊂ T f j (x)M such that X j = D f j
x (X0);

(2) ellipsis B j ⊂ (T f j (x)M)/X j centered at zero with B j = (D f j
x /X0)(B0);

(3) linear maps R̂ j : (T f j (x)M)/X j → (T f j (x)M)/X j such that R̂ j (B j ) ⊂ B j and ‖R̂ j −
I‖ < ε.

Consider the linear maps R j : T f j (x)M → T f j (x)M such that R j restricted to X j is the

identity, R j (X⊥
j ) = X⊥

j and R j/X j = R̂ j . Define, for j ∈ {0, 1, ..., n − 1}
L j = D f f j (x) R j : T f j (x)M → T f j+1(x)M,

Then {L0, . . . , Ln−1} is an (ε0, κ)-realizable sequence of length n at x.

We are now able to state a crucial local perturbation result. Its proof follows from [9,
Proposition 3.1].

Proposition 5.5 Let f ∈ Lipeo�
μ(M), ε0 > 0 and κ ∈ (0, 1). If m ∈ N is chosen sufficiently

large, then given a non periodic point y ∈ M̃ f and a nontrivial splitting Ty M = E ⊕ F
satisfying

‖D f m
y |Ey ‖

m(D f m
y |Fy )

≥ 1

2
,

there exists an (ε0, κ)-realizable sequence {L0, L1, . . . , Lm−1} at y of length m and there
are nonzero vectors u ∈ F and s ∈ D f m

y (E) such that

Lm−1 · · · L0(u) = s.

Fix k ∈ {1, . . . , n − 1} and m ∈ N. The subset of M̃ f formed by the points x ∈ M̃ f

such that there exists an m-dominated splitting of index k along the orbit of x is denoted
by Dk( f , m). The set �k( f , m) = M \ Dk( f , m) is open and each element of it has an
iterate where inequality (3) does not hold (for index k). Define �

�
k( f , m) = {x ∈ �k( f , m)∩

O f : λk( f , x) > λk+1( f , x)} and �∗
k ( f , m) = {x ∈ �

�
k( f , m) : x is not periodic}.
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Next result give us a way to decrease the Lyapunov exponents by using several times
Lemma 5.4 (see [9, Proposition 4.2]).We recall that∧k(A) stands for the kth exterior product
of the linear map A : Rd → R

d . Notice that
∑k

i=1 λi ( f , x) is the top Lyapunov exponent
associated to the cocycle ∧k D fx .

Proposition 5.6 Let f ∈ Lipeo�
μ(M), ε0 > 0, κ ∈ (0, 1), δ > 0 and k ∈ {1, . . . , n − 1}.

For every sufficiently large m ∈ N there is a measurable function N : �∗
k ( f , m) → N with

the following properties: for μ-a.e. x ∈ �∗
k ( f , m) and every n ≥ N (x) there exists an

(ε0, κ)-realizable sequence {L̂ x,n
0 , L̂ x,n

1 , . . . , L̂ x,n
m−1} at x of length n such that

1

n
log

∥
∥
∥∧k(L̂ x,n

m−1 · · · L̂ x,n
0 )

∥
∥
∥ ≤

k−1∑

i=1

λi ( f , x) + λk( f , x) + λk+1( f , x)

2
+ δ.

Finally, we put in practice the global strategy like in [9]. Next result is [9, Proposition
4.8] adapted.

Proposition 5.7 Let f ∈ Lipeo�
μ(M), ε0 > 0, δ > 0 and k ∈ {1, . . . , d − 1}. For every

sufficiently large m ∈ N there exists g ∈ Lipeo�
μ(M) such that d�( f , g) < ε0, g = f

outside the open set �k( f , m) and such that

∫

�k ( f ,m)

k∑

i=1

λi (g, x) dμ(x) ≤
∫

�k ( f ,m)

k−1∑

i=1

λi ( f , x) + λk( f , x) + λk+1( f , x)

2
dμ(x) + δ.

Let �k( f ,∞) = ∩m∈N�k( f , m). Next result is a consequence of Proposition 5.7.

Proposition 5.8 Let f ∈ Lipeo�
μ(M), ε0 > 0, δ > 0 and k ∈ {1, . . . , d − 1}. There exists

g ∈ Lipeo�
μ(M) such that

∫

M

k∑

i=1

λi (g, x) dμ(x) <

∫

M

k∑

i=1

λi ( f , x) dμ(x)

−
∫

�k ( f ,∞)

λk( f , x) − λk+1( f , x)

2
dμ(x) + δ.

Proof of Theorem 4 Let f ∈ Lipeo�
μ(M) be a point of continuity of Lk(·) for all k =

1, . . . , d − 1. Therefore, for all k we have
∫

�k ( f ,∞)

λk( f , x) − λk+1( f , x)

2
dμ(x) = 0.

And so λk( f , x) = λk+1( f , x) for μ-a.e. x ∈ �k( f ,∞). Consider x ∈ M̃ f ∩ O f . If all
the Lyapunov exponents at x are zero, then the proof is over. Otherwise, if for some k we
get λk( f , x) > λk+1( f , x), then x /∈ �k( f ,∞) and so x ∈ Dk( f , m) for some m and the
Oseledets splitting is dominated. ��

6 Proof of Theorem 3

6.1 Three Technical Lemmata

Next basic lemma is inspired in [18, Lemma 3] which was performed in the hyperbolic
setting and re-proved under the dominated splitting assumption in [29, Lemma 3.3]. We
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will present its proof which follows closely the arguments in [18,29]. But first let us recall
some definitions. The formulation of item (ii) of Lemma 6.1 is substantially different from
the original one in [18,29] which was based on C1 assumptions that we were not able to
guarantee in the lipeomorphism case. This was the main motivation for the introduction of
the �-property defined in Sect. 2.3. The next three technical lemmata are going to be used in
the proof of Theorem 3 under a suitable choice of the decomposition given by the Oseledets
theorem.

Given a normed space E and a splitting E = E1⊕E2 we define γ (E1, E2) as themaximum
of the norms of the projections πi : E → Ei (i = 1, 2). A subset G ⊂ E is said to be an
(E1, E2)-graph if there exists an open set U ⊂ E2 and a Lipschitz map ψ : U → E1 such
that G = {x + ψ(x) : x ∈ U }. We call lipU (ψ) = supx �=y∈U

‖ψ(x)−ψ(y)‖
‖x−y‖ the dispersion of

the graph G.

Lemma 6.1 Let α, β, c, δ > 0 be such that

0 <

1
2 + δα(1+c)

cβ

1 − δα 1+c
β

< 1.

Let E , E ′ be two finite dimensional normed spaces, E = E1 ⊕ E2 a splitting such that
γ (E1, E2) ≤ α and F : B(0, r) ⊂ E → E ′ is a Lipschitz map where DF0 is defined and
satisfying the following properties:

(i) DF0 is an isomorphism and γ (DF0 · E1, DF0 · E2) ≤ α;
(ii) Denoting by L = DF0|E1 and T = DF0|E2 and for some small r > 0 and (x, y) ∈

B(0, r) we have

F : E1 × E2 −→ DF0 · E1 × DF0 · E2

(x, y) �−→ (Lx + p(x, y), T y + q(x, y))

with remainders p(x, y) and q(x, y) having Lipschitz constants less than δ;

(iii)
‖DF0|E1‖

m(DF0|E2 )
≤ 1

2 and

(iv) m(DF0|E2) ≥ β,

then, for every (E1, E2)-graph G ⊂ B(0, r) with dispersion ≤ c,F(G) is a (DF0 · E1, DF0 ·
E2)-graph with dispersion ≤ c.

Proof Let U ⊂ E2 be an open set and ψ : U → E1 a map whose graph {(ψ(v), v)) : v ∈ U }
is G. Then,

F(G) = {(Lψ(v) + p(ψ(v), v), T v + q(ψ(v), v)) : v ∈ U }.
Define φ : U → DF0|E2 by φ(v) = T v + q(ψ(v), v). If u, w ∈ U then

‖φ(v) − φ(w)‖ ≥ ‖T (v − w)‖ − ‖q(ψ(v), v)) − q(ψ(w),w))‖
≥ m(T )‖v − w‖ − δα(‖ψ(v) − ψ(w)‖ + ‖v − w‖)
≥ (m(T ) − δα(1 + c))‖v − w‖
≥ (β − δα(1 + c))‖v − w‖

and since β − δα(1 + c) > 0 we have that φ is a homeomorphism of U onto the open set
φ(U ) and we have lip(φ−1) ≤ (β − δα(1 + c))−1.
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Define ψ̂ : φ(U ) → DF0|E1 by ψ̂(v) = Lψ(φ−1(v))+ p(ψ(φ−1(v)), φ−1(v))). Clearly
we have

F(G) = {(ψ̂(x), x) : x ∈ φ(U )},
which is a Lipschitz (DF0 · E1, DF0 · E2)-graph. Now, to compute the dispersion of F(G)

we write ψ̂ = ψ̃φ−1, where ψ̃(w) = Lψ(w) + p(ψ(w),w). Then,

‖ψ̃(v) − ψ̃(w)‖ ≤ ‖Lψ(v) − Lψ(w)‖ + ‖p(ψ(v), v)) − p(ψ(w),w))‖
≤ ‖L‖ ‖ψ(v) − ψ(w)‖ + δα(‖ψ(v) − ψ(w)‖ + ‖v − w‖)
≤ c‖L‖ ‖v − w‖ + δα(c‖v − w‖ + ‖v − w‖)
≤ [c‖L‖ + δα(1 + c)]‖v − w‖

Now, we obtain that the dispersion of F(G) is ≤ c:

sup
x �=y∈φ(U )

{
‖ψ̂(x) − ψ̂(y)‖

‖x − y‖

}

= sup
x �=y∈φ(U )

{
‖ψ̃φ−1(x) − ψ̃φ−1(y)‖

‖x − y‖

}

= sup
v �=w∈U

{
‖ψ̃(v) − ψ̃(w)‖
‖φ(v) − φ(w)‖

}

= sup
v �=w∈U

{
‖ψ̃(v) − ψ̃(w)‖

‖v − w‖
‖v − w‖

‖φ(v) − φ(w)‖

}

= sup
v �=w∈U

{
‖ψ̃(v) − ψ̃(w)‖

‖v − w‖

}

lip(φ−1)

≤ c‖L‖ + δα(1 + c)

β − δα(1 + c)
= c

‖L‖ + δα(1+c)
c

β − δα(1 + c)
≤ c

1
2β + δα(1+c)

c

β − δα(1 + c)

= c
1
2 + δα(1+c)

cβ

1 − δα(1+c)
β

≤ c
1
2 + δα(1+c)

cβ

1 − δα 1+c
β

< c

��
Let g ∈ Homeo(M), r > 0, x ∈ M and n ∈ N. We define a Bowen ball by:

Bn(g, r , x) =
n⋂

j=0

g− j (B(g j (x), r)).

In [18] was proved that:

hμ(g) ≥ sup
r>0

∫

M
hμ(g, r , x) dμ(x), (9)

where

hμ(g, r , x) := lim sup
n→+ ∞

1

n
(− logμ(Bn(g, r , x))) .

From Lemmas 6.1 and 2.1 and a simple induction argument we deduce the following
result. For details see [29, Lemma 3.4].
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Lemma 6.2 Let g ∈ Lipeo�
μ(M) and D ⊂ M a g-invariant set. If there is a 1-dominated

splitting on D, say TDM = E ⊕ F, then for any c > 0, there exists r > 0 such that for every
x ∈ D and any (Ex , Fx )-graph G with dispersion ≤ c contained in a Bowen ball Bn(g, x, r)

(n ≥ 1), gn(G) is a (Dgn
x · Ex , Dgn

x · Fx )-graph with dispersion ≤ c.

Take a map f ∈ Lipeo�
μ(M), ε > 0 and a μ-full measure set � ⊆ M̃ f with an m(x)-

dominated splitting E ⊕ F for f of a certain fixed index. Consider Nε ∈ N sufficiently large
in order to have μ(�ε) > 1− ε, where �ε = {x ∈ � : m(x) ≤ Nε}. Observe that g := f N ,
for N = Nε !, is such that E ⊕ F displays a 1-dominated splitting for Dg (cf. [29, p. 1430]).

Lemma 6.3 Given g, N and ε as above, there exists r > 0 such that for μ-a.e. x ∈ �ε we
have:

hμ(g, r , x) ≥ N
dim(F)∑

i=1

λi ( f , x) − ε. (10)

Proof By Lemma 4.1 a dominated splitting can be extended to the closure of �ε wherever
is defined and moreover vary continuously with the point. So we can fix a, c > 0 such that
if x ∈ �ε and y ∈ B(x, a) is a μ-generic point (Rademacher point), then for any linear
subspace G ⊆ Tx M which is a (E(x), F(x))-graph with dispersion ≤ c, we have from
Lemma 2.1 that ∣∣log | det Dgy |G | − log | det Dgx |F |∣∣ < ε.

and so
| det Dgy |G | > | det Dgx |F |e−ε . (11)

Feeding Lemma 6.2 with D = �ε (modμ), the 1-dominated splitting TDM = E ⊕ F
and the c > 0 above, there exists r > 0 such that for every x ∈ D and any (Ex , Fx )-
graph G with dispersion ≤ c contained in a Bowen ball Bn(g, x, r), n ≥ 1, gn(G) is a
(Dgn

x · Ex , Dgn
x · Fx )-graph with dispersion ≤ c.

Given x ∈ �ε and y ∈ E(x) we denote by μE the volume-measure in E(x) and by μF

the volume-measure in y + F(x). There exists B > 0 such that the disintegration holds for
all n ≥ 1:

μ(Bn(g, r , x)) = B
∫

E(x)

μF (Fn(y)) dμE (y),

where Fn(y) = (y + F(x)) ∩ Bn(g, r , x). Hence, Lemma 6.3 is proved once we obtain that
for μ-a.e. x ∈ �ε we have:

lim sup
n→+∞

inf
y∈E(x)

− 1

n
logμF (Fn(y)) ≥ N

dim(F)∑

i=1

λi ( f , x) − ε. (12)

Considering thatFn(y) �= ∅ using Lemma 6.2 we obtain that gn(Fn(y)) is a (Dgn
x · Ex , Dgn

x ·
Fx )-graph with dispersion ≤ c. Given r ∈ (0, a) we take

D > sup
w∈�ε

{Vol(G) : G ⊂ B(w, r) is a (E(x), F(x))-graph with dispersion ≤ c} .

Notice that for gn(x) ∈ �ε we have gn(Fn(y)) ⊆ gn(Bn(g, r , x)) ⊆ B(gn(x), r). Thus,

D > Vol(gn(Fn(y))) =
∫

Fn(y)

∣∣∣∣det Dgn
z

∣∣∣
TzFn(y)

∣∣∣∣ dμE (z). (13)

123



Stretching Generic Pesin’s Entropy Formula

For any j = 0, 1, . . . , n we have g j (Fn(y)) ⊆ g j (Bn(g, r , x)) ⊆ B(g j (x), r) ⊆
B(g j (x), a), and so given any z ∈ Fn(y) we have d(g j (z), g j (x)) < a for all j =
0, 1, . . . , n. Therefore,

∣
∣
∣
∣det Dgn

z

∣
∣
∣
TzFn(y)

∣
∣
∣
∣ = �n−1

j=0

∣
∣
∣
∣
∣
det Dgg j (z)

∣
∣
∣
Tg j (z)g j (Fn(y))

∣
∣
∣
∣
∣
(11)≥ �n−1

j=0

∣
∣
∣
∣det Dgg j (x)

∣
∣
∣
F(g j (x))

∣
∣
∣
∣ e−ε

=
∣
∣
∣
∣det Dgn

x

∣
∣
∣
F(x)

∣
∣
∣
∣ e−nε .

By (13) and previous inequality we obtain

1

n
log D ≥ 1

n
log

∫

Fn(y)

∣
∣
∣
∣det Dgn

x

∣
∣
∣
F(x)

∣
∣
∣
∣ e−nε dμE (z)

= 1

n
log

[
μE (Fn(y))

∣
∣
∣
∣det Dgn

x

∣
∣
∣
F(x)

∣
∣
∣
∣ e−nε

]

= 1

n
logμE (Fn(y)) + 1

n
log

∣∣∣∣det Dgn
x

∣∣∣
F(x)

∣∣∣∣ − ε,

which is equivalent to

inf
y∈E(x)

− 1

n
logμF (Fn(y)) ≥ −1

n
log D + 1

n
log

∣∣∣∣det Dgn
x

∣∣∣
F(x)

∣∣∣∣ − ε.

Taking limits and recalling that g = f N we obtain

lim sup
n→+∞

inf
y∈E(x)

− 1

n
logμF (Fn(y)) ≥ lim

n→+∞
1

n
log

∣∣∣∣det Dgn
x

∣∣∣
F(x)

∣∣∣∣−ε = N
dim(F)∑

i=1

λi ( f , x)−ε,

and (12) is proved and thus the lemma. ��

6.2 Proof of Theorem 3

We would like to show that for a given f ∈ Lipeo�
μ(M) if for μ-a.e. x ∈ M there is an

m(x)-dominated splitting E ⊕ F along the orbit of x (where m : M → N is an f -invariant
measurable function), then

hμ( f ) ≥
∫

M

dim(F)∑

i=1

λi ( f , x) dμ(x).

Notice that it suffices to prove the theorem for a certain fixed dimension of F . Let be
given g, N , ε and r > 0 like in Lemma 6.3. Let C = log lip( f ), and recall that for μ-a.e. x ,
log ‖D fx‖ ≤ C .
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We have:

hμ(g)
(9)≥ sup

r>0

∫

M
hμ(g, r , x) dμ(x) ≥ sup

r>0

∫

�ε

hμ(g, r , x) dμ(x)

(10)≥
∫

�ε

(N
dim(F)∑

i=1

λi ( f , x) − ε) dμ(x)

=
∫

M
N

dim(F)∑

i=1

λi ( f , x) dμ(x) −
∫

M\�ε

N
dim(F)∑

i=1

λi ( f , x) dμ(x) − εμ(�ε)

≥
∫

M
N

dim(F)∑

i=1

λi ( f , x) dμ(x) − d NCμ(M \ �ε) − ε

≥
∫

M
N

dim(F)∑

i=1

λi ( f , x) dμ(x) − d NCε − ε.

Therefore,

hμ( f ) = 1

N
hμ(g) ≥

∫

M

dim(F)∑

i=1

λi ( f , x) dμ(x) − dCε − ε

N
,

and since ε is arbitrarily small we get the statement of Theorem 3.

7 Proof of Theorem 1

In this section we are going to prove Theorem 1, which states that Pesin’s entropy formula
holds in a�-generic subset of Lipeo�

μ(M). By Theorem 2we know that there exists a residual

setR ⊂ Lipeo�
μ(M) such that, for each f ∈ R and μ-almost every x ∈ M , the the Oseledets

splitting of f is either dominated along the orbit of x or else the Lyapunov spectrum of f at
x is trivial. Consider f ∈ R. By Proposition 1 we have for μ-a.e. x ∈ M that

hμ( f ) ≤
∫

M

d∑

i=1

λ+
i ( f , x) dμ(x),

so we are left to see that

hμ( f ) ≥
∫

M

d∑

i=1

λ+
i ( f , x) dμ(x). (14)

Let Z ⊆ M stand for the set of points such that the Lyapunov spectrum of f at x is trivial
and letD ⊆ M stand for the set of points such that the Oseledets splitting of f is dominated.
Assume that μ(Z), μ(D) > 0 and define for any borelian A ⊆ M

μz(A) = μ(A ∩ Z)

μ(Z)
and μd(A) = μ(A ∩ D)

μ(D)
.

Clearly, μz(Z) = 1, μd(D) = 1 and μ = μ(Z)μz + μ(D)μd . Therefore, using the affine
property of the metric entropy we get

hμ( f ) = μ(Z)hμz ( f ) + μ(D)hμd ( f ).
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We only have to show that (14) holds for hμz ( f ) and hμd ( f ) separately. Since the metric
entropy is always non-negative and the Lyapunov exponents of f are all zero in Z we get:

hμz ( f ) ≥ 0 =
∫

M

d∑

i=1

λ+
i ( f , x) dμz(x).

Finally, Theorem 3 gives that:

hμd ( f ) ≥
∫

M

d∑

i=1

λ+
i ( f , x) dμd(x),

and Theorem 1 is proved.
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