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Abstract

This paper presents a mechanism for the coexistence of hyperbolic and non-hyperbolic dynamics arising 
in a neighbourhood of a conservative Bykov cycle where trajectories turn in opposite directions near the two 
saddle-foci. We show that within the class of divergence-free vector fields that preserve the cycle, tangencies 
of the invariant manifolds of two hyperbolic saddle-foci densely occur. The global dynamics is persistently 
dominated by heteroclinic tangencies and by the existence of infinitely many elliptic points coexisting with 
non-uniformly hyperbolic suspended horseshoes. A generalized version of the Cocoon bifurcations for 
conservative systems is obtained.
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1. Introduction

Homo and heteroclinic bifurcations constitute the core of our understanding of complicated 
recurrent behaviour in dynamical systems. The history goes back to Poincaré in the late 19th 
century, with major subsequent contributions by the schools of Andronov, Shilnikov, Smale and 
Palis. These schools have been founded on a combination of analytical and geometrical tools 
which developed a quite good understanding of the qualitative behaviour of those dynamics.

Differential equations modelling physical experiments frequently have parameters which ap-
pear in the differential equations, and it is known that qualitative changes may occur in the 
solution structure of these systems as the parameters vary. The dynamical behaviour of systems 
can be strongly influenced by special geometric or analytic invariant structures appearing in the 
equations (e.g. divergence-free, preserving or reversing symmetries). One may ask which dynam-
ical behaviour we would expect to see in the presence of a given invariant structure. Generically, 
this is a hard question to answer, but some questions could be partially answered, by considering 
local and global bifurcations of low codimension.

1.1. The problem

A Bykov cycle on a three-dimensional manifold is a heteroclinic cycle between two hyper-
bolic saddle-foci of different Morse index, where one of the connections is transverse and the 
other is structurally unstable. There are two different possibilities for the geometry of the flow 
around the one-dimensional connection depending on the direction solutions turn around it. All 
literature about the Michelson system [15–17,29,32,33,37,41,50] considered that in the neigh-
bourhoods of the two saddle-foci, trajectories wind in the same direction. An immediate question 
arises:

(Q1) What happens if trajectories wind with opposite directions near each node?

The first author and Duarte proved in [7] that the set of C1-divergence-free vector fields de-
fined in a compact three-dimensional Riemannian manifold without boundary has a C1-residual 
set such that any vector field inside it is Anosov or else, the flow associated to it has dense elliptic 
solutions in the phase space. Furthermore, in [6], also in this context, the authors proved that if 
the vector field is not Anosov, then it can be C1-approximated by another divergence-free vector 
field exhibiting homoclinic tangencies. However, a conservative vector field whose flow has a 
persistent Bykov cycle may lie outside these residual/dense subsets and the developed theory 
cannot be applied for this degenerated class of systems. Since Bykov cycles cannot be Anosov 
(due to the presence of equilibria), the dichotomies in [6,7] suggest the following problem:

(Q2) Could we perform a C1-perturbation within the set of divergence-free vector fields whose 
flow has a Bykov cycle in such a way that the elliptic periodic solutions are dense and/or 
tangencies occur?

In this paper, we partially answer the questions (Q1)–(Q2). Motivated by the article [35], we 
present a mechanism for the coexistence of hyperbolic and non-hyperbolic dynamics arising in a 
neighbourhood of a conservative Bykov cycle where trajectories turn in opposite directions near 
the two saddle-foci – see Fig. 1. We show that within a codimension 2 subset of the class of 
divergence-free vector fields, tangencies of the invariant manifolds of two hyperbolic saddle-foci 
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densely occur. Details are given later. We prove that the global dynamics is persistently domi-
nated by heteroclinic tangencies and by the existence of infinitely many elliptic points coexisting 
with hyperbolic dynamics arising from C1-transversality. Tangencies are strongly connected with 
the Cocoon bifurcations. We describe an extended version of these bifurcations which can be de-
tected numerically with the Time Delay function introduced by Lau [38]. See also [16,17]. We 
also find the relations between these four dynamical phenomena: chirality, tangencies, general-
ized Cocoon bifurcations and elliptic solutions. In the conservative setting, Cocoon bifurcations 
are connected with unfoldings of a Hopf-zero singularity, which has been shown to occur in 
climatological models with seasonal forcing.

1.2. Elliptic periodic solutions revisited

We recall some important results about heteroclinic tangencies for general and conserva-
tive systems. The systematic study of bifurcations of tangencies was started by Gavrilov and 
Shilnikov [19,20] in the seventies, for the case of two-dimensional dissipative diffeomorphisms. 
The authors established that diffeomorphisms with homoclinic tangencies might separate sys-
tems with regular and chaotic dynamics, i.e. they belong to the boundary of Morse–Smale 
systems and the transition through this boundary corresponds to an �-explosion.

The theorem on the cascade of periodic sinks/sources near a tangency plays an important 
role – see Newhouse [44]: in the dissipative case, for any one parameter family that unfolds 
generically a quadratic homoclinic tangency, there exists a sequence of intervals of values of 
the parameter such that the corresponding diffeomorphism has sinks/sources. One of the fun-
damental results in homoclinic bifurcations was established in Newhouse [44,46]: the existence 
of regions of the space of two-dimensional diffeomorphisms where tangencies are dense. These 
regions are called Newhouse regions; the result has been generalized for the multidimensional 
case by Gonchenko [23]. Dynamics of systems within these regions is complex and rich and, as 
claimed in [26], it is impossible to give the complete description of bifurcations of such systems.

The majority of these results was obtained for the broader case of general systems without 
any restriction on the preservation of some invariant structure. They cannot be directly applied to 
volume-preserving and/or reversible systems because they require special considerations. Never-
theless, the main geometric and analytical arguments can be also used for systems with additional 
structures, having special care. In this direction, important results on the birth of elliptic periodic 
points in area-preserving maps under bifurcations of tangencies were obtained in [14,21,45]. See 
also the paper by Delshams et al. [13] about mixed dynamics.

Bifurcations of single-round periodic solutions were studied in [22,21] for two-dimensional 
symplectic maps close to a map having a quadratic homoclinic tangency. The corresponding 
first return maps have been derived, bifurcations of their fixed points have been studied and 
bifurcation diagrams for one-parameter general unfoldings have been constructed. Using renor-
malization results, the existence of one-parameter cascades of elliptic single-round periodic 
solutions has been proved.

2. Preliminaries

2.1. Divergence-free vector fields

Let M be a three-dimensional compact and connected C∞ Riemaniann manifold without 
boundary, endowed with a volume-form and let μ denote the Lebesgue measure associated 
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to it. Let F : M → T M be a Cr vector field, with r ≥ 1. By Picard’s theorem on the exis-
tence and uniqueness of solutions of differential equations, F integrates into a complete Cr flow 
ϕ(t, x) : R × M → M in a sense that

d

dt
ϕ(t, x)|t=s = F(ϕ(s, x)).

We say that F = (F1, F2, F3) is divergence-free if its divergence is equal to zero i.e. if

∇ · F := ∂F1

∂x1
+ ∂F2

∂x2
+ ∂F3

∂x3
= 0

computed in local coordinates x = (x1, x2, x3) ∈ M , see [43]. Equivalently, F is divergence-free 
if, accordingly to the Liouville formula, the volume-measure μ is invariant for the associated 
flow. In this case we say that the flow is conservative, volume-preserving or incompressible and 
is such that detDϕ(t, x) = 1, for all x ∈ M and for all t ∈ R.

We denote by Xr
μ(M), r ≥ 1, the Baire space of Cr divergence-free vector fields on M and 

we endow this set with the usual Cr Whitney topology. Let also denote by Xr (M) ⊃ Xr
μ(M)

the space of Cr general vector fields on M without no divergence-free constraint. We say that 
an equilibrium σ ∈ M of F (i.e. F(σ) = 	0), is hyperbolic if DF(σ) has neither pure complex 
nor zero as an eigenvalue. A hyperbolic saddle-equilibrium with a pair of conjugated non-real 
eigenvalues is called a saddle-focus. For regular points, (i.e. non-equilibrium points) we define 
hyperbolicity with respect to the Poincaré map in a standard way – see e.g. [28]. Given a hy-
perbolic equilibrium point p ∈ M with respect to a vector field F , we denote by Wu/s(F, p)

its unstable/stable global manifold. Local unstable/stable manifolds are denoted by Wu/s
loc (F, p). 

When there is no ambiguity we omit the letter F in these notations.

2.2. Bykov cycle

In the present paper, all equilibria are hyperbolic saddle-foci. The dimension of the unstable 
manifold of a saddle-focus will be called the Morse index of the saddle. Given two equilibria σ1
and σ2, a heteroclinic trajectory from σ1 to σ2, denoted [σ1 → σ2], is a solution of ẋ = F(x) con-
tained in Wu(σ1) ∩ Ws(σ2). There may be more than one solution from σ1 to σ2. A heteroclinic 
cycle is a finite collection of equilibria together with a set of heteroclinic trajectories connecting 
the equilibria in a cyclic way. More details in Field [18].

In a three-dimensional smooth manifold, a Bykov cycle is a heteroclinic cycle associated to two 
hyperbolic saddle-foci with different Morse indices, say 1 and 2, in which the one-dimensional 
manifolds coincide and the two-dimensional invariant manifolds have a transverse intersection 
[11,33]. The terminology Bykov cycle is because it was Bykov [9–11] who studied dynamical 
properties from the existence of similar cycles in a more general context than conservative ones. 
This type of cycle, or rather its bifurcation point, is also called by T-point by Glendinning and 
Sparrow [21]. A lot of work has been done concerning the dynamics near Bykov cycles – see 
for example the references in [30,33,35]. See also the article [31] where the authors consider 
non-elementary T -points in reversible differential equations in R2n+1, with n ∈ N; the leading 
eigenvalues at the two equilibria are real and the two-dimensional invariant manifolds meet tan-
gentially. They found chaos in the unfolding of this T -point and bifurcations of periodic solutions 
in the process of annihilation of the shift dynamics.
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Fig. 1. Bykov cycle scheme satisfying (H1)–(H5): within a codimension 2 subset of the class of divergence-free vec-
tor fields defined on a three-dimensional compact manifold, tangencies of the invariant manifolds of two hyperbolic 
saddle-foci occur densely.

3. Overview of the main results

In this section, we state the main theorems and we relate them with other results in the litera-
ture.

3.1. Description

Our object of study is the dynamics around an autonomous divergence-free smooth vector 
field whose flow has a Bykov cycle, for which we give an accurate description here. Specifically, 
we study a C1-vector field:

F : M → T M (1)

whose flow has the following properties (see Fig. 1):

(H1) There are two hyperbolic saddle-foci equilibria σ1 and σ2. Assuming that, for j ∈ {1, 2}, 
the Morse index of σj is j , the eigenvalues of DF(σ) are:
(a) −C1 ± α1i and E1, where 2C1 = E1 > 0 and α1 > 0, for σ = σ1;
(b) E2 ± α2i and −C2, where C2 = 2E2 > 0 and α2 > 0, for σ = σ2.

(H2) There is a heteroclinic cycle � consisting of σ1, σ2 and two one-dimensional heteroclinic 
connections: [σ1 → σ2] and [σ2 → σ1]. The solution [σ1 → σ2] will be called the fragile 
connection.

(H3) Along the heteroclinic connection [σ2 → σ1], the two-dimensional manifolds Wu(σ2) and 
Ws(σ1) meet transversely. This connection will be called primary.

Property (H3) is generic. Indeed, the transverse intersection of Wu(σ2) and Ws(σ1) at the pri-
mary connection given by (H3) persists under C1-perturbations, whereas the fragile connection 
[σ1 → σ2] does not. Although Bykov cycles appear naturally in systems with some symmetry 
as in Knobloch et al. [30], Michelson [41], Rodrigues and Labouriau [49], unless it is explicitly 
said, in this paper we state general results without any kind of restriction about the symmetry.

There are two possibilities for the geometry of the solutions around the cycle, depending on 
the direction they turn around the one-dimensional heteroclinic connection [σ1 → σ2], in the 
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neighbourhoods of the saddle-foci. Under the context of hypotheses (H1)–(H3), we introduce 
the following definition adapted from [35].

Let V1 and V2 be small disjoint neighbourhoods of two saddle-foci σ1 and σ2 with disjoint 
boundaries ∂V1 and ∂V2, respectively. Typical trajectories starting at y ∈ ∂V1 near Ws(σ1) go 
into the interior of V1 in positive time, then follow the connection [σ1 → σ2], go inside V2, and 
then come out at ∂V2. Let ϕ be a piece of the described trajectory from ∂V1 to ∂V2. Now, join its 
starting point to its end point by a line segment, forming a closed curve. This curve is called the 
loop of y.

Definition 1. The two saddle-foci σ1 and σ2 in � have the same chirality if the loop of every 
trajectory in ∂V1 is linked to � in the sense that, for every y close to Ws

loc(σ1), the loop of y
and � cannot be disconnected by an isotopy. Otherwise, we say that σ1 and σ2 have different 
chirality.

In contrast with the findings of [30,33,37,47], if the two nodes have different chirality, then 
the rotations may cancel out. This is a key idea for the proof of the main results, which will be 
formalized via hypothesis (H4).

(H4) The saddle-foci σ1 and σ2 have different chirality.

A good overview of the previous hypothesis has been considered in [35]. It corresponds to 
the non-concatenation property stated in [47]. Property (H4) means that there are two open 
neighbourhoods of the equilibria such that for any trajectory going from the first to the second, 
the direction of its turning around the heteroclinic connection [σ1 → σ2] is different. A direct 
corollary is the following:

Corollary 1. The condition (H4) is persistent under isotopies: if it holds for F , then it holds for 
continuous one-parameter families containing it, as long as the fragile connection remains.

In order to prove our main results, we need some additional assumptions on the set of parameters 
P = (α1,C1, α2,E2), that determine the linear part of the vector field F at the equilibria. For 
any a ≥ 1, let B be the subset of parameters given by:

B =

⎧⎪⎨
⎪⎩P :

(
a2 − 1

a2

)
2α1

C1 −
√

α2
1 + 4C2

1

<
E2

α2
− a2C1

α1
<

(
a2 − 1

a2

)
2α1

C1 +
√

α2
1 + 4C2

1

⎫⎪⎬
⎪⎭ .

(2)

Our last hypothesis if the following:

(H5) For all a > 1, B has non-empty topological interior in R4 (i.e. int (B) �= ∅).

Let D be the dense subset of B given by:

D =
{
P ∈ int (B) : γ = α2 C1

/∈ Q

}
. (3)
α1 E2
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The constant a is related with the construction of the global map around the cycle and will 
be clarified later. Observe that condition (2) in the definition of B is satisfied by an open set of 
parameters α1, C1, α2, E2. The set D has full Lebesgue measure within the set of parameters B.

3.2. The topology

In order to have precise results, we formally define the induced topology that will be used 
throughout this article. First denote by X1

μ,Byk(M) the set of vector fields in X1
μ(M) whose flow 

contains a Bykov cycle satisfying (H1)–(H4). The set X1
μ,P (M) is the open subset of X1

μ,Byk(M)

that satisfy (H1)–(H5), endowed with the induced topology of X1
μ,Byk(M).

3.3. The construction

Let cK = 15
√

22
193 . The vector field FcK

in Dumortier et al. [15] associated to the Michel-

son system satisfies (H1)–(H3) but condition (H4) does not hold. R-reversibility where 
dimFix(R) = 1 is a natural obstacle to (H4). Here we show a way to construct theoretically 
a divergence-free vector field displaying a Bykov cycle and satisfying (H1)–(H5). This is what 
we call a conservative Bykov cycle.

Proposition 2. Any compact, connected, Riemannian three-dimensional manifold M supports 
a Bykov heteroclinic cycle satisfying properties (H1)–(H5) associated to some divergence-free 
vector field Xr

μ(M), r ≥ 1.

Proof. Let us consider a Riemannian compact, connected and three-dimensional manifold M . 
We let σ1, σ2 ∈ R3 be two hyperbolic saddle-foci associated to linear divergence-free vector 
fields L1 and L2 and complying the hypotheses (H1) and (H5), and moreover in such a way that
(H4) also holds. Now, we would like to plunge in M the open sets containing σ1 and σ2.

By the Poincaré–Hopf theorem [27], we know that the sum of the indices of the equilibria of a 
vector field equals the Euler characteristic of M . So, we carefully choose a finite number (k − 2)

of traceless equilibria, i.e. equilibria associated to divergence-free linear vector fields {Lj }kj=3
and fulfilling the Poincaré–Hopf Theorem.

Using Moser’s charts [43] we send (locally) the vector fields {Lj }kj=1 and then, using the Past-
ing lemma [2] we extend to a divergence-free vector field in the whole manifold. Let F ∈ Xr

μ(M)

be the obtained vector field and we still denote by σ1, σ2 ∈ M be two hyperbolic saddle-foci with 
the stable manifold of σj having dimension j , j = 1, 2.

Using [5] we consider F1 ∈ Xr
μ(M) C1-close to F with a dense trajectory with initial con-

dition x ∈ M , ϕ1(t, x). Since ϕ1(t, x) is dense, it passes arbitrarily close to Wu(F1, σ2) and to 
Ws(F1, σ1). By the C1-Connecting Lemma [51] we consider F2 ∈ Xr

μ(M) C1-close to F1 such 
that Wu(F2, σ2) intersects Ws(F2, σ1). Since these manifolds are two-dimensional and M is 
three-dimensional we can assume that the intersection is transversal.

Using again [5], we consider F3 ∈ Xr
μ(M) C1-close to F2 with some dense trajectory for the 

flow ϕ3(t, .) and with Wu(F3, σ2) still intersecting Ws(F3, σ1) transversely. Since the solution is 
dense, it passes arbitrarily close to Ws(F3, σ2) and to Wu(F3, σ1). Again, by the C1-Connecting 
Lemma, we consider F4 ∈ Xr

μ(M) C1-close to F3 such that Ws(F4, σ2) intersects Wu(F4, σ1), 
non-transversely of course, and with Wu(F4, σ2) still intersecting Ws(F4, σ1) transversely. This 
satisfies the hypotheses (H2) and (H3) and therefore we obtain a Bykov heteroclinic cycle asso-
ciated to the divergence-free vector field F4. �
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By technical reasons, in Section 4, our main results ask for at least C7-regularity of the vector 
field [3, pp. 616]. Nevertheless, if we start with an element in X1

μ(M) exhibiting a Bykov cycle 
and since the hyperbolic equilibria are C1-stable, similar arguments to those used in Proposi-
tion 2 can ensure that C1-arbitrarily close to the initial vector field, there exists an element in 
X7

μ(M) satisfying (H1)–(H5). This is due to the fact that X∞
μ (M) is C1-dense in X1

μ(M) by 
[2, Theorem 2.2]. We address the reader to the statements of [2, Theorem 3.1 and 3.2] and the 
toolboxes used in the C1-Closing and Connecting Lemmas which do not affect the regularity of 
the initial vector field.

3.4. Main results

By [6], the existence of hyperbolic equilibria implies that the flow is not C1-near an Anosov 
one and thus, C1-close to the flow, tangencies are expected. Furthermore, by [7], arbitrarily 
C1-close to a conservative flow displaying a Bykov cycle, we may find an incompressible flow 
with a dense set of elliptic periodic solutions. Nonetheless, these approximated flows might not 
have a Bykov cycle anymore, due to the fragile connection [σ1 → σ2]. We start with some defi-
nitions that make our results more precise.

Definition 2. Let k ∈ N ∪ {0}, N� be a small tubular neighbourhood of the heteroclinic cycle 
� and S be a cross section to the connection [σ2 → σ1] given by (H2)–(H3). We say that the 
two-dimensional invariant manifolds Wu(σ2) and Ws(σ1) have a tangency of order k inside N�

if the manifolds Wu(σ2) and Ws(σ1) meet tangentially along a curve which lies intirely in N�

and has exactly (k + 1) intersection points with S. A tangency of order 1 inside N� is also called 
by primary tangency.

Our first result is the following:

Theorem 1. There exists a C1-dense subset D of the open set X1
μ,P (M) such that for any F ∈ D

and any tubular neighbourhood N� of the Bykov cycle, the flow of (1) displays a primary tan-
gency inside N� between the manifolds Wu(σ2) and Ws(σ1).

The perturbations of Theorem 1 are performed within X1
μ,P (M), a degenerate subclass of 

incompressible flows exhibiting Bykov cycles. The density of flows exhibiting tangencies is 
achieved without breaking the Bykov cycle. The proof of this result will be addressed in Sec-
tion 5, where we concentrate our attention on the geometric intersection between the invariant 
manifolds.

Now, we consider a generalized version of the Cocoon bifurcations described in [16,29,38], 
which can be seen as a series of global and local bifurcations that create an infinite number of 
heteroclinic connections. The authors of [16,29] called cocoon to these series of bifurcations 
because it forms a cocoon like structure in a section transverse to �.

Definition 3. Let F ∈ X1
μ,P (M). We say that F exhibits a generalized cocooning cascade of 

heteroclinic tangencies if, for every L > 0 large, there exists a closed two-dimensional torus T2

such that:

(1) for i ∈ {1, 2}, σi /∈ T2;
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Fig. 2. Cocoon bifurcations: global bifurcations that create an infinite number of heteroclinic connections. Illustration of 
Theorem 2, emphasizing the region in which we apply the C1-Connecting Lemma. The effect of moving the invariant 
two-dimensional manifolds corresponds to the motion suggested by the arrow.

(2) the vector field F can be C1-approximated by F	 ∈ X1
μ,P (M) whose flow displays a tan-

gency between Wu(σ2) and Ws(σ1), intersecting twice T2 and having length greater than L
within T2.

Definition 3 is different to the general case given in [16] in which the authors considered 
generic unfoldings of F . In [16], when following a given sequence of vector fields converging 
to F , a saddle-node bifurcation takes place, creating a pair of elliptical and hyperbolic periodic 
solutions, followed by an infinite cascade of period doubling bifurcations. Since there are in-
finitely many heteroclinic tangencies occurring near the primary tangency, in Section 6 we prove 
that:

Theorem 2. Let X1
μ,P (M) be the open set of Theorem 1. For any F ∈ X1

μ,P (M), and any tubu-
lar neighbourhood N� of the Bykov cycle, the vector field F exhibits a generalized cocooning 
cascade of heteroclinic tangencies.

The proof is based on [16,35] and on the C1-Connecting Lemma for volume-preserving flows 
[51]. These heteroclinic bifurcations are responsible for the folding and for the fractal structure 
of the two-dimensional invariant manifolds in the cross section S previously described by Lay 
[38]. The Cocoon bifurcations might be observed numerically with the Time Delay function. 
A discussion of the mechanism explaining the scape of points is given in [17, Section 4].

In the context of dissipative diffeomorphisms containing homoclinic points, Newhouse [44,
46] introduced the term wild attractor for hyperbolic sets whose invariant manifolds have a tan-
gency. Newhouse described what happens in a one-parameter unfolding, when a tangency splits, 
and discovered nontrivial, transitive and hyperbolic sets whose stable and unstable invariant man-
ifolds have persistent nondegenerate tangencies. A given tangency may be removed by a small 
perturbation, however one cannot avoid the appearance of new tangencies. This theory can be 
extended to heteroclinic tangencies – see [8, Section 3.2].

Definition 4. Let R be a diffeomorphism defined on a compact section M transverse to �. We 
say that p ∈ M is an elliptic periodic orbit of period n ∈ N for the diffeomorphism R if the 
following conditions hold:
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• Rn(p) = p and Ri(p) �= p, for all i = 1, . . . , n − 1 and
• the eigenvalues of the map DRn

p ∈ SL(2, R) are non-real and have modulus equal to 1.

From now on, the map R of Definition 4 can be thought as the first return map to M = S

(induced by the flow). By the Generalised Stokes Theorem [40], the return map of a volume-
preserving vector field to any transverse section S preserves an adapted ‘area-measure’, and so 
it may be seen as an area-preserving diffeomorphism – see Lemma 7. Newhouse’s results near 
tangencies have been extended to conservative maps in [14]: any area-preserving map with a het-
eroclinic tangency can be C2-approximated by an open domain in the space of area-preserving 
maps exhibiting persistent tangencies. Generic diffeomorphisms on such a domain exhibit in-
finitely many elliptic islands, which take the role of attractors in the dissipative context.

Definition 5. Let R be the first return map to a section transverse to the cycle �. A 1-periodic 
solution of the flow of (1) is a periodic solution associated to a fixed point of R (also called by 
single round periodic solution).

We obtain the following result:

Theorem 3. Let F ∈X1
μ,P (M). The map R defines a sequence of conservative horseshoes accu-

mulating on �. There are persistent heteroclinic tangencies of the invariant manifolds associated 
to periodic solutions and infinitely many 1-periodic elliptic solutions nearby.

The realization of R as return map associated to a divergence-free vector field C1-close to the 
original follows the same lines as [6, Section 3].

The method. Our analysis follows a classic procedure. We first construct a model of the 
dynamics near a Bykov cycle in terms of Poincaré maps between neighbourhoods of the saddle-
foci, and then we analyze the algebraic bifurcation equations. Near each equilibrium we derive 
local maps by assuming that the flow is governed by appropriate linearized vector fields in these 
regions. The flow near the connections is approximated by linearizing about each one, which en-
ables us to derive global maps. Appropriate composition of the local and global maps yields the 
desired return map. Our aim is to provide a direct and intuitive geometric picture and to uncover 
the scaling laws of the codimension-one bifurcations that occur near the cycle.

4. Dynamics near each saddle-focus (local and global)

In this section, we establish local coordinates near the equilibria σ1 and σ2 and define some 
notation that will be used in sequel. The starting point is an application of a quite useful con-
servative version of Sternberg’s Theorem for C1-Linearization proved by Banyaga, de la Llave 
and Wayne [3] to C1-linearize the vector field around the saddle-foci and to introduce cylindrical 
coordinates around them. For each saddle, we obtain the expression of the local map that sends 
points in the border where the flow goes in, into points in the border where the flows goes out in 
positive time i.e. by forward iteration.

We also establish a convention for the transition maps from one neighbourhood to the other – 
see also [4, Lemma 3.4] where it is proved the conservative flowbox theorem.
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Fig. 3. Local cylindrical neighbourhoods V2 and V1 near σ2 and σ1, respectively. The relative configuration of the 
saddle-foci is the same as in Fig. 1.

4.1. Conservative linearization and new coordinates near the saddles

Since the open and dense non-resonance conditions of [3, Theorem 1.2] are satisfied, then 
around the saddle-foci the vector field F is C1-conjugate to its linear part. We use here the 
C7-regularity of the vector field (see the 3rd Remark on pp. 617 of [3]). In cylindrical coordinates 
(ρ, θ, z) the linearizations at σ1 and σ2 take the form, respectively:

ρ̇ = −C1ρ ∧ θ̇ = α1 ∧ ż = E1z, (4)

and

ρ̇ = E2ρ ∧ θ̇ = −α2 ∧ ż = −C2z. (5)

Rescaling coordinates, we may consider cylindrical neighbourhoods of σ1 and σ2 in M of 
radius 1 and height 2 that we denote by V1 and V2, respectively, as illustrated in Fig. 3. Their 
borders have three components:

(i) The wall parametrized by x ∈R (mod 1) and |y| ≤ 1 with the usual cover:

(x, y) �→ (1, x, y) = (ρ, θ, z).

Here y represents the height of the cylinder and x is the angular coordinate, measured from 
the point x = 0 in the heteroclinic connection [σ2 → σ1].

(ii) Two disks, the top and the bottom of the cylinder. We assume the fragile heteroclinic con-
nection [σ1 → σ2] goes from the top of one cylinder to the top of the other, and we take a 
polar covering of the top disk:
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(r, ϕ) �→ (r, ϕ,1) = (ρ, θ, z)

where 0 ≤ r ≤ 1 and ϕ ∈ R (mod 2π).

On these cross sections, we will define the Poincaré maps to study the dynamics near the 
cycle.

Consider the cylinder wall of V1, that meets the stable manifold of σ1, denoted by Ws(σ1), 
on the circle parametrized by y = 0. The top part y ≥ 0 of the wall near σ1 will be denoted 
by In(σ1). By construction, trajectories starting at interior points of In(σ1)\Ws(σ1) go into the 
cylinder in positive time and come out at the cylinder top, denoted Out(σ1). Solutions starting 
at interior points of Out(σ1) go outside the cylindrical neighbourhood in negative time. In these 
coordinates, the invariant manifold Wu(σ1) is the z-axis, intersecting Out(σ1) at the origin of 
the polar coordinates.

Reversing the time, we get dual statements for σ2. After linearization, the one-dimensional 
invariant manifold of σ2, Ws(σ2), is the z-axis, intersecting the top of the cylinder, In(σ2), at the 
origin of its coordinates. Trajectories starting at interior points of In(σ2) go into V2. Trajectories 
starting at interior points of the cylinder wall Out(σ2) go into V2 in negative time. The set 
Out(σ2) ∩ Wu(�2) is parametrized by y = 0. Trajectories that start at In(σ2)\Ws(σ2) leave the 
cylinder V2 at Out(σ2).

4.2. Conservative transition maps

Let x ∈ M be a regular point, T > 0 and

PT
F (x) : Vx ⊂Nx → Nϕ(T ,x)

be the Poincaré map, where Nϕ(x,s) = F(ϕ(x, s))⊥, s = 0, T , is the surface contained in M
whose tangent space at ϕ(x, s) is generated by F(ϕ(x, s))⊥, s = 0, T , and Vx is a small neigh-
bourhood in Nx of x. We can guarantee the existence of a continuous time-t arrival function 
τ(x, t)(·) from Vx into Nϕ(T ,x). If Vx ⊂Nx is sufficiently small then:

F :=
⋃

0≤t≤τ(x,t)(y), y∈Vx

P t
F (x)(y)

is a thin flowbox with base Vx and top Pτ(x,t)(y)
F (x)(y). Due to the conservative flow-box The-

orem (see [4, Lemma 3.4]), with a volume-preserving change of coordinates, we can trivialize 
F into a cylinder and thus we may obtain an expression for the global map �1,2 : Out(σ1) →
In(σ2). Next lemma is the conservative version of a result stated in Bykov [11] and its proof 
directly follows by applying [4, §3] and [6, §2.2]:

Lemma 3. There are a volume-preserving change of coordinates in Out(σ1) such that the linear 
part of the global map �1,2 has the form:

�1,2(x, y) =
(

a 0
0 1

a

)(
x

y

)

for some a ≥ 1.
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Consider the transition maps:

�1,2 : Out(σ1) −→ In(σ2) and �2,1 : Out(σ2) −→ In(σ1).

By Lemma 3, the first order (linear) approximation of �1,2, up to a change of coordinates, it 
is equal to:

�1,2(x, y) =
(

ax,
1

a
y

)
a ≥ 1. (6)

Restricted to a small tubular neighbourhood of �, the transition �2,1 can be seen as a rotation 
by an angle α(λ). As in [35,47], we assume that α ≡ π

2 , simplifying our computations.

4.3. Local maps near the saddles

The flow is transverse to the previous cross sections and the boundaries of V1 and of V2
may be written as the closures of the disjoint unions In(σ1) ∪ Out(σ1) and In(σ2) ∪ Out(σ2), 
respectively. The trajectory of the point (x, y) in In(σ1)\Ws(σ1) leaves V1 at Out(σ1) at:

�1(x, y) = (√|y|,−g1 lny + x
) = (r, ϕ),

where g1 = α1
E1

> 0. In a dual way, points (r, ϕ) in In(σ2)\Ws(σ2) leave V2 at Out(σ2) at:

�2(r, ϕ) = (−g2 ln r + ϕ, r2
) = (x, y), (7)

where g2 = − α2
E2

< 0.

Remark 1. The minus sign in the equation θ̇ = −α2 of (5) suggests the condition stated on 
hypothesis (H4) about different chirality.

4.4. Global return map

Now we describe the geometry associated to the local dynamics near each equilibrium. We 
start with some useful definitions adapted from [1,35]. A continuous real valued map defined 
on an interval [0, 1] is quasi-monotonic if it is monotonic for a subinterval [0, a] ⊆ [0, 1] where 
a ≤ 1.

Definition 6. We shall define three objects to be used in the sequel: segments, spirals and helices:

(1) A segment β in In(σ1) or Out(σ2) is a smooth regular parametrized curve of the type

β : [0,1] → In(σ1) or β : (0,1] → Out(σ2)

that meets Ws
loc(σ1) or Wu

loc(σ2) transversely at the point β(0) only and such that, writing

β(s) = (x(s), y(s)),

both x and y are quasi-monotonic and bounded functions of s and dx is bounded.

ds
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(2) A spiral in Out(σ1) (resp.: In(σ2)) around a point p ∈ Out(σ1) (resp.: p ∈ In(σ2)) is a 
curve

α : (0,1] → Out(σ1) or α : (0,1] → In(σ2)

satisfying lims→0+ α(s) = p and such that, if α(s) = (α1(s), α2(s)) are its expressions in po-
lar coordinates (ρ, θ) around p, then α1 and α2 are quasi-monotonic, with lims→0+ |α2(s)| =
+∞, i.e., winds infinitely many times around the point p.

(3) Consider a cylinder C parametrized by a covering (θ, h) ∈R ×[a, b], with a < b ∈R where 
θ is periodic. A helix in the cylinder C accumulating on the circle h = h0 is a curve γ :
[0, 1] → C such that its coordinates (θ(s), h(s)) satisfy

lim
s→0+ h(s) = h0 , lim

s→0+ |θ(s)| = +∞

and the map h is quasi-monotonic.

The next result summarizes some basic ideas on the spiralling geometry of the flow near the 
saddle-foci and has been proved in [1, Section 6]. Since in its original form the authors assumed 
implicitly that the Property (H4) does not hold, we make the necessary reformulations.

Lemma 4. A segment β:

(1) in In(σ1) is mapped by �1 into a spiral in Out(σ1) around Wu(σ1) ∩ Out(σ1);
(2) in Out(σ2) is mapped by �−1

2 into a spiral in In(σ2) around Ws(σ2) ∩ In(σ2);
(3) in In(σ1) is mapped by �1 into a spiral in Out(σ1) around Wu(σ1) ∩ Out(σ1), that is 

mapped by the conservative transition �1,2 into another spiral, around Ws(σ2) ∩ In(σ1). 
This new spiral suffers the effect of the hyperbolic saddle distortion given by Lemma 3.

(4) If (H4) does not hold, the spiral defined on (3) is mapped by �2 into a helix in Out(σ2)

accumulating uniformly on the circle Out(σ2) ∩ Wu(σ2).

The complete study where hypothesis (H4) does not hold has been done in [33] for dissipative 
systems.

5. Proof of Theorem 1: the reversals property and primary tangencies

We assume that Wu(σ2) ∩In(σ1) and Ws(σ1) ∩Out(σ2) define vertical lines across the cylin-
der walls of V1 and V2, In(σ1) and Out(σ2), respectively. Let β(s) = (x1(s), y1(s)) = (0, s) ⊂
In(σ1), s ∈ [0, 1], be a parametrization of Wu(σ2) ∩ In(σ1), where (0, 0) are the coordinates of 
the point [σ2 → σ1] ∩ In(σ1). Let (x2(s), y2(s)) be the coordinates of �2 ◦ �1,2 ◦ �1(β(s)) ∈
Out(σ2). The set �2 ◦ �1,2 ◦ �1(β(s)) (s �= 0) defines an oriented curve in Out(σ2). Under hy-
pothesis (H4), it changes the direction of its turning around the cylinder Out(σ2) at infinitely 
many points where it has a vertical tangent. In what follows, we obtain the expression for 
�2 ◦ �1,2 ◦ �1(β(s)), s �= 0. The proof runs along the same lines as in [35].

Lemma 5. Let β(s) = (0, s), s ∈ [0, 1], be a segment in In(σ1) parametrized by s. Then, for 
s �= 0:
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{
x2(s) = − 1

2g2(ln s[C(ϕ)]) + �(ϕ)

y2(s) = s[C(ϕ)] (8)

where

ϕ(s) = −g1 ln s, C(ϕ) = a2 cos2(ϕ) + 1

a2
sin2(ϕ) (9)

and

�(ϕ) = arg

(
c1s

δ1

(
a cos(ϕ),

1

a
sin(ϕ)

))
= arg

(
a cos(ϕ),

1

a
sin(ϕ)

)
,

with the argument arg taken in the interval 
[

k
2 ,

(k+1)
2

]
, k ∈ Z, that contains ϕ.

From now on, denote by η the following map

�2 ◦ �1,2 ◦ �1 : In(σ1) → Out(σ2).

5.1. Degenerate case: a = 1

If a = 1, then C(ϕ) = 1 and y2(s) = s. Moreover,

x2(s) = −1

2
g2(ln s) + ϕ = −1

2
g2(ln s) − g1 ln(s) =

(
−1

2
g2 − g1

)
ln(s)

If g2 = −2g1 as in the reversible case reported in [30,37], then x2 is constant and the segment 
β is mapped under η into a vertical segment.

5.2. General case: a �= 1

As suggested in Fig. 4(a), if a �= 1, then the coordinate y2 is not a monotonic function of s but 
lims→0+ y2(s) = 0. Moreover, for any a �= 0, we have:

if − 1

2
g2 − g1 > 0 then lim

s→0+ x2(s) = +∞

and

if − 1

2
g2 − g1 < 0 then lim

s→0+ x2(s) = −∞.

Under hypotheses (H1)–(H5), we show that the coordinate map x2 is not a monotonic function 
of s, since the curve η ◦ β reverses the direction of its turning around Out(σ2) infinitely many 
times – see Fig. 4(b). This is the notion suggested by the following definition.
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Fig. 4. Graphs of (a): the coordinate y2(s) (height) and (b); the coordinate x2(s) (angular coordinate), with a �= 1, using 
Maple. Parameters: α1 = α2 = 1, a = E1 = 2 and C1 = E2 = 1.

Definition 7. We say that the vector field F has the dense reversals property if for the vertical 
segment

β(s) = (0, s) ∈ In(σ1), s ∈ [0,1],

the projection into Wu
loc(σ2) of the points where η◦β has a vertical tangent is dense in Wu

loc(σ2) ∩
Out(σ2).

The dense reversals property is the key step in the proof of Theorem 1. In order to prove it, 
we use the assumption (H5) on the parameters P = (α1,C1,E1, α2,C2,E2) that determine the 
linear part of the vector field F at the equilibria.

Proof of Theorem 1. The proof will be divided into five parts, (I)–(V). The first part of the proof 
runs along the same lines to that of [35], which gives an optimal condition for the existence of 
tangencies. Let F ∈ X1

μ,P (M).
(I) We need to compute the coordinate x2(s) at the points where η(β(s)) has a vertical tangent. 

Differentiating the expression (8) of Lemma 5 with respect to s, we get:

ϕ′(s) = −g1

s
, and c′(ϕ) = 2g1

s

(
a2 − 1

a2

)
cos(ϕ) sin(ϕ)

and then

dx2

ds
= −1

s

[
g2

2
+ 1

C(ϕ)

(
2g1g2

(
a2 − 1

a2

)
sinϕ cosϕ + g1

)]
. (10)

Therefore dx2
ds

= 0 has solutions if and only if

g2 + 1
(

2g1g2

(
a2 − 1

2

)
sinϕ cosϕ + g1

)
= 0.
2 C(ϕ) a
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Define now the π -periodic map:

A(ϕ) = E1a
2 cos2 ϕ + E1

a2
sin2 ϕ + α1

(
a2 − 1

a2

)
sinϕ cosϕ. (11)

(II) Now we are going to prove that the left part of (10) has a zero if and only if A(ϕ) = −α1E2
α2

. 
Indeed, the expression

g2

2
+ 1

C(ϕ)

(
2g1g2

(
a2 − 1

a2

)
sinϕ cosϕ + g1

)
= 0

is equivalent to

g2C(ϕ) + 2g1g2

(
a2 − 1

a2

)
sin(ϕ) cos(ϕ) = −2g1.

Using the definition of g1 and g2, the last equality yields the expression:

α2

E2
a2 cos2(ϕ) + 2

α1α2

E1E2

(
a2 − 1

a2

)
sin(ϕ) cos(ϕ) + α2

E2a2
sin2(ϕ) = −2

α1

E1
,

which is the same as

E1a
2 cos2(ϕ) + 2α1

(
a2 − 1

a2

)
sin(ϕ) cos(ϕ) + E1

a2
sin2(ϕ) = −α1E2

α2
.

Therefore the differential equation dx2
ds

= 0 has solutions if and only if

minA(ϕ) ≤ −α1E2

α2
≤ maxA(ϕ), (12)

corresponding to the condition that defines D . If ϕ0 ∈ [0, π] is a solution of (10), then there 
are infinitely many given by ϕ = ϕ0 + nπ , where n ∈ Z. Since ϕ = −g1 ln s, then dx2

ds
= 0 has 

solutions

sn = s0e
− nπ

g1 , n = 0,1,2, . . .

where s0 = e
− ϕ0

g1 . See Fig. 5.
(III) For any s0 ∈R and n = 0, 1, 2, . . . , we have

x2(sn) = x2

(
s0e

−nπ
g1

)
= x2(s0) + nπ (1 − γ ) for γ = α2

α1

C1

E2
. (13)

Using the expressions (9) we get that

ϕ(sn) = ϕ(s0) + nπ and C(ϕ + π) = C(ϕ).

Also, if ϕ(s) ∈
[

k ,
(k+1)

]
, then �(ϕ) lies in the same interval and
2 2
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Fig. 5. On the cross section Out(σ2), we observe the line Wu(σ2) reversing the orientation of its angular coordinate. 
The set Wu

loc
(σ2) ∩ Out(σ2) is diffeomorphic to a circle.

Fig. 6. On the cross section Out(σ2), we observe the Wu(σ2) reversing the orientation of its angular coordinate. Two 
consecutive reversion points lie in region of the graph with different concavities, diving rise to different types of tangen-
cies (and therefore to different types of dynamics).

�(ϕ + 1) = �(ϕ) + 1.

The result follows, using the expression (8) for x2(s) in Lemma 5. In Part (III), we have shown 
that x2 (sn) = x2(s0) + nπ (1 − γ ). Hence, if the genericity condition γ /∈ Q in (3) holds, then 
the points x2(sn) are dense in the circle defined by Wu

loc(σ2) ∩ Out(σ2) and thus F has the 
dense reversals property. With respect to the coordinate x2, in the wall of the cylinder V2, two 
consecutive reversion points lie in region of the graph with different concavities, as illustrated 
on Fig. 6. This phenomenon implies the existence of chaotic dynamics near the tangency as we 
proceed to explain.

(IV) If x0 is the projection of a point where η◦β has a vertical tangent, then Ws(σ1) is tangent 
to Wu(σ2) at the corresponding point. Otherwise an arbitrarily small modification of the vector 
field F in a neighbourhood of (x0, 0) will move x0, creating the tangency – see Fig. 2. Suppose 
Ws(σ1) ∩ Out(σ2) is a curve close to a vertical segment and that it is parametrized by

ξ(s) = (x(s), y(s)),

with ξ(0) = (x0, 0). Then, changing R near (x0, 0) if necessary, we may assume that ξ(s) meets 
η◦β at a point where the last curve has a vertical tangent. The perturbation is achieved in part (V).

(V) In [35,36] is it used an unfolding argument to obtain tangencies from the dense re-
versals property. Since we have no guarantee that a generic unfolding process holds in the 
volume-preserving setting, we tackle the problem using another approach. The key step is the 
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volume-preserving Hayashi’s Connecting Lemma [51, §1 and Theorem E], whose formulation 
may be adapted for flows as follows:

Theorem 6. (See [51, adapted].) Let z ∈ M be a non-periodic solution of F ∈ X1
μ(M). For any 

C1-neighbourhood U ⊂X1
μ(M) of F , there exists δ0, L > 0 and ρ > 1 such that for all δ ∈ (0, δ0]

and any two points p, q ∈ M outside the tube 
⋃

t∈[−L(δ),0] ϕ(t, (B(z, δ)), if the forward trajectory 
of p intersects B(z, δ/ρ) and the backward trajectory of q intersects B(z, δ/ρ), then there exists 
G ∈ U such that G = F outside 

⋃
t∈[−L(δ),0] ϕ(t, (B(z, δ)) and there exists an one-dimensional 

connection [p → q].

The previous result says that if two distinct initial conditions p and q have solutions that visit 
a given neighbourhood of a point z = ξ(0) and the initial conditions p and q are sufficiently far 
away from a piece of the backward solution of z, then we can find a divergence free vector field 
for which p and q are heteroclinically related. The support of the perturbation lies on

⋃
t∈[−L(δ),0]

ϕ(t, (B(z, δ)).

By (I)–(III), we clearly have two points p ∈ Wu(σ2) and q ∈ Ws(σ1) in the conditions of 
Theorem 6. It is obvious that the solution associated of z cannot intersect the heteroclinic con-
nection [σ1 → σ2]. Therefore, we can always choose δ > 0 sufficiently small in order that the sets ⋃

t∈[−L,0] ϕ(t, (B(z, δ)) and [σ1 → σ2] are disjoint. Then, we can perform the volume-preserving 
perturbation given by Theorem 6 to obtain the tangencial intersection between Wu(σ2) and 
Ws(σ1) by making a connection near z. If the intersection is tangential the proof is completed. 
Otherwise, we consider a smooth path {Zs}s∈[0,1] of elements on X1

μ,P (M) such that Z0 = F

and Z1 = G. Since Z0 displays no intersection between Wu(Z0, σ2) and Ws(Z0, σ1), Z1 dis-
plays a transversal intersection between Wu(Z1, σ2) and Ws(Z1, σ1), and the accumulation is 
of a quadratic type, then there must be s ∈ (0, 1) such that Zs displays a tangencial intersection 
between Wu(Zs, σ2) and Ws(Zs, σ1). �
6. Proof of Theorem 2: generalized cocooning cascade of heteroclinic tangencies

The classic Cocoon bifurcation introduced in [16,38] ‘begins’ when the two-dimensional in-
variant manifolds of σ1 and σ2 have a tangency. After the first tangency, when moving slightly a 
given one-dimensional parameter, we obtain two structurally stable heteroclinic connections. It 
is the beginning of a sequence of heteroclinic bifurcations. Saddle-node bifurcations and elliptic 
solutions have been detected numerically in [29,38,50].

Proof of Theorem 2. We would like to prove that, for any F ∈ X1
μ,P (M), and any tubular neigh-

bourhood N� of the Bykov cycle �, for every L > 0, there exists a closed two-dimensional torus 
T2 such that σ1,2 /∈ T2 and F can be C1-approximated by F	 ∈ X1

μ,P (M) whose flow displays a 

tangency between Wu(σ2) and Ws(σ1), intersecting twice T2 and having length greater than L
within T2.

Theorem 1 shows that the vector field of (1) can be C1-approximated by another vector 
field such that the associated flow displays a primary tangency inside N� between the mani-
folds Wu(σ2) and Ws(σ1). Beyond the tangency, there are infinitely many pieces of Wu(σ2)
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accumulating on Wu(σ2) ∩ Out(σ2). Therefore the set �2,1 ◦ η(Wu(σ2)) accumulates on 
Wu(σ2) ∩ In(σ1). Repeating recursively the argument of the proof of Theorem 1 in the ap-
propriate direction, we get curves in Out(σ2) with the dense reversals property. Using again the 
C1-Connecting Lemma as in (V), we may construct vector field F	 ∈X1

μ,P (M) such that its flow 

exhibits tangencies of order n, with n ∈ N large, and then we may define a torus T2, not contain-
ing the saddle-foci, inside which heteroclinic tangencies of order n spend most of the time, say 
larger than L > 0. An illustration of this phenomenon has been given in Fig. 2. �

The main tool for detecting the manifolds Wu(σ2) and Ws(σ1) is the time delay function, 
defined by:

T±(x0) =
∣∣∣∣∣∣

r∫
r0

dt

∣∣∣∣∣∣ , ‖x(0)‖ = r0

where T± corresponds to integrate along the trajectory

x(t) = x0 +
±t∫

0

f (x(s), c)ds with x ∈ M.

The time delay function measures how long it takes for a given solution to escape from the 
sphere of radius r > 0. Trajectories starting at the regions between two consecutive lines of 
Fig. 2 (corresponding to heteroclinic tangencies) will turn one more time around the equilibria 
σ2 – more details in [48, §7]. This is why the map T± acquires a castle shape with a higher level 
between pairs of equilibria of the time delay map.

In the present paper, we cannot use the arguments of [47] in which Lebesgue almost all solu-
tions leave N� and hence will escape from a given sphere centred on the origin, with radius r . 
The later paper uses explicitly that hypothesis (H4) does not hold. By detecting logarithmic equi-
libria of this map, one locates the invariant manifolds. A typical time delay function has several 
singularities as the one depicted in [38, Fig. 11], corresponding to the heteroclinic tangencies. 
The time delay function acts as a numerical mechanism, searching along lines in a cross section, 
for pieces of the invariant manifolds of the two nodes. Heteroclinic connections form a skeleton 
for the structure of periodic and bounded aperiodic orbits. According to [38], when elliptic pe-
riodic solutions are detected, the time delay function has flat tops. Numerical results have been 
presented in [17, Section 4]. The analytical existence of these solutions is the core of next section.

7. Proof of Theorem 3: horseshoes and elliptic solutions

The organizing centre for the dynamics may be characterized by the presence of a hyper-
bolic set which is flow-invariant, indecomposable and topologically conjugate to a Bernoulli 
shift space with finitely many symbols. The union of all of these sets is not uniformly hyperbolic 
for the flow, and countably many of these sets are destroyed under small generic perturbations. 
Homoclinic cycles of Shilnikov type and subsidiary cycles are expected to occur as in [33].
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7.1. The existence of topological horseshoes

In this section we study the existence of elliptic fixed points for the map R. We will make use 
of the references [22,21]. The next result will be useful to make the bridge between conservative 
vector fields and conservative first return maps. We thanks Santiago Ibáñez for the hints on the 
next proof.

Lemma 7. The return map of a volume-preserving vector field to any transverse section S
preserves the area δdS (for some density δ), and so is an area-preserving diffeomorphism.

Proof. Let F be a volume preserving vector field, i.e. such that ∇ · F = 0. Take a transverse 
section S with a well defined Poincaré map P : S′ → S, where S′ ⊂ S. Now, take a simply 
connected subset D ⊂ S′ (assume it is a disk to make it simple). Consider the solid M obtained 
by saturation of the flow from D to P(D). The boundary of M , ∂M , can be written as ∂M =
D ∪ P(D) ∪ T , where T is the saturation by the flow of the one-dimensional boundary B of 
D ⊂ S ′ until it reaches P(B). By the Ostragadsky–Stokes Theorem [40,50], the triple integral of 
∇ · F on M equals the surface integral of f on ∂M . More formally:

∫∫∫
M

∇ · F =
∫∫
∂M

F.

Since ∇ · F = 0, the left part of the previous equality is zero. Moreover, 
∫
T F = 0 because F is 

tangent to T at each point. Hence

∫∫
D

F +
∫∫

P(D)

F = 0.

In the above expression, the normal vector on D is the opposite to the normal vector on P(D)

because the normal vector must have a continuous variation on ∂M . By taking the normal vector 
pointing in the same direction the conclusion is that

∫∫
P(D)

F =
∫∫
D

F,

meaning that there exists ‘an adapted’ measure that is preserved (by P ). �
7.2. Suspended horseshoes and elliptic solutions

We will borrow the arguments of [8,22,21] to show the existence of suspended horseshoes 
near the heteroclinic tangency. The latter authors compute the first return map R and apply the 
Rescaling Lemma for studying bifurcations of fixed points. The Rescaling Lemma says that we 
may reduce the study of bifurcations of the first return maps to the classic analysis of bifurcations 
of the two-dimensional conservative Hénon-like maps.

By [21], we may find M ∈ N and a union of strips 
⋃

Sk ⊂ In(σ1), k > k0 ∈ N, accumulating 
on the segment Ws(σ1) ∩ In(σ1), such that Rm|∪S has a conservative horseshoe near the cycle, 
k
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for m > M . For small perturbations of R, infinitely many bifurcations of horseshoes creation 
or destruction occur, including the birth and disappearance of elliptic periodic points. These 
horseshoe bifurcations must have different scenarios depending on a type of the initial tangency. 
The character of reciprocal position of the strips Sk and their images R(Sk) are essentially defined 
by the signs of two parameters that governs the linear part of the global map; the authors of [21]
selected six different cases of maps with quadratic homoclinic tangencies. For these parameters 
and for k large, the position of all the strips Sk and R(Sk) have regular intersections. In particular, 
if F ∈ Xr

μ,P (M), then the first return map associated to any vector field C1-arbitrarily close to F
has a conservative horseshoe accumulating on Wu(σ2) ∩ Ws(σ1). Moreover, there are persistent 
heteroclinic tangencies of the invariant manifolds of periodic solutions.

In a small section transverse to the cycle (not containing it), since the number of symbols of 
the Bernoulli shift approaches ∞ as the strip approaches the cycles, a cascade of bifurcations 
occurs, associated to the creation and annihilation of horseshoes [52]. With these results, there 
are no guarantees that such perturbations still have the Bykov cycle in its flow.

Remark 2. If A : R2 → R2 is a linear map such that the detA = 1, then Tr A ∈ (−2, 2) if and 
only if its eigenvalues are complex (non-real) and conjugated.

Proof of Theorem 3. Let F ∈ X1
μ,P (M). Any neighbourhood of the points where we observe 

dense reversals property contains nontrivial hyperbolic subsets including infinitely many horse-
shoes, accumulating on the tangency. In particular, there are infinitely many 1-periodic solutions 
accumulating on the tangency. Let S ⊂ In(σ1) and

R = �2,1 ◦ η : S → In(σ1)

be the first return map of a vector field on M satisfying (H1)–(H5). The points (x(s), y(s)) ∈
In(σ1) for which we observe reversals satisfy

A(ϕ) = α1E2

α2
, where ϕ = −g1 ln(s) and detDR(x,y) = 1. (14)

Observing that 1/a2 ≤ C(ϕ) ≤ a2 and C(ϕ) is bounded, it follows that:

Tr DR(x,y) = 2y

(
a2 − 1

a2

)
sinϕ cosϕ + 1

y

α2

E1E2C(ϕ)

(
A(ϕ) − α1E2

α2

)
=

= o(y) + 1

y

α2

E1E2C(ϕ)

(
A(ϕ) − α1E2

α2

)

Near the initial conditions in In(σ1) where we observe the dense reversals property, condition 
(14) holds and thus, we conclude that

Tr DR(x,y) = o(y).

As illustrated in Fig. 7, for y ≈ 0, if A is a neighbourhood in Out(σ2) of a point for which we 
observe a reversal, then there is a line where the trace is zero and that splits A into two connected 
components where the trace is positive or negative. In particular, we may define a strip S ⊂A in 
which the trace belongs to the interval (−2, 2), where all 1-periodic solutions should be elliptic. 
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Fig. 7. Intersecting the set of 1-periodic solutions that accumulate on the tangencies with the strip S yields infinitely 
many elliptic 1-periodic solutions accumulating on the tangency.

Intersecting the set of 1-periodic solutions that accumulate on the tangencies with the strip S, 
yields infinitely many elliptic 1-periodic solutions accumulating on the tangency. �
7.3. The dynamics

Dynamics near an elliptic point is reminiscent of the dynamics near a centre type equilibrium: 
under regularity assumptions on the vector field, a generic elliptic point is surrounded by a family 
of closed KAM-curves which occupy a set of almost full Lebesgue measure in a small neighbour-
hood of the fixed point. On each KAM-curve the map R is conjugate to an irrational rotation. As 
the distance to the fixed point increases, the rotation number changes in a monotonic way. The 
KAM-curves do not fill the neighbourhood of the elliptic point. Rational rotation numbers cor-
respond to resonant Birkhoff zones between the closed curves and the dynamics in these regions 
is typically chaotic. This gives rises to chaotic dynamics between tori regions coexisting with 
hyperbolic horseshoes and the Bykov cycle. Adding the reversibility to the problem, symmetric 
elliptic trajectory may be seen as the limit of other elliptic periodic points – see Gonchenko et al.
[24].

When the fragile connection is broken, near the Bykov cycle there are a wide range of curious 
homoclinic bifurcations as reported in [33]. Some of them do not depend on the chirality and 
are generated by the swirling pattern due to the existence of saddle-foci. They can be viewed 
as spiralling structures in a parameter diagram. Conservative structures might be comprised of 
elliptic islands separated by saddles. There is another self-similar organization of embedded 
saddles and centres on smaller scales. The closer one approaches a centre of the rings, the greater 
the number of twists the outgoing heteroclinic connection makes before returning to the saddle 
– see [17].

8. Discussion and concluding remarks

In this paper, trying to answer the questions (Q1)–(Q2), we have proved that the extended 
version of the Cocoon Bifurcations for conservative systems, the heteroclinic tangencies and 
the elliptic periodic solutions are strongly related. More precisely, in the present paper we have 
considered divergence-free vector fields whose flows have Bykov cycles and found heteroclinic 
tangencies leading to the description of elliptic periodic solutions for the first return map to a 
cross section defined near the tangency. Within a codimension two subset of X1

μ(M), tangencies 
between the invariant manifolds of the two saddle-foci densely occur.

The proof of the existence of elliptic solutions near the horseshoes does not run along the same 
lines of Gonchenko and Shilnikov [25], in which the authors used renormalisation to the Hénon 
map. Along the proof of our results, we use the topological notion of chirality, making our find-
ings different from those of [30,33]. We asked for the C1 volume-preserving Connecting Lemma 
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[51] to perform local perturbations. Similar heteroclinic bifurcations have been considered in 
[30,37], where generic flat perturbations do not preserve the cycle.

The non-wandering dynamics near the Bykov cycle is dominated by non-uniformly hyperbolic 
horseshoes, conjugate to a full shift over a finite alphabet, that accumulate on the cycle. The return 
time of the points in Sk tends to +∞ as k tends to +∞. Transitive behaviour cannot be separated 
from the elliptic behaviour by isotopies.

8.1. The conservative setting

The divergence-free character is essential here to ensure the stability of elliptic periodic so-
lutions in our three-dimensional context. The most of our results holds in the dissipative world, 
however our proofs do not run along the same lines. In higher dimensional case, the divergence 
freeness is no longer sufficient and we should consider Hamiltonian vector fields in order to get 
the stability of elliptic periodic solutions.

In the present paper, we are able to prove the existence of heteroclinic tangencies between 
Wu(σ2) and Ws(σ1). Our findings are richer that those of [6,7] in the sense that we can explicitly 
give the manifolds for which we observe tangency. The works [6,7] proved the existence of a 
C1-dense/residual set inside which tangencies and elliptic solutions occur via a mechanism de-
veloped by Mora and Romero [42] to create open sets having a dense set of maps with tangencies 
nearby.

8.2. The chirality

Different chirality of the nodes is a new topological concept and has never been studied in 
the conservative setting. This topological property has profound effects on the dynamics near the 
Bykov cycle. If dimFix(R) = 1, as in the Michelson system [12,29,39,41], the R-reversibility 
prevents different chirality of the nodes.

The context of the proof of Theorem 1 is different from that described in Knobloch et al. [30]
using spirals, a work that has been motivated by the Michelson system. Instead of restricting the 
flow to the wall of the cylinder (as we do in Theorem 1), their conclusions, like Bykov’s [11], 
are supported by the study of spirals intersections. Bykov implicitly assumed that the chiralities 
of two nodes are different in Formulas (3.4), (3.5) of [11]. Indeed, observe the same sign of 
the exponent of e in the formulas that represent the evolution of the angular component of the 
spirals:

ξ1 = d1e
−ϕ1/ω1(1 + χ21(0, ϕ1,0)) and ξ2 = d2e

−ϕ2/ω2(1 + χ22(0, ϕ2,0)),

where ϕj represents the angular coordinates in Out(σ1) and In(σ2) and the nonreal eigenvalues
are given by αj ± iωj , j ∈ {1, 2}. The same happens in Formula (3.1) of Bykov [10]. After 
taking logarithms of both sides, from equality (3.3) on, Bykov neglects the assumption about 
the chiralities of the nodes, assuming that they are different. Therefore, in the cross sections, the 
spirals corresponding to the two-dimensional invariant manifolds of the saddle-foci are oriented 
in the same way. Bykov never comments on the chiralities of the nodes, assuming implicitly that 
they are different.

Following the approach in [30], it should also be possible to show that vector fields containing 
a Bykov cycle are always C1 close to a heteroclinic tangency (and even a cocooning cascade of 
tangencies) without making any assumption on the chirality of the saddle-foci. This result, as 
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well as the accumulation of heteroclinic tangencies on the Bykov cycle in generic unfoldings, 
could be achieved by perturbing the eigenvalues at the equilibria.

8.3. The Cocoon bifurcations

The Cocoon Bifurcation is a set of rich bifurcation phenomena numerically observed by Lau 
[38] in the Michelson system. The authors in Kokubu et al. [32] proved the existence of the 
Cocoon Bifurcations for the Michelson system, which arise as the travelling wave equation of 
the Kuramoto–Sivashinky equation and also as a part of the limit family of the unfolding of the 
three-dimensional nilpotent singularity of codimension 3 – see [15,17]. Numerical results show 
that, when a given parameter varies, the system exhibits an infinite sequence of heteroclinic 
bifurcations due to the tangency of the two-dimensional invariant manifolds of saddle-foci. Each 
bifurcation creates new transverse heteroclinic connections. In [16], these bifurcations have been 
studied from a general point of view; they have been explained as a consequence of an organizing 
centre called the cusp transverse heteroclinic chain. The Cocoon Bifurcations play the same role 
as the Newhouse bifurcations (generic unfoldings for the homoclinic tangency) in the dissipative 
category. Thick Cantor sets might appear near the tangency, which are Cr-persistent, r ≥ 2.

In the present paper, we prove the existence of Cocoon bifurcations within a degenerate set 
of divergence-free vector fields characterized by different chirality of the nodes. In contrast to 
the findings of [16], in which the authors break the cycle, our perturbations have been performed 
without breaking the fragile connection. Furthermore, in [16], the reversibility is used to get 
saddle-nodes with both stable and unstable sets of dimension 1 and the volume-preserving char-
acter plays no role. We may use our results to illustrate the expected behaviour of the simple 
bifurcations of symmetric periodic solutions, namely saddle-node and period doubling via the 
creation and annihilation of horseshoes in a similar phenomenon to that described in [34,36,52].

8.4. Generic unfoldings

As suggested in Lau [38], although we deal with a degenerate class of vector fields, our results 
hold for any generic unfolding of a conservative Bykov cycle. The greatest difficulty is related 
with the Bykov cycle persistence. In a broader way, our results hold for any kind of cycles having 
a one-dimensional solution connecting two saddle-foci.

8.5. Final remark

Although a degenerate class of systems satisfy (H1)–(H5), the present work may be seen as 
the description of a simple and general mechanism to create suspended horseshoes mixed with 
stable invariant tori in a robust fashion near a singular cycle. Since the existence of cycles in-
volving equilibria is not a generic phenomenon, they may exist outside the residual sets given by 
the classical dichotomies for divergence-free vector fields [4,6,7]. Several questions remain to be 
solved for this kind of cycles, in particular about the existence and sign of the Lyapunov expo-
nents. The Lebesgue measure of the points that remain for all time in the neighbourhood of the 
cycle is an interesting point to be considered. In the spirit of [33,47], conservativeness-breaking 
is a another direction that should be investigated. A first attempt to understand this phenomenon 
may be found in Dumortier et al. [17, §4].
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The present article should be seen as a starting point for further related studies; the ergodic 
characterization of the dynamics near these cycles (even in the dissipative case) is still far for 
being completely understood.
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