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C
1-STABLY SHADOWABLE CONSERVATIVE

DIFFEOMORPHISMS ARE ANOSOV

Mário Bessa

Abstract. In this short note we prove that if a symplectomorphism f

is C1-stably shadowable, then f is Anosov. The same result is obtained
for volume-preserving diffeomorphisms.

1. Introduction: basic definitions and statement of the results

1.1. The symplectomorphisms framework

Denote by M a 2d-dimensional manifold with Riemaniann structure and
endowed with a closed and nondegenerate 2-form ω called symplectic form. Let
µ stands for the volume measure associated to the volume form wedging ω d-
times, i.e., ωd = ω∧· · ·∧ω. The Riemannian structure induces a norm ‖·‖ on the
tangent bundle TxM . Denote the Riemannian distance by d(·, ·). We will use
the canonical norm of a bounded linear map A given by ‖A‖ = sup‖v‖=1 ‖A·v‖.

By the theorem of Darboux (see e.g. [9, Theorem 1.18]) there exists an atlas
{ϕj : Uj → R

2d}, where Uj is an open subset of M , satisfying ϕ∗
jω0 = ω

with ω0 =
∑d

i=1
dyi ∧ dyd+i. A diffeomorphism f : (M,ω) → (M,ω) is called a

symplectomorphism if it leaves invariant the symplectic structure, say f∗ω = ω.
Observe that, since f∗ωd = ωd, a symplectomorphism f : M → M preserves
the volume measure µ. Symplectomorphisms arise naturally in the rational
mechanics formalism as the first return Poincaré maps of hamiltonian flows.
For this reason, it has long been one of the most interesting research fields in
mathematical physics. We suggest the reference [9] for more details on general
hamiltonian and symplectic theories. Let (Symp1

ω(M), C1) denote the set of
all symplectomorphisms of class C1 defined on M , endowed with the usual C1

Whitney topology.

1.2. The shadowing property

The concept of shadowing in dynamical systems is inspired by the numerical
computational idea of estimating differences between exact and approximate
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solutions along orbits and to understand the influence of the errors that we
commit and allow on each iterate. We may ask if it is possible to obtain
shadowing of approximate trajectories in a given dynamical system by exact
ones. We refer Pilyugin’s book [11] for a completed description on the subject.

There are, of course, considerable limitations to the amount of information
we can extract from a given specific system that exhibits the shadowing prop-
erty, since a C1-close system may be absent of that property. For this reason it
is of great utility and natural to consider that a selected model can be slightly
perturbed in order to obtain the same property - the stably shadowable dy-
namical systems.

For δ > 0 and a, b ∈ [−∞,+∞] such that a < b, the sequence of points
{xi}

b
i=a in M is called a δ-pseudo orbit for f if d(f(xi), xi+1) < δ for all

a ≤ i ≤ b− 1.
Let Λ ⊆ M be a closed and f -invariant set. The symplectomorphism

f : M → M is said to have the shadowing property in Λ if for all ǫ > 0,
there exists δ > 0, such that for any δ-pseudo orbit (xn)n∈Z in Λ, there is a
point x ∈ M which ǫ-shadows (xn)n∈Z, i.e., d(f

i(x), xi) < ǫ.
Let f ∈ Symp1

ω(M) we say that f is C1-stably (or robustly) shadowable if
there exists a neighborhood V of f in Symp1ω(M) such that any g ∈ V has the
shadowing property.

We point out that f has the shadowing property if and only if fn has the
shadowing property for every n ∈ Z.

1.3. Hyperbolicity and statement of the results

We say that any element f in the set Symp1ω(M) is Anosov if, there exists
λ ∈ (0, 1) such that the tangent vector bundle over M splits into two Df -
invariant subbundles TM = Eu ⊕Es, with ‖Dfn|Es‖ ≤ λn and ‖Df−n|Eu‖ ≤
λn. We observe that there are plenty Anosov diffeomorphisms which are not
symplectic.

Let us recall that a periodic point p of period π is said to be hyperbolic if
the tangent map Dfπ(p) has no norm one eigenvalues.

Let f ∈ Symp1ω(M) we say that f is in F1
ω(M) if there exists a neighborhood

V of f in Symp1ω(M) such that any g ∈ V , has all the periodic orbits of
hyperbolic type. We define analogously the set F1

µ(M) in the broader set of

volume-preserving diffeomorphisms Symp1µ(M).
The results in this note can be seen as a generalization of the result in [12]

for symplectomorphisms and volume-preserving diffeomorphisms. Let us state
our first result.

Theorem 1. If a symplectomorphism f defined in symplectic manifold M is

C1-stably shadowable, then f is Anosov.

It is well known that Anosov diffeomorphisms impose severe topological re-
strictions to the manifold where they are supported. Thus, we present a simple
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but startling consequence of Theorem 1 that shows how topological conditions
on the phase space imposes numerical restrictions to a given dynamical system.

Corollary 1.1. If M does not support an Anosov diffeomorphisms, then there

are no C1-stably shadowable symplectomorphisms.

We end this introduction by recalling a result in the vein of ours proved
in [4] - C1-robust topologically stable symplectomorphisms are Anosov. We
point out that, in the broader setting of dissipative diffeomorphisms, it was
proved, in [13, Theorem 4], that expansiveness and the (robust) shadowing
property implies (robust) topologic stability. In [13, Theorem 11] it is also
proved that topological stability, imply the shadowing property. Another result
which relates C1-robust properties with hyperbolicity is the Horita and Tahzibi
theorem (see [6]) which states that C1-robustly transitive symplectomorphisms
are partially hyperbolic.

2. Proof of Theorem 1

Theorem1 is a direct consequence of the following two propositions. The
following result can be found in [10].

Proposition 2.1 (Newhouse). If f ∈ F1
ω, then f is Anosov.

The following result is a symplectic version of [7, Proposition 1]. Actually,
Moriyasu, while working in the dissipative context, considered the shadowing
property in the non-wandering set, which, in the symplectic setting, and due
to Poincaré recurrence, is the whole manifold M .

Proposition 2.2. If f is a C1-stably shadowable symplectomorphism, then

f ∈ F1
ω.

Proof. The proof is by contradiction; let us assume that there exists a C1-
stably shadowable symplectomorphism f having a non-hyperbolic closed orbit
p of period π.

In order to go on with the argument we need to C1-approximate the sym-
plectomorphism f by a new one, f1, which, in the local coordinates given by
Darboux’s theorem, is linear in a neighborhood of the periodic orbit p. To
perform this task, in the sympletic setting, and taking into account [2, Lemma
3.9], it is required higher smoothness of the symplectomorphism.

Thus, if f is of class C∞, take g = f , otherwise we use [14] in order to obtain
a C∞ C1-stably shadowable symplectomorphism h, arbitrarily C1-close to f ,
and such that h has a periodic orbit q, close to p, with period π. We observe
that q may not be the analytic continuation of p and this is precisely the case
when 1 is an eigenvalue of the tangent map Dfπ(p).

If q is not hyperbolic take g = h. If q is hyperbolic forDhπ(q), then, since h is
C1-arbitrarily close to f , the distance between the spectrum of Dhπ(q) and the
unitary circle can be taken arbitrarily close to zero. This means that we are in
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the presence of “poor” hyperbolicity, thus in a position to apply [6, Lemma 5.1]
to obtain a new C1-stably shadowable symplectomorphism g ∈ Symp∞ω (M),
C1-close to h and such that q is a non-hyperbolic periodic orbit.

Now, we use the weak pasting lemma ([2, Lemma 3.9]) in order to obtain
a C1-stably shadowable symplectomorphism f1 such that, in local canonical
coordinates, f1 is linear and equal to Dg in a neighborhood of the periodic non-
hyperbolic orbit, q. Moreover, the existence of an eigenvalue, λ, with modulus
equal to one is associated to a symplectic invariant two-dimensional subspace
contained in the subspace Ec

q ⊆ TqM associated to norm-one eigenvalues. Fur-
thermore, up to a perturbation using again [6, Lemma 5.1], λ can be taken ra-
tional. This fact assures the existence of periodic orbits arbitrarily close to the
f1-orbit of q. Thus, there existsm ∈ N such that fmπ

1 (q)|Ec
q
= (Dgmπ)q|Ec

q
= id

holds, say in a ξ-neighborhood of q. Recall that, since f1 has the shadowing
property fmπ

1 also has. Therefore, fixing ǫ ∈ (0, ξ
4
), there exists δ ∈ (0, ǫ) such

that every δ-pseudo fmπ
1 -orbit (xn)n is ǫ-traced by some point in M . Take y

such that d(y, q) = 3ξ
4

and a closed δ-pseudo fmπ
1 -orbit (xn)n such that any

ball centered in xi and with radius ǫ is still contained in the ξ-neighborhood of
q, moreover, take x0 = q and xs = y.

By the shadowing property there exists z ∈ M such that d(fmπi
1 (z), xi) < ǫ

for any i ∈ Z. Moreover, we observe that d(fmπi
1 (z), q) < ξ for every i ∈ Z.

Therefore, z ∈ Ec
q . Finally, we reach a contradiction by noting that

d(q, z) ≥ d(q, xs)− d(xs, z) = d(q, y)− d(xs, f
mπs
1 (z)) ≥

3ξ

4
− ǫ >

ξ

2
> ǫ.

�

3. Volume-preserving diffeomorphisms

Theorem 1 also holds on the broader context of volume-preserving diffeo-
morphisms.

Theorem 2. If a volume-preserving diffeomorphism f defined in a manifold

M is C1-stably shadowable, then f is Anosov.

Proof. The proof follows the same steps as the one of Theorem 1. Next we give
the strategy for proving it by referring the fundamental pieces that replace the
ones used along the proof of Theorem 1.

• The version of Proposition 2.1 for volume-preserving diffeomorphisms
is proved in [1, Theorem 1.1];

• Proposition 2.2 can be obtained by noting that:
(1) the Darboux coordinates are switched by the Moser volume-preser-

ving coordinates (cf. [8]);
(2) the result in [14] are replaced by the smoothness result in [3];
(3) the perturbation lemma in [6], are interchanged by its correspon-

dent in the volume-preserving case proved in [5, Proposition 7.4];
(4) and, finally, we should use [2, Theorem 3.6] instead of [2, Theorem

3.9].
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We leave the details to the reader. �
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