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Abstract A theoremofViana says that almost all cocycles over any hyperbolic system
have nonvanishing Lyapunov exponents. In this note we extend this result to cocycles
on any noncompact classical semisimple Lie group.
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1 Introduction

Lyapunov exponents are ubiquitous in differentiable dynamics (Barreira and Pesin
2002), control theory (Colonius and Kliemann 2000), random walks on Lie groups
(Furman 2002), one-dimensional Schrödinger operators (Bourgain 2005), among
other fields. Let us recall the basic definitions. Consider (M, μ) a probability
space, f : M → M a measure-preserving discrete-time dynamical system and
A : M → R

d×d a (at least) measurable matrix-valued map. The pair (A, f ) is called
a linear cocycle. We form the products:

A(n)(x) := A( f n−1(x)) · · · A( f (x))A(x). (1.1)

Let ‖·‖ be any matrix norm, and assume that log+ ‖A‖ is μ-integrable. The (top)
Lyapunov exponent of the cocycle is

λ1(A, f, x) := lim
n→∞

1

n
log ‖A(n)(x)‖, (1.2)

which by the subadditive ergodic theorem is well-defined (possibly −∞) for μ-
almost every x , and is independent of the choice of norm. If μ is ergodic, then the
Lyapunov exponent is almost everywhere equal to a constant, which we denote by
λ1(A, f, μ).

The Lyapunov exponent is a very subtle object of study. Let us explain the type of
question we are interested in. Consider maps A taking values in the group SL(d,R).
In that case, the Lyapunov exponent is nonnegative, and it is reasonable to expect
that it should be positive except in some degenerate or fragile situations. As a result
in this direction, Knill (1992) proved that for any base dynamics ( f, μ) where the
measure μ is ergodic and non-atomic, λ1(A, f, μ) > 0 for all maps A in a dense
subset of the space L∞(M,SL(2,R)). Still in d = 2, this result was extended to
virtually any regularity class (continuous, Hölder, smooth, analytic) by Avila (2011).
The case d > 2 remains unsolved, though similar results have been obtained by
Xu (2017) for some other matrix groups as the symplectic groups. In general,
the sets of maps where the Lyapunov exponents are positive are believed to
be not only dense, but also “large” in a probabilistic sense (see Avila 2011).
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However, in low regularity as L∞ or C0, these sets can be “small” in a topo-
logical sense; indeed they can be locally meager (Bochi 2002; Bochi and Viana
2005).

Historically, the first case to be studiedwas randomproducts of i.i.d.matrices,which
fits in the general setting of linear cocycles by taking f : SL(d,R)Z → SL(d,R)Z

the shift map f ((Bn)n∈Z) = (Bn+1)n∈Z, μ a probability measure on SL(d,R)Z of the
form μ = νZ where ν is a probability measure on SL(d,R) with finite support, and
A : SL(d,R)Z → SL(d,R) is the matrix-valued map A((Bn)n∈Z) = B0. Fursten-
berg showed that that the Lyapunov exponent is positive under explicit mild conditions
(Theorem 8.6 in Furstenberg 1963). Finer results were later obtained (still in the i.i.d.
case) by Guivarc’h and Raugi (1989) and Gol’dsheid and Margulis (1989), among
others.

As first shown in Ledrappier’s seminal paper (Ledrappier 1986), and later vigor-
ously expressed in the work of Viana and collaborators (Bonatti et al. 2003; Bonatti
and Viana 2004; Avila and Viana 2007; Viana 2008; Avila and Viana 2010; Avila et al.
2013), the philosophy of random i.i.d. products of matrices can be adapted to other
contexts, where Bernoulli shifts are replaced by more general classes of dynamical
systems with hyperbolic behavior, at least under certain conditions on the maps A.
A landmark result, proved by Viana (2008), can be stated informally as follows: if
the dynamics ( f, μ) is nonuniformly hyperbolic (and satisfies an additional technical
but natural hypothesis) then, in spaces of sufficiently regular (at least Hölder) maps
A : M → SL(d,K) for K = R or C, positivity of the Lyapunov exponent occurs on
a set which is large in both a topological and in a probabilistic sense.

This note provides a extension of that theorem. More precisely, Viana posed
the following problem (Viana 2008, Problem 4): Characterize the class of groups
G ⊂ GL(d,K)for which the theorem is valid. Does it include the symplectic group
Sp(d,K)? Here we show that the class of groups for which Viana’s theorem is valid
includes all noncompact classical semisimple groups of matrices, in particular the
symplectic groups, and also pseudo-unitary groups, quaternionic groups, etc.

The proof of our result has two new key ingredients. The first main ingredient
is that the matrix functions consisting of evaluations at periodic points are submer-
sions as functions of the cocycle (cf. Proposition 3.4). The second main ingredient
is that a pair of matrices in a noncompact classical semisimple group whose projec-
tive actions preserve a common probability measure is contained in a semi-algebraic
set of positive codimension (cf. Corollary 3.13). By combining these ingredients,
we deduce our main result by proving that every cocycle with some zero Lyapunov
exponent has a neighborhood (in the appropriate space) whose cocycles with zero
exponents are contained in a Whitney stratified set of arbitrarily large codimen-
sion.

Let us mention that when f is quasiperiodic (and so lies in a region antipo-
dal to hyperbolicity in the dynamical universe), the study of Lyapunov expo-
nents forms another huge area of research: see for instance Avila and Krikorian
(2015) and Duarte and Klein (2014) and references therein. Finally, we note
that for derivative cocycles (i.e., where A = D f ) very few general results are
known, except in low topologies (Bochi 2002; Bochi and Viana 2005; Avila et al.
2016).
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2 Precise Setting

In this section we recall some basic notions about multiplicative ergodic theory,
and then state our results. The reader is referred to Barreira and Pesin (2002) and
Viana (2008) for more details and references.

2.1 Lyapunov Exponents

The top Lyapunov exponent of a cocycle (A, f ) was defined in (1.2). In general, we
define Lyapunov exponents λ1(A, f, x) ≥ λ2(A, f, x) ≥ · · · ≥ λd(A, f, x) by

λi (A, f, x) := lim
n→∞

1

n
log σi (A(n)(x)), (2.1)

where σi (·) denotes the i-th singular value.

2.2 Hyperbolic Measures and Local Product Structure

Let f : M → M be a C1+α diffeomorphism1 of a compact manifold M , and let
μ be a invariant Borel probability measure. Suppose that μ is hyperbolic, that is,
the Lyapunov exponents of the derivative cocycle D f are all different from zero at
μ-almost every point x . So, by Oseledets theorem, we can split the tangent bundle
Tx M as the sum of the subspaces Eu

x and E s
x corresponding to positive and negative

Lyapunov exponents of the derivative cocycle A = D f , respectively, defined by (2.1).
Since f is a C1+α diffeomorphism, given a hyperbolic probability measure μ,

Pesin’s stable manifold theorem (see e.g. Barreira and Pesin 2002) says that, for μ-
almost every x , there exists a C1-embedded disk W s

loc(x) (local stable manifold at x)
such that Ty W s

loc(x) = E s
y , it is forward invariant, i.e. f (W s

loc(x)) ⊂ W s
loc( f (x)), and

the following holds: given 0 < τx < |λ1+dim Eu
x
(D f, f, x)|, there exists Kx > 0 such

that d( f n(y), f n(z)) ≤ Kx e−nτx d(y, z) for every y, z ∈ W s
loc(x). Local unstable

manifolds W u
loc(x) are defined analogously using Eu

x and f −1.
Moreover, since local invariant manifolds and the constants above vary measurably

with the point x one can select hyperbolic blocks H(K , τ ) in such a way that Kx ≤ K
and τx ≥ τ for all x ∈ H(K , τ ), the local manifolds W s

loc(x) and W u
loc(x) vary

continuously with x ∈ H(K , τ ); moreover, μ(H(K , τ )) → 1 as K → ∞ and
τ → 0. In particular, if x ∈ H(K , τ ) and δ > 0 is small enough, then for every y,
z ∈ B(x, δ) ∩ H(K , τ ), the intersection W u

loc(y) ∩ W s
loc(z) is transverse and consists

of a unique point, denoted [y, z].

1 We need C1+α regularity in order to apply the so-called Pesin’s theory (providing a measurable family
of invariant manifolds with many good properties). In fact, it is known (see Bonatti et al. 2013 for instance)
that Pesin’s theory may fail in C1 regularity.
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For each x ∈ H(K , τ ), define sets:

N u
x (δ) := {[x, y] ∈ W u

loc(x) : y ∈ H(K , τ ) ∩ B(x, δ)},
N s

x (δ) := {[y, x] ∈ W s
loc(x) : y ∈ H(K , τ ) ∩ B(x, δ)}.

LetNx (δ) be the image ofN u
x (δ) ×N s

x (δ) under the map [·, ·]. This is a small “box”
neighborhood of x in the block H(K , τ ), and (reducing δ if necessary) the following
map is a homeomorphism:

ϒx : Nx (δ) → N u
x (δ) × N s

x (δ)

y �→ ([x, y], [y, x])

Definition 2.1 (Viana 2008, p. 646) The hyperbolic measure μ has local product
structure if for every (K , τ ), every small δ > 0 as before, and every x ∈ H(K , τ ), the
measure μ |Nx (δ) is equivalent to the product measure μu

x ×μs
x , where μi

x denotes the
conditional measure of (ϒx )∗(μ |Nx (δ)) on N i

x (δ), for i ∈ {u, s}.

2.3 Space of Cocycles

The relevant functional spaces of linear cocycles for our subsequent discussion are
defined as follows. Let G be a Lie subgroup of GL(d,C), let M be a Riemannian
compact manifold M , and let (r, ν) ∈ N × [0, 1] − {(0, 0)}. Let Cr,ν(M, G) denote
the set of maps A : M → G of class Cr such that Dr A is ν-Hölder continuous if
ν > 0. We equip this set with the topology induced by the distance:

dr,ν(A, B) := sup
0≤ j≤r

‖D j (A − B)(x)‖ + sup
x 
=y

‖Dr (A − B)(x) − Dr (A − B)(y)‖
d(x, y)ν

,

where the last term is omitted if ν = 0. Then Cr,ν(M, G) is a Banach manifold (see
e.g. Palais 1968).

2.4 Statement of the Results

Let K be either R or C, and let d ≥ 2. Let G be a K-algebraic subgroup of SL(d,C),
i.e., a group of complex d × d matrices of determinant 1, defined by polynomial
equations with coefficients in K. Denote G := G ∩ SL(d,K). Henceforth we will
assume the following properties:

(1) G is connected (or equivalently, G is irreducible as an algebraic set);
(2) G is semisimple (or equivalently, G is semisimple);
(3) G is noncompact;
(4) G acts irreducibly onKd , that is, the only subspaces V ⊂ K

d invariant under the
whole action of G are the trivial subspaces V = {0} and V = K

d .
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Our assumptions are satisfied by all noncompact classical groups G, that is, the special
linear groups SL(d,K) for d ≥ 2 and SL(n,H) � SU∗(2n) for n ≥ 1 (where H is
the field of quaternions), the symplectic groups Sp(n,K), Sp(n, m) for n, m ≥ 1,
the special indefinite orthogonal groups SO(m, n) for m, n ≥ 1, m + n ≥ 3, the
special unitary groups SU(m, n) for m, n ≥ 1, and the quaternionic orthogonal groups
SO∗(2n) for n ≥ 2. We refer the reader to Knapp (2002, pp. 110–118) for definitions
and basic properties of classical semisimple Lie groups.

The following result is exactly Theorem A in Viana (2008) when G = SL(d,K):

Theorem A Let G be a group of matrices satisfying the hypotheses above. Let
f be a C1+α-diffeomorphism of a compact manifold M. Let μ be a f -invariant
ergodic hyperbolic non-atomic probability measure with local product structure. Let
(r, ν) ∈ N × [0, 1] − {(0, 0)}. Then there exists an open and dense subset G of
Cr,ν(M, G) such that for any A ∈ G , the cocycle (A, f ) has at least one positive
Lyapunov exponent at μ-a.e. point. Moreover, the complement of G in Cr,ν(M, G)

has infinite codimension.

The last statement means that the complement of G is locally contained inWhitney
stratified sets (see Gibson 1976) of arbitrarily large codimension. In particular, G is
large in a very strong probabilistic sense. Arguing exactly as in Viana (2008, p. 676),
we obtain the following consequence in the non-ergodic case:

Corollary 2.2 Let G be a group of matrices satisfying the hypotheses above. Let
f be a C1+α-diffeomorphism of a compact manifold M. Let μ be a f -invariant
ergodic hyperbolic non-atomic probability measure with local product structure. Let
(r, ν) ∈ N×[0, 1]−{(0, 0)}. Then there exists a residual subsetR of Cr,ν(M, G) such
that for any A ∈ G , the cocycle (A, f ) has at least one positive Lyapunov exponent
at μ-a.e. point.

Following Viana (2008), we require hyperbolicity and local product structure in
the statements above. The point is to ensure the existence of the so-called stable and
unstable holonomies, which allow one to compare the linear actions of the cocycle at
different points of the phase space. As it turns out, it is possible to derive the existence
of such holonomies in other settings including certain linear cocycles over volume
preserving and accessible partially hyperbolic dynamics: in particular, even though
we have not checked all details, it seems plausible that the techniques introduced in
Avila et al. (2013) together with the arguments in this paper might lead to variants of
our results for typical Hölder cocycles over volume preserving, center-bunched and
accessible partially hyperbolic C2-diffeomorphisms.

Finally, let us comment on the properties (1)–(4) of G above. First, hypothesis
(3) is clearly a necessary condition for the existence of positive Lyapunov exponents:
otherwise, all Lyapunov exponentswould vanish. Second, in the context of TheoremA,
the set of cocycles with zero Lyapunov exponents exhibit a rigidity phenomenon:
the projective action of pairs of matrices at some suitable periodic points preserve a
common invariant measure (cf. Proposition 3.5 and (3.11)). On the other hand, our
hypotheses (1), (2), (3) and (4) ensure that the pairs of matrices in G whose projective
actions preserve a commonmeasure belong to a proper semi-algebraic set Z ⊂ G ×G
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Positivity of the Top Lyapunov Exponent for Cocycles on. . . 79

(cf. Corollary 3.13). These results permit to deduce Theorem A from the fact that
certain evaluation maps are submersions (cf. Proposition 3.4).

3 Proofs

Here we review some intermediate results from Viana (2008) in Sects. 3.1 and 3.2,
then we recall some algebraic facts in Sect. 3.4, and finally we prove Theorem A in
Sect. 3.5.

3.1 Holonomies

In this and in the next subsection, we assume that f is a C1+α-diffeomorphism of
a Riemannian compact manifold M preserving a non-atomic hyperbolic measure μ

with local product structure, and that A ∈ Cr,ν(M,SL(d,K)) for some (r, ν) ∈
N × [0, 1] − {(0, 0)} (and K = R or C).

A key insight from Viana (2008) is that the vanishing of Lyapunov exponents of
the cocycle (A, f, μ) implies the existence of a dynamical structure called stable and
unstable holonomies.

More concretely, let f be a C1+α-diffeomorphism of a Riemannian compact mani-
fold M preserving a non-atomic hyperbolic measure with local product structure. Let
A ∈ C0(M,SL(d,K)) be a continuous linear cocycle.

Definition 3.1 Given N ≥ 1 and θ > 0, letDA(N , θ) denote the set of points x ∈ M
satisfying:

k−1∏

j=0

‖A(N )( f j N (x))‖ ‖A(N )( f j N (x))−1‖ ≤ ek Nθ for all k ∈ N.

Wesay thatO is a holonomy block for A if it is a compact subset ofH(K , τ )∩DA(N , θ)

for some constants K , τ , N , θ satisfying 3θ < τ .

By Viana (2008, Corollary 2.4), if all Lyapunov exponents of (A, f ) vanish at μ-
almost every point then there exist holonomy blocks of measure arbitrarily close to 1.

By Viana (2008, Proposition 2.5), the limits

H s
A,x,y = H s

x,y := lim
n→+∞ A(n)(y)−1A(n)(x) and

Hu
A,x,z = Hu

x,z := lim
n→−∞ A(n)(z)−1A(n)(x),

called stable and unstable holonomies, exist whenever x belongs to a holonomy block
O, y ∈ W s

loc(x) and z ∈ W u
loc(x). These holonomy maps depend differentiably on the

cocycle:
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80 M. Bessa et al.

Proposition 3.2 (Viana 2008, Lemma 2.9) Given a periodic point p in a holon-
omy block and points y ∈ W s

loc(p) and z ∈ W u
loc(p), the maps B �→ H s

B,p,y and

B �→ Hu
B,z,p from a small neighborhood U of A to SL(d,C) are C1, with derivatives:

∂B H s
B,p,y : Ḃ �→

∞∑

i=0

B(i)(y)−1[H s
B, f i (p), f i (y)

B( f i (p))−1 · Ḃ( f i (p))

− B( f i (y))−1 Ḃ( f i (y))H s
B, f i (p), f i (y)

] · B(i)(p) (3.1)

∂B Hu
B,z,p : Ḃ �→

∞∑

i=1

B(−i)(p)−1[Hu
B, f −i (z), f −i (p)

B( f −i (z))Ḃ( f −i (z))

− B( f −i (p))Ḃ( f −i (p))Hu
B, f −i (z), f −i (p)

] · B(−i)(z) (3.2)

Remark 3.3 In this statement, it is implicit the fact ensured by Viana (2008, Corollary
2.11) that the same holonomy block works for all B ∈ U .

Suppose Oi , where i = 1, . . . , l, are holonomy blocks of ( f, A) containing horse-
shoes Hi associated to periodic points pi ∈ Oi of minimal periods κi and some
homoclinic points of pi , say zi ∈ W u

loc(pi ) and f qi (zi ) ∈ W s
loc(pi ), qi > 0, such

that pi , zi ∈ supp(μ|Oi ∩ f −κi (Oi )). By the remark above we know there is a neigh-
borhood U of A such that all the same holonomy blocks Oi (hence pi , zi , qi ) still
work for any B ∈ U . Then we have the following important property:

Proposition 3.4 Let G be a K-algebraic subgroup of SL(d,C) and G := G ∩
SL(d,K). Assume that for each 1 ≤ i ≤ l the set Oi ⊂ M denotes a holonomy
block with respect to all cocycles in an open set U of Hölder continuous cocycles tak-
ing values on G. Given periodic points pi ∈ Oi of minimal periods κi and homoclinic
points zi such that zi ∈ W u

loc(pi ) and f qi (zi ) ∈ W s
loc(pi ), qi > 0, the map

� : U → G2l

B �→ (g1,1(B), . . . , gl,1(B), g1,2(B), . . . , gl,2(B))

is a submersion at every B ∈ U , where

gi,1(B) := B(κi )(pi ) and gi,2(B) := H s
B, f qi (zi ),pi

◦ B(qi )(zi ) ◦ Hu
B,pi ,zi

(3.3)

Proof Fix Vzi , Vpi some neighborhoods of pi and zi . Without loss of generality we
could assume Vzi , Vpi , i = 1, . . . , l are small enough such that

f n(pi ) ∩ Vz j = ∅, ∀i, j, n

f n(pi ) ∩ Vp j = ∅ except if i = j and κi |n (3.4)

f n(zi ) ∩ Vz j = ∅ except if i = j and n = 0

We claim that the derivative of map � is surjective at every point of U , even when
restricted to the subspace of tangent vectors Ḃ supported on

⋃
i Vpi ∪ ⋃

i Vzi . In fact
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Positivity of the Top Lyapunov Exponent for Cocycles on. . . 81

for every B ∈ U , for tangent vectors Ḃ supported on
⋃

i Vpi ∪ ⋃
i Vzi we will prove

that the derivative of � has the following lower triangular form:

∂B�T (Ḃ) = (∂B g1,1(Ḃ), . . . , ∂B gl,1(Ḃ),

∂B g1,2(Ḃ), . . . , ∂B gl,2(Ḃ))T =
(

∂�1,1 0
∗ ∂�2,2

)
·
(

Ḃp

Ḃz

)
(3.5)

where Ḃp = (Ḃ(p1), . . . , Ḃ(pl))
T , Ḃz = (Ḃ(z1), . . . , Ḃ(zl))

T and ∂�1,1, ∂�2,2 are
two diagonal surjective linear maps.

By (3.4), we easily get

∂B(gi,1(Ḃ))

=
{

gi,1(B) · B(pi )
−1 · Ḃ(pi ), if supp(Ḃ) ⊂ Vpi ,

0, if supp(Ḃ) ⊂ Vp j , j 
= i or Vz j , 1 ≤ j ≤ l.

(3.6)

By gi,2’s definition,

∂B(gi,2(Ḃ)) = ∂B H s
B, f qi (zi ),pi

(Ḃ) · B(qi )(zi ) · Hu
B,pi ,zi

+ H s
B, f qi (zi ),pi

· ∂B B(qi )(zi )(Ḃ) · Hu
B,pi ,zi

+ H s
B, f qi (zi ),pi

· B(qi )(zi ) · ∂B Hu
B,pi ,zi

(Ḃ) (3.7)

By (3.1), (3.2) and (3.4), for any j ,

∂B H s
B, f qi (zi ),pi

(Ḃ) = ∂B Hu
B,pi ,zi

(Ḃ) = 0 if supp(Ḃ) ⊂ Vz j (3.8)

and

∂B B(qi )(zi )(Ḃ) =
{

B(qi )(zi ) · B(zi )
−1 · Ḃ(zi ) if supp(Ḃ) ⊂ Vzi ,

0, if supp(Ḃ) ⊂ Vz j , j 
= i.
(3.9)

Combining (3.7), (3.8) and (3.9) we get

∂B(gi,2(Ḃ))

=
{

H s
B, f qi (zi ),pi

· B(qi )(zi ) · B(zi )
−1 · Ḃ(zi ) · Hu

B,pi ,zi
if supp(Ḃ) ⊂ Vzi ,

0, if supp(Ḃ) ⊂ Vz j , j 
= i.

(3.10)

Then by (3.10), (3.6) and invertibility of H s,u and B, we get (3.5). As explained before,
Proposition 3.4 follows. ��
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3.2 Disintegrations

Let f A denote the induced projectivized cocycle, that is, the skew-product map on
M × P

d−1(K) defined by (x, [v]) �→ ( f (x), [A(x)v]).
By compactness of the projective space, the projectivized cocycle f A always has

invariant probability measures m on M × P
d−1(K) projecting down to μ on M . Any

such measure m can be disintegrated (in an essentially unique way) into a family of
measures mz on {z} × P

d−1(K), z ∈ M , in the sense that m(C) = ∫
mz(C ∩ ({z} ×

P
d−1(K))) dμ(z) for all measurable subsetsC ⊂ M ×P

d−1(K): see Bogachev (2007,
Section 10.6).

As explained in Sect. 2.2, ( f, μ) has hyperbolic blocks H(K , τ ) of almost full μ-
measure. Given a holonomy blockO of positive μ-measure inside a hyperbolic block
H(K , τ ), δ > 0 sufficiently small (depending on K and τ ) and a point x ∈ supp(μ|O),
we denote by Nx (O, δ), N u

x (O, δ) and N s
x (O, δ) the subsets of Nx (δ), N u

x (δ) and
N s

x (δ) obtained by replacing H(K , τ ) by O in the definitions.
The next result extracted from Viana (2008, Proposition 3.5) says that the disinte-

gration behaves in a rigid way when all Lyapunov exponents of the cocycle vanish. For
simplicity, the action of a linear map L on the projective space is also denoted by L .

Proposition 3.5 Suppose that all Lyapunov exponents of (A, f ) vanish at μ-almost
every point.

If O is a holonomy block of positive μ-measure, δ > 0 is sufficiently small and
x ∈ supp(μ|O), then every f A-invariant probability measure m on M × P

d−1(K)

projecting down to μ on M admits a disintegration {mz : z ∈ M} such that the
function supp(μ|Nx (O, δ)) � z �→ mz is continuous in the weak∗ topology and,
moreover,

(H s
y,z)∗my = mz = (Hu

w,z)∗mw

for all y, z, w ∈ supp(μ|Nx (O, δ)) with y ∈ W s
loc(z) and w ∈ W u

loc(z).

We shall exploit the rigidity condition in the previous proposition through the
following result extracted from Viana (2008, Proposition 4.5) ensuring the existence
of holonomy blocks containing periodic points and some of its homoclinic points when
all Lyapunov exponents vanish in a set of positive measure.

Proposition 3.6 Suppose that all Lyapunov exponents of (A, f ) vanish at μ-almost
every point. Then for any l > 0, there exists l holonomy blocks Oi , 1 ≤ i ≤ l,
containing horseshoes Hi associated to periodic points (with different orbits) pi ∈ Oi

of period π(pi ) and some homoclinic points zi of pi such that zi ∈ supp(μ|Oi ∩
f −π(pi )(Oi )).
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3.3 Some Facts About Semi-algebraic Sets

Recall that a subset of Rn is called semi-algebraic if it is defined by finitely many
polynomial inequalities2 (see Gibson 1976, p. 17), and the dimension of a semi-
algebraic set is the maximal local dimension near regular points (see Gibson 1976,
p. 18). By the Tarski–Seidenberg theorem, the image Y = f (X) of a semi-algebraic
subset X ofRn under any polynomial mapping f : Rn → R

p is also a semi-algebraic
subset with dimension dim(Y ) ≤ dim(X): cf. Gibson (1976, pp. 18 and 28).

Semi-algebraic sets are not necessarily smooth; however, their singular points are
relatively “tame”. In order to state this tameness properly, we need some classical
concepts from differential topology. A stratification of a set W ⊂ R

n is a locally
finite partition of W into smooth submanifolds, called strata. A stratification is called
Whitney if it satisfies the following regularity condition: Suppose that (xi ) is a sequence
of points in a stratum X converging to a point x ∈ X , (yi ) is a sequence in a stratum
Y converging to the same point x ∈ X ; suppose also that xi 
= yi for each i and that
the lines containing xi − yi converge to a one-dimensional subspace L ⊂ R

n ; finally
suppose that the tangent spaces Tyi Y converge to a space T ⊂ R

n ; then we have
L ⊂ T . Using local coordinates, the ambient space Rn in the definitions above can
be replaced by any smooth Banach manifold. See Gibson (1976, pp. 9–11) for more
details.

For later use, we list in the proposition below some basic properties of Whitney
stratified sets:

Proposition 3.7 Any semi-algebraic set is Whitney stratified. The product of Whitney
stratified sets is Whitney stratified (and their codimensions add). The pre-image of a
Whitney stratified set under a submersion is Whitney stratified (and the codimension
is preserved).

Proof (Indication of proof) It is shown in Gibson (1976, p. 20) that semi-algebraic
sets are Whitney stratified. The fact of products of Whitney stratified sets are Whitney
stratified is stated in Gibson (1976, p. 16). Finally, the fact that the pre-image of a
Whitney stratified set under a submersion is Whitney stratified is a particular case of
the statement (1.4) in Gibson (1976, p. 14). ��

3.4 Some Facts About Linear Algebraic Groups

Recall that G is an algebraic group of matrices satisfying the hypotheses listed at
Sect. 2.4. In this subsection we collect some algebraic facts that we will use.

The following property, shown by Breuillard (2008, Lemma 6.8) (see also
Aoun 2013, Lemma 7.7) only needs the fact that G is algebraic and semisimple
(hypothesis (2)):

Proposition 3.8 There exists a proper algebraic subvariety V ⊂ G ×G such that any
pair of elements (g1, g2) ∈ (G × G) − V generates a Zariski dense subgroup of G.

2 I.e., a semi-algebraic set is an element of the smallest Boolean ring of subsets ofRn containing all subsets
of the form {(x1, . . . , xn) ∈ R

n : P(x1, . . . , xn) > 0} with P ∈ R[X1, . . . , Xn ].
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The following is Proposition 3.2.15 in Zimmer (1984), and uses our hypotheses (1)
and (4):

Proposition 3.9 Let m be a probability measure on the projective space P
d−1(K),

and let Gm be the set of elements of G whose projective actions preserve m. Then:

(i) Gm is compact, or
(ii) Gm is contained in a proper algebraic subgroup of G.

Remark 3.10 ActuallyGm is an amenable subgroup, byTheorem2.7 inMoore (1979),
but we will not need this fact.

Remark 3.11 If K = R then property (i) in Proposition 3.9 actually implies (under
our hypothesis (3)) property (ii). Indeed, by a well-known fact (Knapp 2002, Proposi-
tion 4.6), every compact subgroup of SL(d,R) preserves a positive definite quadratic
form, and in particular is R-algebraic.3

Lemma 3.12 Suppose K = C. Then there is a semi-algebraic set W ⊂ G × G of
positive codimension such that for any pair of elements (g1, g2) ∈ (G × G) − W , the
group they generate is not contained in any compact subgroup of G.

Proof Let K be a maximal compact subgroup of G. We think of G as a complexifi-
cation of K : in particular, the Lie algebra of G is the tensor product over R of C and
the Lie algebra of K , and, a fortiori, dimR(G) = 2 · dimR(K ). Consider a maximal
Abelian subgroup A of G and the corresponding decomposition G = K AK coming
from the diffeomorphism

K × exp(p) → G where p =
⋃

k∈K

Ad(k) · a,

Ad(.) denotes the adjoint action, and a is the Lie algebra of A. Note that dimR(G) >

dimR(K ) + dimR(A) (as one can infer, for instance, from the Killing–Cartan classifi-
cation of simple complex Lie groups via Dynkin diagrams: see, e.g., Knapp 2002 for
more details).

Define � : K × A × K × K → G × G by �(k, a, u, v) = (kaua−1k−1,

kava−1k−1). Note that � is a polynomial map between semi-algebraic sets. Hence,
its image W := �(K × A × K × K ) is a semi-algebraic set of dimension

dimR(W ) ≤ dimR(K × A × K × K ) = (dimR(K ) + dimR(A)) + 2 · dimR(K ).

Since dimR(G) > dimR(K ) + dimR(A) and dimR(G × G) = 2 · dimR(G)

= dimR(G) + 2 · dimR(K ), it follows that

dimR(W ) ≤ (dimR(K ) + dimR(A)) + 2 · dimR(K ) < dimR(G × G).

3 These implications fail in the complex case; for example the compact group SU(d) is Zariski-dense in
SL(d,C).
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In summary, W is a semi-algebraic subset of G×G of positive codimension. There-
fore, the proof of the lemma will be complete once we show that if (g1, g2) ∈ G × G
generates a group contained in a compact subgroup of G, then (g1, g2) ∈ W . In this
direction, we observe that K is a maximal compact subgroup of G, so that if the clo-
sure of the subgroup generated by g1 and g2 is compact, then there exists g ∈ G such
that g1, g2 ∈ gK g−1, say g1 = gxg−1 and g2 = gyg−1 with x, y ∈ K . On the other
hand, the decomposition G = K AK allows us to write g = kak′ for some k, k′ ∈ K
and a ∈ A. It follows that

(g1, g2) = (gxg−1, gyg−1) = (ka(k′xk′−1)a−1k−1, ka(k′yk′−1)a−1k−1)

= �(k, a, u, v)

with k ∈ K , a ∈ A, u = k′xk′−1 ∈ K and v = k′yk′−1 ∈ K , i.e., (g1, g2) ∈ W . This
completes the proof. ��

By combining the previous results, we deduce the following:

Corollary 3.13 There is a semi-algebraic set Z ⊂ G × G of positive codimension
such that no pair of elements (g1, g2) ∈ (G × G) − Z admits a common invariant
measure on projective space P

d−1(K).

Proof If K = R then we let Z = V be the proper algebraic subvariety of G × G
described in Proposition 3.8 above. Otherwise, if K = C then we let Z = V ∪ W
where W is given by Lemma 3.12.

Now consider a pair of elements (g1, g2) ∈ G × G that admit a common invariant
measure m on P

d−1(K). If K = C then (g1, g2) belongs to either W or V , according
to which property (i) or (ii) holds in Proposition 3.9. If K = R then by Remark 3.11
we know that property (ii) holds, so (g1, g2) ∈ V . ��

3.5 Proof of Theorem A

Let G be an algebraic group of matrices satisfying the hypotheses listed at Sect. 2.4.
Let f be a C1+α-diffeomorphism of a compact manifold M . Let μ be a f -invariant
ergodic hyperbolic non-atomic probability measure with local product structure.

Let A ∈ Cr,ν(M, G) be a cocycle whose Lyapunov exponents vanish at μ-almost
every point. To prove TheoremA, we only need to prove that for any l > 0 there exists
a neighborhood U ⊂ Cr,ν(M, G) of A such that the cocycles in U with vanishing
Lyapunov exponents are contained in a Whitney stratified set with codimension ≥ l.

By Proposition 3.6, we can find l holonomy blocks Oi of positive μ-measure con-
taining horseshoes Hi associated to distinct periodic points pi ∈ Oi , 1 ≤ i ≤ l ofmini-
mal periods κi , and some homoclinic points zi ∈ Oi of
pi , zi ∈ W u

loc(pi ), f qi (zi ) ∈ W s
loc(pi ) such that pi , zi ∈ supp(μ|O ∩ f −κi (Oi ))

and qi > 0. Moreover the sameOi , pi , zi , qi work for any B in a small neighborhood
U of A.

123



86 M. Bessa et al.

Then by Proposition 3.5, for any A′ ∈ U with vanishing Lyapunov exponents, for
any 1 ≤ i ≤ l the projective actions of the matrices

gi,1(A′) := A′(κi )(pi ) and gi,2(A′) := H s
A′, f qi (zi ),pi

◦ A′(qi )(zi ) ◦ Hu
A′,pi ,zi

(3.11)

preserve a common probability measure m pi (A′) on P
d−1(K). Thus, for any i , the

pair (gi,1(A′), gi,2(A′)) belongs to the semi-algebraic set Z of positive codimension
in G × G given by Corollary 3.13. Recall from Proposition 3.7 that:

• semi-algebraic sets are Whitney stratified;
• products of Whitney stratified sets is Whitney stratified and codimensions add;
• pre-images of Whitney stratified sets under submersions are Whitney stratified,
and codimension is preserved.

Therefore by Proposition 3.4 we conclude that all such A′ lie in a Whitney stratified
subset of codimension ≥ l. This completes the proof. ��
Acknowledgements The authors are grateful to the referee for a careful reading of the manuscript and for
useful suggestions that helped to improve the presentation of the paper.
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