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Abstract

We prove that there exists a residual subset R (with respect to the C0 topology) of d-
dimensional linear differential systems based in a µ-invariant flow and with transition ma-
trix evolving in GL(d,R) such that if A ∈ R, then, for µ-a.e. point, the Oseledets splitting
along the orbit is dominated (uniform projective hyperbolicity) or else the Lyapunov spec-
trum is trivial. Moreover, in the conservative setting, we obtain the dichotomy: dominated
splitting versus zero Lyapunov exponents.
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1 Introduction

Let ϕt : X → X be a continuous flow defined in a compact Hausdorff space X and
A : X → sl(d,R) be a continuous map, where sl(d,R) is the Lie algebra of all d×d matri-
ces with trace equal to zero. Given any p ∈ X , the solution Φt

A(p) of the non-autonomous
linear differential equation u(t)′ = A(ϕt(·)) · u(t), with initial condition Φ0

A(p) = Id,
is a linear flow which lies in the special linear group SL(d,R). A typical example is the
linear Poincaré flow (see [10] B.3) of a divergence-free (zero divergence) vector field F
defined in a d + 1-dimensional manifold and such that ‖F (p)‖ = 1 for all regular points
p. However, the linear Poincaré flow of any divergence-free vector field F in general does
not evolve in SL(d,R). Nevertheless, it still has a restriction which is invariant, as we will
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s ee in Section 2.1 when we define the linear differential systems and which mimics the
volume-preserving flows.

Moreover, beyond the conservative setting, we will consider general linear differential
systems with solutions in the linear group GL(d,R), which can be induced by a flow in
manifolds with dimension d + 1.

Given a linear differential system A, the Lyapunov exponents measure the asymptotic
exponential growth rate of ‖Φt

A(p) · v‖ for v ∈ Rd
p. These real numbers play a central

role in ergodic theory and the absence of zero exponents yields a valuable description of
the dynamics of A. Therefore, it is very important to detect zero Lyapunov exponents. If
A(t) = A is constant (e.g. the flow is over a fixed point), then the Lyapunov exponents
are exactly the real parts of the eigenvalues of A. In general, the eigenvalues of the matrix
A(t) are meaningless if one aims to study the asymptotic solutions. If we assume that
ϕt leaves invariant a Borel regular probability measure µ, then, due to the multiplicative
ergodic theorem (see for example [17]), we have that the Lyapunov exponents are well
defined for almost every orbit.

Throughout this work we use a weak form of hyperbolicity, called dominated splitting
which, broadly speaking, means that we have an invariant splitting along the orbit into two
subspaces such that one is most expanding (or less contracted) than the other, by uniform
rates.

The main target of this paper is to understand in detail the Lyapunov exponents for
typical continuous-time general families of linear differential systems in any dimension.
By using a much more careful and elaborate technique, we obtain, in particular, the higher
dimensional generalization of the theorems in [4]. Let us start with our main result.

Theorem 1.1 There exists a C0-residual subset R of d-dimensional linear differential
systems with fundamental matrix evolving in GL(d,R) and over a µ-invariant flow
ϕt : X → X where µ is a Borel regular probability measure, such that, if A ∈ R, then
for µ-a.e. point x ∈ X we have dominated splitting or else the Lyapunov exponents
are all equal.

Since we are going to make conservative perturbations and, in conservative setting,
having equal Lyapunov exponents is tantamount to all exponents being zero, we derive the
following Corollary.

Corollary 1.1 There exists a C0-residual subset R of d-dimensional conservative
linear differential systems over a µ-invariant flow ϕt : X → X where µ is a Borel
regular probability measure, such that if A ∈ R, then for µ-a.e. point x ∈ X we
have dominated splitting or else the Lyapunov exponents are all zero.

We point out that the first example of these kind of dichotomies appeared in the ground-
breaking approach of Mañé (see [21]). In [22] Mañé gave an outline of what could be the
proof for area-preserving diffeomorphisms on surfaces. Then, in [7], Bochi combined the
arguments outlined in [22] with new ideas to complete the proof. Next, in a seminal paper
of Bochi and Viana (see [8]) the dichotomy was generalized to any dimension, to symplec-
tomorphisms and to discrete cocycles. Later we used the approach of Mañé-Bochi-Viana,
in the context of the continuous-time systems, and we proved the 2-dimensional linear
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differential systems version (see [4]) and also the 3-dimensional volume-preserving flows
case (see [5]).

Let us mention now some results in the opposite direction to ours: in [6] we proved
that, in the setting of dynamical linear differential systems, ergodicity and dominated split-
ting assure that zero Lyapunov can be removed by small C1-perturbations, at least when
the central direction is 1-dimensional. We also mention the early work of Millionshchikov
(see [23] and [24]) where abundance (dense and open set with respect to C0-topology)
of a simple spectrum (all Lyapunov exponents are different) is proved for a class of lin-
ear differential systems. Fabbri, in [13], proved the C0-genericity (open and dense) of
hyperbolicity on the torus for 2-dimensional linear differential systems (see also Fabbri-
Johnson [15]). For determining the positivity of Lyapunov exponents we mention that
Knill (see [19]) proved that for a C0-dense set of 2-dimensional bounded and measurable
conservative discrete cocycles we have positive exponents. We remark that Fabbri’s re-
sult is the continuous-time counterpart of Knill’s theorem on tori. Later, in [3], Arnold
and Cong used a different strategy and generalized Knill’s result to GL(d,R) valued dis-
crete cocycles. A very interesting and recent result of Cong (see [11]) says that a generic
bounded cocycle has simple spectrum, moreover the Oseledets splitting is dominated. As a
consequence of this result, in the conservative 2-dimensional discrete and bounded case we
have abundance of uniform hyperbolicity. Going back to linear differential systems we also
recall the results of Fabbri [14], Fabbri-Johnson [16] and the early paper of Kotani [18].
Furthermore, Nerurkar (see [25]) proved the positivity of Lyapunov exponents for a dense
set in a class of conservative linear differential systems.

It is possible to prove the dichotomy of Theorem 1.1 for systems with solutions evolving
in more general subgroups of GL(d,R). Actually, in order to obtain similar results these
systems must satisfy the accessibility condition (see [4] Definition 5.1) which guarantees
that we can mix directions and thus it can be shown that the strategy of the proof still
works. Note that in [25] Nerurkar also used a definition of accessibility. The approach in
this work explicitly proves that conservative systems and systems evolving in the general
linear group actually are accessible. Parallel perturbations must be developed for other kind
of systems, like for example, linear differential systems with transition matrix evolving in
the symplectic group.

2 Preliminaries

2.1 Linear differential systems

We consider a non-atomic probability space (X,µ) where X is a compact and Hausdorff
space and µ is a Borel regular probability measure. Let ϕt : X → X be a flow continuous
in the space parameter and C1 in the time parameter and assume that µ is ϕt-invariant. For
d ∈ N let A : X → GL(d,R) be a continuous map. For each p ∈ X we consider the
non-autonomous linear differential equation:

d

dt
u(s)|s=t = A(ϕt(p)) · u(t), (2.1)
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called the linear variational equation. We say that the solution of (2.1) is the fundamental
matrix related to the system A. The solution of (2.1) is a linear flow Φt

A(p) : Rd
p → Rd

ϕt(p)

which may be seen as the skew-product flow,

Φt : X × Rd
p −→ X × Rd

ϕt(p)

(p, v) −→ (ϕt(p), Φt
A(p) · v).

Since for all p ∈ X we have A(p) = d
dtΦ

t
A(p)|t=0, Φt

A is also called the infinitesimal
generator of A. We recall a basic relation which says that for all p ∈ X and t ∈ R we have
Φt+s

A (p) = Φs
A(ϕt(p)) ◦ Φt

A(p).
We will be interested in two of the most common systems; the traceless ones, where

Tr(A) = 0 and the systems where Φt
A ∈ GL(d,R), that is where Φt

A evolves in the linear
group of matrices with non-zero determinant. We denote the last-mentioned systems by
G and the traceless systems by T . Another kind of systems which are of special interest
are the modified volume-preserving systems which simulate the volume-preserving vector
fields in manifolds with dimension d + 1. To define formally these systems we consider a
continuous function a : X → R which is nonnegative and has subexponential growth, that
is for p ∈ X we have

lim
t→±∞

1
t

log(a(ϕt(p))) = 0. (2.2)

Moreover, if Fix(ϕt) denotes the set of fixed points of ϕt, then a(X \ Fix(ϕt)) 6= 0. We
say that A is modified volume-preserving, denoting by Ta if:

detΦt
A(p) =

{
1, if p ∈ Fix(ϕt)

a(p)
a(ϕt(p)) , if p /∈ Fix(ϕt).

The linear Poincaré flow of a C1 volume-preserving flow ϕt is the most typical example of
these kind of systems. In this case we have a(·) = ‖ d

dtϕ
t(·)|t=0‖.

Let A ∈ T , then any conservative perturbation of A, say A + H , must satisfy Φt
A+H ∈

SL(d,R). It is immediate to see that if H ∈ T , then A + H ∈ T . Using the Liouville
formula,

detΦt
A(p) = exp

(∫ t

0

TrA(ϕs(p))
)

ds,

it is straightforward to see that if A ∈ Ta, respectively A ∈ G, and H ∈ T , then A + H ∈
Ta, respectively A + H ∈ G.

To compute the distance between linear differential systems we will basically work
with two norms; the uniform convergence norm (or the C0-norm) which is given by

‖A−B‖ = max
p∈X

‖A(p)−B(p)‖

and the L∞-norm, which is given by

‖A−B‖∞ = esssup‖A(p)−B(p)‖.
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2.2 Multiplicative ergodic theorem

In our setting the Oseledets Theorem [26] guarantees that for µ-a.e. point p ∈ X , there
exists a Φt

A-invariant splitting called Oseledets’ splitting of the fiber Rd
p = E1

p ⊕ ...E
k(p)
p

and real numbers called Lyapunov exponents λ̂1(p) > ... > λ̂k(p)(p), with k(p) ≤ d, such
that:

lim
t→±∞

1
t

log ‖Φt
A(p) · vi‖ = λ̂i(p), (2.3)

for any vi ∈ Ei
p \ {~0} and i = 1, ..., k(p). If we do not count the multiplicities, then we

have λ1(p) ≥ λ2(p) ≥ ... ≥ λd(p). Moreover, given any of these subspaces Ei and Ej ,
the angle between them along the orbit has subexponential growth, that is

lim
t→±∞

1
t

log sin(](Ei
ϕt(p), E

j
ϕt(p))) = 0. (2.4)

If the flow ϕt is ergodic, then the Lyapunov exponents and the dimensions of the associated
subbundles are µ-a.e. constant. For a simplified proof of this theorem for linear differential
systems see [17]. We denote by O(A) the µ-generic points given by the multiplicative
ergodic theorem.

2.3 Multilinear operators algebra

Let H be a Hilbert space and n ∈ N. The nth exterior product of H, denoted by ∧n(H), is
also a vector space. If dim(H) = d, then dim(∧n(H)) = (d

n). Given an orthonormal basis
of H, {ej}j∈J , then the family of exterior products ej1 ∧ ej2 ∧ ... ∧ ejn for j1 < ... < jn

with jα ∈ J constitutes an orthonormal basis of ∧n(H). Given two Hilbert spaces H1 and
H2 and a linear operator L : H1 → H1 we define the operator ∧n(L) by

∧n(L) : ∧n(H1) −→ ∧n(H2)
ψ1 ∧ ... ∧ ψn −→ L(ψ1) ∧ ... ∧ L(ψn).

Note that given a linear differential system A over ϕt, and since for the operators Lt : Hp →
Hϕt(p) and Ls : Hϕt(p) → Hϕt+s(p) we have ∧n(LsLt) = ∧n(Ls)∧n (Lt), we obtain that
∧n(Φt

A) is also a linear differential system over ϕt which we also denote by ∧n(A). For
details on multilinear algebra of operators in Hilbert spaces see [27] chapter V.

This operator, in the particular case of dim(H) = d, will be very useful to prove our
results since we can recover the spectrum and splitting information of the dynamics of
∧n(Φt

A) from the one obtained by applying Oseledets’ Theorem to Φt
A. This information

will be for the same full measure set and with this approach we deduce our results. Next we
present the multiplicative ergodic theorem for exterior power (for a proof see [2] Theorem
5.3.1).

Lemma 2.1 The Lyapunov exponents λ∧n
i (p) for i ∈ {1, ..., (d

n)} (repeated with mul-
tiplicity) of the nth exterior product operator ∧n(A) at p are the numbers:

n∑

j=1

λij (p), where 1 ≤ i1 < ... < in ≤ d.
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This nondecreasing sequence starts with λ∧n
1 (p) = λ1(p) + λ2(p) + ... + λn(p) and

ends with λ∧n
q(n)(p) = λd+1−n(p) + λd+2−n(p) + ... + λd(p). Moreover the splitting of

∧n(Rd
p(i)) for 0 ≤ i ≤ q(n) (of ∧n(A)) associated to λ∧n

i (p) can be obtained from
the splitting Rd

p(i) (of A) as follows; take an Oseledets basis {e1(p), ..., ed(p)} of Rd
p

such that ei(p) ∈ Ek
p for dim(E1

p) + ... + dim(Ek−1
p ) < i ≤ dim(E1

p) + ... + dim(Ek
p ).

Then the Oseledets space is generated by the n-vectors:

ei1 ∧ ... ∧ ein
such that 1 ≤ i1 < ... < in ≤ d and

n∑

j=1

λij
(p) = λ∧n

i (p).

2.4 Dominated splitting

Let ϕt : X → X be a flow and Λ ⊆ X a ϕt-invariant set. Let A be a linear differential
system. Given any linear map L we denote by m(L) the conorm which is defined by
‖L−1‖−1 = infv 6=~0‖L · v‖. We say that Rd

Λ = UΛ ⊕ SΛ is an m-dominated splitting for
A over Λ if Φt

A(p) · Up = Uϕt(p) and Φt
A(p) · Sp = Sϕt(p) for p ∈ Λ and t ∈ R, the

dimensions of Up and Sp are constant on Λ and for every p ∈ Λ the following inequality
holds:

‖Φm
A (p)|Sp‖

m(Φm
A (p)|Up)

≤ 1
2
. (2.5)

We note that dominated splitting is a weak form of uniform hyperbolicity (or exponential
dichotomy, see [12]). The dimension of U is called the index of the splitting. Every m-
dominated splitting over Λ can be extended to an m-dominated splitting over the closure of
Λ. Also the angles between the subbundles of a dominated splitting are uniformly bounded
away from zero. Moreover, for a fixed index the dominated splitting is unique. For the
detailed proofs of these properties about dominated structures see [10] Section B.1. Notice
that an m-dominated splitting at p ∈ X means that one has m-dominated splitting over the
closure of the orbit of p.

Given A as above, n ∈ {1, ..., d− 1} and m ∈ N we denote by Λn(A,m) ⊆ X the set
of points p ∈ X such that there exists an m-dominated splitting of index n along the orbit
of x. Clearly the set Γn(A,m) = X \ Λn(A,m) is open.

In the sequel we will be interested in dominated structures over the orbit of points
p ∈ O(A) and related to the natural flow invariant decomposition given by the Oseledets
Theorem; Up = E1

p ⊕ ... ⊕ En
p and Sp = En+1

p ⊕ ... ⊕ Ed
p where the subspaces Ei

p

for i = {1, ..., d} are the ones obtained in Section 2.2 and n ∈ {1, ..., d − 1} is a fixed
index. Therefore, we define the set Γ]

n(A,m) of points p ∈ Γn(A,m) ∩ O(A) such that
λn(A, p) > λn+1(A, p). Let Γ∗n(A,m) denote the set of nonperiodic points of Γ]

n(A,m).
Finally, let

Γn(A,∞) =
⋂

m∈N
Γn(A, m) and Γ]

n(A,∞) =
⋂

m∈N
Γ]

n(A,m).

In Lemma 4.1 of [8] it is proved that for every system A and n ∈ {1, ..., d − 1}, the set
Γ]

n(A,∞) contains no periodic points. Actually,

∀δ > 0,∃m0 ∈ N : ∀m ≥ m0, µ(Γ]
n(A,m) \ Γ∗n(A,m)) < δ. (2.6)
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The statement (2.6) will be very useful because our perturbations must be supported along
large orbit segments and the existence of periodic points complicates our task.

Given a system A, n ∈ {0, 1, ..., d−1} and m ∈ Nwe consider the measurable function

ρA,m : Γ∗n(A,m) −→ R
p −→ ‖Φm

A (p)|Sp‖
m(Φm

A (p)|Up ) .

Now we define the set

∆∗
n(A,m) =

{
p ∈ Γ∗n(A,m) : ρA,m(p) >

1
2

}
.

Notice that ⋃

t∈R
ϕt(∆∗

n(A,m)) = Γ∗n(A, m). (2.7)

The next simple lemma will be useful in Section 4.

Lemma 2.2 Given ∆∗
n(A,m) and Γ∗n(A,m) as in (2.7) if µ(Γ∗n(A,m)) > 0, then

µ(∆∗
n(A,m)) > 0.

Proof. We claim that

Γ1 =
⋃

t∈Q
ϕt(∆∗

n(A,m)) = Γ∗n(A, m).

Notice that Γ1 ⊆ Γ∗n(A,m) is trivial so we just have to prove that Γ∗n(A,m) ⊆ Γ1. Take
z ∈ Γ∗n(A,m), then there exist t ∈ R and p ∈ ∆∗

n(A,m) such that ϕt(p) = z. If
t ∈ Q, then z ∈ Γ1 and we are done. Otherwise, using the continuity of the function
t → ρA,m(ϕt(q)) (for q fixed), there exist a small enough s > 0 and r ∈ Q such that
ϕs(p) ∈ ∆∗

n(A,m) and ϕr(ϕs(p)) = z. Hence z ∈ Γ1 and Γ1 = Γ∗n(A,m).
Finally, if µ(∆∗

n(A,m)) = 0, then we have µ(Γ1) = 0 and the lemma is proved.

2.5 Entropy functions

Let us consider the following function where L is one of the sets T , Ta or G:

En : L −→ [0, +∞)
A 7−→ ∫

X
λ1(∧n(A), p)dµ(p). (2.8)

With this function we compute the integrated largest Lyapunov exponent of the nth exterior
power operator. We consider also the function En(A, Γ), where Γ ⊆ X is a ϕt-invariant
set, defined by:

En(A,Γ) =
∫

Γ

λ1(∧n(A), p)dµ(p).
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Let us denote Σn(A, p) = λ1(A, p) + ... + λn(A, p). By using Lemma 2.1 we conclude
that for n = 1, ..., d − 1 we have Σn(A, p) = λ1(∧n(A), p) and therefore we obtain
En(A, Γ) = E1(∧n(A), Γ). By using Proposition 2.2 of [8] we get that:

En(A, Γ) = inf
k∈N

1
k

∫

Γ

log ‖ ∧n (Φk
A(p))‖dµ(p), (2.9)

and so the entropy function (2.8) is upper semi-continuous for all n ∈ {1, ..., d− 1}.
Let us consider now the function:

E : L −→ Rd−1

A 7−→ (E1(A), E2(A), ..., Ed−1(A)).

In Section 5 we derive Theorem 1.1 from the following proposition. This proposition
follows from Lemma 4.4 which will be proved in Section 4.

Proposition 2.1 If A is a continuity point of E, then there exist two disjoint measur-
able sets E and D with µ(E ∪D) = 1 verifying the following: for the linear system
A we have, for any p ∈ E, that the spectrum is trivial and, for any p ∈ D, we have
that the Oseledets splitting is dominated along the orbit of p.

3 Perturbations of linear differential systems

We begin by proving a basic perturbation lemma which will be the main tool for proving
our results.

Lemma 3.1 Given A ∈ T (Ta or G) and ε > 0, there exists ξ0 > 0 (depending
on A and ε), such that given any ξ ∈ (0, ξ0), any p ∈ X (non-periodic or with
period larger than 1) and any 2-dimensional vector space Vp ⊂ Rd

p, there exists a
measurable traceless system H (depending on ξ and p) such that:

1. ‖H‖ < ε;

2. H is supported in ϕt(p) for t ∈ [0, 1];

3. If Wp is the orthogonal complement of Vp in Rd
p, then Φt

A+H(p) = Φt
A(p) on

Wp;

4. Φ1
A+H(p) · v = Φ1

A(p) ◦Rξ · v, ∀v ∈ Vp, where Rξ is the rotation of angle ξ on
Vp;

Proof. Take K = max
p∈X

‖Φ±t
A (p)‖ for t ∈ [0, 1]. We claim that it is sufficient to take ξ0 > 0

such that:
ξ0 <

ε

2K2
.

Let η : R→ [0, 1] be any C∞ function such that η(t) = 0 for t ≤ 0, η(t) = 1 for t ≥ 1, and
0 ≤ η′(t) ≤ 2, for all t. We define the 1-parameter family of linear maps Ψt(p) : Rd

p → Rd
p

for t ∈ [0, 1] as follows; we fix two orthonormal basis {u1, u2} of Vp and {u3, u4, ..., ud}
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of Wp. For θ ∈ [0, 2π], we consider the rotation of angle θ whose matrix relative to the
basis {u1, u2} is

Rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Since Vp ⊕Wp = Rd
p, given any u ∈ Rd

p we decompose u = uV + uW , where uV ∈ Vp

and uW ∈ Wp. For t ∈ R and ξ ∈ (0, ξ0) we define

Rt · u = Rη(t)ξ(uV ) + uW .

Now we consider the 1-parameter family of linear maps Ψt(p) : Rd
p → Rd

ϕt(p) where
Ψt(p) = Φt

A(p) ◦ Rt. We take time derivatives and we obtain:

(Ψt(p))′ = (Φt
A(p))′Rt + Φt

A(p)(Rt)′ =
= A(ϕt(p))Φt

A(p)Rt + Φt
A(p)(Rt)′ =

= A(ϕt(p))Ψt(p) + Φt
A(p)(Rt)′(Ψt(p))−1Ψt(p) =

=
[
A(ϕt(p)) + H(ϕt(p))

] ·Ψt(p).

Hence we define the perturbation by,

H(ϕt(p)) = Φt
A(p)(Rt)′(Rt)−1(Φt

A(p))−1,

where (Rt)′ and (Rt)−1 are respectively (Rt)′ and (Rt)−1 but written in the canonical
base of Rd

p instead. Since

(Rt)′ · u = η′(t)ξ
(− sin(η(t)ξ) − cos(η(t)ξ)

cos(η(t)ξ) − sin(η(t)ξ)

)
· uV

and also

(Rt)−1 · uV = R−η(t)ξ(uV ) =
(

cos(η(t)ξ) sin(η(t)ξ)
− sin(η(t)ξ) cos(η(t)ξ)

)
· uV ,

we obtain that if uV = (ψ1, ψ2,

(d−2)×︷ ︸︸ ︷
0, 0, ..., 0) (in the coordinate system {u1, ..., ud}) then,

(Rt)′(Rt)−1 · u = ξη′(t)(−ψ2, ψ1,

(d−2)×︷ ︸︸ ︷
0, 0, ..., 0).

Clearly we have Tr((Rt)′(Rt)−1) = 0 and since the trace is invariant by any change of
coordinates we obtain Tr((Rt)′(Rt)−1) = 0 and consequently

Tr(Φt
A(p)(Rt)′(Rt)−1(Φt

A(p))−1) = 0.

Therefore we define the linear differential system B = A+H which is measurable and
clearly conservative. In fact, as we mention previously, if A ∈ Ta (respectively A ∈ G) and
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Figure 1: The action of the perturbation H(ϕt(p)), t ∈ [0, 1].

Tr(H) = 0, then A + H ∈ Ta (respectively A ∈ G). In Figure 1 we give the geometric
idea of how H acts. Now to prove 1. we compute the norm of H:

‖H(ϕt(p))‖ = ‖Φt
A(p)(Rt)′(Rt)−1(Φt

A(p))−1‖ ≤

≤ K2‖(Rt)′(Rt)−1‖ ≤ 2K2ξ ≤ 2K2ξ0 < ε.

Moreover, by choice of η, we have that Supp(H) is ϕt(p) for t ∈ [0, 1] and 2. is proved.
Note that the perturbed system B generates the linear flow Φt

A+H(p) which is the same as
Ψt, hence given u ∈ Wp we have:

Φt
B(p) · u = Ψt(p) · u = Φt

A(p)[Rη(t)ξ(uV ) + uW ] = Φt
A(p) · uW = Φt

A(p) · u,

and 3. follows. Finally to prove 4. taking u ∈ Vp we obtain,

Φ1
B(p) · u = Ψ1(p) · u = Φ1

A(p) ◦ R1 · u = Φ1
A(p)[Rη(1)ξ(uV ) + uW ] =

= Φ1
A(p)Rξ(uV ) = Φ1

A(p) ◦Rξ · u,

and Lemma 3.1 is proved.

Lemma 3.2 Given A ∈ T (Ta or G) and ε > 0, there exists ξ0 > 0 (depending on
A and ε), such that given any ξ ∈ (0, ξ0), any p ∈ X (non-periodic or with period
larger than 1) and any 2-dimensional vector space Vϕ1(p) ⊂ Rd

ϕ1(p), there exists a
measurable traceless system H (depending on ξ and p) such that:

1. ‖H‖ < ε;

2. H is supported in ϕt(p) for t ∈ [0, 1];

3. If Wp is the orthogonal complement of Vp in Rd
p, then Φt

A+H(p) = Φt
A(p) on

Wp;

4. Φ1
A+H(p) · v = R̃ξ ◦ Φ1

A(p) · v, ∀v ∈ Vp, where R̃ξ is the elliptical rotation of
angle ξ on Vϕ1(p);
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Proof. We keep the same notation of Lemma 3.1 and we define the following 1-parameter
linear map acting on Rd

ϕt(p):

R̃t = Φt
A(p) · Rt · [Φt

A(ϕt(p))]−1.

We denote Ψt = R̃t · Φt
A and taking time derivatives we obtain,

(Ψt)′ = (R̃t · Φt
A)′ = (Φt

A · Rt)′ =
= [A(ϕt(p)) + H(ϕt(p))] · (Φt

A · Rt) =
= [A(ϕt(p)) + H(ϕt(p))] · (Φt

A · Rt · (Φt
A)−1 · Φt

A) =
= [A(ϕt(p)) + H(ϕt(p))] · (R̃t · Φt

A) =
= [A(ϕt(p)) + H(ϕt(p))] ·Ψt,

now it is analogous to the proof of Lemma 3.1. The lemma is proved.

In the next lemma, and under certain hypotheses, we produce a small norm perturbation
along a large orbit segment which allows us to perform a rotation by a large angle. This
will enable us, in Lemma 3.4, to mix the expansion rates of a given splitting.

First we introduce some notation that will be used in Lemma 3.3. Given a system A,
m ∈ N, p ∈ X and a nontrivial splitting of index n ∈ {1, ..., d−1} at p ∈ X , Up⊕Sp = Rd

p,
we define a codimension 2 subspace of Rd

p, denoted by Wp, in the following way:
Definition of Wp: Denote by Ut ⊕ St the image of the splitting Up ⊕ Sp by Φt

A(p), that is,
Ut = Uϕt(p) = Φt

A(p)(Up) and St = Sϕt(p) = Φt
A(p)(Sp). Now we consider three unit

vectors ν ∈ Up, η ∈ Sp and η′ ∈ Sm such that:

‖Φm
A (p) · ν‖ = m(Φm

A (p)|Up) , ‖Φm
A (p) · η‖ = ‖Φm

A (p)|Sp‖ and η′ =
Φm

A (p) · η
‖Φm

A (p) · η‖ .

Define Gp = Up ∩ ν⊥, Hm = Sm ∩ η′⊥ and Hp = Φ−m
A (ϕm(p))(Hm) ⊂ Sp. Consider

unit vectors vp = ν and wp ∈ Sp ∩H⊥
p . Finally, define Wp = Gp ⊕Hp.

Lemma 3.3 Given A ∈ T (Ta or G) and ε, c, ξ > 0. There exists m0(ε, c, ξ) = m0 ∈
N such that for every m ≥ m0 we have the following; let p ∈ X be any non-periodic
point and Ut ⊕ St be a nontrivial splitting of index n ∈ {1, ..., d− 1} over the orbit
of p. Suppose that for all t, r ∈ [0,m] with 0 ≤ t + r ≤ m we have:

(i) ](St, Ut) > ξ;

(ii) ‖Φr
A(ϕt(p))|St‖

m(Φr
A(ϕt(p))|Ut ) ≤ c;

(iii) ‖Φm
A (p)|Sp‖

m(Φm
A (p)|Up ) ≥ 1

2 .

Then, for Wp ⊂ Rd
p, vp ∈ Up and wp ∈ Sp as defined above, if α = ](vp +Wp, wp +

Wp) then, there exists a measurable traceless system H, such that:

1. ‖H‖ < ε;
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2. H is supported in ϕt(p) for t ∈ [0, m];

3. Φt
A+H(p) = Φt

A(p) on Wp;

4. Φm
A+H(p) = Φm

A (p) ◦Rα, where Rα is a rotation of angle α on Rd
p/Wp.

Proof. Once again we use the ideas of the proof of Lemma 3.1. We consider θ0 > 0 and
m0 ∈ N such that:

θ0 <
ε sin6(ξ)

16c
and m0 ≥ 2π

θ0
.

Therefore, for any m ≥ m0, we can choose θ ∈ (0, θ0) such that mθ = α. Now we
take a C∞ function η : R → [0,m] such that η(t) = 0 for t ≤ 0, η(t) = m for t ≥ m,
and 0 ≤ η′(t) ≤ 2, for all t. Finally, we define Rη(t)θ : Rd

p/Wp → Rd
p/Wp like in

Lemma 3.1, in order to obtain a family of linear maps Rt : Rd
p → Rd

p such that; Rt|Wp =
Id, Rt(W⊥

p ) = W⊥
p and Rt/Wp = Rη(t)θ. Like in Lemma 3.1 we obtain a perturbation

H(ϕt(p)) = Φt
A(p)(Rt)′(Rt)−1(Φt

A(p))−1 for t ∈ [0,m].

Let us estimate ‖H(·)‖. Take Φt
A(p)/Wp : Rd

p/Wp → Rd
ϕt(p)/Φt

A(p)(Wp) the induced
linear map from the quotient space Rd

p/Wp into the quotient space Rd
ϕt(p)/Φt

A(p)(Wp). It
follows directly from Lemma 3.8 of [8] that (i), (ii) and (iii) implies the following inequality
for all t ∈ [0,m],

‖Φt
A(p)/Wp‖

m(Φt
A(p)/Wp)

≤ 8c

sin6(ξ)
.

Since for v ∈ Wp and t ∈ R we have H(ϕt(p)) · v = ~0 we obtain that,

‖H(ϕt(p))‖ = ‖(Φt
A(p)/Wp)(Rt)′(Rt)−1(Φt

A(p)/Wp)−1‖ ≤
≤ 2θ‖Φt

A(p)/Wp‖‖(Φt
A(p)/Wp)−1‖ =

= 2θ
‖Φt

A(p)/Wp‖
m(Φt

A(p)/Wp)
≤

≤ 2θ
8c

sin6(ξ)
< 2θ0

8c

sin6(ξ)
< ε.

Therefore 1. follows. The conclusions 2. and 3. are immediate. Finally, to prove 4., we
note that in time-m we rotate η(m)θ = mθ = α and the lemma is proved.

The following lemma will be crucial in the sequel.

Lemma 3.4 Given a system A ∈ T (Ta or G) and ε > 0, there exists m0 ∈ N such
that for every m ≥ m0 we have the following property: for all non-periodic point p
with a splitting Rd

p = Up ⊕ Sp satisfying

‖Φm
A (p)|Sp‖

m(Φm
A (p)|Up)

≥ 1
2
, (3.10)

there exists a measurable traceless system H supported in ϕ[0,m](p), with ‖H‖ < ε
and such that there exist vectors u ∈ Up \ {~0} and s ∈ Φm

A (Sp) \ {~0} satisfying
Φm

A+H(p)(u) = s.
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Proof. Let ξ0 > 0 be the smaller one given by both Lemma 3.1 and Lemma 3.2 (depending
on ε > 0 and A). Let also c > 0 be such that:

c > (sin ξ0)−2 and c ≥ max
p∈X

{ ‖Φ1
A(p)‖

m(Φ1
A(p))

}
. (3.11)

Take m0 ∈ N given by Lemma 3.3 which, we recall, has to be at least 32cπ
ε sin6(ξ0)

.
Small angle: Recall the notation St = Φt

A(p)(Sp) and Ut = Φt
A(p)(Up) for t ∈ [0,m].

First we assume that
∃t ∈ [0,m] such that ](St, Ut) ≤ ξ0. (3.12)

Then we take unit vectors st ∈ St and ut ∈ Ut with ](st, ut) < ξ0. If t ∈ [0,m− 1], then
we use Lemma 3.1 with Vϕt(p) = 〈st, ut〉 (where 〈e1, e2〉 denotes the vector space spanned
by e1 and e2) and we define H(ϕt+r(p)) for r ∈ [0, 1] and zero otherwise. On the other
hand, if t ∈ (m − 1, m], then we use Lemma 3.2 and define H(ϕr(p)) for r ∈ [t − 1, t]
and zero otherwise. In both cases we obtain vectors u ∈ Up \ {~0} and s ∈ Φm(Sp) \ {~0}
such that Φm

A+H(p)(u) = s.
Now we assume that there exist r, t ∈ R with 0 ≤ r + t ≤ m such that:

‖Φr
A(ϕt(p))|St‖

m(Φr
A(ϕt(p))|Ut)

≥ c. (3.13)

We choose unit vectors st ∈ St and ut ∈ Ut which realizes both norms, that is ‖Φr
A(ϕt(p))·

st‖ = ‖Φr
A(ϕt(p))|St‖ and ‖Φr

A(ϕt(p)) ·ut‖ = m(Φr
A(ϕt(p))|Ut). We define also the unit

vectors,

ut+r =
Φr

A(ϕt(p)) · ut

‖Φr
A(ϕt(p)) · ut‖ ∈ Ut+r and st+r =

Φr
A(ϕt(p)) · st

‖Φr
A(ϕt(p)) · st‖ ∈ St+r.

The vector ût = ut + sin(ξ0)st satisfy ](ût, ut) < ξ0 so an ε-small perturbation B1 given
by Lemma 3.1 with Vϕt(p) = 〈st, ut〉 will send ut into RΦ1

A(ϕt(p)) · (ût).
Let γ = ‖Φr

A(ϕt(p)) · ut‖(sin ξ0‖Φr
A(ϕt(p)) · st‖)−1 we define a vector in Rϕt+r(p)

by ŝt+r = γut+r + st+r. We have that,

Φr
A(ϕt(p)) · ût = Φr

A(ϕt(p)) · ut + sin(ξ0)Φr
A(ϕt(p)) · st =

= Φr
A(ϕt(p)) · ut +

‖Φr
A(ϕt(p)) · ut‖

γ‖Φr
A(ϕt(p)) · st‖Φr

A(ϕt(p)) · st =

= γ−1‖Φr
A(ϕt(p)) · ut‖.(γut+r + st+r) =

= γ−1‖Φr
A(ϕt(p)) · ut‖.ŝt+r.

Hence the vectors Φr
A(ϕt(p)) · ût and ŝt+r are colinear. Moreover, by (3.11), (3.13) and

definition of γ, ut and st, we have

γ =
m(Φr

A(ϕt(p))|Ut)
‖Φr

A(ϕt(p))|St‖
(sin ξ0)−1 ≤ (c sin ξ0)−1 < sin ξ0.

Therefore we obtain that ](st+r, ŝt+r) < ξ0 and using Lemma 3.2 we are able to pro-
duce a time-1 ε-perturbation B2 based at ϕt+r−1(p) such that Φ1

B2
(ϕt+r−1(p)) = Rξ0 ◦
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Φ1
A(ϕt+r−1(p)), where Rξ0 acts in Vϕt+r(p) = 〈st+r, ŝt+r〉 and sends ŝt+r into st+r. We

note that choosing c > 0 sufficiently large, see (3.11), guarantees disjoint perturbations.
Now we concatenate as follows:

Ru0
Φt

A(p)−→ Rut

Φ1
B1

(ϕt(p))−→ R[Φ1
A(ϕt(p)) · ût]

Φr−1
A (ϕt+1(p))−→ R[Φr

A(ϕt(p)) · ût].

We go back by time-1 and then we perform our second perturbation B2:

R[Φ−1
A (Φr

A(ϕt(p)) · ût)]
Φ1

B2
(ϕt+r−1(p))−→ Rst+r

Φm−t−r
A (ϕt+r(p))−→ Rsm.

Large angle: Using the same notation of Lemma 3.3, we begin by defining Gm = Φm
A (p)(Gp)

and Wm = Gm ⊕Hm. Notice that Φm
A (p)(Wp) = Wm. Now, we treat the case when we

do not have (3.12) and also (3.13). In this case, the fact that the angles are bounded away
from ξ0, the condition

∀r, t ∈ R : 0 ≤ t + r ≤ m we have
‖Φr

A(ϕt(p))|St
‖

m(Φr
A(ϕt(p))|Ut

)
≤ c,

and the hypothesis (3.10) will allow us to use Lemma 3.3 and obtain a measurable traceless
system H , such that ‖H‖ < ε, H is supported in ϕt(p) for t ∈ [0,m], Φt

A+H(p) = Φt
A(p)

onWp and Φm
A+H(p) = Φm

A (p)◦Rα, where Rα is a rotation of angle α = ](vp+Wp, wp+
Wp) on Rd

p/Wp. Then we obtain,

Φm
A+H(p)(vp +Wp) = Φm

A (p) ◦Rα(vp +Wp) = Φm
A (p) · wp +Wm.

Finally, let us see that there exists nonzero vectors u ∈ Up and s ∈ Sm such that
Φm

A+H(p)(u) = s. Since Wm = Gm⊕Hm there exist gm ∈ Gm and hm ∈ Hm such that,

Φm
A+H(p) · vp = Φm

A (p) · wp + gm + hm. (3.14)

Let gp = Φ−m
A (ϕm(p)) · gm. Note that Φm

A+H(p) · gp = gm, because gp ∈ Gp, Gp ⊂
Wp ∩ Up and Φt

A+H(p) = Φt
A(p) on Wp.

Consider the vector u ∈ Up defined by u = vp − gp. Since

Φm
A+H(p) · u = Φm

A+H(p) · vp − Φm
A+H(p) · gp = Φm

A+H(p) · vp − gm,

using (3.14) we obtain Φm
A+H(p) · u = Φm

A (p) ·wp + hm ∈ Sm and Lemma 3.4 is proved.

4 On the decay of the entropy function

The next lemma is the flow version of Lemma 3.12 of [7] and is easily obtained from it.

Lemma 4.1 Let ϕt : X → X be a measurable µ-invariant flow, γ > 0, ∆ ⊆ X such
that µ(∆) > 0 and Γ = ∪

t∈R
ϕt(∆). There exists a measurable function T : Γ → N

such that for µ-a.e. p ∈ Γ and for all t ≥ T (p) there exists some s ∈ [0, t] satisfying
| st − 1

2 | < γ and ϕs(p) ∈ ∆.
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Proof. Let ∆1 = ∪
t∈[0,1]

ϕt(∆) and f = ϕ1. Notice that Γ = ∪
n∈Z

fn(∆1). Now we

apply Lemma 3.12 of [7] to f , Γ and ∆1. Therefore, there exists a measurable function
N0 : Γ → N (depending on γ) such that for any p ∈ Γ and for any n ≥ N0(p), there exists
` ∈ {0, 1, ..., n} such that | `

n − 1
2 | < γ

2 and f `(p) ∈ ∆1.
Since f `(p) ∈ ∆1 there exists s ∈ [` − 1, `] such that ϕs(p) ∈ ∆. Take T0 ∈ R such

that for all t ≥ T0 we have
∣∣∣ [t]

t − 1
∣∣∣ < γ and 1

[t] < γ
2 .

For p ∈ Γ we define T (p) = max{N0(p), T0}. Hence, for all t ≥ T (p) and s as above
(depending on [t]) we have that

s

t
− 1

2
≥ `− 1

[t]
− 1

2
=

`

[t]
− 1

2
− 1

[t]
> −γ

2
− 1

[t]
> −γ,

and also
s

t
− 1

2
≤ `

t
− 1

2
=

(
`

[t]
− 1

2

)
[t]
t

+
(

[t]
t
− 1

)
1
2

< γ.

Therefore, we obtain | st − 1
2 | < γ finishing the proof of the lemma.

The next lemma gives us a local strategy to use the absence of dominated splitting and
the different Lyapunov exponents in order to cause a decay, by a small perturbation, of the
largest Lyapunov exponent of the nth exterior power system. We follow Proposition 4.2
of [8] adapting it to the flow setting. We only give the main steps of the proof, for all the
details see [8].

Lemma 4.2 Let A ∈ T (Ta or G) be such that there exists a positive measure subset
of O(A) satisfying the following hypotheses;

(H1) not all the Lyapunov exponents of the cocycle Φt
A are equal;

(H2) for all m ∈ N the cocycle Φt
A does not admit an m-dominated Oseledets’

splitting.

Then, given any ε, δ > 0, there exist n ∈ {1, ..., d − 1} and m0 ∈ N such
that for all m ≥ m0 the following is true: there exists a measurable function
T̃ : Γ∗n(A,m) → R such that for µ-a.e. point q ∈ Γ∗n(A,m) and every t > T̃ (q)
there exists H ∈ T supported on the segment ϕs(q) for s ∈ [0,m] such that

1. ‖H‖ < ε;

2. 1
t log ‖ ∧n (Φt

A+H(q))‖ < 1
2 (Σn−1(A, q) + Σn+1(A, q)) + δ.

Proof. Using hypothesis (H1) we obtain that there exists n ∈ {1, ..., d − 1} such that
λn(q) > λn+1(q) for any q in a positive measure subset of O(A). Then, hypothesis (H2),
implies that µ(Γ]

n(A, m)) > 0 for all m ∈ N.

Choice of m0: By (2.6) there exists m1 ∈ N such that for all m ≥ m1 we have µ(Γ∗n(A,m)) >
0. For m ≥ m1 let ∆∗

n(A, m) ⊂ Γ∗n(A,m) be like in (2.7). By Lemma 2.2 we conclude
that µ(∆∗

n(A,m)) > 0 for any m ≥ m1. Now let m0 ∈ N be any integer greater than m1

as well as large enough so that conclusion of Lemma 3.4 apply.
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Notice that we have,

1
2
[Σn−1(A, q) + Σn+1(A, q)] = λ1(q) + ... + λn−1(q) +

λn(q) + λn+1(q)
2

. (4.15)

LetRd
Γ∗n(A,m) = U⊕S, where U corresponds to the vector space spanned by the Lyapunov

exponents λ1(q),...,λn(q) and S corresponds to the vector space spanned by λn+1(q),...,λd(q).
We recall that, by definition of Γ∗n(A,m), we have λn(q) > λn+1(q).

Choice of T̃ : By Lemma 4.1 for any µ-generic point q ∈ Γ∗n(A, m), there exists T (q)
such that for all t ≥ T (q) and s ≈ t

2 we have p = ϕs(q) ∈ ∆∗
n(A,m). To define T̃ (q)

we increase, if necessary, T (q) (depending on A, q, m and δ) exactly as in the definition
of N(·) in Proposition 4.2 of [8] in order to obtain, not only useful estimates given by
Oseledets’ Theorem but also T̃ (q) >> m. These estimates will be used later when we
compute the size of the perturbation.

Let Eq be the vector space associated to λ∧n
1 (q) (the largest Lyapunov exponent of the

nth exterior power system) and Fq be the vector space associated to the other Lyapunov
exponents. We obtain a splitting ∧n(Rd) = E ⊕ F . Since both λi(q)′s and λ∧n

j (q)′s are
written in nonincreasing order it follows that,

λ∧n
1 (q) =

n∑

i=1

λi(q) and λ∧n
2 (q) =

n−1∑

i=1

λi(q) + λn+1(q). (4.16)

Since λn(q) > λn+1(q) we get λ∧n
1 (q) > λ∧n

2 (q) and also that dim(Eq) = 1. By using
Lemma 4.4 of [8] and Lemma 3.4 we get that, ∧n(Φm

A+H(p)) : ∧n (Rd
p) → ∧n(Rd

ϕm(p))
satisfies the property,

∧n(Φm
A+H(p))(Ep) ⊂ Fϕm(p). (4.17)

We decompose the action of the map ∧n(Φm
A+H(p)) in three steps (see Figure 2); the

first (between q and p) and the third (between ϕm(p) and ϕt(q)), with matrix in the basis
induced by the Oseledets directions and with respect to the splitting E⊕F which we denote
respectively by:

A1 =
(

Auu
1 0
0 Ass

1

)
and A2 =

(
Auu

2 0
0 Ass

2

)
.

The second step (between p and ϕm(p)), with matrix in the basis induced by the Oseledets
directions and with respect to the splitting E ⊕ F which we denote by:

B =
(

Buu Bus

Bsu Bss

)
.

The outcome of the inclusion (4.17) is that Buu = 0. Therefore we obtain:

∧n(Φt
A+H(q)) =

(
0 Auu

2 BusAss
1

Ass
2 BsuAuu

1 Ass
2 BssAss

1

)
. (4.18)

By choice of T̃ we have t >> m so the logarithm of the norm of the entries of B, that only
depend on m, when divided by t are less than a small fraction of δ. Moreover, as p = ϕs(q)
with s ≈ t/2, we obtain that
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• ‖Ass
1 ‖ < exp (s (λ∧n

2 (q) + δ));

• ‖Auu
1 ‖ < exp (s (λ∧n

1 (q) + δ));

• ‖Ass
2 ‖ < exp ((t− s−m) (λ∧n

2 (q) + δ)) and

• ‖Auu
2 ‖ < exp ((t− s−m) (λ∧n

1 (q) + δ)).

These estimates follow by choice of T̃ (p) (< t) and are obtained using the asymptotic
properties (2.3) and (2.4) given by Oseledets’ Theorem applied to the dynamics of ∧n(Φt

A).

q
p ϕ (p)

ϕ (p)t

m

A

B
A 1

2

Supp(H)

Figure 2: The A′is for i = 1, 2 goes approximately t
2 where t >> m.

We obtain estimates for the norm of the entries in (4.18) and it is straightforward to see that

log ‖ ∧n (Φt
A+H(q))‖ < t

(
λ∧n

1 (q) + λ∧n
2 (q)

2
+ kδ

)
,

for some k > 0. We switch δ by δ/k along the proof and using (4.15) and (4.16) we obtain,

1
t

log ‖ ∧n (Φt
A+H(q))‖ <

1
2

(
n∑

i=1

λi(q) +
n−1∑

i=1

λi(q) + λn+1(q)

)
+ δ =

= λ1(q) + ... + λn−1(q) +
λn(q) + λn+1(q)

2
+ δ =

=
1
2
(Σn−1(A, q) + Σn+1(A, q)) + δ,

and the lemma is proved.

In the next lemma we make the previous lemma global. We only present a brief
overview of the proof. For the complete details see [8] and [5].

Lemma 4.3 Let A ∈ T (Ta or G) be such that there exists a positive measure subset
of O(A) satisfying the hypotheses (H1) and (H2) of Lemma 4.2. Take any ε, δ > 0.
Then, there exist n ∈ {1, ..., d − 1} and m0 ∈ N such that for all m ≥ m0, there
exists a continuous system B = A + H (with Tr(A) = Tr(B)) such that,

1. H(·) = [0] outside the open set Γn(A,m);
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2. ‖H‖∞ < ε;

3.
∫
Γn(A,m)

Σn(B, q)dµ(q) < δ +
∫
Γn(A,m)

1
2 (Σn−1(A, q) + Σn+1(A, q))dµ(q).

To prove this lemma we recall that the Ambrose-Kakutani Theorem (see [1]) says that
any aperiodic flow ϕt (i.e. the set of periodic points of ϕt has zero measure) flow is isomor-
phic to some special flow. Now, by Lemma 4.2 and by Ambrose-Kakutani’s Theorem, we
can develop a tower argument over the aperiodic flow ϕt : Γ∗n(A,m) → Γ∗n(A,m). This
strategy, which is completely described in Proposition 4.8, Proposition 7.3 and Lemma 7.4
of [8] (see also [5] for the ingredients in the flow framework), allows us to construct a
measurable system B̃ such that ‖A − B̃‖∞ < ε/2. Once the global measurable system
B̃ is constructed and, since Luzin’s theorem asserts that measurable functions are almost
continuous, we produce the continuous system. The highlights of the proof may be seen
in [9] Section 2.4.

Now we define the discontinuity “jump” of the function En defined in Section 2.5 by:

Jn(A) =
∫

Γn(A,∞)

λn(A, p)− λn+1(A, p)dµ(p).

In the next lemma we follow [8] (Proposition 4.17):

Lemma 4.4 Let A ∈ T (Ta or G) be such that there exists a positive measure subset
of O(A) satisfying the hypotheses (H1) and (H2) of Lemma 4.2. Take any ε, δ > 0.
There exists n ∈ {1, ..., d− 1} with Jn(A) > 0 and there exists B ∈ T (respectively
in Ta or G) ε-close to A such that

∫

X

Σn(B, ·)dµ <

∫

X

Σn(A, ·)dµ− 2Jn(A) + δ.

Proof. By Lemma 4.3 we obtain B such that A = B outside Γn(A, m) such that,
∫

Γn(A,m)

Σn(B, ·)dµ < δ +
∫

Γn(A,m)

Σn−1(A, ·) + Σn+1(A, ·)
2

dµ.

Clearly X = Γn(A,m) t (X \ Γn(A,m)) so we split the integral:
∫

X

Σn(B, ·)dµ < δ +
∫

Γn(A,m)

Σn−1(A, ·) + Σn+1(A, ·)
2

dµ +
∫

X\Γn(A,m)

Σn(A, ·)dµ.

Now since Σn(A, ·) = λ1(A, ·) + ... + λn(A, ·) we note that,

2Jn(A) =
∫

Γn(A,∞)

(
Σn(A, ·)− Σn−1(A, ·) + Σn+1(A, ·)

2

)
dµ.

Moreover, since Γn(A, m) ⊃ Γn(A,∞), we obtain,

−
∫

Γn(A,m)

(
Σn(A, ·)− Σn−1(A, ·) + Σn+1(A, ·)

2

)
dµ ≤ −2Jn(A).
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Or equivalently

∫

Γn(A,m)

(
Σn−1(A, ·) + Σn+1(A, ·)

2

)
dµ ≤ −2Jn(A) +

∫

Γn(A,m)

Σn(A, ·)dµ,

and the lemma is proved.

5 End of the proof of the results

Proposition 2.1 is a direct consequence of Lemma 4.4. To prove Theorem 1.1, we note
that the continuity points of an upper semi-continuous function is a residual set (see [20]).
Hence by Proposition 2.1 and the fact that E is upper semi-continuous we obtain the con-
clusion of Theorem 1.1.

The proof of Corollary 1.1 now follows easily, because all the perturbations we did are
traceless. Actually, take A ∈ R (the residual given by Theorem 1.1) and p ∈ O(A) with a
trivial spectrum. It is a consequence of the Oseledets Theorem that:

lim
t→±∞

1
t

log | det(Φt
A(p))| =

k(p)∑

i=1

λi(p).dim(Ei
p). (5.19)

So if A ∈ T , then det(Φt
A(p)) = 1, and we obtain

∑k(p)
i=1 λi(p).dim(Ei

p) = 0. Since all
Lyapunov exponents are equal, they must all be zero. If A ∈ Ta, then

det(Φt
A(p)) =

a(p)
a(ϕt(p))

.

By (5.19) and (2.2) we obtain

lim
t→±∞

1
t

log | det(Φt
A(p))| = lim

t→±∞
1
t

log
(

a(p)
a(ϕt(p))

)
=

= lim
t→±∞

1
t

log a(p)− lim
t→±∞

1
t

log a(ϕt(p)) =

= − lim
t→±∞

1
t

log a(ϕt(p)) =

= 0.

The last equality follows by the fact that a(·) is subexponential. Therefore all Lyapunov
exponents are zero. Corollary 1.1 is now proved.

Remark 5.1 Given A ∈ T (or Ta), then if for µ-a.e. point p ∈ X, the Oseledets
splitting of A is dominated or trivial at p, then A is a continuity point of E . This
follows from semi-continuity and also from the fact that if we perturb the system
A a little bit we still have a dominated splitting.
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