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Plenty of hyperbolicity on a class of linear homogeneous
jerk differential equations

Mário Bessa

Abstract. We consider 3×3 partially hyperbolic linear differential systems over an ergodic flow
Xt and derived from the linear homogeneous differential equation

...
x (t)+β(Xt(t))ẋ(Xt(t))+

γ(t)x(t) = 0. Assuming that the partial hyperbolic decomposition Es ⊕ Ec ⊕ Eu is proper
and displays a zero Lyapunov exponent along the central direction Ec we prove that some
C0 perturbation of the parameters β(t) and γ(t) can be done in order to obtain non-zero
Lyapunov exponents and so a chaotic behaviour of the solution.
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1. Introduction

1.1. Linear homogeneous jerk differential equations

The equations of motion in kinematics relate four quantities; time, space, ve-
locity and acceleration (represented respectively by t, x, v and a) and can be
obtained from the assumption that

dx

dt
= ẋ = v and

dv

dt
= v̇ = a. (1)

As we already know from Galileo’s inclined plane experiment and his accel-
eration hypothesis the acceleration a shoud be taken constant. One standard
example in kinematics is the parachute problem described by the second order
linear homogeneous differential equation

ẍ(t) + αẋ(t) + βx(t) = 0, (2)

where the damping term αẋ(t) arises from a first order term related to air
resistence and is proportional to the velocity. In the absence of any type of
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damping (i.e. if α = 0) we obtain a conservative system. Indeed, it can be
reduced to a linear 2 × 2 system as

(
ẋ
ẏ

)
=

(
0 1

−β −α

)
·
(

x
y

)
,

where y = ẋ becomes traceless when α = 0 and, as we will see, traceless systems
are conservative. Adding one dimension more we, in a pure theoretical manner,
could consider a kinematic approach on the third order linear homogeneous
differential equation

...
x (t) + αẍ(t) + βẋ(t) + γx(t) = 0, (3)

and the analogous 3 × 3 linear system
⎛
⎝ẋ

ẏ
ż

⎞
⎠ =

⎛
⎝ 0 1 0

0 0 1
−γ −β −α

⎞
⎠ ·

⎛
⎝x

y
z

⎞
⎠ , (4)

where y = ẋ and z = ẏ. Yet, this seems to be uninteresting due to Galileo’s
acceleration hypothesis which demands ż = 0. But who says that kinematics
with nice applications to real life is solely dedicated to non variable accelera-
tion? Well before Descartes founded the analytic geometry and the algebraic
representation along axes back in the first half of the seventeen’s century, we
humans and some animals already used a cartesian approach in the exquis-
ite labyrinth system which lies inside our ears. Actually, besides the sense of
hearing associated with our biological audio system there is another impor-
tant feature related to the sense of balance and equilibration. This is the core
of the so called vestibular system which is endowed with sensors capable of
detecting variations in the acceleration. There is a pair of these sensors, called
otoliths, in each ear which are capable of detecting linear acceleration. Each
pair displays a cartesian-like demeanor in the sense that one otolith detects
acceleration in the horizontal direction and another detects acceleration in the
vertical direction. Overall, the otoliths react to the first derivative of acceler-
ation commonly called the jerk. Individuals with deficient otoliths are likely
to have unsatisfactory abilities to sense motions along with a lack of gravity
orientation (see [5] for a detailed exposition). Besides this (not obvious) bio-
logical appearence of the jerk, considering variable acceleration is considered
in several physical situations. With this in mind we denote the jerk by j and
assume j = ȧ and j̇ = 0. Overall our 3-dimensional coordinates on (3) will be
(ẋ, ẏ, ż) = (v, a, j) where in the first two coordinates we take (1) into occount.
Jerk equations are ODEs depending on x, v, a and j. Here we will be interested
in the linear and homogeneous ones say described by:

...
x (t) + β(t)ẋ(t) + γ(t)x(t) = 0, (5)
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meaning the damping frictional term α(t)ẍ(t) vanishes and the coefficients β(t)
and γ(t) depend on t. For the same reason described above for (2) we will call
the class of linear and homogeneous jerk differential equations conservative.

It is well-known that the general solution of differential equations like (2),
(3) and (5) when coefficients are constants depends on the roots of the cor-
responding characteristic polynomial equation. Although the problem hugely
increases in difficulty when we allow variation in the parameters we, in some
very particular cases, are able to solve these equations by quadratures.

From the theoretical ODE viewpoint we have the initial-value problem for⎛
⎝ẋ

ẏ
ż

⎞
⎠ =

⎛
⎝ 0 1 0

0 0 1
−γ(t) −β(t) 0

⎞
⎠ ·

⎛
⎝x

y
z

⎞
⎠ , (6)

which consists in finding a solution x(t) of the differential equation (5) that
also satisfies the initial conditions x(t0) = x0, ẋ(t0) = x1 and ẍ(t0) = x2. This
problem has an affirmative solution if β(t) and γ(t) are continuous on a certain
interval. Yet, the tools at our disposal are mainly existential theorems and so
a qualitative asymptotic analysis of the behaviour of a solution x(t) must be
done since a priori we have no idea of the explicit expression of the solution
x(t).

2. An abstract framework and statement of the result

2.1. Towards a qualitative approach

In the present work we intend to describe with a certain degree of accuracy
the asymptotic behavior of the position, velocity and acceleration of x(t), the
solution of (6), for a generic subset of choices of the parameters β(t) and γ(t).
Taking as an example the aforementioned ODE (5) we will be able to describe
the limit dynamics of x(t) for arbitrary parameters β̃(t) and γ̃(t) close to
β(t) and γ(t) respectively, where close means near in the uniform convergence
norm. We follow the steps of the discipline of qualitative theory of differential
equations created by Poincaré and Lyapunov which pops up as an alternative
to the feeble approach of applying analytic methods to integrate most functions
confirmed by Liouville’s theory. We rewrite (5) as

...
x (t) + β(Xt(w))ẋ(t) + γ(Xt(w))x(t) = 0 (7)

where Xt : M → M for t ∈ R and w ∈ M stands for a given volume-preserving
flow, say an R-action. Moreover, we choose Xt to be ergodic with respect to the
volume measure ν. This allows us, instead of dealing with a single equation, to
consider infinite equations simultaneously each one for each orbit ∪t∈RXt(w).
Furthermore, differential equations along periodic solutions will be discarded
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since their volume ν will be zero. The qualitative analysis will be on the Lya-
punov exponents of the solution U(w, t) associated with a linear variational
equation with infinitesimal generator related to the differential equation (7).
Let us now formalize this settings.

2.2. The base dynamics

Let M be a closed Riemannian manifold, ν the volume measure of M , with
ν(M) = 1 and let X : M → TM be a C1 vector field. Denote by Xt : M → M

the flow associated with X by the relation d
dtX

t(w)
∣∣∣
t=0

= X(w). Let X be
a divergence-free vector field. Then due to the Liouville-Ostrogradski formula
(12) Xt preserves the volume ν, i.e. if A ⊆ M is a ν-measurable set, then
ν(X−t(A)) = ν(A) for all t ≥ 0. We say that a vector field X is ergodic if Xt

preserves ν and given a ν-measurable set A ⊆ M , ν(A) = 0 or ν(A) = 1. For
detailed information on conservative flows see [12, § 1.3.6]. We point out that
the base dynamics could be given by more general flows since it will be mainly
used to codify the orbits.

2.3. The fiber dynamics

Let M3×3 denote the set of 3×3 matrices with entries in R. Let C0(M,M3×3)
denote the set of C0 maps A : M → M3×3 which we endow with the norm

‖A − B‖ = max
w∈M

‖A(w) − B(w)‖. (8)

Let Id ⊂ M3×3 denote the identity matrix and let Φt
A be the solution of

the nonautonomous linear differential equation called the linear variational
equation

U̇(w, t) = A(Xt(w)) · U(w, t), (9)

satisfying the initial condition Φ0
A(w) = Id. Kinetic matrices, denoted by K ,

are the subset K ⊂ M3×3 of matrices with the form (4). Let C0(M,K ) ⊂
C0(M,M3×3) stand for the subset of kinetic infinitesimal generators which
will be defined by

A(w) =

⎛
⎝ 0 1 0

0 0 1
−γ(w) −β(w) −α(w)

⎞
⎠ , (10)

and are derived from the linear homogeneous jerk differential equation
...
x (t) + α(t)ẍ(t) + β(t)ẋ(t) + γ(t)x(t) = 0. (11)
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Finally, kinetic traceless matrices, denoted by K 0, are the subset K 0 ⊂ K
of matrices with the form of the 3 × 3 matrix in (6). From the Liouville-
Ostrogradski formula (see e.g. [11]) and since Φ0

A(w) = Id we get

det Φt
A(w) = exp

(∫ t

0

A(Xs(w)) ds

)
, (12)

realizing why traceless systems give rise to conservative solutions. Let
C0(M,K 0) ⊂ C0(M,K ) stand for the subset of kinetic traceless infinitesi-
mal generators which will be defined as in (10) but considering α = 0. Hence,
C0(M,K 0) is derived from the linear homogeneous conservative jerk differen-
tial equation obtained from (11) by considering α = 0. Clearly, C0(M,K 0) is
a topologically closed set in C0(M,M3×3) with respect to the norm (8).

The fiber dynamics will be given by a continuous-time conservative linear
cocycle over Xt, also called a linear differential system (LDS), defined by the
map Φt : M → SL(3, R) on the parameter t where:

(1) the set SL(3, R) stands for the special linear group of matrices with real
entries;

(2) Φt is the unique solution of (9), for A ∈ C0(M,K 0), given the initial
condition Φ0(w) = Id for all w ∈ M . For this reason we denote Φt by
Φt

A;
(3) Φt

A is a linear flow, i.e., Φ0(w) = Id for all w ∈ M , Φt+s(w) = Φt(Xs(w))·
Φs(w), for all s, t ∈ R and w ∈ M and Φt(w)(au + bv) = aΦt(w)(u) +
bΦt(w)(v) where t, a, b ∈ R and u, v ∈ R

3.

Clearly, when β and γ are periodic coefficients the Floquet theory (see
[11]) helps with the analysis and when β and γ are first integrals, i.e. are
constant along the orbits of the flow Xt, then (7) can be solved by elementary
algorithms present in any book on differential equations (cf. [11, Chapter 6]).
The interesting case here is when the parameters vary in time along non-
periodic orbits which is actually the case for ν-a.e. orbits as Xt is an ergodic
flow.

2.4. Hyperbolic cocycles

From the last section we obtain that fiber dynamics acts on R
3
M . We say that

the splitting EM = E1 ⊕ E2 ⊂ R
3
M is Φt

A-invariant if Φt
A(w)Ei

w = Ei
Xt(w) for

i = 1, 2 and t ∈ R. We say that E1 ⊕ E2 ⊂ R
3
M is a (C, σ)-dominated splitting

for Φt
A if it is Φt

A-invariant and there exist C > 0 and σ ∈]0, 1[ such that, for
all w ∈ M and t ≥ 0 we have:

‖Φt
A(w)|E2

w
‖

m(Φt
A(w)|E1

w
)

≤ C σt,
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where m(·) denotes the co-norm of an operator, that is m(A) = ‖A−1‖−1.
We say that the subbundle E is hyperbolic if either ‖Φ−t

A (w) · u‖ ≤ C σt

(expanding), for all w ∈ M , t ≥ 0 and any unit vector u ∈ Ew, or ‖Φt
A(w)·u‖ ≤

C σt (contracting), for all w ∈ M , t ≥ 0 and any unit vector u ∈ Ew.
We say that A is (uniformly) partially hyperbolic if there exists a Φt

A-
invariant dominated splitting E = Eu ⊕ Ec ⊕ Es such that Eu is hyperbolic
expanding and Es is hyperbolic contracting; moreover these two subbundles
are not simultaneously trivial. We should understand that Eu dominates Ec

and Ec dominates Es. The partial hyperbolic elements in C0(M,K 0) are open
with respect to the norm (8). Moreover, the maps A �→ Ei

A vary continuously
for each i = s, c, u when considering (8) in the domain, and the canonic norm
on Grassmannians in the co-domain. We refer to [10] for a complete description
of this subject.

2.5. Oseledets’ theorem

Oseledets’ theorem [6,7,10] is valid for both discrete-time and continuous-time
cocycles. For an LDS A ∈ C0(M,K 0) over Xt Oseledets’ theorem asserts that
we have for ν-a.e. points w ∈ M a splitting R

3
w = E1

w ⊕ · · · ⊕ E
k(w)
w (Oseledets

splitting) and real numbers λ1(w) ≥ · · · ≥ λk(w)(w) (Lyapunov exponents)
such that Φt

w(Ei
w) = Ei

Xt(w) and

lim
t→±∞

1
t

log ‖Φt
A(w) · vi‖ = λi(A,w)

for any vi ∈ Ei
w\{�0} and i = 1, . . . , k(w). In our 3-dimensional and partially

hyperbolic case we can have k(w) = 3 and in this case all Oseledets subbundles
are 1-dimensional, or else we can have k(w) = 2 and, in this case, we have a
hyperbolic subbundle of dimension 2 (expansive or contractive). Oseledets’
theorem allows us to conclude also that:

lim
t→±∞

1
t

log |det(Φt
A(w))| =

k(w)∑
i=1

λi(A,w)dim(Ei
w) (13)

which is related to the sub-exponential decrease of the angle between any
subspaces of the Oseledets splitting along ν-a.e. orbits (see e.g. [12, § 3.3.5]).
We observe that the ergodicity of the flow implies that the Lyapunov exponents
and the dimensions of the associated subbundles are ν-a.e. constant and so
for simplicity we omit the point by writing λi(A) instead of λi(A,w). The
hypothesis of being ergodic will also be used for a twofold facilitation of the
computation of the Lyapunov exponents because we can switch time averages
by space averages and we can perform focus on a single ν-generic orbit. Since
in the conservative setting we have |det Φt

A(w)| = 1 for all w and t, by (13), we
have λ1(w)+λ3(w)+λ3(w) = 0. If M has a partially hyperbolic splitting and
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displays a zero Lyapunov exponent, then this exponent must define the central
fiber Ec(A) and λs(A) = −λu(A) meaning the Lyapunov exponent associated
to the stable fiber is the symmetric of the Lyapunov exponent associated to
the unstable fiber. When there are no zero Lyapunov exponents then λs(A) <
0 < λc(A) < λu(A) or λs(A) < λc(A) < 0 < λu(A).

2.6. Statement of the result

In the present paper we study the asymptotic dynamics of solutions of the
linear cocycle Φt

A. Our main result is:

Theorem 1. Let Xt : M → M be an ergodic flow w.r.t. a probability volume
measure, A ∈ C0(M,K 0) and assume that the cocycle Φt

A has a partially
hyperbolic splitting Eu ⊕ Ec ⊕ Es over M . Then, either λc(A) �= 0, or else
A may be approximated, in the C0-topology, by A0 ∈ C0(M,K 0) for which
λc(A0) �= 0.

We observe that if we change in Theorem 1 the set C0(M,K 0) for the set of
traceless elements in C0(M,M3×3) we get essentially a direct consequence of
[3]. It is worth noting that as our infinitesimal generators do not evolve in the
broader setting of traceless ones our perturbations must be kinetic meaning
that our degrees of freedom decrease from 8 (in [3]) to 2 making the problem
more difficult. Moreover, traceless infinitesimal generators in C0(M,M3×3)
model divergence-free C1 vector fields on 4-dimensional manifolds whereas
infinitesimal generators in C0(M,K 0) model linear homogeneous conservative
differential equations of third order. Despite being somehow related these two
settings give rise to two completely nonidentical problems with a different
genesis and motivation. We notice that recently in [1] the authors were able
to remove the zero Lyapunov exponents (or more generally to remove the
trivial Lyapunov spectrum) on kinetic LDSs like (2) under Lp-perturbations
on the parameters α, β. Despite being globally different some arguments in
[1] resemble the ones in the present paper namely projections on controllable
directions and taking advantage of the invariant given by the determinant.

3. Perturbations

3.1. A toy model

We consider the case when the parameters β, γ are constant more precisely such
that β(t) = −1 and γ(t) = 0. We will get the linear homogeneous conservative
jerk differential equation:

...
x (t) − x(t) = 0. (14)
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We obtain the following linear vectorial differential equation:⎛
⎝ẋ

ẏ
ż

⎞
⎠ =

⎛
⎝0 1 0

0 0 1
0 1 0

⎞
⎠ ·

⎛
⎝x

y
z

⎞
⎠ = A ·

⎛
⎝x

y
z

⎞
⎠ , (15)

such that the infinitesimal generator has eigenvalues λu = 1, λc = 0 and
λs = −1 with respective eigendirections vu = (1, 1, 1), vc = (1, 0, 0) and
vs = (1,−1, 1). The system (15) can be writen as⎛

⎝ẋ
ẏ
ż

⎞
⎠ =

⎛
⎝ 1 1 1

−1 0 1
1 0 1

⎞
⎠ ·

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠ ·

⎛
⎝0 − 1

2
1
2

1 0 −1
0 1

2
1
2

⎞
⎠ ·

⎛
⎝x

y
z

⎞
⎠ ,

which allows for an explicit simple solution of the corresponding linear varia-
tional equation on a certain eigenvalues basis as

Φt
A =

⎛
⎝e−t 0 0

0 1 0
0 0 et

⎞
⎠ . (16)

Due to the well known openess and denseness of hyperbolic matrices [8, Propo-
sition 1.11] we have a good chance to obtain a hyperbolic matrix after a per-
turbation of (15). This follows directly unless our family, which display only
two degrees of freedom, is rigid enough to force the presence of a 0 eigenvalue.
But this is not the case since, for example,

⎛
⎝ẋ

ẏ
ż

⎞
⎠ =

⎛
⎝0 1 0

0 0 1
ε 1 + ε 0

⎞
⎠ ·

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

A︷ ︸︸ ︷⎛
⎝0 1 0

0 0 1
0 1 0

⎞
⎠ +

P︷ ︸︸ ︷⎛
⎝0 0 0

0 0 0
ε ε 0

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎠

·
⎛
⎝x

y
z

⎞
⎠ = A0 ·

⎛
⎝x

y
z

⎞
⎠ ,

(17)

has eigenvalues λ̂u = 1+
√

4ε+1
2 , λ̂c = 1−√

4ε+1
2 and λ̂s = −1 with respective

eigendirections,

v̂u =
(

− 1 − √
4ε + 1

ε(1 +
√

4ε + 1)
,

2
1 +

√
4ε + 1

, 1
)

,

v̂c =
(

− 1 +
√

4ε + 1
ε(1 − √

4ε + 1)
,

2
1 − √

4ε + 1
, 1

)
and v̂s = (1,−1, 1).

This gives an explicit simple solution of (17) on a certain eigenvalues basis as

Φt
A0

=

⎛
⎜⎝

e−t 0 0
0 e

1−√
4ε+1
2 t 0

0 0 e
1+

√
4ε+1
2 t

⎞
⎟⎠ ,
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which no longer has a central direction as (16) had. We carefully choose a
perturbation A0 = A + P that leaves the stable eigenvalue and its eigendi-
rection unchanged. This follows because P · vs = �0 and so the influence of
the vector field P along the direction of vs is null, or in other words, vs is
an equilibrium point of the flow generated by P . Hence, since the system is
conservative we obtain that the amount of increase (or decrease) in the unsta-
ble direction passes directly to the central direction resulting in a decrease (or
increase) in its eigenvalue λc(A0). In other words if ε < 0, then λc(A0) > 0
and λu(A0) < λu(A) and if ε > 0, then λc(A0) < 0 and λu(A0) > λu(A). Be
that as it may the linear homogeneous conservative jerk differential equation:

...
x (t) − εẋ(t) − (1 + ε)x(t) = 0, (18)

displays nonzero Lyapunov exponents. Furthermore, (18) is also an arbitrarily
small perturbation of (14) since ‖A−A0‖ = ε can be made as small as we like.

3.2. Capturing the ideia of the toy model

What was the reason for presenting such a trivial reasoning as the one in
Sect. 3.1? Indeed, although when we consider non constant coefficients we no
longer display a simple linear algebra most of the idea prevails in the general
case. Hence, and for future use, we recall now the methodology:

• Perform a local perturbation and keep in mind that the stable direction
dynamics should remain equal to the unperturbed system;

• For that choose a perturbation P acting as the null vector field along the
stable direction;

• The previous two items send, to the center-unstable space the scheme of
a balanced increase/decrease in the Lyapunov exponents;

• Taking into account that the system is conservative the amount we lose
(or gain) in the unstable Lyapunov exponent is the amount we gain (or
loose) in the central Lyapunov exponent.

• Finally, the ergodicity of the base flow serve the (lazy) purpose of perform-
ing just a perturbation that ensures that the process works in a certain
orbit and ergodicity demands that the Lyapunov exponent is constant.

3.3. Perturbing Kinetic LDS

The next result produces a local perturbation by an infinitesimal generator vec-
tor field acting on M3×3 and which is ‘perpendicular’ to a given 1-dimensional
direction.

Lemma 3.1. Let A ∈ C0(M,K 0) and assume that the LDS is partially hyper-
bolic with splitting Eu ⊕Ec ⊕Es, each of these fibers being 1-dimensional. Let
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p ∈ M be a non-periodic point. There exists two C∞ functions b, g : R → R

such that b(t), g(t) = 0 for t /∈]0, 1[ and for

P (t) =

⎛
⎝ 0 0 0

0 0 0
−g(t) −b(t) 0

⎞
⎠ (19)

we have that the LDS defined along the orbit of p by A0(Xt(p)) = A(Xt(p)) +
P (t),

(i) define a ODE of type (5),
(ii) is traceless,
(iii) has solution Φt

A0
�= Φt

A,
(iv) is such that Φ1

A0
(p) · Es

p = Φ1
A(p) · Es

p,
(v) Φ1

A0
(p) �= Φ1

A(p) and
(vi) ‖P (t)‖ < ε.

Proof. Items (i) and (ii) are trivial and (iii) is also trivial if we pick b �= 0
(or g �= 0). Since the splitting is partially hyperbolic into three 1-dimensional
directions Eu, Ec and Es which are Φt

A-invariant, we know that there exists
σt ∈ R \ 0 such that

Φt
A(0) · Es

0 = σt Es
t . (20)

Take σ = σ1. We are left to check that the action of the vector field P does
not interfere in the invariant direction Es. For that we will show that the
stable direction Es is invariant under the action of the vector field A + P if
we pick the functions b, g appropriately. For each t ∈ R take the smooth map
t �→ (xt, yt, zt) where (xt, yt, zt) is a unit vector pointing in the direction Es

t .
Taking time derivatives on both sides of (20) we get

Φ̇t
A(0) · Es

0 = σ̇tE
s
t + σtĖ

s
t , (21)

and from the linear variational equation (9) we get

A(t) · Φt
A(0) · Es

0 = σ̇tE
s
t + σtĖ

s
t , (22)

and from the invariance in (20) and linearity we obtain

σtA(t) · Es
t = σ̇tE

s
t + σtĖ

s
t , (23)

that is the ‘instantaneous’ action of the infinitesimal generator at time t is
given by

A(t) · Es
t =

σ̇t

σt
Es

t + Ės
t . (24)

Hence, our goal is to choose P such that

[A(t) + P (t)] · Es
t =

σ̇t

σt
Es

t + Ės
t . (25)
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From (24) and (25) we need to have⎛
⎝ 0 1 0

0 0 1
−γ(t) −β(t) 0

⎞
⎠ ·

⎛
⎝xt

yt

zt

⎞
⎠ =

⎛
⎝ 0 1 0

0 0 1
−γ(t) − g(t) −β(t) − b(t) 0

⎞
⎠ ·

⎛
⎝xt

yt

zt

⎞
⎠ ,

that is we pick b, g such that

g(t)xt + b(t)yt = 0, (26)

for all t ∈ [0, 1]. To check (iv) we observe that

A0(t) · Es
t = [A(t) + P (t)] · Es

t

(25)
=

σ̇t

σt
Es

t + Ės
t

(24)
= A(t) · Es

t

(23)+(22)
= σ−1

t A(t) · Φt
A(0) · Es

0

(21)
= σ−1

t Φ̇t
A(0) · Es

0 ,

and so

Φt
A+P (0) · Es

0 = σEs
1 .

Since (26) means (g(t), b(t)) · (xt, yt) = 0 we just choose (g(t), b(t)) to be
an orthogonal vector to (xt, yt) with small norm say (g(t), b(t)) = ε(−yt, xt).
Clearly, when one or both xt, yt are 0 we have more choices for g(t) and b(t).
Hence we obtain (vi). Finally, g, b can be chosen in a way to avoid the non
generic case when Φ1

A+P (p) = Φ1
A(p) and we get (v). �

The next result makes the previous lemma global in the sense that we now
define an LDS in C0(M,K 0) as a perturbation. Throughout the proofs we
make the following assumption: by the conservative flowbox theorem [3] we
assume that Xt is trivial and equal to ∂

∂x = (1, 0, 0), p = �0 and we still denote
the partial hyperbolic splitting by Eu ⊕ Ec ⊕ Es because it evolves in the
fiber and is not affected by this change of coordinates. Given a sufficiently
small r > 0 and since p is non-periodic this flowbox can be considered to have
length 1 and will be defined by:

Fr(�0) = {(t, y, z) ∈ R
3 : 0 ≤ t ≤ 1, ‖(0, y, z)‖ ≤ r}.

The points (0, y, z) such that ‖(0, y, z)‖ ≤ r form what we call a ball of radius
r centered at p and we denote it by Br(p). With this trivialization in mind we
get e.g. that

ν̃(Br(p)) = ν̃(X1(Br(p))), (27)

where ν̃ is the area measure in transversal sections induced by the volume ν.

Lemma 3.2. Let A ∈ C0(M,K 0), ε > 0 and assume that the LDS is partially
hyperbolic with splitting Eu ⊕Ec ⊕Es each of these fibers being 1-dimensional.
For any non-periodic point p ∈ M there is r0 = r0(p) > 0 such that for each
0 < r ≤ r0 there exists A0 ∈ C0(M,K 0) satisfying:

(i) A0 is ε-C0-close to A;
(ii) Φ1

A0
(p) · Ep = Φ1

A(p) · Ep;
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(iii) Φ1
A0

(p) �= Φ1
A(p);

(iv) A = A0 outside the flowbox X [0,1](Br(p)).

Proof. We will make the perturbation supported in Fr0(�0) where r0 > 0 is
sufficiently small in order for Fr0(�0) to be a flowbox. Fix a C∞ bump function
ρ satisfying ρ(s) = 1, for |s| ≤ 1

2 , ρ(s) = 0 for s ≥ 1, and |ρ| ≤ 1 for all s. For
any 0 < r ≤ r0 we define the map ρr by ρr(t) = ρ( 1

r t). The perturbation A0 ∈
C0(M,K 0) will be defined by A0 = A outside Fr(�0) and for (t, y, z) ∈ Fr(�0)
will be defined by A0 = A + P where

P (t, y, z) =

⎛
⎝ 0 0 0

0 0 0
−g(t)ρr(‖(0, y, z)‖) −b(t)ρr(‖(0, y, z)‖) 0

⎞
⎠

like in Lemma 3.1. Since ‖A − A0‖ = ‖P‖ we can make this norm ≤ ε (re-
gardless of the r we take) by just picking g, b sufficiently small and carefully
taking into account the invariant (26) to get (i). Conditions (ii) and (iii) are
local and so follows from Lemma 3.1. Finally, condition (iv) is trivial. �

3.4. Establishing a parallel with the previous approaches

For the reader familiar with [2–4] we now try to set up the perturbations
made in Sect. 3.3 with the ones made in the literature concerning different
contexts. The proof of Theorem 1 follows the strategy formulated in [2], and
motivated by [9], for the discrete dynamical cocycle (the cocycle given by
the derivative) and adapted in [3] for the continuous dynamical cocycle (the
cocycle given by the linear Poincaré flow). Indeed, from [3] we get directly
that a version of Theorem 1 for linear differential systems evolving in the Lie
algebra sl(3, R) is true. However, dim(sl(3, R)) = 8 and the dimension of the
traceless and kinetic LDS is 2 turning the problem much more difficult. The
key observation which allows us to obtain the result in our (much more) rigid
setting is the subtle note in [2, Theorem 3] saying that perturbations close
to the identity and different from the identity map guarantee the growing of
the central Lyapunov exponent. Therefore, we do not need a particularly and
carefully cooked perturbation (as we did in [3] for convenience) but a much
broader type of perturbation. That is the reason why we are still able to obtain
nonzero central Lyapunov exponents even when the range of perturbations fall
from 8 to 2 degrees of freedom.

Regarding our setting we consider that the subbundles Es, Ec and Eu are
nontrivial, each one is 1-dimensional and, like in the toy model, assume also
that, in a neigbourhood of a non-periodic point p, they are given by ∂

∂x , ∂
∂y

and ∂
∂z , respectively. Lemma 3.2 gives

Φ1
A0

(p) · Es
p = Es

X1(p). (28)
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Let us assume, for the sake of comparing our case with [2], that �(p) :=
[Φ1

A(p)]−1 ·Φ1
A0

(p) where h∗(p) is a linear automorphism in SL(3, R) acting on
the fiber R

3
p. Since [Φ0

A(p)]−1 · Φ0
A0

(p) = Id we can see the perturbation �(p)
as an isotopic deformation of the identity for t ∈ [0, 1] and inside SL(3, R).
When perturbing the original dynamical system f , in [2], it considers the
perturbation g = f ◦ h where h is a volume-preserving map sufficiently C1-
close to the identity and supported in a small ball centered at p keeping Es

p

invariant and such that its tangent map satisfies

Dh(p) · u(p) = y(p)c(p) + z(p)u(p), (29)

which is precisely what our �(p) does. We point out again that the choice
of h (and �) has wide freedom. In our LDS context Φ1

A(p), �(p) and Φ1
A0

(p)
will respectively play the part of f , h and g, in [2]. Therefore, Φ1

A(p) · �(p) =
Φ1

A0
(p). By (28) and using the fact the A0 is traceless we get an area invariance

in the center-unstable subbundle. Hence, and like [2, Lemma 1.2] when such
pertubation can be done in a ball with fixed radius r0 we obtain

I(r0) :=
∫

Br0 (p)

log z(p) dν̃(p) < 0. (30)

Notice that if we reescale the flowbox under ϕr : Br(p) → Br0(p) defined by
ϕr(0, y, z) = r0

r (0, y, z) where r ∈]0, r0] we get from a change of variables:

I(r) :=
∫

Br(p)

log z(p) dν̃(p) =
∫

Br0 (p)

log z(p)
(

r

r0

)2

dν̃(p)

=
(

r

r0

)2

I(r0) < 0. (31)

4. Proof of Theorem 1

We will be interested in estimating the value of the integral of the logarithm of
the unstable action of the LDS perturbation A0. Of course the unstable direc-
tion associated to A0 is no longer given by the unstable direction associated
to the original LDS A. As a first step of the proof of Theorem 1 we change
the LDS A0 for some cocycle having the same Lyapunov exponent for ν-a.e.
points.

The two dimensional subspace Vp (where the perturbation P acts) is chosen
to be the central-unstable subbundle of R

3
p, where p is an Oseledets’ point such

that the orbit of p is non-periodic. Now our aim is to show that A0 as defined
in Lemma 3.2 satisfies the conclusion of Theorem 1 and for that it is enough
to prove the following result.
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Proposition 4.1. Given A, ε > 0 and p and an arbitrarily small r > 0 there
exists A0 ∈ C0(M,K 0) satisfying the conclusions of Lemma 3.2 and such that
λc(A0) > λc(A).

4.1. Construction of a useful cocycle Φ

In the fixed setting the space Vp is the space given by the directions y (the
unstable direction) and z (the central direction), and Wp is the space generated
by x (the stable direction). We recall that Br(p) denotes the 2-dimensional ball
centered at p and of radius r contained in the transversal section (i.e. Br(p) is
the base of the flowbox given by [3]). For q ∈ M let u(q) denote a unit vector
of Eu

q which is Φt
A-invariant (but not Φt

A0
-invariant) and write

Φt
A(q) · u(q) = λ(t, q)u(Xt(q)), (32)

where λ(t, q) = ‖Φt
A(q) · Eu

q ‖. We are going to consider a perturbation A0 of
the original LDS A and it is crucial that we can estimate its upper Lyapunov
exponent. In order to clear the way for this task we will use instead an artifi-
cial (and somehow far-fetched) linear ‘unstable’ cocycle Φ which displays the
same upper Lyapunov exponent as A0 (see Lemma 4.2). The outcome is that
computations to estimate the upper Lyapunov exponent on Φ are more direct.
Furthermore, Φ coincides with the cocycle associated to A outside a small
flowbox X [−1,1](Br(p)). The cocycle Φ will be produced taking into accunt
two main moments:

• A perturbation using Lemma 3.2 in X [0,1](Br(p)) which, on the one hand,
causes the ‘unstable’ direction to diminish (recall (30)) but, on the other
hand, makes another direction v appear which could jeopardize the ‘un-
stable diminishing’ and so the asymptotic growth of v must be estimated;

• A correctional impulse Ψ: X−1(Br(p)) → R to be defined bellow is intro-
duced in X−1(Br(p)). This multiplicative factor Ψ aims to incorporate
in Φ the ignored vector v of the previous point and so adjust the whole
process.

We consider the measurable cocycle:

Φt : (M,Eu
M ) −→ (M,Eu

M )
(q, u(q)) �−→ (Xt(q), �(t, q)u(Xt(q)), (33)

where1 �(t, q) =
∏�t�−1

i=0 �(1,Xi(q))�(t − �t�,X�t�(q)) if t > 1 and, when t ∈
[0, 1], we use (32) and define �(t, q) by:

(i) λ(t, q), if q /∈ X [−1−t,1](Br(p)) or q ∈ X ]−1,−t](Br(p)),
(ii) λ(t − s,Xs(q))Ψ(Xs(q))λ(s, q), if q ∈ X [−1−t,−1](Br(p)) where s ≥ 0 is

such that Xs(q) ∈ X−1(Br(p)),

1We let �t� define the integer part of t ≥ 0.
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(iii) λ(t − s,Xs(q))z(Xs(q))λ(s, q), if q ∈ X [−t,0](Br(p)) where s ≥ 0 is such
that Xs(q) ∈ Br(p).

(iv) λ(t + s,X−s(q))[λ(s,X−s(q))]−1 z(X−s(q)), if q ∈ X [0,1−t](Br(p)) where
s ≥ 0 is such that X−s(q) ∈ Br(p).

(v) λ(t − s′,Xr(q))λ(s′ + s,X−s(q))[λ(s,X−s(q))]−1 z(X−s(q)), if q ∈
X [1−t,1](Br(p)) where s, s′ ≥ 0 are respectively such that X−s(q) ∈ Br(p)
and Xs′

(q) ∈ X1(Br(p)).

In order to define the correctional impulse Ψ(·) let us fix q ∈ X−1(Br(p))
and define τ(q) as the least positive real number such that there exists q̃ ∈
Br(p) with Xτ(q)(q̃) = q. Observe that X�τ(q)�+1(q̃) ∈ X [−1,0[(Br(p)). If there
is no recurrence, say if there does not exist such a τ(q), then we will take
Ψ = 1. We also have (recall (29))

[Φ1
A(q̃)]−1 · Φ1

A0
(q̃) · u(q̃) = z(q̃)u(q̃) + v(q̃), (34)

where v(q̃) ∈ Ec say v(q̃) = y(q̃)c(q̃). Therefore, the ‘true’ perturbation A0 is
such that:

Φτ(q)
A0

(q̃) · u(q̃) = Φτ(q)−1
A0

(X1(q̃)) · Φ1
A0

(q̃) · u(q̃)

(34)
= Φτ(q)−1

A (X1(q̃)) · Φ1
A(q̃) · [z(q̃)u(q̃) + v(q̃)]

= Φτ(q)
A (q̃) · v(q̃) + Φτ(q)

A (q̃) [z(q̃)u(q̃))]

= Φτ(q)
A (q̃) · v(q̃) + z(q̃)a(q̃)

⎛
⎝�τ(q)�−1∏

i=0

λ(Xi(q̃))

⎞
⎠ · u(q),

where a(q̃) =
∥∥∥Φτ(q)−�τ(q)�

A (X�τ(q)�(q̃)) · Eu
X�τ(q)�(q̃)

∥∥∥. In conclusion we have

Φτ(q)
A0

(q̃) · u(q̃) = Φτ(q)
A (q̃) · v(q̃) + z(q̃)a(q̃)

⎛
⎝�τ(q)�−1∏

i=0

λ(Xi(q̃))

⎞
⎠ · u(q). (35)

Since M is compact and the linear differential systems we consider are of class
C0 there is C0 > 1 such that

C−1
0 < a(q) < C0 for all q ∈ M. (36)

Moreover we also have that the ‘artificial’ cocycle (33) satisfies:

Φτ(q)(q̃, u(q̃)) =

⎛
⎜⎜⎜⎜⎜⎝

Φ1︷ ︸︸ ︷
Xτ(q)(q̃),

Φ2︷ ︸︸ ︷
z(q̃)a(q̃)

⎛
⎝�τ(q)�−1∏

i=0

λ(Xi(q̃))

⎞
⎠ · u(q)

⎞
⎟⎟⎟⎟⎟⎠

, (37)
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according to items (i) and (iii) in the definition of �. Indeed, taking s = 0 we
get

�(τ(q), q̃) = λ(τ(q), q̃)[λ(0, q̃)]−1 z(q̃) = λ(τ(q), q̃) z(q̃)

= a(q̃)

⎛
⎝�τ(q)�−1∏

i=0

λ(Xi(q̃))

⎞
⎠ z(q̃).

We notice that Φ2 the second component of the cocycle (37) does not take
into account the ‘central’ vector Φτ(q)

A (q̃) · v(q̃) that appears in (35). Indeed
the abstract linear differential system (37) differs from ΦA0 along the unstable
direction by the projection in this direction of the vector Φτ(q)

A (q̃) · v(q̃). This
multiplicative effect that must be considered is Ψ. Let πu

q be the projection

from R
3
q on Eu

q along the new central bundle Ec
A0

and wu(q) = πu
q (Φτ(q)

A (q̃) ·
v(q̃)) is the correction we have to add to Φ2. Actually we will take Ψ(q) as the
ratio of the norms of these two vectors. So let us define

Ψ(q) =
‖πu

q (Φτ(q)
A0

(q̃) · u(q̃))‖
‖Φτ(q)

2 (q̃, u(q̃))‖

(35)+(37)
=

‖πu
q [Φτ(q)

A (q̃) · v(q̃) + z(q̃)a(q̃)
(∏�τ(q)�−1

i=0 λ(Xi(q̃))
)

· u(q)]‖
z(q̃)a(q̃)

(∏�τ(q)�−1
i=0 λ(Xi(q̃))

)

=
z(q̃)a(q̃)

(∏�τ(q)�−1
i=0 λ(Xi(q̃))

)
+ ‖πu

q (Φτ(q)
A (q̃) · v(q̃))‖

z(q̃)a(q̃)
(∏�τ(q)�−1

i=0 λ(Xi(q̃))
) .

Since ‖u(q)‖ = 1 and �(wu(q), u(q)) = 0 we have 〈wu(q), u(q)〉 = ‖πu
q (Φτ(q)

A (q̃)·
v(q̃))‖ and so:

Ψ(q) = 1 +
〈wu(q), u(q)〉

z(q̃)a(q̃)
(∏�τ(q)�−1

i=0 λ(Xi(q̃))
) . (38)

Notice that Ψ is not defined in the whole of M , but for the sake of computing
the Lyapunov exponent we have all the elements to get a well-defined Lyapunov
exponent. We observe that we constructed a measurable linear differential
system over the ν invariant flow Xt, hence by applying Oseledets’ Theorem,
we conclude that for Lebesgue a.e. points the system has a Lyapunov exponent.
From Birkoff’s Ergodic Theorem (see e.g. [12]) it follows that this Lyapunov
exponent is equal to

∫
M

log(�(q))dν(q).
The next result, which follows the lines of [2, Lemma 1.4], legitimates why

we can use the computation of the Lyapunov exponent of Φ to assess the upper
Lyapunov exponent of the perturbation A0.
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Lemma 4.2. For every point q where the Lyapunov exponents are defined we
have:

lim
t→±∞

1
t

log
∥∥Φt

A0
(q) · u(q)

∥∥ = lim
t→±∞

1
t

log
∥∥Φt(q)

∥∥ . (39)

Proof. As Xt is ergodic w.r.t. ν it is enough to show the statement for a ν-
generic point q ∈ X [0,1](Br). Pick a return time T > 0 of Xs′

(q) ∈ X1(Br)
to X [0,1](Br) where s′ ∈ [0, 1]. We have that ΦT (q, u(q)) is the projection of
ΦT

A0
(q) · u(q) on Eu

A along the center-stable subbundle Ecs
A0

(recall (35), the
definition of Φ and notice that Ecs

A0
is invariant). Consider the unstable cone

field Cu
θ (A, p) ⊂ R

3
p where p ∈ M and θ is the angle with Eu

A of this cone field
in a sense that there exists σ ∈]0, 1[ such that

Φt
A(p)(Cu

θ (A, p)) ⊂ Cu
σtθ(A,Xt(p)). (40)

As the perturbation (34) is C0-close to the identity (see also (29) and the
paragraph before) the s/c/u-invariant subbundles related to partial hyperbol-
icity vary continuously when perturbing from ΦA to ΦA0 . Hence, as Ecs

A is
transversal to Eu

A we get that the subbundle Ecs
A0

is also transversal to Eu
A

and consequently ΦT
A0

(q) · u(q) ⊂ Cu
θ (A,XT (q)) for some θ > 0. Once the

iterates of Φt
A0

are trapped in a cone field the property (40) guarantees that
its exponential growth equals the exponential growth of the projection. �

4.2. End of the proof of Theorem 1

We claim that:∫
M

log
∥∥∥Φ1

A0
(q)

∣∣∣
Eu

∥∥∥ dν(q) =
∫

M

log �(1, q) dν(q). (41)

Indeed, on the one hand Birkoff’s Ergodic Theorem gives for a ν-generic point
q that:

λu(A0) = lim
n→±∞

1
n

log
∥∥Φn

A0
(q) · u(q)

∥∥

= lim
n→±∞

1
n

n−1∑
i=0

log
∥∥Φ1

A0
(Xi(q)) · u(Xi(q))

∥∥

=
∫

M

log
∥∥∥Φ1

A0
(q)

∣∣∣
Eu

∥∥∥ dν(q),

and

λ(Φ) = lim
n→±∞

1
n

log ‖Φn(q)‖ = lim
n→±∞

1
n

n−1∑
i=0

log
∥∥Φ1(Xi(q))

∥∥

=
∫

M

log �(1, q) dν(q),
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and on the other hand (39) allow us to conclude (41). Recalling (32) we define

λu(A) =
∫

M

log
∥∥∥Φ1

A(q)
∣∣∣
Eu

∥∥∥ dν(q) =
∫

M

log λ(1, q) dν(q)

and according to Lemma 4.2

λu(A0) =
∫

M

log
∥∥∥Φ1

A0
(q)

∣∣∣
Eu

∥∥∥ dν(q) =
∫

M

log �(1, q) dν(q).

Let us estimate λu(A) − λu(A0). First note that these integrals coincide
outside the flowbox X [−2,1](Br(p)) because time-1 iterates of points in X [−2,1]

(Br(p)) are not under perturbations. Now, to simplify our task we use the
cocycle property and the definition of Φ obtaining:

Φ3(q) = Φ1−s(Xs+2(q)) · Φ1(Xs+1(q)) · Φ1(Xs(q)) · Φs(q)

= ‖Φ1−s
A (Xs+2(q)) · u(Xs+2(q))‖ · Φ1(Xs+1(q))

·Φ1(Xs(q)) · ‖Φs
A(q) · u(q)‖

for q ∈ X [−2,−1](Br(p)) and s ≥ 0 such that Xs(q) ∈ X−1(Br(p)). Then we
analyse only the difference in X−1(Br(p)) and Br(p) and consider the measure
ν̃ on transversal sections. So let us begin by computing its difference on Br(p).
Recalling item (iii) in the definition of � with s = 0 and t = 1 and also (30)
we get:∫

Br(p)

log λ(1, q) − log(�(1, q)) dν̃(q) =
∫

Br(p)

log
λ(1, q)
�(1, q)

dν̃(q)

=
∫

Br(p)

log
λ(1, q)

λ(1, q)z(q)
dν̃(q)

= −
∫

Br(p)

log z(q) dν̃(q)

(31)
= −

(
r

r0

)2

I(r0).

On the other hand by item (ii) in the definition of � with s = 0 and t = 1
and also (30) we get: λ(t − s,Xs(q))Ψ(Xs(q))λ(s, q), if q ∈ X [−1−t,−1](Br(p))
where s ≥ 0 is such that Xs(q) ∈ X−1(Br(p)),∫

X−1(Br(p))

log λ(1, q) − log �(1, q) dν̃(q) =
∫

X−1(Br(p))

log
λ(1, q)
�(1, q)

dν̃(q)

=
∫

X−1(Br(p))

log
λ(1, q)

λ(1, q)Ψ(q)
dν̃(q)

= −
∫

X−1(Br(p))

log Ψ(q) dν̃(q).
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Therefore we obtain

λu(A) − λu(A0) ≥ −
(

r

r0

)2

I(r0) − ν̃(X−1(Br(p))) × max
w∈X−1(Br(p))

log(Ψ(w))

= −r2

(
I(r0)
r2
0

+
ν̃(X−1(Br(p)))

r2
max

w∈X−1(Br(p))
log(Ψ(w))

)

(27)
= −r2

(
I(r0)
r2
0

+ π max log Ψ(w)
)

.

Since by (30) we have I(r0) < 0, to prove that λu(A)−λu(A0) > 0 it is enough
to show that

max
w∈X−1(Br(p))

log Ψ(w)

is negligible for small r. For that it suffices to prove that:

Lemma 4.3. There exist σ ∈]0, 1[ and C̃ > 0 such that for any small r and
w ∈ X−1(Br(p)) one has |Ψ(w) − 1| ≤ C̃ στr , where τr is the smallest return
time from Br(p) to Br(p).

Proof. As ΦA is partially hyperbolic we have a dominated splitting between
the subbundles Eu

A and Ec
A. Hence, there exist C1 > 0 and σ ∈]0, 1[ such that

for any q ∈ M , t ≥ 0 and unit vectors u ∈ Eu
A and c ∈ Ec

A we have

‖Φt
A(q, c)‖ ≤ C1 σt‖Φt

A(q, u)‖. (42)

Let θ > 0 and consider the center-stable cone Ccs
θ (A, q), a plane W ⊂ Ccs

θ (A, q)
and a vector v ∈ Ccs

θ (A, q) \ {�0}. Let also πu
q,W : R

3
q → Eu

A stand for the
projection on Eu

A parallel to W . We define a constant C2 depending on θ by

C2 = max
‖πu

q,W (v)‖
‖v‖ . (43)

Now recall that we fixed q ∈ X−1(Br(p)) and defined τ(q) as the least positive
real number such that there exists q̃ ∈ Br(p) with Xτ(q)(q̃) = q. We observe
that τ(q) ≥ τr. Recall also (34) that is

[Φ1
A(q̃)]−1 · Φ1

A0
(q̃) · u(q̃) = z(q̃)u(q̃) + v(q̃),

and also that wu(q) = πu
q (Φτ(q)

A (q̃) · v(q̃)) where πu
q is the projection from R

3
q

on Eu
q along the new central bundle Ec

A0
. Now, observe that from (43) we get

‖wu(q)‖
‖Φτ(q)

A (q̃) · v(q̃)‖
=

‖πu
q (Φτ(q)

A (q̃) · v(q̃))‖
‖Φτ(q)

A (q̃) · v(q̃)‖
≤ C2. (44)
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Finally, considering C3 = maxq∈B1(p) z(q)−1, we get:

|Ψ(w) − 1|
(38)

≤ 〈wu(q), u(q)〉
z(q̃)a(q̃)

∏�τ(q)�−1
i=0 λ(Xi(q̃))

(36)

≤ C0〈wu(q), u(q)〉
z(q̃)

∏�τ(q)�−1
i=0 λ(Xi(q̃))

≤ C0‖wu(q)‖
z(q̃)

∏�τ(q)�−1
i=0 λ(Xi(q̃))

(44)

≤ C0 C2‖Φτ(q)
A (q̃) · v(q̃)‖

z(q̃)
∏�τ(q)�−1

i=0 λ(Xi(q̃))
(42)

≤ C0 C1 C2 στ(q)

z(q̃)
≤ C0 C1 C2 στr

z(q̃)
≤ C0 C1 C2 C3 στr ,

and we have the lemma proved by considering C̃ = C0 C1 C2 C3. �

Since τr tends to infinity as r goes to zero it follows that if r is small enough,
then we get

λu(A) − λu(A0) > 0. (45)

By the volume preserving assumption and (13) we have,

λu(A) + λc(A) + λs(A) = 0 = λu(A0) + λc(A0) + λs(A0). (46)

Moreover, as the perturbation A0 left the stable manifold unchanged the neg-
ative Lyapunov exponents remains the same, that is λs(A0) = λs(A), we con-
clude from (45) and (46) that λc(A0) > λc(A) and Proposition 4.1 is proved.
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