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Abstract
LetX0,1

ν (M) be the subset of divergence-freeLipschitz vector fields defined on a closed
Riemannian manifold M endowed with the Lipschitz topology ‖ · ‖0,1 where ν is the
volume measure. LetX0,1

ν,�(M) ⊂ X0,1
ν (M) be the subset of vector fields satisfying the

�-property, a property that implies C1-regularity ν-almost everywhere. We prove that
there exists a residual subset R ⊂ X0,1

ν,�(M) with respect to ‖ · ‖0,1 such that Pesin’s
entropy formula holds, i.e. for any X ∈ R the metric entropy equals the integral, with
respect to ν, of the sum of the positive Lyapunov exponents.

Keywords Volume-preserving flows · Lyapunov exponents · Metric entropy ·
Lipschitz vector fields
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1 Introduction and statement of the results

1.1 Motivations and some back history

The main goal of this paper is to initiate and motivate the study of dynamics of
divergence-free Lipschitz vector fields on manifolds of dimension greater than three.
Lower dimensions will not be considered because the issues we are adressing in
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this manuscript are somewhat irrelevant and trivial when analyzed in the context
of divergence-free vector fields in low-dimensional manifolds. As it is well known,
Lipschitz continuity is a strong form of uniform continuity. However, in the case of
vector fields, the Lipschitz condition turns out to be of crucial importance as it implies
the uniqueness of integral curves by the well-known Picard–Lindelöf theorem which
may fail to hold if one assumes continuity only (cf. [16, Figure 2, p. 19]). On the
other hand, Lipschitz continuous vector fields strictly contain C1-vector fields hence
they form a class of models with a wider range of applications. One major difficulty in
proving results of either a genericity or stability character for divergence-free Lipschitz
vector fields stems from the fact that the latter are not Lipschitz approximable by C1-
divergence-free vector fields (see Example 2.1). Therefore, any attempt to generalize
results from the C1 to the Lipschitz class via an approximation by C1-vector fields is
not viable.1 Nonetheless, it is worth pointing out that the Lipschitz topology on the
C1-class is intrinsically the same as the C1-Whitney topology (cf. [2, Section 5]).

1.2 Metric entropy

The concept of metric entropy was introduced by Kolmogorov and Sinai in mid twen-
tieth century and it is a central concept in ergodic theory with connections to several
areas of physics (e.g., Thermodynamics and Statistical Mechanics) and Information
Theory among others. Given a state space equipped with a sigma-algebra of sets and
a measurable dynamical system which possesses an invariant measure on that same
sigma-algebra, the entropy measures the complexity of this system in the sense that
it captures the asymptotic expansion rate characteristic of the flow in the whole set
observed by the given measure. Not surprisingly, many definitions of a chaotic system
impose positive metric entropy. Given a measure ν and a ν-measurable flow Xt, we
denote by hν(X1) the measure-theoretic entropy of the time-1 map X1 with respect to
(w.r.t.) the measure ν (for more details see [10]). It is worth pointing out that several
authors defined different concepts of flow entropy which are well behaved when we
consider a re-parametrization of the flow [14, 37]. A complete survey on entropy can
be found in [18].

1.3 Lyapunov exponents

Being key objects in smooth ergodic theory, Lyapunov exponents measure the asymp-
totic growth rate of the tangent map of a dynamical system along orbits when restricted
to certain fixed directions. Positive or negative Lyapunov exponents ensure, respec-
tively, exponential divergence or convergence of nearby orbits whereas zero Lyapunov
exponents imply lack of exponential behavior. As the behavior of orbits moving apart
or closer together can be described topologically one expects to find similar notions for
maps satisfying continuity only (see e.g. [7, 25, 31]). However, measurability alone, as
it is required in the case of metric entropy, seems to be quite insufficient for developing

1 Notice that in [9] there were studied generic properties of Lipschitz vector fields with bounded Lipschitz
constant endowed with the C0-topology. In this case the constraint on the approximation by C1-vector
fields did not hold.
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an interesting theory of Lyapunov exponents. Furthermore, as a complete theory for
C1-systems is available since the late sixties [30], it is common to consider this class
of differentiability when dealing with Lyapunov exponents.

1.4 Pesin’s formula

In the late seventies Ruelle [35] obtained an upper bound to the metric entropy of a
C1-measurable map preserving a probability measure. This upper bound is precisely
the integral, w.r.t. the given measure, of the sum of all positive Lyapunov exponents.
Indeed, Pesin [33] had already proved that the metric entropy equals the integral of the
sum of all positive Lyapunov exponents as long as the map is C1+α and the invariant
measure is equivalent to theLebesguemeasure.Notice that,Morse–Smale systems (see
e.g. [32, Section 4]) are examples which attest that the Ruelle inequality may be strict.
In order to obtain an equality, which is currently designated byPesin’s entropy formula,
Pesin developed an outstanding theory that is paramount in dynamical systems and
forms the basis of the so-called nonuniform hyperbolicity. Later in [23],Mañéwas able
to obtain Pesin’s entropy formula without making use of Pesin’s invariant manifold
theory. Undoubtedly, this is one of the most elegant formulas in the whole theory of
dynamical systems and the type of result which is useful having at our disposal.

1.5 A generic Pesin’s formula

Although Pesin’s entropy formula requires that the map is C1+α and also that C1-
generically (i.e., for a set that contains the intersection of a countable collection of
dense open sets)C1-maps are not.2 of classC1+α , Tahzibi obtained in [38] a simple yet
interesting result:C1-generic area-preserving diffeomorphisms satisfy Pesin’s entropy
formula. Later, this result was generalized to any dimension by Sun and Tian [36], to
volume-preserving flows and low-dimension Hamiltonians by the author and Varan-
das [11] and to volume-preserving lipeomorphisms displaying some C1-regularity
of measure theoretic type, by the author, Silva and Vilarinho [8]. Sun and Tian (see
[36]) follow Mañé’s clever arguments in [20, 21] on the proof of Pesin’s entropy for-
mula using merelyC1-regularity of diffeomorphisms, but they appended an additional
hypothesis of a dominated splitting for almost every point. The dominated splitting
was obtained from an outstanding result having its roots also in the ingenious ideas
of Mañé: the Mañé–Bochi–Viana dichotomy [11]. Our main result was motivated by
[8] and arguably the main reason for studying maps first was that the proofs of the
results are somewhat easier than for vector fields. The step forward is then the study
of the continuous-time case. Therefore, the prime goal of this article is to present a
proof of Pesin’s entropy formula for divergence-free vector fields. Thus, tacitly we are
considering the entropy related to the volume measure.

This formula may be summarized by saying that the metric entropy related to the
volume measure is equal to the integral over the whole manifold of the sum of the
positive Lyapunov exponents which are observed by the volume measure.

2 See e.g. [38, Lemma 1.7].
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The proof follows the samemethod as in [8] but all the constructions are rearranged
to work in a differential equations environment. The proof will be divided into three
main steps:

• Firstly, we use Ruelle’s inequality (Main Proposition) in order to obtain that the
metric entropy is less or equal to the integral, over the whole manifold, of the sum
of the positive Lyapunov exponents. This formula follows directly from the one
obtained in the discrete case in [8, Proposition 1].

• Secondly, the reverse inequality is obtained by dividing it into two parts according
to the Lipschitz generic dichotomy domination versus zero Lyapunov exponents
stated in Theorem B and proved in Sect. 3. The proof of Theorem B requires a
careful analysis in several parts of the arguments which are necessary to generalize
the C1-case to the Lipschitz one.

• Finally, as the reverse inequality over the zero Lyapunov exponents part follows
trivially we are left to show it under the presence of a dominated splitting. This is
obtained by considering Theorem C and will be proved in Sect. 4 by adapting and
generalizing the work made in [8, 36].

1.6 Generalizing a generic Pesin’s formula

We observe that in Theorem A we consider a measure derived from a volume form.
This constraint on themeasure is due to the fact that the Lipschitz continuous-time ver-
sion of Bochi–Mañé–Viana dichotomy (Theorem B) is used as an intermediate step.
However, Main Proposition and TheoremC hold for any smoothmeasure. It is an open
and interesting question if Theorem A holds for a broader set of measures. Indeed,
Theorem A depends on Theorem B which holds only for the volume measure. Thus,
a corresponding version for general measures could be hard to establish. There are
four natural directions to generalize Theorem A: (a) consider more general smooth
measures, (b) weaken the topology, (c) widen our set of dynamical systems, or (d)
consider other classes of conservative dynamical systems. Nonetheless, there exist six
important ingredients in the scheme we use: (i) Ruelle’s inequality, (ii) the dominated
splitting zone on which we use Theorem C, (iii) some regularity on the tangent map,
which is fundamental in order to obtain Theorem C, (iv) the zero Lyapunov exponents
zone where the formula is controlled trivially, (v) a dichotomy between dominated
splitting and zero exponents managed via Theorem B, and (vi) the upper semiconti-
nuity3 of the integral of the Lyapunov exponents which is crucial to the proof of the
previous dichotomy.Unfortunately, it seems to be not feasible to generalize TheoremA
using the above strategy. In fact, it is very likely that we have reached the threshold of
validity of this approach to prove the generic Pesin’s formula as far as weakening the
topology is concerned because all points (i)–(vi) are compromised. If we try to widen
our set of dynamical systems while keeping a ‘good’ topology then the Baire property
may vanish and a ‘generic’ result would be uninteresting. Therefore, we are left with
possible generalizations considering other classes of conservative dynamical systems,

3 The weakening of the domain topology makes it more difficult to obtain the continuity of a map. For
example, if we weaken the topology from C1 to C0 then the semicontinuity of the integral of the Lyapunov
exponents is lost (cf. [7, Theorem C]).
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e.g., symplectic homeomorphisms, Hamiltonians, contact flows, geodesic flows, etc.
In this direction [10] proves that C2-generic Hamiltonians, i.e. C1-generic Hamilto-
nian flows, satisfy the Pesin entropy formula. An interesting problem is to find out
if we could generalize this result to the class of Lipschitz Hamiltonian flows imbued
with the same spirit of the present paper. In divergence-free Lipschitz vector fields we
make use of a conceptual idiosyncratic property: they can be characterized both from
a differentiable and from a measurable point of view.

Indeed, the flow Xt preserves the volume form if det DXt = 1 or if ν(Xt (B)) =
ν(B) for any Borelian set B. When dealing with Hamiltonians we have a conceptual
shortcoming because the symplectic invariance is strongly based on a differentiable
assumption: the pullback of Xt applied to a symplectic form ω is again the symplectic
form ω, i.e. ω(DXt

x ·u, DXt
x ·v) = ω(u, v). We could try to use the Rademacher

theorem and formally define symplectic invariance ν-a.e. but we have a gap in the lit-
erature concerning this ‘symplectic ν-a.e. structures’. Yet, considering C0-closures of
Hamiltonian flows is a subject of growing interest that is related to Gromov–Eliasberg
symplectic rigidity [12, 28, 29, 39, 40]. It would be interesting to better understand
how these two concepts are related.

1.7 Statement of the results and proof of Theorem A

The main result in the present paper, stated in Theorem A, is to establish that Pesin’s
entropy formula holds generically in X0,1

ν,�(M). The set of vector fields X0,1
ν,�(M) will

be defined in Sects. 2.1 and 2.4 but briefly they represent Lipschitz vector fields with
associated flows preserving the volume ν and with a nice regularity of the derivative
ν-a.e. Let X ∈ X1

ν,�(M) and let Xt be the flow associated to X . We denote by hν(Xt )

the measure-theoretic entropy of the time-t map Xt w.r.t. the measure ν (for more
details see [10]). Since Abramov [1] formula says that hν(Xt ) = |t | hν(X1) for any
t ∈ R (for a proof see [13, Theorem 3, p. 255]), it is irrelevant to choose other time-t
flow to evaluate the metric entropy. From now on, and for practice convenience, we
consider hν(X1) and denote it simply by hν(X). The topology ‖·‖0,1 regarding the
definition of the residual set in Theorem A will be defined in Sect. 2.2. The numbers
λ+

i (X , x) are the d positive Lyapunov exponents associated to the time-1 flow and
will be defined properly in Sect. 2.5.

Theorem A There exists a ‖·‖0,1-residual subsetR ⊂ X0,1
ν,�(M) such that for all X ∈ R

hν(X) =
∫

M

d∑
i=1

λ+
i (X , x) dν(x). (1.1)

In order to obtain equality (1.1) we first consider Ruelle’s inequality for Lipschitz
vector fields which is a fairly straightforward generalization of [8, Proposition 1]. In
[8], it was proved for Lipschitz homeomorphisms but the same conclusion can be
drawn for time-1 maps of Lipschitz flows.

Main Proposition (Ruelle’s inequality for Lipschitz vector fields) For all X ∈
X0,1(M) with associated flow preserving the measure ν we have
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hν(X) �
∫

M

d∑
i=0

λ+
i (X , x) dν(x). (1.2)

The proof of the inverse inequality of (1.2) has two parts, as in the previous
approaches [8, 36]. The first is the Lipschitz flows version of a result by the author
and Rocha [4, 6] and it seeks to validate the generic Mañé–Bochi–Viana dichotomy:
dominated splitting versus zero Lyapunov exponents, proved in [11], for our class of
dynamical systems. The proof of this dichotomy is given in Sect. 3 and relies, between
other arguments, on the upper semicontinuity of the integrated Lyapunov exponents
map defined in (2.9) w.r.t. the Lipschitz topology and that a continuity point of the
integrated Lyapunov exponents has either a dominated Oseledets splitting for the lin-
ear Poincaré map or else a trivial Oseledets spectrum. Let us be formal and state the
result that will be instrumental to prove Theorem A but which has its own interest.
The set M̃X ⊂ M is the set of Rademacher points for the lipeomorphism X1 and the
linear Poincaré map (see Sects. 2.1 and 2.3 for details).

Theorem B There exists a ‖·‖0,1-residual subsetR ⊂ X0,1
ν (M) such that for all X ∈ R

there exists a ν-full measure subset Z∪D ⊂ M̃X such that every Lyapunov exponent
vanishes for all x ∈ Z, and for all x ∈ D the Oseledets splitting has an mx -dominated
splitting for the linear Poincaré map along the orbit of x, for some mx ∈ N.

To deal with the dominated component D in the previous result we will prove in
Sect. 4 a continuous-time version of a result proved in [8, Theorem 3] which was based
on [36, Theorem 2.2] and whose construction goes back to the work [20, 21].

Theorem C Let X ∈ X0,1
ν,�(M) and m : M → N ne a measurable map which is Xt -

invariant. If for ν-a.e. x ∈ M there is an mx -dominated splitting E ⊕ F for the linear
Poincaré map on the orbit of x, then

hν(X) �
∫

M

dim(F)∑
i=1

λi (X , x) dν(x).

Observe that in Theorem C if F is associated to the non-negative (or positive)
Lyapunov exponents and E is associated to the negative (or non-positive) Lyapunov
exponents, then (1.1) holds for X ∈ X0,1

ν,�(M) with dominated splitting.

1.7.1 Proof of Theorem A

Now we are going to prove Theorem A assuming Theorem B, Main Proposition and
TheoremC. By TheoremBwe know that there exists a residual setR ⊂ X0,1

ν (M) such
that, for each X ∈ R and ν-almost every x ∈ M , the Oseledets splitting of the linear
Poincaré map is either dominated along the orbit of x or else the Lyapunov spectrum
of X at x is trivial. Consider X ∈ R. By Main Proposition we have for ν-a.e. x ∈ M
that

hν(X) �
∫

M

d∑
i=1

λ+
i (X , x) dν(x).
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We are left with the task of proving that

hν(X) �
∫

M

d∑
i=1

λ+
i (X , x) dν(x). (1.3)

Let Z ⊆ M stand for the set of points such that the Lyapunov spectrum of X at x
is trivial and let D ⊆ M stand for the set of points such that the Oseledets splitting
of the linear Poincaré map is dominated. It is convenient to choose ν(Z), ν(D) > 0
because other cases follow from this one.Define for anyBorelian A ⊆ M the following
measures:

νZ(A) = ν(A ∩ Z)

ν(Z)
and νD(A) = ν(A ∩ D)

ν(D)
.

Clearly, νZ(Z) = 1, νD(D) = 1 and ν = ν(Z)νZ + ν(D)νD. Therefore, using the
affine property of the metric entropy we get

hν(X) = ν(Z)hνZ(X) + ν(D)hνD(X).

We only have to show that (1.3) holds for hνZ(X) and hνD(X) separately. Since the
metric entropy is always non-negative and the Lyapunov exponents of X are all zero
in Z, we get

hνZ(X) � 0 =
∫

M

d∑
i=1

λ+
i (X , x) dνZ(x).

Finally, Theorem C gives that

hνD(X) �
∫

M

d∑
i=1

λ+
i (X , x) dνD(x),

and Theorem A follows.

2 Divergence-free Lipschitz vector fields

2.1 Definition

Let M be a connected, closed and C∞-Riemannian manifold of dimension d � 3.
Since along this paper we deal with divergence-free vector fields, we assume that M is
also a volume-manifold with a volume form V : T Md → R where T M stands for the
tangent bundle. Furthermore, we equip M with an atlasA = {(ϕi , Ui )i } of M (cf. [26])
such that (ϕi )∗V = dx1∧dx2∧ · · · ∧dxd , where xn are the canonical coordinates in
the Euclidian space, ϕi : Ui → R

d a local C∞-volume-preserving diffeomorphism,
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Ui an open subset of M and
⋃

i Ui covers M . The fact that M is compact guarantees
thatA can be taken finite, sayA = {(ϕi , Ui )}k

i=1.We call Lebesgue measure or volume
to the measure related to V and denote it by ν. This relation is established by

ν(B) = νV(B) ..=
∫

ϕ(B)

Vϕ−1(x)

(
Dϕ−1

1 ·e1, . . . , Dϕ−1
d ·ed

)
dx1 . . . dxd ,

for some Borelian B ⊂ M where {e1, . . . , ed} is the canonical base of R
d. Let d( · , ·)

stand for the distance associated to the Riemannian metric and let C(M, R) be the set
of continuous maps on M endowed with the usual metric defined by

d0(F, G) = max
x∈M

{|F(x) − G(x)| : x ∈ M}.

We notice that (C(M, R), d0) is a complete metric space. We say that F ∈ C(M, R)

is Lipschitz if there exists a constant L � 0 such that

|F(x) − F(y)| � L d(x, y),

for all x, y ∈ M . The infimum of such constants is called the Lipschitz constant of F ,
that we denote by lip(F):

lip(F) = sup
x 
=y

|F(x) − F(y)|
d(x, y)

.

A Cr -vector field X (r � 0) is a Cr -map X : M → T M and so X(x) ∈ Tx M .
Let X = ∑d

n=1 Xn
∂

∂xn
be written in the coordinate charts A in the following sense:

given x ∈ M we take (ϕi (x), Ui (x)) where i(x) ∈ {1, . . . , k} is chosen to be the
mininum and consider X̂ = (ϕi(x))∗ X defined by X̂(ϕi(x)) = Dϕi(x) · X(x). Hence
(ϕi(x))∗ X = D f ◦ X ◦(ϕ−1

i(x))(x̂) where x̂ = ϕi(x)(x). In conclusion we say that X̂ is
the expression of X in the coordinate charts A.

If, for every n = 1, . . . , d, each function Xn ∈ C(M, R) and it is Lipschitz contin-
uous, then X is said to be a Lipschitz vector field. We will denote by X0,1(M) the set
of Lipschitz vector fields in M and by Xr (M) the set of Cr ones. The integral family
of curves, Xt : M → M , associated to X ∈ X0,1(M) satisfies Xt+s(x) = Xt (Xs(x))

and X0(x) = x for all t, s ∈ R and x ∈ M and is called the flow associated to X . In
[17, Theorem 3.41 and Lemma 3.42], it is proved that Lipschitz vector fields integrate
Lipschitz flows.

Rademacher’s theorem [15, Theorem 3.1.6] yields that Lipschitz functions admit
derivatives for ν-a.e. (almost every) point. The points inside this full measure set
w.r.t. the measure ν are called Rademacher’s points. The divergence of a vector field,
∇ · X : M → R, where ∇ ..= (

∂
∂x1

, . . . , ∂
∂xd

)
, is a well-defined function on a ν-full

measure subset of M if we assume X to be a Lipschitz vector field. We say that a
Lipschitz vector field X is divergence-free if ∇ · X = 0 for ν-a.e. x ∈ M . We denote
this set by X0,1

ν (M). The relation between the volume-preserving property of the
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flow and the divergence-freeness of the vector field is embodied in the Abel–Jacobi–
Liouville formula proved for the Lipschitz class in [5, Proposition 1]. In [5, Proposition
1], it was proved that if X ∈ X0,1

ν (M) and τ ∈ R, then, for any Borelian B we have
ν(B) = ν(X τ (B)). When a vector field X is of class Cr (r � 1) we say that X is
divergence-free if ∇ · X = 0 for all x ∈ M . Let Sing(X) ..= {x ∈ M : X(x) = 0}
denote the set of singularities of X and let R(X) ..= M \Sing(X) denote the set of
regular points.

2.2 Lipschitz topology

Given a map F : B ⊂ R
d → R

d, we write lipB(F) for the corresponding Euclidean
Lipschitz constant:

lipB(F) = sup
u 
=v

u,v∈B

‖F(u) − F(v)‖
‖u − v‖ .

We will denote by ‖·‖C0(Rd ) the norm of uniform convergence in the space C0(Rd)

of continuous maps F : R
d → R

d. We notice that the space of Lipschitz maps from
R

d to R
d has a linear structure, and that

‖F‖0,1 ..= ‖F‖C0(Rd ) + lipRd (F)

defines a complete norm. Let us now introduce the Lipschitz topology on X0,1
ν (M).

Since any smooth metric is Lipschitz equivalent to the Euclidean metric, F is a
Lipschitz map if and only if for any coordinate charts A the map F̂ = (ϕ)∗F is
Lipschitz on the Euclidean domain B = ϕ(U ), that is lipB(F̂) < ∞. If for x ∈ U
the derivative DFx is well defined, then so is ‖DF̂ϕ(x)‖, and moreover we have
‖DF̂ϕ(x)‖ � lipB(F̂) < ∞. Given X ∈ X0,1(M), consider coordinate charts A

on M , compact sets K ⊂ U and 0 < ε � ∞. Define a subbasic neighborhood

N(X; (U , ϕ), K , ε) (2.1)

to be the set of vector fields Y ∈ X0,1(M) such that maxx∈M ‖X(x)−Y (x)‖ < ε, and
moreover

lipϕ(X − Y ) ..= lipϕ(K )(ϕ∗ X − ϕ∗Y ) < ε.

Unless M displays a structure of linear space, the expression X −Y is meaningless, and
its use is only to remind the relation between the corresponding charts representatives
of X and Y . Let ‖·‖0,1 be the topology generated by the subbasic neighborhoods (2.1).
Consider a finite family {Ni }i∈I = {N(X; (ϕi , Ui ), Ki , εi )}i∈I of subbasic neighbor-
hoods such that {Ki }i∈I covers M . Let N be a neighborhood of X obtained as the
intersection of the subbasic sets Ni . There is a metric d0,1 compatible with its topol-
ogy that for each X , Y ∈ N assigns

d0,1(X , Y ) = max
{
max
x∈M

‖X(x) − Y (x)‖,max
i∈I

{lipϕi
(X − Y )}}.
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The closureN ofN is then a complete metric space and thus a Baire space. Since each
X ∈ X0,1(M) has a neighborhood which is a Baire space, (X0,1(M), ‖·‖0,1) is itself
a Baire space and so is (X0,1

ν (M), ‖·‖0,1).
In the following simple example we show that vector fields in X0,1

ν (M) may not
be ‖·‖0,1-approximable by vector fields in X ∈ X1

ν(M). Thus, the attempt of using
‖·‖0,1-approximation by smooth vector fields to study Lipschitz vector fields will fail.

Example 2.1 Take X(x, y) = (X1(x, y), X2(x, y)) = (1 + |y|, 0) in X0,1
ν (R2) and

use [26] to transport it to M = S
2 defining a vector field in X0,1

ν (M). Assume, by
contradiction, that there exists a C1-vector field Y (x, y) = (Y1(x, y), Y2(x, y)) ∈
X1

ν(M) such that ∂Y1
∂ y

∣∣
(0,0) exists and ‖X − Y‖0,1 < 1. Let us define, for y ∈ (−1, 1),

α(y) = Y1(0, y), β(y) = X1(0, y) = 1 + |y| and

�y
..= |α(y) − β(y) − (α(0) − β(0))|

|y − 0|
=

∣∣∣∣α(y) − α(0)

|y| −
(

β(y) − β(0)

|y|
)∣∣∣∣ =

∣∣∣∣α(y) − α(0)

|y| − 1

∣∣∣∣.

We observe that,

lim
y→0+

α(y) − α(0)

|y| = α′(0) = ∂Y1

∂ y

∣∣∣∣
(0,0)

and

lim
y→0−

α(y) − α(0)

|y| = − α′(0) = − ∂Y1

∂ y

∣∣∣∣
(0,0)

.

Hence one of these numbers α′(0) or−α′(0) is� 0 which contradicts ‖X −Y‖0,1 < 1
above.

2.3 The linear Poincarémap

Fix X ∈ X0,1(M), x ∈ R(X) and let Nx ⊂ Tx M denote the normal fiber at X(x),
that is, the subfiber spanned by the orthogonal complement of X(x). As we already
said, from [17, Theorem 3.41 and Lemma 3.42] we know that Lipschitz vector fields
integrate Lipschitz flows.Moreover, we know that we gain some differentiability along
the direction of the vector field. Indeed, Xt (x) is a C1,1-function of t and so NXt (x)

vary in a C1,1-way. We denote by N ⊂ T M the normal bundle which is defined on
R(X). Now, letNx andNXt (x) be two (d − 1)-dimensional manifolds contained in M
whose tangent spaces at x and Xt (x), respectively, are Nx and NXt (x). Let also Vx be
a small neighborhood of x in Nx . The set Vx can be taken small enough so that the
usual Poincaré map P t

X (x) : Vx ⊂ Nx → NXt (x) is well defined.
We recall that by Rademacher’s theorem the derivative of a Lipschitz map X τ

(τ > 0) is defined for a full ν-measure subset M̃Xτ ⊆ M . In particular, ν(M \ M̃Xτ ) =
0, and since X τ is ν-invariant we conclude that ν(Xnτ (M \ M̃Xτ )) = 0 for all n ∈
Z. Therefore the set of orbits with points where X τ is not differentiable is the set⋃

n∈Z Xnτ (M \ M̃Xτ ). Since
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ν

( ⋃
n∈Z

Xnτ (M \ M̃Xτ )

)
�

∑
n∈Z

ν(Xnτ (M \ M̃Xτ )) = 0,

the set of orbits with points where X τ is not differentiable has zero measure. In view
of this we may assume M̃Xτ ⊂ M invariant by X τ, and the existence of DX τ

x implies
the existence of DXt

Xnτ (x) for all n ∈ Z.

The linear Poincaré flow of X ∈ X0,1(M) is the differential of the Poincaré mapP t
X

and so it exists only for ν-a.e. x ∈ R(X) once we fix t = τ > 0. To define it properly
for each τ > 0 we consider the tangent map DX τ : TRM̃Xτ → TRM̃Xτ which is
defined by DX τ (x, v) = (Xt (x), DX τ

x ·v). Let 
Xt (x) be the canonical projection on
NXt (x). The linear map

Pτ
X (x) : Nx → NXτ (x)

v �→ 
Xτ (x) ◦ DX τ
x ·v

is called the linear Poincaré map at x associated to the vector field X .
Now we will define dominated splitting for the linear Poincaré map associated

with X ∈ X0,1(M). Let m(A) = ‖A−1‖−1 denote the co-norm of a linear map A.
Consider m ∈ N. A nontrivial P1

X -invariant ν-measurable splitting ND = ED⊕ FD,
withD ⊂ M̃X1 , is said to be an m-dominated splitting for P1

X overD if the following
inequality holds for any x ∈ D:

‖Pm
X (x)|Fx ‖

m(Pm
X (x)|Ex )

� 1

2
.

2.4 The �-property and some useful continuous dependence results

Let X ∈ X0,1
ν (M) and let x0 ∈ M̃ be a Rademacher point. We consider appropriate

coordinate charts A and in a small neighborhood B(x0, r), r > 0, the linearization
given by

X(x) = X(x0) + DXx0(x − x0) + ρ(X , x0, r).

As X ∈ X0,1
ν (M) the remainder ρ(X , x0, r) : B(x0, r) → R

d varies Lipschitz contin-
uously in the variable x ∈ B(x0, r).Wewill write it simply ρ(x) instead of ρ(X , x0, r)

when no ambiguity can arise. We are interested in Lipschitz vector fields such that the
Lipschitz constant of the remainder decreases as we consider smaller radius for the
corresponding domain. We say that X ∈ X0,1

ν (M) satisfies the �-property at x0 ∈ M̃
if

lim
r→0

lipB(x0,r) ρ(X , x0, r) = 0. (2.2)

We denote byX0,1
ν,�(M) ⊂ X0,1

ν (M) the set of vector fields such that for ν-almost every

x0 ∈ M the �-property holds. Notice that, in X0,1
ν,�(M), the �-property is algebraically

closed w.r.t. the sum.
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We say that X ∈ X0,1
ν (M) is almost C1 (w.r.t. ν) if DX(·) is continuous when

restricted to M̃X . Observe that being almost C1 is weaker than saying that DXx is
continuous for ν-a.e. x on M , because DXx could not be even defined in some points
x of M in the almost C1-case.

Remark 2.2 If X ∈ X0,1
ν,�(M) then X is almost C1 (w.r.t. ν). Indeed we will prove

that for x0 ∈ M̃X , ‖DXx0 − DXx‖ goes to zero as x goes to x0, with x ∈ M̃X . For
y ∈ B(x0, r)we have, X(y) = X(x0)+DXx0(y−x0)+ρ(y), where ρ = ρ(X , x0, r),
and then taking derivatives w.r.t. the variable y evaluated at x ∈ M̃X we get DXx =
DXx0 + Dρx . Thus, ‖DXx0 − DXx‖ � ‖Dρx‖ � lipB(x0,r) ρ, which from (2.2) goes
to 0 as r → 0.

Remark 2.3 The �-property everywhere is not universal among X0,1
ν (M). Indeed,

define a divergence-free vector field in R
2 by X(x, y) = (

0, x2 sin 1
x

)
for x 
= 0

and X(0, y) = (0, 0) otherwise. Notice that X is differentiable everywhere;

DX(0,y) = [0], DX(x,y) ·(u, v) =
(
0,

[
2x sin

1

x
− cos

1

x

]
u

)
and ∇ · X = 0.

We have X /∈ X1
ν(R

2) and X ∈ X0,1
ν (R2) but X /∈ X0,1

ν,�(R
2). More precisely,

X(x, y) = (0, 0) + DX(0,0)(x, y) + ρ(x, y) =
(
0, x2 sin

1

x

)
,

being ρ(x, y) = (
0, x2 sin 1

x

)
thus property (2.2) fails.

Lemma 2.4 The vector space X0,1
ν,�(M) ⊂ X0,1

ν (M) is ‖·‖0,1-closed and thus X0,1
ν,�(M)

is a Baire space.

Proof. Let (Xn) be a sequence of vector spaces in X0,1
ν,�(M) converging w.r.t. ‖·‖0,1

to X ∈ X0,1
ν (M). For each n there is a ν-full measure subset M̃n ⊂ M of points

z where (DXn)z is defined. Similarly, there is a ν-full measure subset M̃X ⊂ M
of points z where DX z is defined. Let z be any point in the ν-full measure subset
M̃ = ⋂

n M̃n ∩ M̃X . We have

X(y) = X(z) + (DX)z(y − z) + ρ(y)

and, for each n, we also have

Xn(y) = Xn(z) + (DXn)z(y − z) + ρn(y),

where ρ = ρ(X , z, r) and ρn = ρ(Xn, z, r). Since Xn ∈ X0,1
ν,�(M) we have for all

n that limr→0 lipB(z,r) ρn = 0. We are going to prove that X ∈ X0,1
ν,�(M), that is,

for any given ε > 0 there is R > 0 such that lipB(z,R) ρ < ε and consequently the
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same holds for all 0 < r < R. Let ε > 0 be given. We can find N0 > 0 such that
‖X N0 − X‖0,1 < ε/3 and R0 such that lipB(z,R0)

ρN0 < ε/3. Hence

lipB(z,R) ρ � lipB(z,R0)
ρN0 + lipB(z,R0)

(ρ − ρN0)

<
ε

3
+ lipB(z,R0)

(X − X N0) + ‖D(X − X N0)z‖
� ε

3
+ 2 lipB(z,R0)

(X − X N0) < ε.

The next result shows that the flow inherits the �-property from the associated vector
field.

Lemma 2.5 If X ∈ X0,1
ν,�(M) and τ > 0, then X τ satisfies the �-property ν-a.e.

Proof. Fixing τ > 0 we have by the Rademacher theorem that for ν-a.e. x0 ∈ M the
tangentmap DX τ

x0 exists. Near x0 wewrite: X τ (x) = X τ (x0)+DX τ
x0(x−x0)+ρτ (x),

where ρτ (x) = ρτ (X τ, x0, r). It is enough to check that limr→0 lipB(x0,r) ρτ (x) = 0.

Since X ∈ X0,1
ν,�(M), we have that X(x) = X(x0) + DXx0(x − x0) + ρ(X , x0, r)

and

lim
r→0

lipB(x0,r) ρ(X , x0, r) = 0

that is

lim
r→0

lipB(x0,r) ρ(X , x0, r) = lim
r→0

lipB(x0,r)(X(x) − X(x0) − DXx0(x − x0))

= lim
r→0

sup
u 
=v

u,v∈B(x0,r)

‖X(u) − X(v) − DXx0(u − v)‖
‖u − v‖ = 0.

In the same way we have also that X(Xt (x)) = X(Xt (x0)) + DX Xt (x0)(Xt (x) −
Xt (x0)) + ρ(Xt (x)) for a.e. choice of t ∈ [0, τ ] and we also have that

lim
r→0

lipB(Xt (x0),r) ρ(X , Xt (x0), r) = 0.

As

lipB(Xt (x0),r) ρ(X , Xt (x0), r)

= lipB(Xt (x0),r)

(
X(Xt (x)) − X(Xt (x0)) − DX Xt (x0)(Xt (x) − Xt (x0))

)

= sup
u 
=v

Xt (u),Xt (v)∈B(Xt (x0),r)

‖X(Xt (u)) − X(Xt (v)) − DX Xt (x0)(Xt (u) − Xt (v))‖
‖u − v‖ ,
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we conclude that

lim
r→0

sup
u 
=v

Xt(u),Xt(v)∈B(Xt (x0),r)

‖X(Xt(u)) − X(Xt(v)) − DX Xt(x0)(Xt(u) − Xt(v))‖
‖u − v‖ = 0. (2.3)

For a.e. t ∈ [0, τ ] we consider L � ‖DX Xt (x0)‖. Define two parametric maps

u(t) = Xt (u) − DXt
x0 · u and v(t) = Xt (v) − DXt

x0 · v,

and observe that from basic properties of flows we get

u(0) = v(0) = 0. (2.4)

Using the linear variational equation (DXt
x0)

′ = DX Xt (x0) · DXt
x0 we also get

u′(t) = X(Xt (u)) − DXx0 · DXt
x0 ·u, v′(t) = X(Xt (v)) − DXx0 · DXt

x0 ·v. (2.5)

Therefore,

‖u(t) − v(t)‖ (2.4)=
∥∥∥∥
∫ t

0
u′(s) − v′(s) ds

∥∥∥∥ �
∫ t

0
‖u′(s) − v′(s)‖ ds

(2.5)=
∫ t

0

∥∥X(Xs(u)) − DX Xs(x0)·DXs
x0 ·u − X(Xs(v)) + DX Xs(x0)· DXs

x0 ·v
∥∥ ds

=
∫ t

0

∥∥X(Xs(u)) − DX Xs (x0) · DXs
x0 ·u

− X(Xs(v)) + DX Xs (x0) · DXs
x0 ·v ± DX Xs (x0)(Xs(u) − Xs(v))

∥∥ ds

=
∫ t

0

∥∥X(Xs(u)) − X(Xs(v)) − DX Xs (x0)(Xs(u) − Xs(v))

− DX Xs (x0) · DXs
x0 ·(u − v) + DX Xs (x0)(Xs(u) − Xs(v))‖ ds

=
∫ t

0

∥∥X(Xs(u)) − X(Xs(v)) − DX Xs (x0)(Xs(u) − Xs(v))

+ DX Xs (x0) ·( − DXs
x0 ·u + DXs

x0 ·v + Xs(u) − Xs(v))
∥∥ ds

�
∫ t

0

∥∥X(Xs(u)) − X(Xs(v)) − DX Xs (x0)(Xs(u) − Xs(v))
∥∥

+ L
∥∥ − DXs

x0 ·u + DXs
x0 ·v + Xs(u) − Xs(v)

∥∥ ds

=
∫ t

0

∥∥X(Xs(u)) − X(Xs(v)) − DX Xs (x0)(Xs(u) − Xs(v))
∥∥ ds

+
∫ t

0
L‖u(s) − v(s)‖ ds.
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Thus

‖u(t) − v(t)‖ �
∫ t

0

∥∥X(Xs(u)) − X(Xs(v)) − DX Xs (x0)(Xs(u) − Xs(v))
∥∥ ds

+
∫ t

0
L‖u(s) − v(s)‖ ds.

By Gronwall’s inequality (see e.g. [32]) we obtain

‖u(t) − v(t)‖
�

∫ t

0

∥∥X(Xs(u)) − X(Xs(v)) − DX Xs (x0)(Xs(u) − Xs(v))
∥∥ ds eL|t |.

(2.6)

Finally,

lipB(x0,r) ρτ (X τ, x0, r) = lipB(x0,r)

(
X τ (x) − X τ (x0) − DX τ

x0(x − x0)
)

= sup
u 
=v

u,v∈B(x0,r)

‖X τ (u) − X τ (v) − DX τ
x0(u − v)‖

‖u − v‖

= sup
u 
=v

u,v∈B(x0,r)

‖u(τ ) − v(τ)‖
‖u − v‖

(2.6)

� eLτ sup
u 
=v

u,v∈B(x0,r)

∫ t

0

‖X(Xs(u)) − X(Xs(v)) − DX Xs (x0)(Xs(u) − Xs(v))‖
‖u − v‖ ds

(2.3)−→
r→0

0.

The next result is a consequence of Lemma 2.5 by using standard ‘add and subtract’
arguments.

Lemma 2.6 If X ∈ X0,1
ν,�(M) and τ > 0, then Pτ

X satisfies the �-property for ν-a.e.
x0 ∈ R(X).

Proof Fix a Rademacher point x0 ∈ R(X) where the tangent map DX τ
x0 , thus the

Poincaré map Pτ
X (x0), exists. Near x0 we write

Pτ
X (x) = Pτ

X (x0) + Pτ
X (x0)(x − x0) + ρτ (x),

where ρτ (x) = ρτ (P
τ
X , x0, r). We will prove that

lim
r→0

lipB(x0,r) ρτ (P
τ
X , x0, r) = 0.

First notice that

lipB(x0,r) ρτ (P
τ
X , x0, r) = lipB(x0,r)

(
Pτ

X (x) − Pτ
X (x0) − Pτ

X (x0)(x − x0)
)
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= lipB(x0,r)

(
X τ(x)(x) − X τ (x0) − Pτ

X (x0)(x − x0)
)

= sup
u 
=v

u,v∈B(x0,r)

‖X τ(x)(u) − X τ(x)(v) − Pτ
X (x0)(u − v) ± X τ (u) ± X τ (v)‖
‖u − v‖

� sup
u 
=v

u,v∈B(x0,r)

‖X τ (u) − X τ (v) − Pτ
X (x0)(u − v)‖

‖u − v‖

+ ‖X τ(x)(u) − X τ(x)(v) − X τ (u) + X τ (v)‖
‖u − v‖ .

Recalling that τ(x) −→
r→0

τ it suffices to prove that

sup
u 
=v

u,v∈B(x0,r)

‖X τ (u) − X τ (v) − Pτ
X (x0)(u − v)‖

‖u − v‖ −→
r→0

0.

We notice that

‖X τ (u) − X τ (v) − Pτ
X (x0)(u − v)‖

‖u − v‖
= ‖X τ (u) − X τ (v) − 
Xτ (x0) ◦ DX τ

x0(u − v) ± DX τ
x0(u − v)‖

‖u − v‖
�

‖X τ (u) − X τ (v) − DX τ
x0(u − v)‖

‖u − v‖
+ ‖DX τ

x0(u − v) − 
Xτ (x0) ◦ DX τ
x0(u − v)‖

‖u − v‖
�

‖X τ (u) − X τ (v) − DX τ
x0(u − v)‖

‖u − v‖ + ‖Id − 
Xτ (x0)‖ ‖DX τ
x0‖.

The lemma is proved once we observe that ‖Id − 
Xτ (x0)‖ −→
r→0

0 and ‖DX τ
x0‖ is

bounded.

Lemma 2.7 If X ∈ X0,1(M) and τ > 0, then the map X �→ Pτ
X is continuous when

the domain is equipped with ‖·‖0,1 and the codomain is equipped with the uniform
norm of operators.

Proof. It is sufficient to prove that X �→ X τ is continuous when both the domain and
the codomain are equipped with ‖·‖0,1. Let L X = lip(X), Y ∈ X0,1(M) and LY =
lip(Y ). We have the two integral canonical identities Xt (x) = x + ∫ t

0 X(Xs(x)) ds

and Y t (x) = x + ∫ t
0 Y (Y s(x)) ds.

Let U (t) = ‖Xt (u) − Y t (u) − Xt (v) + Y t (v)‖. Then,

U (t) =
∥∥∥∥
∫ t

0
X(Xs(u)) − Y (Y s(u)) − X(Xs(v)) + Y (Y s(v)) ds

∥∥∥∥
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�
∫ t

0

∥∥X(Xs(u)) − Y (Y s(u)) − X(Xs(v))

+ Y (Y s(v)) ± Y (Xs(u)) ± Y (Xs(v))
∥∥ ds

�
∫ t

0

∥∥Y (Xs(u)) − Y (Y s(u)) − Y (Xs(v)) + Y (Y s(v))
∥∥ ds

+
∫ t

0

∥∥X(Xs(u)) − X(Xs(v)) − Y (Xs(u)) + Y (Xs(v))
∥∥ ds

� LY

∫ t

0
U (s) ds +

∫ t

0

∥∥X(Xs(u)) − X(Xs(v)) − Y (Xs(u)) + Y (Xs(v))
∥∥ ds.

From Gronwall’s inequality we obtain

U (t) � et LY

∫ t

0

∥∥(X − Y )(Xs(u)) − (X − Y )(Xs(v))
∥∥ ds.

Therefore,

U (t) � et LY

∫ t

0

∥∥(X − Y )(Xs(u)) − (X − Y )(Xs(v))
∥∥ ds

� et LY

∫ t

0

‖(X − Y )(Xs(u)) − (X − Y )(Xs(v))‖
‖Xs(u) − Xs(v)‖ ‖Xs(u) − Xs(v)‖ ds

� t lip(X − Y )et LY

∫ t

0
‖Xs(u) − Xs(v)‖ ds

� lip(X − Y )et(L X +LY )t2 ‖u − v‖,

and so

‖Xt (u) − Y t (u) − Xt (v) + Y t (v)‖
‖u − v‖ � lip(X − Y )et(L X +LY )t2.

We perform the calculation by analysing the local problem in a small ball B ⊂ M

lipB(X τ − Y τ ) = sup
u 
=v

u,v∈B

‖X τ (u) − Y τ (u) − X τ (u) + Y τ (u)‖
‖u − v‖

� lipB(X − Y )eτ(L X +LY )τ 2.

2.5 Oseledets’ theorem in three scenarios

Let X ∈ X0,1
ν (M), x ∈ R(X) and let RX(x) ..= {u ∈ Tx M : u = ξ X(x), ξ ∈ R}

be the line field direction at x . Recalling that DXt
x · X(x) = X(Xt (x)) we conclude

that the vector field direction is DXt -invariant. The existence of other DXt -invariant
fibers is guaranteed, at least for Lebesgue almost every point, by a theorem due to
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Oseledets (see [30]). However, since we consider vector fields in X1,0
ν (M), we need

to pay attention on the construction of the continuous-time dynamical cocycle.
Take X ∈ X0,1

ν,�(M) and τ > 0. Since fromGronwall’s inequalitywehave‖DX τ
x ‖ �

eτ‖DXx ‖ � eτ lip(X) < ∞ for all x ∈ M̃Xτ , we obtain the integrability condition

∫
M
log+ ‖DX τ

x ‖ dν(x) < +∞,

which is crucial to obtain the Oseledets theorem. Let SL(d, R) denote the d-dimen-
sional special linear group with entries in R. The map

DX τ : M̃Xτ ×Z → SL(d, R)

(x, n) �→ DX τn
x

is a cocycle in the sense that it satisfies the identities:

• DX τ (x, 0) = DX0
x = Id for all x ∈ M̃Xτ , and

• DX τ (x, n + m) = DX τ (X τn(x), m) · DX τ (x, n) for all n, m ∈ Z and x ∈ M̃Xτ .
Here we use the chain rule for Lipschitz maps [19].

Under these assumptions we are in a position to apply the Oseledets theorem to the
dynamical cocycle DX τ (see e.g. [3]).

Theorem 2.8 (Oseledets theorem for the flow) Let X ∈ X0,1
ν,�(M) and τ > 0, then

there is a ν-full measure subset OXτ ⊂ M such that, for all x ∈ OXτ :

(1) there exists a DX τ -invariant splitting of the fiber Tx M = E1
x ⊕ · · · ⊕ Ek(x)

x along
the orbit of x called Oseledets’ splitting. Moreover, one of the Ei0

x is 1-dim and
Ei0

x = 〈X(x)〉 =.. RX(x) since DXnτ
x · X(x) = X(Xnτ (x)), and

(2) there exist real numbers λ̂1(X , x) > · · · > λ̂k(x)(X , x), with 1 � k(x) � d, called
Lyapunov exponents, such that

lim
n→±∞

1

n
log ‖DXnτ

x ·v‖ = λ̂i (X , x),

for any v ∈ Ei
x \{0} and i = 1, . . . , k(x). We also have a multiplicity one for the

Lyapunov exponent λ̂i0(X , x) = 0.

Remark 2.9 A ‘Lyapunov exponent’ is constant along an orbit even when, for the
transition from y to a point x = X τ (y), themap DX τ

y does not exist. In fact, we can use
the broader definition of Lyapunov exponent (cf. [7]) and the fact that the mentioned
transition is bounded by some constant depending on lip(X) and τ . Moreover, the
Lyapunov exponents fulfill a property similar to what Abramov’s formula says about
the metric entropy.We have λ(Xt ) = |t |λ(X1) so it is irrelevant to choose other time-t
flow to evaluate the Lyapunov exponents.

Let λ1(X , x) � · · · � λd(X , x) denote the d Lyapunov exponents counted with
multiplicity and set λ+

i (X , x) = max{λi (X , x), 0}d
i=1. The set {λi (X , x)}i=1,...,d is
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called the Lyapunov spectrum of X at x . When all Lyapunov exponents are equal we
say that the Lyapunov spectrum is trivial. Since we have

lim
n→+∞

1

n
log |det DXn

x | =
d∑

i=1

λi (X , x), (2.7)

and in the divergence-free context |det DXn
x | = 1, then being all equal means being

all equal to 0. Due to the fact that for any of these subspaces Ei
x ⊂ Tx M , the angle

between this space and RX(x) along the orbit has sub-exponential growth, that is

lim
n→±∞

1

n
log sin�

(
Ei

Xnτ (x), RX(Xnτ (x))
) = 0, (2.8)

we conclude that the Lyapunov exponent λ̂i (x) for DX τ with associated subspace
Ei

x is also a Lyapunov exponent for Pτ
X associated to subspace N i

x = 
x (Ei
x ), i ∈

{1, . . . , k(x)}, where 
x is the projection into Nx . In resume we have the following
reformulation of Theorem 2.8.

Theorem 2.10 (Oseledets theorem for the linear Poincaré flow) Let X ∈ X0,1
ν,�(M) and

τ > 0, then there is a ν-full measure subset OXτ ⊂ M \Sing(X) such that, for all
x ∈ OXτ :

(1) there exists a Pτ
X -invariant splitting of the fiber Nx = N 1

x ⊕ · · · ⊕ N k(x)
x , with

1 � k(x) � d − 1, along the orbit of x, and
(2) there exist real numbers λ̂1( f , x) > · · · > λ̂k(x)( f , x) called Lyapunov expo-

nents, such that

lim
n→±∞

1

n
log ‖Pτn

M (x) ·v‖ = λ̂i (P
τ
X , x),

for any v ∈ N i
x \{0} and i = 1, . . . , k(x).

Remark 2.11 As the Lyapunov exponent in the vector field direction is 0, i.e. λi0 = 0,
and along this direction no metric entropy is added, then in (1.1) of Theorem A we
have that hν(X) is equal to the entropy of the linear Poincaré time-1 map. More-
over, the right-hand side of (1.1) can be written as

∫
M

∑d−1
i=1 λ+

i (P1
X , x) dν(x) =∫

M

∑d
i=1 λ+

i (DX1, x) + λi0(X , x) dν(x).

Now we present some multilinear algebra for the linear Poincaré map. The kth

exterior power of the normal space N , denoted by
∧k(N ), is a

(d−1
k

)
-dimensional

vector space. Let {e j } j∈J (# J = d − 1) be an orthonormal basis of N , then the
family of exterior powers e j1∧e j2∧ · · · ∧e jk for j1 < · · · < jk with jα ∈ J forms an
orthonormal basis of

∧k(N ). Given Pt
X (x) : Nx → NXt (x) we define

∧k(Pt
X (x)) : ∧k(Nx ) → ∧k(NXt (x))

ψ1∧ · · · ∧ψk �→ Pt
X (x) · ψ1 ∧ · · · ∧ Pt

X (x) ·ψk .

123



M. Bessa

This formalismofmultilinear algebra reveals to be the adequate to proveTheoremB.
This is because we can recover the spectrum and the splitting information of the
dynamics of

∧k(Pt
X (x)) from the one obtained by applying Oseledets’ theorem to

Pt
X (x). This is precisely the meaning of the next theorem [1, Theorem 5.3.1]. For a

deeper discussion of exterior power algebra see [1, Section 3.2.3].

Theorem 2.12 (Oseledets theorem for the exterior power operator) The Lyapunov
exponents λ∧k

i (x) for i ∈ {1, . . . , (d−1
k )} (repeated with multiplicity) of the kth exterior

power operator
∧k(Pt

X (x)) are numbers of the form:

k∑
j=1

λi j (x), where 1 � i1 < · · · < ik � d − 1.

This nondecreasing sequence starts with

• λ∧k
1 (x) = λ1(x) + λ2(x) + · · · + λk(x), and ends with

• λ∧k
q(k)(x) = λd−k(x) + λd+1−k(x) + · · · + λd−1(x).

Take an Oseledets basis {e1(x), . . . , ed−1(x)} of Nx such that ei (x) ∈ N �
x for

dim(N 1
x ) + · · · + dim(N �−1

x ) < i � dim(N 1
x ) + · · · + dim(N �

x ).

Then the Oseledets space
∧k(N j

x ) of
∧k(Pt

X (x)) is the subspace of
∧k(Np) which is

generated by the k-vectors

ei1 ∧ · · · ∧eik such that 1 � i1 < · · · < ik � d − 1 and
k∑

j=1

λi j (x) = λ j (x).

Nowwewill consider the integrated upper Lyapunov exponent of the exterior power
of the linear Poincaré map. Fixing τ > 0 we consider the following function:

Lk : X0,1
ν,�(M) → [0,+∞)

X �→
∫

M
λ1

(∧k(Pτ
X ), x

)
dν(x).

(2.9)

In the same way we define the function Lk(X , �), where � ⊆ M is an Xt -invariant
set, defined by

Lk(X , �) =
∫

�

λ1
(∧k(Pτ

X ), x
)

dν(x).

Let�k(X , x)denote the sumof thefirst k Lyapunov exponents of X , that is�k(X , x) =
λ1(X , x) + · · · + λk(X , x). It is an easy consequence of Theorem 2.12 (recall (2.7))
that for k = 1, . . . , d − 2 we have �k(X , x) = λ1(

∧k(X), x) and so Lk(Pτ
X , �) =
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L1(
∧k(X), �), for any Xt -invariant set �. By using [11, Proposition 2.2] we get

immediately that

Lk(X , �) = inf
j∈N

1

j

∫
�

log
∥∥∧k(Pτ j

X (x))
∥∥ dν(x),

concluding, from Lemma 2.7, that for all k ∈ {1, . . . , d − 2}, the function (2.9) is an
upper semicontinuous function when the domain is endowed with the ‖·‖0,1 topology.

2.6 Dealing with singularities

In the next section we will see that small tailor made perturbations cause a decrease
on the Lyapunov exponents. Yet, to perform these perturbations we need ‘time’ along
the orbit and consequently the singularities, as equilibrium points, can make our task
difficult.Wewill now see howwe can rule out singularities in a sense that they typically
represent a zero measure set. Given X ∈ X1

ν(M), we observe that the hypothesis
ν(Sing(X)) = 0 holds if all the singularities of X are hyperbolic, thus from classical
results in [34], it is satisfied for aC1-open4 andC1-dense subset ofX1

ν(M).We say that
x ∈ M is a hyperbolic singularity for X ∈ X1

ν(M) if the spectrum of DXx has neither
pure complex nor zero as an eigenvalue. It is well known that a hyperbolic singularity is
stable/persistent andmoreover is isolated. Thus, hyperbolicity is a fundamental tool for
checking whether a singularity is indeed an isolated singularity in the Cr (r � 1) case.
Basically, a similar statement holds for the Lipschitz class. However, as hyperbolicity
is linked to differentiability, we must characterize a singularity being isolated through
a broader analysis. Indeed, hyperbolicity is basically transversality and this property
behaves in a similar way in the Lipschitz topology. We observe that thickening from
the Lipschitz to the C0-topology still captures the persistence of transversality but the
‘unicity’ is lost. Therefore, being isolated can no longer be guaranteed, as the reader
can easily see. The next trivial example is illuminating.

Example 2.13 TheLipschitz function f defined by f (x) = 2x if x � 0 and f (x) = 3x
if x � 0 is not derivable at the fixed point 0. Nevertheless, the fixed point is isolated
under Lipschitz perturbations.

Let us consider the following observations:

(1) The stability of elliptic singularities in divergence-free vector fields only happens
when dim(M) = 2. In fact pure complex eigenvalues (the elliptic case) per-
sists under perturbations within the conservative setting. As we are considering
dim(M) � 3 we only have to deal with stable hyperbolic singularities (see [34]
for more details).

(2) Hyperbolic singularities are ‖·‖0,1-stable in a sense that have a unique analytic
continuation under ‖·‖0,1 perturbations. Notice that we are not saying that the
continuation x̂ of x for the perturbed X̂ ∈ X1

ν(M) is a hyperbolic singularity,
because DX̂x̂ may not even exist. Still we get X̂(x̂) = 0 and there exists a ‖·‖0,1-
open set containing x̂ as the only singularity of X̂ .

4 Also for a ‖·‖0,1-open subset of X1
ν(M).
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(3) Let be given X ∈ X1
ν(M), x ∈ M such that X(x) = 0 and U an arbitrarily small

open neighborhood of x . Then there exists an arbitrarily ‖·‖0,1-close vector field
X̂ ∈ X1

ν(M) such that X̂(x̂) = 0, x̂ is the only singularity in U , DX̂x̂ exists and x̂
is hyperbolic for X̂ . The conclusion is trivial when DXx exists and x is hyperbolic.

Let X ∈ X0,1
ν (M). If all the singularities of X are hyperbolic, then they form a finite

set, therefore with ν-measure zero. Let M̃X be the Rademacher points and Sing(X) be
the set of singularities of X . We are only interested in the case when ν(Sing(X)) > 0.
In this case we cannot have hyperbolicity in the whole set M̃X ∩Sing(X). Yet, a small
‖·‖0,1-perturbation can be made so that all singularities are of hyperbolic type and
for this perturbed vector field X̂ ∈ X1

ν(M) we have ν(Sing(X̂)) = 0.

3 Proof of Theorem B

3.1 Toolbox for realizable sequences

Our proof depends on the fact that the absence of a dominated splitting allows the
Lyapunovexponents to decrease after a small perturbation.Oncewehavenodominated
splitting then we can rotate the unstable Oseledets fiber until it reaches the stable
Oseledets fiber mixing the rates of expansion and contraction. This idea goes back at
least as far as the 1970s and the Soviet school (see e.g. [27]). In our precise context we
refer to Mañé’s seminal ideas [22, 24] culminated in the outstanding work by Bochi
and Viana [11] for the discrete case. For the continuous-time case, see [4, 6].

The main tool to realize, implement and make explicit such perturbations is a flow-
box theorem for the divergence-free Lipschitz vector fields which has been proved
recently. Let us recall this result but first we begin by defining some useful objects.
We say that two vector fields X1 : U1 → T U1 and X2 : U2 → T U2 are locally topo-
logically conjugate near p1 ∈ U1 and p2 ∈ U2 if there exist two open neighborhoods
Oi � pi (i = 1, 2) and a homeomorphism φ : O1 → O2 with φ(p1) = p2 such that
for any x ∈ O1 and a small interval I containing 0 the integral curve σx : I → O1
defined by σx (0) = x and d

dt σx (t) = X1(σx (t)) for all t ∈ I (i.e. defined by Xt
1(x) for

t ∈ I ) is a solution associated to X1 if and only if the integral curve φ ◦σx : I → O2
is a solution associated to X2.

Theorem 3.1 (Flowbox theorem for Lipschitz divergence-free vector fields [5]) Let
be given X ∈ X0,1

ν (M), a non-singular point p1 ∈ M and the trivial vector field
T (x̂1, x̂2, . . . , x̂d) = (1, 0, . . . , 0) on canonical coordinates (x̂1, x̂2, . . . , x̂d) of R

d .
Then:

(i) X and T are locally topologically conjugate near p1 and p2 = 0̂. The homeomor-
phism φ which gives the conjugacy is a lipeomorphism.

(ii) X and Tc = cT are locally topologically (volume-preserving) conjugate near p1
and p2 = 0̂ for some c = c(X , p1) > 0. The homeomorphism � which gives the
conjugacy is a volume-preserving lipeomorphism.

For the reader’s convenience, we repeat the relevant material from [6] omitting
most of the proofs, thus making the text self-contained. As in [6, Definition 4.1] the
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realizable sequences will be a key object to obtain Theorem B. By modified volume-
preserving we mean the volume on the (d −1)-dimensional transversal section whose
measure is denoted by ν. This is a simple point regarding that ν is not invariant but by
considering a density given by the direction of the flow we obtain invariance (see [6,
Section 2.4]). The set F�

X (x)(U ) represents a flowbox obtained by the Xt -saturation
of the set U contained in a transverse section through x .

Definition 3.2 Given X ∈ X0,1
ν (M), ε > 0, κ ∈ (0, 1), � ∈ N, and a non-periodic point

x , we say that themodified volume-preserving sequence of linearmaps L j : NX j (x) →
NX j+1(x) for j = 0, . . . , � − 1 is an (ε, κ)-realizable sequence of length � at x if the
following occurs: For all γ > 0, there is r > 0 such that for any (d − 1)-manifold
Nx (tangent to Nx ) and any non-empty open set U ⊆ B(x, r) ⊆ Nx , there exist a
measurable set K ⊆ U and Y ∈ X0,1

ν (M) satisfying the conditions:

(a) ν(K ) > (1 − κ)ν(U );
(b) ‖Y − X‖0,1 < ε;
(c) Y = X outside F�

X (x)(U ); and
(d) if y ∈ K , then ‖P1

Y (Y j (y)) − L j‖ < γ for all j = 0, 1, . . . , � − 1.

LetRd be the Euclidean space in canonical coordinates (x̂1, x̂2, . . . , x̂d).We denote
the (d − 1)-dimensional ball with radius r in the subspace described by x̂1 = 0
by Bd−1(0, r). That is Bd−1(0, r) is the set of points (0, x̂2, . . . , x̂d) such that
‖(0, x̂1, x̂2, . . . , x̂d)‖ � r . The following result is the basic tool in order to build
realizable sequences.

Lemma 3.3 Given the trivial vector field T written in canonical coordinates of R
d,

ε > 0, r > 0 and κ ∈ (0, 1), there exists ξ0 > 0 such that for any ξ ∈ (0, ξ0), for
0 ∈ R

d and any 2-dimensional vector space V0 ⊂ 〈(0, x̂2, . . . , x̂d)〉 there exists a
smooth vector field Y such that:

(a) Y = T outside the flowbox cylinder F1
T (0)(Bd−1(0, r));

(b) ∇ ·Y = 0;
(c) ‖Y − T ‖0,1 < ε; and
(d) P1

Y (0) = P1
T (0)◦ Rξ where Rξ = Rξ ⊕ Id and Rξ is the rotation of angle ξ in V0

and the identity in the complementary subspace (i.e. a ‘cylindrical rotation’).

Proof For simplicity of presentation, we assume that V0 = 〈(0, x̂2, x̂3, 0, . . . , 0)〉 and
also abusively assume that c = 1 in (ii) of Theorem 3.1. Consider the bump-functions
g and G defined by:

• g : R → R is a C∞-function such that g(t) = 0 for t < 0, g(t) = t for t ∈
[η, 1 − η] for η > 0 small, g(t) = 1 for t � 1 − η/2, ġ � 1 and g̈ � 2η−1, and

• G : R → [0, 1] is a C∞-function such that G(ρ) = 1 for ρ � r
√
1 − κ/2,

G(ρ) = 0 for ρ � r and Ġ � 2
[(
1 − √

1 − κ/2
)
r
]−1.

Letρ =
√

x̂22 + x̂23 and consider the rotationflow Rξg(t)G(ρ)(0, x̂2, x̂2, 0, . . . , 0) acting
on V0, which we denote by Rt and defined by

Rt (0, x̂2, x̂3, 0, . . . , 0)

123



M. Bessa

= (
0, x̂2 cos(ξgG) − x̂3 sin(ξgG), x̂2 sin(ξgG) + x̂3 cos(ξgG), 0, . . . , 0

)
.

Notice that R1 = Rξ . Denote Ṙt = d
dt Rt . Through a simple calculation we obtain

that
Ṙt ·R−1

t (x̂1, x̂2, x̂3, . . . , x̂n) = ξ ġ(t)G(ρ)(0,−x̂3, x̂2, 0, . . . , 0). (3.1)

We note that ∇ ·(Ṙt ·R−1
t ) = 0 and Ṙt ·R−1

t = 0 outside F1
T (0)(Bd−1(0, r)). We

define

Y = T + Ṙt ·R−1
t = (

1,−x̂3ξ ġ(t)G(ρ), x̂2ξ ġ(t)G(ρ), 0, . . . , 0
)
.

Hence P1
Y (0) = P1

T (0)◦Rξ . We are left to see that ‖Y − T ‖0,1 < ε and for that we
notice that ‖Ṙt ·R−1

t ‖0,1 � ‖Ṙt ·R−1
t ‖1. We will show that the perturbation defined

in (3.1) is such that

∥∥∥ξ ġ(x̂1)G
(√

x̂22 + x̂23

)
(0,−x̂3, x̂2, 0, . . . , 0)

∥∥∥
1

< ε,

where ‖·‖1 stands for the C1-Whitney topology. Clearly, the C0-norm is controlled
essentially by the size of ξ so let us estimate the C1-norm. Using the product rule on
the derivative of the perturbation we get

ξ
[
∇

(
ġ(x̂1)G

(√
x̂22 + x̂23

))T
(0,−x̂3, x̂2, 0, . . . , 0)

+ ġ(x̂1)G
(√

x̂22 + x̂23

)
(0,−x̂3, x̂2, 0, . . . , 0)

]
.

(3.2)

Observe that the gradient ∇(
ġ(x̂1)G

(√
x̂22 + x̂23

))
is equal to

(
g̈(x̂1)G

(√
x̂22 + x̂23 ), ġ(x̂1)Ġ

(√
x̂22 + x̂23

) 2x̂2√
x̂22 + x̂23

,

ġ(x̂1)Ġ
(√

x̂22 + x̂23

) 2x̂3√
x̂22 + x̂23

, 0, . . . , 0
)
.

Let us see that all the terms in (3.2) are controlled. In the second item below we
use the polar coordinates representation x̂2 = r̃ cosβ and x̂3 = r̃ sin β.

We have
∣∣ξ g̈(x̂1)G

(√
x̂22 + x̂23

)∣∣ � 2ξ
η
which is controlled by the size of ξ . We also

have
∣∣∣∣ξ ġ(x̂1)Ġ

(√
x̂22 + x̂23

) 2x̂2 x̂3√
x̂22 + x̂23

∣∣∣∣

�
∣∣∣∣ 2ξ(
1 −

√
1 − κ

2

)
r

2x̂2 x̂3√
x̂22 + x̂23

∣∣∣∣ =
∣∣∣∣ 4ξ(
1 −

√
1 − κ

2

)
r

r̃ cosβr̃ sin β

r̃

∣∣∣∣
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�
∣∣∣∣ 4ξ r̃(
1 −

√
1 − κ

2

)
r

∣∣∣∣ �
∣∣∣∣ 4ξ(
1 −

√
1 − κ

2

)
∣∣∣∣,

which is also controlled by the size of ξ . Hence, all the items (a)–(d) are fulfilled and
the lemma is proved.

The next result follows directly from combining Theorem 3.1 and Lemma 3.3.
Firstly, Theorem3.1 provides uswith good trivial coordinates and secondlyLemma3.3
allows us to perform the perturbations which essentially will be done into several small
balls that fill the open set U proclaimed in Definition 3.2 (see [6, Lemma 5.3]).

Lemma 3.4 Given X ∈ X0,1
ν (M), ε > 0 and κ ∈ (0, 1), there exists ξ0 > 0 such

that for any ξ ∈ (0, ξ0), any x ∈ M (non-periodic or with period > 1) and any
2-dimensional vector space Vx ⊂ Nx one has that the time-1 map L1 = P1

X (x)◦ Rξ

is an (ε, κ)-realizable sequence of length 1 at x, where Rξ = Rξ ⊕ Id and Rξ is the
rotation of angle ξ in Vx .

The next result is the key step that allows us to mix the Oseledets directions in
the absence of a dominated splitting. This is the rotation (using Lemma 3.4) from the
unstable Oseledets fiber to the stable Oseledets fiber referred to in the first paragraph
of this section.

Proposition 3.5 Given X ∈ X0,1
ν (M), ε > 0 and κ ∈ (0, 1), there exists m0 ∈ N

such that for every m � m0 the following property holds. For any non-periodic point
x ∈ M̃X with a splitting E j

Xt (x)
⊕ F j

Xt (x)
, t ∈ R and j ∈ {1, . . . , d−2} fixed, satisfying

∥∥Pm
X (x)|

F j
x

∥∥
m

(
Pm

X (x)|
E j

x

) � 1

2
, (3.3)

there exist (εi , κi )-realizable sequences of length �i � 1 at X τi (x), with 0 � i � b �
m,

∑b
i=0 �i = m and τi = ∑i−1

j=1 � j , denoted by {Li }b
i=1 and vectors u ∈ E j

x \{0} and

s ∈ F j
Xm (x) \{0} such that:

(a) the concatenation of the b-realizable sequences is an (ε, κ)-realizable sequence
of length m at x, and

(b) Lb ◦ · · · ◦ L1(u) = s.

3.2 Concluding the proof of Theorem B

Once we have established Proposition 3.5 it remains:

♦ First, use Proposition 3.5 to decrease the Lyapunov exponent in a single orbit by
showing that for every ε, δ > 0, k ∈ {1, . . . , d − 2} and ν-almost every point
x in a set without dominated splitting with dim E = k we can find a ‘time’
t > T̃ (x) such that there exists a modified volume-preserving sequence of linear
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maps L j : NX j (x) → NX j+1(x) for j = 0, . . . , t − 1 which is an (ε, κ)-realizable
sequence of length t at x satisfying

1

t
log

∥∥∧k(Lt−1 ◦ · · · L1 ◦ L0)
∥∥ < δ + �k−1(X , x) + �k+1(X , x)

2
.

This local procedure uses the lack of domination (3.3) and also the different Lya-
punov exponents to cause a decrease of the largest Lyapunov exponent of the kth

exterior power of the linear Poincaré map by a small ‖·‖0,1-perturbation.
� Second, we generalize the previous construction from a point to a largemeasure set

using a Kakutani’s tower argument. It is possible to prove that, given any ε, δ > 0,
and k ∈ {1, . . . , d − 2}, there exists Y ∈ X0,1

ν (M), which is ε-‖·‖0,1-close to X ,
such that

∫
M

�k(Y , x) dν(x) <

∫
M

�k(X , x) dν(x) − 2Jk(X) + δ,

where Jk(X) is the jump of the function, namely, the integral of λk(X , x) −
λk+1(X , x) over a set without domination between theOseledets directions associ-
ated to λk(X , x) and λk+1(X , x). Of course, if this set without dominated splitting
has zero ν-measure we apply this argument again, with k replaced by k + 1 until
we reach d − 2.

Finally, to prove Theorem B we follow ipsis litteris the arguments in [11, p. 1467].
More precisely, for k ∈ {1, . . . , d − 2} let Ek ⊂ X0,1

ν (M) be the subset corresponding
to the points of continuity of the map Lk defined in (2.9). Take E = ⋂d−2

k=1 Ek . It
is well known that the sets Ek are residual subsets and so is E. If X ∈ Ek then,
by the definition of this set and by � above, we obtain that Jk(X) = 0. Therefore
λk(X , x) = λk+1(X , x) for a.e. x in a set without a dominated splitting. For X ∈ E

the subset Z ⊂ M is defined by the Oseledets regular points without any dominated
splitting between any fiber, and the setD is defined by theOseledets regular pointswith
some kind of dominated splitting. Hence, if x ∈ Z then all the Lyapunov exponents
of x are equal to zero and this ends the proof of Theorem B.

4 Proof of Theorem C

4.1 Preliminary results

We have divided the proof of Theorem C into three lemmas focusing on a suitable
choice of the decomposition given by the Oseledets theorem. The idea of the proof of
the first lemma goes back at least as far as [20, Lemma 3] where this was proved under
a uniform hyperbolic context. It was subsequently proved in [36, Lemma 3.3] under
the weaker assumption of a dominated splitting and in [8, Lemma 6.1] it was again
proved but in the even weaker context of lipeomorphisms. We will state it and observe
that its proof follows closely the arguments in [8, 23, 36]. In order to present this
lemma let us first recall some definitions. The formulation of item (ii) of Lemma 4.1
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is equivalent to the one in [8, Lemma 6.1] but substantially different from the original
one in [23, 36] that was based on C1-regularity which is not taken for granted for
Lipschitz vector fields. The motivation of using the �-property defined in Sect. 2.4 lies
in the fact that the next result remains operational. Recalling again Abramov’s formula
and Remark 2.9 we perform our study for the time-1 Poincaré map and so our proof
is very close to the proof of the discrete-time case. Indeed, we are considering metric
entropy and Lyapunov exponents, on which the usual considerations about having an
R-action instead of a Z-action does not need a specific analysis. Loosely speaking
the directions of the vector field do not contribute to the change of both entropy and
Lyapunov exponents.

Given a normed space E and a splitting E = E ⊕ F , we define γ (E, F) as the
maximum of the norms of the projections πi : E → Ei (i = 1, 2). A subset G ⊂ E

is said to be an (E, F)-graph if there exists an open set U ⊂ F and a Lipschitz map
ψ : U → E such that G = {x + ψ(x) : x ∈ U }. The dispersion of the graph G is
given by lipU (ψ) = supx 
=y∈U

‖ψ(x)−ψ(y)‖
‖x−y‖ .

Lemma 4.1 ([8, Lemma 6.1]) Let α, β, c, δ > 0 be such that

0 <

1
2 + δα(1+c)

cβ

1 − δα 1+c
β

< 1.

Let E, E′ be two finite-dimensional normed spaces, E = E ⊕ F a splitting such that
γ (E, F) � α and F : B(0, r) ⊂ E → E′ a Lipschitz map where DF0 is defined and
satisfying the following properties:

(i) DF0 is an isomorphism and γ (DF0 · E, DF0 · F) � α;
(ii) denoting L = DF0|E and T = DF0|F and for some small r > 0 and (x, y) ∈

B(0, r), we have

F : E × F → DF0 · E × DF0 · F

(x, y) �→ (Lx + p(x, y), T y + q(x, y))

with remainders p(x, y) and q(x, y) having Lipschitz constants less than δ;
(iii) ‖DF0|E ‖

m(DF0|F )
� 1

2 , and
(iv) m(DF0|F ) � β,

then F(G) is a (DF0 · E, DF0 · F)-graph with dispersion � c, for every (E, F)-graph
G ⊂ B(0, r) with dispersion � c.

When applying previous lemma and according to item (iii) above we need to have
a set with a dominated splitting. This set will be precisely the set D of Theorem B.
As the dominated splitting is w.r.t. the linear Poincaré map we will take F and DF0
of Lemma 4.1 to be, respectivelly, the Poincaré map P t

X and the linear Poincaré map
Pt

X (x) associated to a certain X ∈ X0,1
ν (M). We notice that we are not able to proceed

with the arguments considering the tangent map DXt because there is no reason to
have a dominated splitting of T M for DXt . Recall that by (2.8) the only control we
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have over the angle is that the convergence to zero (if exists) is not very fast. The
existence of a convergence to zero of this angle forbids a dominated splitting.

Let f : M → M be a homeomorphism, r > 0, x ∈ M and n ∈ N. Let

Bn( f , r , x) =
n⋂

j=0

f − j (B( f j (x), r))

be the Bowen ball. Define also

hν( f , r , x) ..= lim sup
n→+∞

1

n

[− log ν(Bn( f , r , x))
]
. (4.1)

In [20, 21], it was proved that

hν( f ) � sup
r>0

∫
M

hν( f , r , x) dν(x). (4.2)

From Lemmas 4.1, 2.2 and a simple induction argument we deduce the following
result. For details see [36, Lemma 3.4].

Lemma 4.2 Let X ∈ X0,1
ν (M) and D ⊂ M be an Xt -invariant set. If there is a 1-

dominated splitting on D for the linear Poincaré map, say ND = E ⊕ F, then for
any c > 0, there exists r > 0 such that for every x ∈ D and any (Ex , Fx )-graph
G ⊂ E ⊕ F with dispersion � c contained in a Bowen ball Bn(X1, x, r), n � 1,
P n

X (G) is a (Pn
X (x) · Ex , Pn

X (x) · Fx )-graph with dispersion � c.

Take a vector field X ∈ X0,1
ν (M), ε > 0 and a ν-full measure set � ⊆ M̃X1 with

an mx -dominated splitting E ⊕ F for P1
X of a certain fixed index. Consider Nε ∈ N

sufficiently large in order to have ν(�ε) > 1 − ε, where �ε = {x ∈ � : mx � Nε}.
Observe that f ..= X N, for N = Nε!, is such that E ⊕ F displays a 1-dominated
splitting for 
◦ D f say for P N

X (see [36, p. 1430]). Recall that a dominated splitting
can be extended to the closure of �ε wherever it is defined5 and moreover it varies
continuously with the point.

Lemma 4.3 Given f , N and ε as above, there exists r > 0 such that for ν-a.e. x ∈ �ε

we have

hν( f , r , x) � N
dim(F)∑

i=1

λi (X , x) − ε. (4.3)

Proof Fix a, c > 0 such that if x ∈ �ε and y ∈ B(x, a) is a ν-generic Rademacher
point, then for any linear subspaceG ⊆ Nx which is an (Ex , Fx )-graphwith dispersion
� c, we have from Remark 2.2 that

∣∣log |det D fy |G
∣∣ − log |det D fx |F | < ε.

5 We have to exclude singularities and non-Rademacher points for instance.
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and so
|det D fy |G | > |det D fx |F |e−ε. (4.4)

Providing Lemma 4.2 with D = �ε (mod ν), the 1-dominated splitting ND =
E ⊕ F and the c > 0 above, there exists r > 0 such that for every x ∈ D and any
(Ex , Fx )-graph G with dispersion � c contained in a Bowen ball Bn( f , x, r), n � 1,
f n(G) is a (Pn

X (x) · Ex , Pn
X (x) · Fx )-graph with dispersion � c.

Given x ∈ �ε and y ∈ Ex , we denote by νE the volume measure in Ex and by νF

the volume measure in y + Fx . There exists B > 0 such that the disintegration holds
for all n � 1:

ν(Bn( f , r , x)) = B
∫

Ex

νF (Fn(y)) dνE (y), (4.5)

whereFn(y) = (y + Fx )∩Bn( f , r , x). Here notice that B incorporates also the length
of the 1-dimensional component transversal to the (d − 1)-dimensional subspace asso-
ciated to E ⊕ F . From (4.1) and (4.5) we get

hν( f , r , x) ..= lim sup
n→+∞

1

n

[− log ν(Bn( f , r , x))
]

= lim sup
n→+∞

1

n

[
− log

[
B

∫
Ex

νF (Fn(y)) dνE (y)

]]
.

Hence, Lemma 4.3 is proved once we obtain that for ν-a.e. x ∈ �ε the following
inequality holds:

lim sup
n→+∞

inf
y∈Ex

− 1

n
log νF (Fn(y)) � N

dim(F)∑
i=1

λi (X , x) − ε. (4.6)

Considering that Fn(y) 
= ∅ and using Lemma 4.2 we obtain that f n(Fn(y)) is a
(Pn

X (x) · Ex , Pn
X (x) · Fx )-graph with dispersion � c. Given r ∈ (0, a), we take

D > sup
w∈�ε

{
Vol(G) : G ⊂ B(w, r) is an (Ew, Fw)-graph with dispersion � c

}
.

Notice that for f n(x) ∈ �ε we have f n(Fn(y)) ⊆ f n(Bn( f , r , x)) ⊆ B( f n(x), r).
Thus,

D > Vol( f n(Fn(y))) =
∫
Fn(y)

∣∣det D f n
z |TzFn(y)

∣∣ dνE (z). (4.7)

For any j = 0, 1, . . . , n we have f j (Fn(y)) ⊆ f j (Bn( f , r , x)) ⊆ B( f j (x), r) ⊆
B( f j (x), a), and so given any z ∈ Fn(y), we have d( f j (z), f j (x)) < a for all
j = 0, 1, . . . , n. By (4.7) we obtain

1

n
log D � 1

n
log

∫
Fn(y)

∣∣det D f n
z |TzFn(y)

∣∣ dνE (z)
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= 1

n
log

∫
Fn(y)

n−1∏
j=0

∣∣det D f f j (z)|T f j (z) f j (Fn(y))

∣∣ dνE (z)

(4.4)

� 1

n
log

∫
Fn(y)

n−1∏
j=0

∣∣det D f f j (x)|F( f j (x))

∣∣ e−ε dνE (z)

= 1

n
log

∫
Fn(y)

∣∣det D f n
x |Fx

∣∣ e−nε dνE (z)

= 1

n
log

[
νE (Fn(y))

∣∣det D f n
x |Fx

∣∣ e−nε
]

= 1

n
log νE (Fn(y)) + 1

n
log

∣∣det D f n
x |Fx

∣∣ − ε,

which is equivalent to

inf
y∈Ex

− 1

n
log νF (Fn(y)) � − 1

n
log D + 1

n
log

∣∣det D f n
x |Fx

∣∣ − ε.

Taking limits and recalling that f = X N we obtain

lim sup
n→+∞

inf
y∈Ex

− 1

n
log νF (Fn(y)) � lim

n→+∞
1

n
log

∣∣det D f n
x |Fx

∣∣ − ε

= N
dim(F)∑

i=1

λi ( f , x) − ε,

and (4.6) is proved and so is the lemma.

4.2 Proof of Theorem C

We would like to show that for a given X ∈ X0,1
ν (M) if for ν-a.e. x ∈ M there is an

mx -dominated splitting E ⊕ F for the linear Poincaré map along the orbit of x (where
m : M → N is an Xt -invariant measurable function), then

hν(X) �
∫

M

dim(F)∑
i=1

λi (X , x) dν(x).

Notice that it suffices to prove the theorem for a certain fixed dimension of F .
Remark 2.11 sheds some light on the fact that we focus on a dominated splitting for
the linear Poincaré map.

Let f , N , ε and r > 0 be given like in Lemma 4.3. Let C = lip(X), and from
Gronwall’s inequality we get ‖DXt

x‖ � et‖DXx ‖ � et lip(X) = etC for ν-a.e. x . We
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have

hν( f )
(4.2)

� sup
r>0

∫
M

hν( f , r , x) dν(x)

� sup
r>0

∫
�ε

hν( f , r , x) dν(x)

(4.3)

�
∫

�ε

(
N
dim(F)∑

i=1

λi (X , x) − ε

)
dν(x)

=
∫

M
N
dim(F)∑

i=1

λi (X , x) dν(x) −
∫

M \�ε

N
dim(F)∑

i=1

λi (X , x) dν(x) − εν(�ε)

�
∫

M
N
dim(F)∑

i=1

λi (X , x) dν(x) − d NCν(M \�ε) − ε

�
∫

M
N
dim(F)∑

i=1

λi (X , x) dν(x) − d NCε − ε.

Hence, recalling the Abramov formula,

hν(X) = hν(X1) = 1

N
hν(X N )

= 1

N
hν( f ) �

∫
M

dim(F)∑
i=1

λi (X , x) dν(x) − dCε − ε

N
,

and since ε is arbitrarily small, Theorem C is proved.
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