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Abstract

We prove that for a C0-generic (a dense Gδ) subset of all the 2-dimensional conservative nonautonomous
linear differential systems, either Lyapunov exponents are zero or there is a dominated splitting μ almost
every point.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and statement of the results

Linear differential systems are in general morphisms of vector bundles covering a flow. As a
standard example we consider a dynamical system given by a C1 vector field X, with associated
flow Xt , and in this case the morphism corresponds to the action of the tangent flow DXt in
the tangent bundle. In this paper we consider the setting of 2-dimensional conservative linear
differential systems, over continuous μ-invariant flows in compact Hausdorff spaces, where μ

is a Borel regular measure. These systems are equipped with a dynamics in the base given by
a continuous flow ϕt :X → X, and a dynamics in the 2-dimensional tangent bundle, given by a
continuous linear cocycle Φt :X → GL(2,R).

As an example, we consider the area-preserving systems, on which Φt(p) ∈ SL(2,R), and so
the infinitesimal generator, given by A(ϕt (p)) = d

ds
Φs(p)|s=t ◦ [Φt(p)]−1, is traceless. Anal-

ogously, other example of conservative systems is the set of modified area-preserving systems
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Φt(p) ∈ GL(2,R) verifying for p /∈ Fix(ϕt ), detΦt(p) = a(p)
a(ϕt (p))

, where Fix(ϕt ) denote the set

of fixed points of ϕt and a :X → R is a nonnegative subexponential continuous function such
that when p ∈ Fix(ϕt ) we have detΦt(p) = 1. This example mimics the volume preserving flows
defined on 3-dimensional manifolds, eventually with fixed points, with a(·) = ‖X(·)‖.

Given a transition matrix Φt(p) we endow the set of associated infinitesimal generators
A :X → GL(2,R) with the C0-topology, so a residual set is a set which contains a C0-dense Gδ .

The aim of this work is to describe the asymptotic behavior of Φt(p) for almost all points
p ∈ X, namely, their Lyapunov exponents, which are the exponential growth rate of the norm of
Φt(p)|E along the orbits of the flow ϕt in the direction of the 1-dimensional bundle E.

For this purpose we consider a “relaxed” kind of hyperbolicity, called dominated splitting.
Recall that hyperbolicity (or exponential dichotomy) guarantees that both 1-dimensional fiber-
bundles have exponential behavior, in a way that one bundle contracts when we iterate backward
and the other contracts when we iterate forward. In the presence of a dominated splitting we
only guarantee that this exponential behavior exists relatively, that is, one of the bundles is more
expanded, or less contracted by Φt . As in uniform hyperbolicity, dominated splitting is also
uniform, say, the same rates are shared by all points in the set.

We give a general picture for the dynamics of generic conservative 2-dimensional linear dif-
ferential systems:

Theorem 1. There is a C0-residual subset R of 2-dimensional conservative linear differential
systems, such that if A ∈R then for μ-a.e. p ∈ X:

(a) Φt
A(p) has a dominated splitting, or

(b) the Lyapunov exponents are zero.

These systems act transitively in the projective space RP 1, and this property is crucial to
prove Theorem 1. In general, we may also consider systems with an accessible condition, which
implies that Φt acts transitively in RP 1, so the dichotomy (a) or (b) holds true.

The idea to prove Theorem 1 is the following. We take a conservative linear differential system
which is a continuity point of an upper-semicontinuous function and if, for this system, there
exists a positive measure set of points with positive Lyapunov exponents ((a) is false) and no
dominated splitting ((b) is false) we construct a small C0-perturbation which allows us to break
the continuity obtaining a contradiction. Finally, it is a well-known result (see [15]) that the
set of points of continuity of upper-semicontinuous functions is a residual set and Theorem 1
follows. For area-preserving systems and if the measure μ is ergodic, then we obtain uniform
hyperbolicity versus zero Lyapunov exponents for μ-a.e. point p ∈ X. The same result follows if
we consider modified area-preserving systems without fixed points for the flow ϕt and also the
ergodicity of the measure μ.

This kind of results first appeared in [16] and in [17] Mañé gave an outline of the proof
for conservative diffeomorphisms in surfaces. The complete proof is due to Bochi and may be
found in [3]. Next, in a remarkable paper, see [4], Viana and Bochi generalize to multidimen-
sional diffeomorphisms, symplectic diffeomorphisms and discrete cocycles. Also in the setting
of discrete cocycles proving abundance of nonzero Lyapunov exponents, we mention the papers
of Knill [14] and also Cong [5,6] (see also references therein). In [2] we start the approach of
Mañé–Bochi–Viana to the continuous-time case. We point out that some particular examples of
genericity of hyperbolicity in C0-topology on the torus were already explored by Fabbri [8], and
Fabbri and Johnson [10]. Several approaches have been proposed for determining the positivity of
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Lyapunov exponents for linear differential systems, see Fabbri [9], and Fabbri and Johnson [11].
This last result follows from the paper of Kotani [13].

2. Linear differential systems

2.1. Basic definitions

Let X be a compact Hausdorff space, μ a Borel regular measure and ϕt :X → X a one-
parameter family of continuous maps for which μ is ϕt -invariant. A cocycle based on ϕt is
defined by a flow Φt(p) differentiable on the time parameter t ∈ R and continuous on space
parameter p ∈ X, acting on GL(2,R). Together they form the linear skew-product flow:

Ψ t : X × R
2 −→ X × R

2, (p, v) �−→ (
ϕt (p),Φt (p) · v)

.

The flow Φt verifies the cocycle identity:

Φt+s(p) = Φs
(
ϕt (p)

) ◦ Φt(p),

for all t, s ∈ R and p ∈ X.
If we define a map A :X → GL(2,R) in a point p ∈ X by

A(p) = d

ds
Φs(p)

∣∣
s=0

and along the orbit ϕt (p) by

A
(
ϕt (p)

) = d

ds
Φs(p)

∣∣
s=t

◦ [
Φt(p)

]−1
, (1)

then Φt(p) will be the solution of the linear variational equation

d

ds
u(s)

∣∣
s=t

= A
(
ϕt (p)

)
u(t), (2)

and Φt(p) is also called the fundamental matrix. Given a cocycle Φt we can induce the asso-
ciated A by using (1) and given A we can recover the cocycle by solving the linear variational
equation (2), from which we get Φt

A. We are interested in two kind of systems, the ones with
detΦt = 1 which we call area-preserving or traceless, denoted by GL(2,R,Tr = 0), and the
modified area-preserving, denoted by GL(2,R, ϕt ), by establishing a link to the flow ϕt . To de-
fine this setting we need to consider a continuous nonnegative subexponential function a :X → R

that is non-null outside Fix(ϕt ) and we say that A is modified area-preserving if:

detΦt
A(p) = a(p)

a(ϕt (p))
for all p /∈ Fix

(
ϕt

)
and t ∈ R,

detΦt
A(p) = 1 for all p ∈ Fix

(
ϕt

)
.
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By Liouville formula we get e
∫ t

0 TrA(ϕs(p)) ds = detΦt(p), so

e
∫ t

0 TrA(ϕs(p)) ds = a(p)

a(ϕt (p))
.

2.2. Topology and conservative perturbations

Consider the set of linear differential systems A which are continuous and denote it by
C0(X,GL(2,R)). We endow C0(X,GL(2,R)) with the uniform convergence topology defined
by ‖A − B‖0 = maxp∈X ‖A(p) − B(p)‖.

We also define a L∞-topology, this time on the set of measurable and μ-a.e. bounded maps
L∞(X,GL(2,R)), such that ‖A − B‖∞ = ess sup‖A(p) − B(p)‖.

Therefore we may speak about conservative C0- (or L∞)-perturbations of systems
A ∈ C0(X,GL(2,R)) (or A ∈ L∞(X,GL(2,R))) along the orbit ϕt (p) as A + H , where
H ∈ C0(X,GL(2,R)) (or H ∈ L∞(X,GL(2,R))) and TrH(ϕt (p)) = 0. This follows by direct
application of Liouville formula, because

e
∫ t

0 TrA(ϕs(p))+TrH(ϕs(p)) ds = e
∫ t

0 TrA(ϕs(p)) ds = detΦt(p).

Given a conservative perturbation of A, say A + H , we denote by Φt
A+H (p) the solution of the

corresponding linear equation (2), i.e. of

v′(t) = [
A(t) + H(t)

] · v(t).

2.3. Oseledets theorem and the entropy function

The Oseledets theorem, see [18], has also an analog version for linear differential systems
(see [12] for a simple proof). Moreover, for our particular 2-dimensional conservative linear
differential systems we consider in Theorem 2.1 bellow a simplified version of this theorem.
Given a system A, let O+ := O+(A) denote the set of points of X with nonzero Lyapunov
exponents and let O0(A) denote the set of points with both Lyapunov exponents zero.

Theorem 2.1. Let Φt be as above. For μ-a.e. p ∈ X there exists the upper-Lyapunov exponent
λ+(p) defined by the limit limt→+∞ 1

t
log‖Φt(p)‖ that is a nonnegative measurable function

of p. For μ-a.e. point p ∈ O+ there is a splitting of R
2 = Nu

p ⊕ Ns
p which varies measurably

with p such that:

if 
0 �= v ∈ Nu
p, then lim

t→±∞
1

t
log

∥∥Φt(p) · v∥∥ = λ+(p);

if 
0 �= v ∈ Ns
p, then lim

t→±∞
1

t
log

∥∥Φt(p) · v∥∥ = −λ+(p);

if 
0 �= v /∈ Nu
p,Ns

p, then lim
t→+∞

1

t
log

∥∥Φt(p) · v∥∥ = λ+(p) and

lim
t→−∞

1

t
log

∥∥Φt(p) · v∥∥ = −λ+(p).
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Note that the symmetry of the Lyapunov exponents follows from Oseledets theorem because
this theorem also gives the equality

lim
t→±∞

1

t
log

∣∣detΦt(p)
∣∣ = λ+(p) + λ−(p) (3)

and therefore in the area-preserving case we have detΦt(p) = 1. Consequently, (3) implies that
λ+(p) = −λ−(p). For the modified area-preserving case we have the equality, detΦt(p) =

a(p)
a(ϕt (p))

, since a(·) is subexponential and nonzero along nonfixed orbits we get λ+(p) = −λ−(p).

For fixed points the former equality follows directly from (3). We define the entropy function of
the system A, over any measurable, ϕt -invariant set Γ ⊆ X by

LE(·,Γ ): GL(2,R) −→ [0,+∞), A �−→
∫
Γ

λ+(p)dμ(p),

using the subadditivity of the norm we obtain

LE(A,Γ ) = inf
n�1

1

n

∫
Γ

log
∥∥Φn(p)

∥∥dμ(p).

Since LE(·,Γ ) is the infimum of continuous functions it is upper-semicontinuous.

2.4. Hyperbolic structures

Let A be a linear differential system over a flow ϕt , the set Λ ⊆ X is said to be uniformly
hyperbolic set if there exists uniform constants C > 0 and σ ∈ (0,1) such that for μ-a.e. p ∈ Λ

there is a Φt
A(p)-invariant decomposition R

2 = Nu
p ⊕Ns

p varying measurably with p and verify-
ing for t > 0 the following inequalities: ‖Φ−t

A (p)|Nu
p
‖ � Cσ t and ‖Φt

A(p)|Ns
p
‖ � Cσ t . If Λ = X,

then we say that A is uniformly hyperbolic. The concept of uniform hyperbolicity is equivalent
to the exponential dichotomy concept, see [7] for details.

A ϕt -invariant set Λm ⊆ X has m-dominated splitting for A if for μ-a.e. p ∈ Λm, there is a
Φt

A(p)-invariant decomposition R
2 = Nu

p ⊕ Ns
p varying measurably with p and verifying

‖Φm
A (q)|Ns

q
‖

‖Φm
A (q)|Nu

q
‖ � 1

2
for any q = ϕt (p).

Another definition equivalent to this one is considering constants C > 0 and σ ∈ (0,1) such that

‖Φt
A(q)|Ns

q
‖

‖Φt
A(q)|Nu

q
‖ � Cσ t .

In this case we say that the ϕt -invariant set has (C,σ )-dominated splitting.

Let Δ(p,m) := ‖Φm
A (p)|Ns

p
‖

‖Φm
A (p)|Nu

p
‖ . We define the following sets:

• Per(ϕt ) = {p ∈ X: p is a periodic point for the flow ϕt };
• Λm(A) = {p ∈ X: the orbit ϕt (p) has m-dominated splitting for Φt };
A
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• Γm(A) = X − Λm(A);
• Γ +

m (A) = Γm(A) ∩ O+(A);
• Γ ∗

m(A) = {p ∈ Γ +
m (A): p /∈ Per(ϕt )};

• Δm(A) = {p ∈ X: Δ(p,m) � 1
2 }.

Before moving on to the proof of Theorem 1 we would like to make some brief comments.
First of all note that if q ∈ Γm(A), then for some point in the orbit of q , say ϕt (q) = p, we
have Δ(p,m) � 1/2, and therefore p ∈ Δm(A). Moreover Γm = ⋃

t∈R
ϕt (Δm). The set Δm is

of utmost importance because that is where we will apply a perturbation to the original system.

3. Proof of Theorem 1

3.1. Disregarding periodic points in O+(A)

Our main objective will be decay LE(B,Γm(A)) for a system B close to the original system A.
We say that a flow is aperiodic if the measure of periodic points is zero, clearly ϕt :Γ ∗

m(A) →
Γ ∗

m(A) is aperiodic. We will use Ambrose–Kakutani theorem, see [1], which gives us a special
representation of ϕt |Γ ∗

m(A). Next we perturb inside Γ ∗
m(A) to decrease LE(B,Γ ∗

m(A)). However
we have no information about Γm(A) − Γ ∗

m(A). For our purposes, points in Γm(A) with zero
Lyapunov exponents will not be a problem, whereas the set Γ +

m (A) − Γ ∗
m(A) may cause some

trouble. Lemma 3.1 says that μ(Γ +
m (A) − Γ ∗

m(A)) is small (depending on m), therefore we will
obtain LE(B,Γ +

m (A) − Γ ∗
m(A)) also small.

We note that for a fixed m ∈ N we have p ∈ Γ +
m (A) − Γ ∗

m(A) if p is periodic, has positive
Lyapunov exponent and belongs to Γm(A).

Lemma 3.1. For any δ > 0, there exists m ∈ N such that we have μ(Γ +
m (A) − Γ ∗

m(A)) < δ.

Proof. Let P be the measure of all periodic points in O+(A). If P = 0 then there is nothing to
prove, so consider P > 0. Define

Per(n,λ) = {
p ∈ O+: ϕt (p) = p for some t � n and λ+(p) > λ

}
.

So μ(
⋃

n∈N
Per(n,0)) = P , therefore for all δ > 0, there exist n0, λ0 such that μ(Per(n0, λ0)) >

P − δ.
If p ∈ Per(n0, λ0), then p has m′ dominated splitting for some m′, therefore there exists a

large m such that Per(n0, λ0) ⊆ ⋃m
i=1 Λi and we get

Γ +
m (A) − Γ ∗

m(A) ⊆
⋃
n∈N

Per(n,0) −
m⋃

i=1

Λi,

so

μ
(
Γ +

m (A) − Γ ∗
m(A)

)
< μ

( ⋃
n∈N

Per(n,0) −
m⋃

i=1

Λi

)
< μ

( ⋃
n∈N

Per(n,0) − Per(n0, λ0)

)

= μ

( ⋃
n∈N

Per(n,0)

)
− μ

(
Per(n0, λ0)

)
< δ. �
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3.2. Perturbations of linear differential systems

We begin by lowering ‖Φt
A+H (q)‖ along a segment of the orbit, this is valid in both settings

GL(2,R,Tr = 0) and GL(2,R, ϕt ). In order to achieve this goal we carry out some perturbations
which we explains in the next section.

3.2.1. Small rotations by time-1 perturbation
Lemma 3.2. Given a conservative system A and ε > 0, there exists an angle ξ , such that for all
p ∈ X (nonperiodic or with period larger than 1), there exists a system B such that:

(a) ‖A − B‖ < ε;
(b) B is supported in ϕt (p) for t ∈ [0,1];
(c) B is conservative; and
(d) Φ1

B(p) = Φ1
A(p) ◦ Rξ , where Rξ is a rotation of angle ξ .

Proof. Let η ∈ (0,1) and g : R → R be the bump-function defined by g(t) = 0 for t < 0, g(t) = t

for t ∈ [η,1 − η] and g(t) = 1 for t � 1. Define

Φt(p) =
(

a(t) b(t)

c(t) d(t)

)
and Rξg(t) =

(
cos(ξg(t)) − sin(ξg(t))

sin(ξg(t)) cos(ξg(t))

)
.

We know that u(t) = Φt(p) is a solution of the linear variational equation (2). Take Φt(p)×
Rξg(t) and compute the time derivative:

(
Φt(p) · Rξg(t)

)′ = (
Φt(p)

)′
Rξg(t) + Φt(p)R′

ξg(t)

= A
(
ϕt (p)

)
Φt(p)Rξg(t) + Φt(p)R′

ξg(t)

= A
(
ϕt (p)

)
Φt(p)Rξg(t) + Φt(p)R′

ξg(t)R−ξg(t)

[
Φt(p)

]−1
Φt(p)Rξg(t)

= [
A

(
ϕt (p)

) + Φt(p)R′
ξg(t)R−ξg(t)

[
Φt(p)

]−1] · (Φt(p)Rξg(t)

)
.

Define B(ϕt (p)) = A(ϕt (p)) + H(ϕt (p)), where

H
(
ϕt (p)

) = H(ξ, t) = Φt(p)R′
ξg(t)R−ξg(t)

[
Φt(p)

]−1
.

We conclude that v(t) = Φt(p) · Rξg(t) is a solution of the linear variational equation

d

ds
v(s)

∣∣
s=t

= [
A

(
ϕt (p)

) + H(ξ, t)
]
v(t). (4)

Since

R′
ξg(t) · R−ξg(t) = ξg′(t)

(
0 −1
1 0

)
,

we easily derive

H(ξ, t) = ξg′(t)
t

(
b(t)d(t) + a(t)c(t) −b(t)2 − a(t)2

2 2

)
.

detΦ (p) d(t) + c(t) −b(t)d(t) − a(t)c(t)
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Hence TrH(ξ, t) = 0 and the perturbation is conservative according to our definition, and so
(c) follows. Moreover since g′(t) = 0 for t /∈ ]0,1[, its support is ϕt (p) for t ∈ [0,1] and (b) is
proved. Since t ∈ [0,1] and all the terms in the definition of H(ξ, t) are uniformly bounded for all
p ∈ X, given any size of perturbation allowed by ε > 0 we take ξ sufficiently small to guarantee
that ‖H‖ < ε and obtain (a). Finally, for (d), we note that v(t) = Φt

A(p) ·Rξg(t) is solution of (4).
So for t = 1 we obtain Φ1

B(p) = Φ1
A(p) · Rξ and the lemma is proved. �

Lemma 3.3. Given a conservative system A and ε > 0, there exists an angle ξ , such that for all
p ∈ X (nonperiodic or with period larger than 1), there exists a system B such that:

(a) ‖A − B‖ < ε;
(b) B is supported in ϕt (p) for t ∈ [0,1];
(c) B is conservative; and
(d) Φ1

B(p) = R̃ξ ◦ Φ1
A(p), where R̃ξ is an elliptical rotation of angle ξ .

Proof. We use the same notation of Lemma 3.2. Define the one-parameter elliptical rotation by

R̃ξg(t) = Φt(p) · Rξg(t) · Φ−t
(
ϕt (p)

)
. (5)

Now we consider R̃ξg(t) · Φt(p) and take time derivatives:

(
R̃ξg(t) · Φt(p)

)′ = (
Φt(p) · Rξg(t) · Φ−t

(
ϕt (p)

) · Φt(p)
)′ = (

Φt(p) · Rξg(t)

)′

= [
A

(
ϕt (p)

) + H
(
ϕt (p)

)] · (Φt(p)Rξg(t)

)
= [

A
(
ϕt (p)

) + H
(
ϕt (p)

)] · (R̃ξg(t) · Φt(p)
)
,

and we reduce to the proof of Lemma 3.2. �
Remark 3.1. We will need Lemma 3.3 to perform some small rotations, and we point out that this
lemma gives us an elliptical rotation. So after the change of coordinates the angle may decrease
depending on how large the norm of this change of coordinates is. However we can always
find ξ0 < ξ depending on ‖Φt

A(p)‖ (for t ∈ [0,1]) and conclude that the perturbation realizes
Φ1

A+H (p) = Rξ0 · Φ1
A(p).

3.2.2. Large rotations by time-m perturbation
Next lemma ensures a control on the norm of Φt(p). In the case of GL(2,R,Tr = 0) we take√

a(p)/a(ϕt (p)) = 1. Denote by �(Nu
ϕt (p)

,Ns
ϕt (p)

) the angle between the two subspaces of R
2,

Nu
ϕt (p)

and Ns
ϕt (p)

.

Lemma 3.4. Let ξ > 0, p ∈ X and d > 1. There exists E > 1 such that if for all t ∈ [0,m],
�(Nu

ϕt (p)
,Ns

ϕt (p)
) > ξ and d−1 �

‖Φt (p)|Ns
p
‖

‖Φt (p)|Nu
p
‖ � d , then ‖Φt(p)‖ � E

√
a(p)

a(ϕt (p))
for all t ∈ [0,m].

Proof. Denote �(Nu
ϕt (p)

,Ns
ϕt (p)

) = ξt > ξ for all t ∈ [0,m]. By the volume preserving property
we get

∥∥Φt(p)
∣∣
Ns

p

∥∥a
(
ϕt (p)

) = a(p)
∥∥Φt(p)

∣∣
Nu

p

∥∥−1 sin ξ0
.

sin ξt
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Therefore

∥∥Φt(p)
∣∣
Ns

p

∥∥2 = a(p)

a(ϕt (p))

‖Φt(p)|Ns
p
‖

‖Φt(p)|Nu
p
‖ sin−1 ξt � a(p)d

a(ϕt (p))
sin−1 ξ

and so we obtain ‖Φt(p)|Ns
p
‖ �

√
a(p)d

a(ϕt (p))
sin−1 ξ . Analogously,

∥∥Φt(p)
∣∣
Nu

p

∥∥2 � a(p)

a(ϕt (p))

‖Φt(p)|Nu
p
‖

‖Φt(p)|Ns
p
‖ sin−1 ξt � a(p)d

a(ϕt (p))
sin−1 ξ

and we also obtain

∥∥Φt(p)
∣∣
Nu

p

∥∥ �
√

a(p)d

a(ϕt (p))
sin−1 ξ .

We conclude that ‖Φt(p)‖ �
√

2 a(p)d
a(ϕt (p))

sin−1 ξ , for all t ∈ [0,m], so the statement hold tak-

ing E = √
2d/ sin ξ . �

In order to perform rotations of large angles we could try, under some particular conditions,
to concatenate smoothly several time-1 small rotations until obtain the desired angle. Otherwise,
which is easier, we could induce a time-m perturbation to generate the rotations of a given large
angle, however this cannot be done in general, because some hyperbolicity in the dynamics
obstruct the whole construction.

Under the conditions of Lemma 3.4 it is possible to rotate large angles by time-m keeping the
norm of H(ξ, t) for t ∈ [0,m] small. Since the explicit perturbation is given by

B
(
ϕs(p)

) = d

dt

[
Φt+s

A (p) · Rξg(s+t) · Φ−s
A

(
ϕs(p)

)]∣∣
t=0Φ

s
A(p) · Rξg(s) · Φ−s

A

(
ϕs(p)

)
,

we expect that some control of ‖Φt
A‖ is needed, so Lemma 3.4 will play an important role.

Lemma 3.5. Given a conservative system A and ε, d, ξ > 0, there exists m ∈ N, such that if the
following conditions are satisfied for p ∈ X nonperiodic or with period larger than m, namely,

(1) �(Nu
ϕt (p)

,Ns
ϕt (p)

) > ξ for all t ∈ [0,m],
(2) d−1 �

‖Φt (p)|Ns
p
‖

‖Φt (p)|Nu
p
‖ � d,

then there exists a system B such that for all α ∈ [0,2π], we have:

(a) ‖A − B‖ < ε;
(b) B is supported in ϕt (p) for t ∈ [0,m];
(c) B is conservative; and
(d) Φ1

B(p) = Φ1
A(p) ◦ Rα .
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Proof. For any m ∈ N we consider η > 0 close to zero and g : R → R the bump-function such
that g(t) = 0 for t < 0, g(t) = t for t ∈ [η,m − η] and g(t) = 1 for t � m. We use then the
same procedure of Lemma 3.2 by defining Rθg(t). Let α ∈ [0,2π]. Take θ <

ε sin ξ
4d

and m = α
θ

.
There is no restriction while considering m ∈ N, by taking a smaller θ . Now fix the function
g depending on this m. Clearly we will obtain H such that (b), (c) and (d) are verified. We
claim that (a) is also true. By hypothesis we have (1) and (2), so by Lemma 3.4 we conclude
that ‖Φt(p)‖ < E

√
a(p)/a(ϕt (p)) and since E = √

2d/ sin ξ we get θ < ε

2E2 . Using the same
notation of Lemma 3.2, the perturbation is defined, for t ∈ [0,m], by

H(θ, t) = θg′(t)
detΦt(p)

(
b(t)d(t) + a(t)c(t) −b(t)2 − a(t)2

d(t)2 + c(t)2 −b(t)d(t) − a(t)c(t)

)
.

Consider now the norm given by the maximum and we show that ‖H‖ < ε.

∥∥H(θ, t)
∥∥ � θg′(t)

|detΦt(p)| max
t∈[0,m]

{±[
b(t)d(t) + a(t)c(t)

]
,−b(t)2 − a(t)2, d(t)2 + c(t)2}

� 2
θg′(t)

|detΦt(p)|
∥∥Φt(p)

∥∥2
.

Now, by Lemma 3.4 we obtain

∥∥H(θ, t)
∥∥ � 2

θg′(t)
|detΦt(p)|

2d

sin ξ

a(p)

a(ϕt (p))
� 2

θg′(t)
|detΦt(p)|E

2 a(p)

a(ϕt (p))
� ε,

which concludes the proof. �
3.3. Local recurrence argument

Lemma 3.6. Let A be a continuous conservative system and ε > 0. There exists m ∈ N such that,
given any p ∈ Γ ∗

m(A), there exists H satisfying ‖H‖ < ε and Φm
A+H (Nu

p) = Ns
ϕm(p).

Proof. Let ξ > 0 be given by Lemmas 3.2 and 3.3 in order to guarantee time-1 ε-perturbations.
Consider the following simple claim, illustrated by Fig. 1, and whose proof may be found in [3].

Claim 1. Given an angle ξ , there exists c > 1, such that if Δ(ϕt (p), r) > c, then there is a
nonzero vector v ∈ Nϕt (p) such that �(v,Nu

ϕt (p)
) < ξ and �(Φr(ϕt (p)) · v,Ns

ϕt+r (p)
) < ξ .

Fig. 1. The action of the dynamics favors our goals.
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Let c > 0 be given by claim above. Let E > 1 be given by Lemma 3.4 depending on ξ and
d = 2c2. Let m ∈ N be given by Lemma 3.5 and depending on E, hence depending on d and ξ .
Consider p ∈ Γ ∗

m(A) and Φt(p) for t ∈ [0,m].
Small angle. If for some t ∈ [0,m] we have �(Nu

ϕt (p)
,Ns

ϕt (p)
) < ξ we use a small rotation by a

time-1 perturbation and, if t +1 � m we get H such that Φ1
A+H (Nu

ϕt (p)
) = Ns

ϕt+1(p)
. If t +1 > m

we get H such that Φ−1
A+H (Ns

ϕt (p)
) = Nu

ϕt−1(p)
and in both cases ‖H‖ < ε. Consequently we

obtain Φm
A+H (Nu

p) = Ns
ϕm(p).

Now we consider the case when there exists r, t ∈ R with 0 � r + t � m such that
Δ(ϕt (p), r) > c. We use Claim 1 in order to obtain a vector v ∈ Nϕt (p) such that �(v,Nu

ϕt (p)
) < ξ

and �(Φr(ϕt (p)) · v,Ns
ϕt+r (p)

) < ξ . Now, since ξ is small we make two small rotations at

both extremes ϕt (p) and ϕt+r (p). The choice of c sufficient large guarantees disjoint per-
turbations. Therefore, our first rotation Φ1

A+H1
(ϕt (p)) = Φ1

A(ϕt (p)) · Rξ , induced by the per-
turbation H1, allows us to send Nu

ϕt (p)
into vR, the dynamics of Φr

A help us and send this

direction into Φr(ϕt (p)) · v in time r (see Fig. 1) and another rotation, Φ1
A+H2

(ϕt+r−1(p)) =
Rξ ·Φ1

A(ϕt+r−1(p)), induced by the perturbation H2, maps Φr(ϕt (p)) · (vR) into Ns
ϕt+r (p)

. Now
we concatenate smoothly the five matrix transitions, say,

Φ
m−(t+r)
A

(
ϕt+r (p)

)
Φr−1

A+H2

(
ϕt+r−1(p)

)
Φr−2

A

(
ϕt+1(p)

)
Φ1

A+H1

(
ϕt (p)

)
Φt

A(p),

and we get Φm
A+H (Nu

p) = Ns
ϕm(p). Note that H(p) = H1(p)+H2(p) and ‖Hi‖ < ε, for i = 1,2.

Large angle. Finally, we have for all t ∈ [0,m], �(Nu
ϕt (p)

,Ns
ϕt (p)

) > ξ and since for all r, t ∈ R

with 0 � r + t � m we have Δ(ϕt (p), r) < c. Since p ∈ Δm we also have Δ(p,m) � 1/2.
Therefore, we conclude that

Δ
(
ϕt (p), r

) = Δ
(
ϕt+r (p),m − t − r

)
Δ(p,m)Δ(p, t)−1 � 1

2c2
.

So for t = 0 and r ∈ [0,m] we have (2c2)−1 � Δ(p, r) � c and since d = 2c2 we obtain,

d−1 �
‖Φr(p)|Ns

p
‖

‖Φr(p)|Nu
p
‖ � d,

for all r ∈ [0,m]. The conditions of Lemma 3.4 are now satisfied and by applying Lemma 3.5 we
are able to use rotations by large angles and therefore Φm

A+H (Nu
p) = Ns

ϕm(p) which proves the
lemma. �

In the next lemma we only give an outline of the proof and skip technical arguments which
may be found in [2,4].

Lemma 3.7. Let A be a continuous conservative system, ε > 0, and δ > 0. There exists m ∈ N

and a measurable function T :Γ ∗
m(A) → R such that for μ-a.e. q ∈ Γ ∗

m and every t > T (q) there
exist a traceless {H(ϕs(q))}s∈R, varying smoothly with s and supported on the segment ϕ[0,t](p)

such that:

(a) ‖H‖ < ε,
(b) 1 log‖Φt (q)‖ < δ.
t A+H
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Fig. 2. Behavior of ‖Φt
A+H

(q)‖ with H supported in
⋃

r∈[0,m] ϕr+τ (q), where τ ≈ t/2.

Proof. First, using Lemma 3.6, we choose a sufficiently large m in order to send Nu
p into Ns

ϕm(p)

under ε-small C0-perturbation, for Oseledets regular points p ∈ Δm. So, for our perturbation
A + H we obtain Φm

A+H (p)(Nu
p) = Ns

ϕm(p). Given q in the saturated set Γ ∗
m(A) and using a

qualitative recurrence result (see [3, Lemma 3.12]) for all t > T (q) we have to fall into Δm

approximately in the middle of the journey, say ϕτ (q) = p, for τ ≈ t/2. Take t � m. Now we
perturb and we get Φt

A+H (q)(Nu
q ) = Ns

ϕt (q)
. The contribution of the exponential growth along

the direction Nu
q in the first half, will be annihilated on the other half by an exponential decreasing

bundle Ns
ϕs+m(q)

implying ‖Φt
A+H (q)‖ < etδ . That is the reason why we mix the two directions.

The idea is shown in Fig. 2. �
3.4. Global recurrence argument

For the global case we construct a special flow by using Ambrose–Kakutani theorem over the
aperiodic flow ϕt :Γ ∗

m → Γ ∗
m, but first we use Lemma 3.1 to increase m ∈ N if necessary and

obtain

μ
(
Γ +

m (A) − Γ ∗
m(A)

)
< δ. (6)

Using the measurable function given by Lemma 3.7 we define

Zh = {
p ∈ Γ ∗

m(A): T (p) � h
}
.

We have that limh→∞ μ(Γ ∗
m(A) − Zh) = 0 so holds we take h sufficiently large such that:

μ
(
Γ ∗

m(A) − Zh

)
< δ2μ

(
Γ ∗

m(A)
)
. (7)

Let us now increase h and use Oseledets theorem, which is an asymptotic result, to get for points
p ∈ O0(A) the inequality

∥∥Φt
A

∥∥ < etδ for all t � h. (8)
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Fig. 3. The Kakutani subcastle Q supports the perturbations.

Suppose that we have a ceiling function over a section B ⊆ Zh verifying h(x) � h. We denote
by Q̂ the Kakutani castle with base B . Excluding all towers with height above 3h we define a
subcastle which we denote by Q (see Fig. 3).

We claim that μ(Q̂ − Q) < 3δ2μ(Γ ∗
m(A)), as in [3, Lemma 4.2].

Now we will decay the entropy function LE(·,Γm(A)) at A, by a small perturbation B =
A + H of the system. We start with a L∞-perturbation and the idea for the continuous ones
comes from noting that H(·) is measurable and therefore, by Lusin’s theorem, we have that
measurable functions are almost continuous and since we are only interested on almost all points
in the base the same result will follow.

For the bounded case we consider the following lemma.

Lemma 3.8. Let A be a conservative system and ε, δ > 0. Then, there exist m ∈ N and a traceless
system H ∈ L∞(X,GL(2,R)) such that:

(a) ‖H‖∞ < ε;
(b) ‖H(p)‖ = 0 for any p /∈ Γm(A);
(c) LE(A + H,Γm(A)) < δ.

Proof. Suppose that μ(Γm(A)) > 0, otherwise, there is nothing to prove.
The equality

LE
(
A + H,Γm(A)

) = inf
n∈N

1

n

∫
Γm(A)

log
∥∥Φn

A+H (p)
∥∥dμ(p)

will allow us to prove that LE(A + H,Γm(A)) is small by proving that

1

t

∫
Γm(A)

log
∥∥Φt

A+H (p)
∥∥dμ(p)

is small for a large fixed t = hδ−1.
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Fig. 4. The global procedure at G.

Note that those points that stay for a long time in Q will necessarily have low contribution for
LE(A + H,Γm(A)). So we define

G = {
p ∈ Γ ∗

m(A): ϕs(p) ∈ Q, ∀s ∈ [0, t[}
and we claim that

μ
(
Γ ∗

m(A) − G
)
< 15δ (9)

which is a consequence of [4, Lemma 4.16]. Note that since t is large and the castle Q has
height bounded towers and large measure, the orbit leaves Q often, but by (9), it is highly likely
to enter Q again. So we split the orbit segment ϕ[0,t](p) for p ∈ G by return-times to B , say
t = b + rn + · · · + r2 + r1 + a where all ϕa(p),ϕr1+a(p),ϕr2+r1+a(p), . . . , ϕ

∑n
i=1 ri+a(p) are in

the base B , and a, b, ri ∈ [0,3h[ (see Fig. 4). Given q ∈ B the height of its tower h(q) verifies
h(q) � h, but B ⊆ Zh so h(q) � h � T (q), therefore Lemma 3.7 says that for every t > T (q)

there exists a traceless {H(ϕs(q))}s∈R, varying smoothly with support on the segment ϕ[0,m](p)

such that:

(a) ‖H‖ < ε and
(b) 1

t
log‖Φt

A+H (q)‖ < δ.

Note that

∥∥Φt
A+H (p)

∥∥ = ∥∥Φ
b+∑n

i=1 ri+a

A+H (p)
∥∥

�
∥∥Φb

A+H

(
ϕ

∑n
i=1 ri+a(p)

)∥∥ · (. . .) · ∥∥Φ
r1

(
ϕa(p)

)∥∥ · ∥∥Φa
A+H (p)

∥∥.
A+H
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Take C = supp∈M ‖Φ1
A+H (p)‖. By (b) and the fact that the towers are smaller than 3h we con-

clude that

∥∥Φt
A+H (p)

∥∥ � C3h · e
∑n

i=1 riδ · C3h � e(b+∑n
i=1 riδ+a)δC6h � etδ · C6h

and we get 1
t

log‖Φt
A+H (p)‖ � δ(1 + 6 logC). Therefore, since

Γm(A) ⊇ Γ +
m (A) ⊇ Γ ∗

m(A) ⊇ G,

we obtain

LE
(
A + H,Γm(A)

)
�

∫
Γm(A)−Γ +

m (A)

1

t
log

∥∥Φt
A+H (p)

∥∥dμ(p)

+
∫

Γ +
m (A)−Γ ∗

m(A)

1

t
log

∥∥Φt
A+H (p)

∥∥dμ(p)

+
∫

Γ ∗
m(A)−G

1

t
log

∥∥Φt
A+H (p)

∥∥dμ(p) +
∫
G

1

t
log

∥∥Φt
A+H (p)

∥∥dμ(p).

Now we use (8), (6), (9) and the fact that 1
t

log‖Φt
A+H (p)‖ � δ(1 + 6 logC) in order to get:

LE
(
A + H,Γm(A)

)
� δ + δ logC + 15δ logC + (1 + 6 logC)δ.

Substituting δ by δ
(2+22 logC)

along the proof we cause a decay on LE(·,Γm(A)) by a ε-small
perturbation of the original system. �

In the next lemma we will construct a C0-perturbation.

Lemma 3.9. Given a continuous conservative system A and ε, δ > 0 there exist m ∈ N and a
continuous traceless system H0 such that B = A + H0 verifies:

(a) ‖A − B‖∞ < ε;
(b) A(p) = B(p) for any p /∈ Γm(A);
(c) LE(B,Γm(A)) < δ.

Proof. By Lemma 3.8 we obtain m ∈ N and a traceless H ∈ L∞(X,GL(2,R)) such that for
t = hδ−1 we have

LE
(
A + H,Γm(A)

)
�

∫
Γm(A)

1

t
log

∥∥Φt
A+H (p)

∥∥dμ(p) < δ.

We now use Lusin’s theorem which states that for any measurable function, for instance, H , there
is H1 ∈ C0(X,GL(2,R)), such that:
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(a) H1(p) = H(p) for any p /∈ Γm(A);
(b) ‖H1‖∞ < ε;
(c) μ(E) = μ({p ∈ X: H1(p) �= H(p)}) < δt−1.

Since for points p ∈ E we do not necessarily have TrH1(p) = 0 we change, say the entry
1-1 of the matrix, obtaining a new matrix H0 this time with TrH0(p) = 0. We define the
C0-perturbation B = A + H0 which verifies TrA = TrB .

Now we define the sets

L = {
p ∈ X: H0(p) = H(p)

}
and

GL = {
p ∈ X: ϕs(p) ∈ Γm(A) ∩ L, ∀s ∈ [0, t]}.

Clearly GL ⊆ Γm(A) and we have

μ
(
Γm(A) − GL

)
� tμ(E) � δ. (10)

Therefore we conclude that

LE
(
B,Γm(A)

) = inf
n∈N

∫
Γm(A)

1

n
log

∥∥Φn
B(p)

∥∥dμ(p) �
∫

Γm(A)

1

t
log

∥∥Φt
B(p)

∥∥dμ(p)

=
∫

Γm(A)−GL

1

t
log

∥∥Φt
B(p)

∥∥dμ(p) +
∫

GL

1

t
log

∥∥Φt
B(p)

∥∥dμ(p)

=
∫

Γm(A)−GL

1

t
log

∥∥Φt
B(p)

∥∥dμ(p) +
∫

GL

1

t
log

∥∥Φt
A+H (p)

∥∥dμ(p).

Let C = maxp∈X ‖Φ1
B(p)‖ and since GL ⊆ Γm(A) we get

LE
(
B,Γm(A)

)
� μ

(
Γm(A) − GL

)
logC +

∫
Γm(A)

1

t
log

∥∥Φt
A+H (p)

∥∥dμ(p).

Now by (10) and Lemma 3.8 we obtain

LE
(
B,Γm(A)

)
� δ logC + δ.

We then reconstruct the proof replacing δ by δ
(1+logC)

. �
3.5. End of the proof of Theorem 1

Denote by Γ∞(A) the set
⋂

m∈N
Γm(A). The following lemma will be useful to prove Theo-

rem 1.
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Lemma 3.10. Given a continuous conservative system A and ε, δ > 0, there exists B , ε-close
to A such that

LE(B,X) < LE(A,X) −
∫

Γ∞(A)

λ+(A,p)dμ(p) + δ.

Proof. By Lemma 3.9 there exists m ∈ N and a continuous conservative system B such that:

(a) ‖A − B‖∞ < ε;
(b) A(p) = B(p) for any p /∈ Γm(A);
(c) LE(B,Γm(A)) < δ.

So, we have

LE(B,X) = LE
(
B,Γm(A)

) + LE
(
B,X − Γm(A)

)
= LE

(
B,Γm(A)

) + LE
(
A,X − Γm(A)

)
� δ + LE

(
A,X − Γ∞(A)

) = δ + LE(A,X) − LE
(
A,Γ∞(A)

)
. �

Theorem 3.11. Given A in the set of continuous conservative systems, we have that if A is a
continuity point of the entropy function LE(·), then for μ-a.e. p ∈ X the following dichotomy
holds:

(a) either the Oseledets splitting is dominated, or
(b) Lyapunov exponents are zero.

Proof. Take A a continuous linear differential system (area-preserving or modified area-
preserving). Suppose that A is a continuity point for LE(·). Suppose μ(X − ⋃

m∈N
Λm(A)) > 0,

otherwise the statement is proved.
So μ(X ∩ ⋂

m∈N
(Γm(A))) = μ(

⋂
m∈N

Γm(A)) > 0, and therefore, μ(Γ∞(A)) > 0.
Consequently we must have that LE(A,Γ∞(A)) = 0, otherwise by Lemma 3.10 we break

the continuity and get a contradiction. So, for any p ∈ O(A) we have zero Lyapunov exponents
or if it has positive ones, then p /∈ Γ∞(A) and therefore it has m-dominated splitting for some
m ∈ N. �

The conclusions of Theorem 3.11 are sufficient to guarantee that A is a continuity point of the
entropy function. By hypothesis, X = D ∪O (mod 0), where D are points with dominated split-
ting and O are points with null exponents. Since LE(A,O) = 0 and LE is upper-semicontinuous
we conclude that LE(B,O) is close to LE(A,O), for B close to A. Moreover, D has also domi-
nated splitting for B with rates of dominated splitting close to the ones belonging to A.

Proof of Theorem 1. Theorem 1 now follows by using the fact that the set of points of continuity
of upper-semicontinuous functions is a residual set, see [15]. �
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4. Some consequences of Theorem 1

4.1. Ergodic flows

Corollary 4.1. If μ is ergodic, then there is a residual subset R of area-preserving systems such
that for every A ∈ R we have Φt

A uniformly hyperbolic or Lyapunov exponents are zero for
μ-a.e. point p ∈ X.

Proof. Take the residual R given by Theorem 1 and A ∈ R. If μ(Λm) = 0 for all m, then the
corollary follows, otherwise if μ(Λm) > 0 for some m, we have a full measure set Λm with
m-dominated splitting, because Λm is ϕt -invariant and μ is ergodic. �

Conservativeness yields detΦt(p) = 1 for all t ∈ R and p ∈ X. Given a μ-generic point
p ∈ M we have

sin
(
�

(
Nu

p,Ns
p

)) = ∥∥Φt(p)
∣∣
Nu

p

∥∥ · ∥∥Φt(p)
∣∣
Ns

p

∥∥ sin
(
�

(
Nu

ϕt (p),N
s
ϕt (p)

))
. (11)

Claim 2. If Λm has m-dominated splitting, then for all p ∈ Λm we have �(Nu
p,Ns

p) � α > 0.

Since Φm(p) is a linear isomorphism its co-norm

m
(
Φm(p)

) = inf‖v‖=1

∥∥Φm(p) · v∥∥
is given by ‖[Φm(p)]−1‖−1. Let u ∈ Nu

p and s ∈ Ns
p be unitary vectors. Since sin(

�(Nu
p,Ns

p)

2 ) =
‖u−s‖

2 , we prove that ‖u − s‖ is bounded away from zero. By dominated splitting we have
2‖Φm(p) · s‖ � ‖Φm(p) · u‖, so

2
∥∥Φm(p) · s∥∥ �

∥∥Φm(p) · (u − s + s)
∥∥ �

∥∥Φm(p) · (u − s)
∥∥ + ∥∥Φm(p) · s∥∥,

therefore

∥∥Φm(p) · s∥∥ �
∥∥Φm(p)

∥∥∥∥(u − s)
∥∥.

Since ‖[Φm(p)]−1‖−1 � ‖Φm(p) · s‖ we obtain

∥∥[
Φm(p)

]−1∥∥−1 �
∥∥Φm(p)

∥∥∥∥(u − s)
∥∥

and therefore

∥∥[
Φm(p)

]−1∥∥−1∥∥Φm(p)
∥∥−1 � ‖u − s‖.

Now we just note that Φm(p) is continuous and X is compact and the claim follows.
Claim 2 and (11) implies that

∥∥Φt(p)
∣∣
Nu

∥∥.
∥∥Φt(p)

∣∣
Ns

∥∥ � sin−1 α.

p p



M. Bessa / J. Differential Equations 228 (2006) 685–706 703
Again by dominated splitting, there exist constants C > 0 and σ ∈ (0,1) such that

Cσ t �
‖Φt(p)|Ns

p
‖

‖Φt(p)|Nu
p
‖ � sin−1 α

∥∥Φ−t (p)
∣∣
Nu

p

∥∥2
,

and consequently

∥∥Φ−t (p)
∣∣
Nu

p

∥∥ �
√

C sin−1 α
(
σ t/2

)
.

Now it suffices to take the constants of uniform hyperbolicity C′ =
√

C sin−1 α and σ ′ = √
σ

and to proceed analogously for Ns in order to prove the corollary.

Corollary 4.2. If μ is ergodic and Fix(ϕt ) = ∅, then there is a residual subset R of modified area-
preserving systems such that for every A ∈R either Φt

A is uniformly hyperbolic or LE(A) = 0.

Proof. Since a(·) is a non-null continuous function on a compact set X, the quotient a(·)
a(ϕt (·))

has an upper bound K and a lower bound K−1. Conservativeness, dominated splitting and the
nonexistence of fixed points for the flow ϕt guarantees that

Cσ t �
‖Φt(p)|Ns

p
‖

‖Φt(p)|Nu
p
‖ � sin−1 αK2

∥∥Φ−t (p)
∣∣
Nu

p

∥∥2
,

and we proceed as in Corollary 4.1. �
4.2. Further statements in the conservative setting

Given a matrix M , denote by MT the matrix transpose. Let

O(2,R) = {
M ∈ GL(2,R): MTM = Id

}
be the orthogonal group. The special orthogonal group is defined by

SO(2,R) = O(2,R) ∩ SL(2,R).

Take S ∈ SO(2,R). We consider the systems A such that their fundamental matrix verifies:

(
Φt

A

)T
SΦt

A = S. (12)

In this case for the system A the following equality

A(t)TS + SA(t) = 0 (13)

holds. Let us denote by S the set of systems where the matrix transition Φt
A evolves on elements

of a special orthogonal group, i.e. (12) is verified. An example of this kind of systems is when
S = J , where J is the standard 2 × 2 symplectic matrix

J =
(

0 −1
1 0

)
.
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These are the symplectic systems, that in our 2-dimensional setting, are reduced to the traceless
systems already considered.

The following lemma says that Theorem 1 is also true for A ∈ S.

Lemma 4.3. If A ∈ S, then A + H ∈ S, where H is the perturbation defined by Lemmas 3.2,
3.3 and 3.5.

Proof. Given A ∈ S, by (13) we have A(t)TS + SA(t) = 0 for S ∈ SO(2,R). We want to prove
that [A(t)+H(t)]TS +S[A(t)+H(t)] = 0 and it is sufficient to show that H(t)TS +SH(t) = 0.

Since H(t) = Φt(p)ξg′(t)
( 0 −1

1 0

)[Φt(p)]−1 we have

H(t)TS + SH(t) = [
Φt(p)ξg′(t)J

[
Φt(p)

]−1]T
S + SΦt(p)ξg′(t)J

[
Φt(p)

]−1

= ([
Φt(p)

]−1)T
ξg′(t)J

(
Φt(p)

)T
S + SΦt(p)ξg′(t)J

[
Φt(p)

]−1
.

Using (12) in the last expression we obtain

H(t)TS + SH(t) = ([
Φt(p)

]−1)T
ξg′(t)JS

[
Φt(p)

]−1 + [(
Φt(p)

)T]−1
Sξg′(t)J

[
Φt(p)

]−1

= ξg′(t)
([

Φt(p)
]−1)T[JS + SJ ][Φt(p)

]−1
.

Now JS + SJ = 0 because S ∈ SO(2,R) and the lemma is proved. �
5. Generalizations to other systems

5.1. Beyond the conservative setting

In the proof of Theorem 1 we considered a system A and we built up a small C0-perturba-
tion B with small norm. One of the steps to decrease the norm was the mixing of two directions
in RP 1: the Oseledets 1-dimensional subspaces Nu and Ns . For this purpose it was crucial that:

(I) The transition matrix Φt
B had a transitively action over RP 1.

(II) The perturbation B remained inside our original set of systems.

Once we guarantee these two properties we are able to obtain Lemma 3.6, therefore Theorem 1
follows by direct application of the local and the global recurrence arguments.

So Theorem 1 is also true for systems where (I) and (II) are valid. For this reason we use a
definition (cf. [4, Definition 1.2]) of a more general class of systems on which Theorem 1 must
be true.

Definition 5.1. We say that a set of systems S have the accessible property if for all C > 0 and
ε > 0, there exist τ ∈ R and ξ > 0 verifying the following:

Given u,v ∈ RP 1 with �(u, v) < ξ and A ∈ S with ‖A‖ < C, there exists B ∈ S such that:

(i) ‖A − B‖ < ε;
(ii) Φτ

B · u = Φτ
A · v.
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The techniques and constructions in this paper explicitly prove that the area-preserving sys-
tems, the modified area-preserving systems and the systems considered in Section 4.2 actually
satisfy the accessibility property. Furthermore, the systems with fundamental matrix on GL(2,R)

are also accessible. Since Definition 5.1 is somewhat abstract similar techniques must be devel-
oped for other systems if one aims to prove identical results.

5.2. Multidimensional case

For linear differential systems of nonautonomous differential equations with dimension
greater or equal than three the proof relies on the study of the exterior product of order
n = dimNu, where Nu is the subspace associated to the positive Lyapunov exponents (λ1(A) �
λ2(A) � · · · � λn(A)). By a more elaborate and careful technique we are able to mix direc-
tions with different exponential behavior by a ε-C0-perturbation. This procedure guarantees
that ‖∧n

Φt
A+H (p)‖ (

∧n denotes the nth wedge product) decays abruptly when compared with
‖∧n

Φt
A(p)‖, and once again we produce a discontinuity in the entropy function and as in the

proof of Theorem 1 we obtain the two possible cases for μ-a.e. p ∈ X, dominated splitting or
zero Lyapunov exponents. The proof follows the strategy in the discrete case, see [4], and will
appear in a forthcoming paper.
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