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Abstract
Over the past decade, deep learning has gone from a fringe discipline of computer science
to a major driver of innovation across a large number of industries. The deployment of such
rapidly developing technology in safety-critical applications necessitates the careful study and
mitigation of potential failure modes. Indeed, many deep learning models are overconfident in
their predictions, are unable to flag out-of-distribution examples that are clearly unrelated to
the task they were trained on and are vulnerable to adversarial vulnerabilities, where a small
change in the input leads to a large change in the model’s prediction. In this dissertation, we
study the relation between these issues in deep learning based vision classifiers.

First, we benchmark various methods that have been proposed to enable deep learning meth-
ods to detect out-of-distribution examples and we show that a classifier’s predictive confidence
is well-suited for this task, if the classifier has had access to a large and diverse out-distribution
at train time. We theoretically investigate how different out-of-distribution detection methods
are related and show that several seemingly different approaches are actually modeling the
same core quantities.

In the second part we study the adversarial robustness of a classifier’s confidence on out-
of-distribution data. Concretely, we show that several previous techniques for adversarial
robustness can be combined to create a model that inherits each method’s strength while sig-
nificantly reducing their respective drawbacks. In addition, we demonstrate that the enforce-
ment of adversarially robust low confidence on out-of-distribution data enhances the inherent
interpretability of the model by imbuing the classifier with certain generative properties that
can be used to query the model for counterfactual explanations for its decisions.

In the third part of this dissertation we will study the problem of issuing mathematically
provable certificates for the adversarial robustness of a model’s confidence on out-of-distribution
data. We develop two different approaches to this problem and show that they have comple-
mentary strength and weaknesses. The first method is easy to train, puts no restrictions on
the architecture that our classifier can use and provably ensures that the classifier will have
low confidence on data very far away. However, it only provides guarantees for very specific
types of adversarial perturbations and only for data that is very easy to distinguish from the
in-distribution. The second approach works for more commonly studied sets of adversarial
perturbations and on much more challenging out-distribution data, but puts heavy restrictions
on the architecture that can be used and thus the achievable accuracy. It also does not guar-
antee low confidence on asymptotically far away data. In the final chapter of this dissertation
we show how ideas from both of these techniques can be combined in a way that preserves all
of their strengths while inheriting none of their weaknesses. Thus, this thesis outlines how to
develop high-performing classifiers that provably know when they do not know.
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Kurzfassung
In den letzten zehn Jahren hat sich das Deep Learning von einer Randdisziplin der Informa-
tik zu einer treibenden Kraft der Innovation in vielen Industrien entwickelt. Die Einführung
solcher schnell entwickelnder Technologien in sicherheitskritischen Anwendungen erfordert
eine sorgfältige Untersuchung und Beseitigung möglicher Ausfallmodi. Tatsächlich sind viele
Deep-Learning-Modelle zu konfident in ihren Vorhersagen, sind nicht in der Lage, Beispiele
außerhalb der Verteilung zu markieren, die offensichtlich nichts mit der Aufgabe zu tun haben,
für die sie trainiert wurden, und besitzen Adversarial-Schwachstellen, bei denen eine kleine
Änderung der Eingabe zu einer großen Änderung der Vorhersage des Modells führt. In die-
ser Dissertation untersuchen wir die Beziehung zwischen diesen Problemen in Deep-Learning
Bilderkennungsklassifikatoren.

Zunächst vergleichen wir verschiedene Methoden, die vorgeschlagen wurden, um Deep-
Learning-Methoden dazu zu befähigen, Beispiele außerhalb der Verteilung zu erkennen, und
zeigen, dass die Vorhersagekonfidenz eines Klassifikators gut geeignet ist, wenn der Klassi-
fikator während des Trainings auf eine große und vielfältige Ausverteilung zugreifen konnte.
Wir untersuchen theoriegestützt, wie sich verschiedene Methoden zur Erkennung von Aus-
verteilungen voneinander unterscheiden und zeigen, dass mehrere scheinbar unterschiedliche
Ansätze tatsächlich dieselben Funktionen modellieren.

In dem zweiten Teil untersuchen wir die Angriffsrobustheit der Konfidenz eines Klassifika-
tors bei Ausverteilungsdaten. Konkret zeigen wir, dass mehrere vorherige Techniken zur An-
griffsrobustheit kombiniert werden können, um ein Modell zu erstellen, das die Stärken jeder
Methode erbt, während deren Nachteile signifikant verringert werden. Zusätzlich zeigen wir,
dass die Durchsetzung von angriffsrobusten niedrigen Konfidenzen auf Ausverteilungsdaten
die inhärente Interpretierbarkeit des Modells verbessert, indem dem Klassifikator bestimmte
generative Eigenschaften verliehen werden, die zur Abfrage des Modells für kontrafaktische
Erklärungen seiner Entscheidungen verwendet werden können.

Im dritten Teil dieser Dissertation untersuchen wir das Problem der Ausstellung von ma-
thematisch beweisbaren Zertifikaten für die Angriffsrobustheit der Konfidenz eines Modells
auf Ausverteilungsdaten. Wir entwickeln zwei verschiedene Ansätze für dieses Problem und
zeigen, dass sie ergänzende Stärken und Schwächen haben. Die erste Methode ist leicht zu
trainieren, stellt keine Einschränkungen für die Architektur des Klassifikators dar und stellt
beweisbar sicher, dass der Klassifikator eine geringe Konfidenz bei Daten aufweisen wird, die
sehr weit entfernt sind. Sie bietet jedoch nur Garantien für sehr spezifische Arten von adversa-
rialen Veränderungen und nur für Daten, die sehr leicht von der In-Verteilung zu unterscheiden
sind. Der zweite Ansatz funktioniert für häufiger untersuchte adversariale Veränderungen und
für viel herausforderndere Ausverteilungsdaten, setzt jedoch starke Einschränkungen für die
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Kurzfassung

Architektur, die verwendet werden kann, voraus und damit für die erreichbare Genauigkeit.
Sie gewährleistet auch keine niedrige Konfidenz auf asymptotisch weit entfernten Daten. Im
letzten Kapitel dieser Dissertation zeigen wir, wie Ideen aus beiden dieser Techniken auf ei-
ne Weise kombiniert werden können, die alle ihre Stärken bewahrt, während sie keine ihrer
Schwächen übernimmt. Auf diese Weise skizziert diese Arbeit, wie leistungsfähige Klassifi-
katoren entwickelt werden können, die beweisbar wissen, wann sie etwas nicht wissen.
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Chapter 1

Introduction

In recent years, deep learning has been successfully used in a growing number of applications.
With this success, there has also been increasing concern over the safety and reliability of
systems that get deployed in situations where mistakes can directly harm humans. For ex-
ample, consider AI used in the perception system of autonomous vehicles (Grigorescu et al.,
2020), the detection of tumors in a medical context (Saba et al., 2020) or the scheduling of
maintance windows for aircraft engines (Chao et al., 2022). In each of these instances, it is
not sufficient for the models to have a high performance on a curated test set, but developers
must ensure that the systems will not make dangerous mistakes even in potentially unforeseen
circumstances. The European Union has even drafted legislature that aims to mandate safety
standards for AI systems that operate in “high-risk applications” (EU, 2021).

However, the fuzzy notion of what would make such systems “reliable” is difficult to fully
capture. Even if we limit ourselves to only considering classification tasks, reliability could
entail many desriable properties, such as domain generalization (Dai and Van Gool, 2018;
Geirhos et al., 2018), robustness to random corruptions (Ghosh et al., 2018; Hendrycks and
Dietterich, 2019), robustness to adversarially crafted perturbations (Madry et al., 2018; Gowal
et al., 2020) and confidence scores that accurately reflect the model’s true uncertainty (Guo
et al., 2017).

Additionally, when using a neural network in an open-world setting where any input could
potentially occur, inputs to a classifier may not necessarily even belong to the classification
task at all. In this case, the system should have the ability to reject samples altogether. Con-
sider, for example, a classifier for different types of skin lesions (Lopez et al., 2017) that gets
presented with an unknown type of disease, or an autonomous vehicle that encounters a made-
up street sign that does not actually exist. If an input can be flagged as out-of-distribution
(OOD), then the system can abstain from making a decision in a safe state and potentially
request human intervention. While this task has different names within the literature (Open
Category Detection (Liu et al., 2018) or Anomaly Detection (Hendrycks et al., 2019a; Choi
et al., 2018)), we will refer to it as OOD detection and it will be the primary focus of this
thesis.

Another property that we might require of a reliable OOD detection system is that of adver-
sarial robustness, i.e. an OOD sample which is perturbed in a minimal way, should clearly still
be detected as OOD. In this thesis we will see that even if a system seemingly performs well
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Chapter 1 Introduction

on the OOD detection task, it might still fail in the case of such adversarially perturbed OOD
samples. In this thesis, we will not only discuss the task of OOD detection in deep vision
classifiers but additionally study the adversarial robustness of such systems.

1.1 OOD Detection

We will now give a brief outline of how the OOD detection task is defined and measured. First
note that it can occasionally be debatable, whether a given sample should even be rejected at
all if it is OOD or whether a given classifier should just correctly generalize to the unforeseen
sample, as in the task of domain generalization. For example, in the safety-critical scenario
of a tumor detector, when shown a scan from a previously unseen machine it could arguably
either be desirable to correctly classify the new sample or to outright refuse to make a predic-
tion. In order to avoid this ambiguity, this thesis only deals with OOD in the sense of samples
that clearly do not belong to the same classification task at all, e.g. when showing a car to a
classifier that is meant to classify different breeds of dogs.

Nonetheless, even with this caveat, providing a rigorous definition for OOD detection is
an open problem. Informally though, it refers to the capacity of a given scoring function
h : X → R to distinguish in-distribution (ID) data that is used for the classification task from
unseen out-of-distribution (OOD) data (for the purposes of this thesis, the input space is either
X = Rd or X = [0,1]d). We can denote these distributions as p(x|i) ≡ p(x|in-distribution)
and p(x|o)≡ p(x|out-distribution), respectively. We assume that, at test time, we are drawing
from a distribution

p(x) = p(x|i)p(i)+ p(x|o)(1− p(i)), (1.1)

where p(i) is the prior probability of actually sampling from the in-distribution task. On
the surface this might appear like its own binary classification task between in- and out-
distribution, but, crucially, one should not assume knowledge of the test-out-distribution p(x|o)
at train time. Technically, this makes the problem ill-defined as one can always construct out-
distributions on which a given scoring function will perform arbitrarily poorly. In principle,
one could make additional assumptions such as disjoint support of p(x|i) and p(x|o), but this
requires actually knowing the support of the in-distribution, which is highly non-trivial for
complicated datasets such as is the case in vision applications. Therefore, in practice, in order
to assess a scoring function’s OOD detection performance, one can take a set of hand-picked
test out-distributions and measure the model’s ability to separate each of them from the in-
distribution. In this setting, the choice of test out-distributions must be such that there is no
semantic overlap between the in-distribution classes and the OOD samples. Different choices
of out-distributions may also pose different levels of difficulty to the task. We thus tend to
informally think of out-distributions as being either near-OOD or far-OOD, where the former
matches the in-distribution in terms of low-level image statistics and can only be detected
by looking at the semantics while the latter can differ from the in-distribution in more easily
detectable ways.

2



1.2 Overconfidence

Note that, in principle, actually separating ID and OOD would require the selection of a
threshold. This could be systematically done by taking into account the costs of false positives
and false negatives as well as the priors of in- and out-distribution in the deployed setting.
Since these are not available to researchers studying standard computer vision datasets, the
community tends to report the False Positive Rate (FPR) at a fixed True Positive Rate (TPR)
of q, or FPR@qTPR, for short. A lower FPR@qTPR corresponds to better OOD detection
performance. The quantile that is most often used in research is q = 0.95.

Another measure that is commonly used is the area under the receiver-operator characteris-
tic (often called AUROC, but we will simply refer to it as AUC). This means that all possible
choices of threshold trace out a curve of TPR vs. FPR and the higher the integral under
this curve is, the better the model’s performance. Formally, given a scoring function f , an
in-distribution p(x|i) and an out-distribution p(x|o), we can write:

AUCh
(

p(x|i), p(x|o)
)
= E

x∼p(x|i)
z∼p(z|o)

[
1h(x)>h(z)+

1
2
1h(x)=h(z)

]
. (1.2)

(Note that we will slightly modify this definition in Chapter 4.) The advantage is that the
AUC does not depend on any particular choice of threshold, which is why we will use it as the
primary metric throughout this thesis. A downside of using the AUC is that if method A has a
higher AUC than method B, it does not guarantee that there is no TPR at which method B has
lower FPR than method A.

Occasionally, researchers also report their OOD detection performance using the area under
the precision-recall curve. Similarly, to the AUC, it sidesteps the issue of selecting a specific
threshold. However, it still relies on the availability of the prior p(i), which we do not wish to
assume.

1.2 Overconfidence

Deep neural classifiers can be significantly overconfident in their predictions, both on in-
distribution data and out-of-distribution. Here, confidence refers to the classifier’s estimated
probability of the predicted class, given the sample. Formally, we refer to the output of a K-
class classifier f : X →RK as the logits and get a probability distribution over the classes via
p̂ f (y|x) = e fy(x)

∑
K
k e fk(x)

for y = 1, . . . ,K. Then we define the confidence as

Conf( f (x)) = max
y=1,...,K

p̂ f (y|x). (1.3)

Throughout the thesis, we denote underlying probabilities/densities with p(y|x) resp. p(x) and
the corresponding estimated quantities with p̂(y|x) and p̂(x).
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Figure 1.1: Calibration: The model predictions are grouped into 10 bins depending on the
model’s confidence in its predictions. The accuracy within each bin is shown using the blue
bars. An calibrated model’s predictions lie on the red line. On the left we show that a normally
trained CIFAR10 model is overconfident, because its accuracy is generally lower than the
confidence of each bin. On the right we show that this problem is alleviated after rescaling the
logits with a temperature of T = 1.4.

1.2.1 Calibration

When saying that a classifier’s confidence is calibrated, we are stating that a predicted confi-
dence of p% actually corresponds to a prediction that is p% likely to be correct. In order to
actually compute a model’s level of calibration, the most widely used measure is the Expected
Calibration Error (ECE) (Naeini et al., 2015). It bins a classifier’s predictions on n data points
according to their confidence into M subsets Bm and for each bin computes the difference
between the true accuracy on the subset and the confidence on the respective subset, i.e.

ECE =
M

∑
m=1

|Bm|
n

∣∣accuracy(Bm)− confidence(Bm)
∣∣. (1.4)

A small ECE corresponds to better calibration. It has been shown that neural networks tend
to produce overconfident and uncalibrated predictions (Guo et al., 2017). A very common
mitigation strategy is to element-wise transform the logits via so-called Platt scaling (Platt
et al., 1999) using parameters that are chosen on a validation set. This transformation is
guaranteed to preserve the classifiers accuracy. The simplest such transformation is known as
temperature rescaling, and given a temperature T ∈ (0,∞), it leads to a predictive distribution

p̂(y|x) = e fy(x)/T

∑
K
k e fk(x)/T

. (1.5)
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1.3 Adversarial Robustness

A large temperature T leads to drastically reduced confidences. Also see Figure 1.1 for an
illustration.

Note that many extensions or modifications of calibration in general and the ECE in par-
ticular have been proposed. On the one hand, the above definition only considers calibration
after averaging across the entire dataset. However, calibration may be required on subsets of
the data or even on individual inputs (Zhao et al., 2020). Additionally, in certain settings the
calibration with respect to the top-predicted class may not be sufficient and thus calibration
may be required for each class separately (Nixon et al., 2019; Kull et al., 2019). There has
also been significant work in ensuring that the estimation of calibration errors is consistent,
scalable and has low bias (Vaicenavicius et al., 2019; Roelofs et al., 2022; Zhang et al., 2020b;
Kumar et al., 2018; Popordanoska et al., 2022).

1.2.2 Asymptotic Overconfidence
Overconfidence can also be problematic on OOD data, especially when we assume that X =
Rd . The authors of Hein et al. (2019) made the following surprising observation: not only is it
possible for deep neural classifiers to have high confidence on OOD data, it is in fact provably
the case that for most ReLU networks the confidence asymptotically increases to 1, the further
one moves away from all training data. The intuition for this is that any ReLU classifier (or
more generally, any neural network that uses only piecewise linear non-linearities) can be
thought of as a piecewise affine function that is affine when restricted to each polytope in a
finite set of convex polytopes that together make up the whole domain Rd . This means that if
one moves very far from all training data, one must eventually end up in an outermost linear
region, i.e. moving further along the same direction will never leave the current polytope.
Once this happens, whichever logit has the largest slope in this direction will asymptotically
be arbitrarily larger than all other logits and thus, the confidence will tend to 1 in this direction.
An important caveat here is that this assumes that a unique largest slope exists. If several are
tied for largest then the conclusion does not follow. However, unless the neural network is
completely constant in a given direction (e.g. because all neurons in some layer have precisely
0 output), this caveat is extremely unlikely to occur. Interestingly, this theorem implies that
this problem can really only be fixed by architectural modifications, which we will discuss
more in Chapter 5.

1.3 Adversarial Robustness
A remarkable observation about neural networks is the fact that even extremely well-performing
models can completely change their predictions when their inputs are only minimally (often
imperceptibly) perturbed (Biggio et al., 2013; Szegedy et al., 2014). Many have argued that
trustworthy models should not have this property and thus be adversarially robust (Madry
et al., 2018; Gowal et al., 2020). This is especially relevant in situations where adversarial
actors are able to present arbitrary samples to a model and have a clear incentive to manipu-
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late the model’s predictions. For example, this would be the case in AI used for classifying
job applicants according to their submitted information where applicants should not be able to
use imperceptible or insignificant changes in order to game the system (Harlan and Schnuck,
2021). Besides the intuitively obvious desirability of adversarially robust models there has
also been evidence that adversarial robustness helps with transfer learning (Salman et al.,
2020) and that it can imply certain interpretability properties (Santurkar et al., 2019) that we
will discuss in more detail in this thesis as well.

1.3.1 Empirical Robustness

Similarly to OOD detection, the task of adversarially robust classification is quite hard to
define rigorously. The principal issue is that the notion of “inconspicuous” or “imperceptible”
changes is hard to formalize. Because of this, the research community tends to use proxies that
are known as threat models. A threat model defines a set T (x) around each point x, in which
each element is assumed to be sufficiently similar to x in order to count as “inconspicuous”.
An adversarial sample of x with respect to some threat model T (x) ⊂ X is a point x′ ∈ T (x)
such that the decision of the classifier f changes for x′ while an oracle would unambiguously
associate x′ with the class of x. In particular this implies that x′ shows no meaningful class-
associated features of any other class. Formally, given that y is the correct label of a correctly
classified point x, then x′ is an adversarial sample with respect to the threat model if

argmax
k 6=y

fk(x′)> fy(x), x′ ∈ [0,1]d ∩T (x). (1.6)

Typically, these perturbation sets are defined as lp-balls

T (x) = Bp(x,ε) = {x′ ∈ X |‖x′− x‖p ≤ ε} (1.7)

of radius ε with p ∈ [1,∞) (Madry et al., 2018). The adversarial robustness of a model f is
determined by its loss under the worst-case perturbation within a given threat model:

E
x,y∼p(x,y)

max
x′∈T (x)

L( f (x′),ey), (1.8)

where L is the chosen loss function and ey is the one-hot vector with the y’s element being 1.
For example

LCE( f (x),y) =−
K

∑
k=1

yk log p̂ f (k|x) (1.9)

would be the cross-entropy loss. In the commonly chosen 0-1 loss, Eq. (1.8) defines the
adversarial error or one minus the adversarially robust accuracy.

Note that for expressive function classes like deep neural networks the inner maximization
in Eq. (1.8) is a highly non-convex function and thus it cannot feasibly be evaluated exactly.
Therefore, a number of techniques have been developed in order to compute lower and upper
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bounds on this term, which lead to the notions of empirical robustness and certified robust-
ness, respectively. In empirical robustness, one tries to design algorithms which quickly find
points with high loss within the neighborhood given by the threat model. The cheapest way
is to use a single normalized gradient step, which is known as Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015). Unfortunately, this often leads to non-robust models in a
phenomenon known as “catastrophic overfitting” (Wong et al., 2020) which is why the most
successful attack algorithms rely on projected gradient descent (PGD) (Goodfellow et al.,
2015; Croce and Hein, 2020b), where many gradient steps are run, and after every step the
current point is projected to lie within the threat model. Note that the gradient computation
requires that one has access to the model architecture and weights. This setting is known as a
white-box attack as opposed to a black-box attack, where only the outputs of the model can be
queried. While, from the perspective of Eq. (1.8), there is no mathematically rigorous differ-
ence between these two settings, the latter is used in practice in order to capture the notion that
someone trying to maliciously craft adversarial samples, does not necessarily have full knowl-
edge of the model’s internal operation. However, typically a model that is robust to black-box
attacks but not to white-box attacks would be considered “security through obscurity” and is
not adversarially robust.

Even in the white-box setting, sometimes gradient-based attacks might unexpectedly fail
to find samples with high loss, when a model obfuscates its gradients somehow (Athalye
et al., 2018). In these cases, empirically evaluating Eq. (1.8) may give a false sense of the
true robustness of the system and, in fact, many techniques have been reported that were
originally claimed to be adversarially robust but were later shown to not confer any meaningful
adversarial robustness at all (Carlini and Wagner, 2017b; Mosbach et al., 2018; Tramer et al.,
2020). Because of this, a reliable evaluation of a model’s adversarial robustness requires the
use of a diverse ensemble of strong attack algorithms, such as AutoAttack (Croce and Hein,
2020b).

Currently, the most successful techniques for obtaining models that are adversarially robust,
rely on variants of so-called adversarial training (Madry et al., 2018; Zhang et al., 2019; Croce
et al., 2021; Rebuffi et al., 2021). Here one solves the following min-max problem:

min
f

E
x,y∼p(x,y)

max
x′∈T (x)

L( f (x′),ey), (1.10)

where the outer optimization gets approximately solved via SGD (or its variants) and the inner
optimization is approximately solved using PGD at every step of SGD. Obviously, this greatly
increases the cost of training as compared to simple empirical risk minimization (ERM). Fur-
thermore, adversarial training has been observed to lead to much lower accuracy on the unper-
turbed test set (called “clean accuracy”) than ERM (Tsipras et al., 2019; Schott et al., 2019;
Stutz et al., 2019). Using additional data - either synthetic or real - can somewhat reduce
this gap (Uesato et al., 2019; Najafi et al., 2019; Carmon et al., 2019; Alayrac et al., 2019;
Hendrycks et al., 2019b).

Nonetheless, adversarial robustness has not been achieved on complex datasets without a
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reduction in clean performance, and several works indicate that this issue may be inevitable
in certain settings (Tsipras et al., 2019; Ilyas et al., 2019; Zhang et al., 2019), some have
suggested to pursue the slighlty relaxed task of either correctly classifying or rejecting adver-
sarially perturbed samples (Xu et al., 2017; Pang et al., 2021; Sheikholeslami et al., 2020).
However, proposed defenses in this direction have also either been broken (Carlini and Wag-
ner, 2017a; Tramer et al., 2020) or still come at a cost in accuracy (Sheikholeslami et al., 2020;
Stutz et al., 2020). In fact, recent work by Tramer (2022) has shown that robust classification
can be reduced to robust classification with rejection at a larger radius, thus casting serious
doubt on the notion that the latter is truly a simpler task.

1.3.2 Certified Robustness

Despite the success of adversarial training in producing models that are adversarially robust,
we stress that any attack-based evaluation can only produce a lower bound on the adversarial
error and the true value might always be as large as 1, no matter what an empirical evaluation
suggests. Thus, full trustworthiness requires certification methods which can produce upper
bounds instead. Generally, certification requires that one is able to make statements about
the entire set of outputs into which the set of points in a given adversarial ball get mapped.
Given that this set is highly non-convex and complex to describe, one usually has to form
supersets on this set which are easier to characterize. There has been a lot of work on deriving
such upper bounds that provide good trade-offs between the tightness of the bounds and their
ease of computation, generally relying on convex upper bounds or branch and bound tech-
niques (Wong and Kolter, 2018; Wong et al., 2018; Raghunathan et al., 2018b; Salman et al.,
2019; Bunel et al., 2020; De Palma et al., 2021).

However, even very sophisticated methods struggle to certify adversarially robust models
that use large architectures with practically feasible computational budgets. Instead of cer-
tifying pre-trained models, one can thus attempt to specifically train models so that they are
more easily certifiable. This line of work has been quite fruitful and in particular, it has shown
the counter-intuitive result that simpler certification techniques tend to produce tighter bounds
when used during training (Lee et al., 2021b; Jovanović et al., 2022). Concretely, for the
popular l∞-threat model, very good results have been obtained using so-called Interval Bound
Propagation (IBP) (Gowal et al., 2018), which works as follows. We start from an axis-aligned
hypercube and we aim to upper bound the set that a ReLU neural net maps this into during
a forward pass. The first linear layer deforms the cube into a hyper-parallelepiped. Then the
ReLU activations cut of parts of this parallelepiped. A very simple upper bound simply puts
another axis-aligned box around the cut parallelepiped, which can then be treated the same
way when moving through the subsequent layers. Therefore, IBP only requires a description
of the current box and does not need to either look ahead nor look back in the forward pass.
Also see Figure 1.2 for an illustration.

In order to mathematically formalize this geometric intuition, consider the feedforward net-
work, f : Rd → RK , with K classes defined with input x(0) = x and layers l = 1, . . .L− 1
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Linear ReLU

x(0) x(1)

(x(1), x(1))
1         2

(x(1), x(1))
1         2

(x(1), x(1))
1         2

Figure 1.2: Example of IBP step: A two-dimensional l∞-box around an input x(0) first gets
mapped into a parallelepiped by a linear layer. A ReLU layer then cuts off part of this set
leaving a more complex shape around x(1). Interval Bound Propagation (IBP) computes an
upper bound IBP computes overapproximates this set by the box shown in red.

as

x(l) = σ
(l)
(

W (l)x(l−1)+b(l)
)
, f (x) =W (L)x(L−1)+b(L), (1.11)

where W (l) and b(l) are weights and biases and σ (l) is either the ReLU or leaky ReLU activa-
tion function of layer l. Note that it is possible to generalize IBP to more general activation
functions as well. Now IBP can be used recursively at each layer in order to obtain upper and
lower bounds x(L−1) and x(L−1) for the network’s outputs:

x(l) = σ

(
W (l)

+ x(l−1)+W (l)
− x(l−1)+b(l)

)
, (1.12)

x(l) = σ

(
W (l)

+ x(l−1)+W (l)
− x(l−1)+b(l)

)
, (1.13)

where the indices +/− indicate that we select the positive/negative weights component-wise
while setting the negative/positive weights to 0. Thus, the entire bounding procedure requires
only two forward passes and is automatically differentiable.

There also exist many other certification techniques beyond the ones that we discussed, e.g.
methods that aim to control the Lipschitz-constant of the neural network’s learned function,
either via regularization (Hein and Andriushchenko, 2017) or by architectural construction
(Anil et al., 2019). Most notably though, randomized smoothing (Lecuyer et al., 2019; Li
et al., 2019; Cohen et al., 2019) runs many forward passes on samples that are perturbed by
Gaussian noise and averages the prediction. The resulting effective classifier can be shown
to provably be probabilistically adversarially robust. However, besides only certifying this
relaxed notion of adversarial robustness and taking a very long time at verification time, this
technique also significantly slows down all inference times. What all the methods for certified
adversarial robustness have in common though, is that they generally come at a significant
cost in terms of clean accuracy, even more so than empirically adversarially robust methods
like adversarial training.
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1.4 Outline
This thesis is broadly split into three parts. The first deals with standard OOD detection in
vision-based classifiers. As described above, the task consists of recognizing samples that
do not belong to the in-distribution classes. In principle, an unlimited number of scoring
functions could be used for this task and, indeed, a large number of such functions has been
proposed. In Chapter 2 we benchmark various methods and notice that the method that as-
sumes access to a training out-distribution clearly outperforms other baselines. In Chapter 3,
we go on to systematize OOD detection methods by defining a notion of equivalence between
different scoring functions which we then apply to show that some methods are unexpectedly
equivalent in the Bayes optimal limit. We further experimentally compare these approaches
to one another and find that no method consistently outperforms the simple use of the classi-
fier’s confidence, if this confidence score gets incentivized to be low on OOD during training
time. We therefore continue to focus on this scoring function throughout the remainder of this
thesis.

In the second part, we describe the problem of adversarial robustness for confidence-based
OOD detection. Concretely, slightly perturbed OOD samples can lead to high confidences in
models that otherwise show good OOD detection performance. In Chapter 4, we present work
in which we show that adversarial training on in-distribution and out-distribution can lead to
interesting synergies in creating more reliable classifiers. We further discuss the connection
between adversarially robust confidence estimates on OOD data and the interpretability of
models via counterfactual explanations.

Finally, in the third part, we tackle two issues that arise when training classifiers with low
confidence on OOD data: i) The asymptotic overconfidence outlined in Section 1.2.2. ii)
Similarly to adversarial robustness on the in-distribution, which we describe in Section 1.3,
evaluating the adversarial robustness of the confidence scores leads to very difficult optimiza-
tion problems that empirically often cannot be solved even approximately. We discuss how
these issues can both be addressed via the derivation of mathematical guarantees.

Concretely, in Chapter 5 we focus on the first issue by combining a classifier with Gaussian
mixture models, which are simple enough to allow us to control their asymptotic behavior,
i.e. rather than going to 1, the asymptotic confidence can be shown to converge to uniform
prediction across all classes. We additionally show that this approach also implies certain
robustness guarantees on uniform noise data, when a specific threat model is selected. In
Chapter 6, we show how IBP can be used to address the second issue, if one accepts certain
limitations on which architectures one can use for the classification task. We find that it is
possible to derive meaningful guarantees on unseen distributions, even if these distributions
are very close to the in-distribution. Finally, in Chapter 7, we demonstrate that the advantages
of both approaches can actually be combined into a method that provides bounds on unseen
out-distributions, as well as provably asymptotically uniform predictions, without incurring
any limitations on the architecture used or the final classification accuracy.
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Out-of-Distribution Detection
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Chapter 2

Benchmarking OOD Detection Methods

This chapter is based on parts of (Meinke and Hein, 2020) which was published at ICLR 2020.
We postpone the presentation of other results from that work to Chapter 5 as they pertain to
the detection of adversarially perturbed out-of-distribution samples. I was the first author of
the paper and performed all experiments. Besides general guidance, Matthias Hein provided
the initial idea and wrote significant parts of the paper.

2.1 Introduction

Perhaps in part because of the difficulty of defining and assessing a method’s OOD detection
performance, a large number of methods has been proposed, often with contradicting claims
about state-of-the-art performance. Because of this, we start this disseration by benchmark-
ing several well-known techniques for OOD detection in vision classifiers. We will see that
despite some of the original works reporting near perfect performance, when running a fair
comparison, the methods often lead to very mixed results. We will show that the strongest and
most consistent performance gain over a simple baseline is attained by utilizing a large and
diverse training out-distribution.

2.2 Baselines

In this Section, we briefly describe a subset of such methods which we then empirically eval-
uate in the rest of the chapter.1

Plain: The confidence of a normally trained classifier is used as a the scoring function for
OOD detection, as proposed in (Hendrycks and Gimpel, 2017a). As mentioned in Section 1.2,
the confidence is simply defined as the maximum softmax output across classes, i.e. given a
logit vector v:

Conf(v) = max
y

evy

∑
K
k evk

. (2.1)

1Note that this is based on work done in 2019 and therefore omits many modern baselines.
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DE: Deep ensembles (Lakshminarayanan et al., 2017) average the softmax outputs of five
models that are adversarially trained via Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2015) with step size ε = 0.01.

MCD: Monte-Carlo Dropout (Gal and Ghahramani, 2016) was originally proposed as a
method for uncertainty estimation. The idea is to use dropout layers both at train and at test
time in order to approximate the use of an ensemble. While they did propose to use this method
on classification tasks, they did not precisely specify how the actual uncertainty score ought
to be computed from the model’s logits. Following (Shafaei et al., 2019), we take the softmax
from 7 forward passes and use the mean of the output for classification and the variance as the
scoring function.

EDL: Evidential deep learning (Sensoy et al., 2018) replaces the softmax layer of a neural
network and introduces a different loss function that aims to encourage better uncertainty
estimates. Concretely, they apply ReLU activations to the logits and treat the resulting values
as evidence for each class. If the evidence for all classes is zero, the uncertainty is maximal,
i.e. 1. The “belief” in a class y (analogous to confidence in softmax), given a logit vector v is

ReLU(vy)

K+∑
K
k ReLU(vk)

.

GAN: The framework of confidence-calibrated classifiers (Lee et al., 2017) relies on train-
ing a generative adversarial network alongside a classifier such that the GAN’s generator is
encouraged to generate points close to but not in the in-distribution. On these points one then
enforces uniform confidence. We used their provided code to train a VGG this way, as we were
unable to adapt the method to a ResNet with an acceptable test error (e.g. test error< 30% on
SVHN).

ODIN: The “Out-of-DIstribution detector for Neural networks” (ODIN) (Liang et al.,
2018) consists of two parts: a temperature T by which one applies temperature rescaling
and a preprocessing step that applies a single FGSM-step (Goodfellow et al., 2015) with step
size ε in the direction that increases the model confidence before evaluating the input. In the
original paper, the two parameters were calibrated on each test out-distribution. Note that the
best OOD detection performance is generally achieved when using very high temperatures
(around T = 1,000) and thus ODIN classifiers are severely underconfident.

Maha: The approach in Lee et al. (2018) is based on computing a class-conditional Ma-
halanobis distance in feature space and applying an ODIN-like preprocessing step for each
layer. The original work then also aggregates Mahalanobis distances from different layers
using layer-wise weights. This introduces many hyperparameters which they fit on test out-
distributions. Because we do not wish to fit a large number of hyperparameters for each test
out-distribution, following Ren et al. (2019) we use a single-layer version of the Maha method
on our networks’ penultimate layers.

OE: Outlier exposure (Hendrycks et al., 2019a) enforces uniform confidence on a large
training OOD dataset. Note that, in principle, many loss functions could be designed that are
minimized by uniform confidence across all classes. As in their original paper, and as in (Lee
et al., 2017) we use the cross-entropy between the model output and the uniform distribution,
i.e. given a set of in-distribution samples (xr,yr)

N
r=1 and training OOD samples (zs)

M
s=1, the
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loss is:

− 1
N

N

∑
r=1

log
(

p̂(yr|xr)
)
− 1

M

M

∑
s=1

1
K

K

∑
`=1

log
(

p̂(`|zs)
)
. (2.2)

We used their provided code to train a model with our chosen architecture.

It is also important to note that OE is closely related to CEDA (Hein et al., 2019), a method
that also enforces low confidence on a training out-distribution. The difference is that CEDA
used synthetic data instead of natural images. Since their CEDA method did not lead to large
gains in OOD detection performance in their paper, we will only consider OE in this chapter.

ACET: Adversarial confidence enhanced training (ACET) (Hein et al., 2019) enforces low
confidence on a ball around points from an out-distribution by running adversarial attacks
during training. That means the loss it optimizes is

− 1
N

N

∑
r=1

log
(

p̂(yr|xr)
)
+

1
M

M

∑
s=1

max
`∈{1,...K}

p̂(`|zs). (2.3)

We will discuss this method in a lot more detail in Chapter 4. In order to make the comparison
with OE more meaningful we use 80M tiny images to draw the seeds rather than smoothed
uniform noise as in Hein et al. (2019).

Some of the above OOD papers optimize their hyperparameters on a validation set for
each out-distribution they test on. However, this leads to different classifiers for each out-
distribution dataset which seems unrealistic as we want to have good generic OOD perfor-
mance and not for a particular dataset. Thus, we keep the comparison realistic and fair by
calibrating the hyperparameters of all methods on a subset of 80M tiny images and then eval-
uating on the other unseen distributions.

2.3 Experiments

We evaluate the OOD detection performance of all methods with the in-distributions MNIST
(LeCun et al., 1998), FashionMNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), CI-
FAR10 and CIFAR100 (Krizhevsky and Hinton, 2009). For calibrating hyperparameters resp.
training, for all OOD methods we use the 80 Million Tiny Images (Torralba et al., 2008)
as out-distribution (Hendrycks et al., 2019a) which yields a fair and realistic comparison.
Throughout this dissertation, the deep learning framework we use is PyTorch (Paszke et al.,
2019). We also make heavy use of NumPy (Harris et al., 2020) and SciPy (Virtanen et al.,
2020). Our code is available online.2

2https://github.com/AlexMeinke/certified-certain-uncertainty
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Table 2.1: AUC (in- versus out-distribution detection based on the respective scoring function)
in percent for different OOD detection methods and datasets (higher is better).

Plain MCD EDL DE GAN ODIN Maha ACET OE

M
N

IS
T

FMNIST 97.4 93.1 99.3 99.2 99.4 98.7 96.8 100.0 99.9
EMNIST 89.2 82.0 89.0 92.1 92.8 88.9 91.6 95.0 95.8
GrCIFAR10 99.7 94.7 99.7 100.0 99.1 99.9 98.7 100.0 100.0
Noise 100.0 95.2 99.9 100.0 99.3 100.0 97.2 100.0 100.0
Uniform 95.2 87.9 99.9 97.9 99.9 98.2 100.0 100.0 100.0

FM
N

IS
T MNIST 96.7 82.7 94.5 96.7 99.9 99.0 96.7 96.4 96.3

EMNIST 97.5 87.3 95.6 97.1 99.9 99.3 97.5 97.6 99.3
GrCIFAR10 91.0 92.3 84.0 86.1 85.3 93.0 98.2 96.2 100.0
Noise 97.3 94.0 95.6 97.4 98.9 98.9 98.9 97.8 100.0
Uniform 96.9 93.3 95.6 98.3 93.2 98.8 99.1 100.0 97.6

SV
H

N

CIFAR10 95.4 91.9 95.9 97.9 96.8 95.9 97.1 95.2 100.0
CIFAR100 94.5 91.4 95.6 97.6 96.1 94.8 96.7 94.8 100.0
LSUN CR 95.6 92.0 95.3 97.9 99.0 96.5 97.2 97.1 100.0
Imagenet- 94.7 91.8 95.7 97.7 97.8 95.1 96.8 97.3 100.0
Noise 96.4 93.1 97.1 98.2 96.2 82.7 98.0 95.8 97.8
Uniform 96.8 93.1 96.5 95.6 100.0 97.9 97.8 100.0 100.0

C
IF

A
R

10

SVHN 95.8 81.9 92.3 90.3 83.9 96.7 91.5 93.7 98.8
CIFAR100 87.3 78.6 87.3 88.2 82.9 87.5 82.8 86.9 95.3
LSUN CR 91.9 81.3 90.8 92.0 89.9 93.3 89.2 91.2 98.6
Imagenet- 87.5 78.4 88.2 87.7 84.0 88.1 84.1 86.5 94.7
Noise 96.5 79.9 88.9 90.3 81.8 97.6 94.4 94.8 97.3
Uniform 96.8 81.0 89.9 96.6 73.0 98.8 100.0 100.0 98.8

C
IF

A
R

10
0 SVHN 78.8 59.2 80.4 83.2 75.9 81.3 77.5 73.9 93.5

CIFAR10 78.6 58.9 73.3 76.3 69.3 79.5 59.9 77.2 81.6
LSUN CR 81.0 59.4 74.2 81.6 79.8 81.4 79.7 78.0 95.4
Imagenet- 80.8 59.2 76.0 78.2 73.9 81.3 70.8 79.5 83.8
Noise 73.4 58.7 65.9 67.5 73.6 76.8 90.6 62.9 86.9
Uniform 93.3 62.0 29.8 36.6 100.0 93.5 94.3 100.0 99.1

2.3.1 Training

For all OOD methods we use LeNet on MNIST and a Resnet18 otherwise. Only for GAN
and MCD we do not use resnets. In the case of GAN, the training does not stably train on
Resnets due to the batchnorm layers and for MCD, it is unclear where to place dropout layers
in a resnet. In both cases we instead use a VGG. Unless specified otherwise we use ADAM
on MNIST with a learning rate of 1e−3 and SGD with learning rate 0.1 for the other datasets.
We decrease all learning rates by a factor of 10 after 50, 75 and 90 epochs. Our batch size is
128, the total number of epochs 100 and weight decay is set to 5e−4.

When training ACET and OE with 80 million tiny images we pick equal batches of in- and
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Table 2.2: We report the clean test error (TE) on the in-distribution in % (lower is better).
Recall that GAN and MCD use VGG instead if ResNet18.

Plain MCD EDL DE GAN ODIN Maha ACET OE

MNIST 0.5 0.4 0.4 0.4 0.8 0.5 0.9 0.6 0.7
FMNIST 4.8 5.8 5.2 4.9 5.7 4.8 4.8 4.8 5.7
SVHN 2.9 3.9 3.1 2.4 4.2 2.9 2.9 3.2 4.1
CIFAR10 5.6 11.7 7.0 6.7 11.7 5.6 5.6 6.1 4.7
CIFAR100 23.3 45.3 31.1 27.5 43.8 23.3 23.2 25.2 24.7

out-distribution data (corresponding to p(i) = p(o)) and concatenate them into batches of size
256. Note that during the 100 epochs only a fraction of the 80 million tiny images are seen and
so there is no risk of over-fitting. For training ACET we use a PGD attack with 40 steps that
maximize the maximal confidence over the classes. We also employ backtracking and halve
the step size whenever the loss does not increase.

Our data augmentation scheme uses random crops with a padding of 2 pixels on MNIST
and FMNIST. On SVHN, CIFAR10 and CIFAR100 the padding width is 4 pixels. For SVHN
we fill the padding with the value at the boundary and for CIFAR we apply reflection at the
boundary pixels. On top of this we include random horizontal flips on CIFAR. For MNIST
and FMNIST we generate 60,000 such samples and for SVHN and CIFAR 50,000 samples
by drawing from the clean dataset without replacement. During the actual training we use the
same data augmentation scheme in a standard fashion.

2.3.2 OOD detection performance

For each dataset and method we report the AUC for the binary classification problem of dis-
criminating in- and out-distribution based on their respective scoring functions. The results
are shown in Table 2.1, where the list of datasets we use for OOD detection is also shown.
LSUN CR refers to only the classroom class of LSUN. Imagenet- is a subset of 10,000 re-
sized Imagenet validation images, that have no overlap with CIFAR10/CIFAR100 classes.
The noise dataset is obtained as in (Hein et al., 2019) by first shuffling the pixels of the test
images in the in-distribution and then smoothing them by a Gaussian filter of random width
that is uniformly sampled from [1,2.5], followed by a rescaling so that the images have full
range. GrCIFAR10 refers to the images in CIFAR10 being grayscaled and resized to 28x28
and Uniform describes uniform noise over the [0,1]d box.

2.3.3 Results

In addition to the OOD detection performance in Table 2.1, we also report each method’s test
error on the in-distribution task in Table 2.2. Note that MCD’s and GAN’s low accuracies can
be explained by their use of the VGG architecture. Perhaps surprisingly, EDL and DE incur

17



Chapter 2 Benchmarking OOD Detection Methods

a significant cost in terms of accuracy. ODIN and Maha have identical or almost identical
accuracy compared to Plain. Note that while temperature rescaling is guaranteed to not change
the classification, the FGSM pre-processing step could, in principle change it. OE and ACET
perform similar or marginally worse compared to Plain.

In terms of OOD detection performance, MCD is worse than the Plain model which con-
firms the results found in (Leibig et al., 2017) that MCD is not useful for OOD detection. DE
outperforms EDL but is not much better than the baseline for CIFAR10 and CIFAR100. The
performance of Maha is worse than what has been reported in Lee et al. (2018) which can have
two reasons. First, we just use their one-layer version where one uses the scores only from
the pre-logit layer and second, we do not calibrate hyperparameters for each test set separately
but just once on the Tiny Image dataset. Especially on CIFAR10 we find that the results de-
pend strongly on the step size. The results of ACET, GAN and ODIN are mixed but generally
outperform the Plain model. OE consistently performs better than the other methods. The gap
to other methods is particularly striking where the OOD detection task is arguably the most
challenging, i.e. CIFAR10 vs. CIFAR100 and vice-versa. In these cases we can informally
consider the OOD data to be near out-distribution, as the image statistics are identical and
only semantic information can be used for the detection. Note that ACET and OE are the only
methods that incorporate additional data at train time instead of only during the selection of
hyperparameters.

2.4 Conclusion
In this chapter we have benchmarked several different OOD detection methods. We clearly
see that OE consistently shows the strongest performance without excessively hurting the
in-distribution performance. The results also show that some methods that fitted their hyper-
parameters on the test out-distributions, do not generalize well to unseen out-distributions.
This work motivates the further exploration of methods that incorporate unlabeled OOD data
during training.

Recent developments: A large number of OOD detection methods have been proposed
since we carried out this work, e.g. (Ren et al., 2019; Yu and Aizawa, 2019; Sun et al., 2021;
Ming et al., 2022; Lin et al., 2021; Macêdo et al., 2021; Gomes et al., 2022). Some are di-
rectly based on outlier exposure, but introduce slight modifications which they claim lead to
better performance (Papadopoulos et al., 2021; Liu et al., 2020; Chen et al., 2021; Ming et al.,
2022). However, in general, it is difficult to assess if any of the published methods actually
outperform the simpler baselines, because they often only report a cherry-picked subset of test
out-distributions on which they outperform other methods. Recently a unified benchmark has
been introduced that aims to make OOD detection methods more reliable to evaluate (Yang
et al., 2022), which may alleviate this problem in the future.

A particularly notable line of work (Fort et al., 2021; Koner et al., 2021) indicates that
modern transformers (Dosovitskiy et al., 2021) do not need to be specifically trained in order
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for their confidence scores to be strong OOD detectors. In fact, they clearly outperform the
OE models in this chapter. While some work suggests, that these promising results on vision
transformers only hold when there is substantial overlap between the transformers pre-training
set and the test out-distributions (Hendrycks et al., 2022), it nonetheless corroborates the utility
of additional unlabeled data found in this chapter.

Regarding ACET we found in later work, that the high accuracy of our ACET models in this
chapter (and indeed in the original work (Hein et al., 2019)) was in fact due to them not being
fully robust to adversarial attacks on the out-distribution. As we will discuss in Chapter 4,
successfully training fully robust ACET models is quite difficult.

It is also important to point out that the dataset 80 million tiny images (Torralba et al.,
2008), that we have used as a training out-distribution in this chapter has been retracted by
the authors. The reason was that Birhane and Prabhu (2021) showed that the dataset contains
offensive class labels and images.
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Chapter 3

Breaking down the Scoring Functions

This chapter is based on (Bitterwolf et al., 2022) which we presented at ICML 2022. Julian
Bitterwolf and I jointly developed the idea for the paper, formulated the mathematical equiv-
alence for OOD detection scores and its characterization and jointly derived the proofs for
equivalences in Section 3.3.1. Julian Bitterwolf performed a majority of the experiments, de-
rived Theorem 2 on his own and was the primary author of the paper. Another equivalence
result in (Bitterwolf et al., 2022) due to Julian Bitterwolf is omitted in this chapter. I ran the
experiments on Restricted ImageNet. Max Augustin assisted in some of the writing. Matthias
Hein provided general guidance and in-depth discussions to the project as well as some of the
writing.

3.1 Introduction

In the previous chapter we empirically showed that, for the task of OOD detection, it is useful
to assume access to a surrogate out-distribution during training, even if this surrogate OOD
is not the same as the OOD data seen at test time. However, clearly, the enforcement of low
confidence in a classifier is not the only way one could incorporate such a training OOD.
Indeed, a large number of different approaches to OOD detection based on combinations of
density estimation, classifier confidence, logit space energy, feature space geometry, behaviour
on auxiliary tasks, and other principles has been proposed to tackle this problem. This begs
the question if these approaches are related in meaningful ways.

Most work on OOD detection is focused on establishing superior empirical detection per-
formance and provides little theoretical background on either differences or similarities to
existing methods. Instead, in this chapter, our goal is to identify, at least for a particular sub-
class of techniques, whether differences in OOD detection performance are indeed due to a
different underlying theoretical principle or whether they are due to the efficiency of different
estimation techniques for the same underlying scoring function. In some cases, we will see
that one can even disentangle the estimation procedure from the scoring function, so that one
can simulate several different scoring functions from a single model’s estimated quantities.

In particular, we show that from the perspective of Bayesian decision theory, several estab-
lished methods are indeed equivalent to a simple binary discriminator between in-distribution
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and out-distribution. Differences arise mainly from i) the choice of the training out-distribution,
and ii) differences in the estimation procedure. Concretely, the main contributions are:

• We formulate a notion of equivalence among scoring functions and give a simple char-
acterization.

• We show that several OOD detection approaches which optimize an objective that in-
cludes predictions on surrogate OOD data are equivalent to the binary discriminator
between in- and out-distribution when analyzing the rankings induced by the Bayes
optimal classifier/density.

• We theoretically show that density estimation is equivalent to discrimination between
the in-distribution and uniform noise which indicates why standard density estimates
are not suitable for OOD detection, as has frequently been observed.

• We derive the implicit scoring functions for the confidence loss (Lee et al., 2017) used
by Outlier Exposure (Hendrycks et al., 2019a), and for an extra background class for the
out-distribution (Thulasidasan et al., 2021). The confidence scoring function turns out
not to be equivalent to the “optimal” scoring function of the binary discriminator when
training and test out-distributions are the same.

• We show that the combination of a binary discriminator between in- and out-distribution
with a standard classifier on the in-distribution, when trained in a shared fashion, yields
OOD detection performance competitive with state-of-the-art methods based on surro-
gate OOD data.

The main aim of this chapter is a better understanding of the key components of different
OOD detection methods and the identification of the key properties which lead to SOTA OOD
detection performance. All of our findings are supported by extensive experiments on CI-
FAR10, CIFAR100 and Restricted ImageNet with evaluation on various challenging out-of-
distribution test datasets.

3.2 Models for OOD Data and Equivalence of OOD
Detection Scores

We first characterize the set of transformations of a scoring function which leaves OOD detec-
tion criteria like AUC or FPR invariant. This is important for the analysis later on, since the
scoring functions of different methods are in many cases not identical as functions but yield
the same OOD detection performance by those criteria. Recall from Eq. (1.2) that the AUC for
a scoring function h distinguishing between an in-distribution p(x|i) and an out-distribution
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p(x|o) is given by

AUCh
(

p(x|i), p(x|o)
)
= E

x∼p(x|i)
y∼p(z|o)

[
1h(x)>h(z)+

1
2
1h(x)=h(z)

]
. (3.1)

For ease of notation we will also refer to the in- and out-distributions as pin(x) ≡ p(x|i) and
pout(x)≡ p(x|o). We define an equivalence of scoring functions based on their AUCs and will
show that this equivalence implies equality of other employed performance metrics as well.

Definition 1. Two scoring functions h and g are equivalent and we write h∼= g if

AUCh
(

p(x|i), p(x|o)
)
= AUCg

(
p(x|i), p(x|o)

)
(3.2)

for all potential distributions p(x|i) and p(x|o).

As the AUC is not dependent on the actual values of h but just on the ranking induced by h
one obtains the following characterization of the equivalence of two scoring functions.

Theorem 1. Two scoring functions h,g are equivalent h∼= g if and only if there exists a strictly
monotonously increasing φ : range(g)→ range(h) such that h = φ(g).

Proof.

• Assume that such a function φ exists. Then for any pair x,y we have the logical equiv-
alences g(x) > g(y)⇔ h(x) = φ(g(x)) > φ(g(y)) = h(y) and g(x) = g(y)⇔ h(x) =
φ(g(x)) = φ(g(y)) = h(y). This directly implies that the AUCs are the same, regardless
of the distributions.

• Assume h∼= g. For each a∈ range(g), choose some â∈ g−1(a). For any pair x,y∈ X , by
regarding the Dirac distributions pin = δx and pout = δy that are each concentrated on one
of the points, we can infer that h(x)> h(y)⇔AUCh(pin, pout) = 1⇔AUCg(pin, pout) =
1⇔ g(x) > g(y) and similarly h(x) = h(y)⇔ g(x) = g(y). The latter ensures that the
function

φ : range(g)→ range(h) (3.3)
a 7→ h(â) (3.4)

is independent of the choice of â and that h = φ ◦ g, and the former confirms that φ is
strictly monotonously increasing.

Corollary 1. The equivalence between scoring functions in Def. 1 is an equivalence relation.
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As described in Chapter 2, besides the AUC, the FPR@qTPR is another important mea-
sure of OOD detection performance. The following lemma observes that using the AUC or
FPR@qTPR at any value q for defining equivalence, leads to the same partioning.

Lemma 1. Two equivalent scoring functions h∼= g have the same FPR@qTPR for any pair of
in- and out-distributions p(x|i), p(x|o) and for any chosen TPR q.

Proof. We know that a function φ as in Theorem 1 exists. Then for any pair x,y, we have
the logical equivalences g(x)> g(y)⇔ h(x) = φ(g(x))> φ(g(y)) = h(y) and g(x) = g(y)⇔
h(x) = φ(g(x)) = φ(g(y)) = h(y). This directly implies that the FPR@qTPR-values are the
same, for any pin, pout and q.

In the next section, we use the previous results to show that the Bayes optimal scoring
functions of several proposed methods for out-of-distribution detection are equivalent to those
of simple binary discriminators.

3.3 Bayes-optimal Behaviour of Common OOD Detection
Methods

In the following we will show that the Bayes optimal function of several existing approaches
to OOD detection for unlabeled data are equivalent to a binary discriminator between in- and a
(training) out-distribution. As the equivalences are based on the Bayes optimal solution, these
are asymptotic statements and thus it has to be noted that convergence to the Bayes optimal
solution can be infinitely slow and that the methods can have implicit inductive biases. This is
why we additionally support our findings with experiments in Section 3.4.

3.3.1 OOD detection with methods using unlabeled data

We first study the case when the labels y from the in-distribution are not used for the purpose
of training an OOD detector.

Optimal prediction of a binary discriminator between in- and out-distribution: We con-
sider a binary discriminator between in- and (training) out-distribution, where p̂ f (i|x) is the
predicted probability for the in-distribution. Under the assumption that p(i) is the probability
for in-distribution samples and using cross-entropy (which in this case is the logistic loss up
to a constant global factor of log(2)) the expected loss becomes:

min
f

p(i)Ex∼p(x|i)
[
− log p̂ f (i|x)

]
+ p(o)Ex∼p(x|o)

[
− log(1− p̂ f (i|x))

]
. (3.5)
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One can derive that the Bayes optimal classifier minimizing the expected loss has the predic-
tive distribution:

p̂ f ∗(i|x) =
p(x|i)p(i)

p(x|i)p(i)+ p(x|o)p(o)
= p(i|x). (3.6)

Thus, if the test out-distribution was identical to the training out-distribution, a binary classifier
based on samples from in- and (training) out-distribution would suffice to solve the OOD
detection problem optimally.

Equivalence of density estimation and binary discrimination for OOD detection: In this
section we further analyze the relationship of common OOD detection approaches with the bi-
nary discriminator between in- and out-distribution. We start with density estimators sourced
from generative models. A basic approach that is known to yield relatively weak OOD detec-
tion performance (Nalisnick et al., 2019; Ren et al., 2019; Xiao et al., 2020) is directly utilizing
a model’s estimate for the density p(x|i) at a sample input x. An improved density based ap-
proach which uses perturbed in-distribution samples as a surrogate training out-distribution is
the Likelihood Ratios method (Ren et al., 2019), which proposes to fit a generative model for
both the in- and out-distribution and to use the ratio between the likelihoods output by the two
models as a discriminative feature.

We show that with respect to the scoring function, the true in-distribution density p(x|i) is
equivalent to the Bayes optimal prediction of a binary discriminator between the in-distribution
and uniform noise. Furthermore, the density ratio p(x|i)

p(x|o) is equivalent to the prediction of a bi-
nary discriminator between the two distributions on which the respective models used for
density estimation have been trained. Because of this equivalence, we argue that the use of
binary discriminators is a simple alternative to these methods because of its easier training
procedure.

We first prove the more general case of arbitrary likelihood ratios. In the following, we use
the abbreviation λ = p(o)

p(i) to save space and make the statements more concise.

Lemma 2. Assume pin and pout can be represented by densities and the support of pout covers
the whole input domain X. Then p(x|i)

p(x|o)
∼= p(x|i)

p(x|i)+λ p(x|o) for any λ > 0.

Proof. The function φ : [0,∞]→ [0,1] defined by φ(x) = x
x+λ

(setting φ(∞) = 1) fulfills the
criterion from Theorem 1 of being strictly monotonously increasing. With

φ

(
p(x|i)
p(x|o)

)
=

p(x|i)
p(x|o)

p(x|i)
p(x|o) +λ

p(x|o)
p(x|o)

=
p(x|i)

p(x|i)+λ p(x|o)
(3.7)

for pout 6= 0 and φ

(
p(x|i)

0

)
= φ(∞) = 1 = p(x|i)

p(x|i)+λ ·0 , the equivalence follows.

This means that the likelihood ratio score of two optimal density estimators is equivalent
to the in-distribution probability p̂ f ∗(i|x) predicted by a binary discriminator and this is true
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for any possible ratio of p(i) to p(o). In the experiments below, we show that, indeed, using
such a discriminator has similar performance to the likelihood ratios of the different trained
generative models.

For the approaches that try to directly use the likelihood of a generative model as a discrim-
inative feature, this means that their objective is equivalent to training a binary discriminator
against uniform noise, whose density is pUniform(x) = p(x|o) = 1 at any x.

Lemma 3. Assume that pin can be represented by a density. Then p(x|i) ∼= p(x|i)
p(x|i)+λ

for any
λ > 0.

Proof. This is a special case of Lemma 2, by setting p(x|o) = 1 = pUniform(x).

This provides additional evidence why a purely density based approach for many applica-
tions proves to be insufficient as an OOD detection score on the complex image domain: it is
not reasonable to assume that a binary discriminator between certain classes of natural images
on the one hand and uniform noise on the other hand provides much useful information about
images from other classes or even about other nonsensical inputs.

As a side note, one idea that has often been informally suggested to us is that of train-
ing a discriminator against a probability distribution that has mass precisely wherever the
in-distribution does not have mass. One way of formalizing this under the assumption that pin
is bounded would be as follows:

pC = ν · (1−α pin), (3.8)

where α ∈ (0,1) is chosen small enough such that ∀x ∈ [0,1]D : pC ≥ 0, and ν = 1
1−α

is a
normalization constant.

Lemma 4. Assume that pin can be represented by a density. Then p(x|i)
p(x|i)+λ pC(x)

∼= p(x|i) for
any λ > 0.

Proof.
p(x|i)

p(x|i)+λ pC(x)
∼=

p(x|i)
pC(x)

=
p(x|i)

ν · (1−α p(x|i))
is strictly monotonically increasing with

respect to p(x|i), as its derivative is
1

ν · (1−α p(x|i))2 > 0; note that the domain of this func-

tion is a subset of [0, 1
α
).

3.3.2 OOD detection for methods using labeled data
We first discuss how one can formulate the OOD problem when one has access to labeled
data for the in-distribution and we identify the target distribution of OOD detection using
a background/reject class. Then we derive the Bayes optimal classifier of the confidence
loss (Lee et al., 2017) as used by the most popular variant of Outlier Exposure (Hendrycks
et al., 2019a) (also used in Chapter 2) and discuss the implicit scoring function. In most cases
the scoring functions turn out not to be equivalent to p(i|x) (which is optimal if training and
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test out-distribution agree) as they integrate additional information from the classification task.
Given a joint in-distribution p(y,x|i) (where y ∈ {1, . . . ,K} given that we have K labels) for
the labeled in-distribution, there are different ways how to come up with a joint distribution
for in- and out-distribution. Interestingly, the different encodings used e.g. in training with a
background class (Thulasidasan et al., 2021) vs. training a classifier with confidence loss (Lee
et al., 2017) together with variants of the employed scoring function lead to methods which
unexpectedly can have quite different behavior.

Background class: In this case we just put all out-of-distribution samples into a K + 1-
class which is typically called background/reject class (Thulasidasan et al., 2021). The joint
distribution then becomes

p(y,x) =

{
p(y,x|i)p(i) if y ∈ {1, . . . ,K},
p(x|o)p(o) if y = K +1.

(3.9)

We denote by p(x|i) = ∑
K
y=1 p(y,x|i) the marginal in-distribution and note that the marginal

distribution of the joint distribution of in- and out-distribution is again

p(x) = p(x|i)p(i)+ p(x|o)p(o).

Thus we get the conditional distribution

p(y|x) =

{
p(y|x, i)p(i|x) if y ∈ {1, . . . ,K},
p(o|x) = 1− p(i|x) if y = K +1.

The Bayes optimal solution of training with a background class using any calibrated loss
function L( f (x),y), e.g. the cross-entropy loss (Laptev et al., 2016), then yields a Bayes
optimal classifier f ∗ which has a predictive distribution p̂ f ∗(y|x) = p(y|x). There are two
potential scoring functions that come to mind:

s1(x) = 1− p̂ f ∗(y = K +1|x) and s2(x) = max
k=1,...,K

p̂ f ∗(k|x) (3.10)

The first one, used in Chen et al. (2021); Thulasidasan et al. (2021), is motivated by the
fact that p̂ f ∗(y = K + 1|x) is directly the predicted probability that the point is from the out-
distribution as indeed it holds: s1(x) = p(i|x) which is the optimal scoring function if train-
ing and test out-distribution are equal. On the other hand the maximal predicted probability
maxk=1,...,K p̂ f ∗(k|x), which is often employed as a scoring function (Hendrycks and Gimpel,
2017a), becomes for the Bayes optimal classifier

s2(x) = p(i|x) max
k=1,...,K

p(k|x, i),
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which is a product of p(i|x) and the maximal conditional probability of some class of the
in-distribution; note that s2 is well defined as p(i|x) is defined if p(x|o) has support every-
where in X and if p(i|x) > 0 then also p(x|i) > 0. Thus, the scoring function s2(x) integrates
class-specific information in addition to p(i|x) and is therefore less dependent on the chosen
training out-distribution. In fact, one can see that s2 only ranks points high if both the binary
discriminator and the classifier rank the corresponding point high. However, in the case where
training and test out-distribution are identical, this scoring function is not equivalent to p(i|x)
and thus introduces a bias in the estimation.

Outlier Exposure (Hendrycks et al., 2019a) with confidence loss (Lee et al., 2017): We
analyze the Bayes optimal solution for the confidence loss (Lee et al., 2017) that is used by
Outlier Exposure (OE) and show that the associated scoring function can be written, similarly
to the scoring function s2(x) for training with a background class, as a function of p(i|x) and
p(y|x, i). Recall that the finite sample loss in Eq. (2.2) is an estimator for the OE training
objective with the confidence loss in expectation:

min
f

E
(x,y)∼p(x,y|i)

[LCE( f (x),ey)]+λ E
x∼p(x|o)

[LCE( f (x),1/K)] , (3.11)

where f (x) ∈ RK is the model output as logits, and 1/K = ( 1
K , . . . ,

1
K )

T is the uniform distri-
bution over the K classes of the in-distribution classification task.

In the following theorem we derive the Bayes optimal predictive distribution for this training
objective. Note that we will use p̂ f (x)[k] to denote the k-th component of p̂ f (x) in order to
avoid confusion in the index notation.

Theorem 2. The predictive distribution p̂ f ∗(y|x) of the Bayes optimal classifier f ∗ minimizing
the expected confidence loss is given for y ∈ {1, . . . ,K} as

p̂ f ∗(y|x) = p(i|x)p(y|x, i)+ 1
K

(
1− p(i|x)

)
. (3.12)

Proof. This is the minimization problem

min
p̂ f (x)

− p(i|x) ·
K

∑
k=1

pin(k|x) · log p̂ f (x)[k]− (1− p(i|x)) ·
K

∑
k=1

1
K
· log p̂ f (x)[k] (3.13)

subject to p̂ f (x)[k]≥ 0 for each k ∈ {1, . . . ,K} (3.14)
K

∑
k=1

p̂ f (x)[k] = 1 . (3.15)

For p(i|x) = 0 or pin(k|x) = 0, the optimalities of the respective terms are easy to show (apply-
ing the common conventions for 0 log0), so we assume those to be non-zero. The Lagrange
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function of the optimization problem is

L(p̂ f (x),α,β ) =−p(i|x) ·
K

∑
k=1

pin(k|x) · log p̂ f (x)[k]− (1− p(i|x)) ·
K

∑
k=1

1
K
· log p̂ f (x)[k]

(3.16)

−
K

∑
k=1

αk p̂ f (x)[k]+β

(
−1+

K

∑
k=1

p̂ f (x)[k]

)
, (3.17)

with β ∈ R and α ∈ RK
+. Its first derivative with respect to p̂ f (x)[k] is

∂L
p̂ f (x)[k]

=−p(i|x) · pin(k|x)
1

p̂ f (x)[k]
− (1− p(i|x)) · 1

K
1

p̂ f (x)[k]
−αk +β

=− sK(x)[k]
p̂ f (x)[k]

−αk +β .

(3.18)

The second derivative is a positive diagonal matrix on the domain, therefore we find the unique
minimum by setting Eq. (3.18) to zero, which means

p̂ f (x)[k] =
sK(x)[k]
β −αk

. (3.19)

The dual problem is hence maximizing (with αk ≥ 0)

q(α,β ) =−p(i|x) ·
K

∑
k=1

pin(k|x) · log
sK(x)[k]
β −αk

− (1− p(i|x)) ·
K

∑
k=1

1
K
· log

sK(x)[k]
β −αk

(3.20)

−
K

∑
k=1

αk
sK(x)[k]
β −αk

+β

(
−1+

K

∑
k=1

sK(x)[k]
β −αk

)
(3.21)

=
K

∑
k=1

sK(x)[k]
(
− logsK(x)[k]+ log(β −αk)+

β

β −αk
− αk

β −αk

)
−β ; (3.22)

here, α only appears in log(β−αk), so α = 0 maximizes the expression. Noting ∑
K
k=1 sK(x)[k] =

1, what remains is q0(β ) = 1+ log(β )−∑
K
k=1 sK(x)[k] logsK(x)[k]−β , which is maximized

by β = 1. This means that the dual optimal pair is p̂ f (x)[k] = sK(x)[k],(β = 1,α = 0). Slater’s
condition (Boyd et al., 2004) holds since the feasible set of the original problem is the proba-
bility simplex. Thus, p̂ f (x) = sK(x) is indeed primal optimal.

Thus the effective scoring function of using the probability of the predicted class as sug-
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gested in Hendrycks and Gimpel (2017a); Lee et al. (2017); Hendrycks et al. (2019a) is

s3(x) = p(i|x) max
y=1,...,K

p(y|x, i)+ 1
K

(
1− p(i|x)

)
= p(i|x)

[
max

y=1,...,K
p(y|x, i)− 1

K

]
+

1
K
.

(3.23)

Note that the term inside the brackets is positive as maxk=1,...,K p(k|x, i)≥ 1
K . Interestingly, the

scoring functions s2 and s3 are not equivalent even though they look quite similar. In particular,
due to the subtraction of 1

K the scoring function s3 puts more emphasis on the classifier than
s2.

3.3.3 Separate vs shared estimation of p(i|x) and p(y|x, i)
So far we have derived that at least from the point of view of the ranking induced by the Bayes
optimal solution, OOD detection based on generative methods, likelihood ratios, and the back-
ground class formulation with the scoring function s1 is equivalent to a binary classification
problem between in- and out-distribution in order to estimate p(i|x). The differences arise
mainly in the choice of the training out-distribution p(x|o): i) uniform for generative resp.
density based methods, ii) a synthetic out-distribution for likelihood ratios (Ren et al., 2019)
and iii) a proxy of the distribution of all natural images (Hendrycks et al., 2019a; Thulasidasan
et al., 2021). On the other hand when labeled data is involved we can additionally train a clas-
sifier on the in-distribution in order to estimate p(y|x, i). We will then combine the estimates
of p(i|x) and p(y|x, i) according to the three scoring functions derived in the previous section
and check if the novel OOD detection methods constructed in this way perform similar to the
OOD methods from which we derived the corresponding scoring function i) OOD detection
with a background class (Thulasidasan et al., 2021) or ii) using Outlier Exposure (Hendrycks
et al., 2019a). This will allow us to differentiate between differences of the employed scoring
functions for OOD detection and the estimators for the involved quantities. In this way we
foster a more systematic approach to OOD detection.

In the unlabeled case we simply train the binary classifier p̂ f : [0,1]d → R using logis-
tic/cross entropy loss in a class balanced fashion

min
f

(
− 1

N

N

∑
r=1

log
(

p̂ f (i|xr)
)
− λ

M

M

∑
s=1

log
(
1− p̂ f (i|zs)

))
, (3.24)

where (xr)
N
r=1 and (zs)

M
s=1 are samples from the in-distribution and the out-distribution.

In the case where we have labeled in-distribution data, we can additionally solve the clas-
sification problem. The obvious approach is to train the binary classifier for estimating p(i|x)
and the classifier to estimate p(y|x, i) completely independently. We show in Section 3.4 that
this approach does not work as well as allowing the models to share their representations.
In fact both tasks benefit from each other. Moreover, in training a neural network using a
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background class or with Outlier Exposure (Hendrycks et al., 2019a) we are implicitly using
a shared representation for both tasks which improves the results.

Thus, we propose to train the binary discriminator of in-versus out-distribution together
with the classifier on the in-distribution jointly. Concretely, we use a neural network with
K +1 outputs where the first K outputs represent the classifier and the last output is the logit
of the binary discriminator. The resulting shared problem can then be written as

min
f

(
− 1

Nb

Nb

∑
r=1

log p̂ f (i|xr)−
λ

M

M

∑
s=1

log
(
1− p̂ f (i|zs)

)
− 1

Nc

Nc

∑
t=1

log p̂ f (yt |xt)

)
, (3.25)

where λ = p(o)
p(i) which is typically set to 1 during training in order to get a class-balanced

problem. Note that the in-distribution samples (xr)
Nb
r=1 used to estimate p(i|x) can, in principle,

be a super-set of the labeled examples (xt ,yt)
Nc
t=1 used to train the classifier so that one can

potentially integrate unlabeled data - this is an advantage compared to OOD detection with a
background class or Outlier Exposure where this is not directly possible. We stress that the
loss functions of the classifier and the discriminator act on independent outputs; the functions
modelling the two tasks only interact with each other due to the shared network weights up
to the final layer. Nevertheless, we see in the next Section 3.4 that training with a shared
representation boosts both the classifier and the binary discriminator.

3.4 Experiments

Training: We use CIFAR10, CIFAR100 (Krizhevsky and Hinton, 2009) datasets as in-
distribution and OpenImages dataset (Krasin et al., 2017; Kuznetsova et al., 2020) as training
out-distribution. The 80 Million Tiny Images (80M) dataset (Torralba et al., 2008) is the de
facto standard for training out-distribution aware models that has been adopted by most prior
works, but this dataset has been withdrawn by the authors as (Birhane and Prabhu, 2021)
pointed out the presence of offensive images. As in the previous chapter, we use the AUC
as our evaluation metric for OOD detection performance. For CIFAR, we use the follow-
ing datasets as our test out-distributions: SVHN, resized LSUN Classroom, Uniform Noise,
the respective other CIFAR dataset, 80M, and CelebA (Liu et al., 2015) and Smooth Noise.
Note that CelebA does not make sense as out-distribution for CIFAR100, because humans are
in fact some of the CIFAR100 classes. For Uniform and Smooth noise, we evaluate 30,080
inputs. We emphasize that, again, none of the listed methods has access to those test distribu-
tions during training or for fine-tuning as we try to assess the ability of an OOD aware model
to generalize to unseen distributions. The AUC for the OpenImages test set is not part of the
Mean AUC, since OpenImages was seen during training.

The binary discriminators (BINDISC) as well as the classifiers with background class (BGC)
and the shared binary discriminator+classifier (SHARED) of p(i|x) and p(y|x, i) are trained on
the 40-2 Wide Residual Network (Zagoruyko and Komodakis, 2016) architecture with the
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Table 3.1: Accuracy on the in-distribution (CIFAR10/CIFAR100/RImgNet) and AUC for test
OODs of the different methods with OpenImages/Not Restricted ImageNet as training OOD.
Best method on each distribution marked in green and best accuracy / mean AUC boldface.

in-distribution: CIFAR10

Model Acc. Mean SVHN LSUN Uni Smooth C100 80M CelA OpenIm

Plain Classi 95.16 91.85 93.52 92.94 97.04 92.84 89.61 91.30 85.70 84.81
Separate BinDisc (s1) 89.03 96.42 100.00 99.97 99.99 58.60 72.36 95.87 99.99

OE (s3) 95.06 97.28 98.49 99.99 99.99 99.99 90.03 92.53 99.91 99.43

BGC s1 95.02 99.48 100.00 99.99 99.95 79.64 86.37 99.74 99.97
BGC s2 95.21 97.22 98.90 100.00 99.99 99.67 90.47 92.41 99.11 99.73
BGC s3 95.21 97.21 98.87 100.00 99.98 99.62 90.47 92.41 99.08 99.71

Shared BinDisc (s1) 92.51 98.77 100.00 99.89 99.93 68.34 80.81 99.80 99.95
Shared Classi 95.28 95.49 96.10 98.60 99.06 96.09 90.09 92.35 96.18 93.57
Shared Combi s2 95.28 97.26 98.66 100.00 99.93 99.94 89.71 92.84 99.72 99.88
Shared Combi s3 95.28 97.26 98.62 100.00 99.93 99.94 89.75 92.85 99.71 99.88

in-distribution: CIFAR100

Model Acc. Mean SVHN LSUN Uni Smooth C10 80M OpenIm

Plain Classi 77.16 82.13 82.33 79.13 96.03 81.36 76.14 77.80 75.80
Separate BinDisc (s1) 84.30 94.68 100.00 99.81 99.64 50.06 61.62 99.98

OE (s3) 77.19 90.37 89.54 99.98 99.03 99.68 75.95 78.03 99.67

BGC s1 88.41 97.38 99.99 99.70 99.79 60.51 73.11 99.93
BGC s2 77.61 90.47 90.50 99.99 99.87 99.75 74.88 77.82 99.64
BGC s3 77.61 90.46 90.46 99.99 99.88 99.74 74.88 77.82 99.64

Shared BinDisc (s1) 84.62 97.44 99.99 99.70 99.68 47.82 63.13 99.93
Shared Classi 77.35 82.06 82.72 99.05 72.73 84.14 75.76 77.99 93.54
Shared Combi s2 77.35 90.74 91.74 99.99 99.59 99.54 75.50 78.10 99.57
Shared Combi s3 77.35 90.73 91.69 99.99 99.57 99.53 75.50 78.10 99.57

in-distribution: Restricted ImageNet

Model Acc. Mean Flowers FGVC Cars Smooth Uni NotRIN

Plain Classi 96.34 94.96 91.65 92.67 92.46 98.74 99.26 92.38

OE (s3) 97.10 98.76 96.65 99.75 99.85 97.95 99.58 98.46

BGC s1 98.61 96.64 99.86 99.97 97.77 98.80 98.67
BGC s2 97.50 98.66 96.39 99.83 99.96 98.18 98.94 98.69
BGC s3 97.50 98.66 96.43 99.83 99.96 98.14 98.93 98.68

Shared BinDisc (s1) 98.26 97.62 99.83 99.94 96.13 97.78 98.71
Shared Classi 97.59 96.93 93.40 96.58 96.53 99.48 98.66 96.10
Shared Combi s2 97.59 98.54 97.41 99.80 99.93 97.37 98.18 98.72
Shared Combi s3 97.59 98.58 97.36 99.79 99.92 97.61 98.22 98.71
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same training schedule as used in (Hendrycks et al., 2019a) for training their Outlier Ex-
posure(OE) models. This includes averaging the loss over batches that are twice as large
for the out-distribution. This way we ensure that the differences do not arise due to dif-
ferences in the training schedules or other important details but only on the employed ob-
jectives. In addition to their standard augmentation and normalization, we apply AutoAug-
ment (Cubuk et al., 2019) without Cutout, and we use λ = 1 where applicable. Our code
is available on github.1 It builds upon the code of Hendrycks et al. (2019a) available at
https://github.com/hendrycks/outlier-exposure and we use their general architec-
ture and training settings. Concretely, we use 40-2 Wide Residual Network (Zagoruyko and
Komodakis, 2016) models with normalization based on the CIFAR training datasets and a
dropout rate of 0.3. They are trained for 100 epochs with an initial learning rate of 0.1 that
decreases following a cosine annealing schedule. Unless mentioned otherwise, each training
step uses a batch of size 128 for the in-distribution and a batch of size 256 for the training
out-distribution. The optimizer uses stochastic gradient descent with a Nesterov momentum
of 0.9. Weight decay is set to 5e−4.

In addition to the results for CIFAR10 and CIFAR100 we also run experiments on Restricted
ImageNet. Restricted ImageNet, introduced by Tsipras et al. (2019), consists of 9 classes,
where each individual class is a union of multiple ImageNet (Deng et al., 2009) classes, for
example the Restricted ImageNet class ’dog’ contains all dog breeds from ImageNet. As Re-
stricted ImageNet only contains animal classes, the union over all its classes does not cover the
entire ILSVRC2012 dataset (Russakovsky et al., 2015), which allows us to use the remaining
ILSVRC2012 classes as training out-distribution. The corresponding test out-distributions are
Flowers (Nilsback and Zisserman, 2008), FGVC Aircraft (Maji et al., 2013), Stanford Cars
(Krause et al., 2013), as well as Smooth noise and Uniform noise. Like for the CIFAR exper-
iments, we train a plain classifier, an Outlier Exposure model, a background class model and
a shared discriminator/classifier and evaluate them with the different scoring functions. The
model is a ResNet50 and we use random cropping and flipping as data augmentation during
training.

Results: In Table 3.1 we compare multiple OOD methods: confidence of standard training
(PLAIN) and OE, binary discriminator trained without a shared representation with a clas-
sifier (SEPARATE BINDISC), classifier with background class (BGC) and the combination
of a plain classifier and a binary in-vs-out-distribution classifier with shared representation
(SHARED COMBI). As described in Section 3.2, both BGC and SHARED COMBI can be used
in combination with different scoring functions. For BGC, we evaluate all three scoring func-
tions s1, s2 and s3 and for SHARED COMBI we only use s2 and s3 as s1 is equivalent to p(i|x)
which is the output of SHARED BINDISC. Additionally, we evaluate OOD detection based
on the confidence of the shared classifier (SHARED CLASSI) trained together with SHARED

BINDISC.
For CIFAR10 and RImgNet, a first interesting observation is that SHARED CLASSI has

1https://github.com/j-cb/Breaking_Down_OOD_Detection
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remarkably good OOD detection performance; significantly better than a normal classifier
(plain) even though it is just trained using normal cross-entropy loss and so the OOD perfor-
mance is only due to the regularization enforced by the shared representation with SHARED

BINDISC. Furthermore, on both CIFAR10 and RImgNet SHARED BINDISC already has
good OOD detection performance with mean AUCs of 92.51 and 98.26 respectively, which
is further improved by considering scoring functions s2/s3 in the combination of SHARED

BINDISC and SHARED CLASSI. In all cases the SHARED COMBI models yield both good
classification accuracy and mean AUC. Moreover, the results of the classifier with background
class (BGC) (Thulasidasan et al., 2021) are interesting. It works very well but the performance
depends on the chosen scoring function. Whereas s1 (output of the background class) is a us-
able scoring function (mean AUC: 95.02, 88.41, 98.61), the maximum probability over the
other classes s2 (mean AUC: 97.22, 90.47, 98.54) or the combination in terms of s3 (mean
AUC: 97.21, 90.46, 98.66) perform better. In total with the scoring function s2/s3 integrat-
ing classifier and discriminative information, BGC reaches similar performance to OE (which
implicitly also uses s3 as scoring function).

In general, the differences of the methods are relatively minor both in terms of OOD de-
tection and classification accuracy, where the integration of OOD information generally helps
classification accuracy compared to the plain classifier. This is most likely explained by better
learned representations, see also Hendrycks et al. (2019a); Augustin et al. (2020) for similar
observations. Overall, as suggested by the theoretical results on the equivalence of the Bayes
optimal classifier of OE with the s3 scoring function of BGC and SHARED COMBI, we ob-
serve that even though these methods are derived and in particular trained with quite different
objectives, they behave very similarly in our experiments. In total we think that this provides
a much better understanding of where differences of OOD methods are coming from. Regard-
ing the question of which method and scoring function should be used for a given application,
the experimental results across datasets suggest that their difference is minor and there is no
clear best choice.

3.5 Conclusion

In this chapter we have analyzed different ways of utilizing training OOD data for the task
of OOD detection of unseen out-distributions at test times. We have introduced a notion of
equivalence of scoring functions for OOD detection and theoretically showed that various
OOD detection methods can unexpectedly be seen as equivalent to binary discrimination be-
tween in- and out-distribution in the limit of inifinite data. We empirically compared various
methods and showed that, as long as shared representations are used for classification and
OOD detector, various scoring functions lead to similar OOD detection performance on av-
erage. In particular, no method consistently outperforms the method of using the confidence
score of an outlier exposure model that we used in Chapter 2.
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3.5 Conclusion

Recent developments: Since our very recent publication of (Bitterwolf et al., 2022), there
have not been many significant developments in the theory of OOD detection. The authors
of Kristiadi et al. (2022) compared different ways of incorporating OOD data from Bayesian
perspective and also found OE to perform well. In Fang et al. (2022) they formalize the ways
in which OOD detection is (un)learnable from a theoretical point of view.
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Adversarial Out-of-Distribution Detection
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Chapter 4

Adversarial robustness on in-and
out-distribution improves explainability
This chapter is based on (Augustin et al., 2020) which we presented at ECCV 2020. Matthias
Hein and I jointly came up with the idea of using adversarially robust OOD detection as
a mechanism for feature generation based on previous experiments by me. Maximilian Au-
gustin and I jointly worked on experiments, exploring different ways of combining adversarial
robustness on in- and out-distribution as well as on reliably evaluating OOD robustness. Ul-
timately, Maximilian Augustin’s scientific ideas and experimental work were more impactful
for this paper than my own. In particular, he developed the final implementation of the training
schedules as well as of the counterfactual generation. Matthias Hein provided guidance to the
project and significantly helped with the writing.

4.1 Introduction
In the previous chapters we benchmarked a number of different OOD detection techniques on
various image classification datasets. The two main takeaways were that

1. assuming access to a large and diverse training out-distribution helps with the task of
OOD detection and that

2. using the confidence score of an OE trained model performs no worse than any of the
other baselines that we benchmarked.

Despite this, unsurprisingly, OE models are not robust to adversarial perturbations - neither
for classification nor for the detection of adversarially perturbed OOD samples. As mentioned
in Section 1.3, Adversarial Training (AT) is known to mitigate the former. However, this dis-
sertation is primarily concerned with the latter issue, i.e. the adversarially robust detection
of OOD data. Here, Adversarial Confidence Enhanced Training (ACET) as proposed by Hein
et al. (2019) enforces low confidence in a neighborhood around OOD samples and can be seen
as a form of adversarial training on the out-distribution. ACET leads improved OOD detec-
tion performance in an adversarial setting and suffers from a smaller loss in clean accuracy
compared to AT. Unfortunately, ACET suffers from some significant drawbacks: i) its training

39



Chapter 4 Adversarial robustness on in-and out-distribution improves explainability

is relatively unstable compared to adversarial training, sometimes leading to models with no
adversarial robustness on OOD data whatsoever. ii) Similarly to AT there is a loss in clean
accuracy and iii) even when successfully trained, there are no guarantees that the model is as
robust as its empirical evaluation implies. iv) The training of ACET (like AT) is over an order
of magnitude more expensive than plain training.

In this chapter we will show how to solve issue i) and somewhat mitigate issue ii), while
we leave the last two problems to the later chapters of this dissertation. Concretely, we show
that combining AT and ACET into a method that we call RATIO (Robustness via Adversar-
ial Training on In- and Out-distribution) inherits the good properties of adversarial training
and ACET with significantly reduced negative effects, e.g. we get SOTA l2-robustness on CI-
FAR10 and have better clean accuracy than AT. Crucially, we empirically find that the training
instabilities that ACET faces get resolved by this combination with AT. On top of this we
get reliable confidence estimates on the out-distribution even in a worst-case scenario. In
particular, AT yields highly overconfident predictions on out-distribution images in the ab-
sence of class specific features, whereas RATIO only yields highly confident predictions if
recognizable features are present. We will also show that this desirable property can be used
to produce high-quality visual counterfactual explanations, which demonstrates the utility of
achieving adversarially robust low confidence on perturbed OOD samples. In summary, RA-
TIO achieves high clean accuracy, is robust, calibrated and has generative properties which
can be used to produce high-quality visual counterfactual explanations.

4.2 RATIO: Robust, Reliable and Explainable Classifier

An ideal model for classification is accurate and calibrated on the in-distribution, reliably
has low confidence on out-distribution inputs, is robust to adversarial manipulation and has
explainable decisions. To our knowledge there is no model which claims to have all these
properties. The closest one we are aware of is the JEM-0 of (Grathwohl et al., 2020) which
claims to be robust, detects out-of-distribution samples and has generative properties. They
state “JEM does not confidently classify nonsensical images, so instead, [...] natural image
properties visibly emerge”. We show that RATIO gets us closer to this ultimate goal and
outperforms JEM-0 in all aspects: accuracy, robustness, (worst-case) out-of-distribution de-
tection, and visual counterfactual explanations.

4.2.1 In-Distribution Robustness and Adversarial Training

Recall from Section 1.3 that, typically, adversarial robustness is defined in terms of lp-based
threat models, i.e.

T (x) = Bp(x,ε) = {x′ ∈ X |‖x′− x‖p ≤ ε}. (4.1)
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For convenience we also restate the objective of adversarial training for a threat model T (x):

min
f

E
(x,y)∼pin(x,y)

[
max

x′∈T (x)
LCE( f (x′),ey)

]
, (4.2)

where pin(x,y) is the training distribution. The community has put emphasis on robustness
wrt. l∞ but there has also been interest in other threat models e.g. l2-balls (Tramèr and Boneh,
2019; Rony et al., 2019; Santurkar et al., 2019). In particular, it has been noted that robust
models wrt. an l2-ball have the property that “adversarial” samples generated within a suffi-
ciently large l2-ball tend to have image features of the predicted class (Tsipras et al., 2019;
Santurkar et al., 2019; Engstrom et al., 2019a). Thus, they are not really “adversarial” sam-
ples in the sense that the true class has changed or is at least ambiguous. Because of these
interesting generative properties, we focus on l2-based threat models in this chapter.

4.2.2 Out-Distribution Robustness and Adversarial Training on OOD

In the previous chapters, we already investigated the use of a classifier’s confidence as a fea-
ture for out-of-distribution detection. However, neural networks are known to have overly
high confidence on adversarially perturbed OOD samples (Schott et al., 2019; Hein et al.,
2019; Sehwag et al., 2019; Meinke and Hein, 2020). In this section, we finally formalize the
notion of an OOD detector being robust via the so-called Worst-Case AUC (WCAUC).1 This
will allow a rigorous comparison of the adversarial OOD detection performances of different
methods.

The WCAUC is defined as the minimal AUC one can achieve if each out-distribution sample
is allowed to be perturbed to reach maximal confidence within a certain threat model, which
in our case is an l∞-ball of radius ε . Technically, we will use a slightly modified definition
of the AUC than the one used in the previous chapters, in that we remove the equality term.
This makes the AUC asymmetric and has been called the “conservative AUC” in Bitterwolf
et al. (2020). The reason for this modification is that otherwise a trivially constant model
would obtain a better worst-case AUC than many other models. This almost never makes any
difference in the values one obtains for clean AUCs which is why from here on out, as a slight
abuse of notation, we will just call the conservative AUC the AUC. Formally, the AUC and
WCAUC of a feature h : X → R are defined as:

AUCh(p1, p2) = E
x∼p1
z∼p2

[
1h(x)>h(z)

]
, WCAUCh(p1, p2) = E

x∼p1
z∼p2

[
1h(x)> max

‖z′−z‖∞≤ε

h(z′)

]
, (4.3)

where p1, p2 are in- and out-distribution respectively and the indicator function 1 returns 1 if
the expression in its argument is true and 0 otherwise. Note that an alternative formulation of
a worst-case AUC as the worst-case across all samples from the out-distribution would turn
out to be uninteresting, since it would necessarily be close to zero even if only a single sample

1This measure was already used but not named in Hein et al. (2019) and in Meinke and Hein (2020).
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gets assigned high-confidence, so we do not consider this notion.
Similarly to the robust accuracy, the exact evaluation of the WCAUC is computationally

infeasible. Instead we can find an upper bound on the WCAUC by numerically maximizing
the confidence using an adversarial attack inside the l∞-ball. We call our empirical lower
bound the Adversarial AUC (AAUC) and we discuss its computation in Section 4.4.

In order to actually achieve high AAUCs, Hein et al. (2019) proposed Adversarial Confi-
dence Enhanced Training (ACET) which enforces low confidence in a neighborhood around
the out-distribution samples which can be seen as a form of AT on the out-distribution:

min
f

E
x,y∼pin

[
LCE( f (x),ey)

]
+λ E

z∼pout

[
max

‖z′−z‖2≤ε

LCE( f (z′),1/K)
]
, (4.4)

where 1 is the vector of all ones (outlier exposure (Hendrycks et al., 2019a) has the same
objective without the inner maximization for the out-distribution). Different from (Hein et al.,
2019) and the version of ACET benchmarked in Chapter 2, we use the same loss for in-and
out-distribution, whereas they used the maximal log-confidence over all classes as loss for the
out-distribution. In our experience the maximal (log-)confidence is more difficult to optimize,
but both losses are minimized by the uniform distribution over the labels. Thus, the difference
is rather small and we also denote this version as ACET.

4.2.3 RATIO: Robustness via Adversarial Training on In-and
Out-distribution

We propose RATIO: adversarial training on in-and out-distribution. This combination leads
to synergy effects where most positive attributes of AT and ACET are fused without having
larger drawbacks. The objective of RATIO is given by:

min
f

E
x,y∼pin

[
max

‖x′−x‖2≤εi
LCE( f (x′),ey)

]
+λ E

z∼pout

[
max

‖z′−z‖2≤εo
LCE( f (z′),1/K)

]
, (4.5)

where λ has the interpretation of po
pi

, the probability to see out-distribution po and in-distribution
pi samples at test time. Here we have specified an l2-threat model for in-and out-distribution
but the objective can be adapted to different threat models which could be different for in-
and out-distribution. The surprising part of RATIO is that the addition of the out-distribution
part can improve the results even on the in-distribution in terms of (robust) accuracy. We
hypothesize that the reason is that adversarial training on the out-distribution ensures that
non-robust features do not change the confidence of the classifier. This behavior generalizes
to the in-distribution and thus ACET (adversarial training on the out-distribution) is also robust
on the in-distribution (52.3% robust accuracy for l2 with ε = 0.5 on CIFAR10). One prob-
lem of adversarial training is overfitting on the training set (Rice et al., 2020). Our RATIO
has seen more images at training time and while the direct goal is distinct (keeping one-hot
prediction on the in-distribution and uniform prediction on out-distribution) both aim at con-
stant behavior of the classifier over the l2-ball and thus the effectively increased training size
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improves generalization (in contrast to AT, RATIO has its peak robustness at the end of the
training). Moreover, RATIO typically only shows high confidence if class-specific features
have appeared which we use in the generative process described next.

4.3 Visual Counterfactual Explanations
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Figure 4.1: Failure of a visual counterfactual for a plain model. The targeted attack im-
mediately produces very high confidence in both classes but instead of class features only
high-frequency noise appears because plain models are not robust.

Counterfactual explanations have been proposed in (Wachter et al., 2018) as a tool for mak-
ing classifier decisions plausible, since humans can also justify decisions via counterfactuals
“I would have decided for X, if Y had been true” (Miller, 2019). Other forms are explanations
based on image features (Hendricks et al., 2016, 2018). However, changing the decision for
image classification in image space for non-robust models leads to adversarial samples (Dong
et al., 2017) with changes that are visually not meaningful. Thus visual counterfactuals are
often based on generative models or restrictions on the space of image manipulation (Saman-
gouei et al., 2018; Álvaro Parafita and Vitrià, 2019; Chang et al., 2019; Goyal et al., 2019;
Zhu et al., 2016; Wang et al., 2018). Robust models wrt. l2-adversarial attacks (Tsipras et al.,
2019; Santurkar et al., 2019) have been shown to change their decision when class-specific
features appear in the image, which is a prerequisite for meaningful counterfactuals (Barocas
et al., 2020). RATIO generates better counterfactuals, i.e. the confidence of the counterfac-
tual images obtained by an l2-adversarial attack tends to be high only after features of the
alternative class have appeared. Especially for out-distribution images the difference to AT is
pronounced.

Compared to sensitivity based explanations (Baehrens et al., 2010; Zeiler and Fergus, 2014)
or explanations based on feature attributions (Bach et al., 2015) counterfactual explanations
have the advantage that the explanation is directly to the decision of the classifier. On the
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other hand the counterfactual explanation requires us to specify a metric and a budget for the
allowed change of the image which can be done directly in image space or in the latent space
of a generative model. However, our goal is that the classifier directly learns what meaningful
changes are and we do not want to impose that via a generative model. Thus, we aim at visual
counterfactual explanations directly in image space with a fixed budget for changing the im-
age. As the decision changes, features of this class should appear in the image (see Figure 4.2).
Normally trained models will not achieve this since non-robust models change their predic-
tion for non-perceptible perturbations (Szegedy et al., 2014), see Figure 4.1. Thus robustness
against (l2-)adversarial perturbations is a necessary requirement for visual counterfactuals.

A visual counterfactual for the original point x classified as c = argmaxk=1,...,K fk(x), a
target class t ∈ {1, . . . ,K} and a budget ε is defined as

x(t) = argmax
x′∈[0,1]d ,‖x−x′‖2≤ε

p̂ f ,t(x′), (4.6)

where p̂ f ,t(z) is the confidence for class t of our classifier for the image z. If t 6= c it answers
the counterfactual question of how to use the given budget to change the original input x so
that the classifier is most confident in class t. Note that in our definition we include the case
where t = c, that is we ask how to change the input x classified as c to get even more confident
in class c. In Figure 4.2 we illustrate both directions and show how for robust models class
specific image features appear when optimizing the confidence of that class. This shows that
the optimization of visual counterfactuals can be done directly in image space.

4.4 Experiments
We validate our approach on SVHN (Netzer et al., 2011), CIFAR10/100 (Krizhevsky and
Hinton, 2009) and restricted ImageNet (Santurkar et al., 2019). The code can be found online.2

4.4.1 Training
On CIFAR10 we compare RATIO to a pretrained JEM-0 (Grathwohl et al., 2020) and the AT
model (Engstrom et al., 2019c) with ε = 0.5 (M0.5) (both not available on the other datasets).
As an ablation study of RATIO we train a plain model, outlier exposure (OE) (Hendrycks
et al., 2019a), ACET (Hein et al., 2019) and AT with ε = 0.5 (AT0.5) and ε = 0.25 (AT0.25),
using the same hyperparameters as for our RATIO training. As out-distribution for SVHN
and CIFAR we use 80 million tiny images (Torralba et al., 2008)3 as suggested in (Hendrycks
et al., 2019a) and for restricted ImageNet, again, the remaining ImageNet classes.

For our experiments on CIFAR10/100 (Krizhevsky and Hinton, 2009) we use a standard
ResNet50 architecture and SGD with Nesterov momentum (β = 0.9) and a base learning rate

2https://github.com/M4xim4l/InNOutRobustness
3Note that this work was carried out before the retraction of 80 million tiny images.
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Table 4.1: Summary: We show clean and robust accuracy in an l2-threat model with ε = 0.5
and the expected calibration error (ECE). For OOD detection we report the mean of clean and
worst case AUC over several out-distributions in an l2-threat model with ε = 1.0 as well as the
mean maximal confidence (MMC) on the out-distributions. In light red we highlight failure
cases for certain metrics. Only RATIO-0.25 (R0.25) has good performance across all metrics.

CIFAR10 Plain OE ACET M0.5 AT0.5 AT0.25 JEM-0 R0.5 R0.25
Acc. ↑ 96.2 96.4 94.1 90.8 90.8 94.0 92.8 91.1 93.5
R. Acc.0.5 ↑ 0.0 0.0 52.3 69.3 70.4 65.0 40.5 73.3 70.5
ECE in % ↓ 1.0 2.9 2.8 2.6 2.2 2.2 3.9 2.8 2.7
AUC ↑ 94.2 96.5 94.7 81.8 88.9 92.7 75.0 95.6 95.0
AAUC1.0 ↑ 1.6 8.7 81.9 48.5 57.4 42.0 14.6 83.6 84.3
MMC ↓ 62.0 31.9 39.1 62.7 55.8 55.2 69.7 31.9 33.9
CIFAR100 Plain OE ACET AT0.5 AT0.25 R0.5 R0.25
Acc. ↑ 81.5 81.4 - 70.6 75.8 69.2 74.4
R. Acc.0.5 ↑ 0.0 0.0 - 43.2 37.3 45.6 42.4
ECE ↓ 1.2 7.2 - 1.3 1.5 3.2 2.0
AUC ↑ 84.0 91.9 - 75.6 79.4 87.0 86.9
AAUC1.0 ↑ 0.4 14.6 - 29.9 24.8 55.5 54.5
MMC ↓ 51.1 21.8 - 45.8 47.1 24.4 31.0
SVHN Plain OE ACET AT0.5 AT0.25 R0.5 R0.25
Acc. ↑ 97.3 97.6 97.8 94.4 96.7 94.3 96.8
R. Acc.0.5 ↑ 0.9 0.3 28.8 68.1 63.0 68.4 64.8
ECE in % ↓ 0.9 0.9 1.6 1.6 0.8 2.0 1.8
AUC ↑ 96.9 99.6 99.8 91.0 97.0 99.8 99.9
AAUC1.0 ↑ 8.5 18.2 96.0 51.1 48.3 97.5 97.5
MMC ↓ 61.5 16.3 11.8 67.1 49.1 12.1 11.1
R.Imagenet Plain OE ACET M3.5 AT3.5 AT1.75 R3.5 R1.75
Acc. ↑ 96.6 97.2 96.2 90.3 93.5 95.5 93.9 95.5
R. Acc.3.5 ↑ 0.0 0.0 6.2 47.7 47.7 36.7 49.2 43.0
ECE ↓ 0.6 1.8 0.9 0.7 0.9 0.5 0.3 0.7
AUC ↑ 92.7 98.9 97.74 83.6 84.3 86.5 97.2 97.8
AAUC7.0 ↑ 0.0 1.8 87.54 44.2 37.5 16.3 90.9 90.6
MMC ↓ 67.9 20.6 34.85 69.2 75.2 81.8 33.6 32.3

of 0.1 and weight decay of 5e− 4. Our training schedule spans 220 epochs and we decrease
the learning rate by a factor of 10 in epochs 100, 150 and 200. As data augmentation for
all our trained CIFAR10 models we use the recommended AutoAugment policy from (Cubuk
et al., 2019), including Cutout (DeVries and Taylor, 2017). For SVHN, we use a ResNet18
architecture with a 100 epochs schedule which decreases the learning rate in epochs 50, 75
and 90. The data augmentation scheme consists of input normalization, random cropping and
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Cutout.
On restricted ImageNet we adopt the overall training scheme from (Santurkar et al., 2019),

including the ResNet50 architecture and data augmentation with a slightly shorter 75 epoch
LR schedule which decays the initial LR of 0.1 at epochs 30, 60 and 75 by a factor of 10. We
also tested the AutoAugment ImageNet policy, however, found that it performed worse than
the simpler transform based on random crops, flips, color jitter and a lighting transformation.
Similarly to Chapter 3, we use all the remaining classes from ILSVRC2012 as training out-
distribution for OE, RATIO and ACET training.

For adversarial and RATIO training, we use 100% adversarial training on the train distri-
bution, i.e. the model only sees perturbed samples during training. Instead of solving the
robust min-max formulation in Eq. (4.2) directly, we use the logits-based loss from (Carlini
and Wagner, 2017b) in the inner maximization problem, i.e. for a training sample (x,y) we
approximately solve:

max
x′∈T (x)

max
i 6=y

fi(x′)− fy(x′). (4.7)

To compute z, we use a 7-step PGD with the l2-normalized gradient with step size 0.1 and
momentum weight 0.9 which returns the point with the highest loss across its trajectory. This
deviation from the standard adversarial training scheme of (Madry et al., 2018) is justified by
our empirical experience that for this small number of steps the optimization of the logits-
based loss even leads to higher cross-entropy loss than optimizing the cross-entropy loss di-
rectly. Note that for the actual update of the model we use the gradient of the cross-entropy
loss.

The same scheme applies to the inner maximization problem for the adversarial training on
the out-distribution (cross-entropy loss to uniform distribution, see also (4.4)) in ACET and
RATIO training, where we again use PGD with momentum and a step size of 0.1. We again
emphasize that unlike (Hein and Andriushchenko, 2017) who used a smoothed form of noise
as out-distribution, we use 80 Million Tiny Images which makes ACET resp. the adversarial
training on the out-distribution a substantially harder task. As the radius of the l2-threat model
on the out-distribution is significantly larger than on the in-distribution we increase the initial
number of iterations to 20. For pure ACET training we noticed that even a 20-step attack is
often too weak to find an approximate maximum of the inner maximization problem which
results in the model gradually becoming less robust. We therefore incrementally increase
the number of ACET iterations to 40 by adding 5 steps for each update of the learning rate.
However even with those adjustments, pure ACET training on CIFAR10 remains very unstable
and reproducibly ends up with a maximum-mean confidence close to 0.1 for CIFAR10 test
samples. We therefore use a smaller ResNet18 with a 100 epoch schedule for all ACET
experiments where this training scheme can be used without problems. On CIFAR100, we did
not successfully train ACET and thus omit the results. We note that RATIO does not suffer
from ACET’s stability problems and in this setting the training reliably works.

The threat models are l2-balls of radius 0.25 resp. 0.5 on the in-distribution and a l2-ball of
radius 1.0 n the out-distribution. We use a batch size of 128 for plain and adversarial training
and a total batch size of 256 for OE, ACET and RATIO training, i.e. 128 samples from the in-
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and 128 samples from the out-distribution.
Only on restricted ImageNet, we noticed an unexpected drop in clean accuracy on the larger

RATIO models and therefore we add an additional clean in-distribution loss to the RATIO
and AT models. In detail, adversarial training uses a 50/50 scheme with 128 standard and
128 perturbed samples per batch while RATIO uses 128 clean and 128 perturbed samples
from the in-distribution and 128 perturbed samples from the out distribution, resulting in a
total batch-size of 384. Such a scheme typically improves clean accuracy while reducing the
robustness, however we note that our 50/50 AT models are able to compete with Madry’s
standard AT model (100% adversarial training) and are thus a fair baseline for RATIO. Also,
due to computational complexity, we use a simple 10 step PGD with a stepsize of 1.0 on the
out-distribution for Restricted ImageNet.

As adversarial training is prone to overfitting on the training set (Rice et al., 2020), resulting
in a loss in robust accuracy on the test set in the last epochs of training, we use the robust
accuracy on the test set under the 7 step PGD attack as early stopping criterion (note that
the 7-step PGD attack is significantly weaker than what we use later on for evaluation of
robustness).

4.4.2 Calibration on the in-distribution
With RATIO we aim for reliable confidence estimates, in particular no overconfident predic-
tions. In order to have comparable confidences for the different models we train, especially
when we check visual counterfactuals or feature generation, we first need to “align” their
confidences. We do this by minimizing the expected calibration error (ECE) via temperature
rescaling (Guo et al., 2017). As explained in Section 1.2.1, this rescaling does not change the
classification and thus has no impact on (robust) accuracy and only a minor influence on the
(adversarial) AUC values for OOD-detection. For computing the ECE we use 10 bins (note
that validation sets are smaller than the test set) and for the evaluation of the final calibration
on the test set we use 15 bins. For the finding the temperature we pick 500 geometrically
spaced temperatures on the interval T ∈ [0.05,2.71] and choose the minimizer for each model.
Since M0.5 and JEM-0 have used the entire training set and removing data from the test set
would make the accuracy values harder to compare, we use the CIFAR10.1 dataset (Recht
et al., 2018) for calibration on CIFAR10. On SVHN we use 2000 points from the unused
additional data, on CIFAR100 the first 2000 test points and on R.Imagenet we use a random
subset of 2000 test points as our validation set. For CIFAR100 and R.Imagenet we omit these
2000 points when testing the OOD performance.

4.4.3 (Robust) Accuracy on the in-distribution
For the adversarial attacks on in- and out-distribution we use Auto-Attack (Croce and Hein,
2020b) which is an ensemble of four attacks, including the black-box Square Attack (An-
driushchenko et al., 2020) and three white-box attacks (FAB-attack (Croce and Hein, 2020a)
and AUTO-PGD with different losses). For each of the white-box attacks, a budget of 100
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iterations and 5 restarts is used and a query limit of 5,000 for Square attack. In Croce and
Hein (2020b) they show that Auto-Attack consistently improves the robustness evaluation for
a large number of models (including JEM-x).

Using Auto-Attack we evaluate robustness on the full test set for both CIFAR and R. Im-
agenet and 10,000 test samples for SVHN. Table 4.1 contains the robust l2 accuracy. On
CIFAR10, RATIO achieves significantly higher robust accuracy than AT for l2-and l∞-attacks.
Thus the additional adversarial training on the out-distribution with radius εo = 1 boosts the
robustness on the in-distribution. In particular, RATIO0.25 achieves better l2-robustness than
AT0.5 and M0.5 at ≈ 2.7% higher clean accuracy. In addition, R0.5 yields new state-of-the-art
l2-robust accuracy at radius 0.5 (see (Croce and Hein, 2020b) for a benchmark) while having
higher test accuracy than AT0.5, M0.5. Interestingly, although ACET is not designed to yield
adversarial robustness on the in-distribution, it achieves more than 50% robust accuracy for
ε = 0.5 and outperforms JEM-0 in all benchmarks. However, as our goal is to have a model
which is both robust and accurate, we recommend to use R0.25 for CIFAR10 which has a drop
of only 2.6% in test accuracy compared to a plain model while having similar robustness to
M0.5 and AT0.5. Similar observations as for CIFAR10 hold for CIFAR100 and for Restricted
ImageNet even though for CIFAR100 AT and RATIO suffer a higher loss in accuracy. On
SVHN, RATIO outperforms AT in terms of robust accuracy trained with the same l2-radius
but the effect is less than for CIFAR10. We believe that this is due to the fact that that the
images obtained from the 80 million tiny image dataset (out-distribution) do not reflect the
specific structure of SVHN numbers which makes (adversarial) outlier detection an easier
task. This is supported by the fact that ACET achieves better clean accuracy on SVHN than
both OE and the plain model while it has worse clean accuracy on CIFAR10.

4.4.4 Visual Counterfactual Generation

We use 500 step Auto-PGD (Croce and Hein, 2020b) for a targeted attack with the objective
in (4.6). However, note that this non-convex optimization problem has been shown to be NP-
hard (Katz et al., 2017). In Figure 4.2, 4.3 and 4.5 we show generated counterfactuals for all
datasets. For CIFAR10 AT0.5 performs very similarly to RATIO0.25 in terms of the emergence
of class specific image features. In particular, we often see the appearance of characteristic
features such as pointed ears for cats, wheels for cars and trucks, large eyes for both cats and
dogs and the antlers for deers. JEM-0 and ACET perform worse but for both of them one
observes the appearance of image features. However, particularly the images of JEM-0 have a
lot of artefacts. For SVHN, on average, RATIO0.25 performs better than AT0.25 and ACET. It is
interesting to note that for both datasets class-specific features already emerge for an l2-radius
of 1.0. Thus it seems questionable if l2-adversarial robustness beyond a radius of 1.0 should
be enforced. Due to the larger number of classes, CIFAR100 counterfactuals are of slightly
lower quality. For Restricted ImageNet the visual counterfactuals show class-specific features
but can often be identified as synthetic due to misaligned features.
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4.4.5 Reliable Detection of (Adversarial) Out-of-Distribution Images

We report the adversarial AUC by maximizing the confidence in an l2-ball of radius 1.0 (resp.
7.0 for R. ImageNet) around OOD images via Auto-PGD (Croce and Hein, 2020b) with 100
steps and 5 random restarts. Due to computational constraints, instead of using the entire OOD
test sets, we use 1024 points from each out-distribution (300 points for LSUN CR).

The average AUC over all OOD datasets is reported in Tables 4.1. The detailed results are
shown in Table 4.2 and Table 4.3. The AT-model of Madry et. al (M0.5) perform worse than the
plain model even on the average case task. However, we see that with our more aggressive data
augmentation this problem is somewhat alleviated (AT0.5 and AT0.25). As expected ACET, has
good worst-case OOD performance but is similar to the plain model for the average case. JEM-
0 has bad worst-case AUCs and we cannot confirm the claim that “JEM does not confidently
classify nonsensical images” (Grathwohl et al., 2020). Also as expected, OE has state-of-
the-art performance on the clean task but has no robustness on the out-distribution, so it fails
completely in this regime. Our RATIO models show strong performance on all tasks and even
outperform the ACET model which shows that adversarial robustness wrt the in-distribution
also helps with adversarial robustness on the out-distribution. On SVHN the average case
OOD task is simple enough that several models achieve near perfect AUCs, but again only
ACET and our RATIO models manage to retain strong performance in the adversarial setting.
The worst-case AUC of AT models is significantly worse than that of ACET and RATIO.

4.4.6 Feature Generation on OOD images

Finally, we test the abilities to generate image features with a targeted attack on OOD images
(taken from 80m tiny image dataset resp. ImageNet classes not belonging to R. ImageNet).
The setting is similar to the visual counterfactuals. We take some OOD image and then op-
timize the confidence in the class which is predicted on the OOD image. The results can be
found in Figure 4.4 and 4.6. For CIFAR10 all methods are able to generate image features of
the class but the predicted confidences are only reasonable for ACET and RATIO0.25 whereas
AT0.5 and JEM-0 are overconfident when no strong class features are visible. This observation
generalizes to SVHN and mostly CIFAR100 and restricted Imagenet, i.e. RATIO generally has
the best OOD-confidence profile.

4.5 Conclusion

We have shown that adversarial robustness on in-distribution and out-distribution (as a proxy
of all natural images) gets us closer to a classifier which is accurate, robust, has reliable con-
fidence estimates and is able to produce visual counterfactual explanations with strong class
specific image features. For the usage in safety-critical in systems, it is desirable to achieve
these robustness properties in a provable way, which we will explore in the upcoming chapters.
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Recent developments: Since the paper’s publication, the finding that enforcing adversari-
ally robust low confidence on OOD data can be stably trained by combining it with adversar-
ial training has been confirmed by (Chen et al., 2022; Lee et al., 2021a), which effectively
independently rediscovered RATIO. Furthermore, the generative capabilities of adversarially
robust models have been explored further in the context of counterfactual explainability (Bor-
eiko et al., 2022a) and even applied to the medical domain (Boreiko et al., 2022b; Augustin
et al., 2022). EBMs have also been improved to have more stable training and higher adver-
sarial robustness on OOD data but have nonetheless failed to outperform RATIO (Yin et al.,
2022). The concept of the adversarial AUC has been further extended by Azizmalayeri et al.
(2022), where they allow in- and out-distribution points to be perturbed simultaneously.
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Table 4.2: OOD performance (CIFAR10, CIFAR100): The area under the ROC curve (AUC)
on the binary task of separating the in- from the out-distribution based on the confidence.
For each dataset the first table shows the average-case AUC and the second ones show the
worst-case AUC with a threat model l2 = 1.0 around the out-distribution samples.

CIFAR10
Av. Case Plain OE ACET M0.5 AT0.5 AT0.25 JEM-0 R0.5 R0.25
SVHN 96.8 99.4 93.6 91.9 93.5 95.3 89.3 96.5 96.4
CIFAR100 91.6 91.4 90.4 84.3 85.3 89.1 87.6 90.8 91.6
LSUN CR 95.6 99.6 98.2 89.7 90.7 92.5 91.6 98.0 98.3
Imagenet- 91.6 89.8 91.0 84.8 85.9 89.0 86.7 90.5 91.3
Noise 94.3 99.3 95.0 93.7 94.9 95.5 83.1 97.8 97.6
Uni. Noise 95.0 99.5 99.9 46.1 83.2 94.6 11.8 99.9 99.9
Worst Case Plain OE ACET M0.5 AT0.5 AT0.25 JEM-0 R0.5 R0.25
SVHN 0.0 0.6 76.1 57.1 62.0 40.1 7.3 81.3 81.1
CIFAR100 0.0 2.7 69.9 47.9 48.5 31.8 19.2 71.9 73.0
LSUN CR 0.0 4.0 87.9 52.0 52.8 36.5 20.6 87.3 89.1
Imagenet- 0.0 1.5 72.8 50.6 51.1 36.8 21.2 72.4 73.5
Noise 0.0 0.0 84.5 62.9 67.9 38.8 16.5 88.9 89.4
Uni. Noise 9.4 43.1 99.9 20.7 62.0 67.8 2.5 99.8 99.8

CIFAR100
Av. Case Plain OE ACET AT0.5 AT0.25 R0.5 R0.25
SVHN 86.8 95.8 - 82.2 81.0 83.8 84.5
CIFAR10 81.1 84.3 - 73.0 76.0 71.9 73.2
LSUN CR 83.1 97.5 - 81.0 80.4 93.6 91.7
Imagenet- 83.9 86.2 - 74.3 77.7 79.6 81.0
Noise 85.9 87.6 - 84.8 82.3 93.0 91.1
Uni. Noise 73.2 99.7 - 58.5 78.7 99.8 99.6
Worst Case Plain OE ACET AT0.5 AT0.25 R0.5 R0.25
SVHN 0.0 5.6 - 30.2 20.6 41.4 42.6
CIFAR10 0.0 5.0 - 27.3 18.9 31.3 28.9
LSUN CR 0.0 5.0 - 30.0 21.3 58.9 59.2
Imagenet- 0.0 4.9 - 31.3 23.3 34.1 31.3
Noise 0.0 6.2 - 32.6 22.2 68.3 67.5
Uni. Noise 2.5 60.6 - 27.9 42.2 99.2 97.5
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Table 4.3: OOD performance (SVHN, R. ImageNet): The area under the ROC curve (AUC)
on the binary task of separating the in- from the out-distribution based on the confidence. For
each dataset the first table shows the average-case AUC and the second ones show the worst-
case AUC with a threat model l2 = 1.0 for SVHN and l2 = 7.0 for R.ImageNet around the
out-distribution samples.

SVHN
Av. Case Plain OE ACET AT0.5 AT0.25 R0.5 R0.25
CIFAR10 95.8 100.0 100.0 88.5 95.7 100.0 100.0
CIFAR100 95.6 100.0 100.0 87.8 95.5 100.0 100.0
LSUN CR 97.1 100.0 100.0 87.3 95.8 100.0 100.0
Imagenet- 96.2 100.0 100.0 87.9 95.9 100.0 100.0
Noise 97.2 97.8 99.2 97.5 99.2 99.1 99.5
Uni. Noise 99.9 100.0 100.0 97.2 99.7 100.0 99.9
Worst Case Plain OE ACET AT0.5 AT0.25 R0.5 R0.25
CIFAR10 0.0 1.3 99.8 43.4 43.7 99.8 99.8
CIFAR100 0.0 2.5 99.8 42.7 39.5 99.7 99.8
LSUN CR 0.0 1.0 99.8 36.6 42.4 99.9 99.9
Imagenet- 0.0 4.3 99.8 39.4 43.7 99.9 99.9
Noise 0.0 0.0 76.8 71.2 52.7 85.6 85.7
Uni. Noise 51.1 99.9 99.9 73.0 67.7 99.9 99.9

R.ImageNet
Av. Case Plain OE ACET M3.5 AT3.5 AT1.75 R3.5 R1.75
Flowers 90.6 96.2 94.1 74.4 79.8 83.2 91.3 92.8
Food101 91.6 99.3 98.3 79.9 83.8 86.9 98.1 98.7
FGVC 89.6 99.7 98.8 79.8 80.8 81.5 98.8 99.1
Cars 93.9 99.9 99.9 83.5 86.3 90.0 99.8 99.9
Uni. Noise 98.7 99.6 100.0 95.9 88.2 87.4 100.0 100.0
Worst Case Plain OE ACET M3.5 AT3.5 AT1.75 R3.5 R1.75
SVHN 0.0 1.8 83.4 32.2 35.9 16.1 86.6 86.5
CIFAR10 0.0 1.8 87.7 33.3 32.5 11.9 90.6 90.5
LSUN CR 0.0 1.8 92.4 39.5 33.0 13.6 95.8 95.7
Imagenet- 0.0 1.8 94.0 44.7 50.0 31.8 97.9 97.9
Uni. Noise 0.0 1.8 100.0 83.6 43.3 16.1 100.0 99.9
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Figure 4.2: Visual Counterfactuals (CIFAR10): The dog image on the left is misclassified
by all models (confidence for true and predicted class are shown). The top row shows visual
counterfactuals for the correct class (how to change the image so that it is classified as dog)
and the bottom row shows how to change the image in order to increase the confidence in the
wrong prediction for different budgets of the l2-radius (ε = 0.5 to ε = 3). 53
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Figure 4.3: Visual Counterfactuals (SVHN): The 5 on the left is misclassified by all mod-
els. We show counterfactuals for the true class the predicted class (see Figure 4.2). RATIO
consistently produces samples with fewer artefacts than AT.
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Figure 4.4: Feature Generation for out-distribution images (CIFAR10 (top), SVHN (bot-
tom)): targeted attacks towards the class achieving highest confidence on original image for
different budgets of the l2-radius ranging from ε = 0.5 to ε = 3. RATIO-0.25 generates the
visually best images and in particular has reasonable confidence values for its decision. While
AT-0.5/AT-0.25 generates also good images it is overconfident into the target class.
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Figure 4.5: Visual Counterfactuals top: RATIO-0.25 for CIFAR100 and bottom: RATIO-
1.75 for RestrictedImageNet.
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and bottom: RATIO-1.75 for R.ImageNet
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Certifiable Adversarial
Out-of-Distribution Detection

57





Chapter 5

Towards neural networks that provably
know when they don’t know
This chapter is based on (Meinke and Hein, 2020) (as was Chapter 2) which we presented
at ICLR 2020. I was the first author of the paper and performed all experiments. Besides
general guidance, Matthias Hein provided the initial idea and wrote significant parts of the
paper, including revising the proofs of the theoretical results.

5.1 Introduction
In the previous chapters we have seen that the confidence of a classifier can be a good out-
of-distribution detector if the classifier has been exposed to a large and diverse training out-
distribution. Furthermore, we saw that, by default, this confidence estimate is not adversarially
robust on the out-distribution, but that specifically training for this robustness can alleviate the
issue. However, a problem that we have completely neglected thus far is the issue of asymp-
totic overconfidence that we outlined in Section 1.2.2. Recall that Hein et al. (2019) showed
that under mild assumptions, piecewise linear classifiers such as ReLU networks provably suf-
fer from overconfident predictions when moving sufficiently far away from the training data in
almost any direction. Therefore, fixing this issue of asymptotic overconfidence requires some
modification to a classifier’s architecture and this will be the main goal of this chapter.

We will demonstrate how to construct a classifier that asymptotically has uniform confi-
dence across all classes and then formally prove this property, see Figure 5.1 for an illustra-
tion. The final model can use arbitrary network architectures in its classifier model, without
losing performance on either the prediction task on the in-distribution nor the OOD detection
performance. Despite our construction being motivated by asymptotic properties that require
leaving the image space X = [0,1]d , we will show that our model actually additionally pro-
vides provable upper bounds on the confidence over whole neighborhoods around points that
are indeed valid images. We show that most state-of-the-art OOD detection methods can be
fooled by maximizing the confidence in such balls even when starting from uniform noise im-
ages, which should be trivial to identify. The central difference from existing OOD-methods
is that we use Bayes’ law to decompose the model so that we model in-and out-distribution
separately. In this framework our algorithm for training neural networks follows directly as
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Figure 5.1: Illustration on toy dataset: We show the color-coded confidence in the prediction
(yellow indicates high confidence maxy p̂(y|x) ≈ 1, whereas dark purple regions indicate low
confidence maxy p̂(y|x)≈ 0.5) for a normal neural network (left) and our CCU neural network
(right). The decision boundary is shown in white which is similar for both models. Our
CCU-model retains high-confidence predictions in regions close to the training data, whereas
far away from the training the CCU-model outputs close to uniform confidence. In contrast
the normal neural network is over-confident everywhere except very close to the decision
boundary.

maximum likelihood estimator which is different from the more ad-hoc methods proposed in
the literature. The usage of Gaussian mixture models as the density estimator is the essential
key to get the desired provable guarantees.

5.2 Certified low confidence far away from the training data

5.2.1 A probabilistic model for in- and out-distribution data

We assume that there exists a joint probability distribution p(x,y) over the in- and out-distribution
data and since we are interested in classification, we want to estimate p(y|x). We can repre-
sent this via the conditional distributions of the in-distribution p(y|x, i) and out-distribution
p(y|x,o):

p(y|x) = p(y|x, i)p(i|x)+ p(y|x,o)p(o|x) = p(y|x, i)p(x|i)p(i)+ p(y|x,o)p(x|o)p(o)
p(x|i)p(i)+ p(x|o)p(o)

. (5.1)

At first it might seem strange to have a conditional distribution p(y|x,o) for out-distribution
data, but until now we have made no assumptions about what in-and out-distribution are.
A realistic scenario would be that at test time we are presented with instances x from other
classes (out-distribution) for which we expect a close to uniform p(y|x,o). Recall that we have
already shown in Chapter 3 that a Bayes optimal OE model indeed makes this assumption.
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Our model for p̂(y|x) has the same form as p(y|x)

p̂(y|x) = p̂(y|x, i)p̂(x|i)p̂(i)+ p̂(y|x,o)p̂(x|o)p̂(o)
p̂(x|i)p̂(i)+ p̂(x|o)p̂(o)

. (5.2)

Typically, out-distribution data has no relation to the actual task and thus we would like to
have uniform confidence over the classes. Therefore in our model we set

p̂(y|x,o) = 1
K

and p̂(y|x, i) = e fy(x)

∑
K
k=1 e fk(x)

, y ∈ {1, . . .K}, (5.3)

where f : Rd→RK is the classifier function (logits). This framework is generic for classifiers
trained with the cross-entropy (CE) loss (as the softmax function is the correct link function
for the CE loss) and in particular we focus on neural networks. As described in Section 1.2.2,
for a ReLU network the classifier function f is componentwise a continuous piecewise affine
function and has been shown to produce asymptotically arbitrarily highly confident predic-
tions, i.e. the classifier gets more confident in its predictions the further it moves away from
its training data. One of the main goals of our technique is to fix this behavior of neural
networks in a provable way.

Note that with the choice of p̂(y|x,o) and non-zero priors for p̂(i), p̂(o), the full model
p̂(y|x) can be seen as a calibrated version of p̂(y|x, i), where p̂(y|x)≈ p̂(y|x, i) for inputs with
p̂(x|i)� p̂(x|o) and p̂(y|x)≈ 1

K if p̂(x|i)� p̂(x|o). However, note that only the confidence in
the prediction p̂(y|x) is affected, the classifier decision is still done according to p̂(y|x, i) as the
calibration does not change the ranking. Thus even if the OOD data came from the classifica-
tion task we would like to solve, the trained classifier’s performance would be unaffected, only
the confidence in the prediction would be damped. For the marginal out-distribution p̂(x|o)
we will make the same assumption as in most of the previous chapters and use 80 million tiny
image dataset (Torralba et al., 2008) as a proxy of all possible images. Thus we estimate the
density of p̂(x|o) using this data.

In order to obtain guarantees, the employed generative models for p̂(x|i) and p̂(x|o) have
to be chosen in a way that allows one to control predictions far away from the training data.
Variational autoencoders (VAEs) (Kingma and Welling, 2014; Rezende et al., 2014), nor-
malizing flows (Dinh et al., 2016; Kingma and Dhariwal, 2018) and generative adversarial
networks (GANs) (Goodfellow et al., 2014) are powerful generative models. However, there
is no direct way to control the likelihood far away from the training data. Moreover, it has
been discovered that VAEs, flows and GANs also predict high likelihoods (Nalisnick et al.,
2019; Hendrycks et al., 2019a) far away from the data they are supposed to model as well as
adversarial samples (Kos et al., 2017).

For p̂(x|o) and p̂(x|i) we use a Gaussian mixture model (GMM) which is far less power-
ful than deep learning based models but has the advantage that the density estimates can be
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controlled far away from the training data:

p̂(x|i) =
Ki

∑
k=0

αk exp
(
−d(x,µk)

2

2σ2
k

)
, p̂(x|o) =

Ko

∑
l=0

βl exp
(
−d(x,νl)

2

2θ 2
l

)
, (5.4)

where Ki,Ko ∈N are the number of centroids and d : Rd×Rd → R is the metric

d(x,y) = ‖C−
1
2 (x− y)‖2, (5.5)

with C being a positive definite matrix and

αk =
1
Ki

1

(2πσ2
k detC)

d
2
, βl =

1
Ko

1

(2πθ 2
l detC)

d
2
. (5.6)

We later fix C as the regularized covariance matrix of the in-distribution data (see Section
5.3 for details). Thus one just has to estimate the centroids µk,νl and the variances σ2

k ,θ
2
l .

The idea of this metric is to use distances adapted to the data-distribution. Note that (5.4) is a
properly normalized density in Rd .

5.2.2 Maximum likelihood estimation

Given models for p̂(y|x) and p̂(x) we effectively have a full generative model and apply max-
imum likelihood estimation to get the underlying classifier p̂(y|x, i) and the parameters of
the Gaussian mixture models p̂(x|i), p̂(x|o). The only free parameter left is the probability
p̂(i), p̂(o) which, as in the previous chapters, we compactly write as λ = p̂(o)

p̂(i) . In our experi-
ments we fix it to λ = 1. Our loss is therefore:

E
(x,y)∼p(x,y)

log
(

p̂(y,x)
)
= E

(x,y)∼p(x,y)
log
(

p̂(y|x)
)
+ log(p̂(x)),

= E
(x,y)∼p(x,y)

log

(
p̂(y|x, i)p̂(x|i)p̂(i)+ 1

K p̂(x|o)p̂(o)
p̂(x|i)p̂(i)+ p̂(x|o)p̂(o)

)
+ log

(
p̂(x|i)p̂(i)+ p̂(x|o)p̂(o)

)
.

(5.7)

In practice, we have to compute empirical expectations from finite training data from the
in-distribution (xi,yi)

N
i=1 and out-distribution (z j)

M
j=1. Labels for the out-distribution could

be generated randomly via p(y|x,o) = 1
K , but we obtain an unbiased estimator with lower

variance by averaging over all classes directly, as was done in Lee et al. (2017); Hein et al.
(2019); Hendrycks et al. (2019a). Now we can estimate the classifier f and the mixture model

62



5.2 Certified low confidence far away from the training data

parameters µ,ν ,σ ,θ via

argmax
f ,µ,ν ,σ ,θ

{
1
N

N

∑
i=1

log
(

p̂(yi|xi)
)
+

λ

M

M

∑
j=1

1
K

K

∑
y=1

log
(

p̂(y|z j)
)

+
1
N

N

∑
i=1

log(p̂(xi))+
λ

M

M

∑
j=1

log(p̂(z j))

}
, (5.8)

with

p̂(y|x) =
p̂(y|x, i)p̂(x|i)+ λ

K p̂(x|o)
p̂(x|i)+λ p̂(x|o)

and p̂(x) =
1

λ +1

(
p̂(x|i)+λ p̂(x|o)

)
. (5.9)

Due to the bounds derived in Section 5.2.3, we denote our method by Certified Certain
Uncertainty (CCU). Neglecting the terms for p̂(x) we recover OE.The key difference in this
approach is that p̂(y|x) 6= p̂(y|x, i) and the estimated densities for in- and out distribution p̂(x|i)
and p̂(x|o) lead to a confidence calibration of p̂(y|x), and in turn the fit of the classifier influ-
ences the estimation of p̂(x|i) and p̂(x|o). The major advantage of our model is that we can
give guarantees on the confidence of the classifier decision far away from the training data.

5.2.3 Proofs of close to uniform predictions far away from data
In this section we provide two types of guarantees on the confidence of a classifier trained
according to our model in (5.8). The first one says that the classifier has provably low con-
fidence far away from the training data, where an explicit bound on the minimal distance
is provided, and the second provides an upper bound on the confidence in a ball around a
given input point. The latter bound resembles robustness guarantees for adversarial samples
(Hein and Andriushchenko, 2017; Wong and Kolter, 2018; Raghunathan et al., 2018a; Mirman
et al., 2018) and is going to enable us to compute lower bounds on the WCAUC introduced in
Eq. (4.3).

We provide our bounds for a more general mixture model which includes our GMM in (5.4)
as a special case. To our knowledge, these are the first such bounds for neural networks and
thus it is the first modification of a ReLU neural network so that it provably “knows when
it does not know” (Hein et al., 2019) in the sense that far away from the training data the
predictions are close to uniform over the classes.

Theorem 3. Let (xi,yi)
N
i=1 be the training set of the in-distribution and let the model for the

conditional probability be given as

∀x ∈ Rd, y ∈ {1, . . . ,K}, p̂(y|x) =
p̂(y|x, i)p̂(x|i)+ λ

K p̂(x|o)
p̂(x|i)+λ p̂(x|o)

, (5.10)

where λ = p̂(o)
p̂(i) > 0 and let the model for the marginal density of the in-distribution p̂(x|i) and
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out-distribution p(x|o) be given by the generalized GMMs

p̂(x|i) =
Ki

∑
k=0

αk exp
(
−d(x,µk)

2

2σ2
k

)
, p̂(x|o) =

Ko

∑
l=0

βl exp
(
−d(x,νl)

2

2θ 2
l

)
(5.11)

with αk,βl > 0 and µk,νl ∈Rd ∀k = 1, . . .Ki, l = 1, . . . ,Ko and d : Rd×Rd→R+ a metric.
Let z ∈ Rd and define

k∗ = argmin
k=1,...,Ki

d(z,µk)

σk
i∗ = argmin

i=1,...,N
d(z,xi) (5.12)

l∗ = argmin
l=1,...,Ko

βl exp
(
−d(z,νl)

2

2θ 2
l

)
∆ =

θ 2
l∗

σ2
k∗
−1. (5.13)

For any ε > 0, if minl θl > maxk σk and

min
i=1,...,N

d(z,xi)≥ d(xi∗,µk∗)+d(µk∗ ,νl∗)
[ 2

∆
+

1√
∆

]
+

θl∗√
∆

√
log
(

K−1
ε λ

∑k αk

βl∗

)
, (5.14)

then it holds for all y ∈ {1, . . . ,K} that

p̂(y|z)≤ 1
K

(
1+ ε

)
. (5.15)

In particular, if mini d(z,xi)→ ∞, then p̂(y|z)→ 1
K .

Proof. The proof essentially hinges on upper bounding p̂(z|i)
p̂(z|o) using the specific properties of

the Gaussian mixture model. We note that

p̂(y|x) =
p̂(y|x, i)p̂(x|i)+ λ

K p̂(x|o)
p̂(x|i)+λ p̂(x|o)

=
1
K

1+ K
λ

p̂(x|i)
p̂(x|o)

1+ 1
λ

p̂(x|i)
p̂(x|o)

≤ 1
K

(
1+

K−1
λ

p̂(x|i)
p̂(x|o)

)
(5.16)

The last step holds because the function g(ξ ) = 1+Kξ

1+ξ
is monotonically increasing

∂g
∂ξ

=
K−1

(1+ξ )2 and
∂ 2g
∂ξ 2 =−2

K−1
(1+ξ )3 . (5.17)

As the second deriviative is negative for ξ ≥ 0, g is concave for ξ ≥ 0 and thus

1+Kξ

1+ξ
= g(ξ )≤ g(0)+

∂g
∂ξ

∣∣∣
ξ=0

(ξ −0) = 1+(K−1)ξ . (5.18)

In order to achieve the required result we need to show that K−1
λ

p̂(x|i)
p̂(x|o) ≤ ε for x sufficiently far
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away from the training data.

We note that

p̂(x|i)
p̂(x|o)

=
∑k αk exp

(
−d(x,µk)

2

2σ2
k

)
∑l βl exp

(
−d(x,νl)2

2θ 2
l

) ≤ maxk exp
(
−d(x,µk)

2

2σ2
k

)
∑k αk

maxl βl exp
(
−d(x,νl)2

2θ 2
l

) (5.19)

=
∑k αk

βl∗
exp
(
−d(x,µk∗)

2

2σ2
k∗

+
d(x,νl∗)

2

2θ 2
l∗

)
(5.20)

where k∗ = argmink
d(x,µk)

2

2σ2
k

and l∗ = argminl βl exp(−d(x,νl)
2

2θ 2
l

). Using triangle inequality,

d(x,νl∗)≤ d(x,µk∗)+d(µk∗,νl∗), we get the desired condition as

∑k αk

βl∗
exp
(
−d(x,µk∗)

2
(

1
2σ2

k∗
− 1

2θ 2
l∗

)
+

d(µk∗,νl∗)d(x,µk∗)

θ 2
l∗

+
d(µk∗,νl∗)

2

2θ 2
l∗

)
≤ ε λ

K−1
(5.21)

Thus we get with a =
( 1

2σ2
k∗
− 1

2θ 2
l∗

)
, b = d(µk∗ ,νl∗)

θ 2
l∗

and c = d(µk∗ ,νl∗)
2

2θ 2
l∗

, d = log
(

ε λ

K−1
βl∗

∑k αk

)
, the

quadratic inequality

−d(x,µk∗)
2a+d(x,µk∗)b+

b2

2
≤ d, (5.22)

where d < 0 for sufficiently small ε . We get the solution

d(x,µk∗)≥
b

2a
+

√
max

{
0,

c−d
a

+
b2

4a2

}
. (5.23)

It holds, using
√

a+b≤
√

a+
√

b for a,b > 0,

b
2a

+
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+
b2
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}
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a
+

√
c
a
+

√
−d
a

. (5.24)

One can simplify

b
a
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(5.25)

c
a
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θ 2
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=
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θ 2
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(5.26)
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Noting that d(x,µk∗)≥ |d(x,xi∗)−d(xi∗,µk∗)| we get that

d(x,xi∗)≥ d(xi∗,µk∗)+
b

2a
+

b
a
+

√
c
a
+

√
−d
a

,

implies K−1
λ

p̂(x|i)
p̂(x|o) ≤ ε . The last statement follows directly by noting that by assumption a > 0

(independently of the choice of l∗ and k∗) and b,c,d(xi∗,µk∗) are bounded as Ki,Ko,N are

finite. With ∆ =
θ 2

l∗
σ2

k∗
−1 we can rewrite the required condition as

d(x,xi∗)≥ d(xi∗ ,µk∗)+d(µk∗,νl∗)
[ 2

∆
+

1√
∆

]
+

θl∗√
∆

√
log
(

M−1
ε λ

∑k αk

βl∗

)
. (5.27)

Theorem 3 holds for any multi-class classifier which for each input defines a probability
distribution over the labels. Given the parameters of the GMM’s it quantifies at which distance
of an input z to the training set the classifier achieves close to uniform confidence. The theorem
holds even if we use ReLU classifiers which in their unmodified form have been shown to
produce arbitrarily high confidence far away from the training data (Hein et al., 2019). This is
a first step towards neural networks which provably know when they don’t know.

In the next corollary, we provide an upper bound on the confidence over a ball around a
given data point. This allows to give “confidence guarantees” for a whole volume and thus is
much stronger than the usual pointwise evaluation of OOD methods.

Corollary 2. Let x0 ∈ Rd and R > 0, then with λ = p̂(o)
p̂(i) it holds

max
d(x,x0)≤R

p̂(y|x) ≤ 1
K

1+K b
λ

1+ b
λ

, (5.28)

where b =
∑

Ki
k=1 αk exp

(
−max{d(x0,µk)−R,0}2

2σ2
k

)
∑

Ko
l=1 βl exp

(
− (d(x0,νl )+R)2

2θ2
l

) .

Proof. From the previous section we already know that p̂(y|x)≤ 1
K

1+K b
λ

1+ b
λ

as long as p(x|i)
p(x|o) ≤ b.

Now we can separately bound the numerator and denominator within a ball of radius R around
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x0. For the numerator we have

max
d(x,x0)≤R

p̂(x|i)≤
Ki

∑
k=1

αk max
d(x,x0)≤R

e
− d(x,µk)
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2σ2
k (5.29)

≤
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k=1

αk exp

(
−(max{d(µk,x0)−R,0})2

2σ2
k

)
, (5.30)

where we have lower bounded mind(x,x0)≤R d(x,µk) via the reverse triangle inequality

min
d(x,x0)≤R

d(x,µk)≥ min
d(x,x0)≤R

|d(x0,µk)−d(x,x0)|,
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{

min
d(x,x0)≤R

(d(x0,µk)−d(x0,µk)),0
}
,

≥max{d(x0,µk)− r,0} . (5.31)

The denominator can similarly be bounded via
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≥
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. (5.33)

With both of these bounds in place the conclusion immediately follows.

In Section 5.3 we show that even though OOD methods achieve low confidence on noise
images, the maximization of the confidence in a ball around a noise point (adversarial noise)
yields high confidence predictions for OOD methods, whereas our classifier has provably low
confidence, as certified by Corollary 2. In fact, we can use Corollary 2 to compute lower
bounds on the worst-case AUC defined in Eq. (4.3). Recall that the WCAUC with respect to
some metric d(·, ·) is defined as:

WCAUCh(p1, p2) = E
x∼p1
z∼p2

[
1h(x)> max

d(z′,z)≤ε

h(z′)

]
, (5.34)

where, in the case of CCU, the scoring function is the confidence, i.e. h(x) = maxy p̂(y|x).
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Since we are able to derive upper bounds on the confidence around OOD samples, we can
compute lower bounds on the WCAUC, which we call the Guaranteed AUC or GAUC.

5.3 Experiments

We evaluate the worst-case performance of various OOD detection methods within regions for
which CCU yields guarantees and by standard OOD using MNIST (LeCun et al., 1998), Fash-
ionMNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), CIFAR10 and CIFAR100 (Krizhevsky
and Hinton, 2009) as in-distributions. As baselines we use the same methods that we described
in Section 2.2. Recall that for calibrating those methods’ hyperparameters, we use the 80 Mil-
lion Tiny Images (Torralba et al., 2008) dataset as out-distribution for a fair comparison. We
show that all baselines yield undesired high confidence predictions in regions around uniform
noise points for which CCU can certify low confidence. Our code is available on github.1

5.3.1 Training

For CCU, unless specified otherwise we use ADAM on MNIST with a learning rate of 1e−3
and SGD with learning rate 0.1 for the other datasets. The learning rate for the GMM is always
set to 1e−5. We decrease all learning rates by a factor of 10 after 50, 75 and 90 epochs. Our
batch size is 128, the total number of epochs 100 and weight decay is set to 5e−4. We also pick
equal batches of in- and out-distribution data (corresponding to p(i) = p(o)) and concatenate
them into a batches of size 256. Note that during the 100 epochs only a fraction of the 80
million tiny images are seen and so there is no risk of overfitting.

Our data augmentation scheme uses random crops with a padding of 2 pixels on MNIST
and FMNIST. On SVHN, CIFAR10 and CIFAR100 the padding width is 4 pixels. For SVHN
we fill the padding with the value at the boundary and for CIFAR we apply reflection at the
boundary pixels. On top of this we include random horizontal flips on CIFAR. For MNIST and
FMNIST we generate 60000 such samples and for SVHN and CIFAR 50000 samples by draw-
ing from the clean dataset without replacement. This augmented data is used to calculate the
covariance matrix from (5.35). During the actual training we use the same data augmentation
scheme in a standard fashion.

For the Gaussian mixture models, we have to select a specific distance metric. As the Eu-
clidean metric is known to be a relatively bad distance between two images we instead use the
distance d(x,y) = ‖C− 1

2 (x−y)‖, where C is generated as follows. We calculate the covariance
matrix C′ on augmented in-distribution samples. Let (λi,ui)

d
i=1 be the eigenvalues/eigenvec-

tors of C′. Then we set

C =
d

∑
i=1

max{λi,10−6 max
j

λ j}uiuT
i , (5.35)

1https://github.com/AlexMeinke/certified-certain-uncertainty
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Figure 5.2: Adversarial Noise: We maximize the confidence of the OOD methods using PGD
in the ball around a uniform noise sample (seed images, left) on which CCU is guaranteed to
yield less than 1.1 1

K maximal confidence by Corollary 2. For each OOD method we report the
image with the highest confidence. Maha and MCD use scores where lower is more confident
(indicated by ∗). If we do not find a sample that has higher confidence/lower score than the
median of the in-distribution, we highlight this in boldface. All other OOD methods fail on
some dataset, see Table 5.1 for a quantitative version. ODIN at high temperatures always
returns low confidence, so a value of 0.1 is not informative.

that is we fix a lower bound on the smallest eigenvalue so that C has full rank. In Hendrycks
and Gimpel (2017b) a similar metric has been used for detection of adversarial images. We
choose Ki = Ko = 100 as the number of centroids for the GMMs. We initialize the in-GMM
on augmented in-data using the EM algorithm with spherical covariance matrices in the trans-
formed space, as in (5.4). For the out-distribution we use a subset of 20000 points for the
initialization. While, initially it holds that ∀k, l : σk < θl , as required in Theorem 3, this is not
guaranteed during the optimization of (5.8). Thus, we enforce the constraint during training by
setting: θl 7→max{θl,2maxk σk} at every gradient step. Since the “classifier” and “density”
terms in (5.8) have very different magnitudes we choose a small learning rate of 1e−5 for the
parameters in the GMMs. It is also crucial to not apply weight decay to these parameters. The
other hyperparameters are chosen as in the base model below.

5.3.2 Certified robustness against adversarial noise

We sample uniform noise images as they are obviously out-distribution for all tasks and, using
Corollary 2, certify the largest ball around the uniform noise sample on which CCU attains at
most 1.1· uniform confidence, that is 1.1% on CIFAR100 and 11% on all other datasets. Since
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Chapter 5 Towards neural networks that provably know when they don’t know

Table 5.1: Worst-case performance of different OOD detections methods in neighborhoods
around uniform noise points certified by CCU. We report the clean test error (TE) on the in-
distribution (GAN and MCD use VGG). The success rate (SR) is the fraction of adversarial
noise points for which the confidence/score inside the ball is higher than the median of the
in-distribution’s confidence/score. The AUC quantifies detection of adversarial noise versus
in-distribution. All values in %.

Base MCD EDL DE GAN ODIN Maha ACET OE CCU

M
N

IS
T TE 0.5 0.4 0.4 0.4 0.8 0.5 0.9 0.6 0.7 0.6

SR 100.0 99.0 100.0 100.0 43.5 100.0 100.0 0.0 100.0 0.0
AUC 1.4 8.6 0.0 7.3 54.4 0.0 11.7 100.0 35.2 100.0

FM
N

IS
T TE 4.8 5.8 5.2 4.9 5.7 4.8 4.8 4.8 5.7 4.9

SR 100.0 72.5 100.0 100.0 99.0 100.0 100.0 0.0 100.0 0.0
AUC 0.0 47.1 0.0 0.4 39.5 0.0 18.8 100.0 35.7 100.0

SV
H

N TE 2.9 3.9 3.1 2.4 4.2 2.9 2.9 3.2 4.1 3.0
SR 100.0 73.5 100.0 100.0 0.0 100.0 100.0 3.0 100.0 0.0
AUC 0.0 34.1 0.0 0.0 100.0 0.0 0.0 96.5 0.0 100.0

C
IF

A
R

10 TE 5.6 11.7 7.0 6.7 11.7 5.6 5.6 6.1 4.7 5.8
SR 100.0 90.5 100.0 100.0 100.0 100.0 100.0 0.0 100.0 0.0
AUC 0.0 23.9 0.0 0.0 25.3 0.0 0.0 99.9 0.0 100.0

C
IF

A
R

10
0

TE 23.3 45.3 31.1 27.5 43.8 23.3 23.2 25.2 24.7 25.9
SR 100.0 100.0 100.0 100.0 89.5 100.0 100.0 3.5 100.0 0.0
AUC 0.1 17.3 0.0 0.2 15.3 0.0 0.0 95.8 2.5 100.0
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5.3 Experiments

Corollary 2 does not explicitly give a radius, one has to numerically invert the bound. Note
that the bound

b(R) =
∑

Ki
k=1 αk exp

(
−max{d(x0,µk)−R,0}2

2σ2
k

)
∑

Ko
l=1 βl exp

(
− (d(x0,νl)+R)2

2θ 2
l

) (5.36)

is monotonically increasing in R. Thus, for a given sample x0 one can fix a desired bound
maxd(x,x0)≤R p̂(x|i) ≤ 1

K ν , where ν ∈ (1,K) and then uniquely solve

b(R) =
ν−1
K−ν

λ (5.37)

for R via bisection. This radius R̂ will then represent the maximal radius, that one can certify
using Corollary 2. The presumption is, of course, that for R = 0 one has a sufficiently low
bound in the first place, i.e. that a solution exists. In our experiments on uniform noise we did
not encounter a single counterexample to this assumption. However, for more difficult OOD
samples, we did not find any points that were certifiable in this way. Note that, in principle, it
could be possible that the certified balls are in a sense too large, i.e. that they contain training
or test images. In the following section we will show that this is not the case.

5.3.3 Generating adversarial noise

We construct adversarial noise samples for all OOD methods by maximizing the respective
scoreing function via a PGD attack with 500 steps and 50 random restarts on this ball. We
begin with a step size of 3 and for each of the 50 restarts we randomly initialize at some point in
the ellipsoid. Whenever a gradient step successfully decreases the losses we increase the step
size by a factor of 1.1. Whenever the loss increases instead we use backtracking and decrease
the step size by a factor of 2. We apply normal PGD using the l2-norm in the transformed
space to ensure that we stay on the ellipsoid and after each gradient step we transform back
into the original space to project onto the box [0,1]d . The result is not guaranteed to lie within
the ellipsoid so after the 500 steps we use the alternating projection algorithm (Bauschke and
Borwein, 1996) for 10 steps which is guaranteed to converge to a point in the intersection of
the ellipsoid and the box because both of these sets are convex.

In Table 5.1 we show the results of running this attack on the different models. We use 200
noise images and we report clean test error on the in-distribution, the success rate (SR) (frac-
tion of adversarial noise points for which the OOD detection score inside the ball is higher
than the median of the in-distribution’s score) and the AUC for the separation of the generated
adversarial noise images and the in-distribution based on score. By construction (see Corol-
lary 2) our method provably makes no overconfident predictions but we nevertheless run the
attack on CCU as well. We note that only CCU performs perfectly on this task for all datasets
- all other OOD methods fail at least on one datasets, most of them on all. We also see that
ACET achieves very robust performance which may be expected as it does some kind of ad-
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Table 5.2: Lowest confidence that CCU attains on the test set (in percent) as well as total
number of test points on which confidence is lower than our imposed bound of 1.1

K .

min p(y|x) # < 1.1
M % < 1.1

M
MNIST 33.08 0 0
FMNIST 28.77 0 0
SVHN 10.02 20 0.08
CIFAR10 10.01 529 5.29
CIFAR100 1.03 130 1.30

versarial training for OOD detection. Nevertheless high-confidence adversarial noise images
for ACET can be found on SVHN, CIFAR10 and CIFAR100 and ACET has no guarantees.
We illustrate the generated adversarial noise images for all methods in Figure 5.2.

As one can observe in Figure 5.2 the images which maximize the confidence in the certified
ball around the uniform noise image are sometimes quite far away from the original noise
image. As CCU certifies low confidence (the maximal confidence is less than 1.1× 1

K - so
the predicted probability distribution over the classes is very close to the uniform distribution)
over the whole ball, it is a natural question what these balls look like and what kind of images
they contain. In particular, it is in general not desired that the certified balls contain images
from the training and test set. For each dataset we certified balls around 200 uniform noise
images and for each of the certified balls we check if it contains training or test images of the
corresponding dataset. We found that even though the certified balls are large, not a single
training or test image was contained in any of them. This justifies the use of our proposed
threat model.

A different potential problem for our defined threat model could be that our threshold of 1.1
K

for the certification is too high and that many predictions on the test set have confidence less
than this threshold. For this purpose, in Table 5.2, we report the smallest predicted confidence
of CCU on the test set T , that is

min
x∈T

max
y∈{1,...,K}

p̂(y|x), (5.38)

for each dataset and the total number of test samples where the confidence is below 1.1
K . While

for MNIST and FMNIST, this never happens, and for SVHN this is negligible (less than 0.1%
of the test set), for CIFAR10 and CIFAR100 this happens in 5.3% resp. 1.3% of the cases.

In theory, this could impair our AUC value for the detection of adversarial noise. However,
in practice our bound for the confidence is quite conservative as the bound is only tight in very
specific configurations of the centroids of the Gaussian mixture model which are unlikely to
happen for any practical dataset, meaning that the actual maximal confidence in the certified
region is typically significantly lower. In fact the AUC values of CCU are always 100% which
means that for all 200 certified balls the maximal value of the confidence of CCU in any
of these balls (found by our PGD attack algorithm) is lower than the minimal confidence of

72



5.4 Conclusion

all predictions on the test set as reported in Table 5.2. On the other hand assuming a worst
case scenario in the sense that we assume that the upper bound of the maximal confidence is
attained in all 200 certified balls, then the (certified) AUC value would be: 99.92% for SVHN,
94.71% for CIFAR10, and 98.70% for CIFAR100. Note that this theoretical lower bound on
our performance is still better than all other models’ empirical performance on this task, as
reported in Table 5.1 on both CIFAR10 and CIFAR100, and only marginally below the perfect
AUC of ACET and GAN on SVHN.

In order to ensure that CCU does not degrade our clean OOD detection performance, we
also evaluate it on the same test out-distributions described in Chapter 2. We show these
results in Table 5.3 where, for the reader’s convenience, we have also repeated the results of
all baselines from Chapter 2. The table shows that CCU does not perform worse than OE,
thus enabling us to give non-trivial guarantees without harming clean performance. In fact,
comparing Table 5.1 and Table 5.3 we see that most models perform well when evaluating on
uniform noise but fail when finding the worst case in a small neighborhood around the noise
point.

5.4 Conclusion
In this chapter we have shown how to provably solve the issue of asymptotically overconfident
predictions by combining our classifier with Gaussian mixture models. This change in archi-
tecture then also allowed us to derive guarantees for adversarially robust detection of OOD
samples in a very specific threat model. We showed that these guarantees are, in fact, non-
trivial, because they contain points that all of our baselines’ scoring functions would assign
high scores to. Crucially, CCU’s guarantees did not degrade either our model’s OOD detection
performance nor its accuracy.

Recent developments: The issue of asymptotic overconfidence has been further studied in
Kristiadi et al. (2020), where the authors use a Bayesian approach to achieve asymptotically
low confidence. Furthermore, in Kristiadi et al. (2021) they show how to mitigate far-away
overconfidence in Bayesian neural networks. A different approach has been suggested in Liu
et al. (2022), where they incorporate spectral normalization and a Gaussian process layer into
deep classifiers which they prove also achieves asymptotically uniform confidence far from
all training data. Finally, there has been more work on worst-case OOD detection, which we
will discuss in the following chapters.
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Table 5.3: Extension of Table 2.1. All numbers except for CCU are just repeated for the
reader’s convenience. AUC (in- versus out-distribution detection based on confidence/score)
in percent for different OOD methods and datasets (higher is better). CCU’s OOD perfor-
mance is generally comparable to OE’s.

Base MCD EDL DE GAN ODIN Maha ACET OE CCU

M
N

IS
T

FMNIST 97.4 93.1 99.3 99.2 99.4 98.7 96.8 100.0 99.9 99.9
EMNIST 89.2 82.0 89.0 92.1 92.8 88.9 91.6 95.0 95.8 92.0
GrCIFAR10 99.7 94.7 99.7 100.0 99.1 99.9 98.7 100.0 100.0 100.0
Noise 100.0 95.2 99.9 100.0 99.3 100.0 97.2 100.0 100.0 100.0
Uniform 95.2 87.9 99.9 97.9 99.9 98.2 100.0 100.0 100.0 100.0

FM
N

IS
T MNIST 96.7 82.7 94.5 96.7 99.9 99.0 96.7 96.4 96.3 97.8

EMNIST 97.5 87.3 95.6 97.1 99.9 99.3 97.5 97.6 99.3 99.5
GrCIFAR10 91.0 92.3 84.0 86.1 85.3 93.0 98.2 96.2 100.0 100.0
Noise 97.3 94.0 95.6 97.4 98.9 98.9 98.9 97.8 100.0 100.0
Uniform 96.9 93.3 95.6 98.3 93.2 98.8 99.1 100.0 97.6 100.0

SV
H

N

CIFAR10 95.4 91.9 95.9 97.9 96.8 95.9 97.1 95.2 100.0 100.0
CIFAR100 94.5 91.4 95.6 97.6 96.1 94.8 96.7 94.8 100.0 100.0
LSUN CR 95.6 92.0 95.3 97.9 99.0 96.5 97.2 97.1 100.0 100.0
Imagenet- 94.7 91.8 95.7 97.7 97.8 95.1 96.8 97.3 100.0 100.0
Noise 96.4 93.1 97.1 98.2 96.2 82.7 98.0 95.8 97.8 97.4
Uniform 96.8 93.1 96.5 95.6 100.0 97.9 97.8 100.0 100.0 100.0

C
IF

A
R

10

SVHN 95.8 81.9 92.3 90.3 83.9 96.7 91.5 93.7 98.8 98.2
CIFAR100 87.3 78.6 87.3 88.2 82.9 87.5 82.8 86.9 95.3 94.2
LSUN CR 91.9 81.3 90.8 92.0 89.9 93.3 89.2 91.2 98.6 98.2
Imagenet- 87.5 78.4 88.2 87.7 84.0 88.1 84.1 86.5 94.7 93.3
Noise 96.5 79.9 88.9 90.3 81.8 97.6 94.4 94.8 97.3 97.0
Uniform 96.8 81.0 89.9 96.6 73.0 98.8 100.0 100.0 98.8 100.0

C
IF

A
R

10
0 SVHN 78.8 59.2 80.4 83.2 75.9 81.3 77.5 73.9 93.5 94.2

CIFAR10 78.6 58.9 73.3 76.3 69.3 79.5 59.9 77.2 81.6 80.2
LSUN CR 81.0 59.4 74.2 81.6 79.8 81.4 79.7 78.0 95.4 95.9
Imagenet- 80.8 59.2 76.0 78.2 73.9 81.3 70.8 79.5 83.8 81.4
Noise 73.4 58.7 65.9 67.5 73.6 76.8 90.6 62.9 86.9 94.6
Uniform 93.3 62.0 29.8 36.6 100.0 93.5 94.3 100.0 99.1 100.0
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Chapter 6

Interval Bound Propagation for robust
OOD Detection
This chapter is based on (Bitterwolf et al., 2020) which was published at NeurIPS 2020. Both
Julian Bitterwolf and I independently came up with the idea of using interval bound propaga-
tion for robust OOD detection. Julian Bitterwolf carried out the many experiments that were
needed to find a stable training schedule for the method and he was the primary author of the
paper. Matthias Hein provided general guidance and in-depth discussions. Matthias Hein and
I assisted in the writing of the paper. I also carried out the evaluations of the adversarial AUCs
for all models and investigated the properties of the method on MNIST vs. EMNIST.

6.1 Introduction
In the previous chapter we have seen that combining Gaussian mixture models and a classi-
fier in a specific way not only guarantees that the confidence of the joint model will be low
far away from the training data, but also implies concrete guarantees on the adversarial ro-
bustness the model’s confidence on OOD data. We also showed that these guarantees were
actually meaningful because the baseline models produced overconfident predictions within
the regions that our CCU could certify. Unfortunately, there were still many limitations: i)
The certificates could only be obtained around uniform noise points but not on more challeng-
ing out-distributions that are more similar to the in-distribution. ii) The threat model that we
could certify was highly non-standard. In a sense, we basically cherry-picked the threat model
to be precisely what we could certify rather than certifying an existing threat model. In this
chapter we will present a technique that overcomes these limitations, by dropping our require-
ments that the classifier’s network architecture be arbitrary and that the model’s confidence be
provably uniform far from the training data.

Thus, we aim to provide worst-case OOD guarantees not only for noise but also for images
from related but different image classification tasks. For this purpose we use the techniques
from interval bound propagation (IBP) (Gowal et al., 2018) to derive a provable upper bound
on the maximal confidence of the classifier in an l∞-ball of radius ε around a given point. By
minimizing this bound on the out-distribution using our training scheme GOOD (Guaranteed
Out-Of-distribution Detection) we arrive at the first models which have guaranteed low confi-
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CCU: 99%
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guarantees
Conf < 22.7%

Figure 6.1: Overconfident predictions on out-distribution inputs. Left: On the in-
distribution CIFAR10 all methods have similar high confidence on the image of a dog. Mid-
dle: For the out-distribution image of a chimpanzee from CIFAR100 the plain model is over-
confident while an out-distribution aware method like OE produces low confidence. Right:
When maximizing the confidence inside the l∞-ball of radius 0.01 around the chimpanzee im-
age (for the OE model), OE as well as CCU become overconfident (right image). ACET and
our GOOD80 perform well in having empirical low confidence, but only GOOD80 guarantees
that the confidence in the l∞-ball of radius 0.01 around the chimpanzee image (middle im-
age) is less than 22.7% for any class (note that 10% corresponds to maximal uncertainty as
CIFAR10 has 10 classes).

dence even on near out-distributions; e.g., we get state-of-the-art results on separating letters
from EMNIST from digits in MNIST even though the digit classifier has never seen any im-
ages of letters at training time. In particular, the guarantees for the training out-distribution
generalize to other out-distribution datasets. In contrast to classifiers which have certified
adversarial robustness on the in-distribution, GOOD has the desirable property of achieving
provable guarantees for OOD detection with almost no loss in accuracy on the in-distribution
task compared to plain models with the same architecture, even on datasets like CIFAR10.

6.2 IBP for OOD

Our goal is to minimize the confidence of the classifier not only on the out-distribution images
themselves but in a whole neighborhood around them. For this purpose, we first derive bounds
on the maximal confidence on some l∞-ball around a given point. In certified adversarial
robustness, IBP (Gowal et al., 2018) currently leads to the best guarantees for deterministic
classifiers under the l∞-threat model. While other methods for deriving guarantees yield tighter
bounds (Wong and Kolter, 2018; Mirman et al., 2018), they are not easily scalable and, when
optimized, the bounds given by IBP have been shown to be very tight (Gowal et al., 2018).

Recall from Section 1.3.2 that Interval Bound Propagation (IBP) (Gowal et al., 2018) pro-
vides entrywise lower and upper bounds x(l) resp. x(l) for the output x(l) of the l-th layer of an
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L-layer neural network, given upper and lower bounds on the previous layer’s outputs:

x(l) = σ

(
W (l)

+ x(l−1)+W (l)
− x(l−1)+b(l)

)
, (6.1)

x(l) = σ

(
W (l)

+ x(l−1)+W (l)
− x(l−1)+b(l)

)
. (6.2)

The recursion starts by assuming that the input x is varied in the l∞-ball of radius ε , i.e. x(0) =
x+ ε1 and x(0) = x− ε1. Note that the derivation in (Gowal et al., 2018) is slightly different,
but the bounds are the same. The forward propagation of the bounds is of similar nature as a
standard forward pass and back-propagation wrt the weights is straightforward.

6.2.1 Upper bound on the confidence in terms of the logits

The log confidence of the model at x can be written as

logConf(x) = max
k=1,...,K

log
e fk(x)

∑
K
l=1 e fl(x)

= max
k=1,...,K

− log
K

∑
l=1

e fl(x)− fk(x). (6.3)

Note that each x(l), x(l) and x(l) is actually a function of x = x(0) which we will write explicitly
in the derivation below. We assume that the last layer is affine: f (x) =W (L) ·x(L−1)+b(L). We
calculate the upper bounds of all K2 logit differences as:

max
‖x′−x‖∞≤ε

fk(x′)− f`(x′) = max
‖x′−x‖∞≤ε

W (L)
k,: · x

(L−1)(x′)+b(L)k −W (L)
`,: · x

(L−1)(x′)−b(L)`

= max
‖x′−x‖∞≤ε

(W (L)
k,: −W (L)

`,: ) · x(L−1)(x′)+b(L)k −b(L)`

≤
(

W (L)
k,: −W (L)

`,:

)
+
· x(L−1)(x)

+
(

W (L)
k,: −W (L)

`,:

)
−
· x(L−1)(x)+b(L)k −b(L)`

=: fk(x)− f`(x)

(6.4)

where W (L)
k,: denotes the k-th row of W (L). Note that this upper bound on the logit difference can

be negative and is zero for ` = k. Using this upper bound on the logit difference in Equation
(6.3), we obtain an upper bound on the log confidence:

max
‖x′−x‖∞≤ε

logConf(x′)≤ max
k=1,...,K

− log
K

∑
`=1

e−( fk(x)− f`(x)). (6.5)

We use the bound in (6.5) to evaluate the guarantees on the confidences for given out-distribution
datasets. However, minimizing it directly during training leads to numerical problems, espe-
cially at the beginning of training, when the upper bounds fk(x)− f`(x) are very large for
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` 6= k , which makes training numerically infeasible. Instead, we rather upper bound the log
confidence again by bounding the sum inside the negative log from below with K times its
lowest term:

max
k=1,...,K

− log
K

∑
`=1

e−( fk(x)− f`(x)) ≤ max
k=1,...,K

− log
(

K · min
`=1,...,K

e−( fk(x)− f`(x))
)

= max
k,`=1,...,K

fk(x)− f`(x)− logK.

(6.6)

While this bound can considerably differ from the potentially tighter bound of Equation (6.5),
it is often quite close as one term in the sum dominates the others. Moreover, both bounds
have the same global minimum when all logits are equal over the l∞-ball. We omit the constant
logK in the following as it does not matter for training.

Unfortunately, the direct minimization of the upper bound in (6.6) is still difficult, in par-
ticular for more challenging in-distribution datasets like SVHN and CIFAR10, as the bound
maxk,`=1,...,K fk(x)− f`(x) can be several orders of magnitude larger than the in-distribution
loss. Therefore, we use the logarithm of this quantity. However, we also want to have a
more fine-grained optimization when the upper bound becomes small in the later stage of the
training. Thus we define the Confidence Upper Bound loss LCUB for an OOD input as

LCUB(x;ε) := log


(

max
k,`=1,...,K

fk(x)− f`(x)
)2

2
+1

 , (6.7)

where we have omitted the implicit dependence on ε on the right-hand side. Note that for
small a log(a2

2 + 1) ≈ a2

2 and thus we achieve the more fine-grained optimization with an l2-
type of loss in the later stages of training which tries to get all upper bounds small. The overall
objective of fully applied Guaranteed OOD Detection training (GOOD100) is the minimization
of

1
N

N

∑
i=1
LCE(xi,yi)+

κ

M

M

∑
j=1
LCUB(z j;ε) , (6.8)

where, as in previous chapters, (xi,yi)
N
i=1 is the in-distribution training set and (z j)

M
j=1 the out-

distribution. The hyper-parameter κ determines the relative magnitude of the two loss terms.
During training we slowly increase this value and ε in order to further stabilize the training
with GOOD.
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6.2.2 Quantile-GOOD: trade-off between clean and guaranteed AUC

Training models by minimizing (6.8) means that the classifier gets severely punished if any
training OOD input receives a high confidence upper bound. If OOD inputs exist to which
the classifier already assigns high confidence without even considering the worst case, e.g.
as these inputs share features with the in-distribution, it makes little sense to enforce low
confidence guarantees. Later in the experiments we show that for difficult tasks like CIFAR10
this can happen. In such cases the normal AUC for OOD detection gets worse as the high
loss of the out-distribution part effectively leads to low confidence on a significant part of the
in-distribution which is clearly undesirable.

Hence, for OOD inputs x which are not clearly distinguishable from the in-distribution, it
is preferable to just have the “normal” loss LCUB(z j;0) without considering the worst case.
We realize this by enforcing the loss with the guaranteed upper bounds on the confidence
just on some quantile of the easier OOD inputs, namely the ones with the lowest guaran-
teed out-distribution loss LCUB(z;ε). We first order the OOD training set by the potential
loss LCUB(z;ε) of each sample in ascending order π , that is LCUB(zπ1) ≤ LCUB(zπ2) ≤ . . .≤
LCUB(zπM). We then apply the loss LCUB(z;ε) to the lower quantile q of the points (the
ones with the smallest loss LCUB(z;ε)) and take LCUB(z;0) for the remaining samples, which
means no worst-case guarantees on the confidence are enforced:

1
N

N

∑
i=1
LCE(xi,yi)+

κ

M

bq·Mc

∑
j=1
LCUB(zπ j ;ε)+

κ

M

M

∑
j=bq·Mc+1

LCUB(xπ j ;0) . (6.9)

During training we do this ordering on each batch consisting of out-distribution images. On
CIFAR10, where the out-distribution dataset 80M Tiny Images is closer to the in-distribution,
the quantile GOOD-loss allows us to choose the trade-off between clean and guaranteed AUC
for OOD detection, similar to the trade-off between clean and robust accuracy in adversarial
robustness.

6.3 Experiments

We provide experimental results for image recognition tasks with MNIST (LeCun et al., 1998),
SVHN (Netzer et al., 2011) and CIFAR10 (Krizhevsky and Hinton, 2009) as in-distribution
datasets. We first discuss the training details, hyperparameters and evaluation before we
present the results of GOOD and competing methods. For the training out-distribution, we
use 80 Million Tiny Images (80M) (Torralba et al., 2008) As usual, all methods get the same
out-distribution for training and we are neither training nor adapting hyperparameters for each
OOD dataset separately as in some previous work. At https://gitlab.com/Bitterwolf/
GOOD you can find the exact implementation.
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Chapter 6 Interval Bound Propagation for robust OOD Detection

6.3.1 Training

For all experiments, we use deep convolutional neural networks consisting of convolutional,
affine and ReLU layers. For MNIST, we use the large architecture from (Gowal et al., 2018),
and for SVHN and CIFAR10 a similar but deeper and wider model. The layer structure is
laid out in Table 6.1. Data augmentation is applied to both in- and out-distribution images
during training. For MNIST we use random crops to size 28×28 with padding 4 and for
SVHN and CIFAR10 random crops with padding 4 as well as the quite aggressive augmen-
tation AutoAugment (Cubuk et al., 2019). Additionally, we apply random horizontal flips for
CIFAR10.

Table 6.1: Model architectures used for MNIST (L), SVHN (XL) and CIFAR-10 (XL) ex-
periments. Each convolutional and non-final affine layer is followed by a ReLU activation.
All convolutions use a kernel size of 3, a padding of 1, and stride of 1, except for the third
convolution which has stride=2.

L XL

Conv2d(64) Conv2d(128)
Conv2d(64) Conv2d(128)
Conv2d(128)s=2 Conv2d(256)s=2
Conv2d(128) Conv2d(256)
Conv2d(128) Conv2d(256)
Linear(512) Linear(512)
Linear(10) Linear(512)

Linear(10)

As radii for the l∞-perturbation model on the out-distribution we use ε = 0.3 for MNIST,
ε = 0.03 for SVHN and ε = 0.01 for CIFAR10 (note that 0.01 > 2

255 ≈ 0.0078). The chosen
ε = 0.01 for CIFAR10 is so small that the changes are hardly visible (see Figure 7.1). As
parameter κ for the trade-off between cross-entropy loss and the GOOD regularizer in (6.8)
and (6.9), we set κ = 0.3 for MNIST and κ = 1 for SVHN and CIFAR10.

In order to explore the potential trade-off between the separation of in- and out-distribution
for clean and perturbed out-distribution inputs (clean AUCs vs guaranteed AUCs - see below),
we train GOOD models for different quantiles q ∈ [0,1] in (6.9) which we denote as GOODQ
in the following. Here, Q = 100q is the percentage of out-distribution training samples for
which we minimize the guaranteed upper bounds on the confidence of the neural network in
the l∞-ball of radius ε around the out-distribution point during training. Note that GOOD100
corresponds to (6.8) where we minimize the guaranteed upper bound on the worst-case con-
fidence for all out-distribution samples, whereas GOOD0 can be seen as a variant of OE or
CEDA. A training batch consists of 128 in- and 128 out-distribution samples.
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As is the case with IBP training (Gowal et al., 2018) for certified adversarial robustness,
we have observed that the inclusion of IBP bounds can make the training unstable or cause it
to fail completely. This can happen for our GOOD training despite the logarithmic damping
in the LCUB loss in (6.7). Thus, in order to further stabilize the training similar to (Gowal
et al., 2018), we use linear ramp up schedules for ε and κ . For the MNIST experiments, we
use as optimizer SGD with 0.9 Nesterov momentum, with an initial learning rate of 0.005

128 that
is divided by 5 after 50, 100, 200, 300 and 350 epochs, with a total number of 420 training
epochs. Weight decay (l2) is set to 0.05 for MNIST and 0.005 for SVHN and CIFAR-10. For
the GOOD, CEDA and OE runs, the first two epochs only use in-distribution LCE; over the
next 100 epochs, the value of κ is ramped up linearly from zero to its final value of 0.3 for
GOOD/OE and 1.0 for CEDA, where it stays for the remaining 318 epochs. The ε value in the
LCUB loss for GOOD is also increased linearly, starting at epoch 10 and reaching its final value
of 0.3 on epoch 130. CCU is trained using the publicly available code from (Meinke and Hein,
2020), where we modify the architecture, learning rate schedule and data augmentation to be
the same as OE. The initial learning rate for the Gaussian mixture models is 1e−5/batchsize
and gets dropped at the same epochs as the neural network learning rate. Our more aggressive
data augmentation implies that our underlying Mahalanobis metric is not the same as they used
in (Meinke and Hein, 2020). The ACET model for MNIST is warmed up with two epochs on
the in-distribution only, then four with κ = 1.0 and ε = 0, and the full ACET loss with κ = 1.0
and ε = 0.3 for the remaining epochs. The reason why we chose a smaller κ of 0.3 for the
MNIST GOOD runs is that considering the large ε for which guarantees are enforced, training
with higher κ values makes training unstable without improving any validation results.

For the SVHN and CIFAR-10 baseline models, we used the ADAM optimizer (Kingma and
Ba, 2014) with initial learning rate 0.01

128 for SVHN and 0.1
128 for CIFAR-10 that was divided

by 5 after 30 and 100 epochs, with a total number of 420 training epochs. For OE, κ is
increased linearly from zero to one between epochs 60 and 360. The same holds for CCU
which again uses the same hyperparameters as OE. Again, ACET is warmed up with two
in-distribution-only and four OE epochs. Then it is trained with κ = 1.0 and ε = 0.03/0.01
(SVHN/CIFAR-10), with a shorter training time of 100 epochs (the same number as used
in (Hein et al., 2019)).
In line with the experiences reported in (Gowal et al., 2018) and (Zhang et al., 2020a), for
GOOD training on SVHN and CIFAR-10 longer training schedules with slower ramping up
of the LCUB loss are necessary, as adding the out-distribution loss defined in Equation (6.7) to
the training objective at once will overwhelm the in-distribution cross-entropy loss and cause
the model to collapse to uniform predictions for all inputs, without recovery. In order to reduce
warm-up time, we use a pre-trained CEDA model for initialization and train for 900 epochs.
The learning rate is 1e−4 in the beginning and is divided by 5 after epochs 450, 750 and 850.
Due to the pre-training, we begin training with a small κ and already start with non-zero ε

after epoch 4. Then, ε is increased linearly to its final value of 0.03 for SVHN and 0.01 for
CIFAR-10, which is reached at epoch 204. Simultaneously, κ is increased linearly with a
virtual starting point at epoch -2 to its final value of 1.0 at epoch 298.
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6.3.2 Evaluation
We compare a normally trained model (Plain), the state-of-the-art OOD detection method OE,
CEDA (Hein et al., 2019) and ACET. Recall from Chapter 2 that CEDA works very similarly
to OE, so we omit it in the figures for better readability. The ε-radii for the l∞-balls are the
same for ACET and GOOD. For CCU we use the same models as in Chapter 5.

For each method, we compute the test accuracy on the in-distribution task, and for various
out-distribution datasets (not seen during training) we report the area under the receiver oper-
ating characteristic curve (AUC) as a measure for the separation of in- from out-distribution
samples based on the predicted confidences on the test sets. For the accuracy, AUC and GAUC
evaluations in Table 6.2 the test splits of each (non-noise) dataset were used, with the follow-
ing numbers of samples: 10,000 for MNIST, FashionMNIST, CIFAR-10, CIFAR-100 and
Uniform Noise; 20,800 for EMNIST Letters; 26,032 for SVHN; 300 for LSUN Classroom.
Due to the computational cost of the employed attacks, the AAUC values are based on sub-
sets of 1000 samples for each dataset. As OOD evaluation sets we use FashionMNIST (Xiao
et al., 2017), the Letters of EMNIST (Cohen et al., 2017), grayscale CIFAR10, and Uniform
Noise for MNIST, and CIFAR100 (Krizhevsky and Hinton, 2009), CIFAR10/SVHN, LSUN
Classroom (Yu et al., 2015), and Uniform Noise for SVHN/CIFAR10.

AAUC: We are particularly interested in the worst case OOD detection performance of all
methods under the l∞-perturbation model for the out-distribution. For this purpose, we com-
pute the adversarial AUC (AAUC) and the guaranteed AUC (GAUC). These AUCs are
based on the maximal confidence in the l∞-ball of radius ε around each out-distribution im-
age. As in Chapter 4, for the adversarial AUC, we compute a lower bound on the maximal
confidence in the l∞-ball by using Auto-PGD (Croce and Hein, 2020b) for maximizing the
confidence of the classifier inside the intersection of the l∞- ball and the image domain [0,1]d .
Since Auto-PGD has been designed for finding adversarial samples around the in-distribution,
we change the objective of Auto-PGD to be the confidence of the classifier. We use Auto-PGD
with 500 steps and 5 random restarts which is a quite strong attack. By default, the random
initialization is drawn uniformly from the ε-ball. However, we found that for MNIST the
attack very often got stuck for our GOOD models, because a large random perturbation of
size 0.3 would move the sample directly into a region of the input space where the model is
completely flat and thus no gradients are available (in this sense adversarial attacks on OOD
inputs are more difficult than usual adversarial attacks on the in-distribution). We instead use
a modified version of the attack for MNIST which starts within short distance of the original
point. Thus, as initialization we use a random perturbation from [−0.01,0.01]d (note that for
our evaluation on CIFAR10, this choice coincides with the default settings).

Nevertheless, for MNIST most out-distribution points lie in regions where the predictions
of our GOOD models are flat, i.e. the gradients are exactly zero. Because of this, Auto-
PGD is unable to effectively explore the search space around those points. Thus, for MNIST
we created another adaptive attack which partially circumvents these issues. First, we use
an initialization scheme that mitigates lack of gradients by increasing the contrast as much
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as the threat model allows. All pixel values xi that lie above 1− ε get set to xi = 1 and all
values xi ≤ 1− ε get set to max{0,xi− ε}. In our experience these points are more likely to
yield gradients, so we use them as initialization for a 200-step PGD attack with backtracking,
adaptive step size selection and momentum of 0.9. Concretely, we use a step size of 0.1, and
whenever a PGD step does not increase the confidence we backtrack and halve the step size.
After every successful gradient step we multiply the step size by 1.1. Using backtracking
and adaptive step size is necessary because otherwise one can easily step into regions where
gradient information is no longer available.

Additionally, to further mitigate the problem of gradient-masking at initialization, for each
model we use the final best points of all other models and use those as starting points for the
same monotone PGD as described before. We use the sample-wise worst-case confidence to
compute the final AAUC. Especially CEDA displays much higher apparent robustness if one
omits the transfer attacks. Surprisingly, in this respect CEDA behaves very differently from
OE, even though they pursue very similar objectives during training.

We report the per-sample worst-case across attacks. Note that despite our effort of develop-
ing strong adaptive attacks which are specific for our robust OOD detection scenario, it might
still be that the AAUC of some methods is overestimated. This again shows how important it
is to get provable guarantees.

GAUC: For the guaranteed AUC, we compute an upper bound on the confidence in the
intersection of the l∞- ball with the image domain [0,1]d via IBP using (6.5) for the full test
set. These worst case/guaranteed confidences for the out-distributions are then used for the
AUC computation.

The story is much more complicated for CCU, which we introduced in the previous Chapter.
Recall that CCU’s bounds do hold on such far-away datasets, but do not generalize to inputs
relatively close to the in distribution, like for example CIFAR-10 vs. CIFAR-100. Moreover,
even in the regime where CCU yields meaningful guarantees, they are given in terms of a
data-dependent Mahalanobis distance rather than the l∞-distance. Nonetheless, due to norm
equivalences, one can, in principle, still extract l∞-guarantees from CCU. We evaluate the
CCU guarantees as follows. We use Corollary 2 which states that for a CCU model that is
written as

p̂(y|x) =
p̂(y|x, i)p̂(x|i)+ 1

K p̂(x|o)
p̂(x|i)+ p̂(x|o)

(6.10)

with p̂(y|x, i) being the softmax output of a neural network and p̂(x|i) and p̂(x|o) Gaussian
mixture models for in-and out-distribution, one can bound the confidence in a certain neigh-
borhood around any point x ∈ Rd via

max
dM(x̂,x)≤R

p(y|x) ≤ 1
K

1+K b(x,R)
1+b(x,R)

. (6.11)

Here b : Rd×R+→R+ is a positive function that increases monotonically in the radius R and
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that depends on the parameters of the Gaussian mixture models (details in (Meinke and Hein,
2020)). The metric dM : Rd×Rd → R+ that we used for the CCU model is given as

dM(x,y) = ‖C−
1
2 (x− y)‖, (6.12)

where C is a regularized version of the covariance matrix, calculated on the augmented in-
distribution data. Note that this Mahalanobis metric is strongly equivalent to the metric in-
duced by the l2-norm and consequently to the metric induced by the l∞-norm. By computing
the equivalence constants between these metrics we can extract the l∞-guarantees that are im-
plicit in the CCU model. Geometrically speaking, we compute the size a an ellipsoid (its shape
determined by the eigenvalues of C) that is large enough to fit a cube inside it with a radius
given by our threat model r = 0.3 or r = 0.01, respectively. Via norm equivalences one has

dM(x,y)≤
√

λ1d2(x,y)≤
√

dλ1d∞(x,y)≤
√

dλ1r, (6.13)

where λ1 is the largest eigenvalue of C. This means that the confidence upper bounds from
(6.11) on a Mahalanobis-ball of radius R = (dλ )

1
2 r automatically apply to an l∞-ball of radius

r. However, the covariance matrix C is highly ill-conditioned, which means that λ1 is fairly
high. On top of that, in high dimensions

√
d is big as well so that in practice the required

radius R becomes too large for CCU to certify meaningful guarantees. Even on uniform noise,
the upper bounds were larger than the highest confidence on the in-distribution test set, with
the consequence that there are no lower-bounds on the AAUC. However, we want to stress
that at least for uniform noise the lack of guarantees of CCU is due to the incompatability of
the threat models used in this chapter and in Chapter 5.

6.3.3 Results
In Table 6.2 we present the results on all datasets.

GOOD is provably better than OE/CEDA with regard to worst case OOD detection.
We note that for almost all OOD datasets GOOD achieves non-trivial GAUCs. Thus the
guarantees generalize from the training out-distribution 80M to the test OOD datasets. For
the easier in-distributions MNIST and SVHN, which are more clearly separated from the out-
distribution, the overall best results are achieved for GOOD100. For CIFAR10, the clean AUCs
of GOOD100 are low even when compared to plain training. Arguably the best trade-off for
CIFAR10 is achieved by GOOD80. Note that the guaranteed AUC (GAUC) of these models
is always better than the adversarial AUC (AAUC) of OE/CEDA (except for EMNIST). Thus
it is fair to say that the worst-case OOD detection performance of GOOD is provably better
than that of OE/CEDA. As expected, ACET yields good AAUCs but has no guarantees. We
already discussed the failure of CCU to produce guarantees in the section above. It is notable
that GOOD100 has close to perfect guaranteed OOD detection performance for MNIST on
CIFAR10/uniform noise and for SVHN on all out-distribution datasets.
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Table 6.2: Accuracies as well as AUC, adversarial AUC (AAUC) and guaranteed AUC
(GAUC) values for the MNIST, SVHN and CIFAR10 in-distributions with respect to sev-
eral unseen out-distributions. The radii of the l∞-ball for the worst case OOD detection are 0.3
on MNIST and 0.01 on SVHN/CIFAR10. The GAUC of GOOD100 on MNIST/SVHN resp.
GOOD80 on CIFAR10 is better than the corresponding AAUC of OE and CEDA on almost all
OOD datsets (except EMNIST).

in: MNIST ε = 0.3

Method Acc.
FashionMNIST EMNIST Letters CIFAR10 Uniform Noise

AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC

Plain 99.4 98.0 34.2 0.0 88.0 31.4 0.0 98.8 36.6 0.0 99.1 36.5 0.0
CEDA 99.4 99.9 82.1 0.0 92.6 52.8 0.0 100.0 95.1 0.0 100.0 100.0 0.0
OE 99.4 99.9 76.8 0.0 92.7 50.9 0.0 100.0 92.4 0.0 100.0 100.0 0.0
ACET 99.4 100.0 98.4 0.0 95.9 61.5 0.0 100.0 99.3 0.0 100.0 100.0 0.0
CCU 99.5 100.0 76.6 0.0 92.9 3.1 0.0 100.0 98.9 0.0 100.0 100.0 0.0
GOOD0 99.5 99.9 82.3 0.0 92.9 55.0 0.0 100.0 94.7 0.0 100.0 100.0 0.0
GOOD40 99.0 99.8 88.0 29.1 95.7 56.6 0.0 100.0 97.7 65.2 100.0 100.0 100.0
GOOD80 99.1 99.8 90.3 55.5 97.9 63.1 3.4 100.0 98.4 94.7 100.0 100.0 100.0
GOOD100 98.7 100.0 96.5 78.0 99.0 53.8 3.3 100.0 99.9 99.4 100.0 100.0 100.0

in: SVHN ε = 0.03

Method Acc.
CIFAR100 CIFAR10 LSUN Classroom Uniform Noise

AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC

Plain 95.5 94.9 11.3 0.0 95.2 11.1 0.0 95.7 14.1 0.0 99.4 57.9 0.0
CEDA 95.3 99.9 63.9 0.0 99.9 68.7 0.0 99.9 80.7 0.0 99.9 99.3 0.0
OE 95.5 100.0 60.2 0.0 100.0 62.5 0.0 100.0 77.3 0.0 100.0 98.2 0.0
ACET 96.0 100.0 99.4 0.0 100.0 99.5 0.0 100.0 99.8 0.0 99.9 96.3 0.0
CCU 95.7 100.0 52.5 0.0 100.0 56.8 0.0 100.0 72.1 0.0 100.0 100.0 0.0
GOOD0 97.0 100.0 61.0 0.0 100.0 60.0 0.0 100.0 60.8 0.0 100.0 82.5 0.0
GOOD40 96.3 99.5 81.6 46.0 99.5 85.0 50.6 99.5 95.1 55.7 99.5 99.5 99.4
GOOD80 96.3 100.0 93.5 87.7 100.0 95.3 91.3 100.0 98.8 96.7 100.0 100.0 99.7
GOOD100 96.3 99.6 97.7 97.3 99.7 98.4 98.1 99.9 99.2 98.9 100.0 99.9 99.8

in: CIFAR10 ε = 0.01

Method Acc.
CIFAR100 SVHN LSUN Classroom Uniform Noise

AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC AUC AAUC GAUC

Plain 90.1 84.3 13.0 0.0 87.7 10.6 0.0 88.9 13.6 0.0 90.8 56.4 0.0
CEDA 88.6 91.8 31.9 0.0 97.9 25.7 0.0 98.9 53.9 0.0 97.3 70.5 0.0
OE 90.7 92.4 11.0 0.0 97.6 3.7 0.0 98.9 20.0 0.0 98.7 75.7 0.0
ACET 89.3 90.7 74.5 0.0 96.6 88.0 0.0 98.3 91.2 0.0 99.7 98.9 0.0
CCU 91.6 93.0 23.3 0.0 97.1 14.8 0.0 99.3 38.2 0.0 100.0 100.0 0.0
GOOD0 89.8 92.9 22.5 0.0 97.0 12.8 0.0 98.3 48.4 0.0 96.3 95.6 0.0
GOOD40 89.5 89.6 38.2 24.8 95.4 38.0 24.9 96.0 62.0 27.4 92.1 89.9 89.8
GOOD80 90.1 85.6 48.2 42.3 94.0 41.4 38.0 93.3 66.9 55.2 95.8 95.4 95.3
GOOD100 90.1 70.0 54.7 54.2 75.5 58.9 56.9 75.2 61.5 61.0 99.5 99.2 99.0
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GOOD achieves certified OOD performance with almost no loss in accuracy. While
there is a small drop in clean accuracy for MNIST, on SVHN, with 96.3% GOOD100 sur-
prisingly has a better clean accuracy than all competing methods. On CIFAR10, GOOD80
achieves an accuracy of 90.1% which is better than ACET and only slightly worse than CCU
and OE. This is remarkable as we are not aware of any model with certified adversarial robust-
ness on the in-distribution which gets even close to this range; e.g. IBP (Gowal et al., 2018)
achieves an accuracy of 85.2% on SVHN with ε = 0.01 (we have 96.3%), on CIFAR10 with
ε = 2

255 they get 71.2% (we have 90.1%). Previous certified methods had even worse clean
accuracy. Since a significant loss in prediction performance is usually not acceptable, certi-
fied methods have not yet had much practical impact. Thus we think it is an encouraging and
interesting observation that properties different from adversarial robustness like worst-case
out-of-distribution detection can be certified without suffering much in accuracy. In particu-
lar, it is quite surprising that certified methods can be trained effectively with aggressive data
augmentation like AutoAugment.

Trade-off between clean and guaranteed AUC via Quantile-GOOD. As discussed above,
for the CIFAR10 experiments, our training out-distribution contains images from in-distribution
classes. This seems to be the reason why GOOD100 suffers from a significant drop in clean
AUC, as the only way to ensure small loss LCUB, if in- and out-distribution can partially not be
distinguished, is to reduce also the confidence on the in-distribution. This conflict is resolved
via GOOD80 which both has better clean AUCs. It is an interesting open question if similar
trade-offs can also be useful for certified adversarial robustness.

EMNIST: distinguishing letters from digits without ever having seen letters. GOOD100
achieves an excellent AUC of 99.0% for the letters of EMNIST which is, up to our knowl-
edge, state-of-the-art. Indeed, an AUC of 100% should not be expected as even for humans
some letters like i and l are indistinguishable from digits. This result is quite remarkable as
GOOD100 has never seen letters during training. Moreover, as the AUC just distinguishes the
separation of in- and out-distribution based on the confidence, we provide the mean confidence
on all datasets in Figure 6.2 we show some samples from EMNIST together with their predic-
tion/confidences for all models. GOOD100 has a mean confidence of 98.4% on MNIST but
only 27.1% on EMNIST in contrast to ACET with 75.0%, OE 87.9% and Plain 91.5%. This
shows that while the AUC’s of ACET and OE are good for EMNIST, these methods are still
highly overconfident on EMNIST. Only GOOD100 produces meaningful higher confidences
on EMNIST, when the letter has clear features of the corresponding digit.

We see that GOOD100 produces low confidences for most letters when they show no digit-
specific features. Interestingly it even rejects some letters that could easily be mistaken for
digits by humans (“o”). The mean confidence values of the same selection of MNIST models
for each letter of the alphabet for EMNIST are plotted in Figure 6.3. We observe that the
mean confidence often aligns with the intuitive likeness of a letter with some digit: GOOD100
has the highest mean confidence on the letter inputs “i” and “l”, which in many cases do look
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Plain
OE
CCU
ACET

   GOOD100

9:   63.6 
9:   79.7 
4:   96.4 
4:   79.6 
8:   10.0 

8:   97.9 
0:   26.8 
8:   31.8 
0:   38.4 
8:   11.4 

6:   87.2 
0:   78.8 
6:   90.6 
0:   61.6 
0:   16.1 

0:   100.0 
0:   100.0 
0:   100.0 
0:   99.7 
8:   10.0 

2:   60.0 
0:   69.4 
2:   81.8 
2:   55.7 
8:   44.7 

4:   75.6 
4:   80.9 
4:   86.8 
4:   94.4 
4:   24.1 

9:   100.0 
9:   100.0 
9:   100.0 
9:   100.0 
9:   57.2 

4:   100.0 
4:   100.0 
4:   100.0 
4:   98.4 
8:   10.0 

1:   100.0 
1:   100.0 
1:   100.0 
1:   99.9 
1:   95.9 

Plain
OE
CCU
ACET

   GOOD100

5:   99.2 
5:   98.7 
5:   96.2 
5:   79.4 
5:   12.1 

6:   82.1 
6:   67.8 
8:   52.7 
6:   37.6 
8:   10.0 

6:   100.0 
6:   100.0 
6:   100.0 
6:   99.7 
6:   10.9 

4:   99.9 
4:   98.8 
4:   89.0 
4:   48.6 
4:   21.2 

7:   99.8 
7:   99.5 
7:   99.0 
7:   58.8 
8:   10.0 

0:   100.0 
0:   100.0 
0:   99.9 
0:   98.8 
8:   10.0 

4:   89.7 
1:   65.9 
1:   78.7 
1:   48.0 
1:   20.4 

8:   90.8 
8:   97.5 
8:   80.2 
8:   87.5 
8:   28.1 

8:   97.4 
8:   96.2 
8:   78.5 
8:   69.0 
8:   28.6 

Plain
OE
CCU
ACET

   GOOD100

5:   100.0 
5:   100.0 
5:   100.0 
5:   99.9 
5:   10.1 

4:   97.6 
4:   85.1 
4:   98.8 
4:   82.8 
4:   50.2 

0:   90.0 
0:   79.5 
0:   99.7 
0:   87.1 
0:   11.2 

4:   99.8 
4:   99.5 
4:   92.7 
4:   96.9 
4:   12.1 

6:   74.8 
4:   68.0 
4:   72.6 
0:   60.8 
8:   10.0 

4:   76.9 
4:   65.2 
4:   66.0 
6:   50.9 
8:   10.0 

4:   99.8 
4:   100.0 
4:   100.0 
4:   99.8 
4:   74.8 

2:   100.0 
2:   100.0 
2:   99.7 
2:   81.8 
8:   10.0 

Figure 6.2: Random samples from all letters in the out-distribution dataset EMNIST. The
predictions and confidences of all methods trained on MNIST are shown on top. GOOD100
is the only method which is not overconfident (e.g. “H”) unless the letter is indistinguishable
from a digit (e.g. “I”).

like the digit “1”. Again, the confidence of GOOD100 on the letter “o”, which even humans
often cannot distinguish from a digit “0”, is generally low. On the other hand, “y” receives a
surprisingly high confidence, compared to other letters, so we conclude that GOOD100 uses
different features than humans in order to achieve its impressive performance on EMNIST.

6.4 Conclusion

In this chapter we have shown that IBP can be used to achieve certifiably adversarially robust
detection of OOD data. This allowed us to certify the common l∞-threat model (instead of
the custom one for CCU) and to certify regions around points drawn from challenging out-
distributions (instead of just uniform noise like for CCU). Remarkably, we could see that these
guarantees generalize not just to unseen test samples but even unseen test distributions. We
also saw evidence that this can be achieved without any loss in clean accuracy and only a mild
loss in clean OOD detection performance.

Recent developments: The work of Berrada et al. (2021b,a) showed that non-zero GAUCs
for ACET models under an l∞-threat could also be proved, although for smaller ε than consid-
ered here. The authors of (Yoon et al., 2022) have proposed to use generative models to define
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Figure 6.3: Mean confidence of different models across the classes of EMNIST-Letters.
GOOD100 only has high mean confidence on letters that can easily be mistaken for digits.

adversarial distributions which allow for semantic perturbations as well. They found that un-
der their affine threat model (rotation, translation, shear, scaling), GOOD did not perform very
well in the worst case.
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Chapter 7

Provably Robust Detection of
Out-of-distribution Data (almost) for free
This chapter is based on (Meinke et al., 2022) which we presented at NeurIPS 2022. I came
up with the idea for the paper while Julian Bitterwolf and I were experimenting with improve-
ments to GOOD training. I ran the experiments, developed the theoretical results and was the
main author of the paper. Julian Bitterwolf assisted in the writing. Matthias Hein provided
guidance to the project, helped in writing it and significantly improved the formulation and
proof of Theorem 4.

7.1 Introduction
We will briefly summarize our findings from the previous two chapters. In Chapter 5 we
have seen that CCU enables us to not only achieve provably low confidence far away from
the training data, but also implies guarantees on the adversarial robustness of this low con-
fidence. It did so without imposing any restrictions on the network architecture, but unfor-
tunately could only give robustness guarantees for uniform noise and only within a highly
non-standard threat model. On the other hand, we showed in Chapter 6 that we can indeed
use interval bound propagation to achieve provably adversarially robust low confidence even
on difficult out-distribution like CIFAR10 vs. CIFAR100. This, however, came at the price of
using very restricted architectures for the classifier as well as highly complex training losses
and schedules.

In this chapter we will show how we can combine ideas from the previous two chapters
into ProoD (Provable out-of-Distribution) which merges a certified binary discriminator for
in-versus out-distribution with a classifier for the in-distribution task in a principled fashion
into a joint classifier. This combines the advantages of CCU and GOOD without suffering
from their respective downsides. In particular, ProoD simultaneously achieves the following:

• Guaranteed adversarially robust OOD detection via certified upper bounds on the confi-
dence in l∞-balls around OOD samples.

• Additionally, it provably prevents the asymptotic overconfidence of deep neural net-
works.
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Table 7.1: ProoD combines desirable properties of existing (adversarially robust) OOD
detection methods. It has high test accuracy and standard OOD detection performance (as
OE) and has worst-case guarantees if the out-distribution samples are adversarially perturbed
in an l∞-neighborhood to maximize the confidence (see Section 7.4.2). Similar to CCU, it
avoids the problem of asymptotic overconfidence far away from the training data.

OE CCU ACET GOOD ProoD
High accuracy X X (X) X

High clean OOD detection performance X X X X
Adv. OOD l∞-robustness (X) X X
Adv. OOD l∞-certificates X X

Provably not asympt. overconfident X X

• It can be used with arbitrary architectures and has no loss in prediction performance and
standard OOD detection performance.

Thus, we get provable guarantees for adversarially robust OOD detection, fix the asymptotic
overconfidence (almost) for free as we have (almost) no loss in prediction and standard OOD
detection performance. See Table 7.1 for a qualitative summary of ProoD’s properties in
comparison to the models that we have studied in this thesis so far.

7.2 Provably Robust Detection of Out-of-distribution Data

7.2.1 Joint Model for OOD Detection and Classification
The initial setup is similar to CCU’s in Chapter 5. In our joint model we assume that there
exists an in- and out-distribution where the out-distribution samples are unrelated to the in-
distribution task. Thus, we can formally write the conditional distribution on the input as

p̂(y|x) = p̂(y|x, i)p̂(i|x)+ p̂(y|x,o)p̂(o|x), (7.1)

where p̂(i|x) is the conditional distribution that sample x belongs to the in-distribution and
p̂(y|x, i) is the conditional distribution for the in-distribution. We assume that OOD sam-
ples are unrelated and thus maximally un-informative to the in-distribution task, i.e. we fix
p̂(y|x,o) = 1

K , so that the classifier can be written as

p̂(y|x) = p̂(y|x, i)p̂(i|x)+ 1
K
(1− p̂(i|x)). (7.2)

We train the binary classifier p̂(i|x) in a certified robust fashion wrt. an l∞-threat model so
that even adversarially manipulated OOD samples are detected. In order to avoid confusion
with the multi-class classifier, we will refer to p̂(i|x) as a binary discriminator. In an l∞-ball
of radius ε around x ∈ Rd and for all y we get the upper bound on the confidence of the final
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classifier in Eq. (7.2):

max
‖x′−x‖∞≤ε

p̂(y|x′)≤ max
‖x′−x‖∞≤ε

p̂(i|x′)+ 1
K

(
1− p̂(i|x′)

)
=

K−1
K

max
‖x′−x‖∞≤ε

p̂(i|x′)+ 1
K
, (7.3)

where we have used that p(y|x, i) ≤ 1∀x,y, so we can defer the certification “work” to the
binary discriminator. Using a particular constraint on the weights of the binary discriminator,
we get similar asymptotic properties as for CCU but additionally get certified adversarial ro-
bustness for close out-distribution samples as with GOOD. In contrast to GOOD, this comes
without architectural limits on test accuracy or non-adversarial OOD detection performance
since in our model the neural network used for the in-distribution classification task p̂(y|x, i)
is independent of the binary discriminator. Thus, we have the advantage that the classifier
can use arbitrary deep neural networks and is not constrained to certifiable networks. We call
our approach Provable out-of-Distribution detector (ProoD) and visualize its components in
Figure 7.1. The intuitive idea of why ProoD can achieve adversarially robust OOD detec-
tion without loss in clean OOD detection can be explained with the behavior of the predicted
probability distribution provided in Equation (7.2).

• For clean OOD: the classifier p̂(y|x, i) (trained similar to Outlier Exposure) already
enforces low confidence on out-of-distribution points and thus irrespective of the values
p̂(i|x), the resulting output of p̂(y|x) will be close to uniform as well and thus ProoD
performs similar to Outlier Exposure.

• For adversarial OOD: the classifier confidence maxy p̂(y|x, i) is potentially corrupted
but now the binary discriminator p̂(i|x) kicks in and ensures that the resulting prediction
p̂(y|x) is close to uniform.

This explains why the combination of certified discriminator and classifier works much better
than the individual parts and the use of this “redundancy” is the key idea of ProoD.

7.2.2 Certifiably Robust Binary Discrimination of In- versus
Out-Distribution

The first goal is to get a certifiably adversarially robust OOD detector p̂(i|x). We train this bi-
nary discriminator independently of the overall classifier as the training schedules for certified
robustness are incompatible with the standard training schedules of normal classifiers. For
this binary classification problem we use a logistic model p̂(i|x) = 1

1+e−g(x) , where g : Rd→R
are logits of a neural network (we denote the weights and biases of g by Wg and bg in order to
differentiate it from the classifier f introduced in the next paragraph). Let (xr,yr)

N
r=1 be our

in-distribution training data (we use the class encoding +1 for the in-distribution and −1 for
the out-distribution) and (zs)

M
s=1 be our training out-distribution data. Then the optimization
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Classifier

Certified 
Discriminator

In vs. Out

Certified 
Discriminator

In vs. Out

In-Distribution
R.ImgNet

Worst-Case
Out-Distribution

Not R.ImgNet

High confidence
on In-Distribution

Guaranteed low confidence
on adversarial OOD

Figure 7.1: ProoD’s Architecture: Combining the output of a classifier and a certified dis-
criminator, see Eq. (7.1), we achieve high confidence on the in-distribution sample of a dog
(R.ImgNet). The certified discriminator, see Eq. (7.3), yields an upper bound on the confidence
in a `∞-neighborhood of the shown OOD sample not belonging to any classes of R.ImgNet.
ProoD achieves provable guarantees on adversarial OOD detection without loss in accuracy
or clean OOD detection.

problem associated to the binary classification problem becomes:

min
g

W
(Lg)
g <0

1
N

N

∑
r=1

log
(

1+ e−g(xr)
)
+

1
M

M

∑
s=1

log
(

1+ eḡ(zs)
)
, (7.4)

where we minimize over the parameters of the neural network g under the constraint that the
weights of the output layer W (Lg)

g are componentwise negative and ḡ(z) ≥ maxu∈Bp(z,ε) g(u)
is an upper bound on the output of g around OOD samples for a given lp-threat model
Bp(z,ε) = {u ∈ [0,1]d |‖u− z‖p ≤ ε}. As in the previous chapter, we consider an l∞-threat
model. This upper bound could, in principle, be computed using any certification technique
but we will again use IBP. Note that this is not standard adversarial training for a binary clas-
sification problem as here we have an asymmetric situation: we want to be (certifiably) robust
to adversarial manipulation on the out-distribution data but not on the in-distribution and thus
the upper bound is only used for out-distribution samples. The negativity of the output layer’s
weights W (Lg)

g is enforced by using the parameterization (W (Lg)
g ) j =−eh j componentwise and

optimizing over h j. In Section 7.3 we show how the negativity of W (Lg)
g allows us to control

the asymptotic behavior of the joint classifier.

7.2.3 (Semi)-Joint Training of the Final Classifier

Given the certifiably robust model p̂(i|x) for the binary classification task between in- and out-
distribution, we need to determine the final predictive distribution p̂(y|x) in Eq. (7.1). On top
of the provable OOD performance that we get from Eq. (7.3), we also want to achieve SOTA
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performance on unperturbed OOD data. In principle we could independently train a model for
the predictive in-distribution task p̂(y|x, i), e.g. using outlier exposure (OE) (Hendrycks et al.,
2019a) or any other state-of-the-art OOD detection method and simply combine it with our
p̂(i|x). While this does lead to models with high OOD performance that also have guarantees,
it completely ignores the interaction between p̂(i|x) and p̂(y|x, i) during training. Instead
we propose to train p̂(y|x, i) by optimizing our final predictive distribution p̂(y|x). Note that
in order to retain the guarantees of p̂(i|x) we only train the parameters of the neural network
f :Rd→RK and need to keep p̂(i|x) resp. g fixed. Because g stays fixed we call this semi-joint
training. We use OE (Hendrycks et al., 2019a) for training p̂(y|x) with the cross-entropy loss
and use the softmax-function in order to obtain the predictive distribution p̂ f (y|x, i) = e fy(x)

∑k e fk(x)

from f :

min
f
− 1

N

N

∑
r=1

log
(

p̂(yr|xr)
)
− 1

M

M

∑
s=1

1
K

K

∑
l=1

log
(

p̂(l|zs)
)

=min
f
− 1

N

N

∑
r=1

log
(

p̂ f (yr|xr, i)p̂(i|xr)+
1
K

(
1− p̂(i|xr)

))
− 1

M

M

∑
s=1

1
K

K

∑
l=1

log
(

p̂ f (l|zs, i)p̂(i|zs)+
1
K

(
1− p̂(i|zs)

))
, (7.5)

where the first term is the standard cross-entropy loss on the in-distribution but now for our
joint model for p̂(y|x) and the second term enforces uniform confidence on out-distribution
samples.

The loss in Eq. (7.4) implicitly weighs the in-distribution and worst-case out-distribution
equally, which amounts to the assumption p(i) = 1

2 = p(o). This highly conservative choice
simplifies training the binary discriminator but may not reflect the expected frequency of OOD
samples at test time and in effect means that p̂(i|x) tends to be quite low. This typically yields
good guaranteed AUCs but can have a negative impact on the standard out-distribution perfor-
mance. In order to better explore the trade-off of guaranteed and standard OOD detection, we
repeat the above semi-joint training with different shifts of the offset parameter in the output
layer

b′ = b(Lg)
g +∆, (7.6)

where ∆ ≥ 0 leads to increasing p̂(i|x). This shift has a direct interpretation in terms of the
probabilities p(i) and p(o). Under the assumption that our binary discriminator g is perfect,
that is

p(i|x) = p(x|i)p(i)
p(x|i)p(i)+ p(x|o)p(o)

=
1

1+ e−g(x)
, (7.7)

then it holds that eg(x) = p(x|i)p(i)
p(x|o)p(o) . A change of the prior probabilities p̃(i) and p̃(o) without
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changing p(x|i) and p(x|o) then corresponds to a novel classifier

eg̃(x) =
p(x|i)p̃(i)
p(x|o)p̃(o)

=
p(x|i)p(i)
p(x|o)p(o)

p(o)p̃(i)
p(i)p̃(o)

= eg(x)e∆ (7.8)

with ∆ = log
(

p(o)p̃(i)
p(i)p̃(o)

)
. Note that p̃(i) > p(i) corresponds to positive shifts. In practice,

this parameter can be chosen based on the priors for a particular application. Since no such
priors are available in our case we determine a suitable shift by evaluating on the training
out-distribution (see Section 7.4.2). Note that we explicitly do not train the shift parameter
since this way the guarantees would get lost as the classifier implicitly learns a large ∆ in
order to maximize the confidence on the in-distribution, thus converging to a normal outlier
exposure-type classifier without any guarantees.

7.3 Guarantees on Asymptotic Confidence
In this section we show that, like CCU but unlike GOOD, our specific construction provably
avoids the issue of asymptotic overconfidence that was pointed out in (Hein et al., 2019).
Note that the resulting guarantee (as stated in Theorem 4) is different from and in addition
to the robustness guarantees discussed in the previous section (see Eq. (7.3)). The previous
section dealt with providing confidence upper bounds on neighborhoods around OOD samples
whereas this section deals with ensuring that a classifier’s confidence decreases asymptotically
as one moves away from all training data.

As briefly mentioned in Section 1.2.2, a ReLU neural network f : Rd → RK as defined in
Eq. (1.11) using ReLU or leaky ReLU as activation functions, potential max-or average pool-
ing and skip connection yields a piece-wise affine function (Arora et al., 2018), i.e. there exists
a finite set of polytopes Qr ⊂ Rd with r = 1, . . . ,R such that ∪R

r=1Qr = Rd and f restricted to
each of the polytopes is an affine function. Since there are only finitely many polytopes some
of them have to extend to infinity and on these ones the neural network is essentially an affine
classifier. This fact has been used in (Hein et al., 2019) to show that ReLU networks are
almost always asymptotically overconfident in the sense that if one moves to infinity the con-
fidence of the classifier approaches 1 (instead of converging to the desirable 1/K as in these
regions the classifier has never seen any data). The following theorem now shows that, in
contrast to standard ReLU networks, our proposed joint classifier gets provably less confident
in its decisions as one moves away from the training data which is a desirable property of any
reasonable classifier.

The following result of (Hein et al., 2019) basically says that as one moves to infinity by
upscaling a vector one eventually ends up in a polytope which extends to infinity. We use this
in the proof of our Theorem.

Lemma 5 (Hein et al. (2019)). Let {Qr}R
r=1 be the set of convex polytopes on which a ReLU-

network f : Rd → RK is an affine function, that is for every k ∈ {1, . . . ,R} and x ∈ Qk there
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exists V k ∈ RK×d and ck ∈ RK such that f (x) = V kx+ ck. For any x ∈ Rd with x 6= 0 there
exists α ∈ R and t ∈ {1, . . . ,R} such that βx ∈ Qt for all β ≥ α .

Theorem 4. Let x ∈ Rd with x 6= 0 and let g : Rd → R be the ReLU-network of the binary
discriminator (with the last activation being a non-leaky ReLU). Denote by {Qr}R

r=1 the finite
set of polytopes on which g is affine (exists by Lemma 5). Denote by Qt the polytope such
that βx ∈ Qt for all β ≥ α and let x(L−1)(z) =Uz+d with U ∈ RnL−1×d and d ∈ RnL−1 be the
output of the pre-logit layer of g for z ∈ Qt . If Ux 6= 0, then limβ→∞ p̂(y|βx) = 1

K .

Proof. We note that with a similar argument as in the derivation of (7.3) it holds

p̂(y|βx)≤ p̂(i|βx)+
1
K

(
1− p̂(i|βx)

)
=

K−1
K

p̂(i|βx)+
1
K

(7.9)

We note that for all β ≥ α it holds βx ∈ Qt so that

p̂(i|βx) =
1

1+ e−g(βx)
=

1

1+ e
〈

W
(Lg)
g ,Uβx+d

〉
+b

(Lg)
g

.

As x(L−1)
i (x)≥ 0 for all x ∈Rd it has to hold (βUx+d)i ≥ 0 for all β ≥ α and i = 1, . . . ,nL−1.

This implies that (Ux)i ≥ 0 for all i = 1, . . . ,nL−1 and since Ux 6= 0 there has to exist at least
one component i∗ such that (Ux)i∗ > 0. Moreover, W (Lg)

g has strictly negative components and
thus for all β ≥ α it holds

g(βx) =
〈

W (Lg)
g ,Uβx+d

〉
+b(Lg)

g = β

〈
W (Lg)

g ,Ux
〉
+
〈

W (Lg)
g ,d

〉
+b(Lg)

g .

As
〈

W (Lg)
g ,Ux

〉
< 0 we get limβ→∞ g(x) =−∞ and thus

lim
β→∞

p̂(i|βx) = 0.

Plugging this into (7.9) yields the result.

In Section 7.4.3 we show that the condition Ux 6= 0 is not restrictive, as this property holds
in all cases where we checked it. The negativity condition on the weights W (Lg)

g of the output
layer of the in-vs. out-distribution discriminator g is crucial for the proof. This may seem
restrictive, but we did not encounter any negative influence of this constraint on test accuracy,
guaranteed or standard OOD detection performance. Thus, the asymptotic guarantees come
essentially for free.
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Table 7.2: Architecture: The architectures that are used for the binary discriminators. Each
convolutional layer and the penultimate fully connected layers are directly followed by ReLUs.

CIFAR R.ImgNet

Conv2d(3, 128) Conv2d(3, 128)
Conv2d(128, 256)s=2 AvgPool(2)
Conv2d(256, 256) Conv2d(128, 256)s=2
AvgPool(2) AvgPool(2)
FC(16384, 128) Conv2d(256, 256)
FC(128, 1) AvgPool(2)

FC(50176, 128)
FC(128, 1)

7.4 Experiments
We provide experiments using CIFAR10, CIFAR100 and Restricted Imagenet (R.ImgNet) as
in-distributions. Like in most previous chapters, we use OpenImages as training OOD for
CIFAR. For R.ImgNet we again use the ILSVRC2012 train images that do not belong to
R.ImgNet as training out-distribution (NotR.ImgNet).

7.4.1 Training
Binary Training We train the binary discriminator between in-and out-distribution using
the loss in Eq. (7.4) with the bounds over an l∞-ball of radius ε = 0.01 for the out-distribution,
thus using the same threat model as in the previous chapter. We use relatively shallow CNNs
with only 5 layers plus pooling layers. The architecture is shown in Table 7.2.

Similarly to the previous chapter, we use long training schedules, running Adam for 1000
epochs, with an initial learning rate of 1e−4 that we decrease by a factor of 5 on epochs
500,750 and 850 and with a batch size of 128 from the in-distribution and 128 from the out-
distribution (for R.ImgNet: 50 epochs with drops at 25, 35, 45, batch sizes 32). In order
to avoid large losses we also use a simple ramp up schedule for the ε used in IBP and we
downweight the out-distribution loss during the initial phase of training by a scalar κ . Both ε

and κ are increased linearly from 0 to their final values (0.01 and 1, respectively) over the first
300 epochs (for R.ImgNet over the first 25 epochs). Compared to the training of GOOD which
sometimes fails, we found that training of the binary discriminator is very stable and even 100
epochs on CIFAR would be sufficient, but we found that longer training lead to slightly better
results. Weight decay is set to 5e−4, but is disabled for the weights in the final layer. As data
augmentation we use AutoAugment (Cubuk et al., 2019) for CIFAR and simple 4 pixel crops
and reflections on R.ImgNet. The strict negativity of the weights leads to a negative bias of g
which can cause problems at an early stage if the b(Lg)

g is initialized at 0 and thus we choose 3
as initialization.
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Semi-Joint Training For the classifier we use a ResNet18 architecture on CIFAR and a
ResNet50 on R.ImgNet. Note that the architecture of our binary discriminator is over an order
of magnitude smaller than the one CIFAR model in GOOD (11MB instead of 135MB) and thus
the memory overhead for the binary discriminator is less than a third of that of the classifier.
On CIFAR we train for 100 epochs using SGD with momentum of 0.9 and a learning rate of
0.1 that drops by a factor of 10 on epochs 50,75 and 90 (on R.ImgNet 75 epochs with drops
at 30 and 60). For all datasets we train using a batch size of 128 (plus 128 out-distribution
samples in the case of OE). In order to fit batches of 128 in-distribution samples and 128 out-
distribution samples on R.ImgNet we had to train using 4 V100 GPUs in parallel. Because of
batch normalization in multi-GPU training it is important to not simply stack the batches but
to interlace in- and out-distribution samples.

As discussed in Section 7.2.1, when training the binary discriminator one implicitly assumes
that in- and (worst-case) out-distribution samples are equally likely. It seems very unlikely that
one would be presented with such a large number of OOD samples in practice but as discussed
in Section 7.2.1, we can adjust the weight of the losses after training the discriminator (but
before training the classifier) by shifting the bias b(Lg)

g in the output layer of the binary discrim-
inator. We train several ProoD models for binary shifts in {0,1,2,3,4,5,6} and then evaluate
the AUC and guaranteed AUC (see 7.4.2) on a subset of the training out-distribution OpenIm-
ages (resp. NotR.ImgNet). For all bias shifts we use the same fixed provably trained binary
discriminator and only train the classifier part. As our goal is to have provable guarantees
with minimal or no loss on the standard OOD detection task, among all solutions which have
better AUC than OE we choose the one with the highest guaranteed AUC on OpenImages (on
CIFAR10/CIFAR100) respectivel NotR.ImgNet (on R.ImgNet). If none of the solutions has
better AUC than OE on the training out-distribution we take the one with the highest AUC.
We show the trade-off curves for the example in Figure 7.2.

7.4.2 Evaluation

Adversarial AUC For the evaluation of the Adversarial AUC, we basically use the same
setup as in Chapter 6 with only minor modifications. First of all, we also add SquareAt-
tack (Andriushchenko et al., 2020) with 5000 queries in order to be more sure that gradient
masking is not degrading our attack’s performance. Fortunately, we find that SquareAttack
never outperforms our gradient based method, which indicates that the optimization works
well. Secondly, on R.ImgNet we do use APGD and rely only on our custom PGD, because
APGD would run out of memory on R.ImgNet. This is also not a bottleneck as our custom
PGD outperforms APGD on CIFAR in almost all cases anyway.

Baselines We compare to a normally trained baseline (Plain) and outlier exposure (OE), both
trained using the same architecture and hyperparameters as the classifier in ProoD. For meth-
ods that pursue adversarial robustness on the out-distribution, we compare to ACET and to the
method of Adversarial Training using informative Outlier Mining (ATOM) that was proposed
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Figure 7.2: Bias selection for CIFAR100 and RImgNet: Using CIFAR10 (top), CIFAR100
(middle) and R.ImgNet (bottom) as the in-distribution and the test set of OpenImages as OOD
(or NotR.ImgNet respectively) AUC, GAUC and test accuracy as a function of the bias shift
∆ (see Eq. (7.6)).

in Chen et al. (2021) and that uses an out-class as opposed to the confidence score. Note that
the authors originally claimed that ATOM produced near-perfect adversarially robust OOD
detection against large threat models at no loss in accuracy. However, for both ATOM and
ACET we found the pre-trained models by Chen et al. (2021) to have far worse adversarial
OOD detection performance than they claimed so we retrained their models using our archi-
tecture, threat model and training out-distribution with their original code (for CIFAR10/100).
Running these adversarial training procedures on ImageNet resolution is infeasibly expensive.
For GOOD we also retrain using OpenImages as training OOD dataset. Since they are only
available on CIFAR10, we tried to train models on CIFAR100 using and same hyperparame-
ters and schedules as we used for CIFAR10. This only lead to models with accuracy below
25%, so we do not include these models in our evaluation. Since, in Chapter 6, we already
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Table 7.3: OOD performance: For all models we report accuracy on the test set of the in-
distribution and AUCs, guaranteed AUCs (GAUC), adversarial AUCs (AAUC) for different
test out-distributions. The radius of the l∞-ball for the adversarial manipulations of the OOD
data is ε = 0.01 for all datasets. The bias shift ∆ that was used for ProoD is shown for
each in-distribution. The AAUCs and GAUCs for ProoD tend to be very close, indicating
remarkably tight certification bounds. Models with accuracy drop of > 3% relative to the
model with highest accuracy are grayed out. Of the remaining models, we highlight the best
OOD detection performance.

CIFAR10 CIFAR100 SVHN LSUN CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 95.01 90.0 0.0 0.7 93.8 0.0 0.3 93.1 0.0 0.5 98.0 0.0 0.7
OE 94.91 91.1 0.0 0.9 97.3 0.0 0.0 100.0 0.0 2.7 99.9 0.0 1.5
ATOM 93.63 78.3 0.0 21.7 94.4 0.0 24.1 79.8 0.0 20.1 99.5 0.0 73.2
ACET 93.43 86.0 0.0 4.0 99.3 0.0 4.6 89.2 0.0 3.7 99.9 0.0 40.2
GOOD80* 87.39 76.7 47.1 57.1 90.8 43.4 76.8 97.4 70.6 93.6 96.2 72.9 89.9
GOOD100* 86.96 67.8 48.1 49.7 62.6 34.9 36.3 84.9 74.6 75.6 87.0 76.1 78.1
ProoD-Disc - 62.9 57.1 57.8 72.6 65.6 66.4 78.1 71.5 72.3 59.2 49.7 50.4
ProoD ∆=3 94.99 89.8 46.1 46.8 98.3 53.3 54.1 100.0 58.3 59.7 99.9 38.2 38.8

CIFAR100 CIFAR10 SVHN LSUN CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 77.38 77.7 0.0 0.4 81.9 0.0 0.2 76.4 0.0 0.3 86.6 0.0 0.4
OE 77.25 77.4 0.0 0.2 92.3 0.0 0.0 100.0 0.0 0.7 99.5 0.0 0.5
ATOM 68.32 78.3 0.0 50.3 91.1 0.0 67.0 95.9 0.0 75.6 98.2 0.0 80.7
ACET 73.02 73.0 0.0 1.4 97.8 0.0 0.7 75.8 0.0 2.6 99.9 0.0 12.8
ProoD-Disc - 56.1 52.1 52.3 61.0 58.2 58.4 70.4 66.9 67.1 29.6 26.4 26.5
ProoD ∆=5 77.16 76.6 17.3 17.4 91.5 19.7 19.8 100.0 22.5 23.1 98.9 9.0 9.0

R.ImgNet Flowers FGVC Cars Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

Plain 96.34 92.3 0.0 0.5 92.6 0.0 0.0 92.7 0.0 0.1 98.9 0.0 8.6
OE 97.10 96.9 0.0 0.2 99.7 0.0 0.4 99.9 0.0 1.8 98.0 0.0 1.9
ProoD-Disc - 81.5 76.8 77.3 92.8 89.3 89.6 90.7 86.9 87.3 81.0 74.0 74.8
ProoD ∆=4 97.25 96.9 57.5 58.0 99.8 67.4 67.9 99.9 65.7 66.2 98.6 52.7 53.5

*Uses different architecture of classifier, see “Baselines” in Section 7.4.2.

showed that CCU does not provide benefits over OE on OOD data that is not very far from
the in-distribution (e.g. uniform noise) we do not include it as baseline. Similarly, we do not
include RATIO, partially because it uses an l2 threat model, but mostly because we are not
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Table 7.4: Generalization to Larger ε: We evaluate all CIFAR models in Table 7.3 using an
ε = 8

255 , and thus an unseen threat model. The provable methods GOOD and ProoD generalize
surprisingly well, while neither ATOM nor ACET display any generalization to the larger
threat model.

CIFAR10 CIFAR100 SVHN LSUN CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

ProoD-Disc - 62.9 44.1 46.1 72.6 52.5 57.1 78.1 56.3 58.9 59.2 34.9 37.2
ProoD ∆=3 94.99 89.8 39.2 41.0 98.3 46.9 50.8 100.0 50.2 52.7 99.9 30.4 30.6

CIFAR100 CIFAR10 SVHN LSUN CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

ProoD-Disc - 56.1 41.1 43.1 61.0 50.5 51.8 70.4 57.5 58.8 29.6 20.9 20.8
ProoD ∆=5 76.51 76.6 13.7 14.1 91.5 16.9 16.9 100.0 18.1 18.2 98.9 8.1 8.1

R.ImgNet Flowers FGVC Cars Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

ProoD-Disc - 81.5 60.4 61.4 92.8 78.0 80.8 90.7 76.3 79.2 81.0 47.3 53.7
ProoD ∆=4 97.25 96.9 42.8 45.0 99.8 57.0 59.4 99.9 56.0 58.7 98.6 31.6 36.3

interested in in-distribution robustness and instead wish to study robust OOD detection at no
loss in accuracy. We also evaluate the OOD-performance of the provable binary discriminator
(ProoD-Disc) that we trained for ProoD. Note that this is not a classifier and is included only
for reference. All results are in Table 7.3.

Results ProoD achieves non-trivial GAUCs on all datasets. As was also observed in (Bitter-
wolf et al., 2020), this shows that the IBP guarantees not only generalize to unseen samples
but even to unseen distributions. In Table 7.4 we show that they even generalize to the much
larger threat model ε = 8/255. In general, the gap between our GAUCs and AAUCs is ex-
tremely small. This shows that the seemingly simple IBP bounds can be remarkably tight, as
has been observed in other works (Gowal et al., 2018; Jovanović et al., 2022). It also shows
that there would be very little benefit in applying stronger verification techniques like (Cheng
et al., 2017; Katz et al., 2017; Dathathri et al., 2020) in ProoD. Similarly, it demonstrates the
strengths of our attack as there provably does not exist an attack that could lower the AAUCs
on our ProoD model by more than 1.4% on any of the out-distributions. The bounds are also
much tighter than for GOOD, which is likely due to the fact that for GOOD the confidence is
much harder to optimize during an attack because it involves maximizing the confidence in an
essentially random class.

For CIFAR10, on 3 out of 4 out-distributions ProoD’s GAUCs are higher than ATOM’s and
ACET’s AAUCs, i.e. our model’s provable adversarial robustness exceeds the SOTA methods’
empirical adversarial robustness in these cases. Note that this is not due to our retraining, be-
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cause the authors’ pre-trained models perform even more poorly (as shown in Table 7.5). On
CIFAR100, ProoD’s guarantees are weaker and ATOM produces strong AAUCs. However,
we observe that training both ACET and ATOM can produce inconsistent results, i.e. some-
times almost no robustness is achieved. For the successfully trained robust ATOM model
on CIFAR100 we observe drastically reduced accuracy. Due to the difficulty in attacking
these models, it is not impossible that a more sophisticated attack could produce even lower
AAUCs. Combined with the fact that both ACET and ATOM rely on expensive adversarial
training procedures we argue that using ProoD is preferable in practice.

On CIFAR10, we see that ProoD’s GAUCs are comparable to, if slightly worse than the
ones of both GOOD80 and GOOD100. Note that although the presented GOOD models are
retrained, the same observations hold true when comparing to the pre-trained models (see
Table 7.5). However, we want to point out that ProoD achieves this while retaining both high
accuracy and OOD performance, both of which are lacking for GOOD. It is also noteworthy
that the GOOD models’ memory footprints are over twice as large as ProoD’s. Generally, for
ProoD the accuracy is comparable to OE and the OOD performance is similar or marginally
worse. Thus ProoD shows that it is possible to achieve certifiable adversarial robustness on the
out-distribution while keeping very good prediction and OOD detection performance. Note
that all methods struggle on separating CIFAR10 and CIFAR100 when using OpenImages as
training OOD.

To the best of our knowledge with R.ImgNet we provide the first worst case OOD guar-
antees on high-resolution images. The GAUCs are higher than on CIFAR, indicating that
meaningful certificates on higher resolution are more achievable on this task than one might
expect. FGVC and Cars may seem simple to separate from the animals in R.ImgNet but this
cannot be said for Flowers which are difficult to provably distinguish from images of insects
on flowers.

In summary, ProoD achieves our goal of maintaining high accuracy and clean OOD detec-
tion performance while providing provably adversarially robust OOD detection. In fact, out of
all the methods that do not significantly impair the in-distribution accuracy, ProoD is the only
method providing such guarantees as well while simultaneously having the highest empirical
robustness. Also note that for applications where adversarial robustness on the in-distribution
is desired despite the induced reduction in accuracy, one can combine our ProoD model with
a robustly trained classifier.

7.4.3 Adversarial Asymptotic Overconfidence
We also empirically evaluate the asymptotic behavior of ProoD as compared to models that
do not benefit from an asymptotic guarantee like Theorem 4. Concretely, we take different
models that were trained on CIFAR10 and evaluate their confidence on different CIFAR100
samples. For each sample x we track the confidence, maxk p̂(k|x), along a trajectory in a
uniform noise direction x +αn, where n ∈ [−0.5,0.5]d and α ≥ 0. The mean confidence
across 100 such trajectories is shown on the left side of Figure 7.3. Even the models that
produce low confidences on the original OOD sample asympotically converge to maximal
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Table 7.5: Training with 80M Tiny Images: We repeat the evaluation from Table 7.3 for
models that were trained using 80M Tiny Images as out-distribution instead of OpenImages.
Plain is identical to before and is just repeated for the reader’s convenience. For ATOM and
ACET we compare to pre-trained models from (Chen et al., 2021). Note that these models
show almost no robustness on CIFAR100 - despite the far stronger claims in (Chen et al.,
2021). Models with accuracy drop of > 3% relative to the model with highest accuracy are
grayed out. Of the remaining models, we highlight the best OOD detection performance.
Note that the conclusions from Table 7.3 still hold, which indicates that our method is robust
to changes in the choice of training out-distribution.

CIFAR10 CIFAR100 SVHN LSUN CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

ATOM 95.20 93.7 0.0 14.4 99.6 0.0 8.6 99.7 0.0 40.0 99.6 0.0 18.8
ACET 91.48 91.2 0.0 80.5 95.3 0.0 87.6 98.9 0.0 95.0 99.9 0.0 98.3
ProoD-Disc - 67.4 61.0 61.7 73.2 65.5 66.4 78.0 72.2 72.7 82.3 71.5 72.9
ProoD ∆=3 95.47 96.0 41.9 43.9 99.5 48.8 49.4 99.6 47.6 53.1 99.7 55.8 57.0

CIFAR100 CIFAR10 SVHN LSUN CR Smooth
Acc AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC AUC GAUC AAUC

ATOM 75.06 64.3 0.0 0.2 93.6 0.0 0.2 97.5 0.0 9.3 98.5 0.0 15.0
ACET 74.43 79.8 0.0 0.2 90.2 0.0 0.0 96.0 0.0 2.1 92.9 0.0 0.3
ProoD-Disc - 53.8 50.3 50.4 73.1 69.8 69.9 68.1 63.8 64.0 67.2 63.8 63.9
ProoD ∆=1 76.79 80.5 23.1 23.2 93.7 33.9 34.0 97.2 29.6 30.4 98.9 29.7 31.3

confidence far away. The only exceptions here are GOOD and ProoD and only ProoD can
guarantee that the confidence cannot converge to 1.

However, even though the architecture provably prevents arbitrarily overconfident predic-
tions and Theorem 4 ensures that most directions will indeed converge to uniform, it is, in
principle, possible to find directions where the confidence p̂(i|x) remains constant if the con-
dition Ux 6= 0 in Theorem 4 is not satisfied. We attempted to find such directions by running
the following type of attack. We start from a random point x ∈ [−0.5,0.5]d that we project
onto a sphere of radius 100. We now run gradient descent (for 20000 steps), maximizing g(x)
while projecting onto the sphere at each step (unnormalized gradients with step size 0.1 for
the first 10000 steps and 0.01 for the last 10000 steps). We then increase the radius to 1000
and run an additional 20000 steps with step size 0.1. We rescale the resulting direction vector
down to an l∞-ball of norm 1 and compute the confidence p̂(i|x) as a function of the scaling
in the adversarial directions. We show the resulting scale-wise maximum over 100 adversarial
directions in Figure 7.3. Note that even the worst-case over 100 adversarially found directions
decays to 0 asymptotically, thus empirically confirming the practical utility of Theorem 4.
Note that the value of p̂(i|x) converging to 0 implies that the confidence of the ProoD model
p̂(y|x) converges to 10%.
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Figure 7.3: Left, Asymptotic confidence: We plot the mean confidence in the predicted in-
distribution class for different models as one moves away from CIFAR100 samples along the
trajectories x+αn, where n ∈ [−0.5,0.5]d and α ≥ 0. Only GOOD and ProoD converge to
uniform confidence. Right, Adversarial asymptotic confidence: We try to find adversarial
directions in which ProoD remains at a constant high confidence, as opposed to converging to
low confidence. We plot the maximum of p̂(i|x) across 100 adversarially chosen directions as
one moves further in these directions by factors of α . Note that p̂(i|x)→ 0 implies p̂(y|x)→ 1

K .

In Figure 7.3 GOOD also stands out as having low confidence in all directions that we
studied. This is because in all the asymptotic regions that we looked at, the pre-activations
of the penultimate layer are all negative. If one moves outward and these pre-activations only
get more negative in all directions far away from the data, the confidence does, in fact, remain
low. Unfortunately, it also leads to gradients that are precisely zero, which is why the same
attack can not be applied here. However, there is no guarantee that GOOD does not also get
in some direction asymptotically overconfident.

7.5 Conclusion
We have demonstrated how to combine a provably adversarially robust binary discriminator
between in- and out-distribution with a standard classifier in order to simultaneously achieve
high accuracy, high clean OOD detection performance as well as certified adversarially robust
OOD detection. Thus, we have combined the best properties of the methods CCU and GOOD
from the previous chapters with only a small increase in total model size and only a single
hyperparameter. This suggests that certifiable adversarial robustness on the out-distribution
(as opposed to the in-distribution) is indeed possible without losing accuracy. We further
showed how in our model simply enforcing negativity in the final weights of the discriminator
fixes the problem of asymptotic overconfidence in ReLU classifiers. Training ProoD models
is simple and stable and thus ProoD provides OOD guarantees that come (almost) for free.
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Chapter 8

Conclusion

8.1 Summary

In this thesis we have discussed different aspects of the adversarially robust detection of out-
of-distribution examples in deep learning based vision classifiers.

In Chapter 1 we gave a general overview of OOD detection. We stated the definition of
OOD detection task as the rejection of samples that do not belong to any of the classes in
the classification task in question and we summarized the performance main metrics that are
used. We briefly described the issues of overconfidence in neural networks. Concretely, we
first summarized how over- or underconfidence in a neural network can be measured via the
Expected Calibration Error and secondly how prior work has shown that ReLU networks lead
to overconfident predictions far from the training data. Finally we gave a brief introduction
into the issues related to adversarial robustness, especially the difficulty of reliably evaluat-
ing defenses and how certifiable robustness can solve this issue. We specifically focused on
summarizing Interval Bound Propagation for the reader.

Part I of this dissertation studied the “clean” OOD detection, i.e. the detection of unper-
turbed OOD samples. In Chapter 2 we showed our empirical results from the paper Meinke
and Hein (2020), where we benchmarked a variety of OOD detection methods that all claimed
state-of-the-art performance at the time. Concretely, we compared 9 different methods using
5 different in-distributions and 6 test out-distributions for each and showed that only Outlier
Exposure consistently outperformed the other methods. Our main takeaway was that the as-
sumption of using a large and diverse, but unlabeled out-distribution at train time was indeed
helpful for the task of OOD detection.

In Chapter 3 presented our results from Bitterwolf et al. (2022) where we studied the ques-
tion of how such an out-distribution should best be incorporated into the model in order to lead
to the best performance. We broke down the different scoring functions implicitly or explicitly
used by various methods and theoretically showed that some of these were actually equivalent
in the Bayes’ limit of infinite data. We then empirically verified that theoretically equivalent
methods indeed behaved similarly in practice, and found that, empirically, no method consis-
tently outperformed Outlier Exposure.

Part II of this dissertation dealt with the detection of adversarially perturbed OOD samples.
Concretely, in Chapter 4, we discussed Augustin et al. (2020) which dealt with the problems
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that arise when using adversarial training for achieving adversarially robust low confidence
on perturbed OOD samples (i.e. ACET). We showed that ACET suffered from training insta-
bilities that could be resolved by combining it with adversarial training on the in-distribution.
We then went on to show that this combination of losses leads to other desirable properties,
i.e. higher adversarial robustness at a given loss in clean accuracy and the ability to generate
visual counterfactuals using Projected Gradient Descent in image space. These visual coun-
terfactuals were then shown to be qualitatively more realistic than the corresponding images
for adversarial training, indicating the importance of adversarially robust low confidences on
OOD samples.

In Part III we took on the issue of obtaining certificates for the adversarial robustness of
a model’s confidence on OOD data. First, in Chapter 5, we presented more results from our
paper Meinke and Hein (2020). We developed the method of Certified Certain Uncertainty
which used Gaussian mixture models to ensure that our classifier’s confidence would provably
converge to uniform across all classes far from the training data. We theoretically showed
that this construction also implied certificates on the adversarial robustness of our confidence
estimates in a very specific threat model around uniform noise images. We showed that,
despite uniform noise being seemingly trivial to detect, all of our 9 baseline models would fail
to detect points that our CCU model’s certificates could provably exclude. Furthermore, we
compared the clean accuracy and clean OOD detection performance of CCU to our baselines
and found that CCU did not lead to any degradation in perforance relative to OE.

In Chapter 6 we presented our work in (Bitterwolf et al., 2020) which showed that Inter-
val Bound Propagation could be used to train classifiers that have certifiably low confidence
around unseen out-distributions under the l∞-threat model. We particularly showed how the
use of IBP leads to very unstable training dynamics and crucially how to technically overcome
these obstacles. While this also restricted our choice of architecture to relatively shallow net-
works, we showed that when comparing to other training methods with the same architecture
our method GOOD did not lead to any drop in accuracy.

Finally, in Chapter 7 we described how our work in (Meinke et al., 2022) combined ideas
from both CCU and GOOD into ProoD in order to obtain the desirable properties of both
methods without their respective drawbacks. In particular, we showed that our method simul-
taneously achieved simple and stable training using arbitrary architectures for the classifier,
with strong guarantees on the adversarial robustness on the confidence on OOD data while
losing no accuracy whatsoever and only minimally affecting the clean OOD detection perfor-
mance. On top of this, we showed that our construction also solved the issue of asymptotic
overconfidence. Empirically we could also demonstrate that our method could effortlessly
scale to tasks with many classes (CIFAR100) or with higher resolutions (R.ImgNet).

8.2 Outlook
The topic of OOD detection has recently received a lot of attention from the research commu-
nity, with countless contradicting claims about state-of-the-art performance (Ren et al., 2019;
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Hsu et al., 2020; Yu and Aizawa, 2019; Berglind et al., 2022; Sun et al., 2021; Ming et al.,
2022; Lin et al., 2021; Macêdo et al., 2021; Gomes et al., 2022; Papadopoulos et al., 2021;
Liu et al., 2020; Chen et al., 2021). Some OOD studies turn out to not be reproducible as was
shown, e.g. by Tajwar et al. (2021); Meinke and Hein (2020) and thus it is unclear how much
progress the community has made on clean OOD detection at a fixed amount of training data
in the past few years. A stronger set of diverse benchmarks may help to alleviate this issue
and, in fact, a unified benchmark has recently been proposed (Yang et al., 2021, 2022). Inter-
estingly, this newly proposed benchmark suggests that, contrary to the findings of our work
here, additional data may not always be necesseray for high OOD detection performance. In
my view, more work on reproducing old methods on new benchmarks is needed for more
conclusive evidence on this.

That being said, promising results in clean OOD detection have emerged from large pre-
trained transformer models (Fort et al., 2021; Koner et al., 2021) that implicitly leverage vastly
more data than most other methods. If reliable benchmarks indeed show that large pre-training
datasets effectively solve the OOD detection problem, then the community should move on to
different problems. Safety-critical OOD detection is still relevant in somewhat understudied
data modalities where it is unclear if pre-training and transfer learning can be employed as
successfully as in computer vision, e.g. predictive maintenance tasks (Biggio et al., 2021). In
these cases, it is possible that synthetic data will play a much larger role.

However, even in the case of Natural Language Processing, where pre-training is hugely
successful, there are many unexplored connections to OOD detection as developed in the
vision community. For example, while OOD detection in NLP has been studied a lot, the idea
of adversarially robust OOD detection needs to be investigated more in NLP models. This is
especially relevant at a time where NLP models, that were trained on vast amounts of general
text data, are fine-tuned and publicly deployed for a specific subtask. It should be possible to
restrict such models to only respond to user requests in their specific use case, e.g. a customer
service bot should not be giving medical advice. Detecting such OOD queries and responses
requires the consideration of adversarially robust OOD detection as users have been known
to successfully use prompt injection to “jail-break” large language models through cleverly
crafted queries that attempt to evade detection (Perez and Ribeiro, 2022).

Nonetheless, currently adversarially robust detection of OOD data suffers from the same
issue as adversarial robustness in general, which is the difficulty of defining and optimizing
threat models that more closely align with human notions of a distance metric. Several al-
ternatives to lp-models have been proposed and studied (Engstrom et al., 2019b; Wong and
Kolter, 2021; Brown et al., 2017; Zajac et al., 2019; Stutz et al., 2021), but widely adopted,
realistic threat models do not yet exist.

Unfortunately, even for the simple threat models of lp-balls, adversarially robust OOD de-
tection is currently lacking unified tools for the assessment of robustness. In this thesis, we
saw that gradient masking on OOD data can occur much more easily than on in-distribution
data and that AutoAttack and APGD in particular are not optimally suited for the evaluation
of AAUCs. Thus, the development of an analogue for AutoAttack and RobustBench (Croce
et al., 2021) would greatly benefit the community.
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Another line of work that could be transferred from adversarial robustness on the in-distribution
is related to the stability of training. For adversarial training it is known that both adversarial
overfitting (Rice et al., 2020) as well as catastrophic overfitting (Wong et al., 2020) can lead
to non-robust models. Remedies for both of these issues have been developed in the context
of adversarial training, which make adversarial training both fast and stable. As we discussed
in this thesis, successfully running adversarial training on OOD data is much more difficult
than on the in-distribution data and generally requires even more steps so this would be very
valuable for methods like ACET or RATIO.

It is noteworthy that a lot of progress has been made on certifiable robustness. Especially
interesting is the observation that derandomized smoothing can produce state-of-the-art per-
formance when off-the-shelf classifiers and diffusion-based denoisers are combined (Carlini
et al., 2022). This suggests that Sutton’s bitter lesson might even apply to certified robust-
ness, i.e. that rather than focusing on more cleverly designed algorithms and architectures,
the community should focus on improving their access and use of data (Sutton, 2019; Geirhos
et al., 2022). At any rate, it would be very interesting to see if more scalable approaches can
be leveraged for certifiably adversarially robust detection of OOD as well.

For all methods that we developed in this dissertation, we made the assumption that some
training out-distribution was available. Many alternative approaches without this assumption
exist for the case of clean OOD detection. However, in the adversarial setting, it is unclear
how for RATIO, GOOD or ProoD could be adapted to not need OOD data at all. Of course
one could use synthetic data instead but a lot of work is needed to find out how to best do
this. Also self-supervised pre-training methods that do not explicitly differentiate between
what would later be in- and out-distribution during fine tuning have been shown to allow for
pre-training that leads to adversarially robust methods (Gowal et al., 2021). It would be very
interesting to see if these methods could also be used to provide certifiable robustness or even
certifiable OOD detection.

An entirely different avenue of research could be to rethink the type of robustness one can
try to certify. The robustness guarantees discussed throughout this dissertation were computed
around points that had to be sampled from natural distributions. Ideally, it would be possible
to not only issue such point-wise robustness guarantees but also certify good OOD detection
performance against entire families of distributions. Unfortunately, even specifying such fam-
ilies beyond trivial noise distributions likely requires deep learning models in and of itself,
thus making it difficult to fully evaluate the quality of the threat model. There has been some
work in this direction (Berrada et al., 2021a; Yoon et al., 2022) but a lot more work is needed
to get to potentially useful guarantees.
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Abbreviations

AAUC Adversarial AUC
APGD Auto Projected Gradient Descent
AUC Area Under receiver-operator Curve
CCU Certified Certain Uncertainty
CEDA Confidence Enhancing Data Augmentation
CNN Convolutional Neural Network
DE Deep Ensembles
ECE Expected Calibration Error
EDL Evidential Deep Learning
FGSM Fast Gradient Sign Method
FPR False Positive Rate
GAUC Guaranteed AUC
GOOD Guaranteed Out-Of-distribution Detection
IBP Interval Bound Propagation
MCD Monte-Carlo Dropout
NLP Natural Language Processing
ODIN Out-of-DIstribution Detector for Neural Networks
OE Outlier Exposure
OOD Out-Of-Distribution
PGD Projected Gradient Descent
ProoD Provable out-of-distribution Detection
RATIO Robustness via Adversarial Training on In- and Out-distribution
SOTA State-Of-The-Art
SR Success Rate
TE Test Error
TPR True Positive Rate
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