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Abstract: Precision nutrition is a popular eHealth topic among several groups, such as athletes, 1

people with dementia, rare diseases, diabetes, and overweight. Its implementation demands tight 2

nutrition control, starting with nutritionists who build up food plans for specific groups or individuals. 3

Each person then follows the food plan by preparing meals and logging all food and water intake. 4

However, the discipline demanded to follow food plans and log food intake turns out into high 5

dropout rates. This article presents the concepts, requirements, and architecture of a solution that 6

assists the nutritionist in building up and revising food plans and the user following them. It does 7

so by minimizing human-computer interaction by integrating the nutritionist and user systems 8

and introducing off-the-shelf IoT devices in the system, such as temperature sensors, smartwatches, 9

smartphones, and smart bottles. An interaction time analysis using the Keystroke Level Model 10

provides a baseline for comparison in future work addressing both the use of machine learning and 11

IoT devices to reduce the interaction effort of users. 12

Keywords: precision nutrition; food plans; IoT; machine learning; food logging 13

1. Introduction 14

Disease caused by inappropriate diets is responsible for 11 million deaths and hun- 15

dreds of millions disability-adjusted life-years [1]. The use of technology to support health 16

(eHealth) opens an expansive landscape of opportunities. The emergence of a large set 17

of smart devices capable of facilitating physiological data recording and other forms of 18

recording the health status has potentiated many new eHealth applications. Mobile phones 19

and smartwatches are among the devices with the most potential because of their ubiquity 20

and sensor capabilities installed [2][3][4]. 21

It is unquestionable the importance of nutrition to health. However, the specificity of 22

nutritional requirements for a person demands personalized nutrition control. Nutritional 23

requirements lean on body parameters, genetic and epigenetic makeup, daily routines, and 24

history of disease or allergies. Thus, health professionals (e.g., doctors and nutritionists) 25

must intervene to keep food plans adequate for the target person. Nonetheless, the biggest 26

challenge is not elaborating the food plan but the follow-up. That includes keeping the food 27

plan always present to the user, replacing unavailable or undesired foods, adjusting food 28

quantities to exceptional energy consumption, and using logged food intake data to readjust 29

future food plan revisions. Food intake logging, in particular, benefits from automation 30

since it is time-consuming, and the discipline demanded by its operationalization leads to 31

high dropout rates of food plan execution. 32

State-of-the-art approaches for automation food intake logging exploit the recognition 33

of food and quantities in images [5][6] taken using the phone camera and unconventional 34

intrusive devices to detect swallowing patterns associated with calories intake [7]. Notwith- 35

standing the innovation inherent to these approaches, they suffer from measurement errors 36

summing to the error introduced by food tables to quantify nutrients. Plus, these solutions 37

still require some interaction (e.g., opening the application and taking pictures). A more 38
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realistic solution to reduce human interaction costs is integrating the nutritionist and user 39

systems and resorting to off-the-shelf smart devices. 40

Smart devices are essential tools to enable the ubiquity of food plans by allowing 41

their visualization anywhere. Plus, they act as a data-gathering mechanism for logging 42

macronutrients, micronutrients, and hydration levels. These data feed into a nutritional 43

model that can support the nutritionist (or other health professionals) adjusting the next 44

food plan iteration. 45

This article presents the requirements and concepts of a solution covering the food 46

plan life-cycle from its creation by the nutritionist to its visualization, adaptation, and 47

logging of food intake by the person. It also discusses the system architecture and design 48

by focusing on 49

• Devices for food plan creation, visualization and food logging (smartphones, smart- 50

watches, and smart bottles); 51

• Devices for capturing relevant data for food plan adaption (e.g., energy consumption); 52

• Data integration mechanism. 53

The rest of this article is organized as follows. Section 2 presents the related work. 54

Section 3 defines the problem addressed in this article and enumerates the requirements 55

of a possible solution. Section 4 presents the concepts and formulas used on food plan 56

creation. Section 5 describes the system architecture and implementation. Section 6 and 57

Section 7 describe the scenarios where the system will be tested. Finally, Section 9 presents 58

the conclusions. 59

2. Related Work 60

This paper addresses a multidisciplinary problem connecting several research ar- 61

eas, such as precision nutrition, Internet of Things (IoT), web technologies, and machine 62

learning. 63

Precision nutrition is an eHealth research area that depends on the person charac- 64

teristics to deliver nutritional advice [8]. One prominent research topic in this area is 65

when advice is supported by machine learning models created from several sources of 66

data – e.g., dietary intake (content and time), personal, genetics, nutrigenomics, activity 67

tracking, metabolomics, anthropometric. Food intake monitoring, in particular, provides 68

a fundamental source of data to machine learning algorithms for creating adequate diet 69

models. However, traditional food logging systems are intrusive, forcing users to change 70

their routines. Hence, user interaction with the system makes this activity one of the main 71

contributors to food plan execution dropouts. 72

Several approaches for automatic food intake logging have been proposed. Wearables 73

are devices with high potential in the healthcare [9], since they could automate the process 74

of food intake logging. The results of their exploratory use in nutrition to reduce the burden 75

of manual food intake logging are presented in [7]. The authors explored using a smart 76

necklace that monitors vibrations in the neck and a throat microphone to classify eaten 77

food into three food categories. The resultant models trained with data produced by these 78

wearables revealed higher accuracy for the microphone when compared to the vibrations 79

sensor. Notwithstanding the potential of wearables for automatic logging of food intake, 80

they are still in their infancy, requiring development to reduce intrusiveness and achieve 81

close to perfect accuracy. 82

Visual-based dietary assessment approaches represent another type of appealing 83

solution that resorts to pictures to determine the intake of food nutrients. Lo et al. [5] 84

explores deep learning view synthesis for the dietary assessment using images from any 85

viewing angle and position. An unsupervised segmentation method identifies the food 86

item, and a 3D image reconstruction estimates the portion size of food items. Despite the 87

high accuracy of the approach, the results depend on depth images with separable and 88

straightforward objects, notwithstanding typical dishes may overlap several food items. 89

Another work estimates food energy based on images using the Generative Adversarial 90

Networks (GAN) architecture [6]. It resorts to a training-based system, which contrasts 91
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with approaches based on pre-defined geometric models which bound the evolution of 92

models to food with known shapes. The authors approach provides visualization of how 93

food energy estimation is spatially distributed across the image, enabling spatial error 94

evaluation. 95

While visual food inference represents a promising research topic for automatic log- 96

ging of food intake, its accuracy is still unacceptable for most applications. An alternative 97

method for food logging is using speech-to-text conversion to reduce the user interaction ef- 98

fort required to introduce nutrient information in the software application. Speech2Health 99

[10] allows recording of food intake through natural language. A user-acceptance study 100

using Speech2Health has shown several advantages of a speech-based approach over 101

text-based or image-based food intake recording. Nevertheless, even minor errors result- 102

ing from identifying food names and portion sizes from voice excerpts are unacceptable 103

for generic use. Privacy represents another issue that speech-to-text introduces in public 104

environments. 105

Most related work addresses the problem of automatic food intake monitoring. Instead 106

of explicitly addressing that problem, we devised a holistic approach that depends on food 107

plans created by nutritionists and followed by target users. By confirming meals or logging 108

changes, these users produce data for feeding the feedback loop that approximates the 109

food plan progressively to the actual user needs. The availability of a baseline plan and 110

the use of intelligent devices to record hydration, temperature, and energy expenditure 111

reduce user interaction effort. Additionally, machine learning is applied to user preferences 112

modeling, helping nutritionists choose the best food for the plan. 113

3. Problem Definition 114

Nutrition is a topic that has received more attention in the last decades due to its 115

potential for benefiting from advances in technology. The ubiquity of smartphones and the 116

emergence of wearable devices has created the opportunity to gather data automatically 117

and support the user in deciding the best food to eat at each meal. 118

Many smartphone apps provide features to log intake meals and present nutritional 119

statistics. However, choosing the best food plan for an individual requires a professional 120

analysis that considers their physical condition (e.g., fat mass, lean mass, and weight), 121

clinical condition, and goals. Discarding the health practitioner from the process may lead 122

to inadequate food plans and be dangerous for individuals with health issues. Fortunately, 123

it is possible to use technology to reduce the manual effort needed to manage the food plan 124

life-cycle. The problems solved by a holistic solution spans over the nutritionist and user 125

(person following the food plan) domains. 126

We specified the requirements for the user and nutritionist domains with the support 127

of several experts, such as nutritionists and doctors from a private hospital. We scheduled 128

several meetings with these experts into two different phases: (1) requirement analysis, 129

with the support of high definition interface prototypes, and (2) deliverable analysis, where 130

we tested software increments within a limited group of people by creating appointments, 131

food plans, and performing food logging. Appendix A.1 and Appendix A.2 present the 132

Use Cases for each of these domains. 133

3.1. Nutritionist Domain 134

We identified the following requirements for the nutritionist domain: 135

1. The nutritionist creates an appointment with the person data and all the parameters 136

demanded to obtain the nutrients required to build the food plan. The system should 137

calculate the energy expenditure. 138

2. The nutritionist creates the food plan aligned with the nutrition goals obtained from 139

the appointment. The system should suggest food according to user preferences and 140

goals. 141
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Nutritionists gather several types of data in the course of the appointment, which 142

allows determining the person energy expenditure (Section 4) and other metrics and goals 143

that can further support decisions during food plan making. 144

Energy expenditure is the core metric for devising the food plan. It provides the 145

calories further distributed between macronutrients (i.e., proteins, carbs, and lipids) as 146

follows. 147

energy = α ∗ protein + γ ∗ carbs + β ∗ lipids (1)

After providing the data required to calculate the energy expenditure to the system, 148

the nutritionist defines values for α, γ, and β. These values represent the contribution 149

ratio of each macronutrient to the energy expenditure, which is fixed to a specific day and 150

distributed between meals. 151

The energy expenditure and its distribution between macronutrients and meals are de- 152

pendent on the person profile. For example, athletes have an increased demand for energy 153

compared with sedentary people and distribution of nutrients adapted to specific days 154

(e.g., carbohydrate intake before and after exercise to help restore sub-optimal glycogen 155

reserves). 156

Fiber, water, and micronutrients are essential food plan elements unrelated to energy 157

expenditure. The nutritionist adjusts the quantity of each nutrient to the person goals and 158

condition. For instance, during demanding physical activity, the person may need drinks 159

with added sodium to replace electrolyte losses. On the other side, a person with the risk 160

of high blood pressure would benefit from lowering sodium intake. 161

Food plan creation is time-consuming because it involves the combination of different 162

types of food adequate to the person. That combination should fulfill the target energy 163

expenditure, its distribution between macronutrients, and approximate the micronutrients 164

specified for the food plan. As for selecting alternative food when the user follows the plan 165

(user domain), the user preferences model also supports the nutritionist in choosing the 166

food to be added to the plan. Here the contribution of each food to the goals established for 167

energy, macronutrients, and micronutrients represents a crucial input for the classifier. 168

The nutritionist needs to revise the food plan to adjust the energy and nutrients to the 169

user goals respecting the subsequent appointments. For example, suppose the user goal is 170

to reduce fat mass but increase instead. In that case, the total energy intake specified for the 171

plan must be reduced and, consequently, the proportion of macronutrients contributing to 172

that energy. Since energy expenditure occupies the top of the energy breakdown hierarchy, 173

it will drive food plan adaption according to data gathered during previous food plan 174

executions. Smart devices may improve the accuracy of energy expenditure in further 175

food plan revisions. The physical activity energy expenditure (Section 4.2) represents one 176

component of energy expenditure that can be easily captured with acceptable accuracy by 177

smartwatches (or fit bands), alone or combined with heart rate straps. These data combined 178

with food and water intake logs – registered through the system interface or obtained 179

through intelligent bottles – provide elements required to tune the successive food plan 180

revisions. 181

3.2. User Domain 182

We identified the following requirements for the user domain: 183

1. The person accesses the meals defined in the food plan for the current day or specific 184

event using the mobile phone or smartwatch. 185

2. The person confirms the ingestion of the meal as it is in the food plan. 186

3. The person searches for alternatives to the current meal with equivalent nutrition 187

characteristics aligned with their preferences model. 188

4. The person logs other food eaten not present in the food plan. 189

5. The smart bottle logs water ingestion respecting a specific period. 190

6. The smartwatch logs the calories spent by the person during the day respecting 191

physical activity. 192
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7. All logs are either associated with a specific day or to an event (e.g., sports practice). 193

Nutritionists must design food plans aligned with user conditions and preferences. 194

Further, users demand ubiquitous food plan visualization and logging mechanisms with 195

small interaction costs. While interaction efforts depend heavily on user interface design, 196

off-the-shelf IoT devices can be valuable tools to reduce human interaction with the system. 197

These devices may be balanced with efficient user interfaces to reduce food plan execution 198

abandonment. 199

As food plans are fixed to days of the week, repeating for several weeks, users may 200

often lack some ingredients when executing the plan. Hence, the system may suggest 201

alternative food according to the nutritional equivalence and user preferences – using 202

historical data for similar meals, days of the week, months, or even weather contexts. 203

3.3. Automation Limits 204

The number of interactions with the system and the individual interaction cost de- 205

termines the total user interaction effort. Logging of meals intake as in the food plan 206

requires a small interaction effort since the only input is the user confirmation in either the 207

smartphone or smartwatch. Sometimes that happens in batch (e.g., by the end of the day), 208

resulting in low interaction costs and a small number of interactions (one per meal), as 209

presented in Table 1. In this scenario, the user domain can benefit from integrating the food 210

plan built by the nutritionist with the smartphone application that allows its visualization 211

and confirmation of intake meals. 212

Water intake logging demands a higher number of user interactions when compared 213

with meal confirmation. The user may take a sip of water dozens or hundreds of times a 214

day to be hydrated. Consequently, water intake logging is more complex unless they stick 215

to a standard behavior, such as drinking from the same bottle and logging the bottle storage 216

capacity when they finish. However, even that standard method has flaws because the user 217

may never finish the last bottle refill during the day or replace it with new water. Smart 218

bottles may potentially reduce the number of user interactions for water intake logging 219

since all the logged water intake is sent to the cloud service and made accessible to our 220

system without user interaction. 221

While the previous scenarios offer an automation opportunity, some actions are diffi- 222

cult to automate, such as logging food not registered in the food plan. As shown in Table 223

1, notwithstanding the small number of interactions during the day, the interaction cost 224

of individual actions is high – justified mainly by the search for additional food and the 225

introduction of respective quantities. Also, their automation is complex, and the closest 226

state-of-the-art approaches rely on machine learning to identify food in pictures taken using 227

the phone. However, these approaches are still far from one hundred percent of accuracy, 228

which leads to large errors summed from 229

• errors resultant from the identification of food objects; 230

• errors inherent to values presented in food nutrient composition tables; 231

• food quantification errors, introduced either by visual approximation or predicted 232

from the picture. 233

Reduction of interaction costs respecting activities with low automation potential 234

needs to be handled at the interface design level. The user application interface should be 235

optimized to reduce the effort of food searching for the changing meal and add extra food 236

actions. 237

4. Energy Expenditure 238

The user energy expenditure drives the creation of food plans. Adequate diets approx- 239

imate intaken calories to the total energy expenditure, which includes the Resting Energy 240

Expenditure (REE), Physical Activity Energy Expenditure (PEE), and Thermic Effect of 241

Food (TEF). 242

CB (Caloric Balance) in the human body approximates the CC (Caloric Consumption) 243

to the sum of PEE, REE, and TEF. 244
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Action Smartphone Smartwatch Smart Bottle
Interaction
Cost

Number of
Interactions

Interaction
Cost

Number of
Interactions

Interaction
Cost

Number of
Interactions

Meal confirmation low low low low n/a n/a
Changing meal high low n/a n/a n/a n/a
Add extra food high low n/a n/a n/a n/a
Water logging low high low high none none

Table 1. Interaction effort of main actions for each device.

CB = CC − PEE − REE − TEF (2)

This section presents the calculation of PEE and REE. Notwithstanding the low con- 245

tribution of the TEF (between 3% and 10%) to the Total Energy Expenditure (TEE), it 246

may have an impact on obesity. However, we do not handle it in this article due to its 247

high measurement complexity [11] created by dependency on several other variables (e.g., 248

measurement duration) [12]. 249

4.1. Resting Energy Expenditure 250

REE is considered equivalent to the Basal Metabolic Rate (BMR). BMR is the minimum 251

number of calories required for basic functions at rest. On the other side, RMR is the 252

number of calories our body burns while at rest. Despite both definitions slightly differ, 253

the Harris-Benedict equation [13][14] can approximate REE or other equivalent equations 254

presented in Table 2 for calculation of BMR. 255

4.2. Physical Activity Energy Expenditure 256

PEE calculation involves converting metabolic equivalents of activities to calories 257

expended per minute (cal/min), based on body weight and the varying exercise intensities. 258

The Physical Activity Level (PAL) is an inexpensive and accurate method for calculation of 259

PEE, based on the average values of 24 hours of TEE and REE, as follows: 260

PAL = TEE/REE (3)

The effect of gender does not interfere with PAL calculation because the BMR absorbs 261

the gender difference in energy needs accentuated by the heavier weight of men. 262

A table that associates physical intensity lifestyles to PAL values (Table 3) can simplify 263

PAL calculation. In that context, TEE is the result of multiplying REE by the PAL value 264

associated with the person lifestyle category [15]. 265

Another method for PAL calculation combines the time allocated to habitual activities 266

and the energy cost of those activities (Table 4). In this case, PAL represents an energy 267

requirement expressed as a multiple of 24-hour Physical Activity Ratio (PAR). Here, PAR is 268

a factor of BMR (PAR is 1 when there is no energy requirement above REE). Intuitively, the 269

energy cost (PAR) is multiplied by the activity time to obtain PAL [15][16]. 270

4.3. Distribution of Nutrients 271

The TEE estimate represents the total calories in the food selected for the food plan. 272

TEE is then broken down into macronutrients complemented with micronutrients. 273

Macronutrients are typically specified in grams per kilo of body weight. Such is the 274

case of protein, carbohydrates, and fat (lipids). The exception is fibers that are specified 275

in total grams. Water is frequently classified also as being a macronutrient [17]. However, 276

water and fiber have zero calories, unlike protein, fat, and carbs. Notwithstanding fibers 277

do not usually count as calories in food plans, one type of fibers named soluble fibers [18] 278

may be absorbed by the organism and thus provide the body with calories. 279
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Compared with macronutrients, the number of micronutrients is vast, and for that 280

reason, nutritionists only select a few to be used as control metrics during food plan creation. 281

From the conversation with several nutritionists, we have chosen iron, calcium, sodium, 282

and magnesium, because of their transversality over several population groups. However, 283

the selection of micronutrients depends always on the target population group (e.g., elderly, 284

young people, and athletes). 285

Category PAL

Sedentary or light activity lifestyle 1.40-1.69

Active or moderately active lifestyle 1.70-1.99

Vigorous or vigorously active lifestyle 2.00-2.40

Table 3. Classification of lifestyles according to physical intensity (PAL values).

Activities Time
allocation PAR

Time
×

PAR
Mean PAL

Sleeping 6 1.0 6.0

Personal Care
(dressing, showering) 2 2.3 4.6

Eating 2 1.5 3.0

Walking
without a load 2 3.2 6.4

Sitting 4 1.5 6.0

Cooking 2 2.1 4.2

Household work 2 2.8 5.6

Light leisure
activities 2 1.4 2.8

Driving car 2 2.0 4.0

Total 24 42.6 42.6/24=1.8

Table 4. Total energy expenditure for a population group.

5. Architecture and Implementation 286

This section presents the architecture and implementation of the solution proposed in 287

this article, divided between two front-ends: nutritionist front-end and user front-end. 288

5.1. Nutritionist Front-end 289

The nutritionist front-end (Figure 1) implements two important concepts: appointment 290

and food plan. 291

The appointment is the concept responsible for managing the energy expenditure 292

– and its distribution throughout macronutrients – and micronutrients, as presented in 293

Section 4. Moreover, to support user monitoring between appointments, it should present 294

all historical data entailing previous food plans and energy distribution by day of the week, 295

event, and meal type. 296

Monitoring of physical conditions frequently resorts to the person goals, specified in 297

terms of 298

• weight 299
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(a) Appointment

(b) Client details

(c) Food plan
Figure 1. Nutritionist Front-end

• body fat 300

• visceral fat 301

• fat-free mass 302

• muscle mass 303

• body mass index 304

• exercise performance 305

Control and analysis of generic user goals depend on the previous metrics, although 306

specific people groups may require other specific metrics. Such is the case of groups with 307

specific diseases that require the control of specific body parameters. 308

Other important appointment data required for food plan making include the follow- 309

ing: 310

• bowel function 311
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(a) Daily meals (b) Meal visualization (c) Daily statistics
Figure 2. User front-end.

• sleep quality, and wake up and sleeping times 312

• person race 313

• food likes and dislikes 314

• night shifts 315

• job 316

• life style 317

• clinical conditions 318

• current water intake 319

Nutritionists rely on the appointment data for food plan creation. While adding new 320

meals and foods to the food plan, the nutritionist can balance the food calories with target 321

energy and nutrients. They can also visualize other relevant information gathered during 322

the elaboration of appointments. 323

5.2. User Front-end 324

The user front-end (Figure2a) uses the food plan as the basis for preparing meals, 325

searching for alternative foods, monitoring consumption of water and calories during the 326

day, and food logging. Food is presented on the plate (Figure 2b) – useful for elderly, 327

people with vision impairment, or that may find it difficult using mobile/smartphones 328

with mobile devices – and in the list format. 329

Daily statistics (Figure 2c) are valuable assets for monitoring calories, macronutrients, 330

micronutrients, and hydration during the day. These values are paired with target values 331

defined by the nutritionist in the food plan. 332

Notwithstanding the small screen sizes of smartwatches, they are practical for present- 333

ing meals (Figure 3a), sending notifications, and logging food intake. They also present 334

statistics regarding nutrients intake (Figure 3b) and hydration (Figure 3c). 335
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(a) Food plan visualization and logging (b) Daily control of nutrients (c) Daily control of water
Figure 3. Smartwatch

5.3. Architecture 336

Figure 4 presents the solution architecture composed by four different interfaces. The 337

nutritionist interacts with the system to create appointments and food plans using a web 338

application. On the other side, the user visualizes the current food plan or logs food 339

ingestion using a mobile phone or smartwatch. 340

5.3.1. Web Applications 341

The mobile application is delivered as a PWA (Progressive Web Application). PWAs 342

represent a new class of applications alternative to traditional mobile phone apps, with 343

several advantages over them. Instead of being developed to a specific platform (e.g., iOS 344

or Android), they are built as a web application that can work offline and be installed on 345

any smartphone. A previous study reported PWAs 157 times smaller than React Native- 346

based interpreted apps and 43 times smaller than Ionic hybrid apps [26]. The Twitter PWA 347

consumes less than 3% of the device storage space as compared to Twitter for Android [27], 348

and the Ola PWA is 300 times smaller than their android app [28]. Additionally, they are 349

cross-platform, although current implementations may require adaptation between some 350

browsers. 351

Both applications respecting the user and nutritionist front-ends were developed in 352

LitElement [29], a base class to create lightweight web components. Design of the user front- 353

end for smartphones embraces the PWA principles [30] (e.g., web application installability 354

and offline usage). 355

5.3.2. Smart Bottle 356

Water consumption is logged either by the user – using the smartphone or smartwatch 357

– or automatically by a smart bottle. We tested several smart bottles and decided on the 358

Hidratespark [31], justified by its mature API and good construction and usability of the 359

bottle. Plus, it can be easily integrated with Fitbit [32], which is used as a gateway to 360

retrieve data to the user backend. 361

Water intake goals defined in the food plan are adjusted according to the environment 362

temperature. Temperature sensors provide the inputs to make that adjustment according 363

to the rules stated in the food plan. 364
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Figure 4. Architecture

5.3.3. Smartwatch 365

As explained in Section 4, determining the energy expenditure of one person is one of 366

the main challenges in the creation of a food plan. Modern smartwatches provide a good 367

approximation of energy consumption during physical activity. They provide valuable 368

information to be used by food plan revision activities, enabling correction of energy 369

expenditure values predicted by traditional methods during follow-up appointments 370

(Section 4.2). Pedometers and heartbeat monitors incorporated in devices provide a good 371

approximation of data calories burned [33]. 372

5.3.4. Preference Learning 373

Exploring machine learning techniques on logged data makes it possible to help 374

nutritionists model user food preferences. These techniques build up a recommendation 375

system [34] based on food preference models that support the selection of food during 376

food plan creation. That system will also allow proposing food alternatives to the person 377

following the plan. That may occur when the food is unavailable, or the person prefers 378

other equivalent food. 379

Reinforcement learning seems an adequate tool for applying preference learning to 380

food recommendation [35]. Starting without knowledge, the agent helps the nutritionist to 381

choose the food and quantity for the food plan without breaking the constraints imposed by 382

the goals established for macronutrients and micronutrients. The agent accuracy improves 383

with the feedback received from the nutritionist and the intake of food logged by the user. 384

The same agent can help the user choose equivalent food and quantities when executing 385

the plan based on learned preferences and goals of nutrients. 386
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5.4. Security 387

Security is a complex and wideband problem. It spans the human-related processes 388

and the system level (e.g., network and application). Human misconduct is in the origin 389

of several security threats in eHealth systems [36]. Training people and auditing security 390

procedures is a natural way of reducing the risk of threats occurrence. Coordination 391

between developers, users, organizations, and government regulators represents another 392

security flaw source [37]. 393

In this work, we handle security at the system design level. e-Health systems contain 394

data that are sensitive to confidentiality, integrity, and availability threats [38]. There are 395

different types of data sensitiveness. Personal data is the most critical data under man- 396

agement, and thus, ensuring the confidentiality of these data is of the utmost importance. 397

Hence, we segregate the user data in the application and provide one feature to remove 398

this data anytime without compromising their food plan while an anonymous entity. The 399

latter offers less security risk when unrelated to the person. 400

The design of the nutritionist application allows deletion of the user personal data 401

without compromising the food plan management features, as long as an id can identify 402

the user. The segregation of functionality and data between the user and nutritionist 403

applications offers an additional protective barrier. The user application uses an application 404

token to communicate with the nutritionist application, and the former does not store or 405

handle personal data — an id identifies the user. 406

As much as personal data, authentication credentials are sensitive data demanding 407

theft protection. The HTTPS already ensures protocol-level privacy in the communication 408

channel. Plus, the frontend encrypts passwords before transmitting them to the backend, 409

which are then handled and stored in an encrypted form. 410

Feature-oriented access control constraints the access to features available on each web 411

page. There are three profile types: nutritionists, administrators, and users. 412

Risk management models, such as the one presented in [39], may complement our sys- 413

tem design. As well, other protection schemes against complex attacks [40] are orthogonal 414

to our system and may also be used. 415

6. Case Study Alzheimer 416

Alzheimer’s disease is a progressive loss of mental function, characterized by degener- 417

ation of brain tissue, including loss of nerve cells, accumulation of an abnormal protein, 418

and development of neurofibrillary braids [41]. Alzheimer’s patients become dependent 419

on others, even for the most basic tasks. Controlling feeding and hydrating an Alzheimer’s 420

patient is thus a crucial activity performed by the person who supports their daily routine, 421

called Informal Caregiver (IC). 422

Conditions of malnutrition, super nutrition, and dehydration are common in people 423

with diseases causing dementia. The loss of autonomy also manifests itself in their inability 424

to demonstrate food needs. Therefore, it is fundamental to support the nutritionist in 425

the preparation and follow-up of a food plan aligned with the patient needs. Food plan 426

monitoring is undoubtedly a process that demands much discipline from the IC and the 427

ability to deal with possible circumstantial adaptations, such as replacing foods prescribed 428

in the food plan with other equivalents or changing the quantity of water consumed as a 429

function of ambient temperature. 430

This case study investigates the problem of creating and monitoring diet plans in 431

patients with dementia – such as those with Alzheimer’s. It allows the creation of nutritional 432

plans by the nutritionists and the follow-up of these plans by the ICs through a mobile app 433

to significantly increase the patient quality of life. The app will send the IC notifications 434

regarding proper nutrition and hydration in the due moment. It also controls hydration 435

using the smart water bottle. Besides, the application will suggest alternatives to plan 436

foods if they are unavailable or rejected by the patient. Another feature important for this 437

group is the dynamic adaptation of water administration to the patient as a function of 438
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environmental conditions observed by temperature and humidity sensors. This feature is 439

vital when the patient is unable to express thirstiness. 440

7. Case Study Sports 441

The recent growth in the pursuit of sporting activities, motivated by a widespread 442

increase in the perception of the importance of maintaining physical fitness, campaigns ex- 443

plicitly aimed at combating physical inactivity, and opportunities created by the revelation 444

of lesser-known modalities, brought forward fundamental questions such as the correct 445

nutrition of the practitioners. Several institutions and individuals involved in physical 446

activity have integrated these concerns into their scope, including nutritionists. 447

Food plan elaboration and monitoring present two main challenges: 1) obtaining the 448

person biometric data, eating habits, and energy consumption and 2) monitoring user food 449

intake and providing dynamic adaptation of the food plan. 450

Sports nutrition is one of the most complex areas of nutrition. It requires observing a 451

comprehensive set of metrics, encompassing the athlete physical aspects, physical activity, 452

and eating habits. Fortunately, devices for measuring specific physical parameters represent 453

a common practice among athletes. The creation of data repositories to help nutritionists 454

build the plan is only possible by automatically integrating data collected by these devices 455

with other data not directly observable – such as dietary habits and subjective metrics. 456

These repositories also contain data that can help adapt the food plan at its execution stage. 457

For example, variations in temperature or physical intensity may demand quick changes 458

in individual energy or hydration needs. In these scenarios, the support system uses data 459

collected by devices to dynamically adjust the food plan and send alerts to athletes to eat 460

food or water at the right time. 461

8. Interaction Results 462

This section presents the human-computer interaction cost associated with typical 463

user tasks to visualize the food plan and log food intake. 464

Traditional methods used in the usability evaluation of an interface fall into two 465

categories: (1) subjective opinion of users and experts – mainly applying questionnaires 466

[42] and inspection methods [43,44] – and (2) objective techniques like rules [45], analytic 467

modeling [46], and automated testing [47,48]. Notwithstanding these approaches provide 468

important tools to determine the usability of the user interface, there is both cost and time 469

needed to implement user interaction evaluation with acceptable coverage, coupled with 470

the need to use experts to cover for the user faults. 471

8.1. Keystroke Level Model 472

We applied the Keystroke Level Model (KLM) [49] to the user interface depicted in 473

Figure 2, for testing the quality of the human-computer interaction and estimating the time 474

spent in critical tasks. In this model, a unit task is defined with two parts: task acquisition and 475

task execution. The total time to complete a unit task is given by Ttask = Tacquire + Texecute. 476

At the execution level, KLM provides physical, mental and response operators with 477

predefined time values. These operators are defined by a letter and include: K (keystroke ≈ 478

0.12 secs), P (point ≈ 1.1 secs), H (homing the hand(s) on the keyboard or other device ≈ 0.4 479

secs), D (draw is measured in real time), B (button press ≈ 0.1 secs), M (mental preparation 480

for action ≈ 1.35 secs), and R (system response, which is a parameter measured in real time). 481

The execution time is the sum of the time for each of the operators from the final KLM 482

string Texecute = TK + TP + TH + TD + TB + TM + TR. 483

8.2. Interaction Results 484

Table 5 presents the time required to execute each application task. The KLM string 485

generated is represented in the sequence of operators column and the respective time required 486

to execute each task in the estimated time column. The task Update food entries for train and 487

competition allows the creation of periodic food requirements and is specific to the Sports 488
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Actor Tasks Sub-tasks Sequence of Operators Estimated time (secs)

User Visualize food plan Graphical representation of the meal PB 1.20
Composition of the meal (by food) PBP 2.30

User Log food intake
*multiplied by the number of itens in the meal

Add new food to the meal * PBPBMHKKKMHPBPB 8.66
Add new extra food (snack between meals)* PBPBMHKKKMHPBPB 8,66
Remove food * PBPBPB 3.60
Specify percentage of food intake * PBPBPBPB 4.80
Change food plan food * PBPBPB 3.60
Confirm food intake from food plan with no changes* PB 1.20

User Log water intake Through food plan PBPBPB 3.60
Through interaction menu PBPBPBPB 4.80

Fitbit (bottle) Update water intake —- 0.00

User Visualize statistics PBPB 1.20

System Update food entries for train and competition —- 0.00

User Change active food plan (train or competition) PBPBPBPB 4.80

User Connect watch API PBPBPBMH42KMHPB 13.34

User Provide consent to access Fitbit API PBPBPBR 4.60

Table 5. Interaction results.

scenario. In contrast, the Alzheimer’s and the Sports scenarios share the other tasks. The 489

results are presented for the user application since we aim to reduce user abandonment 490

motivated by interaction costs resultant from food logging activities. 491

As expected, results show that tasks that change the original food plan for logging 492

purposes manifest higher interaction costs. Food plan visualization requires 1.2 or 2.3 493

seconds, depending on the UI view. Logging one meal by confirming the original food 494

plan only requires 1.2 seconds. On the other hand, logging tasks respecting food intake not 495

present in the food plan are costly. Each extra food added to the food plan requires 8.66 496

seconds of the user time. 497

Manual logging of water using the application requires 3.6 or 4.8 seconds, depending 498

on the view. The adoption of smart bottles avoids that interaction, which may repeat 499

dozens of times during the day. 500

The interaction time of tasks performed by the smartwatch (e.g., energy expenditure 501

logging) is not presented in this section. Despite the automation of the data logging process, 502

the user can not perform any equivalent task manually. 503

8.3. Analysis of Results 504

The observed results of human-computer interaction times pinpointed the tasks re- 505

quiring improvement of interaction times. They provide a baseline for evaluating other 506

interaction schemes and assessing the contribution of automation (e.g., using IoT devices) 507

to the goals established in this article. The lower the interaction time, the lower the user 508

discipline needed to maintain a food plan visualization and logging process, and the lower 509

the user abandonment rate. 510

We designed the application to minimize human interaction with the support of UI 511

experts. The most challenging tasks using a UI (those with more significant interaction 512

times) require the search of new food manually. Although the interface implementation can 513

still be questionable in terms of the specific design that may compromise the generalization 514

of results, it is evident that there is little space for improvement when we need to perform 515

a generic search for food using text. 516

Machine learning techniques are natural solutions to help reduce the time required for 517

logging extra food in addition to – or replacement of – those present in the food plan. As 518

referred in Section 2, there have been several attempts to recognize food objects in pictures 519

taken with the mobile phone to reduce the burden of manually logging food. However, 520

interaction is still required to take the picture, and an accuracy less than perfect could 521

even increase the interaction time since the user would need to correct these data. The 522

previous rationale leads to a different strategy for exploring machine learning for reducing 523

interaction time. Creating a food preferences model customized to each user would likely 524
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lessen the food search interaction time considerably. By resorting to historical data and 525

observable features (e.g., user location, day of the week, and weather), the system can 526

anticipate the consumption of specific food. In that scenario, the interaction time would be 527

equivalent to confirming a meal in the food plan. 528

9. Conclusion 529

This article unveils the concepts, requirements, and technologies needed to build a 530

system that could support the nutritionist in creating food plans aligned with the individual 531

profile. Further, it presents an architecture and software developed for smartphones (PWA) 532

and smartwatches. The software furnishes food plan visualization logging of food and 533

water intake, among other related features. It also integrates other devices, such as smart 534

bottle technology and temperature sensors to reduce human-computer interaction. 535

The availability of off-the-shelf devices brought unprecedented ways of gathering 536

data from physical phenomena without resorting to direct human-computer interaction. 537

We propose an architecture that integrates the nutritionist backoffice, the user application, 538

and smart devices, focused on interaction cost reduction when users follow a food plan. 539

We presented a baseline of the human interaction effort associated with several tasks 540

pinpointing the most critical (expensive) operations. Such baseline sustains the evaluation 541

of future machine learning and IoT approaches targeting the reduction of human interaction 542

effort completing critical operations. 543

As future work, we plan to explore machine learning techniques to reduce interaction 544

times in two demanding user groups: Alzheimer’s patients and athletes. The Alzheimer’s 545

group offers interaction challenges since several caretakers are elderly and have difficulties 546

using apps or are not motivated to use apps as a data logging mechanism. On the other 547

hand, athletes are very disciplined but need tight control of food intake before, during, and 548

after physical activity. 549
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Appendix A 560

This appendix presents the Use Cases described using the Unified Modelling Language 561

(UML) related to the application requirements. 562

Appendix A.1 Nutritionist Use Cases 563

Figure A1. Nutritionist login.
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Figure A2. Person registration.

Figure A3. Appointment creation.
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Figure A4. Visualize food nutrients.

Figure A5. Import food table with nutrients.

Figure A6. Food plan creation.
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Appendix A.2 User Use Cases 564

Figure A7. Visualize food plan.

Figure A8. Log food and water intake.

Figure A9. Update water intake.
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Figure A10. Visualize Statistics.

Figure A11. Update periodic food entries and train for competition.

Figure A12. Change active food plan.

Figure A13. Connect watch API.

Figure A14. Provide Fitbit consent.
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