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Popular science summary of the thesis 
CRISPR/Cas9 is a powerful tool used to edit genes. It is like a tiny molecular scissors that can cut and 
edit genes, but it's not perfect. There are some challenges that come with using it. 

First, how can we efficiently deliver the CRISPR/Cas9 system to as many cells as possible? CRISPR/Cas9 
components can be delivered in the form of DNA using vectors. Due to their large size, CRISPR/Cas9 
vectors often face challenges in passing through cell membranes. In Paper I, we showed that small-
size vectors helped large-size vectors to get into cells. By adding small-size vectors to CRISPR/Cas9 
vectors, we significantly increased the delivery efficiency and decreased cell death. This method can 
greatly benefit CRISPR/Cas9 users and increase the efficiency of achieving modified cells. 

Second, after CRISPR/Cas9 cuts its target, are the two ends of the DNA break directly bound to each 
other? If not, what would happen at the break site? In Paper II, we utilized an advanced and 
customized approach to investigate the on-target DNA sequence after the CRISPR/Cas9-induced break 
was repaired. Surprisingly, many undesired scenarios co-occurred at the target site. The targeted DNA 
sequences could get duplicated and inverted, and DNA fragments belonging to CRISPR/Cas9 vectors 
or some other regions in the human genome were inserted into the break site.  

Lastly, we asked the question when CRISPR/Cas9 is used to cut the target, does the rest of the genome 
remain unchanged? In Paper III, we reported an unexpected large genomic deletion in one commonly 
used human cell line. This deletion contains many important genes and was found in various cell clones 
when using CRISPR/Cas9. We observed both molecular and cellular changes in cells carrying this 
deletion. Although the deleted genomic region was not cleaved by Cas9, the generation of 
CRISPR/Cas9-modified cells increased the likelihood of cells losing this genomic region. We found that 
this deletion can be connected to a common deletion event among cancer patients, suggesting the 
clinical significance of our work. 

In summary, this thesis addresses several considerations for targeting the human genome using 
CRISPR/Cas9, and introduces methods to ensure the efficiency and safety of its application. 

 

  



Abstract 
Since the CRISPR system was discovered as an adaptive immune response in prokaryotic cells, the past 
decade has witnessed the engineering and deployment of CRISPR/Cas9 as one of the most efficient 
and powerful molecular tools. By leveraging the nuclease activity of CRISPR/Cas9, researchers are able 
to probe the biological functions of genetic elements and dissect molecular interactions by disrupting, 
activating or inactivating genes. In addition to biological research, the CRISPR/Cas9 toolkit has 
profoundly revolutionized gene therapy and agricultural products. However, there are many 
challenges regarding its efficiency, specificity and safety. Continuous efforts are being made to 
advance techniques and characterize the consequences of genome editing. In this thesis, we describe 
considerations when targeting genomic regions with CRISPR/Cas9 and provide methods to address 
some concerns related to efficiency and safety. 

In Paper I, we introduced a non-hazardous method of transfecting human cells with large-size 
CRISPR/Cas9 vectors. By co-transfecting small-size vectors (3 kb) to cells, the delivery efficiency of 
CRISPR/Cas9 vectors (15 kb) and cell viability was significantly increased. The performance of the 
method has been verified in a number of hard-to-transfect human cell lines with both electroporation- 
and liposome-based transfection.  

In Paper II, we revealed the complexity of CRISPR/Cas9-induced on-target genomic alterations by 
combining an advanced droplet-based target enrichment method followed by long-read sequencing 
and de novo assembly-based analysis. This approach enabled us to dissect the on-target sequence 
content in the order of kilobases, which was very challenging with many other available methods. With 
this tool, we uncovered the co-occurrence of multiple on-target rearrangements including duplication, 
inversion, as well as integrations of exogenous DNA and clustered interchromosomal rearrangements 
in CRISPR/Cas9-modified human cells. Furthermore, our study demonstrated that unintended 
genomic alterations could lead to the expression of DNA derived from both the target region and 
exogenous sources, as well as affect cell proliferation. 

In Paper III, we reported a large unexpected genomic deletion in the HAP1 cell line, which is the one 
of most popular models used in CRISPR/Cas9-mediated experiments. This 287 kb deletion located on 
Chromosome 10 contains four widely-expressed protein-coding genes including the PTEN gene locus. 
We detected changes in histone acetylation and transcriptomes in HAP1 cells carrying the deletion. 
The loss of this genomic locus was not induced by Cas9 off-target nuclease activity. However, the 
generation of CRISPR/Cas9-modified cells significantly enhanced the frequency of the deletion among 
cell clones. Furthermore, our analysis indicated that this deletion initially found in HAP1 cells 
resembled a frequent deletion pattern driven by the PTEN gene in cancer patients. 

In conclusion, we have presented two methods: one to improve delivery efficiency and another to 
detect on-target sequence content with higher resolution. Furthermore, we have revealed unintended 
genomic aberrations at targeted and non-targeted sites. These observations should be taken into 
consideration when modifying the genome with CRISPR/Cas9, and a comprehensive genomic 
validation is necessary. 
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1 Literature review 

1.1 CRISPR/Cas9 

Genome editing enables precise modification of a chosen sequence by introducing a double-stranded 
break (DSB) and its subsequent repair. In the past, targeted nucleases such as zinc-finger nucleases 
and transcription activator-like effector nucleases were engineered to recognize and target desired 
sequences. However, these methods are demanding because the recombinant proteins require 
customized DNA binding domains. Since the first demonstration of applying clustered regularly 
interspaced short palindromic repeats (CRISPR) associated proteins (CRISPR/Cas) as editing tools in 
20131, CRISPR/Cas has revolutionized genome engineering because of its simple programmability, 
versatile scalability and low cost. 

1.1.1 The origin of CRISPR/Cas 

CRISPR/Cas was first found as the adaptive immune response system in many bacteria and Archaea, 
protecting them from the infection by bacteriophages or viruses2. The action of CRISPR/Cas systems 
can be divided into three steps: adaptation, expression and maturation, and interference3. During 
adaptation, Cas proteins identify and bind to the foreign DNA. A target region that is next to the 
protospacer-adjacent motif (PAM) is then cleaved and integrated into the CRISPR array as a spacer. 
During expression and maturation, a precursor CRISPR RNA (pre-crRNA) is transcribed from the CRISPR 
array and further processed into a smaller mature CRISPR RNA (crRNA), forming an active complex 
with Cas protein. In the last step of interference, the Cas-crRNA complex recognizes the 
complementary sequence in the invader DNA, induces cleavage and leads to the degradation of the 
target. 

1.1.2 Application of CRISPR/Cas9 

Among all the CRISPR/Cas systems, CRISPR/Cas9 has been the most intensively developed and widely 
applied genome editing tool. In the original system as a defence response, Cas9 is guided by a crRNA 
and a trans-activating CRISPR RNA (tracrRNA). tracrRNA facilitates the process of pre-crRNA and forms 
a crRNA-tracrRNA hybrid to recruit Cas9 nucleases4. After adapting CRISPR/Cas9 as an editing tool, 
crRNA and tracrRNA are now designed to fuse, known as guide RNA (gRNA)1,5,6. Once the Cas9 enzyme 
has been guided to its target in the presence of gRNA, the two nuclease domains HNH and RuvC create 
a DSB three nucleotides (nt) upstream of the PAM2,4.  

The PAM sequence varies among Cas9 proteins found in different bacteria species7. The most 
commonly used Cas9 is from Streptococcus pyogenes (spCas9). Besides, there are variants from 
Streptococcus thermophiles and Staphylococcus aureus. The PAM sequence for spCas9 is 3'-NGG8. To 
increase the range of available editing sites, new spCas9 variants were developed, allowing PAMs such 
as 3’-NG or 3’-NRNH8–10. 

Once a DSB is induced, it will be repaired by cellular mechanisms (discussed in subsection 1.2). The 
most frequent repair outcomes are small insertions or deletions (InDels) at the targeted site11. 
Consequently, when targeting a protein-coding gene, a frameshift is introduced, and the loss-of-
function of the targeted protein-coding gene is achieved. However, InDels are not sufficient when 
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knocking out non-coding genes and regulatory elements. Additionally, targeting a multi-copy gene 
family or a repetitive region itself with a single gRNA poses the risk of a high frequency of off-target 
editing. In these cases, larger genomic regions can be removed from the genome by using dual gRNAs 
that flank the target region to introduce two DSBs12,13. Through this approach, a DNA sequence of up 
to 1 Mb can be excised14. With the presence of exogenous homologous DNA as a donor template, the 
DSB can be repaired with specific sequences, enabling precise DNA correction or addition. 

1.1.2.1 Beyond single-target editing 

Compared to other established nucleases used for gene editing, the primary benefit of the 
CRISPR/Cas9 system is its superior programmability. It allows large-scale screening since only ~20 nt 
sequences need to be designed and synthesized, which, together with the scaffold, direct the Cas9 
enzyme to different targets. Single gRNA libraries have been generated targeting the coding 
regions15,16. After CRISPR/Cas9 components are delivered to cells, a specific phenotype-based 
selection, such as proliferation or survival competition, is performed. By sequencing gRNAs in the 
positively selected pool, genes of interest are identified through enriched or depleted gRNAs15–17. 
Besides screening protein-coding genes, CRISPR/Cas9 is used to reveal regulatory elements such as 
enhancers18,19.  

The CRISPR/Cas9 toolkit has been expanded for visualization and gene expression regulation. To 
achieve these goals, a catalytically inactive Cas9 (dCas9) was engineered. dCas9 carries mutations that 
disrupt the HNH and RuvC domains, i.e., dCas9 binds to its target without the ability to induce any 
DSBs. dCas9 can be fused with different effector domains or proteins depending on the purpose. For 
example, eGFP-, mCherry- and SunTag-dCas9 fusion were used to visualize telomeres20–24. Optimized 
dCas9-based live-cell imaging methods such as BIFC-dCas9/gRNA and CRISPR/Casilio increase the 
specificity, efficiency and resolution allowing the study of the dynamics and conformation of 
chromatin in real-time22,25. dCas9 fused with a transcriptional activation (e.g. VP64) or repression (e.g. 
KRAB) domain is exploited to up- or down-regulate the targeted gene expression26–28. Similarly, 
transcription can be manipulated through dCas9 fusions for epigenome editing. For example, as the 
core domain of catalytic histone acetyltransferase, p300 directly catalyses the acetylation of histone 
(H) 3 lysine (K) 27 (H3K27), of which the enrichment is concomitant with increased gene expression. 
dCas9–p300 fusions recruited to promoters or enhancers have been shown to activate the expression 
of corresponding genes29,30. 

1.1.2.2 Efficiency 

One of the main challenges when using CRISPR/Cas9 is to identify gRNAs with the maximum on-target 
activity (efficiency) and minimal off-target risks (specificity). The efficiency depends on not only 
nuclease activity but also the binding affinity and the accessibility of the targeted region. Due to a lack 
of knowledge on the exact behaviour of Cas9 interacting with DNA dynamically in living cells, the on-
target efficiency of a gRNA still needs to be tested experimentally. Nevertheless, information was 
extracted from large-scale screenings and analysed to link certain features of the sequence to the on-
target activity.  

According to the PAM sequence of Cas9, although any nucleotide can precede the two guanines (G), 
cytosines (C) and thymines (T) are the most and least favoured in this position, respectively31,32. Besides 
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the PAM, other gRNA features also determine the efficiency. For example, poly-N sequences should 
be avoided in gRNA design due to poor oligo synthesis and many other reasons33. GGGG usually 
indicates poor efficiency since the secondary structure could make the target site less accessible. 
UUUU would trigger the termination of RNA polymerase III, which transcribes gRNA. The nucleotides 
next to the PAM exert the greatest impact on Cas9 editing activity. On position 20, a strong preference 
for G has been observed while C is the last choice31,32,34. As to the overall nucleotide usage, conclusions 
drawn in different studies did not reach a consensus. Some studies showed that high adenine (A) 
content correlated with high Cas9 loading efficiency35. On the contrary, a study in zebrafish indicated 
that G enrichment and A depletion were linked to high gRNA activity36. Factors related to RNA 
structure such as GC content are also important. gRNA sequences with GC content of 40%-60% are 
generally considered optimal32,35. Notably, the preference of GC content varies across different 
positions of gRNA37. 

Furthermore, the chromatin state of the targeted site contributes to the CRISPR/Cas9 editing 
efficiency. Evidence has emerged that the editing can be impeded in heterochromatin38,39. This may 
be explained by nucleosome occupancy. An In vitro experiment suggested that nucleosomes could 
block Cas9 loading onto DNA. However, nucleosome positioning is dynamic in cells. Indeed, Cas9 
binding is more resistant to nucleosomes in cells40.  

1.1.2.3 Specificity 

Despite the wide use of CRISPR/Cas9, some groups reported that off-target editing occurred at a 
comparable frequency as the on-target one41,42. Generally, the gRNA sequence is considered the major 
determinant of specificity. Mismatches at the 5’ ends often appear to be more tolerant than ones 
located close to 3’ ends42,43. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) 
profiling dCas9 indicated that 10 or even 5 nt adjacent to PAM sequences (3’ end of gRNA) determined 
CRISPR/Cas9 specificity, known as “seed sequence”44,45. However, mismatches at the 5’ end are not 
always tolerant. Some mismatches distal to PAM sequences decrease the specificity while the PAM-
proximal mismatches exhibit few effects42. 

To assess the CRISPR/Cas9 specificity, many experimental approaches were invented such as GUIDE-
seq46, HTGTS47, Digenome-seq48 and BLISS49. These methods identified off-targeting sites with up to six 
mismatches. Besides the region-specific tolerance of mismatch, analysis using GUIDE-seq data 
suggested that rU–dG or rG–dT were more tolerated50. 

To increase the specificity of the CRISPR/Cas9 system, many strategies have been proposed. Truncated 
gRNAs (tru-gRNAs) have been shown to effectively reduce off-target editing in two different ways. 
Although it seems counterintuitive, tru-gRNAs which are shortened by 2-3 nt at 5’end decrease the 
off-target sites by 5,000-fold while maintaining on-target genome editing efficiencies when compared 
to full-length gRNAs41 (Fig. 1A). On the other hand, when tru-gRNAs are shorter than full-length gRNAs 
by at least 4 nucleotides, Cas9 is still able to bind to DNA, but no DSBs can be induced. Based on this 
observation, dead-RNAs (dRNAs) or tru-gRNAs are used to compete with the active gRNA without 
inducing any DSB. By co-delivering dRNAs to the cell, off-target sites are shielded from the active gRNA 
without compromising on-target efficiency51 (Fig. 1B). Besides modifying gRNAs, another strategy is to 
use paired Cas9 nickases (Cas9n). It carries a mutation in the RuvC or HNH domain. Two gRNAs direct 
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paired nickases to the neighbouring DNA sequences to create offset nicks52. The Cas9n system reduces 
off-target editing by up to 1,500-fold in human cells by requiring two Cas9 binding sites to be in close 
proximity to generate InDels52 (Fig. 1C). 

 

Fig 1. Schematic of various strategies to increase CRISPR/Cas9 specificity 
(A) Cas9 guided by a full-length gRNA tolerate (dark blue) more mismatches than by a tru-gRNA (green, 2~3 nt 
shorter than full-length gRNA). (B) A tru-gRNA (green) with at least 4 nt shorter guides Cas9 to an off-target site 
without inducing a DSB, impeding the binding of Cas9 guided by a full-length gRNA (dark blue). Meanwhile, a 
DSB can be achieved at the on-target site by a Cas9-full-length gRNA complex. (C) Cas9 nickases reduce 
CRISPR/Cas9 off-target editing by requiring two bindings next to each other. 

1.1.3 CRISPR/Cas9 delivery system 

Continuous efforts have been made to optimize the delivery of CRISPR/Cas9 components into cells. 
Delivery methods can be generally divided into viral and non-viral approaches, and each of them has 
its pros and cons. 

Adeno-associated viruses (AAVs) are commonly used for gene delivery because of their replicative 
deficiency and inability to integrate into the genome, which is beneficial in decreasing off-target events 
and cellular toxicity52. It can transport Cas9, gRNAs or homologous donor templates into cells by 
transduction. However, AAVs are limited by low on-target editing efficiency and low cloning capacity 
(<4.7 kb) considering the size of the spCas9 gene (~4.1 kb)53. Another viral vector is the lentivirus (LV). 
Unlike AAVs, LVs have a much higher cloning capacity (<8 kb), allowing for the cloning of both Cas9 
and gRNA into the same vector. In addition, the transduction of LVs is very efficient54. However, the 
random integration of LVs into the genome leads to unwanted effects such as oncogene activation55. 
This impedes the application of LVs in clinical trials. On the contrary, adenoviruses (AVs) have been 
broadly used as vectors in clinical settings. AVs do not integrate into the genome, but they are known 
to trigger high-level innate immune responses56. Virus-based delivery is generally more efficient than 
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non-virus methods, but the safety needs to be thoroughly assessed, and laboratories with high 
biosafety levels and ethical approval are required.  

Non-virus approaches, for example, electroporation and lipid-based nanoparticles (LNPs), are used to 
deliver either plasmids or Cas9-gRNA ribonucleoproteins (RNP) directly into the cells57. Electroporation 
utilizes pulses of electrical current to increase the permeability of cell membranes temporarily and 
stimulate the transient opening of pores, enabling CRISPR/Cas9 components to be delivered. 
Electroporation is efficient, especially for hard-to-transfect cell types, for example, primary cells58. The 
disadvantage is that it requires different stimulation conditions for different cell types. The strong 
current pulse usually results in low cell viability. Moreover, liposomes consist of lipid bilayers with 
spherical structures. Cargoes are encapsulated and form a positively changed complex with LNPs, 
which greatly facilitates the fusion through the negatively charged cell membrane57. Among LNPs, 
lipofectamine is the most popular reagent. It is easy to use without exerting excessive cell stress. 

1.1.4 HAP1, a widely-used cell line in CRISPR/Cas9 experiments 

Although CRISPR/Cas9 system was first found in prokaryotic organisms, it has been widely applied in 
mammalian cells as a gene-editing tool. Most mammalian cells are diploid, inheriting one copy from 
each parent. Additionally, many cell models used by researchers are cancer cells, which are likely to 
be aneuploid. Loss of function study using genome editing in diploid or polyploid cells is very 
challenging. Mutations achieved in one copy are usually buffered by the unmodified copy(s) located 
on the other allele(s). Therefore, the phenotypic consequences of the mutation are often masked, 
hindering the identification of the gene function59,60. Furthermore, in non-haploid cells, different 
scenarios of on-target alterations can occur on multiple alleles with diverse biological consequences61. 
Therefore, because of its near-haploid nature, HAP1 is one of the most popular cell lines used in 
CRISPR/Cas9-mediated single-target editing and large-scale screening.  

The HAP1 cell line was created from KBM-7 cells, which are near-haploid cells derived from a patient 
with chronic myeloid leukaemia, carrying two copies of Chromosome (Chr) 8 and a fragment of Chr 
1562,63. An attempt was made to generate induced pluripotent stem cells from KBM-7 cells through 
the transfection of four Yamanaka factors (KLF4, c-MYC, OCT4 and SOX2). This resulted in the 
emergence of HAP1 cells that retain their haploid nature except for two copies of a fragment of Chr 
1564. 

It has been reported that HAP1 has a strong tendency to change from a highly unstable haploid status 
to diploid cells under exposure to stress or long-time culture65,66. Nevertheless, it is still beneficial to 
use HAP1 cells. Duplication of the genome after creating mutations at targets results in modifications 
at both alleles, enabling the measurement of phenotypic changes. 

1.2 DNA damage repair 

After a DSB is induced by Cas9, the repair of the break occurs using intrinsic cellular mechanisms. The 
choice of pathways depends on many factors such as cell type, cell cycle phase and chromatin states. 
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1.2.1 DNA damage response 

DNA damage response (DDR) is a set of cellular processes activated upon damage to DNA molecules, 
including the recognition of damage, activation of certain signalling pathways, and recruitment of 
repair proteins. DDR may also trigger programmed cell death if the DNA damage is too severe to repair.  

Kinases such as ataxia telangiectasia mutated (ATM) and RAD3-related (ATR) are initially activated and 
act as major regulators in DDR-signalling pathways. ATM is recruited to damage sites by meiotic 
recombination 11 (MRE11) – double-strand break repair protein (RAD50) - Nijmegen breakage 
syndrome 1 (NBS1) complex (MRN complex) and undergoes autophosphorylation to be active67. ATR 
is recruited by replication protein A (RPA) through ATR-interacting protein (ATRIP). ATM/ATR further 
phosphorylates and activates cell-cycle checkpoint kinases such as CHK1 and CHK268,69. DNA-
dependent protein kinase (DNA-PK), consisting of a catalytic subunit DNA-PKcs and a regulatory 
subunit Ku70-80, is also among the kinases first activated upon DSBs. ATM/ATR/DNA-PK can 
phosphorylate the serine-139 of the histone H2A variant (γH2AX), flanking damage sites with the size 
of megabases70 and serving as seeds for the formation of DDR foci71. Next to γH2AX, a large number 
of proteins are found such as ATM, mediator of DNA damage checkpoint protein 1 (MDC1) and MRN 
complex71. TP53-binding protein 1 (53BP1) and breast cancer type 1 susceptibility protein (BRCA1) are 
later recruited. The DDR foci are rapidly assembled and established a ‘repair-prone’ environment. The 
spread of γH2AX is constrained within topologically associating domains, and γH2AX–53BP1 chromatin 
domains are correctly established under the guidance of one-sided cohesin-mediated loop extrusion 
around DSB sites72. 

1.2.2 Non-homologous end joining 

The non-homologous end joining (NHEJ) pathway directly re-ligates broken DNA ends with minimal 
DNA end processing. It starts with the binding of a ring-shaped Ku70/Ku80 protein heterodimer to 
shield DNA ends from further resection73 (Fig. 2A). Next, DNA-PKcs are bound and recruit other NHEJ 
factors including DNA ligase IV (LigIV), X-ray cross complementing group 4 (XRCC4), XRCC4-like factor 
(XLF) and end-processing enzymes74,75. Active DNA-PKcs can phosphorylate and activate enzymes 
recruited76. Meanwhile, the autophosphorylation of DNA-PKcs results in conformational changes and 
the dissociation of DNA ends77. These steps enable the access of end-processing enzymes to DNA 
ends78,79. The removal of mismatched nucleotides and re-synthesis require enzymes including 
polynucleotide kinase 3ʹ phosphatase, Artemis nucleases and DNA polymerases, such as Polμ and Polλ. 
After end processing, LigIV-XRCC4-XLF ligates DNA ends80–82. 
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Fig 2. DSB repair pathways  
After a DSB is induced, the damage is usually repaired by NHEJ (A), HR (B) and MMEJ (C). The names of proteins 
involved in each step are labelled and coloured corresponding to symbols representing proteins in the 
illustration. 
 

1.2.3 Homologous recombination 

In the homologous recombination (HR) pathway, DNA damage is repaired using the sister chromatid 
as the homologous template (Fig. 2B). HR only occurs in S and G2 phases while NHEJ can operate 
throughout cell cycle. 

During end resection, two steps are required in HR: short-range and long-range end resections. In the 
first step, MRN- C-terminal binding protein interacting protein (CtIP) binds at the break site. Both 
phosphorylated CtIP and BRCA1– BRCA1-associated domain 1 (BRCA1-BARD1) facilitate the short-end 
resection83,84. MRE11 in the MRN complex creates nicks and further extends it to the break site. These 
short overhangs provide access for endo/exonucleases such as exonuclease 1 (EXO1) and Bloom 
syndrome protein (BLM)/DNA284–87. During the long-range end resection, the nucleotides are removed 
from 5’ to 3’ by EXO1, resulting in long 3’ single-stranded DNA (ssDNA) overhangs86. The activity of 
EXO1 is regulated by the MRN complex and CtIP86. BLM and DNA2 work together to generate long 
overhangs to enable the 5’ to 3’ polarity of resection. BLM serves as a helicase to unwind DNA strands, 
and DNA2 induces cleavage. CtIP can also interact and stimulate the activity of BLM as helicase and 
DNA2 as 5’ endonuclease86.  

These overhangs are vulnerable to degradation and need protection. The binding of the PRA complex 
stabilizes the ssDNA88. Besides, DNA-dependent RNA polymerase III (Pol III) was shown to give rise to 
RNA using the ssDNA as a template. As consequence, RNA-DNA hybrids serve as essential 
intermediates to protect the overhangs and promote end resection89. 
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The recombinase RAD51 then removes the RPA complex and likely the RNA-DNA hybrids too, forming 
RAD51 nucleoprotein filament, which is facilitated by the BRCA2-DSS1 complex and BRCA1-BARD190,91. 
Afterwards, RAD51 mediates strand invasion through the pairing of homologous sequences, thereby 
forming a D-loop. During this process, many additional accessory factors are involved such as RAD54 
and BRCA1-BARD192,93. 

The 3’ end of the invading strand is extended by DNA polymerase δ, together with proliferating cell 
nuclear antigen (PCNA) and replication factor C (RFC) subunit 1-5, using the homologous DNA as a 
template94–96. The product can be resolved by either double Holliday junction (dHJ) or the non-
crossover synthesis-dependent DNA strand annealing (SDSA), which is applicable in genome editing. 
When the invasion from both ends occurs on the same template, the DNA can be ligated by two 
Holliday junctions95. Alternatively, in SDSA, the heteroduplex DNA strands are separated by helicases 
such as BLM so they can be annealed with the other end of the break followed by gap filling and 
ligation to finish the repair95. 

1.2.4 Microhomology-mediated end joining 

Besides NHEJ and HR, microhomology-mediated end joining (MMEJ) can be used to repair 
CRISPR/Cas9-induced DSBs (Fig. 2C). Similar to NHEJ, MMEJ does not require a donor template to 
repair the damage. During short-range resection of the DSB, ends are realigned using micro-
homologous sequences with a length of 5–25 bp near the DSB site97. Since the remaining ssDNA at the 
3’ end is removed, the MMEJ pathway usually leads to deletion with variable sizes97. 

The short-range resection is initiated by the MRN complex and CtIP85,98. During the S/G2 phase, CtIP is 
phosphorylated, which stimulates the endonuclease activity of MRE11. As a consequence, MRE11 
generates a nick near the DSB site, impeding the repair by NHEJ84,85. Moreover, this nick triggers the 
exonuclease activity of MRE11 and generates short overhangs, allowing the realignment using micro-
homology99,100. 

The mechanism of the annealing process has not been fully understood. Poly ADP-ribose polymerase 
1 (PARP1) was suggested to promote the annealing reaction101–103. However, conflicting evidence was 
reported that PARP1 promoted Ku loading, which favoured the choice of NHEJ instead of MMEJ104. 
After annealing, if the micro-homology is distal from DNA ends, XPF-ERCC1 endonuclease removes the 
ssDNA105. DNA polymerase θ (Pol θ) can synthesize under the direction of a template to fill the gap. 
Once there is no ssDNA, DNA ends are ligated by DNA ligase III (LigIII) or DNA ligase I (LigI)106. 

1.2.5 DNA damage repair after CRISPR/Cas9-mediated DSBs 

The NHEJ is dominant and error-prone. Since the InDels introduced by NHEJ are not accurate repairs, 
many strategies are designed to inhibit NHEJ and favour HR to achieve precise editing. Although MMEJ 
is not used as frequently as NHEJ or HR, it is still common that CRISPR/Cas-induced DSBs are repaired 
through MMEJ, even with a frequency of up to ~58% in some cases107. Taking advantage of predictable 
outcomes of MMEJ on given DNA sequences, template-free and precise CRISPR/Cas9 genome editing 
has been developed107,108. 

The repair time for CRISPR/Cas9-induced DSBs varies, but on average it is a lengthy process with half-
life times of up to 10 hours109. Persistent Cas9 binding on a DNA end blocks the binding of DNA repair 
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enzymes. At actively transcribed gene loci, RNA polymerase removes Cas9 from a DSB site in a highly 
strand-biased manner. However, this behaviour results in increased mutagenesis frequencies110. 

1.3 Challenges in tackling CRISPR/Cas9 editing outcomes 

Despite its popularity, the CRISPR/Cas9 system has been associated with a number of unintended 
outcomes, raising critical safety concerns in both research and clinical application. Many methods 
were developed to experimentally test the CRISPR/Cas9 experiment design in specific cell models. 

1.3.1 Undesired CRISPR/Cas9 editing outcomes 

Besides the imperfect specificity, another substantial barrier to CRISPR/Cas9 application is the toxicity 
and its adverse effects on mutation selection. The initial observation revealed that CRISPR/Cas9 
system triggered cell cycle arrest and cell death in human retinal pigment epithelial-1 cells and human 
pluripotent stem cells. The underlying mechanism was that DSBs induced by CRISPR/Cas9 activated 
DDR and p53 pathway111,112. In other words, CRISPR/Cas9 workflow may lead to the emergence and 
enrichment of cells with p53-inactivating mutations. Indeed, intensive genetics characterization 
performed in hundreds of cell lines by independent groups confirmed the selection of TP53 mutation 
in CRISPR/Cas9-mediated gene-editing experiments113–115 (Fig. 3A). Cells with mutations located in 
KRAS or some tumour suppressor genes such as CDKN1A were enriched as well. Detailed analysis of 
the selection pattern uncovered a p53-linked interactome, consisting of genes with nonredundant 
roles in DDR113. Additionally, compared with targeting heterochromatin, p53 pathway-associated 
toxicity is higher when the target resides in euchromatin, where expressed genes and functional 
regulatory elements are located116. These studies urge the necessity of thoroughly assessing and 
monitoring CRISPR/Cas9-modified cells to avoid incidental selection of DNA repair-deficient cells. 
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Fig 3. Undesired genomic aberrations induced by CRISPR/Cas9 
(A) Cells with p53 mutations (pink) are enriched after CRISPR/Cas9 knockout (KO). (B) Aneuploidy, chromothripsis 
and allele-specific chromosome loss at the targeted chromosome (grey) in CRISPR/Cas9-edited cells. (C-E) 
Translocation between the targeted chromosome (turquoise) and off-target chromosome (lime) (C), large 
deletion (grey box, D) and insertion (E) from a plasmid (circle with green and yellow pieces) are reported at the 
targeted site. In dual gRNA system (F-G), unsynchronized cuts (F), as well as duplication (G), inversion (G), or 
circularization (H) of the target region could occur in CRISPR/Cas9-modified cells. CRISPR/Cas-induced cleavage 
is indicated with scissors and a dashed line in red. 
 

In addition to the mutation that emerged at non-targeting sites, various undesired genomic alterations 
linked to the on-target DSB have been reported. 

Recent work has shown frequent aneuploidy in primary human T cells after being modified by 
CRISPR/Cas9117 (Fig. 3B). Both the gain and loss of the targeted chromosome were found among the 
edited cells. Although the aneuploidy activated the p53 pathway and led to cell death, T cells with 
aneuploidy were detectable 11 days post-transfection. Notably, it is not the first time that 
chromosome-scale abnormalities after CRISPR/Cas9-mediated editing were reported. An earlier study 
in human embryos described an allele-specific chromosome loss118 (Fig. 3B). The gRNA was designed 
to target the paternal chromosome. After mitosis, loss of chromosomal arms on the paternal allele 
occurred if DSBs were not repaired in time. Besides the targeted chromosome, chromosomal loss at 
off-target sites was also found. Later, a study in human cell lines confirmed the observation of 
chromosomal loss and characterized on-target chromothripsis119 (Fig. 3B). Through tracking mother 
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cells where DSBs were induced, together with their daughter and granddaughter cells, researchers 
rebuilt the time-serial events after CRISPR/Cas9-induced cleavage including the formation of 
micronuclei and chromosome bridges. Eventually, extensive fragmentation and rearrangements, 
known as chromothripsis, as well as chromosomal loss occurred at the targeted arm in granddaughter 
cells. Another chromosome structure abnormality is translocation, which refers to the phenomenon 
that a genomic sequence from a different chromosome or 500 kb away from the on-target DSB site is 
attached to one end of the on-target breakage120 (Fig. 3C). Translocation usually happens at low 
frequency among CRISPR/Cas9-modified cells, varying from 0.1%-1% in the single gRNA system121,122. 
Low CRISPR/Cas9 editing specificity increases translocation frequency by introducing off-target DSBs. 
Additionally, recent work suggested that naturally occurring break sites independent of gRNA 
sequence induced translocation as well123. 

Besides these large-scale chromosomal aberrations, many other structural variations (SVs) are found 
at the on-target sites. 

NHEJ is generally the most frequently used pathway to repair, especially with the absence of a donor 
DNA template, so small InDels (<20 bp) are usually expected at DSB sites124. However, large deletion 
(LD) has been observed in the organisms such as zebrafish and mice, as well as human cells when using 
single gRNA editing systems to target different loci120,125–127 (Fig. 3D). The sizes of LDs range from a few 
hundred base pairs to 9.5 kb with various frequencies. Due to the design to validate focal mutations 
in the vicinity of targets, conventional genotyping methods often fail to detect LDs, leading to the 
frequent oversight of such events. Long-range PCR and long-read sequencing (LRS) are required to 
capture LDs. The analysis of the sequence content showed that microhomologies are usually enriched 
at breakage sites of LDs, indicating that MMEJ could be the pathway used for the repair instead of 
NHEJ128.  

Large insertions (> 20 bp) can occur at on-target sites, with the most commonly inserted sequences 
derived from plasmids (Fig. 3E). While some components may exhibit higher integration frequency, 
any sequence present in the plasmid has the potential to be inserted into the genome of cells120,129. As 
a result, peptides generated using the integrated sequences as templates may be produced and 
display cytotoxicity. 

These SVs including LDs and insertions that occur in the F0 generation can be inherited and found in 
the F1 generation127. This finding in zebrafish reinforces the necessity of pre-testing editing outcomes 
in clinical applications. 

To excise a genomic region, dual gRNA systems are used. It is expected that the unintended outcomes 
observed in a single gRNA system are found in cells edited with dual gRNAs. Additional on-target 
genomic alterations have been reported in dual gRNA systems. 

To achieve a successful cleavage, both DSBs must be induced before any of the breaks are repaired. 
Otherwise, an unsynchronized fashion of either induction of DSBs or DNA damage repair fails the 
target deletion using a dual gRNA system130 (Fig. 3F). 

After the removal of the target region and the repair of DSBs, a single event of either a duplicated or 
an inverted target region has been reported in many model systems (Fig. 3G). For example, an 
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inversion occurred with a frequency between 0.71 to 23.28% in HEK293T cells and 0 to 6.9% in mice 
while a duplication of a deleted region occurred with a frequency between 0.17 to 5.97% in HEK293T 
cells and 0 to 28.1% in mice131,132. Duplication and inversion are both considered the consequences of 
the MMEJ repair pathway133. Disrupting CtIP or FANCD2 was shown to reduce the likelihood of 
duplication or inversion and thus enhanced the desired deletion. Besides, the cleaved DNA fragment 
can get circularized and form extrachromosomal circular DNA (eccDNA)134 (Fig. 3H). eccDNAs are 
mainly induced by NHEJ with sizes from a few hundred base pairs to 200 kb. In some cases, a megabase 
ring chromosome forms where dual DSBs occur.  

Given that the CRISPR-Cas9 system constitutes a prokaryotic self-defence mechanism, eukaryotic cells 
have not evolved corresponding counteracting mechanisms to prevent its potential deleterious 
effects. Therefore, due to the complexity of genomic outcomes in CRISPR/Cas9 application, a thorough 
evaluation covering a broad spectrum of considerations must be carried out so genome editing can be 
applied in a controllable and safe manner. 

1.3.2 Experimental tools to evaluate CRISPR/Cas9 editing outcomes 

Enormous efforts are made to develop efficient and sensitive tools, enabling comprehensive 
assessments of CRISPR/Cas9 editing performances. Although the computational algorithms are user-
friendly and effortless, considerable amounts of off-target sites and on-target mutagenesis are missed 
due to limited knowledge of Cas9 behavioural patterns and DNA damage repair outcomes. As a result, 
many experimental methods have been developed to identify off-target editing and unintended 
genomic contents at on-target sites. 

1.3.2.1 Cell-free methods 

Extracted genomic DNA is directly incubated with CRISPR/Cas9 components in cell-free methods so 
these assays generally have less background and do not require high-transfection efficiency. In vitro 
methods including digested genome sequencing (Digenome-seq) (Fig. 4A), circularization for in vitro 
reporting of cleavage effects by sequencing (CIRCLE-seq) (Fig. 4B), and selective enrichment and 
identification of tagged genomic DNA ends by sequencing (SITE-seq) (Fig. 4C) allow in-depth 
characterization of CRISPR/Cas9-induced cleavages. However, due to a lack of cellular mechanisms, 
cell-free methods are unable to test editing consequences led by DNA damage repairs such as 
translocation and LD. 

 

Fig 4. Cell-free methods to detect CRISPR/Cas cleavages 
The overview of cell-free methods: Digenome-seq (A), CIRCLE-seq (B) and SITE-seq (C). In these methods, 
genomic DNA is first extracted and then incubated with Cas9 and gRNA in vitro. 
 

Digenome-seq/DIG-seq The experimental part of Digenome-seq is very straightforward48 (Fig. 4A). 
Genomic DNA is first digested by Cas9 with the presence of gRNA and then prepared for whole-
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genome sequencing on Illumina platform. It is highly sensitive and able to detect off-target mutations 
with a frequency as low as 0.1%. Conversely, Digenome-seq lacks an enrichment step, so it requires 
high sequencing coverage with around 500 million reads and advanced bioinformatic skills.  

Given that chromatin accessibility impacts Cas9 loading, DIG-seq (Digenome-seq using cell-free 
chromatin DNA) was developed. In DIG-seq, native chromatin is used as input. DIG-seq shortens the 
list of potential off-target sites compared with other in vitro assays. 

CIRCLE-seq CIRCLE-seq utilizes DNA circles to exclude DNA molecules lacking nuclease-induced DSBs135 
(Fig. 4B). Genomic DNA is first sheared and then self-circularized. During Cas9 treatment, circular DNA 
with cleavage is linearized, enabling the adaptor ligation and library preparation. By introducing the 
circularization step prior to Cas9 treatment, CIRCLE-seq only captures DNA molecules targeted by 
Cas9, which greatly increases the signal-to-background ratio and reduces the demanded sequence 
depth (~5 million reads).  

SITE-seq Compared with Digenome-seq, SITE-seq selectively tags DNA that is cut by Cas9 with biotin136 
(Fig. 4C). After DNA fragmentation, subsequent streptavidin pull-down enables efficient profiling with 
shallow sequencing (>3 million reads). 

1.3.2.2 Cell-based methods 

Cell-free methods are unable to investigate the genomic consequences led by many other key factors 
including DNA damage repair mechanisms and dynamics of chromatin environments. The demand for 
exhaustive evaluation results in the continuous development of cell-based methods.  

BLESS/BLISS Breaks labelling, enrichment on streptavidin, and sequencing (BLESS) directly captures 
genome-wide DSBs by the ligation of biotinylated adaptors and pull-down with streptavidin-coated 
beads137 (Fig. 5A). A refined version, breaks labelling in situ and sequencing (BLISS), has been made for 
low input49 (Fig. 5A). DSB ends are ligated with double-stranded oligodeoxynucleotides (dsODNs) 
adapters. In vitro transcription mediated by the T7 promoters within adapters further increases the 
efficiency of capturing DSB sites. Both methods are independent of the cellular repair machinery. On 
one hand, these methods enable mapping at single-nucleotide resolution. On the other hand, these 
two methods fail to capture repaired CRISPR/Cas9-mediated cleavages and all the genomic alterations 
led by DNA damage repair. 
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Fig 5. Cell-based methods to assess CRISPR/Cas9 editing outcomes 
Cell-based assays enrich genomic regions with DSBs through various approaches: BLESS/BLISS (A), IDLV capture 
(B), GUIDE-seq (C), HTGTS/LAM-HTGTS (D), PEM-seq (E), CAST-seq (F) and SAFE donor (G). These methods take 
epigenetic state and chromatin architectures into consideration, which impact both Cas9 loading and DSB 
repair. 
 

IDLV capture Integrase deficient lentiviral vector (IDLV) capture identifies CRISPR/Cas9-mediated DSBs 
by detecting integrated IDLV sites138 (Fig. 5B). The IDLV-tagged molecules are enriched by linear 
amplification-mediated PCR (LAM-PCR). IDLV capture is applicable to a wide range of nuclease tools 
including Cas9, ZFNs and TALENs. However, this method is restricted by low sensitivity and a high false 
positive rate due to the random insertion of IDLV. 

GUIDE-seq Genome-wide, unbiased identification of DSBs evaluated by sequencing (GUIDE-seq) 
employs the NHEJ-mediated insertion of supplied and blunt dsODNs with defined sequences to 
capture CRISPR/Cas9 editing sites46 (Fig. 5C). The selective amplification is achieved through the 
primers annealing to dsODNs and single-tailed adapters, referred to as Single-Tail Adapter/Tag-PCR 
method. It is considered to have better performance than LAM-PCR in reducing bias and background. 
GUIDE-seq can detect the editing sites with frequencies of 0.1%. The bottleneck of GUIDE-seq is the 
efficiency of dsODNs integration, which can be determined by the transfection efficiency, choice of 
NHEJ and cytotoxicity of dsODNs. 

HTGTS/LAM-HTGTS High-throughput, genome-wide translocation sequencing (HTGTS) is designed to 
detect chromosomal reengagements, especially translocation between two DSBs47 (Fig. 5D). The DSB 
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end of the on-target site is “bait”, and the off-targeting DSB end is “prey”. DNA molecules with baits 
are amplified with biotinylated primers and subsequently enriched. HTGTS requires a large amount of 
input material and deep sequencing. Some modifications such as LAM-PCR and enzyme blocking were 
introduced in an advanced version, named LAM-HTGTS, to improve the efficiency and reduce the 
time139 (Fig. 5D). 

PEM-seq Because a high cycle number of amplifications is used in LAM-HTGTS, it is difficult to 
distinguish the original template from PCR duplicates. To quantify translocation events, primer-
extension-mediated sequencing (PEM-seq) has adopted primer extension and random molecular 
barcode (RMB) to generate one copy and label each fragment, respectively140 (Fig. 5E).  

CAST-seq To meet the demand of clinical use, chromosomal aberrations analysis by single targeted 
linker-mediated PCR sequencing (CAST-Seq) was established123 (Fig. 5F). It consists of fragmentation, 
linker ligation and three PCR steps. Compared with LAM-HTGTS, it has potential as a preclinical test 
since it has been tested in human primary cells. Additionally, instead of using restriction enzyme 
blocking, CAST-seq employed decoy primer to reduce background more efficiently, and it can detect 
aberrations with frequencies as low as 0.006%. However, CAST-seq requires much more input 
material, which could be a hurdle in clinical application. 

SAFE donor An approach using ‘sequence-ascertained favorable editing’ (SAFE) donor has been 
recently published to detect unintended genomic alterations such as aneuploidy and loss of 
heterozygosity141 (Fig. 5G). This method relies on the insertion of supplied DNA donor mixtures with 
the desired nucleotide substitutions. Its data analysis pipeline assumes that different donor sequences 
are used during the repair occurring on different alleles. As a newly developed method, its 
performance remains to be tested. For example, how to enhance HR to ensure the efficient knock-in 
of the SAFE donor? Is there any modification required in polypoid cells? Despite these concerns, the 
SAFE donor approach broadens the detection capabilities of unintended outcomes. 

The choice of method is highly dependent on which unintended outcomes were aimed to examine, 
the required sensitivity and characteristics of a chosen cell model such as transfection efficiency or the 
preference towards certain repair pathways. However, a benchmark is still possible by comparing the 
cleavage sites identified by each method. Comparative assessments showed that in a given 
CRISPR/Cas9 system (e.g. same Cas9 variant and gRNA design), many cleavage sites could be validated 
by whole-genome sequencing and were reported by all the methods tested142. Meanwhile, distinct 
off-target sites detected by a specific method but not the others were also found. The results suggest 
that none of the methods is comprehensive and can be used to set a gold standard. Generally, in vitro 
methods produce longer lists of off-target sites than in cellulo methods. For example, when targeting 
the VEGFA gene, GUIDE-seq identified 22 off-target sites while Digenome-seq and SITE-seq detected 
69 and 996 off-target cleavages, respectively. 91% of the off-target sites discovered by GUIDE-seq 
were validated but only 53% and 10% of candidates reported by Digenome-seq and SITE-seq were 
confirmed using deep whole-genome sequencing. 

1.3.2.3 Long-read sequencing-based methods 

All the methods described above depend on PCR amplification and a short-read sequencing platform 
(Illumina). These steps inevitably introduce inherent limitations when amplifying regions with low 
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complexity such as repetitive or AT/GC-rich sequences and capturing genomic contents with 
considerable length. The emergence of LRS platforms including Pacific Biosciences (PacBio) and Oxford 
Nanopore Technologies (ONT) shed light on the solutions. LRS technologies have been proven to be 
optimal choices when resolving SVs and repeats. 

LRS In 2018, Kosicki et al revealed LDs around kilobases, inversion and de novo insertion in 
CRISPR/Cas9-modified cells using LRS, providing direct evidence of unintended genomic alterations 
based on kilobase-long reads125.  

SMRT-OTS/ Nano-OTS To detect difficult-to-capture off-target editing sites located in dark genomic 
regions, in vitro assays SMRT-OTS and Nano-OTS were established143 (Fig. 6A). SMRT-OTS is based on 
PacBio’s SMRT sequencing while Nano-OTS is for ONT nanopore platform. In both methods, the 
enrichment of CRISPR/Cas9 targeted molecules is dependent on the cleavage which allows the ligation 
of adapters. These methods revealed some validated off-target sites that could not be resolved easily 
with short-read sequencing. 

 

Fig 6. LRS-based methods to investigate CRISPR/Cas9 consequences 
(A) SMRT-OTS and Nano-OTS were developed to detect CRISPR/Cas9 off-target activity for PacBio Sequel system 
and ONT MinION system, respectively. In SMRT-OTS, capture adaptors (grey) are ligated to the molecules cleaved 
by Cas9 and allow the enrichment using magnetic beads (brown). In Nano-OTS, the input fragmented DNA is 
dephosphorylated (red cross). Therefore, only CRISPR/Cas9 targeted molecules can be added with dA-tails and 
sequencing adaptors. (B) Xdrop workflow includes targeted DNA molecular enrichment in double emulsion 
droplets (blue box, “dPCR”) and multiple displacement amplification (green box, “dMDA”). The pictures of 
workflows are adapted from Höijer et al143 (A) and Blondal et al129 (B) with minor changes under Creative 
Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). 
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Xdrop Xdrop is a microfluidic target-enrichment approach compatible with an LRS platform129,144 (Fig. 
6B). Primers are designed to generate a small amplicon within the region of interest during droplet-
PCR (dPCR). Through amplification signals, DNA molecules with the targeted region are enriched. The 
resulting DNA is made into library using droplet multiple displacement amplification (dMDA) and 
sequenced on an LRS platform. This method has a broad range of applications including identifying 
unwanted insertion in CRISPR/Cas9-modified cells129. Since the Xdrop approach requires a known 
region to enrich for, it cannot detect unknown off-target sites. Meanwhile, its enormous potential can 
be foreseen in revealing other unintended on-target genomic alterations. 

1.4 Genome instability 

1.4.1 Replication defects and genome instability 

There are many cellular mechanisms to ensure the stability of the genome such as DNA damage repair 
and cell cycle checkpoints. Therefore, genetic variation usually occurs at low frequency. However, 
genotoxicity induced by external or internal sources can greatly increase the occurrence of genome 
instability, resulting in various genomic alterations: (I) mutation; (II) chromosome instability caused by 
frequent chromosome missegregation; (III) SVs including deletion, insertion, inversion, duplication and 
translocation. Although genome instability can be triggered by the dysfunction of many processes, 
defects during DNA replication are the leading causes.  

In the G1 phase, minichromosome maintenance (MCM) 2-7 complex is recruited to a replication origin 
and serves as the catalytic subunit of replicative DNA helicase, mediated by the origin recognition 
complex, cell division cycle 6 (CDC6) ATPase and chromatin licensing and DNA replication factor 1 
(CDT1)145. The loading process of an inactive MCM2-7 complex, referred to as origin licensing, ensures 
the accurate duplication of the genome. Only licensed origin can initiate DNA replication forks145. 
Inefficient origin licensing may lead to unfinished replication products and eventually result in genome 
instability. MCM2-7 depletion in human cells causes hypersensitivity to DNA replication stress and 
accumulation of DNA lesions146. Additionally, a study using mouse embryonic fibroblasts with mutated 
MCM4 showed that cells with reduced MCM2-7 stability and licensed origins were prone to 
chromosome breaks under exposure to a replicative polymerase inhibitor147.  

As cells enter the S phase, replication licensing systems are inactivated by the cyclin-dependent kinase 
(CDK), which, together with the DBF4-dependent kinase (DDK), also facilitates the activation of 
helicase and the assembly of replisome148. Excessive initiation of DNA replication usually contributes 
to oncogenic transformation and genomic instability149–151. For example, the overexpression of c-MYC 
induces replication stress and DNA damage by interacting with MCM2-7 and increases unscheduled 
origin firing152. Interestingly, unlike the noncancerous cell under replication stress, cancer cells prefer 
to reactivate the early-replicating origins instead of employing unutilized sites153. Over-activation of 
replication initiation may increase the probability of replication fork collisions, resulting in breakages. 

Once replication is initiated, forks may pause, termed as fork stalling. Transient fork stalling is not 
destructive as the replisome remains associated, and the replication can be restarted once the 
obstacles are removed. However, persistent fork stalling can lead to DSBs or fork regression which is 
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able to create a Holliday junction154,155. Additionally, unlike the transient pause, the replisome is likely 
to be disassociated in these cases156. 

During replication fork progression, chromosome fragility and SV may occur due to mutations affecting 
fork progression such as mutations in genes encoding RPA subunits157. Additionally, errors in lesion 
repair or DNA adduct block fork progression, which might explain the genome instability led by defects 
in exposure to UV or carcinogens, as well as the defects in nucleotide excision repair (NER) or base 
excision repair. For example, in budding yeast, Rad3 is the subunit of TFIIH and is involved in NER. Rad3 
mutant causes TFIIH retention and makes gap filling less efficient. As consequence, replication fork 
breakage and DSBs occur158. 

1.4.2 Fragile site and replication stress 

Fragile sites are genomic regions exhibiting gaps or breakages on metaphase chromosomes under 
replication stress. They are considered to be associated with genome instability, especially large 
genomic deletions in cancer cells. Fragile sites are usually stable, but gaps or breaks are likely to occur 
when exposed to certain chemicals inducing replication stress such as aphidicolin (APH) and 
hydroxyurea (HU). To date, more than 200 fragile sites have been identified159. Based on the frequency 
of the breakage in the population, these loci can be divided into common fragile sites (CFSs) and rare 
fragile sites (<5% of individuals)160. Some common characteristics have been found among CFSs161. 
First, during DNA replication, the fragile sites are replicated in the very late stage of the S phase. 
Chemicals such as APH cause further delays in replication, resulting in some unreplicated loci even in 
the G2 phase162. Second, CFSs are enriched in large genes. For example, fragile site FRA3B 
encompasses the FHIT gene with a length of 1.5 Mb while the median length of human genes is around 
23 kb163,164. Last, fragile sites are cell-type specific. Studies in different cell lines with various tissue 
origins characterised many cell-type-specific fragile sites although some were found across all cell 
types164,165. 

The vulnerability of fragile sites under replication stress can be attributed to the secondary structures 
that tend to form at these sites. DNA commonly adopts a canonical right-handed double helix 
structure known as B-DNA in most genomic regions. However, at fragile sites, DNA usually forms 
alternative structures that differ from the classic B-DNA helix166. Non-B DNA structures occur 
preferentially in genomic regions with certain repeats during DNA replication, damage repair, or 
transcription processes that involve the production of ssDNA. For example, after DNA strands are 
separated, CAG/CTG repeats can form hairpin structures based on intra-strand base pairing167. 
Although the barrier formed by a CAG/CTG repeat is weak, a gap is likely to be made during replication 
bypass. What exacerbates the situation is that the ligation step of nick repair is less efficient due to 
the interference of the hairpins on 5’ flaps, leading to an unligated nick. Indeed, evidence of CAG/CTG-
induced genome instability has been shown in situ and in culture167–170. There are many other non-B 
DNA structures linked to fragile sites besides hairpins. Mononucleotide stretches are the simplest 
repetitive sequences, which are able to trigger slipped-strand DNA. Slipped-strand DNA refers to a 
structure where DNA is mispaired and annealed, resulting in InDels during replication166. Furthermore, 
A or T repeats proximal to replication origins are associated with fork stalling and fork collapse under 
exposure to HU171. GC and GT repeats are preferable sites for left-handed Z-DNA172,173. The presence 
of Z-DNA and triplexes in a plasmid was reported to reduce the replication rate dramatically174. 
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Moreover, DSB hotspots in the c-MYC proto-oncogene exhibit capability to form Z-DNA in B-cell 
precursors derived from acute lymphoblastic leukaemia patients175,176. Another secondary structure 
related to the breakage at fragile sites is G-quadruplex (G4). G4 contains stacked guanine tetrads of 
Hoogsteen-hydrogen bonded guanines177. G4 structure is enriched at the breakage sites of 
translocation events in human cells, indicating the role of G4 in genomic fragility178,179. In addition, the 
G4 structure is found within telomeric DNA which contains TTAGGG repeats. Under replication stress 
or the depletion of the helicases that are recruited to resolve the G4 structure, the telomeric sequence 
appears to be fragile180,181. The evidence suggests that G4 is also a preferable structure at fragile sites.  

To sum up, fragile sites are enriched with repeat sequences that are able to form non-B DNA 
structures, resulting in fragility through many different mechanisms. 

1.5 Transfer RNA 

Transfer RNAs (tRNAs) are small non-coding RNA molecules that are highly abundant in cells. As 
fundamental components of the translation machinery, tRNAs deliver amino acids to ribosomes. 
Although tRNAs have long been considered purely physical adapters, recent findings reveal a broader 
spectrum of roles in many biological processes. For instance, the deregulation of tRNA transcripts 
exhibits effects on mRNA translation globally or selectively. Consequently, altered transcriptional 
outputs contribute to many diseases including cancers. 

1.5.1 The transcription of tRNA genes 

tRNA genes are transcribed by Pol III. Within tRNA genes, there are internal promoters, comprising A- 
and B-box elements. The promoters are recognized by the basal transcription factor TFIIIC, followed 
by the recruitment of TFIIIB. The Pol III complex, composed of 17 subunits, then binds and gives rise 
to tRNAs182,183. 

tRNA genes represent one of the largest multi-copy gene families in the vertebrate genome, and they 
are annotated computationally by tRNAscan-SE184,185. This algorithm scans for the sequences of 
promoters, Pol III termination and predicts the likelihood of folding into proper secondary 
structures185. Around 600 tRNA genes are annotated in the human genome186. After Pol III 
transcription, tRNAs fold into cloverleaf-like secondary structures, including several hairpin loops. One 
of these loops contains the anticodon, which is complementary to the codon of the mRNA. Based on 
the anticodons, tRNA genes can be divided into isoacceptor families, and according to the amino acids 
charged, they can be further classified into isotype classes187. An isotype class may contain one (e.g. 
tRNAMet) or up to six (e.g. tRNASer) isoacceptor families. Although there are 62 possible isoacceptors, 
not all are present in the genome, which can be explained by wobble base pairing. Within one 
isoacceptor family, there can be 1 (e.g. tRNASelCys (TCA)) to 29 (e.g. tRNAAla(GCA)) tRNA genes186.  

Not all tRNA genes are actively used in mammalian genomes, and the usage is cell type-specific187–189. 
The active tRNA gene loci are enriched for euchromatic histone marks for example, histone (H) 3 lysine 
(K) 4 trimethylation (H3K4me3) and H3K27ac182,189,190. Although Pol III bindings to tRNA genes diverge, 
there is strong functional conservation at the levels of isoacceptor families and isotype classes across 
mammalian livers187. Interestingly, codon triplets are also conversed across these mammals, which 
suggests that the tRNA anticodon pool and mRNA codon pool are well-balanced. A similar observation 
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was found during the development of mice190. Although protein-coding gene expression is highly 
dynamic, the codon pool remains stable. The tRNA anticodon pool shows few changes and a high 
correlation with the codon pool. This indicates that tRNA gene transcription is tightly controlled to 
meet the demand during mRNA translation190. Furthermore, a study in human and mouse cell lines 
reported that the codon-driven translation efficiency was highly stable, regardless of cell type191. 

What will happen if this tight balance between the tRNA anticodon and the mRNA codon pool is 
disrupted? tRNA deletion studies in yeast unravelled a complex regulatory network of tRNA 
transcription and its phenotypic impacts. The cell growth rate was decreased in the challenging 
medium but not in the standard medium. Furthermore, closer inspection revealed that cells with 
deleted tRNA genes from single-copy isoacceptor families were highly susceptible to the stress 
condition192. Another work in human cells identified a subset of tRNA genes acting in cell proliferation 
and cell cycle arrest by sgRNA CRISPR/Cas9 screening193. 

These findings imply that tRNA gene transcription is tightly controlled. The disruption of transcription 
leads to phenotypic changes in different organisms. 

1.5.2 Dysregulation of tRNA transcripts in cancers 

Several oncogenic signalling pathways can impact not only Pol II-transcribed genes but also Pol III 
machinery directly or indirectly (Fig. 7A). For example, the extracellular signal-regulated kinase (ERK) 
and the proto-oncogene product c-MYC are able to directly bind to and activate TFIIIB, enhancing Pol 
III transcription194,195. Another example is mammalian target of rapamycin (mTOR), a protein kinase 
regulating cell growth. It increases the global transcription of Pol III by directly suppressing the activity 
of MAF1, a Pol III complex suppressor196. In contrast, tumour suppressors, retinoblastoma tumour 
suppressor protein (RB) and TP53, suppress Pol III activity through the repression of TFIIIB197,198. The 
increased transcription of tRNAs by Pol III in cancer is closely linked to the high demand for protein 
synthesis due to rapid proliferation199. 

 

Fig 7. Oncogenic signalling regulates Pol III machinery in cancers 
(A) Oncogenic signalling pathways stimulate Pol III machinery globally by directly or indirectly interacting with 
transcription factors (labelled as “TF”) such as TFIIIB. (B) Some oncogenic signalling can drive selective changes 
in the transcription of tRNA genes, which benefits the translation of pro-tumorigenic mRNAs. 
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Besides impacts on global transcription, oncogenic signalling drives the selective overexpression of 
certain tRNA isoacceptor families. The altered abundance in certain tRNA molecules benefits the 
translation of pro-tumorigenic mRNAs based on the differences in the usage of synonymous codons200 
(Fig. 7B). In breast cancer, tRNASer(GCU), tRNAThr(CGU) and tRNATyr(GUA) are overexpressed in tumour 
compared with normal tissue201. tRNAGlu(UUC) and tRNAArg(CCG) are significantly upregulated in 
metastatic breast cancer cell lines compared to poorly metastatic cells. These tRNAs enhance the 
abundance of Exosome Component 2 and activate the Glutamate receptor-interacting protein 1-
associated protein 1 pathway by increasing the stability and ribosome occupancy of these 
transcripts202. Additionally, overexpression of initiator tRNAiMet genes significantly affects the global 
tRNA expression pattern, which leads to increased metabolic activity and proliferation rate in a breast 
cancer-derived epithelial cell line203. 

In sum, the transcription regulation and functions of tRNAs are more complicated than we previously 
thought. 
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2 Research aims 
The overall aim of this thesis is to reveal obstacles during CRISPR/Cas9-mediated genome editing and 
provided solutions to achieve desired genomic outcomes in modified cells. 

Aims of Paper I 

Successful delivery of large-size CRISPR/Cas9 vectors in hard-to-transfect human cells using small 
plasmids 

• To develop a non-viral delivery method, increasing the transfection efficiency of large 
CRISPR/Cas9 vectors and cell viability.  

 

Aims of Paper II 

Target-enriched nanopore sequencing and de novo assembly reveals co-occurrences of complex 
on-target genomic rearrangements induced by CRISPR-Cas9 in human cells 

• To investigate the co-occurrences of undesired on-target genomic alterations that were 
overlooked due to technical limitations. 

• To study biological consequences led by on-target genomic rearrangements. 
• To provide a powerful and data-driven workflow to detect the on-target sequence content at the 

kilobase scale. 

 

Aims of Paper III 

CRISPR-Cas9-mediated genome engineering exaggerates genomic deletion at 10q23.31 including 
the PTEN gene locus mimicking cancer profiles 

• To report an unintended large genomic deletion in a widely-used cell line. 
• To characterize the impact and contributors of this large genomic deletion. 
• To explore the significance of this deletion in human cancers. 
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3 Materials and methods 
A detailed description can be found in the "Materials and Methods" sections of constituent papers 
I-III. 

CRISPR/Cas9 single cell-derived clone generation 

gRNAs were designed using the tools from the Zhang lab (https://zlab.bio/guide-design-resources). 
Each gRNA was cloned into CRISPR/Cas9 vector pSpCas9(BB)-2A-Puro (px459). The small-size plasmid 
pBlueScript was co-delivered with CRISPR/Cas9 vector into cells to increase transfection efficiency. 
Two px459 vectors (one with gRNA-1 and the other one with gRNA-2 cloned) and empty px459 
(without gRNA cloned) were transfected into cells to generate modified and control clones, 
respectively. HAP1 cells were transfected using Turbofectin 8.0 (OriGene), and HepG2 were 
electroporated with NEON system (Invitrogen). Cells were selected with puromycin for two days and 
recovered in normal medium. Around 100-500 cells were seeded into 10 cm dishes. After the 
formation of single cell-derived clones, they were hand-picked and propagated separately. 

Genomic DNA extraction and PCR genotyping 

Cells were lysed and incubated overnight in 400 μL lysis buffer (0.5% SDS, 0.1M NaCl, 0.05M EDTA, 
0.01M Tris-HCl, 200 μg/mL proteinase K) at 55°C. 200 μL of 5M NaCl were added and incubated on ice 
for 10 min. After centrifugation, 400 μL of the supernatant was mixed with 800 μL of 100% ethanol. 
The mixture was incubated on ice for at least 10 min. Genomic DNA was pelleted, washed once with 
70% ethanol and dissolved in nuclease-free water. 

Primers were designed using NCBI Primer-BLAST with default parameters. PCR was performed using 
Taq polymerase PCR (New England Biolabs) with 25 μL reaction system, according to the 
manufacturer’s instructions. The PCR products were assessed by electrophoresis. 

RNA extraction and purification 

Cells were harvested in 700 μL Qiazol (QIAGEN). The cell lysis was mixed with 140 μL chloroform, 
shaken and incubated at room temperature. The upper phase was transferred after phase separation, 
and an equal volume of isopropanol was added. After thorough mix and incubation, RNA was pelleted, 
washed once and dissolved in nuclease-free water. Genomic DNA in RNA was removed using 
TurboDNase (Invitrogen) according to the manufacturer’s manual. Resulting RNA samples were 
purified with RNA Clean & Concentrator Kit (Zymo Research) according to the manufacturer’s protocol. 

RNA-seq 

The concentration and the integrity of RNA was measured with QubitTM RNA HS Assay Kit and Agilent 
RNA 6000 Nano kit on Bioanalyzer. RNA molecules with PolyA tails were first enriched with NEBNext® 
Poly(A) mRNA Magnetic Isolation Module. The enriched molecules were used as input for library 
preparation with NEBNext® UltraTM II Directional RNA Library Prep Kit for Illumina. Library was 
assessed and quantified with Agilent High Sensitivity DNA chips on Agilent Bioanalyzer and KAPA 
SYBR® FAST qPCR kit. Sequencing was performed on Illumina platform Nextseq500 with pair-end 
mode using NextSeq 500/550 High Output v2 kit for 150 cycles. 



 

32 

RNA-seq data analysis 

Sequencing reads were assessed with FastQC. Reads with low quality and adaptor sequences were 
trimmed using Trimmomatic. Reads first filtered for ribosomal RNA and then aligned to human 
reference genome hg38 with HiSAT2. Bedgraph files without soft-clipped reads were generated for 
visualization. The aligned reads were further quantified for each transcript. The raw count tables were 
used as input for differential expression analysis with DESeq2. 

ChIP-seq 

ChIP-seq was performed as previously described187,191. Briefly, 15-20M HAP1 or HepG2 cells were fixed, 
lysed and sonicated. The lysis with fragmented DNA was incubated with H3K4me3 (05-1339, 194 
Millipore), H3K27ac (ab4729, abcam), or Pol III antibodies recognizing antigen POLR3 antibodies187. 
The enriched DNA was used to perform library preparation with Takara SMARTer® ThruPLEX® DNA-
seq Kit. Library quality was assessed with Agilent Bioanalyzer High Sensitivity DNA chips and quantified 
with KAPA SYBR® FAST qPCR kit. Sequencing runs were performed on Illumine Nextseq 500 with the 
NextSeq 500/550 High Output v2 kit for 75 cycles, single-end mode. 

ChIP-seq data analysis 

ChIP-seq reads were assessed by FastQC and then aligned to the human reference genome hg38 using 
BWA. PCR duplicates and reads assigned to the ENCODE exclusion list were removed with SAMtools 
and NGSUtils. Afterwards, bam files were indexed and sorted. Peak calling was performed using 
MACS2. The differential enrichment analysis was carried out to identify differentially acetylated 
regions using DiffiBind. Bedgraph files were generated with filtered reads using deepTools and 
visualized in IGV. 

Xdrop-LRS data analysis 

The analysis was summarized (Fig. 8). FASTQ reads were first corrected using Canu and then SACRA to 
process chimeric reads. Reads were mapped to the region of interest using minimap2. The sequences 
of mapped reads were extracted and used as input for de novo sequence assembly using Canu or 
Raven. The output contigs were assessed in several ways: (I) pairwise alignment using Needle; (II) 
MegaBLAST against NCBI database of nucleotide collection; (III) and manual inspection of the read 
alignment to the assembled contigs. If the assembled contig needed to be extended, reads aligned to 
the 5ʹ or 3ʹ end of the contig were extracted and used for the second round of assembly. If the read 
coverage was too low to perform de novo assembly, a manual extension was performed by visualizing, 
comparing and summarizing in IGV. The success in an assembled contig was confirmed by the 
visualization of aligned reads (raw reads and corrected reads) spanning breakpoints of the contig using 
IGV. 
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Fig 8. Customized de novo assembly-based analysis 
The analysis consists of three steps: read correction and extraction; de novo assembly; contig comparison and 
assessment. 

 

All the scripts for sequencing data analysis can be found under these two Github repositories: 

https://github.com/KeyiG/Cas9_ontarget_alteration.git 

https://github.com/KeyiG/HAP1_10q23_P-Pdel.git 
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4 Results 

4.1 Paper I 

4.1.1 An optimized method to deliver CRISPR/Cas9 vectors into human cells 

Efficient delivery of the CRISPR/Cas9 system into human cells is very challenging. Due to the large size 
of Cas9 and other required components such as selection markers, the transfection of the CRISPR/Cas9 
vector (~9-19 kb) is usually inefficient and causes cell death. To overcome these limitations, we co-
transfected cells with a small-size vector during electroporation (Fig. 9). 

 

Fig 9. Illustration of cell transfection 
Delivery of large CRISPR-GFP vectors (15 kb) without (upper track) and with (lower track) small vectors (3 kb) to 
human cells using electroporation. Co-transfection results in high delivery (shown as green cells in the tube) 
efficiency and low cell death rate (shown as dead cells in the tube). The figure is adapted from Søndergaard et 
al58 with minor changes under Creative Commons Attribution 4.0 International License 
(https://creativecommons.org/licenses/by/4.0/). 
 

Co-transfection of 3 kb vectors with CRISPR-GFP vectors (15 kb) increased the transfection efficiency 
from 4.2% to 40% and decreased the cell death from 91% to 45% in a human lung cancer cell line, 
A549. Furthermore, the robustness of this method has been verified in numerous cell types including 
many hard-transfect human cell lines such as Huh7 and HepG2. 

Importantly, the small-size vectors used here (pBlueScript) are designed for bacterial expression 
without mammalian promoters so genes carried by vectors are unable to utilize transcription 
machinery in human cells. Therefore, the application of this vector for research in human cells should 
be safe. 
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4.2 Paper II 

CRISPR/Cas9 has revolutionized genome editing. However, many undesired and unpredictable 
genomic consequences have raised safety concerns in both research and clinical applications. In this 
paper, we described the co-occurrence of on-target genomic alterations in CRISPR/Cas9-modified 
cells. The complexity of such rearrangements was underestimated before due to technical limitations. 
Therefore, we introduced an advanced workflow, allowing thorough assessment of on-target 
sequence content. 

4.2.1 Target regions were detected in validated deletion clones modified by CRISPR/Cas9 

After optimizing the transfection efficiency (Paper I), we proceeded with deleting a genomic region 
(870 bp) containing two active tRNA genes on Chr 17 with CRISPR/Cas9 dual-gRNA system (Δt) in two 
human cancer cell lines, HepG2 and HAP1 (Fig. 10A). By amplifying with primers annealing to 
sequences flanking binding sites of two gRNAs (flanking primers) and Sanger sequencing of amplicons, 
single cell-derived clones with homozygous deletion were identified (Fig. 10A). Using a similar 
approach, deletion clones with the genomic region between the two tRNA genes removed were 
generated (Δi) (Fig. 10B).  

 

Fig 10. Genomic regions on Chr 17 were targeted by CRISPR/Cas9 
(A-B) The UCSC genome browser views (hg38) and illustrations of CRISPR/Cas9 deletion strategies show the 
genomic location containing our two targets: the genomic region with two tRNA genes (A) and the genomic 
region between two tRNA genes (B). Two sets of primers (flanking primers: green; internal primers: yellow) were 
used for deletion validation (flanking primers) and target region detection (internal primers). The figure is 
adapted from Geng et al61 with permission granted. 
 

Although the sequence content of the amplicon obtained from each validated clone suggested a 
homozygous deletion, the targeted regions were still detectable in some of the validated clones by 
ChIP-seq or PCR with primers annealing within the target region (internal primers) (Fig. 10). 
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To explain this observation, we considered many reported factors leading to the failure of homozygous 
editing including mutation in the PAM sequence, unsynchronized cleavage, inversion or duplication. 
However, we ruled out all of these possibilities based on our ChIP-seq and PCR results. We therefore 
hypothesized that the detection of the target region in some validated deletion clones are 
consequences of complex genomic alterations that have not been comprehensively documented. 

4.2.2 Customized workflow revealed complex on-target genomic alterations 

The Xdrop technology has been recently developed and used for detecting insertion in CRISPR/Cas9-
modified cells129. To investigate the sequence proximal to the DSB site in an unbiased manner, we 
developed a de novo assembly-based approach. With this workflow, we were able to obtain the on-
target sequence content with a much longer length compared with other available methods on 
Illumina platform, and no prior knowledge or assumption is required since reference sequence for 
alignment is unnecessary here. 

With this data-driven tool, we revealed the co-occurrence of complex genomic alterations in the HAP1 
deletion clone Δt72, as well as the HepG2 deletion clones Δt15, Δt8 and Δi50 (Fig. 11). In the HAP1 
deletion clone Δt72, besides an allele with desired deletion, duplication and inversion of the target 
region were found on the other allele. In the HepG2 deletion clone Δt15, in addition to duplication and 
inversion of the target region, exogenous DNA fragments from the E. coli genome and CRISPR/Cas9 
vector were inserted at DSB sites. Two scenarios of on-target alterations were identified in the HepG2 
deletion clone Δt8, which could represent the rearrangements of two alleles. In this first scenario, 
inversion of the target region and DNA fragments from non-targeted chromosomes (Chr 21 and Chr 
8) were found at the on-target site. No evidence indicated that these clustered interchromosomal 
rearrangements were induced by CRISPR/Cas9 off-target editing. In the second scenario, an inverted 
target region ligated to sequences derived from CRISPR/Cas9 vector was inserted at DSB sites. In the 
HepG2 deletion clone Δi50, a 331 bp-long deletion occurred at the 3’ DSB site. Although MMEJ is 
considered to be the mechanism for LDs, we did not detect micro-homology around the breakage. 

 

Fig 11. Multiple on-target genomic aberrations co-occurred and were captured by our workflow 
Duplication, inversion of the targeted region, as well as exogenous DNA insertion and interchromosomal 
rearrangements, were identified in HAP1 deletion clone Δt72 and the HepG2 deletion clones Δt15, Δt8 and Δi50. 
The arrows indicate the genomic orientation based on the coordinates of the sequence in the human genome. 
The figure is adapted from Geng et al61 with permission granted. 
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4.2.3 On-target genomic rearrangements exerted biological consequences 

We further evaluated the biological consequences of these genomic alterations.  

First, the inserted and fragmented CRISPR/Cas9 vector components in the HepG2 deletion clone Δt15 
and Δt8 were expressed, which could be toxic to cells. 

Second, proliferation assays showed that in the HAP1 Δt deletion clones, on-target genomic alterations 
and the resulting functional DNA brought significant growth advantages to cells. 

Last, based on the genomic rearrangements identified with our workflow, we utilized a two-colour 
TaqMan-qPCR assay to determine the ratio between alleles with on-target alterations and the desired 
deletion. The fractions of alleles with on-target aberrations varied among the tested clones (Table. 1). 
We reason that it could be caused by the proliferation advantage or disadvantage elicited by the on-
target rearrangements. 

 

Table 1. The ratios between alleles with on-target alterations and desired deletion were determined 
The table summarizes the formula used to calculate the fractions of the alleles carrying intact target region (F) 
from the cycle number (Cq) obtained from qPCR; F values were obtained from the experiment, and the estimated 
ratios (last column) were based on the F values and the reasonable number of alleles one cell may carry. The 
table is from Geng et al61 with permission granted. 
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4.3 Paper III 

In addition to undesired and elusive on-target aberrations, CRISPR/Cas9-associated non-target 
mutagenesis and SVs are major impediments. In this study, we reported an unexpected genomic 
deletion at 10q23.31. 

4.3.1 Unexpected 10q23.31 deletion was found in CRISPR/Cas9-modified HAP1 cells 
independent of gRNA sequences 

We previously targeted genomic regions located on Chr 17 (described in Paper II) and generated 
desired homozygous deletion HAP1 clones (Δt and Δi) (Fig. 10). When inspecting the genomic 
occupancy of H3K4me3 and H3K27ac, we observed an abnormal ChIP-seq read depletion on Chr 10 
(10q23.31) in Δt1 and Δi17 clones but not in the control (ctrl) clone (Fig. 12). The undetectable ChIP-
seq enrichment and background suggested a genomic deletion. To confirm it, we designed a pair of 
primer annealing within the deleted region. The absence of PCR amplicons in Δt1 and Δi17 verified the 
deletion, and the PCR screening in our other CRISPR/Cas9-modified HAP1 cell clones implied the 
frequent losses of 10q23.31. 

 

Fig 12. Abnormal ChIP-seq read distribution in modified HAP1 clones indicated an unintended and large 
genomic deletion at 10q23.31 
Coverage tracks of H3K4me3 and H3K27ac ChIP-seq performed in control (ctrl, dark grey), Δt1 (dark orange) and 
Δi17 (orange) clones at the PAPSS2-PTEN locus on Chr 10 (highlighted in red). 
 

According to our ChIP-seq read distribution in Δt1 and Δi17 clones, the deleted region is around 287 
kb, starting from the first intron of PAPSS2 to the downstream of the PTEN gene body. We, therefore, 
refer to this deleted region as the PAPSS2-PTEN locus. It encompasses four protein-coding genes: 
PAPSS2, ATAD1, KLLN and PTEN, which are widely expressed in various commonly-used cell lines.  

Since the sequences of gRNAs used to generate Δt and Δi clones were highly diverse, the PAPSS2-PTEN 
locus deletion found in CRISPR/Cas9-modified HAP1 cell clones was gRNA-independent. 

4.3.2 The PAPSS2-PTEN locus deletion was associated with gene expression changes and 
differential acetylation of H3K27 

We next examined whether the transcriptome was altered in the clones with the PAPSS2-PTEN locus 
deletion. In alignment with our ChIP-seq data, the RNA-seq data showed no signal at the PAPSS2-PTEN 
locus in the Δt1 clone while transcripts derived from PAPSS2-PTEN locus were captured in the ctrl clone 
(Fig. 13A).  
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Detailed inspection revealed unique and abnormal transcript signatures in ΔPAPSS2-PTEN cells at 
10q23.31. Since the deleted PAPSS2-PTEN locus does not include the first exon and promoter region 
of PAPSS2, there were reads mapping to the first exon of the PAPSS2 gene in Δt1 and ctrl clones (Fig. 
13B). Furthermore, we found reads located downstream of the PAPSS2-PTEN locus in Δt1 but not in 
the ctrl clone (Fig. 13C). This is likely caused by Pol II readthrough. In ΔPAPSS2-PTEN cells, Pol II could 
still be recruited to the transcription-start site of PAPSS2. However, due to the deletion, Pol II might 
lose its termination signal and give rise to a new transcript.  

Surprisingly, we identified CRISPR/Cas9-modified HAP1 cell clones in three independent published 
RNA-seq datasets which shared the exact transcript signatures at the PAPSS2-PTEN locus as found in 
our Δt1 clone (Fig. 13A-C). These HAP1 cell clones carried the intended CRISPR/Cas9-mediated 
deletion for METAP1 (ΔM in dataset1), SREBF2 (ΔS in dataset2) and SMARCC1 (ΔSM1 in dataset3), 
respectively (Fig. 13A-C). 

 

Fig 13. The transcripts signature of PAPSS2-PTEN locus deletion was shared across independent datasets 
(A) Coverage tracks of the various genotypic HAP1 clones with (dark grey) and without (orange) PAPSS2-PTEN 
locus (highlight in red) in our own (labelled as this study) and three published RNA-seq datasets. The coverage is 
separated by the strand (labelled in brackets). (B-C) Magnified views of read coverage at the up- (B) and 
downstream (C) regions (highlight in light grey in A) of the deleted genomic locus. The arrows show the unique 
transcripts in HAP1 clones without the PAPSS2-PTEN locus. 
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To assess the alteration of gene expression patterns linked to the deletion of the PAPSS2-PTEN locus, 
we combined our and the three publicly available datasets. Differential expression analysis revealed 
1489 downregulated and 1429 upregulated genes. The downregulated genes were enriched for 
processes such as DNA replication, DNA damage repair, cell cycle, as well as DNA- and histone binding. 
The functions of the upregulated genes were broader, including development, cell size, vesicle 
organization, transportation and catalytic activities.  

Since our differential expression analysis indicated changes in molecular processes of DNA- and 
histone binding, we took advantage of the H3K27ac ChIP-seq data from two independent sources: our 
data in Δt1 and ctrl clones, as well as a published dataset in which one of the CRISPR/Cas9-edited HAP1 
clones carried PAPSS2-PTEN locus deletion.  

Differential enrichment analysis discovered 852 differentially acetylated (DAc) sites, among which 
around 70% were located in promoter regions or gene bodies, indicating their regulatory potential on 
gene expression. We next focused on the DAc peaks that were proximal to differentially expressed 
(DE) genes (≤ 5 kb) and extracted 131 DAcDE pairs. The fold changes of H3K27ac enrichment were 
highly correlated with changes in their paired DE gene expression, implying that changes at the 
chromatin level affected the transcriptome. 

4.3.3 Generation of CRISPR/Cas9-modified cells exaggerated 10q23.31 deletion 

To investigate determinants of 10q23.31 deletion, we tested the following factors: the presence of 
gRNA with Cas9 protein and the delivery of a small vector as a transfection-efficiency enhancer. Single-
cell derived HAP1 clones were generated and assessed by qPCR or PCR, amplifying with primers 
annealing within the PAPSS2-PTEN locus. 

First, we transfected cells with CRISPR/Cas9 vectors with or without gRNA and selected using 
puromycin. The difference in the frequency of losing the PAPSS2-PTEN locus (83% with gRNA; 67% 
without gRNA) was insignificant. It confirmed our previous observation that this deletion was gRNA-
independent. 

Second, we compared cells transfected with the small vector (pBlueScript) to cells without transfection 
followed by puromycin selection. The deletion of the PAPSS2-PTEN locus was detected in 67% of 
clones transfected with pBlueScript and 71% of clones receiving no plasmid. Therefore, co-transfection 
of small vectors (pBlueScript) did not contribute to the deletion. 

Third, there were 29% of clones without transfection or puromycin selection harbouring the deletion 
of the PAPSS2-PTEN locus. This finding confirmed that the deletion was not the direct consequence of 
CRISPR/Cas9 off-target activity. However, the generation of CRISPR/Cas9-modified cells dramatically 
increased the frequency of the deletion.  

Furthermore, our cell cycle analysis revealed that under exposure to excessive cellular toxicity, losing 
the PAPSS2-PTEN locus helped cells to escape cell cycle arrest. 
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4.3.4 The PAPSS2-PTEN locus deletion in HAP1 cells resembled a collateral deletion at 10q23.31 
in human cancers 

Since we detected the deletion at the PAPSS2-PTEN locus in a human cancer cell line, we then explored 
the occurrence of this deletion in patients across various cancer types using publicly available data. 

We found that among 466 patients with the PTEN gene deletion, many patients also carried the 
deletion at KLLN (67%), ATAD1 (59%), and PAPSS2 (43%) gene loci. This observation suggested that 
collateral deletion at the PTEN locus was more prevalent than single-gene deletion in cancer patients. 

By performing PCA on the transcriptomic profiles, we observed that patient samples exhibited distinct 
grouping patterns based on the presence or absence of PAPSS2-PTEN locus deletion. It is striking since 
the patient samples selected for the analysis were not controlled by the factors which usually 
distinguish individual samples such as gender and tumour grade. Additionally, many DE genes 
associated with PAPSS2-PTEN locus deletion identified in HAP1 cells were also altered in patient 
samples with 10q23.31 deletion. 

To conclude, our study identified a deletion at 10q23.31 with significant implications for CRISPR/Cas9 
application in HAP1 cells, as well as its potential clinical relevance (Fig. 14).  

 

Fig 14. Graphic summary of Paper III 
The generation of CRISPR/Cas9-modified HAP1 cell clones increases the occurrence of the unexpected PAPSS2-
PTEN deletion on Chr 10. The deletion is associated with changes at multiple levels in HAP1 cells and can be 
found in various human cancer types. 
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5 Discussion 

5.1 Paper I 

There are many methods to deliver CRISPR/Cas9 components. LV-based delivery is very efficient, but 
it causes many safety concerns such as high off-targeting frequency and the random integration of 
lentiviral sequences55. Besides LV, the CRISPR/Cas9 system can be delivered as pre-incubated RNP 
complex or CRISPR/Cas9 vectors with gRNA sequences cloned. RNP complex delivery is generally 
considered to have the least safety concerns204. However, the RNP system is vulnerable to degradation 
mechanisms in cells and much more expensive than vector-based delivery205. A CRISPR/Cas9 vector is 
more stable than the RNP complex and shows much fewer safety concerns than LVs. Therefore, the 
easy-to-use and economical method to assure an efficient transfection reported in this study carries 
significance in the application of CRISPR/Cas9. 

The underlying mechanism through which small vectors serve as transfection enhancers remains 
unclear. It is well established that small plasmids exhibit higher efficiency in cellular uptake when 
compared to larger plasmids. Based on this observation, we hypothesize that upon passing through 
the cell and nuclear membranes, small vectors may temporarily increase the permeability of these 
membranes. The negatively charged small vectors (such as pBlueScript) help to maintain the 
membrane pores created by electric fields open, allowing for efficient delivery of CRISPR/Cas9 vectors 
into the cells.  

Furthermore, this co-transfection pattern may prevent the CRISPR/Cas9 vector from becoming 
entangled in multiple membrane pores, thus promoting increased cell viability206. Alternatively, the 
high survival rate observed may be attributed to the lower cytotoxicity exhibited by small vectors when 
compared to larger vectors. Some DNA sensors/receptors present on cell membranes can trigger 
programmed cell death207. During co-transfection, small vectors travel towards the cell membrane at 
a higher velocity than larger vectors and thus reach the cell membrane first, saturating the capacity of 
the DNA sensors/receptors. This, in turn, shields the sensors from the larger vectors and reduces cell 
death.  

It is important to note that these explanations are highly speculative and further work is required to 
elucidate the exact mechanisms involved. 

In sum, our simple, non-hazardous and cost-effective method has been proven to increase the 
transfection efficiency of large-size CRISPR/Cas9 vectors in many cell lines. It has shown great potential 
in clinical and industrial applications. 
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5.2 Paper II 

In this study, we reported the co-occurrence of multiple on-target genomic alterations in CRISPR/Cas9-
edited cells using an advanced target enrichment-LRS technology (Xdrop) followed by our customized 
analysis. 

5.2.1 Superior performance of Xdrop-LRS with de novo assembly workflow 

In the era of CRISPR/Cas9, many undesired on-target aberrations have been documented such as 
chromothripsis, off-target mediated translocation, LDs, plasmid integration as well as duplication or 
inversion in dual gRNA system (discussed in subsection 1.3.1). However, most work either failed to 
detect allelic resolution or only captured these alterations as a single event in one specific allele. 
Consequently, the complexity of altered on-target genomic events was underestimated. It is largely 
due to technical limitations. 

For example, duplication and inversion were initially reported using a conventional PCR approach in 
cultured human cells and mouse models131,132. The choice of this method impedes the identification 
of whether these two events co-occur on the same DNA molecule. Additionally, the standard PCR 
approach requires prior knowledge to design primers, which inevitably leads to oversight of 
unexpected rearrangements. Similarly, investigation relying on fluorescence in situ hybridization is 
also biased by the probe design208. To overcome these limitations, many powerful tools (discussed in 
subsection 1.3.2) are developed to characterize on-target sequence content in high-throughput and 
less biased manners. However, these methods generally rely on steps including DNA fragmentation, 
PCR-based enrichment and sequencing on Illumina platform, which limited the length of on-target 
sequences detected to hundreds of base pairs.  

On the contrary, Xdrop-LRS can reveal sequences in the order of kilobases, allowing the identification 
of multiple genomic alterations located on the same allele. Compared with other target enrichment 
strategies compatible with LRS, Xdrop requires less DNA input and shows a higher recovery rate129. 
Furthermore, unlike the classic alignment approach, our de novo assembly-based analysis has no 
requirement for reference sequence, which further reduces the bias introduced during data analysis.  

Xdrop-LRS combined with customized de novo assembly-based analysis outcompetes many available 
methods in revealing co-occurred unexpected genomic alterations, but it is unable to detect large-
scale rearrangements such as aneuploidy or CRISPR/Cas9 off-targeting events. 

5.2.2 Hypothetical models of on-target genomic rearrangements 

Although we cannot reconstruct or track all events after the induction of DSBs in cells, we propose 
hypothetical models in our deletion clones according to our data. 
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Fig 15. Hypothetical model in HAP1 and HepG2 deletion clones with on-target aberrations 
(A-D) schematic of our models in the deletion clone HAP1 Δt72 (A), HepG2 Δt15 (B), Δt8 (C) and Δi50 (D). Cells 
with growth disadvantages are shown with lighter colours and dashed outer lines. The figure is adapted from 
Geng et al61 with permission granted. 
 

In the deletion clone HAP1 Δt72, HAP1 cells turned diploid before the targeted region was cleaved. 
The resulting DSBs were not repaired before cell division. One daughter cell (DC, DC2) received two 
fragments derived from targets, and the other DC (DC1) did not receive any target-derived fragments. 
NHEJ repaired the DSBs in DC1 while DC2 employed MMEJ, leading to duplication and inversion of the 
target. Cells with detectable targets (derived from DC2) become dominant because of proliferation 
benefits (Fig. 15A). Similar to the HAP1 deletion clone Δt72, we reason that HepG2 deletion clone Δt15 
was heterogeneous. In DC2, two target-derived fragments were inserted at the targeted site on only 
one of the alleles, together with exogenous DNA fragments from the E. coli genome and CRISPR/Cas 
vectors. These complex rearrangements might bring proliferation disadvantages to cells, which could 
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explain why only 2% of alleles in HepG2 deletion clone Δt15 carried the on-target alterations (Table 1, 
Fig. 15B). In the HepG2 deletion clone Δt8, we postulate that there were two alleles representing the 
two contigs assembled using Xdrop-LRS data, and the third allele carried the desired deletion (Fig. 
15C). In the HepG2 deletion clone Δi50, a large on-target genomic deletion was located on one allele 
while there were two alleles with the expected deletion (Fig. 15D). 

In conclusion, with Xdrop-LRS followed by a customized de novo assembly-based analysis workflow, 
we documented the complexity of on-target genomic rearrangements in human cells. 
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5.3 Paper III 

5.3.1 Mechanism of the PAPSS2-PTEN locus deletion 

Although the mechanism initiating the de novo emergence of PAPSS2-PTEN locus deletion is unclear, 
we postulate that it is linked to genome fragility.  

Genome-wide screening identified more than two hundred fragile sites including FRA10A where the 
PAPSS2-PTEN locus resides159,209. Fragile sites are usually enriched with DNA sequences prone to form 
non-canonical DNA structures (discussed in subsection 1.4.2). We have found several pieces of 
evidences suggesting that non-B DNA structures might form in the PAPSS2-PTEN locus, resulting in the 
fragility of this locus: (I) Sequences in PTEN exon 1 were reported to form a stable alternative 
secondary structure in vitro210; (II) using publicly available data in human cells, we identified two G-
quadruplex sites located within PAPSS2-PTEN locus211; (III) our analysis on sequences at the break 
boundaries of PAPSS2-PTEN locus revealed A-mononucleotide and GT-repeats, which can lead to 
slipped-strand DNA166 or left-handed Z-DNA, respectively175. 

Additionally, the generation of HAP1 cells likely makes them prone to DNA breaks. HAP1 cells were 
derived from KBM-7 cells through the transfection of Yamanaka factors, which are known to trigger 
replication stress and genome instability212,213. 

5.3.2 Clinical implication of the PAPSS2-PTEN locus deletion 

The frequent loss of 10q23.31 and its association with prostate-specific antigen reoccurrence in 
patients have been reported. Besides impairing the function of PTEN as a tumour suppressor, the 
deletion of PAPSS2 is considered a contributor to the reoccurrence214. Additionally, a recent study 
showed that cancer cells carrying the co-deletion of ATAD1 and PTEN genes were prone to BIM-
mediated apoptosis215. These studies reinforce the significance of collateral deletion in cancers. 

Furthermore, large genomic deletion could create collateral lethality in cancer cells, which makes 
cancer cells more responsive to treatment. For example, in glioma, cells carrying a large deletion 
including the ENO1 gene were unable to survive when the paralogue ENO2 was depleted or inhibited. 
On contrary, the suppression of ENO2 showed no effect on the proliferation of cells with intact ENO1 
gene216. The vulnerability led by collateral deletion grants an auspicious possibility to the specific and 
efficient treatment. Future studies can exploit the possible collateral lethality created by the deletion 
of the PAPSS2-PTEN locus. For example, PAPSS2 is involved in sulfur metabolism. Does inhibiting the 
paralogue of PAPSS2 (PAPSS1) decrease the survival of cancer cells with 10q23.31 deletion but exhibit 
no effect on non-cancerous cells with intact 10q23.31? 

Although we first identified the loss of the PAPSS2-PTEN locus in HAP1 cells, this deletion showed 
significant clinical relevance and enormous potential in providing targeted and effective treatment 
options through collateral lethality. 
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6 Conclusions 
In Paper I, we have shown an easy and non-hazardous method to increase the transfection efficiency 
when delivering large-size CRISPR/Cas9 vectors into hard-to-transfect human cells. By co-transfecting 
small-size vectors with large-size vectors, we successfully enhanced the efficiency and decreased cell 
death. Furthermore, this method has been intensively tested in many human cell lines. 

In Paper II, we have documented the co-occurrence of complex on-target genomic alterations in 
CRISPR/Cas9-modified human cells. These unintended on-target aberrations resulted in functional 
DNA derived from the targeted region in the genome despite the successful induction of on-target 
DSBs. This adverse effect could bring biological consequences to cells such as the expression of 
exogenous DNA fragments and affecting cell growth. In addition, we introduced an advanced 
workflow, coupling Xdrop technology with our customized de novo assembly-based approach. This 
powerful and data-driven tool enables to dissect on-target sequences in the order of kilobases, 
expanding the ability to detect on-target rearrangements. 

In Paper III, we have reported an undesired genomic deletion of 287 kb in HAP1 cells which are 
commonly used as cell models in CRISPR/Cas9 screening or single-target editing experiments. This 
genomic region encompasses four widely-expressed protein-coding genes including PTEN. This 
deletion was associated with changes at chromatin and transcript levels. The deletion was not led by 
CRISPR/Cas9 off-target editing but the generation of CRISPR/Cas9-modified cells greatly increased the 
frequency of this deletion. Furthermore, our data suggested that this deletion initially identified in 
HAP1 cells resembled a common deletion pattern in cancer patients. 
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7 Points of perspective 
Numerous clinical trials are underway to evaluate the potential of CRISPR/Cas9-based therapy of 
genetic diseases and disorders such as Sickle Cell Disease, β-Thalassemia and Duchenne muscular 
dystrophy217. While CRISPR/Cas9 gene therapy shows great promise, safety and efficiency concerns, 
such as those discussed in this thesis, need to be addressed instead of rushing headlong into the clinical 
use.  

Given the uncertainties and risks surrounding the use of CRISPR/Cas9, further work should focus on 
reducing unintended genomic rearrangements and off-target cleavages. In addition to the approaches 
discussed in subsection 1.1.2.3, there are many other promising strategies to improve CRISPR/Cas9 
technology: (I) Continuous development of high-fidelity Cas variants. For example, variants HiFiCas9218 
and Cas9TX219 minimize the off-target editing and chromosomal translocation, respectively. (II) 
Reducing the duration of Cas9 activity in cells. Off-target cleavages increase under the prolonged 
presence of Cas9. Therefore, delivering the Cas9-gRNA complex directly to cells (RNP system) is 
considered to be optimal in minimizing the off-target sites. (III) Decreasing the binding time of Cas9 at 
DNA. Excessive binding duration could impede the accessibility of DNA damage repair mechanisms. 
(IV) Increasing the usage of HR to repair the DSB induced by CRISPR/Cas9. Through HR, precise editing 
can be achieved while NHEJ and MMEJ can lead to many undesired consequences such as 
chromothripsis and LDs. Efforts have been made to suppress NHEJ by inhibiting a key enzyme220 and 
to favour the choice of HR by controlling the cell cycle stage221,222.  

Currently, most available assays to evaluate the CRISPR/Cas9 genomic outcomes have their inherent 
technical limitations. A large amount of input material, laborious work and high cost also hinder the 
translation of these methods into clinically feasible and scalable approaches. Therefore, it is urgent to 
develop tools that enable comprehensive assessments and are suitable for clinical application.  

In conclusion, the use of CRISPR/Cas9 must be approached with utmost caution and prudence. 
CRISPR/Cas9-based gene therapy should be limited to patients with life-threatening conditions. 
Enthusiasm must not cloud judgement, especially when it comes to matters of public health. 
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