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POPULAR SCIENCE SUMMARY 

Imagine that you are asked to organize and describe the landscape of all biomedical research 

published during the last 30 years – a set of about 20 million publications. You are also told 

to provide an overview showing the main research fields and the possibility to zoom into 

more narrow areas to explore research of interest in more detail. This is the task I focus on in 

this thesis.  

However, I did not start from scratch. Like Isaac Newton, I have been “standing on the 

shoulders of giants”, meaning that I have built my work on previous research, in which 

methods to group publications based on how they are related have been elaborated.  

I will briefly explain how this is done. In research publications, researchers use references to 

relate their work to the works of others, as well as to their own former works. Such references 

can be used to create links, or “citations”, between publications. Citation relations can be 

used to create networks of publications. The mentioned set of about 20 million biomedical 

research publications includes about half a billion citation relations. Algorithms have been 

elaborated that can separate groups of publications that are densely interconnected from other 

areas of the network. This makes it possible to divide the network of publications into smaller 

groups, or “clusters”. A hierarchical classification is created when applying this method at 

different levels, including broad and coarse levels as well as narrow and highly granular 

levels.  

So, what has been my contribution?  

1. First of all, I have paid attention to the fundamentals of this approach. What kind of 

groups are created using such a method? What do we mean by terms such as 

“research fields”, “research topics” or “research specialties” and how do clusters 

correspond to such terms? In short, my answer is that research fields are areas of 

research that researchers focus on. Clusters represent focus areas of research, because 

researchers refer to work which is generally within the same focus area.  

2. Secondly, I have focused on how to adjust the size of clusters at different levels. The 

clustering algorithm includes a parameter which determines the size of clusters. In the 

first two articles of the thesis, I propose a method to adjust this parameter to create 

two levels: (1) the level of “research topics”, which includes narrow and detailed 

focus areas addressed in research publications (up to a few hundred thousand areas), 

and (2) the level of “research specialties”, which includes broader areas of research 

addressed by research communities (a few thousand areas).  

3. Thirdly, I have studied how clusters can be labeled. Without labels, it is almost 

impossible for a user to understand the contents of a cluster, in particular if the cluster 

is large. In the third article, I propose which data to use for labeling of clusters of 

different size, using broad terms such as “psychiatry” or “orthopedics” for large 



clusters and specific terms such as “bipolar disorder” or “metal joint prosthesis” for 

narrow clusters.  

4. Lastly, I have prosed a way to present the classification visually. This method uses 

large clusters to provide an overview of the biomedical research landscape and small 

clusters to make it possible for users to zoom into research fields and get details about 

the topics addressed within each focus area.  

In summary, I have improved citation-based classifications by providing a logic behind the 

different levels of the classification, labeling clusters at different levels, and by making it 

possible to visually navigate the classification. These improvements make the classification 

more useful. The obtained classification can be used to study different aspects of the 

biomedical research landscape, for example to find out in which areas artificial intelligence is 

applied1 or to determine which areas are more clinically oriented2. It can also be used to 

identify research from a particular researcher, journal, or organization, and to explore how 

this research fits into the overall biomedical research landscape. I have, for example, created 

maps of the publications from Karolinska institutet3 and of Covid-19 related research4. A 

classification of biomedical research literature5 has also been published online so it can be 

used by others.  

In this thesis, I have demonstrated how the biomedical research landscape can be organized 

and described in a way that provides both overview and detail. 

  

 

1 https://petersjogarde.github.io/papers/ai/world/index.html  
2 https://petersjogarde.github.io/pm_classification/2023feb/basemap/clinical/index.html  
3 https://petersjogarde.github.io/papers/hiervis/sthlm_trio/ki/index.html  
4 https://petersjogarde.github.io/papers/hiervis/covid_v2/pubs/index.html  
5 https://figshare.com/collections/PubMed_Classification/5610971  
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ABSTRACT 

The science system is large, and millions of research publications are published each year. 

Within the field of scientometrics, the features and characteristics of this system are studied 

using quantitative methods. Research publications constitute a rich source of information 

about the science system and a means to model and study science on a large scale. The 

classification of research publications into fields is essential to answer many questions about 

the features and characteristics of the science system.  

Comprehensive, hierarchical, and detailed classifications of large sets of research publications 

are not easy to obtain. A solution for this problem is to use network-based approaches to 

cluster research publications based on their citation relations. Clustering approaches have 

been applied to large sets of publications at the level of individual articles (in contrast to the 

journal level) for about a decade. Such approaches are addressed in this thesis. I call the 

resulting classifications “algorithmically constructed, publications-level classifications of 

research publications” (ACPLCs).  

The aim of the thesis is to improve interpretability and utility of ACPLCs. I focus on some 

issues that hitherto have not received much attention in the previous literature: (1) Conceptual 

framework. Such a framework is elaborated throughout the thesis. Using the social science 

citation theory, I argue that citations contextualize and position publications in the science 

system. Citations may therefore be used to identify research fields, defined as focus areas of 

research at various granularity levels. (2) Granularity levels corresponding to conceptual 

framework. In Articles I and II, a method is proposed on how to adjust the granularity of 

ACPLCs in order to obtain clusters corresponding to research fields at two granularity levels: 

topics and specialties. (3) Cluster labeling. Article III addresses labeling of clusters at 

different semantic levels, from broad and large to narrow and small, and compares the use of 

data from various bibliographic fields and different term weighting approaches. (4) 

Visualization. The methods resulting from Articles I-III are applied in Article IV to obtain a 

classification of about 19 million biomedical articles. I propose a visualization methodology 

that provides overview of the classification, using clusters at coarse levels, as well as the 

possibility to zoom into details, using clusters at a granular level.  

In conclusion, I have improved interpretability and utility of ACPLCs by providing a 

conceptual framework, adjusting granularity of clusters, labeling clusters and, finally, by 

visualizing an ACPLC in a way that provides both overview and detail. I have demonstrated 

how these methods can be applied to obtain ACPLCs that are useful to, for example, identify 

and explore focus areas of research. 
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LIST OF DEFINITIONS 

Bibliometrics The quantitative study of publication collections. 

Scientometrics The quantitative study of the features and characteristics 

of science and scientific research. 

Classification The process of distinguishing and distributing kinds of 

‘things’ into different groups as well as the resulting 

delineation of these ‘things’ into classes (Hjørland, 2020).  

Classification schema A list of empty classes and their relations used for, or 

resulting from, classification (in the verb sense of the 

term). 

Unsupervised 

classification 

The task to algorithmically perform classification without 

the use of a predefined classification schema.   

Research field A focus area of research at any granularity level. I 

consider research topics, specialities and disciplines as 

research fields at various granularity levels (from narrow 

to broad).  

Research topic A focus area of research that constitutes a thematic 

context to which researchers relate research questions in 

research studies. 

Research specialty A focus area of research addressed by “a self-organized 

network of researchers who tend to study the same 

research topics, attend the same conferences, read and 

cite each other’s research papers and publish in the same 

journals.” (Morris & van der Veer Martens, 2008) 

Research discipline A broad focus area of research consisting of multiple 

specialties.  

Research community A self-organized network of researchers addressing focus 

areas of research.  

Research Concept A bearer of linguistic meaning related to an aspect of a 

research publication. 

Publication A document made available as printed or electronic 

media, such as a journal article, conference paper, report, 

or book. 

Bibliographic record The set of metadata describing a publication, including for 

example title, abstract, year and references.  



Reference list The structured list of publications provided in the end of 

research publications. 

Reference A textual instance in a reference list referring to a 

publication.  

Citation The link between two publications created by matching a 

reference to a publication. 

Clustering The task to perform unsupervised classification of items 

based on their relatedness in networks. 

Community detection I use community detection synonymously to clustering.  

Quality function A function used for the evaluation of a clustering solution.  

Optimization algorithm An algorithm that obtains a clustering solution by 

optimizing the value of a quality function. 

Publication-publication 

similarity measure 

The measure used to calculate the similarity between two 

publications.  

Normalization approach 

(in network context) 

The approach taken to normalize citation relations, 

primarily to reduce differences between research fields 

and age of publications.  
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1 INTRODUCTION - MODELLING AND STUDYING THE 
STRUCTURE OF SCIENCE THROUGH PUBLICATIONS 

In the science system, researchers organize themselves to address problems that are 

formulated within research communities, often responding to needs or discourses in the 

surrounding society (Morris & van der Veer Martens, 2008). Science has been evolving for 

centuries and has expanded its coverage and at the same time become more specialized and 

detailed as new fields of science have emerged, typically breaking out from existent fields. 

New research questions have been formulated and theories have triggered new approaches to 

address different issues. Novel methodologies have led to rapid and disruptive development 

and shifts in paradigms (Kuhn, 1996). The science system is dynamic and in continuing 

change and development (Sugimoto & Weingart, 2015). Is it possible to obtain an overview 

of such a complex system and model its structure and properties? 

No researcher covers all areas of science. On the contrary, science is performed and 

communicated within communities having different focus areas (Börner et al., 2005; Crane, 

1972). The communities are overlapping, and the borders are vague (Chubin, 1976; 

Havemann et al., 2017). They form core and peripheral communication structures, having 

dense communication in the core of the communities and more sparse communication in the 

periphery (de Solla Price & Beaver, 1966; Wedell et al., 2022). Furthermore, the 

communities are characterized by having a more intensive internal communication than their 

communication with other parts of the science system (Boyack, 2017; de Solla Price & 

Beaver, 1966). In this thesis, such features are used to model the structure of the science 

system. 

One of the most important formal ways of communication in the science system is through 

publications, such as journal articles, conference papers, reports and books (Scharnhorst et 

al., 2012). In publications, findings are presented, theories are developed, and methods are 

described. Traces of collaboration are expressed by co-authorship, which is more likely to 

occur within a research community than between researchers of different communities 

(Newman, 2004a; H. White & McCain, 1998). The terminology in publications expresses 

focus areas and the subject orientation of communities, which is to some extent specific to 

each community (Callon et al., 1983). Furthermore, and importantly for this thesis, 

researchers situate themselves in their research context and their research community by 

referencing to other publications (de Solla Price, 1965b; Tahamtan & Bornmann, 2022). This 

practice relates publications to their historical foundation (Garfield, 1963), and their 

theoretical, methodological, and content-oriented context. Altogether research publications 

constitute a rich source of information about the science system and a means to simplify, 

model, and study the system at large scale (de Solla Price, 1965a; Garfield, 1963).  

Bibliometrics is the quantitative study of publication collections and is essential in the field of 

scientometrics (or quantitative science studies). The delineation of publications into research 

fields is fundamental to a wide range of scientometric studies, for example to study co-
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publishing in and between research fields, growth and emergence of research fields, 

differences in disciplinary orientation between organizations and countries, and shifts in 

topical orientation. A mosaic of manually obtained classifications or other categorizations 

intended to describe the subject orientation of publications exists. However, existing 

classifications and nomenclatures are insufficient for the study of a wide range of questions 

about the science system. Some classifications are too broad to provide detail, for example 

journal level classifications such as the Web of Science journal classification. Nomenclatures 

such as the Medical Subject Headings (MeSH) are not always optimal for the purpose of 

studying the science system because they were originally constructed for the purpose of 

searching or browsing publication collections and do not capture focus areas of research very 

well. It may be possible to obtain detailed classifications manually. However, such an 

approach is costly to maintain. To this point in time, classifications that are comprehensive, 

granular at its lowest level, easy to maintain and fit for the purpose of studying the structure 

of the science system are still missing.  

In this thesis, I focus on algorithmic approaches to obtain classifications of research 

publications, in particular of journal articles in biomedicine. I concentrate on network-based 

approaches to obtain classifications, where the entities, or “nodes”, of the networks in 

question are publications and each link, or “edge”, between two nodes represents a citation 

from one publication to another publication, a so-called “direct citation” relation. A network 

can be divided into smaller groups using clustering (also called community-detection) 

algorithms. Different methods to delineate the nodes of a network into groups, or “clusters”, 

exist. Their overall goal is to obtain clusters having a higher concentration of edges within the 

cluster than outside the clusters (Fortunato, 2010). In the case of citation networks, clusters 

represent dense areas of formal research communication. Such areas are likely to represent 

focus areas or research, where the publications of each cluster are likely to share some 

properties, for example problem definitions, ontologies, vocabulary, epistemology, 

methodology, geographical focus, or entities of examination (e.g., species, substances, or 

artefacts). Clustering of citation networks is therefore a promising approach to map and study 

the science system. However, I emphasize that it is hardly possible to create one single 

classification to model science and to answer all different research questions. The 

classification must be fit for the purpose of its use.  

Algorithmic methods to create classifications of research publications have been developed 

since the 1960s. In recent years, clustering algorithms have been used to obtain large-scale 

classifications of research publications of high granularity. Such classifications can be used to 

get an overview of the science system, study interactions in the system and delineate science 

into fields at various levels of aggregation. In this thesis, I summarize my work on improving 

methods to obtain such classifications. I have studied large networks of research publications, 

their relations through citations, and how these networks can be used to obtain classifications 

of publications. 
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The thesis is restricted to approaches using clustering in large citation networks. Clustering is 

a type of unsupervised approach in the sense that it does not make use of a pre-existing 

classification schema. Moreover, I focus on publication-level classifications, in contrast to 

journal-level classifications, which is necessary to obtain classifications of high granularity. 

1.1 AIM OF THE THESIS 

The aim of the thesis is to improve interpretability and utility of algorithmically constructed, 

publications-level classifications of research publications (ACPLCs). To fulfill the aim, I 

focus on some issues that have not received much attention in the previous literature:  

1. Conceptual framework – Several terms have been used in the scientometric literature 

to denote the groups of publications obtained by clustering, for example “disciplines”, 

“research fields”, “research areas”, “topics” and “specialties”. There is no consensus 

about these terms. How they relate to the clusters obtained from the chosen 

approaches has not been thoroughly addressed in the literature. A conceptual 

framework has been elaborated throughout the project and is outlined in this thesis 

frame. 

2. Granularity levels corresponding to conceptual framework – The granularity of 

classifications is regularly determined by the user arbitrarily, for instance by setting 

the number of clusters to be obtained or by the choice of a resolution parameter value 

given to a clustering software. In Articles I and II, we address the question on how the 

granularity of ACPLCs can be adjusted so that clusters correspond to topics and 

specialties as these notions have been defined in the conceptual framework.  

3. Cluster labeling – Without labels, it is very time consuming to interpret the subject 

orientation of clusters of research publications, in particular in large clusters. This 

restricts utility. Nevertheless, only a few studies have focused on labeling of 

algorithmically obtained clusters of research publications (Koopman et al., 2017; 

Velden, Boyack, et al., 2017; Velden, Yan, et al., 2017; Waltman & van Eck, 2012). 

In Article III, we address how labels can be assigned to clusters at different sematic 

levels. 

4. Visualization – Visualization of classifications is necessary in many use cases, for 

example to make it possible for a user to get an overview or to explore a research field 

of interest. To my best knowledge, no scientometric study has incorporated several 

levels in a classification in the same visualization. In Article IV, I address how 

ACPLCs can be visualized to provide both overview and detail of the science system. 

This fourth study synthesizes the previous work in the project by the use of the 

methods resulting from Articles I-III.  

 

The thesis is structured as follows. In Section 2, I give a historical background of the research 

literature of the use of citation networks for the classification of research publications. The 

conceptual framework is explained in Section 3. Data and methods are described in Section 4. 

The articles of the thesis are summarized in Section 0, followed by discussion in Section 6. 

Conclusions are made in Section 7.   
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2 BACKGROUND – HISTORY OF NETWORK-BASED 
CLASSIFICATION OF SCIENCE 

The classification of science has a long history. Glänzel and Schubert (2003a) suggest that the 

task to classify science “into a disciplinary structure is at least as old as science itself”. This 

may be true; classification of science goes back at least to ancient Greece. For example, 

Aristotle classified science as “theoretical”, “practical”, or “productive” (Hjørland, 2020) and 

words such as “mathematics”, “astronomy”, “philosophy” and “biology” stem from ancient 

Greece. Traditional library classification (the arrangement of documents into categories) goes 

back at least to the Alexandria library in the 3rd century. Several of the classifications used in 

many academic libraries today have a history of 100 years or more. For example, the “Dewey 

Decimal Classification” was first published in 1876. The idea of faceted classification is 

almost 100 years old and stems from the “Colon Classification” developed by Ranganathan 

in the first half of the 20th century (Hjørland, 2020). All these classifications have in common 

that they are created in a subjective manner, based on how the creator perceived the 

delineation of knowledge into categories. Modern classification schemas of this kind are 

developed collaboratively by multiple persons and organizations, often following 

sophisticated processes and criteria. Nevertheless, such classification schemas are still 

developed based on subjectively perceived categories and have been sparsely evaluated in the 

scientometric literature.  

Conventionally, classifications of research publications are obtained by two steps, the first 

being the creation of a classification schema and the second the assignment of publications to 

the classes of the classification schema. This procedure is performed by librarians at 

university libraries or national libraries and is part of cataloguing procedures. The 

classifications have generally been created to enhance the possibilities to browse publications 

within a subject of interest to the user, specifically when the publication is not known by the 

user beforehand. The use of classifications in scientometric studies is often rather different 

from browsing the library shelf. In scientometric studies, classifications are primarily used for 

statistical analyses. For example, scientometric studies require classifications to: 

• delineate publications by research fields in analyses (e.g., Ahlgren et al., 2018; 

Haunschild et al., 2018; Milanez et al., 2016; Muñoz-Écija et al., 2019; Sjögårde & 

Didegah, 2022). 

• measure interdisciplinarity (e.g., Abramo et al., 2018; e.g. Engerer, 2017; Gerlach et 

al., 2018; Katz & Hicks, 1995; Morillo et al., 2001; Porter et al., 2007; Raan, 2005a; 

Q. Wang & Ahlgren, 2018; Q. Wang & Schneider, 2019). 

• detect emerging topics (e.g., H. Small et al., 2014; Q. Wang, 2018; Xu et al., 2020). 

• normalize citation indicators to research fields (e.g., Bornmann et al., 2013; 

Leydesdorff et al., 2013; Raan, 2005b; Ruiz-Castillo & Waltman, 2015).  

Scientometric studies often need classifications that are comprehensive (in terms of coverage 

of the classified publications) and of high granularity which makes detailed large-scale 

studies possible.  
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Web of Science, and its predecessor the Science Citation Index, has been the pioneer data 

source for scientometric analyses. It was proposed by Eugene Garfield in 1955 and developed 

in the 1950s and 60s (Garfield, 1955). Journal categories were created in conjunction with the 

development of the Journal Citation Reports, which contain the well-known journal impact 

factor (Garfield, 1972).6 The Web of Science journal classification has been widely used for 

scientometric studies. However, the classification has some properties that limit its 

usefulness:  

1. Journal-level classifications are inevitably coarse because of the size and wide scope 

of many journals. Hence, the categories are not useful for studies of more narrow 

scope. Detailed studies of the subject orientation of a unit of analysis cannot be 

performed using the Web of Science journal classification.  

2. The categories are predefined by the creator. Thereby, the categories reflect the 

disciplinary structure of science as subjectively perceived by the creator. The 

accuracy of the Web of Science journal classification has been convincingly 

contested (Klavans & Boyack, 2017a; Rafols & Leydesdorff, 2009; Q. Wang & 

Waltman, 2016). 

3. Pre-defined categories adapt slowly to new developments in science because the 

classification schema must be manually updated for new categories to be included. 

This makes such classifications less suitable for detection of emerging research 

fields.  

These weaknesses are not specific to the Web of Science journal classification. They apply to 

all classifications of journals into predefined categories, for example the All Science Journal 

Classification in Scopus.7 

The use of controlled vocabularies, e.g., Medical Subject Headings (MeSH), is an alternative 

approach for the study of the science system. However, such nomenclatures have been 

created for the purpose of search and are less suitable for some analytical purposes.8 Some 

MeSH terms correspond rather well to a research field, while others do not. For example, 

most publications with the MeSH term “carcinoma, merkel cell” (a type of skin cancer) 

belong to the same research field, or at least they can be grouped using clustering in citation 

networks. However, the MeSH term “arm” is very unspecific and is scattered over many 

research fields.  

Methods for large-scale algorithmic classification of research publications have been 

developed to better meet the needs of quantitative studies of science. Network-based 

approaches have been dominating. They are unsupervised in the sense that they do not 

depend on pre-existing classification schemas or training data. Since they are recreated, they 

 

6 ”Web of Science Core Collection Help“. URL: 

https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [2020-

08-24] 
7 ”What is the complete list of Scopus Subject Areas and All Science Journal Classification Codes (ASJC)?”. 

URL: https://service.elsevier.com/app/answers/detail/a_id/15181/supporthub/scopus/ [2020-08-24] 
8 It should be noted that MeSH can be used to calculate publication-publication similarity and for clustering. I 

here refer to the direct use of MeSH as a classification.  

https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html
https://service.elsevier.com/app/answers/detail/a_id/15181/supporthub/scopus/
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have the potential to capture changes in the science system. Furthermore, network-based 

approaches can be used to obtain hierarchical classifications of high granularity in very large 

collections of research publications at a low cost. This thesis focuses on algorithmic, 

network-based, approaches to obtain classifications of research publications. I focus on 

classifications that aim to delineate the publication output of the science system into research 

fields, which can briefly be explained as focus areas of research, often characterized by a 

shared subject orientation and relatively dense communication (see Section 3.2).  

A great variety of methods have been used during the 60 years of development of algorithmic 

classifications of research publications. Nevertheless, the procedures generally follow the 

same steps:  

1. Selection of data to be classified.  

2. Calculation of publication-publication similarity. This step includes the choice of 

similarity measure, for example direct citation, co-citation, bibliographic coupling 

or textual similarity (the measures are explained in more detail in Section 2.1).  

3. Normalization of publication-publication relations. For example, to reduce 

differences between articles that have larger number of citation relations and those 

that have lower number of citation relations. 

4. Choice of clustering algorithm. This step usually includes a choice of parameter 

values since almost all clustering algorithms have parameters for which users must 

choose values. Examples of parameters are the number of clusters to be obtained, 

the number of iterations, or the resolution parameter.  

5. Labeling of the obtained clusters. This step may also include parameter settings, for 

example to balance term frequency with term specificity at different hierarchical 

levels.  

In the remainder of this section, I outline the historical development of algorithmic, citation 

network-based, classifications of research publications from the 1960s, as well as the current 

state of this research topic (in the beginning of the 2020s). The focus is on unsupervised, 

large-scale classification of research publications.  

2.1 1960S TO 1980S – EARLY WORK ON NETWORKS OF RESEARCH 
PUBLICATIONS  

It was early recognized that citation databases can be used to study subject orientation of 

research and development of research topics. Garfield (1963) proposed that citation relations 

can be used to draw historical maps of science and in 1964 Garfield et al. explored citation 

relations to study a set of papers associated with “the key discoveries leading to our present 

understanding of the mechanisms and role of DNA in protein synthesis” (Garfield et al., 

1964). They concluded that citation analyses can be used to “identify key events, their 

chronology, their interrelationships, and their relative importance.” At about the same time 

Doyle (1962) proposed that maps of keywords can be used for information retrieval purposes. 

A couple of years later de Solla Price (1965b) suggested that research fronts can be studied 

by drawing networks between journal articles.  

Figure 1 shows a citation network between some of the early work covered in this section. 

Note the contra-intuitive citation from Narin (1972) to the coming work of Carpenter and 
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Narin (1973). Also note that Marshakova-Shaikevitch (1973) does not have any citation 

relations with the other early works. 

 

Figure 1: Example of citation network of some of the early work covered in this section.  

Different citation-based measures to quantify publication-publication similarity were 

proposed in the 1950s-70s. In 1954 Fano suggested that the relation between documents can 

be quantified by “simultaneous references in the literature” (Fano, 1956). Kessler (1963) 

developed this idea and called it “bibliographic coupling” and two years later he published an 

experiment of the approach (Kessler, 1965). By bibliographic coupling, the similarity of two 

publications is quantified by counting the number of references they have in common. 

Another measure was proposed a decade later independently by Small (1973) and 

Marshakova-Shaikevich (1973), namely co-citations. The co-citation strength between two 

publications is the number of times both publications occur in the same reference list in other 

publications. Direct citations, bibliographic coupling and co-citations are still the most 

commonly used similarity measures between publications used for unsupervised algorithmic 

classification.   

Figure 2A shows the bibliographic coupling strength between publication A and B. A and B 

both cite publication C, D and E. Thus, A and B have a coupling strength of three (this 

strength can be normalized in relation to the total number of references in A and B). Figure 

2B shows co-citations between the pairs B-C, B-D and C-D. The co-citations are the result of 

A citing all of the publications B, C and D.  
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A. Bibliographic coupling 

 

B. Co-citations 

 

Figure 2: The figure to the left illustrates bibliographic coupling between the publications A and B. 

Both A and B cite the publications C, D and E. The figure to the right illustrates co-citations 

between the pairs B-C, C-D and B-D. B, C and D are all cited by the publication A.  

After the introduction of bibliographic coupling and co-citations, there has been much 

discussion and empirical investigation on which similarity measure yields the best groupings 

of publications into research fields. Later studies have also included other kinds of relations 

and used other units than publications, such as co-occurrences of words (or terms) in 

publications (Callon et al., 1991; Callon et al., 1983) and co-authoring between researchers 

(Persson, 1994; White & Griffith, 1981; White & McCain, 1998).  

The first attempts to create network-based classifications of journals started in the 1970s. In 

1972 Narin et al. proposed that citations can be used to study the interrelations between 

journals (Narin et al., 1972) and the year after Carpenter and Narin (1973) partitioned a set of 

journals in a citation network. They used two different normalization procedures which take 

into account the different sizes, in terms of number of published articles, of the journals. One 

of these approaches restricts the network between journals so that for each journal only the 

top m strongest relations are included (setting m to 7, 10 and 15). The top m approach is of 

interest because it has also been used in more recent studies at the article level. 

Small and Griffith (1974) argued that journals are too broad to be able to capture the structure 

of science at more finely granular levels. They used co-citations and single-link clustering to 

create a classification to study the arrangement of publications into research specialties. The 

single-link clustering method is a type of hierarchical clustering algorithm. In a first step, all 

relations between publications are calculated. Publications are then grouped step by step. The 

pair with the lowest distance (i.e., the strongest relation) is joined in each step until all papers 

have been merged into one cluster. Figure 3 shows an example of a clustering using single-

link clustering methodology and direct citation relations between journals in the Web of 

Science category “Information Science & Library Science”. The single-link clustering 

methodology has been used in several studies, primarily between 1970 and 2000. A problem 

with this methodology is that it tends to create chains that merge journals into large groups. 

This problem was acknowledged by Small and Koenig (1977).  
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Figure 3: Hierarchical clustering of 25 journals in the Web of Science category “Information 

Science & Library Science” using direct citation relations and the single-link clustering method. 

Based on articles from 2015-2019. 

Small and colleagues continued to explore clustering using co-citations in the 1980s (Small et 

al., 1985; Small & Sweeney, 1985). Larger sets of data were clustered using different citation 

thresholds and different normalization procedures. To prevent the problem of chaining, they 

proposed a methodology to cut dendrograms at different levels using parameters, including a 

maximum cluster size.  

In 1987 Leydesdorff critically examined the approaches taken to create classifications of 

science in the previous decades. He pointed out that different clustering methods, different 

selections of parameters and cut-off points lead to different results and make studies hard to 

replicate. In particular, he criticized the use of single-link clustering taken by Small et al. 

(1985). He considered the results to be “an artifact of the applied method”. A similar 

standpoint was taken by Oberski (1988). 

In the empirical part of Leydesdorff’s paper from 1987, he showed that a clearer clustering 

structure can be obtained by the use of Ward’s clustering method and by changing the 

similarity coefficient to Pearson’s correlation. Ward’s clustering method minimizes the 

within cluster variance. However, it is computationally inefficient because it tries out every 

possible combination of clusters. Figure 4 shows a clustering using this methodology of the 

same set of journals as in Figure 3.  
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Figure 4: Hierarchical clustering of 25 journals in the Web of Science category “Information 

Science & Library Science” using direct citation relations and Ward’s clustering method. Based on 

articles from 2015-2019. 

Braam et al. (1991) gave support for the results obtained by Small et al. (1985). They 

compared the word distributions within the clusters and the word distribution external to the 

clusters. They concluded that clusters do involve coherent research topics and that they 

“display research specialties, although these may be fragmented into several different 

clusters.” 

2.2 1990S AND 2000S – JOURNAL-LEVEL CLASSIFICATION AND 
NORMALIZATION APPROACHES 

Until the 1990s, most clustering attempts had focused on co-citations. Glänzel and Czerwon 

(1996) pointed out the advantages of using bibliographic coupling over co-citations. They 

highlighted that “just published papers that are closely related by bibliographic coupling links 

can provide snapshots of early stages of a specialty's evolution.” They made a selection of 

4,534 “core documents”, publications that are related to other publications with a relatively 

strong coupling strength. This set was used to study research front topics. An interesting 

observation is that they found bibliographic coupling to be “sensitive to the length of the 

chosen publication period.” They suggested that bibliographic coupling should be restricted 

to a relatively short time period and suggested a period as short as 2 years. Such a restriction 

has, to the best of my knowledge, not been explored in later work.  

In the following decade, much effort was put into implementing and improving algorithmic 

classification at the journal level. The classifications were now scaled to cover all disciplines 
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in multidisciplinary databases, primarily Web of Science (e.g., see Bassecoulard & Zitt, 1999; 

Boyack et al., 2005; C.-M. Chen, 2008; Leydesdorff, 2004, 2006).  

Leydesdorff (2004) used bi-connected components to cluster a set of 3,991 journals using 

Pearson’s correlation coefficient for normalization of citation relations. This methodology 

fails to include all connected journals in the final clustering (the initial set consisted of 5,748 

journals). The author suggested cosine as a better measure than Pearson’s correlation 

coefficient for normalization because the latter is sensitive to the number of zeros. This 

property had been criticized in an article by Ahlgren et al. (2003). The cosine normalization 

approach was taken by Chen (2008), who used affinity propagation for the clustering of 1,578 

journals in the Journal Citation Reports.  

In 2005 Boyack et al. created maps of 7,121 journals based on direct citation and co-citation 

relations (Boyack et al., 2005). They used different measures for normalization and restricted 

the number of relations per journal to the 15 strongest. This restriction keeps the size of the 

data set down and has also been used and evaluated in several later works at the paper level 

(Boyack et al., 2011; Boyack & Klavans, 2010; Waltman et al., 2020). A force-directed graph 

layout algorithm (VxOrd, later called OpenOrd) was used to visualize the networks. K-means 

clustering (Hartigan & Wong, 1979) was performed to obtain a classification. This clustering 

method requires the number of clusters to be set beforehand, which is clearly a disadvantage 

in the context of classification of research publications. Boyack et al. (2005) used Mutual 

Information to evaluate different normalization procedures, using the Web of Science journal 

classification as a reference. The authors also highlighted the scalability problem of using 

Pearson’s correlation coefficient for normalization. They preferred the Jaccard index for 

normalization because of its scalability, its empirical results and qualitative assessment of the 

visualized networks. A normalization measure that they call K50 performed best when co-

citations was used as the journal-journal similarity measure.  

Figure 5 shows a network of about 13,000 journals from 2017-2019 using direct citation 

relations, Jaccard normalization and the OpenOrd layout. 
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Figure 5: Network of about 13,000 journals from 2017-2019 using direct citation relations, Jaccard 

normalization and the OpenOrd layout. 

In 2008 Rosvall and Bergstrom (2008) proposed a new clustering methodology based on 

random walks and optimization of the description length of the walker, called the “map 

equation”. They implemented the map equation on a citation network of 6,128 journals, 

taking the direction of the citations into account. This methodology has gained much 

attention in other fields, however it has not (yet) been much adapted in scientometric studies 

(some exceptions are Šubelj et al., 2016; Velden, Yan, et al., 2017; Zeng et al., 2019).  

Studies on publication-level classification were of an exploratory nature during this time 

period, mostly covering small or medium size sets of publications. Different publication-

publication similarity approaches were evaluated, both textual approaches and citation-based 

approaches, as well as the combination of the two (Ahlgren & Colliander, 2009a, 2009b; 

Ahlgren & Jarneving, 2008; Janssens et al., 2008, 2009; Jarneving, 2007). Clustering 

methods were also evaluated (Ahlgren & Colliander, 2009a) and different evaluation 

frameworks were applied, for example by comparing classifications obtained by the use of 

different methods with classifications created by subject experts (Ahlgren & Colliander, 

2009b; Ahlgren & Jarneving, 2008) or the Web of Science journal classification (Klavans & 

Boyack, 2006). Studies clustering small sets of publications based on full text were also 
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conducted (Glenisson et al., 2005; Janssens et al., 2006) and hybrid approaches, using both 

textual similarity and citation-based similarity for clustering, were highlighted in several of 

the works during the 2000s (Cao & Gao, 2005; Glenisson et al., 2005; Janssens et al., 2009). 

2.3 2010S - MODULARITY BASED APPROACHES AND PUBLICATION-LEVEL 
CLASSIFICATION 

The first modularity function was introduced by Newman and Girvan in 2004 and based on 

that function Newman proposed an algorithm for community detection (Newman, 2004b; 

Newman & Girvan, 2004). Modularity based approaches for partitioning of nodes in 

networks into groups have been widely used since. In 2009 and 2010, modularity-based 

approaches were adapted in the scientometric context and used to cluster publications, 

journals, authors, and the Web of Science journal classification (Chen & Redner, 2010; 

Lambiotte & Panzarasa, 2009; Schubert & Soós, 2010; Takeda et al., 2009; Takeda & 

Kajikawa, 2009, 2010; Wallace et al., 2009; Waltman et al., 2010; Yan et al., 2010; Zhang et 

al., 2010).  

Consider an unweighted network, i.e., a network in which all relations are equally strong. 

Nodes have been grouped into clusters (or modules or communities) in this network. The 

modularity of the network is the fraction of the edges that fall within the clusters minus the 

expected fraction. Modularity based approaches include a quality function and an 

optimization algorithm. The optimization algorithm tries to find a clustering solution that 

optimizes the value of the quality function. The number of possible solutions is too large for 

all to be tested. There is a trade-off between finding the optimal solution and doing it within a 

reasonable time frame. Many different quality functions and optimization algorithms exist. It 

is out of scope of this review to extensively cover this literature (for an overview to this 

historical point in time, see Fortunato (2010)). I will therefore focus on some of the quality 

functions and optimization algorithms relevant to the scientometric research literature.  

The Louvain algorithm was introduced in 2008 (Blondel et al., 2008) and adapted in 

scientometric work in the following year (Lambiotte & Panzarasa, 2009; Wallace et al., 

2009). Compared to previous clustering approaches, the Louvain algorithm is much faster 

and is able to find clusters in networks of larger scale in reasonable time frames. In 2012, 

Waltman and van Eck created a large-scale publication-level classification of almost 10 

million journal articles using a modified Louvain algorithm (Waltman & van Eck, 2012). The 

next year, the same authors proposed a new optimization algorithm called the Smart Local 

Moving algorithm (SLM) (Waltman & van Eck, 2013b). These two articles became a starting 

point for large-scale publication-level classifications. Figure 6 shows a map of research 

disciplines based on the approach proposed by Waltman and van Eck (2012) using the more 

recently proposed Leiden algorithm.  
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Figure 6: Map of 390 disciplines obtained from about 29 million publications using direct citations 

and the Leiden clustering algorithm. Biomedicine in blue. Natural sciences in green. Technical 

sciences in red. Social sciences and humanities in yellow.  

Many have argued that there is no one perfect classification and that different similarity 

measures offer different viewpoints, and the choice of methods should be guided by the 

purpose of the use of the classification (Glänzel & Schubert, 2003b; Gläser et al., 2017; 

Klavans & Boyack, 2017a; Mai, 2011; Smiraglia & van den Heuvel, 2013; Velden, Boyack, 

et al., 2017; Waltman & van Eck, 2012). A special issue in Scientometrics explored the use of 

different methods using one and the same data set (‘Same Data—Different Results?’, 2017). 

Gläser et al. (2017) concluded that “we know that several different but equally valid solutions 

are likely to coexist” and that “[a]lthough we cannot argue by invoking a ‘ground truth’, we 

can compare structural properties and contents of clusters.”  

Much of the literature the last decade has focused on which similarity measure yields 

clustering solutions that perform best in comparison with different baselines or by the use of 

different measures (for an overview see Boyack and Klavans (2020)): 

1. Calculating the within cluster textual coherence (Boyack et al., 2011; Boyack & 

Klavans, 2010). 

2. Using article-grant groups as a baseline for comparison (Boyack & Klavans, 2010, 

2018). 

3. Using a set of reference lists of “authoritative papers” as a baseline for comparison 

(Boyack & Klavans, 2018; Klavans & Boyack, 2017a).  

4. Using a text-based measure to evaluate citation-based measures and vice versa 

(Boyack & Klavans, 2018; Waltman et al., 2020). 

5. Comparing clustering solutions with other classifications or controlled vocabulary 

(Ahlgren et al., 2020; Haunschild et al., 2018). 

I agree with others that there is no single answer of which similarity measure performs best 

because the outcomes of a study are conditional on the choice of baseline. However, the 

comparisons have contributed to more knowledge about the properties of the similarity 

measures and the resulting classifications.  
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It is clear that the co-citation approach excludes all non-cited publications from the 

classification and thus it cannot be used to cluster recent, non-cited publications. The use of 

direct citations has a similar problem if small or medium size data sets are used for clustering. 

If larger sets are used, more publications have at least one citation relation and can thereby be 

assigned to a cluster in the classification. An extended direct citation approach has been 

developed to address this problem (Ahlgren et al., 2020; Boyack & Klavans, 2014; Klavans 

& Boyack, 2017a; Waltman et al., 2020). Let A be a publication set that should be clustered. 

The extended citation approach considers all publications in A as well as all publications 

cited by publications in A (but not belonging to A). Note that theoretically the direct citation 

approach equals the extended direct citation approach if the used data source is complete.  

The bibliographic coupling approach and the extended direct citation approach have both 

performed well in several studies (Ahlgren et al., 2020; Klavans & Boyack, 2017a; Waltman 

et al., 2020). Bibliographic coupling has some properties that are theoretically appealing, 

which has been acknowledged by others (Glänzel & Czerwon, 1996; Jarneving, 2007). In 

contrast to co-citations, bibliographic coupling can be used to cluster recent research. 

Bibliographic coupling also has advantages over direct citations, including extended direct 

citations. Direct citations indicate a similarity between two publications only in a binary 

sense, either a citation relation exists, or it does not. The number of bibliographic couplings 

between two publications indicates if the relation between the publications is strong or weak. 

A disadvantage with bibliographic coupling is that it is computationally intensive. No study 

of very large scale has included bibliographic coupling. The largest so far is the study by 

Ahlgren et al. (2020) including about 3,6 million publications from 2013-2017 from Web of 

Science. Klavans and Boyack (2020) excluded bibliographic coupling for this reason. Most 

large-scale classifications have been based on direct citations or extended direct citations. 

Yun et al. (2020) proposed an approach that splits direct citation networks into citing and 

cited nodes. This method improves efficiency and results in similar results as co-citations and 

bibliographic coupling.  

Waltman et al. (2020) found that restricting the publication-publication similarity measure to 

the top m strongest relations increased the accuracy of the clustering rather than lowering it. 

This is an important observation for efficiency reasons. Ahlgren et al. (2020) did not find that 

combining citation approaches enhanced performance substantially. This is also an 

observation that is of relevance for efficiency optimization.  

The direct citation approach has not performed as well as bibliographic coupling and 

extended direct citations in most studies. It should be noted that most studies have restricted 

data to one or a few research disciplines and a relatively short time period. Boyack and 

Klavans (2020) got similar results for direct citations and extended direct citations when 

evaluating different approaches using a data set of about 16 million articles in PubMed from 

2000 to 2018 and citations from the NIH Open Citation Collection (NIH OCC). This result 

indicates that the direct citation approach performs well when classifications are based on 

large data sets covering a substantial time period and a wide range of disciplines. 



 

16 

Approaches using textual similarity between publications for clustering of publications are 

more computationally expensive than citation-based approaches. Large-scale implementation 

may therefore be restricted by the computational capacity. Just a few of the large-scale 

studies have used textual approaches. Some exceptions are the recent studies by Boyack and 

Klavans using the PubMed related article measure (RA) (Boyack & Klavans, 2018, 2020; for 

description of the measure see Lin & Wilbur, 2007). RA is provided by the United States 

National Library of Medicine. Ahlgren et al. (2020) included the text-based relatedness 

BM25 measure when evaluating different approaches for clustering of a fairly large 

publication set of about 3 million publications. The results of Ahlgren et al. (2020) and 

Boyack and Klavans (2020) give some support for combining textual approaches (RA or 

BM25) and direct citations. However, Ahlgren et al. (2020) found that the extended direct 

citation approach outperformed the combined approaches. Extended direct citations also 

outperformed direct citations combined with RA in the study by Boyack and Klavans (2020) 

for one of three evaluation approaches (evaluation using references in “authoritative papers”).  

Evaluation of different clustering algorithms has not been covered to the same extent as 

evaluation of similarity measures by the scientometric literature. Šubelj et al. (2016) 

evaluated several clustering algorithms using both statistical properties and expert judgement. 

Infomap, which is based on the map equation (Rosvall et al., 2009), performed well in this 

study and was proposed by the authors to be further explored by the scientometric 

community. The authors point out, however, a disadvantage of Infomap: the obtained 

classifications have a highly skewed distribution of cluster sizes with a large number of small 

clusters. This is a potential problem in scientometric applications. The computational time is 

also higher than for some other approaches, for example the Louvain approach. The authors 

highlighted that they did not use an optimal resolution parameter value for the modularity-

based clustering approach (Louvain). Optimizing the resolution parameter could have made 

the results different.  

There is a lack of other studies evaluating clustering algorithms empirically. However, it 

should be noted that there are some theoretical arguments which support the use of some 

methods. Most modularity optimization approaches have a resolution limit (Fortunato & 

Barthélemy, 2007). Traag et al. (2011) introduced the Constant Potts Model (CPM) to 

overcome this problem and the same quality function was used by Waltman and van Eck 

(2012). Since the study by Šubelj et al. (2016), a new modularity-based optimization 

algorithm has been proposed. This algorithm, called the “Leiden algorithm”, is a modified 

version of the Louvain algorithm and was proposed by Traag et al. (2019). It is shown in the 

article that the Louvain algorithm sometimes creates badly connected clusters. The Leiden 

algorithm overcomes this problem and improves connectedness of clusters.  

2.4 SUMMARY AND CURRENT STATE 

Network approaches for studying research fields and their development started after the 

emergence of the Science Citation Index (later part of Web of Science) in the 1950s. The 

most fundamental citation-based measures for publication-publication similarity were 
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proposed early in this development, i.e., direct citation, bibliographic coupling, and co-

citation.  

Early work tried to identify specialties by clustering journals. Normalization of the similarity 

measure was introduced as well as hierarchical clustering methods, such as single-linkage and 

Ward’s clustering. The number of studies grew in the 2000s and new sources emerged. 

However, the Web of Science was still used in most studies. Several new methods were 

tested, for example Salton’s cosine measure and the Jaccard index were used for 

normalization, and k-means, OpenOrd and affinity propagation were used for clustering.  

Two new clustering methodologies were introduced in the 2000s, modularity-based 

clustering and map equation. Both have had great influence in network science. Modularity-

based clustering was adapted in scientometrics in 2009-2010 and has become the dominant 

clustering approach.  

In the last decade, clustering of research publications has developed towards large-scale 

implementation at the publication level. More data sources are available and have been used 

in recent times, for instance PubMed/MEDLINE, Dimensions and the NIH OCC. The 

extended direct citation approach has been introduced and there has been a focus on 

evaluating different publication-publication similarity measures. 

Table 1 summarizes the historical development of unsupervised, citation-based approaches to 

classify research publications. The timeline includes seminal work and work of specific 

relevance in the scientometric context. 
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3 CONCEPTUAL FRAMEWORK 

In this section, the conceptual framework of the thesis is outlined. In Section 3.1, I discuss the 

nature of the relation between two publications expressed by a citation. In the following 

section (3.2), I discuss my view on research fields, including “topics” (3.2.1), “specialties” 

(3.2.2) and “disciplines” (3.2.3). In section 3.3, I discuss research concepts, focusing on the 

distinction I make between concepts and topics.  

3.1 CITATION THEORIES 

Citations play an important role in this thesis. They constitute relations between research 

publications and create the networks used to cluster publications, argued to represent fields of 

science at various granularity levels. Hence, it is important to reflect upon the role of citations 

in communication within research communities and what kind of relation between two 

publications a citation represents.  

A citation is “an expression of a relationship between two documents, the citing and the 

cited.” (Cronin, 1984) This relation is in its basic form binary, it either exists or does not 

exist. However, the motivations to cite are many and the underlying meaning of citations may 

differ (Held & Velden, 2022). The binary nature of citations offers a simplified view on the 

complex ways in which publications are related and on the underlying meaning of the act of 

citing.   

It was acknowledged early on that the motivations to cite a publication varies (Garfield, 

1964), including for example “Giving credit for related work”, “Identifying methodology, 

equipment etc.”, “Providing background reading”, “Criticizing previous work”, “Substantiate 

claims” or “Identifying original publications in which an idea or concept was discussed”. 

Since then, several citation theories have been formulated and the meaning of the relation 

between a citing and a cited publication has been discussed for a long time period (Aksnes et 

al., 2019; Amsterdamska & Leydesdorff, 1989; Cronin, 1984; Held & Velden, 2022; 

Luukkonen, 1997; MacRoberts & MacRoberts, 1989; Robert K. Merton, 1973; van Raan, 

1998; Wouters, 1999). This discussion has contributed with different perspectives on the role 

of citations and the motives to cite (Tahamtan & Bornmann, 2022; Velden, Boyack, et al., 

2017; Wouters, 1999). 

Two citation theories are dominant in the scientometric literature, the normative theory and 

the social constructivist theory. The normative theory relates to the norms of science 

developed by Merton (1973). This theory focuses on citations as acknowledgement of 

previous work and supports the use of citation indicators to quantify the importance or impact 

of publications. The social constructivist theory on the other hand focuses on social aspects of 

citations and emphasizes that citations may be used by researchers for strategic and rhetorical 

reasons (Aksnes et al., 2019; Tahamtan & Bornmann, 2022). 

Tahamtan and Bornmann (2022) have recently proposed a citation theory focusing on 

citations as communication, rather than motives to cite and their relation to citations as a 
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measure of impact. The theory is called the social systems citation theory (SSCT) and is 

based on the social systems theory of Niklas Luhmann. The theory situates citations within 

the social science system in which communication is the basic constituent element. The 

SSCT regards research publications to be essential for the communication within the science 

system and citations as means to separate “own discoveries from knowledge generated by 

other researchers” (Tahamtan & Bornmann, 2022). Since all relevant publications can rarely 

be cited, references are typically chosen selectively, and they contextualize and position 

publications in the science system. The perspective on the role of citations taken in this thesis 

fits the social systems citation theory in that communication is in focus. The use of citation as 

a basis to cluster research publications into fields is supported by the selective nature of 

citations and their function to contextualize research.  

3.2 RESEARCH FIELDS 

I define a research field as a focus area of research at any granularity level. In this section I 

primarily focus on research fields at two granularity levels, research topics and research 

specialties. In addition, I briefly discuss the notion of research disciplines.  

Different perspectives on the notions of topics, specialties and disciplines exist (Sugimoto & 

Weingart, 2015), as well as different perspectives on how to classify science into such units 

(Hjørland, 1992). In this section, I explain the perspective I take in this thesis, focusing on the 

formal communication taking place in research publications by referencing, and how this 

perspective relates to the delineation of science into fields. Other perspectives may capture 

other aspects of research fields, for example by emphasizing the organization of education, 

socialization and social networking, language and discourse, or on the use of research 

literature (Hammarfelt, 2019; Hjørland, 2002; Sugimoto & Weingart, 2015). I would like to 

emphasize that I do not consider one perspective to be superior. In my view, different 

perspectives offer insights into different aspects of the properties of the complex structure of 

fields in the science system, such as how fields emerge, take form, and develop. Using 

different perspectives provides a more comprehensive understanding of topics, specialties, 

and disciplines than one would get from taking one perspective only. The perspective taken 

when classifying research publications into fields must be guided by the intended use of the 

obtained classifications. Inversely, the choice of classification or other categorization of 

research publications must be guided by the nature of the problem at hand.   

3.2.1 Research topics 

I define a research topic (from now on “topic”) as a focus area of research that constitutes a 

thematic context to which researchers relate research questions in research studies. The theme 

of a topic may be focused to theoretical, methodological, or empirical knowledge. This 

definition is similar to Havemann et al. (2017), however it does not require topics to be 

“shared by a number of researchers”.  

Topics are formed by formal and informal communication between researchers and are 

constantly created, formed, and recreated within a community or in the overlap of two or 
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more communities in the science system. Science is an autopoetic (self-reproductive) system 

(Tahamtan & Bornmann, 2022) and topics are important components of the reproduction of 

science. Scientific breakthroughs spur the emergence of new topics and the prevailing 

paradigm in science is sometimes disrupted by revolutionary shifts of focus (Kuhn, 1996). 

Topics have a relatively homogenous and limited scope but may shift in focus and vocabulary 

over time. Topics overlap and the same topic can be addressed within different research 

communities (Yan, Ding, & Jacob, 2012; Yan, Ding, Milojević, et al., 2012).  

In this thesis, topics are studied through their presence in research publications. The relation 

between topics and research publications is important in this context. Original research 

articles generally address one or a few research questions and contribute to the development 

of one or a few topics. Review articles often focus on a topic and typically give historical 

background and current state of the topic (Klavans & Boyack, 2017a). Likewise, PhD theses 

generally address a topic and contribute with a few studies answering different research 

questions related to the topic. The topic of a research publication is often mentioned in the 

background section where related, previous publications are referenced. The findings of a 

study are usually related to other studies within the same topic in the discussion section. 

Thereby, researchers relate their publications to other publications within the same topic, 

which contextualizes their research in the science system.  

The scope of a topic is generally not larger than what can be addressed and grasped by a 

researcher in a literature review. I distinguish between size and scope of topics. A topic is 

limited in scope but large in size if containing a high number of publications concentrated to 

a narrow focus area. Overlap of topics is manifested in publications when two or more topics 

are addressed in the same publication, for example, when community-detection and science 

mapping are addressed in scientometric publications.  

3.2.2 Research specialties 

I define a research specialty (from now on “specialty”) as a focus area of research addressed 

by “a self-organized network of researchers who tend to study the same research topics, 

attend the same conferences, read and cite each other’s research papers and publish in the 

same journals.” This definition is based on the definition by Morris & van der Veer Martens 

(2008) but differs in that I define a specialty as the focus area addressed by a network of 

researchers, rather than the network of researchers itself. This makes the definition consistent 

with being a research field defined as a focus area of research.  

In the context of this thesis, it is worth noting the important role of communication within 

specialties. Researchers within a specialty frequently communicate with each other. The 

communication of research specialties takes place in shared channels (e.g., journals and 

conferences) and through referencing. The communication is characterized by shared 

terminology, knowledge, competencies, and problem areas (Chubin, 1976; Hagstrom, 1970; 

Scharnhorst et al., 2012). Note that researchers may be part of several specialties and their 

publications may address topics in different specialties. It is only the events that take place 
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within the context of the specialty that is part of the specialty. In similarity with topics, 

specialties are focus areas of research. However, specialties are broader in scope and range 

over a set of topics related to the specialty. Specialties are the largest somewhat homogenous 

communities in the science system (Colliander, 2014). 

3.2.3 Research disciplines 

Research disciplines (from now on “disciplines”) are not easily defined and identifying the 

publications related to a discipline is difficult. Characteristics involved in the identification of 

a discipline may include: (a) the organizational structure of research bodies (in particular 

universities), (b) a set of shared methods, theories, and concepts, (c) shared epistemology, (d) 

researchers with shared educational background and specialization, and (e) a shared problem 

area (Hammarfelt, 2019). Different disciplines can be defined by different types of 

characteristics. For example, “Pediatrics” is defined by the groups of people in focus for 

medical care (infants, children, and adolescence), “Urology” by the part of the human body in 

focus (the urinary system) and “Obstetrics” by a process (pregnancy and childbirth). 

Disciplines are not in focus for this thesis. I have chosen to use disciplines to denote the 

clusters resulting from clustering specialties. This may not coincide with definitions used by 

others (for an overview, see Sugimoto & Weingart, 2015). The choice has simply been 

guided by the fact that the labeling procedure at this level has resulted in labels frequently 

including terms that are commonly understood as disciplines, for instance “chemistry”, 

“biology”, “immunology”, “rheumatology” or “anesthesiology”. I recognize that the 

denotation of the clusters at this level has not been thoroughly investigated and that other 

definitions of disciplines would lead to other operationalizations.  

3.3 RESEARCH CONCEPTS 

In this section I discuss the distinction I make between research topics and research concepts 

(from now on “concepts”). A wider discussion about concepts is out of scope of this thesis 

and I restrict this definition to concepts as manifested in research publications.  

In analog with the MeSH system, I consider a concept as a bearer of linguistic meaning 

related to an aspect of a research publication.9 Each MeSH category corresponds to exactly 

one concept and synonyms refer to the same concept.10 MeSH categories are good examples 

of concepts; however, MeSH is not complete and other structures of concepts are possible. 

Concepts are generally used to be able to search or delimit search results in an information 

retrieval system.  

The scope of a concept varies, some are broad, and some are narrow. A concept of narrow 

scope describes an aspect of a research publication in high detail (e.g., “smooth muscle 

myocytes”). Such a concept is situated on a low hierarchical level, having none or few 

 

9 “Concept Structure in MeSH”. https://www.nlm.nih.gov/mesh/xml_data_elements.html#Concept [2021-11-26] 
10 “MeSH XML Data Elements“. https://www.nlm.nih.gov/mesh/concept_structure.html [2021-11-26] 

https://www.nlm.nih.gov/mesh/xml_data_elements.html#Concept
https://www.nlm.nih.gov/mesh/concept_structure.html
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underlying concepts. A concept of broad scope describes a more general aspect of a research 

publication without much detail (e.g., cells). A concept of narrow scope is large in size when 

a lot of research activity is related to the concept. 

Concepts can be of different type. This is well exemplified by the structure of the MeSH tree, 

where the major categories contain concepts ordered into physical entities (e.g., “Anatomy”, 

“Organisms” and “Chemical and Drugs”) and others into different processes or activities 

(“Phenomena and Processes” and “Health Care”). Other examples are “Geographicals”, 

“Disciplines and Occupations”, “Named Groups” and “Publication Characteristics”.  

In contrast to topics, concepts do not necessarily correspond to focus areas addressed by 

researchers. They may, for example, be broader in scope. To illustrate this, we may take the 

concept “diet”. “Diet” is related to different disciplines, such as biochemistry, dentistry, 

psychiatry, oncology and public health. A search in PubMed on the MeSH term retrieves 

about 300 thousand publications. The concept is far too broad to correspond to a topic, as 

defined in this thesis. However, if combined with other concepts such as “vegan” and “dental 

health” we may identify a focus area that could be considered a topic, which we may entitle 

as “the association between vegan diet and dental health”. This also illustrates the suitability 

of concepts to be used as labels of research topics. 
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4 DATA AND METHODS 

In this section, I describe the bibliographic data sources used in the thesis and the general 

properties of citation networks. I then introduce the clustering methodology used throughout 

the thesis. Data and methods that are specific to the individual studies are presented in the 

results section in the summary of the article of relevance. 

4.1 BIBLIOGRAPHIC DATA SOURCES 

Two primary data sources have been used for the studies in this thesis: the Web of Science 

and PubMed/MEDLINE in conjunction with the NIH OCC.11 Web of Science is a 

multidisciplinary bibliographic database owned by Clarivate Analytics.12 It has a higher 

coverage in medicine, natural sciences and engineering and a lower coverage in the social 

sciences and humanities (Martín-Martín et al., 2021). PubMed/MEDLINE is maintained by 

the National Library of Medicine (NLM) in the United States. It has a broad coverage of 

biomedicine but does not include references, nor citation relations, in the bibliographic 

records. I have used the NIH OCC to complement the PubMed/MEDLINE records with 

citation relations. The NIH OCC is restricted to citation relations within PubMed/MEDLINE. 

Both PubMed/MEDLINE and NIH OCC are openly available. The coverage of citation 

relations in NIH OCC has been growing immensely during the work with this thesis, as the 

result of more references becoming openly available in Crossref during the time period 

(Hutchins, 2021; Martín-Martín et al., 2021; Visser et al., 2021).13 Presently (December 

2022), more than 90% of the articles from the latest 10-years period in PubMed/MEDLINE 

have references in NIH OCC.  

4.2 CHARACTERISTICS OF CITATION NETWORKS 

The citation relations within the publications covered in the two data sources have been used 

to create giant networks of publications – the publications being the nodes of the network and 

the citations being the edges. The networks used for clustering in Articles I-IV include 17-31 

million publications, having 400 million to 1 billion citation relations. In this section, I 

outline the main characteristics of these networks. The main characteristics described in this 

section are general to citation networks and are not likely to be dependent on data source. 

Citations are by their nature directed relations between publications, i.e., there is a source 

from which the citation “emanates” and a target where it is “received”. Citations emanate 

from newer publications to older publications and, thus, have a directionality backwards in 

time (a few contra-intuitive exceptions can be found as the citation in Figure 1 from Narin 

(1972) to Carpenter and Narin (1973)). There is a tendency to refer to recent literature more 

 

11 See individual papers for specifications on included indexes and other restrictions.  
12 Web of Science data included in this thesis are derived from the © Web of Science 2023 of Clarivate 

Analytics (UK) Ltd. All rights reserved. 
13 Crossref is a not-for-profit membership organization maintaining a bibliographic data source that interlinks 

various data related to publication meta data. 
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frequently than to older literature. The bars in Figure 7 show how references from the 

publication year 2020 are distributed over the time period of 1995-2020. The blue line 

indicates the expected number of citations to each year.14 The figure shows that there is an 

excessive number of citations from 2020 to the previous 5-10 years with a peak about 2-3 

years before the citing publication date. 

 

Figure 7: Distribution of references from 2020 over publications published 1995-2020 (Web of 

Science).  

Direct citation networks of research publications are extremely sparse, i.e., only a very small 

proportion of the possible edges exists in the networks. To indicate the sparseness, we can use 

the number of publications in Google Scholar as a proxy for the maximum possible number 

of references in an article. Gusenbauer (2019) estimated the number of publications in 

Google Scholar to be around 400 million in 2019. Thus, an article written in 2020 could 

theoretically include roughly 400 million references. However, articles published in 2020 

only included about 49 references on average, a fraction of about 1.2×10-7. The sparseness 

comes as no surprise; it would neither be realistic, nor is it allowed by journals, to refer to a 

large proportion of all existing research literature in a single publication.  

Table 2 shows summary statistics of the number of references for articles published from 

2016 to 2020 and registered in Web of Science. The number of references increases over 

time. In 2020 most articles (10th to 90th percentiles) include about 20-80 references. As shown 

by Figure 8, the distribution of the number of references in publications is approximately 

normal, but it has a small excess of zeroes and a small tail to the right. Thus, a small share of 

publications has more references than one would expect from a normal distribution (up to 

thousands in some cases).  

 

14 The expected proportion of citations to year y from 2020 is defined as:  

𝐸𝑦 =
𝑃𝑦

𝑃
 

where Py is the number of publications in year y and P the total number of publications published in 1995-2020.  
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Table 2: Summary statistics of the number of references in articles published in the years 2016 to 

2020 (Web of Science).  

Year N Sum Mean Min P10 Q1 Median Q3 P90 Max 

2020 2,149,547 105,357,700 49 0 19 29 42 59 83 5,718 

2019 1,899,045 88,920,279 46.8 0 18 28 40 56 79 2,945 

2018 1,783,757 81,171,860 45.5 0 18 27 39 55 77 8,674 

2017 1,695,914 74,741,060 44.1 0 17 26 37 53 75 4,864 

2016 1,636,291 70,045,038 42.8 0 16 25 36 52 73 8,371 

 

Figure 8: Distribution of number of references per publication in the year 2020. Delimited to 

publications with 200 references or less for readability of the graph. 

If we turn to the receiving side of the citation relations, a very different distribution emerges 

compared to the distribution of references. The distribution of citation counts over 

publications is highly skewed, with an excessive number of publications receiving no or just a 

few citations and a low proportion receiving a moderate to high number of citations (Figure 

9). Most publications (95%) do not receive more than 50 citations in a five-year period 

(publications from 2015, counting citations until April 2021 in Web of Science). However, 

some publications receive thousands of citations.  
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Figure 9: Distribution of number of citations per publication in the year 2015. Citations counted 

until April 2021. Left histogram with log10-scale on the y-axis. Right histogram delimited to 

publications with a maximum of 100 citations. 

From these data we get a picture of a typical publication in the citation network. It includes 

around 30-50 references. A few of these references are expected to point to highly cited 

publications, but most point to publications with one or a few citations. The publication itself 

is not likely to have more than a few citations. 

Another important property of the citation network is the varying density of citation relations 

within different disciplines. Table 3 shows summary statistics of citation counts for 

publications published in 2015 for some journal categories in Web of Science. The average 

number of citations varies from about 0.2 in “Literary Reviews” to 28 in “Nanoscience & 

Nanotechnology”. This variation is due to several factors. First of all, the average number of 

references varies between fields. Secondly, the coverage of publications varies between fields 

and data sources. For example, Web of Science has a low coverage of publications in social 

sciences and humanities and disciplines within these fields have lower citation counts for this 

reason. Yet another explanation of the varying citation counts between fields is the age of the 

referenced literature. Citations are always counted within a restricted period of time. For 

example, if we count citations for publications published in 2015 until the point in time when 

these data were retrieved (April 2021) we cannot count citations for more than approximately 

5 years. Fields that generally refer to new literature, not older than 5 years, will have higher 

citation counts after a 5-year period in comparison with publications in fields referencing to 

older literature.  
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Table 3: Summary statistics of the number of citations in articles published in 2015 by Web of 

Science journal category. Restricted to some journal categories for exemplification. 

Journal category (Web of Science) N Mean Min P10 Q1 Median Q3 P90 Max 

Nanoscience & Nanotechnology 34,487  28.2 0 1 4 12 30 66 3,184 

Engineering, Environmental 13,165  25.0 0 2 6 14 30 56 1,266 

Oncology 43,596  20.8 0 2 5 11 22 42 16,122 

Materials Science, Multidisciplinary 92,264  20.4 0 1 3 8 21 46 3,184 

Biochemistry & Molecular Biology 55,111  19.5 0 1 4 9 20 40 7,648 

Engineering, Chemical 31,930  17.1 0 1 3 8 19 38 1,354 

Business 7,017  15.7 0 1 3 8 19 38 2,320 

Computer Science, Artificial Intelligence 12,885  14.3 0 0 2 6 15 32 4,539 

Psychology 7,290  13.7 0 1 3 7 16 29 739 

Urban Studies 2,275  12.4 0 1 2 6 14 29 401 

Development Studies 2,170  10.2 0 0 2 5 12 24 243 

Information Science & Library Science 4,054  10.0 0 0 1 4 11 23 670 

Sociology 5,750  8.3 0 0 1 4 10 19 541 

History 7,257  1.1 0 0 0 0 1 3 59 

Literary Reviews 2,056  0.2 0 0 0 0 0 0 64 

4.3 CHARACTERISTICS OF NETWORKS BASED ON BIBLIOGRAPHIC 
COUPLINGS AND CO-CITATIONS 

In contrast to direct citations, bibliographic couplings are undirected. Because of the tendency 

to refer to recent publications (as shown in Figure 7), bibliographic couplings are more likely 

to occur between publications published close in time. Note that a publication must be cited 

at least twice to generate a bibliographic coupling. Hence, all references to publications 

receiving only one citation are disregarded. Consequently, a publication must have references 

to publications with at least two citations for it to be bibliographically coupled with other 

publications.  
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The number of couplings generated by a cited publication increases quadratically by the 

number of citations to the publication. To exemplify, a publication with 10 citations generates 

45 couplings (10*(10-1)/2), a publication with 100 citations generates 4,950 couplings and 

one with 1,000 citations generates 499,500 couplings. Because of this property, highly cited 

publications generate a large proportion of the bibliographic couplings in citation databases.  

Some of the characteristics that apply to bibliographic couplings also apply to co-citations. 

Co-citations are undirected and more likely to occur between publications published close in 

time. There must be at least two references in a publication for a co-citation to occur. Highly 

cited publications generate many relations between themselves and other publications. This 

contrasts with bibliographic coupling for which highly cited publications generate relations 

between the citing publications. Only publications that have been cited have co-citations. 

Thus, new publications do not have co-citations before they have been cited. Therefore, it is 

not possible to cluster new publications by the use of co-citations before they have been cited.  

There are usually fewer co-citations than bibliographic couplings in citation networks. This is 

because of the skewed distribution of citation counts and the more normal distribution of 

reference counts. To exemplify, for a set of about 36 million publications in Web of Science 

of the publication types “article” and “review” and the time period 1995-2022, there is about 

162 billion bibliographic couplings, 22 billion co-citations and 0.85 billion direct citations. 

1.2 million of the publications have no direct citation relations, 3.2 million have no 

bibliographic couplings and 5 million have no co-citations. This illustrates that even though 

the direct citation approach results in fewer edges, a higher proportion of the publications in 

the data source can be included in a direct citation network than networks based on 

bibliographic coupling or co-citations. It should be noted that direct citations, bibliographic 

coupling, and co-citation are all based on the same data.  

4.4 NORMALIZATION OF PUBLICATION-PUBLICATION RELATIONS 

There are several reasons to use normalization of edge weights in citation networks. The first 

is the differences in edge density in different research fields, caused by the variation in the 

number of references, database coverage and the age of the referenced work, as discussed 

above. Another reason for normalization is the highly skewed distribution of citations over 

publications. If no normalization is performed, highly cited publications influence the results 

of the clustering heavily. This may lead to unwanted properties of the clustering solution, 

such as a highly skewed distribution of cluster sizes. Yet another reason for normalization is 

the differences in age of the publications. Older publications have had more time to receive 

citations than newer publications. Thus, they will generally have more citation relations. This 

property will cause a bias in the citation network, leading to a higher influence of older 

publications on the clustering results. Depending on the application, such bias may be 

unwanted.  

I have used the normalization approach proposed by Waltman and van Eck (2012) in the 

studies of the thesis. I have chosen to denote this approach by the term “fractional 
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normalization approach”. In this approach, the normalized edge weight of publication i with 

publication j is defined as:  

𝑎𝑖𝑗 =
𝑐𝑖𝑗

∑ 𝑐𝑖𝑘𝑘
    (1) 

where 𝑐𝑖𝑗 is 1 if i cites j, 0 otherwise and ∑ 𝑐𝑖𝑘𝑘  the total number of relations of i. I have 

treated the citation networks as undirected when clustering. For a relation between i and j,  

where i cites j, aji has been calculated equivalently as aij. The average of aij and aji has then 

been used as the weight of the edge. 

4.5 MODULARITY OPTIMIZATION  

The modularity of a cluster is given by comparing the observed number of edges within the 

cluster with an expected value based on randomly distributed edges (Newman & Girvan, 

2004). For weighted graphs, the sum of edge weights is used in the calculation. Modularity-

based approaches maximize a quality function. Different quality functions and optimization 

algorithms exist (Newman & Girvan, 2004; Reichardt & Bornholdt, 2006; Traag et al., 2011; 

Waltman & van Eck, 2012). I have used the quality function given in Waltman and van Eck 

(2012) in the first two articles of the thesis and the Constant Potts Model (CPM) (Traag et al., 

2011) in the two last articles. The two quality functions are equivalent and therefore I only 

present the CPM. CPM is defined as: 

ℋ = − ∑ (𝐴𝑖𝑗𝑤𝑖𝑗 −𝑖𝑗 𝛾)𝛿(𝜎𝑖𝜎𝑗)   (2) 

where 𝐴𝑖𝑗 = 1 if there is a citation relation between i and j, 𝑤𝑖𝑗  the weight of the citation 

relation and γ a resolution parameter. 𝜎𝑖 is the cluster of i and 𝜎𝑗  the cluster of j. If 𝜎𝑖 = 𝜎𝑗  then 

𝛿(𝜎𝑖𝜎𝑗) = 1, otherwise zero. Desirable clustering solutions minimize the value of ℋ.  

Some previous quality functions were not able to detect small communities. This problem is 

known as the “resolution limit problem” (Fortunato & Barthélemy, 2007). CPM is resolution-

limit-free (Traag et al., 2011). The γ-parameter is used to adjust the granularity of the cluster 

solution. Thereby, CPM can be used to obtain clusters at different granularity levels.  

Until a couple of years ago, the most popular modularity optimization algorithm was 

probably the Louvain algorithm (Blondel et al., 2008). In short, the Louvain algorithm starts 

by assigning each node to a cluster. It then iterates through all nodes. For each node, the 

algorithm calculates the change of the quality function if moving the node to the cluster of its 

neighbor nodes. The node is assigned to the cluster resulting in the highest positive increase 

of the quality function. The network is then aggregated so that each partition is considered a 

node in the network. Both phases are repeated until the value of the quality function cannot 

be further optimized.  

Traag et al. (2019) showed that the Louvain algorithm is associated with some problems. In 

particular the Louvain algorithm creates clusters that are badly connected or even internally 

disconnected (i.e., clusters with at least two nodes not connected by a path). The Leiden 
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algorithm introduces a refinement phase to overcome this problem and guarantees that each 

cluster is internally connected. The clusters obtained by the Leiden algorithm are internally 

better connected than the clusters obtained by the Louvain algorithm, which makes the 

Leiden algorithm preferred.   

Modularity optimization approaches for clustering have been used throughout the thesis. 

Other clustering approaches exist, such as hierarchical clustering approaches, flow-based 

approaches and k-clustering (Fortunato, 2010). In scientometrics, modularity-based 

approaches have in recent years been the most commonly used approach for clustering. This 

is partly for efficiency reasons. However, it should be recognized that there is, to the best of 

my knowledge, a lack of studies evaluating clustering approaches. Evaluation of different 

approaches is out of scope for this thesis. However, the methods proposed in Articles I-IV are 

applicable to other clustering approaches.  

  



 

32 

5 RESULTS – SUMMARY OF ARTICLES I-IV 

In this section, I summarize the articles of the thesis. Articles I and II address the granularity 

of classifications in relation to topics and specialties. Article III addresses labeling of clusters 

of different granularity and Article IV addresses visualization of the obtained classifications, 

incorporating coarse clusters for overview and small clusters for detail. 

5.1 ARTICLE I – “GRANULARITY OF ALGORITHMICALLY CONSTRUCTED 
PUBLICATION-LEVEL CLASSIFICATIONS OF RESEARCH 
PUBLICATIONS: IDENTIFICATION OF TOPICS” 

In Article I, we investigated how clusters corresponding to topics can be obtained. We 

constructed a set of baseline classes based on a set of publications and their references. We 

then obtained clustering solutions with different granularity. Each clustering solution was 

compared to the baseline classification and the clustering solution showing the highest 

similarity with the baseline classification were used to study topics in two case studies. 

5.1.1 Data and methods 

To create a baseline, we started by retrieving publications with more than 100 references. 

Publications with more than 100 references are likely to be authored by researchers with great 

expertise, be review papers, have high impact and summarize a topic (Klavans & Boyack, 

2017a). Therefore, we argue that each such baseline publication can be used as a proxy for a 

topic. We considered each baseline publication as a class and its references as the members of 

the class. 

We used about 31 million Web of Science records from the in-house bibliometric system at 

KTH Royal Institute of Technology for the analysis. We restricted the set of baseline 

publications to those having at least 80% active references, i.e., references pointing to other 

publications in the data set. To avoid having more than one class within a topic we created 

groups of publications having a citation overlap of at least 30% of their references. From each 

such group of connected components we selected one publication randomly. After this 

procedure we made sure that each referenced publication was included in exactly one 

baseline class. We assigned publications belonging to more than one baseline class to the 

class to which it had the highest bibliographic coupling strength. 

When the baseline classes had been created, we obtained several cluster solutions of various 

granularity. Each such cluster solution was compared to the baseline classes using the 

Adjusted Rand Index (ARI). We propose that the clusters at the granularity level with the 

highest ARI value can be used to approximate the scope of topics. We denote the best 

performing cluster solution as ACPLCt and argue that each cluster within this solution 

roughly corresponds to a topic.  
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5.1.2 Results 

Most publications in ACPLCt belong to clusters having a size of 70-700 publications (10th to 

90th percentile in the weighted cluster size distribution), with a yearly output of about 5-80 

publications. The yearly output has likely increased since the time of analysis and we can 

expect the current output to be around 10-100 for corresponding clusters. However, it should 

be noted that both coarser and more granular cluster solutions had similar ARI values, so the 

size of topics should be considered as approximations.  

To evaluate if ACPLCt can be used to study topics, we provide a couple of case studies. The 

first being topics in Journal of Informetrics. We analyzed the distribution of 632 articles into 

the clusters of ACPLCt.  The topics identified include the following: (1) researcher-level 

indicators, (2) normalization of bibliometric indicators, (3) science-mapping, (4) research 

collaboration and (5) measures of publication-publication similarity. The second case study 

focused on nano-cellulose materials. We used an extensive review article covering 391 

references, of which 227 can be found in our clustering solution (most of the excluded 

references were to conference papers and patents). The review article delineates the research 

on nano-cellulose materials into three groups based on the different methodologies used to 

obtain such materials. We calculated the distribution of references over clusters and found 

that most (about 75%) were concentrated into three clusters corresponding to the three groups 

mentioned in the paper. The rest of the references were distributed into many different 

clusters.  

We conclude that the proposed methodology may give guidance of how to set the value of the 

resolution parameter of the clustering algorithm in order to obtain clusters that can be used to 

detect and study topics.  

5.2 ARTICLE II – “GRANULARITY OF ALGORITHMICALLY CONSTRUCTED 
PUBLICATION-LEVEL CLASSIFICATIONS OF RESEARCH 
PUBLICATIONS: IDENTIFICATION OF SPECIALTIES” 

Building on the results from the first article, we aggregated the obtained clusters at the topic 

level into larger clusters in Article II. We used a baseline of a set of journals and their articles 

to calibrate the resolution parameter of the clustering algorithm. Thereby, we obtained 

clusters that can be used to detect and study specialties. 

5.2.1 Data and methods 

We based the analysis on the same set of about 31 million Web of Science publications and 

the cluster solution obtained in the first study (ACPLCt). We restricted the set of baseline 

journals with the intention to retrieve journals focused to specialties. As a first step we 

restricted the time period to 2008-2012, decreasing the risk to include journals shifting in 

focus over time. Next, we removed journals in the Web of Science category 

“Multidisciplinary Sciences”. We also excluded very small or very large journals by 

including journals between the 10th and 75th percentiles in the size distribution. As a result, 

journals publishing 47-478 publications in the time period were included. With the intention 
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to exclude journals having a focus broader than specialties, we restricted the set to journals 

with at least 10% journal self-citations. To avoid inclusion of multiple journals within the 

same specialty, we used bibliographic coupling to create groups of journals with similar 

subject orientation. A threshold of 8% was used to consider two journals as overlapping and 

we then selected one random journal from each connected component. The final set of 

baseline journals consisted of 967 journals. We considered each journal as a class and the 

publications published in the journal in the given time period as the members of the class.  

We used the same procedure as in Article I to identify a cluster solution that best matches the 

baseline. Several clustering solutions were obtained using different resolution parameter 

values. Each solution was compared to the baseline using ARI. The solution with the highest 

ARI value was denoted ACPLCs. We argue that the clusters of ACPLCs roughly correspond 

to specialties.  

5.2.2 Results 

Most publications in ACPLCs belong to clusters having a size of about 3,000 to 23,000 

publications (10th to 90th percentile in the weighted cluster size distribution). Similar to the 

topics study, other clustering solutions performed almost equally. Hence, the size of 

specialties are rough estimates. Taking this into account, we can conclude that specialties 

generally range in size from about 2,000 to 40,000 publications, considering publications 

from 1980-2017 in Web of Science, with a yearly output around 100 to 2,000 publications.  

To evaluate if the results make intuitive sense, we explored two Web of Science journal 

categories and how publications from 2011–2015 in these categories were distributed over 

clusters. The first category was “Information Science & Library Science”. The largest cluster 

in this category was a scientometrics/bibliometrics cluster, followed by a library science 

cluster, a cluster specific to academic libraries and an information retrieval cluster. The 

second journal category was “Medical Informatics”. The cluster with most publications in 

this category addressed medical informatics in clinical settings, including electronic health 

records. The second cluster addressed online health and the third largest cluster focused on 

health technology assessment. 

We conclude that by calibrating the resolution parameter of the clustering algorithm, clusters 

are obtained corresponding to the size of specialties. The results of this study indicate that 

labeling is an even harder problem at this level, than the more granular level of topics.  

5.3 ARTICLE III – “ALGORITHMIC LABELING IN HIERARCHICAL 
CLASSIFICATIONS OF PUBLICATIONS: EVALUATION OF 
BIBLIOGRAPHIC FIELDS AND TERM WEIGHTING APPROACHES” 

In Article III, we address the problem of labeling clusters of publications. This was done by 

constructing an evaluation framework based on MeSH terms and Science-Metrix Journal 

Classification (SMJC). We evaluated different bibliographic fields and term weighting 
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approaches at various granularity levels. Based on this evaluation, we provide three 

recommendations for labeling clusters at different levels of granularity. 

5.3.1 Data and methods 

Web of Science data from the bibliometric database at Karolinska institutet was used for the 

analyses. As in the two previous studies we created baselines in order to compare different 

labeling approaches. A first baseline was created using MeSH. Each MeSH term was 

considered a class and all publications assigned the MeSH term as “major descriptor” were 

considered as the members of the class. We argue that the MeSH term is an accurate label for 

the corresponding class. Thereby, we obtained a baseline of classes (called MeSH classes) 

that can be used to evaluate labeling approaches. A second, coarser, baseline was created 

using the SMJC. Each category in SMJC was considered a class and the publications in the 

journals of each category as the members of the class. We argue that the category name is a 

suitable label for each class.  

To obtain labeling candidate terms, we extracted noun phrases from different bibliographic 

fields. We operationalized noun phrases as sequencies of adjectives and nouns ending with a 

noun. Five bibliographic fields were used: (1) titles, (2) abstracts, (3) author keywords 

(referred to as “keywords”), (4) journal names and the (5) suborganization field in the author 

addresses (referred to as “addresses”).  

Next, we used different approaches to calculate the relevance of the candidate terms to 

baseline classes. They all have in common that they balance the frequency of terms in classes 

and the specificity of the terms to each class. However, the approaches balance frequency and 

specificity in different ways. The following approaches were evaluated: Chi-square, Jensen 

Shannon Divergence (JSD), term frequency-inverted document frequency (TF-IDF) and an 

approach used in Waltman and van Eck (2012), which we denoted as WvE. The WvE 

approach was tested using different values of a parameter (m). Higher values of m give more 

weight to frequency and lower values more weight to specificity. We also proposed a new 

approach which we denote as “term frequency to specificity ratio” (TFS). TFS is the 

weighted geometric mean of term frequency and specificity. The weights of frequency and 

specificity can be adjusted by a parameter (α). Higher values give more weight to frequency 

and lower values give more weight to specificity.  

We evaluated combinations of bibliographic fields and term weighting approaches using 

Match@N (Carmel et al., 2009; Mao et al., 2012; Treeratpituk & Callan, 2006). This 

indicator considers whether any of the top N terms can be found in the baseline. All evaluated 

combinations of bibliographic fields and term weighting approaches were compared using 

Match@N using N=3. This was done both using the MeSH baseline and the SMJC baseline.  

5.3.2 Results 

Using a combination of phrases from titles and keywords resulted in the best match between 

algorithmically obtained terms and the labels in the MeSH baseline (Figure 10). Chi-square 
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performed best of the term weighting approaches. However, several other approaches 

performed almost equally good, in particular TFS (with α=0.33 and α=0.5) and WvE with 

low values of m. 

 

Figure 10: Match@N rates of different combinations of a term weighting approach and one or 

more bibliographic fields. Match@N rates are based on the MeSH baseline. Approaches are ranked 

in descending order of their Match@N rate obtained using titles and keywords. 

Using the SMJC baseline, the best result was obtained for the combination of journal names, 

addresses, titles, and keywords (Figure 11). However, the combination of journals and 

addresses resulted in almost as high Match@N values. JSDQ (a version of JSD), performed 

best among the term weighting approaches, but was followed by several approaches with 

similar Match@N levels, namely TFS (with α=0.67 and α=0.5), TF-IDF and WvE with high 

values of m.  
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Figure 11: Match@N rates of different combinations of a term weighting approach and one or 

more bibliographic fields. Match@N rates are based on the SMJC baseline. Approaches are ranked 

in descending order of their Match@N rate obtained using journals, addresses, titles, and 

keywords.  

We conclude that terms from titles and keywords are suitable to label clusters at the topic 

level. For most of the evaluated approaches, abstracts were found to decrease the Match@N 

rates. At higher levels of granularity, we propose terms from journals and addresses to be 

used for labeling. Furthermore, we suggest TFS to be used to calculate term relevance at 

various granularity levels. TFS performed reasonably well in both baselines using α=0.5, i.e., 

giving equal weight to frequency and specificity. The alpha parameter can also be adjusted to 

lower values at more granular levels and higher values at coarser levels.  

5.4 ARTICLE IV – “IMPROVING OVERLAY MAPS OF SCIENCE: COMBINING 
OVERVIEW AND DETAIL” 

In Article IV, I synthesize the previous papers of the thesis by obtaining a hierarchical 

classification based on the knowledge resulting from these previous studies. In addition, I 

propose how hierarchical classifications of research publications can be visualized to provide 

both overview and detail of the biomedical sciences.  

5.4.1 Data and methods 

A total of about 17 million publications from PubMed and about 380 million citation 

relations from the NIH OCC were used in this study. The publications were clustered into 

three levels of aggregation. At the most granular level – topics – the choice of resolution 

parameter value was guided by the results from Article I. The obtained clusters were 
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aggregated into larger clusters – specialties – using a resolution parameter value guided by 

the results of Article II. A third level was obtained by adjusting the resolution parameter in 

order to obtain approximately the same number of clusters as the number of categories in 

well-known journal classifications. I denote the clusters at this level as “disciplines”. Labels 

were created building on the results from Article III. Noun phrases were extracted from titles, 

journal names, and addresses. Since MeSH terms were available for the publication set, I 

chose to extract noun phrases from the publications’ MeSH terms, rather than using the 

author keywords as in the previous study. An illustration of the steps taken to obtain the 

classification and label the clusters is given in Figure 12, steps 1-5. 

 

Figure 12: Illustration of the process used to create and visualize the classification.  

Steps 6-9 in Figure 12 illustrate the approach used to visualize the obtained classification. A 

layout was created of specialty-level clusters based on their normalized citation relations (step 
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6). The ForceAtlas algorithm was used to create the layout (Jacomy et al., 2014), but I 

acknowledge that other layout algorithms may be used (Fruchterman & Reingold, 1991; 

Kamada & Kawai, 1989; van Eck et al., 2010). To emphasize the hierarchy of the 

classification, sibling specialties (specialties clustered into the same discipline) were 

contracted in order to position them in proximity. A parameter was used for this purpose, 

making it possible to employ more or less contraction of sibling specialties. When the final 

layout of specialties had been obtained, I positioned each parent discipline in the center of its 

set of underlying specialties, given by the average x and y coordinates. Note that the positions 

of disciplines are not affected by the contraction of specialties. 

The methodology was illustrated by two case studies using overlay maps (Rafols et al., 

2010), defined as “base maps over which subsets of publications or filters can be projected” 

(Sjögårde, 2022c). In the first case study, I created overlays based on research publications 

addressing the Covid-19/SARS-CoV2 pandemic (hereafter coronavirus publications) as well 

as publications cited by this publication set. This case study shows how the maps can be used 

to explore research on a particular concept. In the second case study, I show how the maps 

can be used to compare the research orientation of organizations by creating overlays based 

on the publication output of three universities in Stockholm.  

5.4.2 Results 

I created a base map including 2.7 million PubMed articles from 2020-February 2022 (Figure 

13). Going from left to right we find psychology, nursing, and public health in the bottom 

left. Clinical research is found in the upper left, whereas cell and molecular medicine are 

found in the top middle. Natural sciences are located in the middle right. Furthest to the right 

we find biochemistry and biophysics. Using the web-version15 of this map, it is possible to 

zoom and navigate from the top-level nodes (disciplines) to their underlying specialties. 

Clicking a specialty highlights the most related specialties and a list of underlying topics is 

shown. Hyperlinks are also provided to the publications underlying each node. 

 

15 https://petersjogarde.github.io/papers/hiervis/base/index.html  

https://petersjogarde.github.io/papers/hiervis/base/index.html
https://petersjogarde.github.io/papers/hiervis/base/index.html
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Figure 13: Base map of biomedical sciences16 based on about 2.7 million articles from 2020-

February 2022. 

In the first case study, I created an overlay showing the distribution of coronavirus over 

clusters. Another overlay was created showing the distribution of citations from the 

coronavirus publications over clusters. This second map makes it possible to detect research 

fields of importance for the coronavirus research. 

 

Figure 14: Covid-19/SARS-CoV-2 research17. 

 

16 https://petersjogarde.github.io/papers/hiervis/base/index.html  
17 https://petersjogarde.github.io/papers/hiervis/covid_v2/pubs/index.html  

https://petersjogarde.github.io/papers/hiervis/base/index.html
https://petersjogarde.github.io/papers/hiervis/covid_v2/pubs/index.html
https://petersjogarde.github.io/papers/hiervis/base/index.html
https://petersjogarde.github.io/papers/hiervis/covid_v2/pubs/index.html
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Figure 15: Publications cited by Covid-19/SARS-CoV-2 research18, published before the pandemic. 

Node sizes reflect the number of cited publications and node colors the average number of citations 

per cited publication. 

In the second case study, I show how the mapping methodology can be used to compare the 

subject orientation of universities. I created three overlays (Figure 16) based on the 

biomedical publications from (1) KTH Royal Institute of Technology (KTH), (2) Stockholm 

University (SU) and (3) Karolinska Institutet (KI). These three universities are part of an 

alliance called “Stockholm Trio”. The maps show a focus on biochemistry and biophysics at 

KTH, an orientation towards natural sciences and psychology at SU and broad coverage of 

biomedicine at KI, including a wide range of clinical and basic research, but with few 

publications in natural sciences, biochemistry, and biophysics.  

 

18 https://petersjogarde.github.io/papers/hiervis/covid_v2/cited/index.html  

https://petersjogarde.github.io/papers/hiervis/covid_v2/cited/index.html
https://petersjogarde.github.io/papers/hiervis/covid_v2/cited/index.html
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Figure 16: Biomedical publications by KTH19 (A), Stockholm university20 (B) and Karolinska 

institutet21 (C). Publication years 2019-2021.  

 

19 https://petersjogarde.github.io/papers/hiervis/sthlm_trio/kth/index.html  
20 https://petersjogarde.github.io/papers/hiervis/sthlm_trio/sthlm_univ/index.html  
21 https://petersjogarde.github.io/papers/hiervis/sthlm_trio/ki/index.html  

https://petersjogarde.github.io/papers/hiervis/sthlm_trio/kth/index.html
https://petersjogarde.github.io/papers/hiervis/sthlm_trio/sthlm_univ/index.html
https://petersjogarde.github.io/papers/hiervis/sthlm_trio/ki/index.html
https://petersjogarde.github.io/papers/hiervis/sthlm_trio/ki/index.html
https://petersjogarde.github.io/papers/hiervis/sthlm_trio/kth/index.html
https://petersjogarde.github.io/papers/hiervis/sthlm_trio/sthlm_univ/index.html
https://petersjogarde.github.io/papers/hiervis/sthlm_trio/ki/index.html
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I conclude that the visualization methodology can be used to provide both overview and 

detail of large sets of research publications and that such maps “constitute a valuable tool for 

researchers studying science, improve transparency to cluster-based citation normalization, 

support research management and policy making and constitute a tool for researchers to 

explore research of relevance to them.”  (Sjögårde, 2022c) 

As a result of Article IV, the classification was also made openly available22.   

  

 

22 https://figshare.com/collections/PubMed_Classification/5610971  

https://figshare.com/collections/PubMed_Classification/5610971
https://figshare.com/collections/PubMed_Classification/5610971
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6 DISCUSSION 

In this section, I first discuss the approach to use citations for the mapping of science (Section 

6.1). I then discuss to what extent clusters represent research fields (6.2), followed by a 

discussion about the structural properties of research fields in relation to the properties of the 

obtained clusters (6.3). In Section 6.4, I discuss labeling and interpretation of clusters. 

Finally, I discuss applications of ACPLCs (6.5). 

6.1 MAPPING SCIENCE THROUGH CITATIONS  

Communication is essential within the science system and in the creation and formation of 

research fields. Citation networks offer a simplified representation of the communication 

taking place in the system. The focus on communication makes clustering of publications in 

citation networks a promising approach to obtain clusters corresponding to research fields. 

However, the simplification offered by direct citations reduces the relation between two 

publications to a binary entity. This means that the strength of the relation between a citing 

and cited publication is the same for any such pair of publications, regardless of the diverse 

meanings of citations, motivations to cite and varying relevance of cited publications to citing 

publications (Held & Velden, 2022). Furthermore, some citations may refer to publications 

focusing on other topics than the primary topic of the citing publication and relevant 

publications may be missing from the reference list, for example, publications that are 

unknown to the author. However, it is reasonable to assume, as done by the social systems 

citation theory, that the references in a publication have been selectively chosen by the 

author(s) based on their perceived relevance to some aspect of the publication (Tahamtan & 

Bornmann, 2022). Thereby, references contextualize and position each publication in the 

science system. Moreover, the clustering of a publication is affected by all of its relations to 

other publications, not by single edges to other publications. It is likely that this feature of the 

clustering methodology reduces issues associated with citation relations of less relevance. It 

has been shown that clustering approaches using larger sets of data (“global” models) result 

in both better precision and recall than approaches using less data (“local” models) and that 

the former approaches expand the context by including both publications in the research field 

of interest as well as publications in related research fields (Boyack, 2017; Klavans & 

Boyack, 2011, 2017b). The studies included in this thesis are based on large amounts of 

citation relations from long time periods, about 300 million to a billion citation relations 

covering more than 20 publication years. More than 90% of the publications in these 

networks have at least 5 direct citation relations. The scale of the studies can be assumed to 

offer some stability to the results and reduce problems associated with using binary relations 

between publications.  

6.2 CLUSTERS AS REPRESENTATIONS OF RESEARCH FIELDS 

Do clusters represent research fields, and if so, to what extent? In Article I we suggest that 

clusters can be used to identify topics if the granularity has been adjusted to obtain clusters 

corresponding to the size of topics. The rationale of the method used in Article I is that a 
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publication including a high number of references in general focuses on a topic and 

synthesizes the current state of the topic. This is a rough approximation, because the reference 

list in such publications may represent more than one topic and publications addressing the 

main topic of the publication may be missing. However, a perfect baseline of publications 

and their topics does not exist, and researchers perceive topics differently (Held et al., 2021). 

The results of Article I show that a rather high proportion of the references in the baseline 

papers are concentrated to one or a few clusters. The rest of the references are distributed 

over many clusters. This result corresponds well with the assumption that each synthesizing 

publication mainly focuses on one or just a few topics. Furthermore, the case studies indicate 

that the methodology could be used to identify topics. It was not difficult to interpret the 

topics represented in the clusters in the two case studies. However, it did take some effort to 

distinguish the topical orientation of a few of the clusters in one of the cases. This may 

indicate that some clusters do not coherently correspond to one topic. 

In Article II, we created a baseline from a set of journals, arguing that a journal that is not 

very large or small in size, and has a focused scope, is likely to correspond to a specialty. 

This baseline focuses on communication, in that publication channels of specialties are used 

as proxies for publication classes corresponding to specialties. The restrictions we made 

reduce the risk of including journals having a broader or more narrow scope than specialties. 

Therefore, we assume that a majority of the journals in the baseline are focused to areas that, 

at least roughly, correspond to specialties. The results show that several granularity levels 

perform similarly, which indicates that the granularity of specialties is hard to determine. It 

may also suggest that the methodology does not capture specialties very well. It is possible 

that a better baseline can distinguish a granularity level corresponding to specialties more 

distinctly. Nevertheless, the case studies give some support for the correspondence between 

specialties and clusters, since specialties could be identified from the clusters and those 

specialties correspond rather well with other studies (Bauer et al., 2016; Blessinger & Frasier, 

n.d.; Figuerola et al., 2017; Janssens et al., 2006; Kim & Delen, 2018; Schuemie et al., 2009; 

L. Wang et al., 2017).  

It is not always easy to distinguish between a discipline and a specialty because these 

distinctions may vary between fields and be more applicable in some fields and less suitable 

to describe other fields. Disciplines have not been in focus for this thesis. However, if 

disciplines are seen as broader focus areas of research than specialties, they should be more 

heterogenous and include different focus areas communicating in different communication 

channels and addressing different problem areas. The indicated definition seems to 

correspond rather well with, for example, the discipline library and information science and 

the specialties identified in Article II. The identified specialties have corresponding 

conferences and journals. Nevertheless, conferences and journals with both a broader and 

more narrow scope exist, which may suggest that the distinction between a discipline and a 

specialty is not clear-cut. Even though the existence of specialties is somewhat supported in 

this thesis, there is a lack of empirical evidence to support that this notion describes the 

structural properties of how research is self-organized into focus areas. It is possible that 
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different fields are structured in ways that are not accurately captured by the notion of 

specialties. This is indicated by the organizational structures of universities. There are large 

differences between for example, medicine, humanities, and social sciences in this regard, at 

least in Sweden. In medicine it is very common that the organizational structure is focused to 

research groups led by a professor. The department is secondary in these organizational 

structures. This is not the case in the social sciences and humanities, in which the department 

has a more important role for how research is organized, and groups may even be 

nonexistent. The size of departments may also vary tremendously, which may indicate that 

research fields have different structural properties. Another issue is multidisciplinary fields, 

which may gather researchers with different backgrounds. Researchers in such fields may 

study the same research topics but have weaker communication than suggested by the 

definition of specialties. ACPLCs may be one tool to better understand research fields, but 

there is a need to better understand how clusters correspond to structural properties in 

different fields.  

Two case studies, one of “invasion biology” (Held & Velden, 2022) and another of “overall 

water splitting” (Haunschild et al., 2018), show that sets of publications constructed to 

represent research fields are distributed over a high number of clusters in ACPLCs and the 

authors suggest that ACPLCs do not properly delineate publications into research fields. 

These studies share a weakness: they both assume that the search queries they use accurately 

identify publications in the research fields of interest. However, problems with the search 

queries can easily be found. For example, both studies use the topic search tag (“TS”) in Web 

of Science. This tag includes searching in “keywords plus”. Keywords plus are assigned to 

publications based on titles of their references, not based on the bibliographic information of 

the publication itself. Hence, the search may capture publications related to the search terms 

merely by the titles in the reference lists. The search by Held and Velden (2022) also includes 

problematic terms, such as “non-indigenous community” or “exotic range” which are both 

terms used in other contexts than their field of interest (invasion biology).23 Furthermore, it is 

widely known among search experts that it is extremely difficult to achieve search results 

with both high precision (the proportion of publications retrieved by the search query that are 

relevant) and high recall (the proportion of all relevant publications that are retrieved by the 

search query), for example, when conducting a systematic review or meta-analysis. One can 

assume that the same level of difficulty applies to the identification of publications belonging 

to a research field. It cannot be concluded from these studies that the clusters represent the 

research fields of interest with less accuracy than the set of publications retrieved by the 

search queries used for evaluations. Moreover, in both studies there is in fact a cluster 

identified that corresponds to the field of interest (“invasion biology” in Held and Velden 

 

23 “non-indigenous community” is used about the group of people not being indigenous in a geographic area and 

“exotic range” is used in physics.  
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(2022) and “overall water splitting” in Haunschild et al. (2018)). This may as well be 

interpreted as the main topic of the publication set could be identified. 

This brings us to a challenging problem. How can and should clusters be evaluated? All 

approaches to evaluate clusters, that I am aware of, have weaknesses. The assessment of 

clusters by expert judgement is subject to bias and experts generally have a rather narrow 

perspective centered to their field of expertise and lack knowledge in classification. Baselines 

can be used to compare different methodological approaches but are less useful to evaluate to 

which extent clusters are meaningful or useful to users. The problem of evaluating 

classifications is not restricted to clusters obtained in citation networks. In fact, all 

classifications of research publications into research fields show at least some weaknesses 

when assessed. For example, Wang and Waltman (2016) found that the journal classification 

systems in Web of Science and Scopus assign journals to categories rather liberally, resulting 

in a rather low precision in the categories. Recent studies have shown large discrepancies 

between different approaches for the identification of publications addressing the sustainable 

development goals (Purnell, 2022; Rafols et al., 2021). Different studies on artificial 

intelligence (AI) result in very different operationalizations of the publications related to AI 

(e.g., see X. Chen et al., 2020; Di Vaio et al., 2020; Munim et al., 2020; Ruiz-Real et al., 

2020; Sjögårde, 2022b). The precision of search queries used in systematic reviews is 

generally very low because systematic reviews favor recall (Bramer et al., 2016; Gusenbauer 

& Haddaway, 2020). These are all indications of how difficult it is to identify the publications 

related to a particular research field or, in the case of systematic reviews, the publications 

related to a particular research question. Given these difficulties, it is very problematic to 

construct sets of publications that can be used to assess cluster solutions. One can question if 

it is at all meaningful to evaluate clustering solutions using such approaches (Peel et al., 

2017). A solution could be to evaluate the appropriateness and usefulness of ACPLCs and 

other classifications in relation to intended use. However, there is a lack of such studies for 

the assessment of clustering solutions. A couple of exceptions are the studies by Perianes-

Rodriguez and Ruiz-Castillo (2017) and Ruiz-Castillo and Waltman (2015) addressing the 

suitability of different classifications for normalization of citation counts. Another exception 

is a small study conducted by me focusing on information needs of managers in a project 

promoting competence development in artificial intelligence and how ACPLC could be used 

to correspond to the identified needs (Sjögårde, 2022b). The study showed a need from the 

management of the project for more information about who was doing what within AI and to 

get an overview of the research applying AI. This study is too small to draw any general 

conclusions. However, the study provides an example of how ACPLCs can be used to 

support research management and development of support structures.   

6.3 STRUCTURAL PROPERTIES OF RESEARCH FIELDS AND CLUSTERS 

In the entry for “classification” in the International Society of Knowledge Organization 

(ISKO) Encyclopedia of Knowledge Organization Hjørland distinguishes between two views 

on classification, the “classical view” and the “prototype theory” (Hjørland, 2020). In the 
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classical view on classification, originating from Aristotle, “classes should be designed so 

membership of a class is given by a set of necessary and sufficient characteristics” (Hjørland, 

2020). All items of a class must fulfill such a criterion and, hence, all items of a class share 

one characteristic or a set of characteristics. The relation between an item and a class is 

binary in the sense that the item either does or does not fulfill the criterion.  

The classical view is contrasted by the prototype theory. In this view, each class is 

characterized by a set of characteristics. The relation between an item and a class is 

determined by the correspondence of the publication to a prototype, an item possessing all of 

the characteristics being typical for the class. In this view, items may to varying extent be 

related to a class and “[d]issimilarity plays as important a role as similarity in classification. 

Similarity alone is not enough (see Andersen et al. 2006, 24ff).” (Hjørland, 2020). Hence, 

classes may include items that are more typical or central, and others that are less typical, or 

more peripheral. The borders of classes are by the prototype theory fuzzy since some of the 

members of a class may have a weak relation to the class. Furthermore, all members of a 

class do not need to share one characteristic or a set of characteristics and one pair of items in 

a class may share some characteristics and another pair of items in the same class another set 

of characteristics.  

The prototype theory of classification provides an interesting framework for how to 

understand research fields. Research fields have a core-periphery structure in that some 

research is a better representative of the field and some research may also influence the field 

to a higher extent. Furthermore, research fields have fuzzy borders and are overlapping. The 

prototype theory captures such complex structures better than the classical view. If we 

consider these properties in relation to the classification of research publications into research 

fields, we see that the prototype theory allows (1) some publications to be better 

representatives of a research fields than others, (2) publications to be partly related to a 

research field, (3) fuzzy borders of publication classes, and (4) overlap of publication classes. 

Some of these properties may be allowed by the classical view as well, but not all and not to 

the same extent.   

The clusters obtained by the Leiden algorithm do not overlap, i.e., each publication belongs 

to exactly one cluster. Furthermore, publications in the obtained classifications have binary 

relations to clusters, i.e., a publication either belongs to a cluster or it does not. These 

properties are problematic if clusters are to represent research fields because it neither allow 

research fields to overlap nor for some publications to have stronger relations to a cluster than 

others. Other algorithms may capture overlapping structures in the citation network, such as 

the OSLOM algorithm (Lancichinetti et al., 2011) or the IKC algorithm combined with AOC 

(Jakatdar et al., 2022; Wedell et al., 2022). Nevertheless, neither of these approaches express 

varying relational strengths between items and clusters.  

If we consider an ACPLC as part of a larger model, it also includes the citation network on 

which the clusters have been based. Taking this more holistic view, the model includes 

properties of overlap and the possibility to calculate strength of publication-cluster relations. 
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Citation relations between clusters can be used to indicate relations between research fields. 

Publications having strong citation relations to external clusters are likely related to more 

than one research field and may be used to express overlap of topics. This holistic view offers 

the possibility to use and develop ACPLCs in a way that overcomes the inconsistency 

between the definition of topics and specialties given in this thesis and the disjoint clusters, as 

well as the binary relation between clusters and publications. However, further work is 

needed in this area.  

Figure 17 shows a rather typical core-periphery structure that appears when clusters at the 

topic level are visualized. Nodes represent publications, edges represent normalized citation 

relations, and node sizes represent the number of citation relations a publication has within 

the cluster. Core publications are positioned in the center of the graph and have many 

relations, while peripheral publications are located in the marginals and have few relations. 

The topic to which the cluster corresponds (in this case “peptic ulcer perforation”) is likely to 

be better represented in the core of the cluster.  

 

Figure 17: Illustration of the core-periphery structure of a cluster.24 Nodes represent publications 

and edges represent normalized direct citation relations. Node sizes correspond to citation relations 

within the cluster.  

6.4 LABELING AND INTERPRETATION OF CLUSTERS 

A meaningful interpretation of a cluster can only be done if the publications in the cluster 

have been grouped meaningfully. To be meaningful, a cluster should first of all make 

intuitive sense, at least to subject experts (Šubelj et al., 2016). To make intuitive sense, a 

cluster should be concentrated to a focus area in a somewhat coherent way, meaning that at 

least the publications in the core of a cluster should be semantically related, for example by 

 

24 The illustrated cluster (id=4898) is from the September 2022 update of the PubMed classification available in 

Figshare: https://figshare.com/articles/dataset/PubMed_classification_v1_202102/16601402/1  

https://figshare.com/articles/dataset/PubMed_classification_v1_202102/16601402/1
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focusing on an empirical object, a particular process, a set of methods, or a combination 

thereof. Furthermore, it should be possible to distinguish a cluster from other clusters. Also, 

the clustering of sub-level clusters into parent clusters should make intuitive sense. If the 

clusters do not fulfill these criteria of meaningfulness, at least to an acceptable extent, it is not 

expected that they can be meaningfully labeled. However, if clusters do fulfill such criteria, 

labeling is possible and should provide the possibility, at least for subject experts, to interpret 

the focus area represented in a cluster and to differentiate this focus area from the focus areas 

of other clusters.  

The labeling approach proposed in Article III relies on the assumption that clusters are 

meaningful. We argue that terms that are both frequent in a cluster and specific to the cluster, 

in comparison to sibling clusters, are likely to express the focus area of the cluster. In 

practice, not all clusters include terms that are both frequent in the cluster and specific to the 

cluster. Instead, there is often a tradeoff between frequency and specificity. There is a 

variation between clusters regarding how the highest ranked terms in the clusters are balanced 

by the TFS approach. Some clusters at the same granularity level are labeled by terms with 

high frequency, while others are labeled with terms with high specificity. This is problematic 

because it makes interpretation more difficult. 

Another challenge is that labels may be easy to interpret but inaccurate in the sense that they 

correspond poorly to the focus area of the publications in the cluster. This problem does not 

only apply to clusters, but also other kinds of categorizations of research publications, such as 

journal categories, search results or other sets of publications used to delineate publications 

into fields. To illustrate the problem, we may use an example. Assume that a user is provided 

with the information that there are 13,000 publications in a cluster labeled “alzheimer 

disease”. The focus area can be easily interpreted from the label. Nevertheless, the label may 

correspond poorly to the focus area of the publications in the cluster, and it is very hard for 

users to judge whether the label accurately represents the set of 13,000 publications, or not. 

An example of when a label may correspond poorly to the focus area of the publications in a 

cluster is when a cluster has been labeled by terms that merely represent a subfield within the 

cluster. In the Alzheimer example, the cluster may for instance be focusing on other types of 

dementia as well. 

Experience from the studies in this thesis, as well as from using clustering in practice, 

indicates that interpreting the subject orientation of clusters is sometimes challenging 

(Sjögårde, 2022b). Interpretation is supported by the possibility to navigate the ACPLC and 

get information about the relation with other clusters, such as parent cluster, sibling clusters 

and underlying clusters. This information makes it easier to distinguish the subject orientation 

of one cluster from other clusters. Providing users with information about frequency and 

specificity of the labels may further facilitate interpretation, because it makes it possible to 

judge how well the label represents the publications of the cluster.  
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6.5 APPLICATIONS OF ACPLCS 

A perfect delineation of publications into research fields is not feasible given the prototype 

theory of classification and the properties of research fields that I have outlined, including a 

core-periphery structure and fuzzy borders. It is difficult to see how the boundaries of a 

research field can be determined without some degree of arbitrariness. Therefore, we cannot 

expect that the publications related to a research field can be delineated unambiguously. 

Furthermore, it is not known how well clusters correspond to research fields. For example, it 

might be the case that some clusters at the topic level correspond to more than one topic, and 

that some topics are represented by several clusters. This brings us to the question about 

when it is appropriate to use an ACPLCs.  

To begin with, ACPLCs are useful to identify and explore focus areas of research within sets 

of publications, in particular large sets of publications. ACPLCs offer a possibility to get 

overviews of sets of publications that are far larger than what can be browsed and processed 

manually. This is illustrated in the two case studies in Article IV, in which overviews are 

given of corona virus research as well as the biomedical research of three universities in 

Stockholm. The use of a hierarchical ACPLC makes it possible to provide both overview and 

detail, which would not have been possible using a one-level classification, such as for 

example the commonly used Web of Science journal classification. Related to this 

application is the use of ACPLCs to display and explore search results (Bascur et al., 2019, 

2020). In addition, clusters can be used both to restrict search results and to broaden search 

results.  

A second area of application is the use of ACPLCs to establish general patterns or 

relationships. For such use it may be acceptable with an approximate delineation into 

research fields. For example, in Ahlgren et al. (2018) we studied the relation between citation 

counts and properties of references in publications. We used fine-grained clusters to 

normalize citation counts with the purpose to control for field differences. Another example 

is in Sjögårde and Didegah (2022) where we studied the relation between citation counts and 

growth of research fields. We showed that publications in growing fields generally have a 

citation advantage because of the increasing number of publications citing earlier publications 

within the field.  

A third application is the use of ACPLCs as data input in other calculations, for example to 

measure interdisciplinarity (Q. Wang & Ahlgren, 2018), or to identify benchmark units (Q. 

Wang & Jeppsson, 2022). Another example is an application that I have elaborated together 

with colleagues at the KI library, in which we used clusters as variables in a supervised 

classification approach that assigns publications to classes in a national classification system 

of research subjects.25 Except for clusters we used MeSH and classifications of researchers to 

 

25 Standard för svensk indelning av forskningsämnen 2011. URL: 

https://www.scb.se/dokumentation/klassifikationer-och-standarder/standard-for-svensk-indelning-av-

forskningsamnen/  

https://www.scb.se/dokumentation/klassifikationer-och-standarder/standard-for-svensk-indelning-av-forskningsamnen/
https://www.scb.se/dokumentation/klassifikationer-och-standarder/standard-for-svensk-indelning-av-forskningsamnen/
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train a neural network. When adding cluster information, the accuracy of the classification 

increased. 

A fourth application is the use of ACPLCs for normalization of citation indicators. There is 

some support that clusters are preferred for citation normalization over the frequently used 

Web of Science journal classification (Perianes-Rodriguez & Ruiz-Castillo, 2017; Ruiz-

Castillo & Waltman, 2015). However, other approaches to normalize citations exist, such as 

source normalization and item-oriented approaches (Colliander, 2015; Colliander & Ahlgren, 

2019; Waltman & van Eck, 2013a). 

It is also interesting to ask in what situations ACPLCs should not be utilized. In my 

experience, it seems that there is seldom a one-to-one relation between a cluster in an ACPLC 

and a predefined research field. This is confirmed in the studies of Haunschild et al. (2018) 

and Held and Velden (2022). Since the clusters are not overlapping, it is unlikely that clusters 

offer a high recall of the publications in a research field. This problem may be tackled by 

approaches providing overlap by, for example, expanding clusters. However, such 

approaches may result in lower precision.  
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7 CONCLUSIONS 

In this thesis, I have identified research fields in the science system through the network 

structures created by researchers when contextualizing their research by the use of references 

in their publications. The methodology that I have applied provides overview and possibilities 

to explore very large amounts of data. I have elaborated a conceptual framework and adjusted 

the granularity of clusters in order to obtain clusters corresponding to the size of topics and 

specialties, which I have defined as focus areas of research at different granularity levels. I 

argue that clusters at the most granular level obtained in the thesis generally represent topics 

and at the next level specialties.  

Labels improve the utility of ACPLCs by making it possible to interpret the research fields 

represented by clusters. However, labeling is a challenging problem, not the least because of 

the different semantic levels of focus areas in clusters of different granularities. In Article III, 

we suggest that labels can be assigned to clusters using various bibliographic information 

combined with a term weighting approach that is able to assign broad, general terms at higher 

semantic levels and narrow, specific terms at lower semantic levels. Thereby, interpretability 

of ACPLCs can be facilitated. Moreover, I have proposed a methodology to visualize 

ACPLCs that further improves interpretation by making it possible to explore the context of a 

cluster, for instance by displaying information about the parent cluster, underlying clusters, 

and related clusters. Interpretability and exploration are also improved by hyperlinks to the 

publications included in the clusters.  

Visualization is needed in some applications of ACPLCs. Previous visualizations of 

classifications, for example overlay maps based on journal categories, have not made it 

possible to get both overview and detail of the science system. I show in Article IV how this 

can be achieved by visualizing multiple levels in an ACPLC and by making the visualization 

interactive and possible to navigate.  

There are still several ways in which ACPLC can be further improved. First of all, the core-

periphery structure of research fields and the overlapping nature of fields are not expressed in 

ACPLCs. Future work may address how such structures can be incorporated in science 

mapping. A second issue is the binary use of citations, which may neglect important 

information. Future work may explore how “epistemic functions” can be used to develop 

ACPLCs representing research fields in richer, more multidimensional manners (Held & 

Velden, 2022). A third issue for future work is to further improve cluster labeling. The 

labeling procedure elaborated in this thesis captures relevant terms at different granularity 

levels, but does not consider semantic relations between terms. Future work could address 

this problem by developing a labeling approach that considers semantic relations, for example 

by making use of language models such as SciBERT (Beltagy et al., 2019). A fourth research 

theme for future work is the evaluation of ACPLCs in relation to different use cases. Such 

research may establish more knowledge about how ACPLCs are interpreted by users and find 

out to which user needs ACPLCs contribute with valuable information.  
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Critique has been raised that ACPLCs are not transparent. I have shown that this problem is 

possible to overcome by providing labels and additional information to clusters, using well 

documented and openly available methods, and visualizing ACPLCs so they become 

explorable. In addition, I have based the ACPLC in Article IV on open data and published the 

ACPLC openly available. In fact, this transparency goes beyond the transparency of most 

other classifications used within the field of scientometrics.  

The aim of this thesis has been to improve the interpretability and utility of ACPLCs. I have 

met this aim by providing a conceptual framework, adjusted granularity so that the size of 

clusters corresponds to topics and specialties, suggested a method to provide labels at 

different semantic levels and visualized the ACPLC in a way that provides both overview and 

detail. As a result of this work, I have created a classification of about 20 million PubMed 

records26 that has been made openly available (Sjögårde, 2022a). I hope others find the 

classification useful. 

 

26 https://figshare.com/collections/PubMed_Classification/5610971  

https://figshare.com/collections/PubMed_Classification/5610971
https://figshare.com/collections/PubMed_Classification/5610971
https://figshare.com/collections/PubMed_Classification/5610971
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