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Popular science summary of the thesis 

Cancer is a disease caused by mutations to our DNA - the genetic blueprint that instructs our cells 

how to function. Genetic information flows from DNA to RNA to proteins. In other words, our DNA is 

first transcribed into RNA, which is then translated into proteins, complex molecules that play 

essential roles in our bodies. When mutations occur, they can affect the function of these proteins, 

altering cell behavior and potentially leading to the development of cancer. 

Cancer is not a single disease but rather a collection of diseases with one common theme: 

uncontrolled cell growth. Cells within a tumor are not all the same; instead, they display a high 

degree of diversity. This diversity makes it challenging to target cancer cells effectively with 

treatments, as different cells may respond differently to the same therapy. This is where single-cell 

sequencing techniques come into play - enabling the sequencing of DNA or RNA from each cell 

separately, uncovering unique characteristics and behaviors of individual cells and providing a more 

detailed and accurate picture of cellular diversity and function. 

The development of new single-cell sequencing methods is essential for gaining a deeper 

understanding of the complex interactions between cancer cells and their environment. In this 

thesis, we have focused on creating novel single-cell sequencing techniques to study mutations and 

cell interactions that affect cancer behavior. By improving our ability to analyze the genetic and 

molecular changes in individual cancer cells, these methods have the potential to unlock new 

insights into cancer biology, ultimately leading to more effective and targeted treatments for 

patients. 

In paper I, we developed a method to enhance the existing single-cell RNA sequencing methods by 

adding spatial information. This means we can now determine not just what different cells are doing, 

but also where they are doing it, which helps to identify which cells are likely to interact with each 

other in a physical space. This method is designed to be unsupervised, high throughput, and 

compatible with most existing single-cell RNA sequencing methods. In paper II, we developed a 

method that enables us to examine both DNA and RNA from the same cell. This dual profiling is 

crucial to understanding the relationship between genetic information and its expression, enabling 

us to study how genetic mutations, changes in the DNA, can influence the behavior of cells.  

  



For paper III, we built upon the knowledge gained from the previous studies. We generated high-

quality ATAC-seq and RNA-seq data from the same cell. ATAC-seq is a method that tells us which 

parts of the DNA are active, while RNA-seq reveals which genes are actively being used by the cell. 

We designed our method to provide improved data quality over previous techniques. Finally, for 

paper IV, we combined the ATAC-seq method with a technology known as CRISPRi screening. 

CRISPRi is a modification of the well-known CRISPR technology that allows us to 'turn off' specific 

genes and examine what happens. With this combination, we delved into studying a form of 

pancreatic cancer called pancreatic ductal adenocarcinoma. We looked at which regions of the DNA 

were active in the cancer's growth and proliferation, and identified the specific transcription factors, 

the proteins that turn genes on or off, interacting with these active regions. 

The methods provided in this thesis will be significant for enhancing our understanding of cancer 

biology and help develop effective treatments. By understanding the spatial arrangement of cells, we 

can explore how cancer cells interact with their neighboring cells, potentially uncovering 

mechanisms that cancer cells use to spread. Meanwhile, by simultaneously examining mutations or 

active regions of DNA, and RNA of the same cell we can identify genetic mutations and their direct 

impact on the cell's behavior. These new methods enable a deeper exploration of the fundamental 

processes in cancer cells, which can contribute to the discovery of novel strategies for the treatment 

of cancer.  

 

  



 

 

 

  



 

 

Abstract 

Despite sharing an identical genome, cells of higher order multicellular organisms display a large 

degree of phenotypic diversity. This diversity is maintained by a sophisticated regulatory machinery 

that integrates information from both intrinsic and extrinsic factors, ultimately coordinating the 

appropriate gene expression. Sequencing methods such as RNA and DNA sequencing have become 

indispensable tools in the pursuit to understand gene regulation. In recent years, the integration of 

single-cell sequencing techniques and CRISPR-based methods has ushered in a new era of genomic 

exploration, providing unprecedented opportunities to investigate the intricate interplay between 

genes, cellular processes, and disease progression. These cutting-edge advances have transformed 

the research landscape, enabling in-depth studies of gene regulation in single cells, and paving the 

way for future discoveries in both healthy and malignant tissues. 

While cancer has traditionally been studied as a genetic disease, it is now evident that mutations 

alone do not determine cancer initiation or progression. This notion is supported by two key 

observations: first, cancer-driving mutations do not always lead to malignancy; and second, identical 

mutations can yield different outcomes depending on the cell type in which they occur. 

Consequently, a deeper understanding of gene regulation and the various ways it is modulated is 

critical for deciphering the complex relationship between genetic changes and cancer initiation. 

In this thesis we aimed to develop novel single-cell methodologies applicable to studying biological 

complex systems. We have developed four techniques: CIM-seq, DNTR-seq, Smart3-ATAC, and ACTI-

seq, described in papers I-IV, respectively. The methods all capture additional modalities in 

combination with single-cell RNA-seq data, including spatial information, whole genome sequencing, 

accessible chromatin, and direct read out of guide RNAs. We applied these methods to investigate 

biological systems at the single-cell level, offering a more comprehensive understanding of cellular 

behavior in health and disease. Our approaches have allowed us to characterize stem cell niches and 

regeneration dynamics in the epithelial layer of the colon, and delve into the effects of gene dosage, 

quantifying how mutational changes impact transcriptional output. Furthermore, we have explored 

the complex landscape of gene regulation within pancreatic ductal adenocarcinomas, identifying 

mechanisms that enable cancer growth and proliferation.  

This body of work emphasizes the importance of multimodal and integrative approaches for 

unraveling the complexities of biological systems at a cellular level. The methods we've developed 

represent a significant step forward, promising to facilitate the discovery of molecular targets for 

cancer therapeutics. 
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1 Introduction 

Cells are the building blocks of multicellular organisms, with multiple cell types constituting distinct 

tissues capable of carrying out specific functions in a coordinated fashion. These functions vary 

greatly, and the dramatic differences among tissues are mirrored by the complexity of cell types 

present in higher order eukaryotes. While cell types describe morphologically or phenotypically 

distinct cells, cell states describe intermediate stages along trajectories among cell types, but also 

transient or reversible features such as proliferative, metabolic, or active states, which may differ 

among cells of the same type. The current generation of single-cell sequencing methods have 

enabled large-scale studies of such states, revealing nuanced differences between cells of the same 

type, and set the stage for systematic mapping of cell states and types across organisms in health 

and disease (Schaum et al., 2018; Travaglini et al., 2020; Eze et al., 2021; Tabula Sapiens Consortium, 

2022). 

Cancer is a disease of altered cell states. Mutations free the cell from constraints which normally 

prevent uncontrolled growth, leading to a persistent proliferative cell state and the accumulation of 

further mutations. This proliferative state is the main basis for chemotherapeutics which target 

processes such as microtubule assembly and DNA replication, which occur more frequently in 

proliferative cells. However, targeting cells in this manner can lead to the selection of treatment-

resistant cells, as quiescent cancer cells are capable of avoiding apoptosis and will lead to a relapse 

of disease. 

Previous cancer research has largely focused on highly impactful mutations, and usually ones 

affecting protein coding regions, as they are more easily detected and provide potential drug targets. 

Unfortunately, most cancers are the result of the accumulation of a large number of lesions, many of 

which are located in non-coding regions of the genome, and efficient treatments are unlikely to be 

achieved by targeting singular proteins and pathways. Instead, there is a need for a better 

understanding of which factors affect cell states and how these are perturbed in cancer progression 

and during treatment. This will allow the identification of states which confer therapy resistance, as 

well as the development of therapeutics which modify the cell state into one which is more 

susceptible to treatment. 

In this review I will provide an overview of the technological breakthroughs that have enabled the 

development of single-cell sequencing techniques. I will describe general mechanisms for 

transcriptional regulation, ranging from specific interactions between proteins and DNA-motifs to 

signaling pathways initiated by extracellular cues, and how these are combined to maintain specific 

cell states. Additionally, I will discuss how these mechanisms fail in cancer cells, leading to states 

promoting survival and uncontrolled proliferation. Finally, I will discuss how single-cell sequencing 

techniques have contributed to our current understanding of transcriptional regulation and cell 

states, future avenues for these techniques, and how they may be implemented to improve cancer 

therapies. 
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2 Literature review 

2.1 The development of sequencing methods 

2.1.1 Sanger sequencing and the dawn of the sequencing era 

To gain a complete understanding of the evolution of sequencing methods, we must first explore the 

roots of DNA sequencing techniques, as modern nucleotide sequencing methods predominantly 

sequence DNA directly, or rely on the conversion of RNA into complementary DNA (cDNA) before 

sequencing. Two methods were published in 1977 which allowed for the sequencing of hundreds of 

bases in a day. Both methods, developed by Sanger and Coulson, and Maxam and Gilbert, were 

based on generating a radioactively labeled DNA sequence, generating base-specific fragments, and 

establishing the full sequence through gel-electrophoresis (Maxam and Gilbert, 1977; Sanger et al., 

1977). The generation of methods capable of decoding hundreds of bases in an afternoon 

transformed the field overnight, but despite this leap, DNA sequencing was still a time-consuming 

process, making the sequencing of bacterial genomes laborious, and the sequencing of larger 

genomes an impossibility. 

Shotgun sequencing significantly improved the rate at which genomes could be sequenced (Staden, 

1979). By breaking long DNA molecules into smaller, manageable fragments, and sequencing them 

simultaneously, a multitude of sequence reads corresponding to different sections of the original 

DNA molecule are generated. These sequencing reads can then be assembled to reconstruct the 

original DNA sequence. While initially performed by hand, soon computational algorithms were 

developed, identifying overlapping regions between the sequence reads and merging them to create 

contiguous sequences, vastly improving sequencing efficiency and speed. 

It is difficult to overstate the impact that Sanger sequencing and shotgun sequencing has had on 

society.  In less than a decade after its inception, Sanger sequencing had already been used for the 

sequencing of the HIV genome, leading to the development of diagnostic tests and treatment 

strategies for AIDS (Ratner et al., 1985). Through the utilization of Sanger sequencing with shotgun 

sequencing, the first complete bacterial genome, Haemophilus influenzae, was sequenced in 1995, 

paving the way for comparative genomics within microbial research (Fleischmann et al., 1995). These 

methods were also pivotal for identifying tumor suppressors and cancer-causing mutations, such as 

mutations occurring in BRCA-1 and BRCA-2, which were described in the mid-90s (Miki et al., 1994; 

Wooster et al., 1995). 

2.1.2 Towards sequencing the human genome 

Following the successes of these newly developed techniques, scientists began eying a larger target - 

a comprehensive map of the human genome. The Human Genome Project (HGP) was launched in 

1990 to sequence the 3 billion bases of the human genome. The primary method implemented to 

complete the HGP was the "hierarchical shotgun" approach, involving breaking large portions of the 

human genome into bacterial artificial chromosomes (BACs). DNA from each BAC was then 

fragmented, size-selected, and sub-cloned. Selected clones were cultivated, and their DNA was 

extracted and served as a template for automated Sanger sequencing.  
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To further improve the scale and efficiency of sequencing methods, a series of additional 

advancements were made during HGP. These advancements included: (1) the development of dye-

labeled terminators and mutant T7 DNA polymerase, which more readily incorporated them, 

reducing the number of required sequencing reactions from four to one; (2) the introduction of 

linear amplification reactions, significantly lowering template requirements; (3) methods that 

facilitated the sequencing of double-stranded DNA; and (4) the automation and standardization of 

operating procedures to maximize efficiency and minimize errors (Craxton, 1991; Tabor and 

Richardson, 1987). For a more extensive read on the challenges associated with and overcome 

during HGP see Hood and Rowen, 2013, and Shendure et al. 2017.  

The completion of the Human Genome Project led to the comprehensive discovery and cataloging of 

most human genes, and through inference, of most human proteins, along with other elements such 

as non-coding RNAs (ncRNA). This resource became invaluable for fields such as evolutionary and 

comparative genomics, where genes of other organisms could be compared to the human genome, 

charting evolutionary relationships, and shedding light on conserved and non-coding regions and 

their functional importance. The HGP also provided a foundation for future sequencing techniques, 

with the mapped genome obtained from HGP being used as a reference genome for Next 

Generation Sequencing (NGS) techniques. This strategy was first demonstrated in bacteria before 

seeing wide use for human genomics, circumventing some of the challenges associated with de novo 

genome assembly and facilitating larger scale sequencing studies (Margulies et al., 2005; Shendure et 

al., 2005). 

2.1.3 The $1000 genome and beyond 

While the HGP was being completed, attempts were made to develop alternatives to Sanger 

sequencing, to generate larger libraries and reduce costs. The “$1000 genome” was motivated by 

the promise of personalized medicine, where sequencing an individual's genome to drive medical 

decision-making would become a possibility. This led to the development of massively parallel NGS 

methods which have since replaced Sanger sequencing almost entirely. NGS uses a variety of 

technologies to generate massive amounts of sequencing data in a relatively short time and at a 

lower cost. Current NGS technologies sequence complex libraries of DNA fragments immobilized 

onto a two-dimensional surface (i.e., flow cell). Through in vitro amplification and repeated cycles of 

biochemistry and imaging, a process known as "sequencing-by-synthesis" (SBS), the DNA sequence 

can be determined (Mardis, 2008). NGS platforms can generate millions of sequencing reads in 

parallel, allowing for the analysis of entire genomes, transcriptomes, and epigenomes. While NGS is 

faster and more cost-effective than Sanger sequencing, the shorter read lengths and higher error 

rates require more complex bioinformatics analysis.  
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While multiple strategies for SBS exist (Ronaghi et al., 1996; Brenner et al., 2000; Drmanac et al., 

2010), the most extensively used is polymerase-mediated incorporation of fluorescently labeled 

deoxynucleotides, which are added stepwise during the sequencing process (Braslavsky et al., 2003; 

McKernan et al., 2009). The key to the success of this method was the development of reversibly 

terminating, reversibly fluorescent dNTPs ensuring the incorporation of only one dNTP per cycle. 

After each cycle, the DNA templates are imaged to determine the fluorescent color of the 

incorporated base, and the blocking and fluorescent groups are removed to enable the next 

extension. While the industry is currently dominated by Illumina, recent challengers have emerged, 

improving cost efficiency by mainly using unmodified nucleotides, with a low fraction of 

fluorescently labeled nucleotides in a process termed mostly natural SBS (Simmons et al., 2023), or 

even by abandoning SBS completely, relying instead on novel sequencing chemistries, such as avidity 

binding of dye labeled polymers to DNA fragments on the flow cell surface (Arslan et al., 2022; Li et 

al., 2022). 

The development and improvement of NGS methods led to the realization of the $1,000 genome in 

2014 (Check Hayden, 2014), and further development has since pushed the field toward even 

cheaper genomes (See Fig. 1). Much like the development of Sanger sequencing, NGS methods led 

to the birth of new fields, including single-cell sequencing technologies, which rely on the ability to 

capture many sequences from a multiplexed sample. 

 

Figure 1: Cost of sequencing a whole genome by year. Data obtained from the National Human 

Genome Research Institute. 
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2.1.4 Third generation sequencing 

The work comprising this thesis makes use of second-generation NGS techniques. However, it is 

essential to acknowledge the exciting progress occurring in the realm of third-generation sequencing 

methods, often referred to as long-read sequencing techniques. Third-generation sequencing 

techniques are capable of sequencing fragments with 20,000 bases or more, far longer than previous 

technologies, enabling the resolution of repetitive regions, structural variants, and other genomic 

features that are often difficult to discern with short-read approaches. Currently, two major 

platforms exist: Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). PacBio Single-

Molecule Real-Time (SMRT) sequencing uses a zero-mode waveguide system to observe the 

incorporation of fluorescently labeled nucleotides in real-time, generating long reads with high 

accuracy (Rhoads and Kin Fai, 2015). ONT's nanopore sequencing, on the other hand, measures 

changes in ionic current as DNA or RNA molecules pass through a protein nanopore, providing direct, 

real-time sequencing of DNA or RNA without the need for amplification or synthesis (Wang et al., 

2021). 

As these technologies are in their infancy, current iterations are still trailing second-generation 

techniques with respect to high error rates, higher costs, and lower throughput. Despite this, their 

ability to generate long reads facilitate genome assembly, detection of structural variants, and the 

analysis of full-length transcripts, making third generation techniques attractive for specific research 

questions. It is likely that further adoption third generation sequencing methods will occur in the 

coming years, when some of the drawbacks are ironed out. 

 

 

 

Figure 2: Examples of first, second, and third generation sequencing methods.  
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2.2 Single-cell sequencing 

In the late 2000s, advancements in sequencing technologies were dramatically changing the 

landscape of biological research. Motivated by overcoming limitations of traditional bulk sequencing 

methods and encouraged by the technological advancements made in the previous decade, the first 

single-cell sequencing methods were developed. These methods provided new opportunities to 

study cell heterogeneity and map the transcriptional profiles of rare cell types, uncovering the roles 

of individual cells in health and disease. 

2.2.1 Single-cell RNA sequencing 

The first scRNA-seq method was published in 2009. Driven by the need for a method capable of 

sequencing the RNA of primordial germ cells from early mouse embryos, where cells were in short 

supply, a method was developed for performing RNA-seq at a single-cell resolution (Tang et al., 

2009). The results demonstrated the feasibility of profiling gene expression in individual cells, laying 

the foundation for future advancements in the field. Despite its relatively low sensitivity, relying on 

poly-A tailing and adaptor ligation to complete libraries, this work highlighted the potential of single-

cell sequencing to reveal cellular heterogeneity and investigate gene expression dynamics in 

unprecedented detail. 

Soon after, a plethora of methods was developed, each with their own approach to produce single-

cell libraries. Smart-seq implemented a template switching oligo (TSO), making use of the Moloney 

murine leukemia virus (MMLV) reverse transcriptase, which adds three cytosines to the 5’ end of the 

transcript (Ramsköld et al., 2012). This strategy was subsequently incorporated in STRT-seq (Single-

Cell Tagged Reverse Transcription sequencing) which incorporated a barcode via the TSO, allowing 

for the pooling of samples prior to final library preparation (Islam et al., 2012). In a similar fashion, 

CEL-seq (Cell Expression by Linear amplification and sequencing), introduced in 2012, implemented 

an early barcoding approach, introducing a barcode via the dT primer, pooling cDNA prior to 

fragmentation and ligation with sequencing adapters (Hashimshony et al., 2012). These methods 

improved the sensitivity of gene expression profiling in single cells and significantly improved 

throughput compared to previous methods.  

Further improvements were made through the incorporation of unique molecular identifiers, of 

which MARS-seq (Massively parallel RNA single-cell sequencing) was an early adopter of (Jaitin et al., 

2014). MARS-seq combined the use of UMIs with a multi-tiered barcoding strategy, enabling the 

parallel processing of hundreds of cells in a single run, and reducing amplification noise, making it a 

popular choice for large-scale single-cell transcriptomics studies (Ziegenhain et al., 2017). In 2013, 

Smart-seq2, an improved version of the proprietary Smart-seq method, became the gold standard 

for scRNA-seq methods (Picelli et al., 2013). By performing Tn5-mediated tagmentation of amplified 

cDNA, Smart-seq2 enabled the sequencing of full-length transcripts from single cells. Smart-seq2 was 

further modified to incorporate UMIs in Smart-seq3 and Smart-seq3xpress, resulting in increased 

sensitivity with a drastically improved throughput and cost-efficiency (Hagemann-Jensen et al., 2020; 

Hagemann-Jensen et al., 2022). 
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In addition to plate-based methods, microfluidics-based RNA-seq methods have gained increased 

popularity, due to their ease of use, and the fact that they do not require specialized tools such as 

liquid handling robots for sequencing a large number of cells. By using microfabricated devices and 

micro-scale fluid manipulation, single cells are processed in micro to nanoliter volumes in an 

automated fashion, reducing reagent consumption. One of the earliest examples of a microfluidics-

based RNA-seq method is the Fluidigm C1 system, introduced in 2012 (Wu et al., 2014). This system 

automated the capture, lysis, and reverse transcription of individual cells in microfluidic chambers, 

improving the throughput of scRNA-seq experiments. More recently, methods such as Drop-seq and 

the 10x Genomics Chromium have been developed, encapsulating cells into droplets to considerably 

improve throughput (Macosko et al., 2015; Zheng et al., 2017). These methods have made single-cell 

RNA sequencing widely available, through commercially available platforms such as 10x Chromium. 

Recently, droplet sequencing has been made even simpler, based on particle-templated 

emulsification, enabling single-cell encapsulation and barcoding of cDNA in droplet emulsions using 

only a vortexer, removing all requirements of specialized microfluidic devices, expertise, or hardware 

(Clark et al., 2023). 

Despite the numerous advantages of microfluidics and droplet-based RNA-seq methods, some 

drawbacks persist. Importantly, while offering throughput orders of magnitude larger than what is 

available for plate-based methods, microfluidics-based RNA-seq methods suffer from lower 

sensitivity than plate-based methods. Additionally, microfluidic devices often have fixed capture 

chamber sizes, which may not be suitable for all cell types and sizes; and loading cells into 

microfluidic chambers can be stressful for cells, potentially affecting their viability. Finally, plate-

based methods offer more flexibility in terms of experimental design and protocol customization, 

whereas microfluidics-based methods often require adherence to predefined protocols and chip 

formats. Despite these drawbacks, microfluidic-based approaches maintain their relevance due to 

their user-friendly nature and widespread accessibility, with the major portion of the field adopting 

these approaches. 

2.2.2 Single-cell DNA sequencing 

The completion of HGP and the development of NGS methods also led to the development of larger 

scale DNA sequencing methods, sequencing large amounts of DNA quickly and cost-effectively. 

While NGS technologies have been successfully applied to various genomic tasks, their application to 

de novo genome assembly has presented certain challenges. First, NGS methods generate short read 

lengths, typically ranging from 100 to 300 base pairs, which can make the assembly of complex 

genomes difficult. Additionally, sequencing errors and biases introduced during library preparation 

and sequencing can affect the accuracy of the final assembly. In contrast, early studies using NGS 

methods to resequence bacterial genomes demonstrated how useful even very short reads are, 

given a reference genome to which to map them (Shendure et al., 2015). These studies 

demonstrated how performing DNA-sequencing in NGS platforms could easily be used to identify 

small mutational changes such as single nucleotide variations (SNV), and suggested that they could 

be used for identifying larger structural variants as well, such as copy number variations (CNV). 

Performing single-cell whole genome sequencing (WGS) is challenging due to the minute amounts of 

DNA contained in a single cell. In order to obtain sufficient material for sequencing many WGS 
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methods rely on whole genome amplification (WGA) prior to library preparation. Historically, WGA 

methods have been associated with challenges such as amplification biases, amplification errors and 

chimeric sequences. However, through the refinement of existing techniques and the development 

of new approaches, multiple methods have been designed for amplifying genomic material for 

sequencing. Each method offers its distinct advantages and drawbacks, allowing the user to select 

the most appropriate method to fulfill their specific goals. 

Degenerate oligonucleotide primed PCR (DOP-PCR) was developed in the early 90s with the aim to 

amplify small amounts of genomic DNA (Telenius et al., 1992). In this method degenerate primers 

are used, which contain random nucleotides at specific positions, allowing the primers to bind to 

multiple target sequences in a promiscuous manner. DOP-PCR starts with several pre-amplification 

cycles at a reduced initial annealing temperature, which promotes random primer binding. The pre-

amplified DNA fragments are then subjected to further PCR amplification at higher temperatures. As 

DOP-PCR relies on PCR amplification of a small portion of the genome its use is mainly limited to 

determining large copy number variations. Additionally, uneven coverage and a high error rate pose 

challenges for calling SNVs. 

To overcome some of the limitations of DOP-PCR multiple displacement amplification (MDA) was 

developed. MDA uses isothermal random priming and extension with a Φ29 polymerase, which has 

high processivity, low error rate, and strand displacement activity (Dean et al., 2001). MDA produces 

a greater genome coverage and a lower error rate, but still suffers from overrepresentation of loci 

that are amplified first, with greater exponential amplification exacerbating this effect (Bourcy et al., 

2014). As a result, MDA is more suitable for calling SNVs than DOP-PCR but may still pose challenges 

for calling CNVs. 

More recently, methods building on MDA have been developed to reduce amplification biases while 

controlling error rates. These methods use quasi-linear amplification and include multiple annealing 

and looping-based amplification cycles (MALBAC) and primary template-directed amplification (PTA). 

MALBAC employs a pool of random primers, each with a common sequence and 8 variable 

nucleotides capable of hybridizing to the template at low temperatures (Zong et al., 2012). DNA 

polymerases with strand-displacement activity are then used to generate semiamplicons of varying 

lengths. Semiamplicons are subsequently amplified, producing full amplicons with complementary 

ends, which are looped to prevent further amplification. Finally, exponential PCR is performed on full 

amplicons, generating large amounts of DNA for sequencing. Meanwhile, PTA makes use of the Φ29 

polymerase, but incorporates exonuclease-resistant terminators, creating smaller double-stranded 

amplification products that subsequently undergo limited amplification (Gonzalez-Pena et al., 2021). 

As this process leads to a bias towards amplification of the primary template, the propagation of 

errors in daughter amplicons is limited.  
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The challenge of producing cheap libraries of whole genomes from single cells has also led to the 

development of methods where amplification is reduced or avoided altogether. Transposase-based 

methods rely either on the direct library preparation (DLP) of unamplified genomic DNA, or linear 

amplification via transposon insertion (LIANTI). In DLP, extracted DNA is incubated with a 

transposase enzyme that carries sequencing adapters. The transposase cleaves the double-stranded 

DNA and simultaneously integrates the adapters into the cut sites. After tagmentation, a limited 

number of PCR cycles are performed to amplify the library and incorporate sample-specific barcodes 

(Zahn et al., 2017). Similarly, LIANTI is based on the direct tagmentation of genomic DNA, but uses a 

transposase loaded with adapters containing a T7 promoter (Chen et al., 2017). This enables the 

linear reverse transcription of fragments into self-priming RNAs, which are subsequently reverse 

transcribed into DNA, before RNAse digestion, second strand synthesis with a unique molecular 

barcode, and final library preparation. 

 

 

Figure 3 Examples of strategies for whole genome amplification of single cells. Earlier methods such 

as DOP-PCR and MDA suffer from lower coverage or higher error rates, compared to newer methods 

such as MALBAC, PTA, and DLP. 
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While most WGA and WGS methods aim to produce libraries with high and even coverage, the 

choice of method is still dependent upon which specific goals are prioritized, with different methods 

having their own strengths and weaknesses. As the earliest methods, DOP-PCR and MDA are largely 

obsolete, suffering from uneven coverage and amplification biases. Methods like MALBAC and PTA 

combine features of PCR-based and isothermal amplification methods to reduce amplification biases 

and improve coverage uniformity. Tagmentation-based methods such as LIANTI or DLP offer 

improved coverage uniformity, reduced amplification biases, and minimized costs (See Fig. 3 for an 

overview). 

The improvement of WGA methods that have occurred in the last ten years have allowed for the 

detection of genetic variations and mutations in low-input samples, such as single cells, which was 

previously challenging or impossible. 

2.2.3 Epigenetic profiling using single-cell sequencing 

Parallel to the development of scRNA-seq and WGA methods, the development of NGS techniques 

allowed for the development of novel techniques aiming to perform epigenetic profiling of cells by 

using sequencing as a final readout, many of which have subsequently been adapted for use in single 

cells. DNase-seq and ATAC-seq were developed in 1981 and 2013, respectively, and both rely on a 

similar mechanism (McGhee et al., 1981; Buenrostro et al., 2013). By treating intact nuclei with 

DNase or transposase, accessible chromatin is processed, while dense chromatin is inaccessible for 

the enzymes. The resulting fragments can then be processed for sequencing. While DNase-seq and 

ATAC-seq produce highly similar results, ATAC-seq confers the advantage that fragments are cut and 

ligated in one step, simplifying protocols for library preparation (Karabacak Calviello et al., 2019). 

Other methods include bisulfite sequencing, developed in 1992 (Frommer et al., 1992), revealing 

DNA methylation patterns, and Hi-C, developed in 2009 (Lieberman-Aiden et al., 2009), elucidating 

the three-dimensional architecture of the genome. 

In later years, epigenetic profiling methods have moved from use on bulk samples to single cells, 

enabling the study of complex and dynamic regulation of gene expression at the individual cell level. 

Single-cell ATAC-seq, which captures open chromatin regions, provides insights into active regulatory 

elements. This high-throughput method requires relatively low input material but provides limited 

information about specific histone modifications and has lower coverage compared to bulk ATAC-

seq. Despite this, single-cell scATAC-seq has seen wide use, being implemented in droplet-based 

format, and well formats with a high throughput to compensate for data sparsity. This has led to the 

publication of several studies producing vast atlases of accessible chromatin on a single-cell level 

(Cusanovich et al., 2018), and revealing tissue and cell-type specific regulatory elements (Preissl et 

al., 2018).  

While the adaptation of ATAC-seq to a single-cell format has been largely successful, the transition of 

other epigenome profiling methods to a single-cell scale has proven difficult. Single-cell bisulfite 

sequencing requires substantial sequencing depth, but harsh reaction conditions result in substantial 

DNA degradation, compromising the quality of the final libraries. Similarly, the single-cell variant of 

Hi-C, suffers from significant limitations as it generates sparse data and high levels of technical noise, 

limiting its broader application in the field. 
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2.3 Single-cell multiomics 

While the majority of single-cell research has relied on techniques measuring either DNA, RNA, or 

chromatin accessibility (see previous sections), several methods have emerged where two or more 

modalities are analyzed in the same cell. These multimodal methods enable the analysis of how 

modalities such as regulatory element accessibility, mutational burden, cell interactions, or tissue 

architecture act to affect gene transcription and cell states.  

2.3.1 Joint DNA and RNA sequencing of single cells 

The first method that attempted to analyze both mRNA and genomic DNA (gDNA) from the same cell 

was gDNA-mRNA sequencing (DR-seq). DR-seq relies on the reverse transcription of mRNA to single 

stranded DNA and the subsequent amplification of both gDNA and cDNA in the same reaction based 

on MALBAC (Dey et al., 2015). The product is split into two, and gDNA and cDNA are specifically 

processed in two separate reactions before sequencing. In genome and transcriptome sequencing 

(G&T seq), cells are lysed and mRNAs are physically separated from gDNA using biotinylated dT-

primers, before Smart-seq2 processing of mRNA, and MDA-based WGS of gDNA (Macaulay et al., 

2015). While these early methods provided a proof of concept, they did not see widespread 

adoption, due to suffering from technical challenges limiting throughput and increasing costs, and 

suffering technical biases associated with the WGA methods they applied. 

With direct nuclear tagmentation and RNA-sequencing (DNTR-seq), we developed a highly sensitive 

method, basing the protocol on the physical separation of nuclear and cytosolic compartments into 

separate multi-well plates directly after cell lysis (Zachariadis et al., 2020). This improved the quality 

of scRNA-seq data compared to bead separation, or co-processing of gDNA and mRNA in the same 

reaction. Additionally, as the name implies, DNTR-seq applied direct tagmentation of gDNA prior to 

amplification, leading to reduced amplification bias and lower cost. 

2.3.2 Joint epigenetic profiling and RNA sequencing 

Several methods have been developed in order to sequence the genome or accessible regulatory 

regions together with RNA expression in the same cell, and have been applied to multiple tissue 

types, with multiple approaches achieving this goal. Split and pool approaches such as Paired-seq 

(parallel analysis of individual cells for RNA expression and DNA accessibility by sequencing) and sci-

CAR (single-cell combinatorial indexing chromatin accessibility and mRNA) are based on multiple 

rounds of combinatorial indexing, tagging both the open chromatin fragments and cDNA molecules 

(Cao et al., 2018; Zhu et al., 2019). This enables the sequencing of hundreds of thousands to millions 

of cells at low cost but produces low sensitivity libraries and a degree of cross contamination among 

cells. Other methods combine single nucleus RNA sequencing (snRNA-seq) and ATAC sequencing by 

performing indexing in droplets, limiting cross-contamination, but limit RNA read-out nuclear RNAs 

(Chen et al., 2019). In addition to these methods, we have recently developed Smart3-ATAC, based 

on the physical separation of compartments from a cell and subsequent scRNA-seq and scATAC-seq 

(Cheng et al., 2021). This approach is more time consuming and lower through-put but generates 

higher quality data.  
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2.3.3 Spatial sequencing 

In addition to methods attempting to read out multiple modalities from the same cell, spatial 

sequencing methods have recently gained much attention (Marx et al., 2021). These methods 

involve in situ sequencing or imaging-based approaches, keeping the tissue intact during the 

measurement process. Through these techniques, gene expression data can be mapped back to their 

original location in the tissue, providing insights into the organization and structure of tissues, the 

interactions between different cell types, and the local effects of the tissue environment on gene 

expression. While the work in this thesis does not focus on these types of methods, recent 

developments within the field demand that some of these methods are at least mentioned.  

Spatial transcriptomics (ST) was one of the first spatial transcriptomics methods developed and relies 

on the in situ capturing of mRNA (Ståhl et al., 2016). Here, tissue sections are placed on a barcoded 

array, with each spot on the array capturing RNA from the section of tissue above it. Following 

sequencing, each read can then be traced back to its original location in the tissue. Multiplexed 

Error-Robust Fluorescence In Situ Hybridization (MERFISH) is an example of a method based on 

fluorescent in situ hybridization (Moffitt et al., 2016). This method relies on examining the individual 

RNA molecules with fluorescent probes to enable simultaneous detection of many different RNA 

species in their native context within cells. Additionally, methods such as Slide-seq exist, based on 

the in situ capturing of mRNA using barcoded micro beads (Rodriques et al., 2019). in situ capturing 

methods have recently become widely available with the introduction of 10X Visium, offering high 

resolution capture of 1-10 cells per barcode, and have recently been expanded to measure the full 

transcriptome, including non-polyadenylated transcripts (McKellar et al., 2023). The methods 

mentioned here are merely scraping the surface of the field of spatial sequencing technologies, 

which are not only limited to RNA-seq, but today also cover DNA-seq, ATAC-seq, and even 

multimodal readout (Zhao et al., 2022; Deng et al., 2022; Zhang et al., 2023). For a more complete 

review of spatial sequencing methods, their strengths and weaknesses, and applications, see Moses 

and Pachter, 2022. 

In addition to spatial transcriptomics methods, alternatives using conventional single-cell sequencing 

have been developed to obtain spatial information from single-cell transcriptomics data. These 

methods rely on the dissociation of tissues into multiplets, clusters of two or more cells, and 

subsequently deconvolving cell type composition of the multiplet transcriptional profiles. While 

these methods do not provide direct information on higher-order tissue structures as do 

conventional spatial sequencing approaches, they do provide the benefit of high quality, full 

transcriptome data, and are capable of measuring the effects of direct cell interactions. Such 

approaches have recently been successfully applied in a semi-supervised manner to predetermined 

pairs of cell types, as well as to hand-picked doublets (Boisset et al., 2018; Giladi et al., 2020). 

However, these methods are not without drawbacks, being either limited to interacting cell types 

with known cell surface markers or requiring laborious microdissection of cells, making high 

throughput studies impossible. To circumvent these limitations, we recently developed a method 

where both the number of cells and the constituent cell types for each multiplet is derived directly 

from the data (Andrews et al., 2021). This method confers the advantage that it can be used in an 

unsupervised manner and is compatible with high throughput droplet-based techniques, making 

possible the study of cell-interactions in complex tissues. 
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2.3.4 Combining CRISPR screens with single-cell sequencing 

In addition to the development of single-cell multiomics, the last decade has seen the rise of large 

scale CRISPR-screens. Initial CRISPR methods made use of wild type Cas9 endonucleases, capable of 

inducing double stranded breaks at target sites and enabling gene editing studies. Since then, the 

development of the catalytically inactive “dead” Cas9 (dCas9) has further expanded the use of 

CRISPR studies to the investigation of epigenetic regulatory mechanisms. dCas9 lacks the 

endonuclease capability of Cas9, but is still guided to target sequences by gRNAs.  By linking dCas9 to 

repressor complexes or transcriptional activators, targeted silencing or activation of regulatory 

elements such as promoters and enhancers can be achieved.  

To maximize the potential of CRISPR screens, multiple methods have been developed capable of 

reading out gRNAs together with transcriptomic or ATAC-seq read out. This includes PERTURB-seq, 

CITE/ECCITE-seq, and CROP-seq for RNA-seq, and CRISPR-sciATAC and Spear-ATAC for ATAC-seq 

(Datlinger et al., 2017; Dixit et al., 2016; Mimitou et al., 2019; Pierce et al., 2021; Liscovitch-Brauer et 

al., 2021). Such methods have drastically extended the utility of CRISPR-based screening, allowing 

the interrogation of all genes in the genome (Replogle et al., 2022), and large-scale studies of 

regulatory elements (Gasperini et al., 2019). 

2.3.5 Insights into transcriptional regulation gained from single-cell sequencing 

Single-cell sequencing technologies have significantly advanced biological and medical research, 

providing a tool to investigate cellular diversity and functionality in high detail and throughput. These 

methods have revealed insights into the heterogeneity of tissues in health and disease, highlighting 

expression patterns across cell subpopulations and revealing rare subpopulations (Haber et al., 2017; 

Ximerakis et al., 2019). Additionally, single-cell sequencing technologies have provided insights into 

the mechanisms underlying transcriptional regulation. In the sections below, I will discuss a variety of 

such studies and highlight findings that relied on the development of single-cell sequencing 

techniques. 

In a healthy aging cell, there is an accumulation of somatic mutations over time due to intrinsic 

factors like errors during DNA replication and extrinsic factors such as exposure to environmental 

mutagens. This mutational burden can contribute to cellular dysfunction and the development of 

age-related diseases. As somatic mutations occurring in post-mitotic cells are difficult to study, 

because they cannot be clonally expanded, these processes are best studied using single-cell 

sequencing. Such approaches have been attempted using both scDNA and scRNA-seq techniques on 

cells from healthy aging individuals. These approaches have revealed mutational signatures and 

associated them with cellular phenotypes, quantified the accumulation of cancer-causing mutations 

in healthy tissues, and compared the rates and patterns of mutations in the stem cells of different 

tissues (Martincorena et al., 2015; Blokzijl et al., 2016; Enge et al., 2017).  By revealing the types and 

frequencies of mutations that occur in healthy cells as we age, these studies may help us better 

understand the initial steps in the development of age-related diseases.  
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Single-cell sequencing has also shed light on the mechanisms controlling transcription, revealing how 

regulatory elements act to control transcription. Transcriptional bursting refers to the phenomenon 

where gene transcription occurs in bursts or pulses, rather than at a steady rate. This bursting 

behavior is thought to be a major source of variability in gene expression across a population of cells. 

Single-cell sequencing techniques have been instrumental in studying this phenomenon and have 

enabled the determination of transcriptome-wide burst frequencies and sizes, revealing that 

enhancers tend to regulate burst frequencies while burst size is defined in core promoter motifs 

(Larsson et al., 2019; Larsson et al., 2021). Concordantly, other studies using scRNA-seq have 

revealed that enhancers predominantly regulate gene expression via transcription initiation, rather 

than via release of PolII pausing (Larke et al., 2021). 

Single-cell sequencing techniques have also had massive implications for cancer research, enabling a 

deeper understanding of the genetic and epigenetic variations within a tumor, as well as allowing 

remarkable discoveries relating to the TME. This has led to better understanding of tumor evolution, 

metastasis, and treatment resistance. Much as is has for healthy tissues, single-cell sequencing has 

been used to elucidate the cellular heterogeneity within tumors and their microenvironment, 

identifying distinct cellular subpopulations that contribute to tumor progression and therapeutic 

resistance (Tirosh et al., 2016). Additionally, single-cell sequencing technologies have been used to 

profile the immune cells within tumors, providing insights into anti-tumor immune responses and 

informing the development of immunotherapies (Legut et al., 2022). scRNA-seq has for instance 

been used to profile immune cells in breast cancer, revealing a diversity of immune cell states and 

interactions that could be targeted to enhance immunotherapy (Azizi et al., 2018). Moreover, scDNA 

methods have been used to profile cells of the TME, surprisingly revealing CNV:s and clonal 

expansion of non-malignant stromal cells of the TME (Zhou et al., 2020). 

2.4 Transcriptional regulation and the cell state 

2.4.1 PolII and the core promoter 

The most basic form of transcriptional regulation is transcriptional initiation through the binding of 

RNA polymerase II (PolII) to the transcription start site (TSS) - the first nucleotide of a transcript. The 

process of TSS identification is a tightly regulated process, preventing promiscuous PolII binding and 

the transcription of non-functional transcripts. The core promoter, the sequence within 50 base pairs 

of the TSS, contains binding sites for PolII and general transcription factors (TFs) which together form 

the pre-initiation complex. Several commonly occurring motifs of the core promoter have been 

identified, including the TATA box and initiator, as well as other patterns such as the TFIIB 

recognition element and the downstream core promoter element (Smale and Kadonaga, 2003). Core 

promoter motifs constitute a mode by which the genetic code directly regulates gene expression, 

affecting which TFs can promote transcription. As such, it is unsurprising that the perturbation of 

core promoter motifs can significantly disrupt transcriptional activity (Juven-Gershon, 2008; Parry et 

al., 2010; Kadonaga, 2012). 
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2.4.2 Regulatory elements 

While the core promoter and pre-initiation complex are sufficient to identify the TSS and initiate 

transcription, PolII activity is further modified by cis-regulatory elements, including promoters and 

enhancers (Shlyueva et al., 2014; Spitz and Furlong, 2012; Segert et al., 2021). A universal feature of 

active cis-regulatory elements is nucleosome displacement through TF binding, forming nucleosome 

deprived regions (NDR), where the underlying DNA is accessible. While promoters are easily 

identifiable due to their proximity to the TSS, NDRs have been important for identifying enhancer 

regions. In nuclease-based enhancer screens, nucleases such as Dnase I are used to digest accessible 

regions of the genome, indicating the location of an active regulatory element, which can 

subsequently be identified through sequencing (Meuleman et al., 2020). 

The promoter region of a gene is proximal to the TSS, typically extending to 100-1000 base pairs, and 

contains specific binding sites for TFs. TF binding to these sites activates transcription by recruiting 

co-activators or through direct interaction with PolII to influence recruitment, initiation, and 

elongation (Vaquerizas et al., 2009). Compared to regions directly adjacent to the TSS, extended 

promoter regions display a lower degree of sequence similarity, with motifs varying among promoter 

regions of different genes. This reflects the nature of their function; extended promoter regions 

enable differential gene expression, as they contain DNA sequences which interact with TFs in a 

specific manner, thus achieving cell type specific responses to the activation of signaling pathways. 

Enhancers are regulatory elements which activate transcription through the recruitment of 

transcription factors to the TSS. As opposed to promoters, enhancers are located more distally from 

the TSS and require DNA folding to bring attached TFs to a position where they can affect 

transcriptional activity. Enhancers are believed to promote gene transcription by acting in concert 

with other regulatory elements to increase the frequency of gene bursting (Larsson et al., 2019). The 

precise mechanism of how enhancers contribute to transcriptional activation has remained elusive. 

It has been proposed that enhancers are brought in contact with the TSS in a stable and specific 

manner. More recently, a phase separation model has been proposed, where regulatory elements 

bound to TFs fold in a semi-structured manner to form multi-molecular assemblies which 

compartmentalize and provide a regulatory mechanism (Hnisz et al., 2017). Enhancers distinguish 

themselves further from promoters by their cell type specificity. Large scale studies examining 

genome accessibility across cell types indicate that enhancers are major regulators of cell states, 

determining cell type specific gene expression through the integration of external signals (Heinz et 

al., 2010; Meuleman et al., 2020). 
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Figure 4: Proposed mechanism by which enhancers confer tissue specific gene expression. 

Enhancers located upstream of their target gene are rendered inaccessible by tissue specific 

chromatin condensation. This proposed mechanism provides an efficient way to control gene 

expression in different tissues and as a response to different stimuli. 

Despite their notable differences, enhancers and promoters exhibit several shared characteristics. 

For instance, both types of regulatory elements are located in NDRs that can bind PolII, and 

frequently share similar sequence structures (Andersson et al., 2014a). It is therefore unsurprising 

that both promoters and enhancers have been observed to perform dual functions, with promoters 

activating gene expression at distant TSSs and enhancers driving transcription near their own loci 

(Andersson et al., 2014b; Dao et al., 2017; Diao et al., 2017). The structural and functional similarity 

between enhancers and promoters has led to attempts at redefining regulatory elements.  
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In a proposed model, regulatory elements should not be considered a dichotomy of promoters and 

enhancers, but rather similar structures that perform regulatory functions at varying degrees. In this 

model a regulatory element should have the following properties:  It should be contained within a 

NDR, which is bound by TFs; it should have some degree of promoter activity, and it may have some 

degree of enhancer activity (Andersson et al., 2020). While such a model provides descriptive 

characteristics and serves as a reminder that promoter and enhancer-like functions are not mutually 

exclusive, the commonly used definition where promoters reside at sites where stable transcripts are 

produced while enhancers regulate transcription from more distal loci, remains a more practical 

model. 

2.4.3 Topologically associating domains 

As enhancers relay transcriptional instructions over large distances, there must be a mechanism to 

adjoin enhancers and promoters appropriately. Chromatin topology, the three-dimensional folding 

of DNA into topologies, has been suggested as a mode by which enhancer-promoter interactions are 

regulated. Topologically associating domains (TADs), self-interacting genomic regions, constitute a 

structural regulatory environment, acting by localizing enhancers to appropriate promoters, while 

insulating promoters from enhancers located in other TADs (Szabo et al., 2019). The importance of 

TADs has been displayed in studies where inversions at TAD borders lead to aberrant transcriptional 

activity and disease (Lupiáñez et al., 2015). Conversely, TAD disruption in other contexts induce small 

or partial effects, indicating that the transcriptional regulation of many genes is resistant to TAD 

disruption (Ghavi-Helm et al., 2019; Nora et al., 2017), and that additional mechanisms are likely 

important in enhancer-mediated gene regulation. 

2.5 Transcriptional regulation and cell states in cancer 

While gene expression is tightly regulated in healthy cells, malignant cells are characterized by 

increased transcriptional entropy, leading to a larger degree of variation in cell states. This variation 

is caused by genetic alterations, both in non-coding and protein coding regions of the genome, as 

well as dysregulation of the epigenetic machinery. Population diversity, in combination with 

heritable traits and selective pressure, sets the stage for the process of clonal selection, where cells 

containing beneficial mutations and epigenetic modifications will survive and expand. 

2.5.1 Mutations in coding regions 

The accumulation of mutations in cancer cells occurs non-randomly, since beneficial mutations 

affecting cellular programs such as survival, proliferation, and differentiation lead to the preferential 

expansion of clones harboring them. Historically, a large focus has been placed on mutations 

affecting the protein coding regions of tumor suppressors and oncogenes. Tumor suppressors tend 

to be rendered non-functional through insertions, deletions, or nonsense mutations while 

oncogenes are rendered hyperactive through amplifications, activating point mutations, or 

translocations leading to hyperactive fusion proteins or increased expression through promoter 

hijacking. The effects of such mutations can be dramatic, with only a few being sufficient for cancer 

initiation, and certain cancers are driven by persistently activated signaling pathways as a result of 

mutated proteins (Look, 1997; Weinstein and Joe, 2006).  
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The identification of highly impactful mutations has led to the development of treatment strategies 

targeting specific oncogenes, many of which are used clinically today. Prominent examples include 

Trastuzumab, targeting HER2 in subsets of breast cancer; Vemurafenib, inhibiting MAPK-signaling in 

melanoma; and Imatinib, a Tyrosine kinase inhibitor used in the treatment of subsets of leukemias 

(Hughes et al., 2003; Piccart-Gebhart et al., 2005; Bollag et al., 2010). 

Molecular targeting of oncogenic proteins should be considered a success story, leading to drastically 

improved prognosis for certain cancer types. Despite this, for most cases such approaches have 

proven unsuccessful.  This is due to the fact that most cancers are not the result of a few lesions in 

highly impactful regions, but involve a large number of perturbations, many of which occur in 

regulatory portions of the genome. The importance of regulatory elements as drivers of cancer has 

been highlighted through genome wide association studies (GWAS), showing that the majority of 

genetic variants associated with cancer risk are located in non-coding regions, and are further 

enriched in promoters and enhancers (Schaub et al., 2012; Maurano et al., 2014; He et al., 2015; 

Dunning et al., 2016). Additionally, many cancers display elevated mutation rates at TF-binding loci, 

especially in promoter regions of oncogenes such as BCL2, RBM5 and WWOX (Smith et al., 2015; 

Katainen et al., 2015).  

2.5.2 Non-coding mutations in cancer 

Despite the fact that mutations occur in a stochastic manner across cell types, most genes involved 

are enriched in or specific to distinct cancer-types (Carroll et al., 1996; Venkitaraman et al., 2002; 

Bader et al., 2006). This suggests that oncogenes require certain conditions to drive cancer. As gene 

regulatory enhancer activity is highly cell type specific, it has been proposed that cell type specificity 

provides these conditions with the presence of accessible, poised enhancers near oncogenes and 

tumor suppressors determining whether or not an activating mutation confers oncogenic activity 

(Sur and Taipale, 2016; Mertens et al., 2015). Additionally, non-coding regions of the genome have 

been implicated in malignancy through genome-wide association studies (GWAS), revealing that the 

majority of variants associated with an increased cancer risk are located within non-coding regions, 

with a significant number situated in candidate cis-regulatory elements (cCREs) (Sud et al., 2017), 

observations which have been corroborated in studies performing WGS of tumors (Wang et al., 

2014). Taken together, these results emphasize the importance of developing a deeper 

understanding of the role of non-coding regions in driving the emergence and progression of cancer. 

Insights into specific sites have shed light on how such mutations can contribute to cancer 

progression. For instance, mutations upstream of the TAL1 gene identified in a subset of T-cell acute 

lymphoblastic leukemias lead to the creation of de novo binding sites for the transcription factor 

MYB, resulting in TAL1 overexpression, a potent driver of tumorigenesis (Mansour et al., 2014). 

Additionally, chromosomal rearrangements have been observed which shift regulatory elements 

closer to oncogenes, thereby contributing to cancer development. A specific case is found in a subset 

of leukemias, where a chromosomal inversion moves the enhancer of the GATA2 gene near to the 

promoter of the adjacent stem-cell regulator EVI1. This leads to EVI1 overexpression and GATA2 

haploinsufficiency, exacerbating disease progression (Gröschel et al., 2014). 
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Despite these examples, the study of non-coding mutations and their role in cancer has been 

historically challenging due to the sheer volume of potential candidates, the absence of suitable 

tools, and difficulties in examining mutations within the appropriate cellular context. Recent 

technological advancements, such as the development of massive parallel reporter assays, and large 

scale CRISPRi-screens, have been used to better address these challenges, signifying a promising shift 

in the field of cancer genomics (Abell et al., 2022; Morris et al., 2023). 

2.5.3 Acute lymphoblastic leukemias and Pancreatic ductal adenocarcinoma 

Pancreatic ductal adenocarcinoma (PDAC) and acute lymphoblastic leukemia (ALL) represent two 

distinct types of cancer that demonstrate the diversity of cancer biology and the need for 

individualized approaches. PDAC, a highly aggressive and often lethal solid tumor, arises from the 

pancreatic ducts and is characterized by rapid progression, late diagnosis, and poor response to 

treatment. On the other hand, ALL is a blood cancer that originates in the bone marrow, primarily 

affecting children. Despite its aggressive nature, ALL has seen significant improvements in treatment 

outcomes in recent years, with survival rates now exceeding 90% for pediatric patients (Hunger and 

Mullighan, 2015). 

The genetic and epigenetic landscapes of PDAC and ALL are quite different, reflecting their distinct 

tissue origins and pathogenetic mechanisms. PDAC is notorious for its complex genomic alterations, 

often involving key driver genes. While mutations frequently occur in KRAS, TP53, CDKN2A, and 

SMAD4, treatment of PDAC presents significant challenges due to the diverse and complex 

molecular subtypes of this disease. Different subtypes of PDAC are characterized by distinct 

molecular signatures, often including unique or rare sets of gene mutations (Waddell et al., 2015; 

Bailey et al., 2016). These molecular distinctions affect disease progression, responses to treatment, 

and overall patient prognosis, and often result in significant heterogeneity within the tumor, which 

might limit the effectiveness of targeted therapies. 

On the other hand, ALL is characterized by recurrent chromosomal translocations and focal gene 

mutations, often involving genes essential for lymphoid development and differentiation. A 

significant example is the ETV6-RUNX1, caused by a translocation between chromosomes 12 and 21, 

which leads to the formation of a chimeric transcription factor (Mullighan et al., 2007). Such 

mutations, although destructive, are generally fewer and more predictable than those found in 

PDAC. This relatively lower level of molecular complexity in ALL, combined with the sensitivity of 

leukemic cells to chemotherapy, contributes to the generally high cure rates in pediatric ALL. 

Treatment protocols have been optimized over the years using risk-stratification based on certain 

molecular and cytogenetic features, enabling high-dose, targeted chemotherapy for high-risk 

patients, while reducing toxicity for others (Lee et al., 2023). 

The contrasting features of PDAC and ALL highlight the importance of understanding the specific 

molecular mechanisms driving each cancer type, as well as the need for single-cell sequencing and 

improved methods to study the complex interplay between genetic, epigenetic, and transcriptional 

changes within individual cancer cells. By gaining a deeper understanding of the molecular basis of 

these cancers, more effective, targeted therapies tailored to the unique characteristics of each 

disease can be developed. 
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2.6 Cellular niches and physical interactions in health and disease 

2.6.1 Maintenance of tissue homeostasis 

The external environment, encompassing the cellular microenvironment and cell-cell interactions 

within specialized niches, is vital to cellular function and homeostasis. One of the best-studied 

cellular niches is the epithelial crypts of the small intestine (Allaire et al., 2018). The stem cells at the 

base of these crypts are responsible for the continuous regeneration of the intestinal epithelium, the 

most rapidly self-renewing tissue in adult mammals. A pivotal actor in this process are Paneth cells, a 

type of secretory cell intermingled among the stem cells at the crypt base, which has a function in 

the microbial defense. Paneth cells also provide an important function in supporting the stem cells 

by providing Wnt, Notch, and other growth factors, creating a niche conducive to stem cell 

maintenance and function. This process is essential to maintain stem cell identity and to balance self-

renewal with differentiation, and the disruption of this niche or its signaling can lead to disorders 

including cancer. 

Another example is the white pulp of the spleen (Mebius et al., 2005). The white pulp is structured 

into zones, with the periarteriolar lymphoid sheath (PALS) primarily housing T cells, and follicles that 

predominantly contain B cells. The marginal zone, which separates the white pulp from the red pulp, 

contains antigen-presenting cells, including macrophages and dendritic cells. Dendritic cells, which 

are adept at capturing, processing, and presenting antigens, play a pivotal role, presenting antigens 

directly to T cells B cells, initiating adaptive immune responses. The spleen's unique structure and 

cell composition make it a vital organ for initiating immune responses, particularly against 

encapsulated bacteria. Removal of the spleen can lead to an increased risk of infections, especially 

those caused by encapsulated bacteria. 

2.6.2 The tumor microenvironment 

As these examples illustrate, the effects of cell interactions are critical to tissue function, regulating 

processes such as regeneration, proliferation and survival. As such, it is unsurprising that 

perturbations to cellular niches are frequently observed across multiple cancer types, often 

producing favorable microenvironments for cancer cells. Tumor microenvironments (TME) consist of 

a variety of cell types, including both cancer cells and non-cancer cells such as immune and stromal 

cells, as well as other cell types of the primary organ. While clearly implicated in tumor progression 

and metastasis, cell interactions with their complex natures and heterogeneity between TMEs have 

made studying cell interactions and their effects in cancer challenging. This challenge is exacerbated 

by the fact that cells in the TME can either promote or inhibit tumor growth, depending on the 

specific context in which they act. 
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Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types in the TME and have 

been implicated in cancer progression and drug resistance (Kalluri, 2016). CAFs contribute to tumor 

growth and progression through several mechanisms. CAFs secrete factors such as vascular 

endothelial growth factor (VEGF) and fibroblast growth factor (FGF), promoting angiogenesis, and 

supplying nutrients to the growing tumor. The chemokines produced by CAFs also attract a variety of 

immune cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSC), 

which contribute to immune evasion by suppressing anti-tumor immune responses. CAFs also act by 

the remodeling of the extracellular matrix (ECM), facilitating tumor growth and metastasis and 

modulating the TME to promote therapy resistance (Öhlund et al., 2014). 

While immune cells are pivotal for the early detection and removal of aberrant cells - as illustrated 

by the increased cancer prevalence in immunocompromised patients (Robison et al., 1987; Hayward 

et al., 1997; Shiels et al., 2011) - in later stages of cancer, immune cells are often found to mediate 

effects beneficial to tumor growth. The failure of immune cells to clear cancer cells can lead to a 

state of chronic inflammation, supporting cancer growth. This is evident in multiple solid tumors, 

where the degree and cellular composition of immune infiltrate impacts prognosis (Zhang et al., 

2003; Ribatti et al., 2003; Galon et al., 2006; Mahmoud et al., 2011; Chang et al., 2011). Furthermore, 

interactions between cancer cells and immune cells of the TME can become reciprocal over time, 

with tumor cells shaping the surrounding immune environment into one promoting growth and 

tissue remodeling. This is achieved by attracting and expanding supportive immune cells through the 

secretion of chemokines, suppressing immune mediated cell death, and promoting tissue repair and 

remodeling (Kohli et al., 2021). 

2.6.3 Targeting the tumor microenvironment 

As the importance of the TME in cancer progression has become apparent, strategies targeting these 

cells have been devised. Multiple strategies targeting immune cells have been attempted, including 

the inhibition of immune cell migration and checkpoint inhibition of cytotoxic T-cells, the latter of 

which has resulted in clinically approved therapies for several cancer types (Qian et al., 2011; Rotte 

2019). Other therapeutic strategies targeting supportive cell types have shown mixed results. For 

instance, anti-angiogenic therapies through the antagonism of VEGF signaling are frequently 

circumvented by compensatory mechanisms, such as an increased capacity of cancer cells to migrate 

(Bergers and Hanahan, 2008). Similarly, while in vitro and in vivo models indicate therapeutic 

potential of targeting stromal cells, clinical trials attempting such methods have had limited success 

(Sherman et al., 2014; Jiang et al., 2020). Taken together, these mixed results reflect the complex 

nature of cell-cell interactions in cancer, and it is clear that a better understanding is required in 

order to properly utilize therapies targeting supportive cell types. 
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2.7 Future perspectives 

The value of NGS and single-cell sequencing techniques is already clear and has already led to a 

better understanding of cell states and the gene regulatory mechanisms underlying them, with 

several studies indicating that these methods may be informative for prognostic purposes (Tirosh et 

al., 2018; Cohen et al., 2021). Additionally, while a large number of multimodal methods have been 

developed, improved study designs will certainly provide additional information, revealing how 

different cell states determine cell fate in health and disease (Zhou et al., 2020; Emert et al., 2021).  

As recent technical advances have led to an avalanche of new data, a future challenge will be how to 

best utilize this knowledge to improve treatments and provide better patient outcomes. It is clear 

that cancer is a diverse class of diseases, differing not only between patients and types, but in many 

cases showing a great degree of heterogeneity among cancer cells and clones within the same 

patient. Such a degree of variation provides two challenges: Firstly, as cancer progresses, the 

dysregulation of programs controlling genome integrity and transcription lead to the accumulation 

of mutations and epigenetic changes, and discerning drivers of disease from passengers presents a 

challenge in itself. Secondly, a large degree of diversity provides a base for adaptation and thus 

therapy evasion, as therapies will affect cells unevenly, allowing cells with a greater capacity for 

survival to expand. For these reasons it will be important to not only identify targetable traits 

important for cancer survival and growth, but also to predict and target features capable of rescuing 

and reconstituting cancer following treatment. 

It is becoming increasingly clear that the prevalence of rare clones, nuanced cell states, and TME 

composition can have a profound impact on patient outcome and risk of relapse. While current 

diagnostic methods provide limited information on such details, single-cell techniques can discern 

such features, providing an avenue for improved risk prediction and better decision making 

regarding therapeutic approaches. While standardization, reduced cost, and increased availability 

will be required, it seems likely that these methods will see use in the clinic in the near future, 

bringing us closer to personalized therapeutics. 
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3 Research aims 

The overall aim of this thesis was to develop novel single-cell sequencing methods capable of 

capturing multiple modalities. While our initial focus was to limit the scope to the study of clonal 

structures (combined RNA and DNA from a single cell) and cell interactions (spatial inference from 

incompletely dissociated cells) in cancer, after the initial success of our first two methods we decided 

to pursue studying regulatory elements and other non-coding regions of the genome. The 

accomplishment of this is described in the last two, currently unpublished manuscripts, where we 

develop SMART3-ATAC, for the joint profiling of accessible chromatin and full-length RNA transcripts, 

and ACTI-seq, where we adapt this for use with CRISPRi screening. 

In Paper I, we aimed to develop a method capable of extending the utility of single-cell RNA-seq 

methods to add a layer of spatial information, allowing the user to identify cell types that were more 

prone to physically interact with each other. Importantly, we wanted this to be a method that could 

be used in an unsupervised manner, allowed for high throughput, and was compatible with the 

majority of available single-cell RNA-seq methods. 

The aim of Paper II was to develop a method that would allow us to jointly profile DNA and RNA 

from the same cell. Specifically, it was important that we could establish a method where WGS 

library preparation was uncomplicated in order to reduce cost and allow us to perform sequencing 

on many cells. We wished to implement this method to study how copy-number variations affect 

gene expression following copy number gain or loss.  

For Paper III we aimed to build on our success from paper III, and produce a method capable of 

producing high-quality ATAC-seq and RNA-seq data from the same cell. Additionally, we chose to 

elevate the choice of RNA-seq method in order to provide the highest quality of single-cell ATAC-seq 

and RNA-seq data possible. 

Paper IV built further on paper III. Here we aimed to use SMART3-ATAC in combination with CRISPRi 

screening. We wished to establish this method in order to study pancreatic ductal adenocarcinoma, 

characterizing regulatory elements involved in maintaining growth and proliferation, and identifying 

transcription factors binding to these elements in order to regulate transcription.
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4 Ethical considerations 

In this thesis, we were faced with three primary ethical considerations: the utilization of human 

pediatric cancer samples for DNA and RNA sequencing, the use of murine animal models, and the 

employment of patient-derived cell lines. Of these, the use of primary pediatric samples emerges as 

the most ethically complex. 

At the forefront of these complexities is informed consent. This involves comprehensive 

communication with the parents or guardians, as our samples are typically procured from very young 

children incapable of fully comprehending the scope of our work. We ensured that all involved 

parties understand the purpose, process, potential risks, benefits, and outcomes of the study, and 

are aware of their right to withdraw participation at any time. Equally important is the benefit-risk 

assessment. By only using surplus samples, we obviate the need for additional invasive procedures, 

thereby avoiding the infliction of undue distress or harm on our pediatric patients. However, the 

sensitive nature of these samples, especially considering they are pediatric, warrants extreme 

caution in privacy and confidentiality measures. Genomic information, while invaluable for research, 

can reveal sensitive insights into an individual's health, potential diseases, and familial relationships. 

As such, we ensured stringent anonymization of data and secure storage to prevent the 

dissemination of private information. 

Animal experimentation, our second ethical domain, is fraught with its own challenges. In this study, 

we used animals specifically bred for research that were scheduled for culling. We adhered strictly to 

the principle of the 3Rs – Replacement, Reduction, and Refinement – which advocates for the 

substitution of animal models with alternatives where possible, the minimization of animals used, 

and the refinement of experimental procedures to lessen discomfort or harm. 

Finally, we turned to the use of patient-derived cell lines. Though this poses fewer ethical dilemmas 

than human samples or animal models, the origins of these cell lines and their informed consent 

status call for careful attention. Issues like cell line misidentification or contamination also warrant 

consideration. In this vein, it's important to note that some cell lines, historically obtained under 

standards that wouldn't meet modern expectations of informed consent, may present ethical 

quandaries. 

In conclusion, while the recent advances in sequencing techniques hold great promise for decoding 

biological and disease mechanisms, performing large scale sequencing studies on primary tissues 

from patients comes with its own set of ethical dilemmas. For the research performed in this thesis, 

these dilemmas have had our ongoing attention and we have taken all the steps possible to ensure 

the privacy of patients, and that patients have donated samples under informed consent. 
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5 Results and discussion 

5.1 Paper I 

An Unsupervised Method for Physical Cell Interaction Profiling of Complex Tissues 

To develop a single-cell RNA-seq method capable of adding a level of spatial information, we set out 

to design a general, high-throughput, and unsupervised method based on multiplet deconvolution to 

infer cell type interactions in healthy and diseased tissues. scRNA-seq methods generally rely on 

dissociating cells into single-cell suspensions, with incompletely dissociated cells (multiplets) being 

produced as a by-product.  To design the method called cell interaction by multiplet sequencing 

(CIM-seq), we decided to make use of this heterogeneous suspension of multiplets to determine 

cells which are physically interacting with each other in intact tissues.  

By preparing RNA-seq libraries from cell multiplets, we obtained transcriptional profiles representing 

a mix of unknown quantities of cells from the tissue. These quantities could then be approximated in 

silico by combining scRNA-seq data from constituent cell types. In other words, multiplet profiles can 

be computationally deconvoluted into fractional contributions of single cells, using a set of 

transcriptional profiles representing all observed cell types in the tissue and estimating the number 

of cells that constitutes each multiplet. This process is performed in three stages: 1) partial 

dissociation of the target tissue, cell sorting to separate singlets from multiplets, and scRNA-seq to 

obtain transcriptional profiles 2) the generation of a blueprint of all cell types and states in the tissue 

and 3) computational deconvolution, using maximum-likelihood estimation to determine each 

multiplet’s cell-type composition based on the blueprint.  

We benchmarked CIM-seq on a series of tissues and artificial multiplets, using both plate-based 

(Smart-seq2) and droplet based (Chromium Single Cell 3′ v.3) methods. As a proof of concept, we 

first performed CIM-seq on three distinct cell lines (A375, HCT116, HOS) sorted as singlets or 

multiplets of a known composition. By performing the deconvolution in this controlled setting, we 

showed that CIM-seq displayed a high level of correspondence between expected and detected 

connections (<5% average error rate). We subsequently used CIM-seq to identify known structural 

features of the small intestinal epithelium, spleen, and lung. We used plate-based methods for the 

small intestinal epithelium and spleen, while 10x was used for the lung, and a repeated run of the 

small intestinal epithelium was used in order for us to compare results between different 

methodologies. In all three of these tissues CIM-seq was able to identify cell interactions such as 

Paneth-stem cell interactions in the base of the intestinal crypt, and interactions between 

endothelial cells and type II pneumocytes in the pulmonary capillary endothelium. Importantly, 

when using droplet-based methods with a higher throughput, CIM-seq was also able to detect more 

subtle enrichments, such as a preference for goblet cells to reside in crypts of the small intestine. 

Finally, we used CIM-seq to characterize cell structures in colonic crypts. At the time of the study, it 

had been established that the colonic epithelium shares a similar crypt structure to that of the small 

intestine, with Lgr5+ stem cells located at the base of the crypt. However, the equivalent of Paneth 

cells, responsible for Wnt ligands in the small intestine, had not been identified in the colon. By 

performing CIM-seq on colonic epithelium we revealed a structure highly similar to that of the small 
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intestine, but with an increased complexity with regards to goblet cell types and stem cell types. A 

subset of goblet cells expressed the wound healing marker Plet1 and interacted strongly with stem 

cells expressing high levels of Lgr5.  

To assess whether Plet1-expressing goblet cells filled the function of Paneth cells in the colon, we 

looked at the expression of genes involved in the Wnt signaling pathway. From our scRNA-seq data 

we could see that Wnt ligands were largely absent from the colonic epithelium with microscopy 

confirming epithelial Wnt3 expression in small intestinal crypts, while Wnt2b was found in the 

stroma of both tissues. We could therefore conclude that none of the epithelial cell types in the 

colon provide canonical Wnt ligands, and that colonic stem cells are supported by a stromal source 

of Wnt ligands. 

In summary, CIM-seq provides an innovative method that leverages multiplet deconvolution to 

decipher cell-cell interactions in various tissues. By utilizing a previously considered by-product of 

scRNA-seq, the method provides insights into cellular architecture and interactions in an efficient 

and cost-effective manner. The proof-of-concept and benchmarking experiments demonstrated the 

accuracy and versatility of CIM-seq in a variety of tissue types and experimental platforms. Notably, 

the application of CIM-seq to colonic crypts revealed new insights into the cellular composition and 

Wnt ligand sources in the colon, highlighting the potential of this approach for advancing our 

understanding of tissue biology.   
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5.2 Paper II 

A Highly Scalable Method for Joint Whole-Genome Sequencing and Gene-Expression Profiling of 

Single Cells 

To investigate the impact of genetic variation on gene expression in complex cellular mixtures, we 

developed Direct Nuclear Tagmentation and RNA sequencing (DNTR-seq), a technique that enables 

the simultaneous sequencing of whole-genome DNA and full-length mRNA in single cells. In order to 

facilitate widespread adoption of the method, we prioritized four key features: (1) High fidelity, 

entailing avoiding lossy operations like DNA cleanup and minimizing PCR amplification cycles for 

genomic sequencing, while striving for high-sensitivity detection of full-length transcripts in mRNA-

seq. (2) Individually addressable cells, allowing for sequencing cells at variable depths. (3) Ease of 

adaptation, precluding the need for non-standard equipment. (4) Minimal positional bias of WGS, 

facilitating the identification of CNV:s at ultra-low coverage and reducing the sequencing required to 

achieve desired coverage. 

DNTR is a single-well protocol based on direct tagmentation using tn5 transposase. Nuclear proteins 

are disintegrated by snap freezing and subsequent protease digestion, with the free genomic DNA 

(gDNA) tagmented prior to PCR amplification. This process is performed without intermediate DNA 

cleanup, making it highly efficient, and is easily automated. We benchmarked the WGS element of 

DNTR-seq, by analyzing ultra-low coverage sequencing data from ALL patients and cancer cell lines, 

including a few cells which were re-sequenced at a higher coverage. At ultra-low coverage duplicate 

rates were generally low (below 10%), increasing at higher read depths. We also showed that DNTR-

seq results in gDNA libraries with much more even coverage and with a lower GC bias than 

traditional methods such as MALBAC and MDA, and is equivalent to amplification-free bulk 

sequencing. Additionally, we showed how DNTR-seq can be used to perform SNV calling by 

performing analysis on groups of clonal cells, leveraging data from multiple cells to identify errors 

introduced during amplification. 

The mRNA sequencing protocol was based on Smart-seq2, providing high-sensitivity and full-length 

scRNA-seq data. In order to verify that RNA-seq on cytosolic compartment leads to high-quality data, 

we compared DNTR-seq to conventional Smart-Seq2 in tumor cell lines A375 and HCT116, as well as 

an ALL-patient sample. We observed a similar number of total read counts and number of detected 

genes using the two methods, though the number of genes detected was slightly lower in cell lines 

analyzed using DNTR-seq. We found that Intronic regions, found in unspliced transcripts residing in 

the nucleus, were less than half as common in DNTR-seq data compared to Smart-Seq2, while exonic 

reads, were enriched in DNTR-seq data, highlighting the effects of separating the cytosolic fraction 

from the nucleus.  

We subsequently analyzed 607 cells using DNTR-seq, sampled from two pediatric acute 

lymphoblastic leukemia (ALL) cases, the human colon adenocarcinoma cell line HCT116, and 

melanoma cell line A375. The results showed that DNTR-seq is capable of producing both high 

quality gDNA and RNA-seq data from the same cell, with unsupervised classification copy numbers 

yielding distinct clusters representing variant genomes, and each cell line and leukemic blast clone 

separating into their own cluster. Additionally, healthy ALL cells from patient samples clustered 
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according to XX and XY genomes as expected. For the transcriptional data, our two ALL patient 

samples formed clusters separated by patient, while normal B, T and progenitor cells instead 

clustered by cell type. Furthermore, the gDNA data produced was of such high quality that we could 

identify specific subclones within ALL samples, based on CNV at specific sites, and tie these variations 

to differences in gene expression in genes within the affected regions. These experiments 

highlighted the complementary features of the two modalities, with joint analysis demonstrating 

how DNTR-seq can be used to quantify the impact of genomic deletions and amplifications on gene 

expression. 

Finally, we conducted a whole-genome screen to evaluate the impact of CNVs on the expression of 

affected genes across the genome. To generate a cell population with a highly diverse copy-number 

profile, we exposed the colon adenocarcinoma cell line HCT116 to two DNA-damaging agents: X-ray 

ionizing irradiation (X-ray) or etoposide (ETO). We prepared WGS libraries from over 3,000 cells 

treated with increasing doses of DNA-damaging agents and collected cells at two timepoints (48 or 

96 h). Specific transcriptional changes largely depended on DNA damage burden, with upregulated 

DNA damage pathways and downregulated cell-cycle pathways. Conversely, differential expression 

analysis between ETO and X-ray conditions with similar DNA damage levels showed only minor 

differences in a small number of genes. 

To assess how genetic dosage effects contribute to transcriptional heterogeneity, we analyzed 

transcript abundance during copy-number alterations. Most expressed genes were affected by copy-

number alterations in an approximately linear fashion, suggesting that random copy-number 

changes have a specific genetic dosage effect on transcription. However, some genes demonstrated 

efficient feedback regulation, offsetting the gene dosage effect. Notably, several genes crucial for 

cancer cell growth, displayed strong dosage compensation and were mostly unaffected by copy-

number alterations. Similarly, periodically activated genes, like those involved in mitosis, tended to 

exhibit robust dosage compensation, consistent with these genes being under strict transcriptional 

control. Concordantly, genes displaying a strong dosage compensation were generally less subject to 

purifying selection. 

In summary, DNTR-seq enabled us to conduct a large-scale in vitro screen of DNA-damage-induced 

copy-number alterations. Its flexible study design, stemming from the simplicity and low cost of the 

WGS analysis, makes DNTR-seq an ideal method for performing extensive screens at low sequencing 

depth, pinpointing cells of interest for resequencing of gDNA at increased depth and scRNA-seq for 

in-depth analysis.  
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5.3 Paper III 

Smart3-ATAC: A Highly Sensitive Method for Joint Accessibility and Full-length Transcriptome 

Analysis in Single Cells 

Understanding transcriptional regulation is crucial for deciphering the biology of organisms. To 

develop a method that can provide high sensitivity measurements of both chromatin accessibility 

and mRNA expression we designed Smart3-ATAC, a method separating cytosolic and nuclear 

compartments, before performing scRNA-seq and ATAC-seq on the respective compartments. 

Smart3-ATAC implements a novel, low-loss, single-cell ATAC (scATAC) protocol to measure 

chromatin accessibility, while transcriptomic profiling is based on the highly sensitive Smart-seq3 

protocol. 

To test the performance of Smart3-ATAC on a complex biological process we used a stem-cell based 

in vitro model for mouse gastrulation. We analyzed over 3000 cells harvested at four different time-

points (0hr, 72hr, 96hr and 120hr). Smart3-ATAC generated scATAC libraries had a similar specificity 

as contemporary scATAC methods, but with a higher yield when compared to commercially available 

multiomics methods such as 10x genomics multiome. Furthermore, by performing scRNA-seq on 

cytosolic mRNA rather than nuclear mRNA, we obtained higher quality transcriptional data, as 

observed when comparing mRNA-seq from Smart3-ATAC with 3’ UMI counts from 10x multiomic 

analysis, where Smart3-ATAC yields 10-fold higher counts. 

We displayed the power of leveraging transcriptomic data against chromatin accessibility by 

calculating the correlation between the accessibility of non-coding regulatory elements and the 

transcript abundance of nearby genes. We found an enrichment of associations between 

accessibility near the TSS of genes, with 48% of high confidence cis-peaks occurring within 100bp of 

their associated TSS, indicating modulation of transcription occurring directly at the promoter. 

However, many genes completely lacked correlations between promoter accessibility and transcript 

abundance, suggesting that transcriptional regulation is mainly driven by distal enhancers. 

Taken together, our data shows that Smart3-ATAC is a powerful method for the joint analysis of 

mRNA and chromatin accessibility from single cells, focusing on obtaining the highest-quality data 

rather than maximizing the number of cells assayed. This approach offers numerous advantages, 

such as individually addressable cells, enabling multi-tiered experiment setups and enhanced 

enhancer-gene association analysis. The increased per-cell cost and decreased throughput may limit 

its use in larger scale projects, but for questions involving limited cell numbers, Smart3-ATAC offers a 

more cost-effective and insightful solution.  
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5.4 Paper IV 

Simultaneous Sequencing of Full-length RNA Transcripts, Accessible Chromatin, and Guide RNAs 

for Isoform-sensitive CRISPR Perturbation Analysis 

As we had previously established a method for the joint profiling of ATAC-seq and RNA-seq data 

from a single cell and demonstrated the utility of this method when interrogating regulatory 

elements, we wished to expand the utility further, combining this method with CRISPRi screening. 

We developed accessible chromatin and transcriptome sequencing of CRISPR-inhibited cells (ACTI-

seq) by modifying Smart3-ATAC, applying a CROP-seq based approach for CRISPRi screening with a 

modified modified dT primer to include an 8-bp barcode, enabling the pooling and specific PCR of 

guide-RNAs.  

We evaluated ACTI-seq through a series of experiments assessing our ability to generate single-cell 

RNA and ATAC-seq data and testing the sensitivity of gRNA readouts. To evaluate scRNA-seq results, 

we compared data obtained using ACTI-seq with that from Smart-seq2 on cytosolic compartments of 

HPAC cells. We observed a similar number of detected genes per cell for both methods, indicating 

that our modifications to the dT primer do not significantly affect our ability to generate high quality 

libraries. Likewise, ACTI-seq yielded high-quality ATAC-seq data, with an 8-fold TSS-enrichment and 

the fraction of reads in peak (FriP) over 0.6.  

To identify potential targets for ACTI-seq, we analyzed three PDAC-derived cell lines in the absence 

of any perturbations using Smart3-ATAC. From the ATAC-seq data, we called over 40 000 accessible 

peaks from the three cell lines. By correlating chromatin accessibility with expression levels of nearby 

genes, we identified more than 3000 candidate CREs. To further assess these candidate CREs, we 

performed a conventional CRISPRi screen in one of the cell lines (HPAC), targeting all candidate CREs 

associated with the expression of at least one gene, accessible peaks near PDAC-associated loci or 

overlapping structural CTCF motifs, and a selection randomly sampled accessible regions. 

Additionally, we targeted the promoters of all TFs in the genome as a positive control. As expected, 

the largest effects were observed when targeting promoters of TFs, with few exonic, intronic, or 

intergenic accessible peaks mediating any significant effects.  

Next, we selected 56 targets focusing on TFs with strong negative effects on cell growth in the HPAC 

cell line, performing a CRISPRi screen and using ACTI-seq as a read out. We selected 56 targets and 

used 8 non-targeting guides as negative controls. By transducing at a low MOI (~0.4), we saw that 

the majority of cells expressed one unique gRNA. Excluding targets with very low representation (< 

10 cells), we observed an inverse correlation between the number of cells captured targeting a 

specific TF and the number of differentially expressed genes (DEG) between these cells. By analyzing 

associations between peak accessibility and gene expression, we identified 545 peaks associated 

with the expression of 362 genes, with KAT7 and KLF5 having the largest number of peaks 

significantly associated with differentially expressed genes, based on scRNA-seq data. 

To further assess KLF5 binding to associated peaks, we performed a motif enrichment analysis using 

monaLisa using motifs from the JASPAR2020 database (see methods). A total of 75 motifs were 

enriched in KLF5-associated peaks with KLF-family motifs being the most highly enriched, indicating 

binding sites for KLF5. As KAT7 lacks a specific binding motif, we were unable to identify specific 
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binding sites. Instead, we looked at broad conformational changes to chromatin structures as a 

result of KAT7 silencing, and examined which TFs were predominantly affected. We identified 18 TF-

associated motifs, which could be classified into 12 categories based on motif similarity with top 

enriched motifs being associated with SNAI1, -2, and -3 and other E-box binding TFs. As these 

proteins are implicated in epithelial-mesenchymal transition we can speculate that KAT7 is involved 

in regulating cell motility and polarity in HPAC cells. 

In summary, ACTI-seq is a method enabling the simultaneous sequencing of RNA, ATAC-seq data, 

and gRNAs from single cells. ACTI-seq has broad applications across diverse cell types and can be 

used as a tool for deepening our understanding of complex regulatory networks governing cellular 

identity and function, and their roles in malignancy. While our study employed a simple in vitro 

model, the approach is also adaptable to animal or cancer xenograft models, particularly benefiting 

systems with limited sample availability. 
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6 Conclusions and future perspectives 

In paper I we developed a novel method - cell interaction by multiplet sequencing (CIM-seq) - to 

obtain spatial information from single-cell RNA-seq data by making use of multiplets produced as a 

by-product during cell dissociation. CIM-seq enables the identification of physically interacting cells 

in intact tissues by preparing RNA-seq libraries from cell multiplets and computationally 

deconvoluting them into fractional contributions of single cells. The process involves partial tissue 

dissociation, cell sorting, scRNA-seq profiling, generation of a blueprint of all cell types and states in 

the tissue, and computational deconvolution using maximum-likelihood estimation. The proof-of-

concept and benchmarking experiments demonstrated the accuracy and versatility of CIM-seq in a 

variety of tissue types and experimental platforms, with our application of CIM-seq to colonic crypts 

revealing insights into their cellular composition. 

CIM-seq has the potential to significantly impact the field by providing an innovative approach for 

deciphering cell-cell interactions in various tissues. Its ability to utilize something previously regarded 

as a by-product of scRNA-seq allows for the efficient and cost-effective study of cellular architecture 

and interactions, offering a cheaper alternative to conventional spatial transcriptomics methods. 

Additionally, CIM-seq offers the full-length whole-transcriptome readout of all cell types in a tissue, 

eliminating the need for prior knowledge of cell type composition or the pre-selection of genes. This 

innovative approach will be particularly useful for studying cell type interactions in diseased tissues 

or other tissues where tissue structure is unknown. By offering a cost-effective and efficient way to 

explore cellular architecture and interactions, CIM-seq has the potential to significantly advance our 

understanding of tissue biology and uncover previously unknown cellular interactions and structures.  

In paper II we developed Direct Nuclear Tagmentation and RNA sequencing (DNTR-seq), a method 

that allows for simultaneous sequencing of whole-genome DNA and full-length mRNA in single cells. 

We demonstrated DNTR-seq's ability to produce high-quality genomic DNA and RNA-seq data from 

the same cell while effectively identifying subclones within ALL samples and linking gene expression 

differences to genomic variations. DNTR offers a flexible study design due to its simplicity, low cost, 

and capacity to perform extensive screens at low sequencing depth. This makes DNTR-seq ideal for 

pinpointing cells of interest for the resequencing of genomic DNA at increased depth and single-cell 

RNA-seq for in-depth analysis.  

As there are currently no commercial methods available for the joint analysis of RNA and genomic 

DNA on a single cell, DNTR-seq addresses a need within the scientific community, offering a powerful 

tool for comprehensive analysis of cellular gene expression and genomic variation. Additionally, 

DNTR-seq outperforms other alternatives by providing higher quality data and a more even 

coverage. The potential applications for DNTR-seq are vast, with the ability to study not only cancer 

but also a wide range of other diseases where genomic differences may impact transcription. By 

enabling the in-depth investigation of genomic and transcriptomic changes within single cells, DNTR-

seq can accelerate our understanding of the molecular mechanisms underlying various diseases, 

paving the way for the development of more effective diagnostic tools and targeted therapies. 
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For paper III, we developed a method for providing high sensitivity measurements of both chromatin 

accessibility and mRNA expression by separating cytosolic and nuclear compartments, called Smart3-

ATAC. Smart3-ATAC utilizes a low-loss, single-cell ATAC (scATAC) protocol to measure chromatin 

accessibility, while transcriptomic profiling is based on the highly sensitive Smart-seq3 protocol. 

When tested on a stem-cell-based in vitro model for mouse gastrulation, Smart3-ATAC 

demonstrated a higher yield compared to commercially available multiomics methods such as 10x 

genomics’ multiome kits and produced higher quality transcriptional data by performing scRNA-seq 

on cytosolic mRNA rather than nuclear mRNA. 

The true power of Smart3-ATAC lies in its ability to leverage transcriptomic data against chromatin 

accessibility, allowing for the identification of associations between the accessibility of non-coding 

regulatory elements and transcript abundance of nearby genes. While the method's increased per-

cell cost and decreased throughput may limit its use in larger scale projects, it offers a more cost-

effective and insightful solution for questions involving limited cell numbers, particularly in the study 

of transcriptional regulation. The development of Smart3-ATAC has the potential to significantly 

advance our understanding of the biology of organisms and the intricacies of transcriptional 

regulation, offering a powerful tool for the joint analysis of mRNA and chromatin accessibility in 

single cells. 

Finally, for paper IV, we expanded the utility of Smart3-ATAC by developing accessible chromatin 

and transcriptome sequencing of CRISPR-inhibited cells (ACTI-seq). ACTI-seq employs a CROP-seq-

based approach for CRISPRi screening, using a modified dT primer containing a barcode for pooling 

and specific amplification of guide-RNAs in a cost-effective manner. Here, we demonstrated that 

ACTI-seq is capable of generating high-quality data and that even with a limited number of cells, we 

can use ACTI-seq to identify interacting components in gene regulatory pathways. Additionally, ACTI-

seq is the first method to integrate ATAC-seq, RNA-seq, and gRNA readout from the same cell in a 

single assay, offering an unprecedented opportunity to provide a comprehensive view of complex 

regulatory networks under the effects of specific gene silencing.  

For the projects described in this thesis, our primary focus was to develop and test innovative 

methods to enhance the current single-cell sequencing toolkit. We believe that the resulting 

methods will have wide-ranging implications for the scientific community. Together with 

collaborators we are currently employing CIM-seq to study pancreatic cancer liver metastases, 

identifying critical cell type interactions that drive tumor spread and growth. DNTR-seq has become a 

valuable tool in our lab, enabling us to analyze the clonal structures of pediatric leukemias and to 

catalog CNVs and their transcriptional effects in various cancer types.  

While DNTR-seq and CIM-seq were primarily developed for studying tumor and cancer biology, the 

applications of Smart3-ATAC and ACTI-seq extend far beyond oncology. We are currently using 

Smart3-ATAC to investigate epigenetic events during early embryology and to identify key factors 

controlling cell fate in the small intestinal epithelium. As the most recent method developed, ACTI-

seq is presently limited to studying regulatory elements and their interacting partners in PDACs. 

However, much like Smart3-ATAC, ACTI-seq has the potential to be instrumental in elucidating the 

regulatory machinery underlying a wide array of diseases and biological processes. 
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In conclusion, this thesis aimed to develop methods for investigating clonal structures and cell 

interactions in cancer, but the outcome surpassed our initial goals. The techniques presented here 

hold immense potential for advancing scientific discoveries and making a significant impact on our 

understanding of various biological processes. 
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