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Popular science summary of the thesis 
Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. 
Historically it has been a young man’s disease, acquired often from road traffic incidents. 
However, as the population is ageing and road traffic safety has improved, injury is increasingly 
related to falls. The group of patients with TBI is diverse, with differences in age, background, 
and injury patterns.  

The most severely injured patients are treated in highly specialized neurointensive care units, 
where they are extensively monitored with both brain-specific and general physiological 
monitoring. Patients receive advanced treatments to avoid insults such as increased intracranial 
pressure (ICP) and hypoxia, which can worsen the acquired brain injury. Current guidelines 
advocate avoiding ICP above a fixed threshold of 22 mmHg, but how long a high ICP can be 
tolerated has not been determined. Treatment recommendations to avoid aggravating the brain 
injury and improve outcomes in patients with TBI are often consensus-based; it is difficult to 
study the effects of single treatments when in practice, they are not applied in isolation, and 
treatments may need to be individualized in this diverse group of patients.  

The overall aim of this thesis is to investigate patterns of disease in patients with traumatic 
brain injury. Therefore, we have studied patients admitted to an intensive care unit (ICU) with 
TBI. All patients were included in the Collaborative European neurotrauma effectiveness 
research in TBI (CENTER-TBI) study, the largest observational study in TBI to date, including 
over 2,000 patients from 19 countries admitted to the ICU with TBI. We applied novel 
analytical methods of clustering and causal inference. 

In study I, we investigated the impact of ICP and its duration on outcome. We found a variation 
in tolerable levels and duration, where lower ICP was tolerated for longer durations than higher 
ICP. In addition, a higher dose of intracranial hypertension (defined as “pressure time dose”) 
was correlated with worse outcome. Our results suggest that the tolerability of increased ICP 
is lower if the brain’s ability to autoregulate blood flow is impaired. In study IV, we 
investigated the causal relationship of ICP, autoregulation, treatments, and associated factors. 
We identified a causal relationship between cerebrovascular autoregulation and outcome, and 
ICP lowering therapies towards outcome. No direct relationship between ICP and outcome was 
identified. 

In study II and III, we used an unsupervised clustering method to identify subgroups of 
patients with TBI in the ICU. In study II, six distinct clusters were found. In summary, the 
clusters could be interpreted by clinical neurological presentation and factors related to 
metabolism and kidney injury. In study III we investigated clinical trajectories during the first 
week of ICU. We could not identify a distinct best number of trajectories, but the most 
important distinguishing factors between trajectories were almost identical regardless of 
number of clusters, with glucose variation and brain injury biomarkers being most prominent. 
Although no information on outcome was included in the clustering, the clusters and 



trajectories all showed different outcome profiles, suggesting that they reflect biological 
processes associated with traumatic brain injury. 

  



 

 

Populärvetenskaplig sammanfattning 
Traumatiska hjärnskador (TBI) är en av de ledande orsakerna till död och sjukdomsbörda 
globalt. Historiskt sett har främst unga män varit drabbade, som skadats i trafikolyckor. I takt 
med att trafiksäkerheten förbättras och befolkningen åldras skadas allt fler genom fallolyckor. 
Det har lett till en alltmer blandad grupp av patienter som drabbas av TBI, med skillnader i 
ålder, bakgrund och skademönster. 

De svårast skadade patienterna vårdas på högspecialiserade neurointensivvårdsavdelningar, 
med noggrann övervakning av till exempel blodtryck, syresättning i blod och i hjärnan, 
intrakraniellt tryck (ICP) och hjärnans metabolism. Här ges även avancerad behandling för att 
undvika ytterligare skada på hjärnan av till exempel förhöjt ICP och syrebrist. Enligt nuvarande 
rekommendationer ska ICP över 22 mmHg undvikas, men hur länge hjärnan tolererar höga 
tryck har inte studerats lika väl. Behandlingsrekommendationer för TBI är ofta konsensus-
baserade: Det är svårt att studera effekten av enskilda behandlingar eftersom de ofta används i 
kombination med varandra och många studier har varit negativa, kanske på grund av att det är 
svårt att hitta behandlingar som fungerar lika bra på alla patienter i den heterogena gruppen av 
TBI-patienter, och en mer individualiserad behandlingsstrategi behövs. 

Det övergripande målet med denna avhandling är att beskriva sjukdomsmönster hos patienter 
med TBI som vårdas på en intensivvårdsavdelning (IVA). Studierna är gjorda på patienter som 
inkluderats i den största observationella TBI-studien hittills, multicenter-studien 
”Collaborative European neurotrauma effectiveness research in TBI” (CENTER-TBI). Över 
2000 patienter med TBI och som vårdats vid en intensivvårdsavdelning från 19 europeiska 
länder har inkluderats. Vi har använt moderna analytiska metoder såsom klustring och 
kausalitetsmetoder för att studera orsakssamband i observationell data. 

I studie I undersöktes påverkan på utfall av ICP, både absoluta tryckniåver och durationer. Vi 
fann en variation av tryckgränser som var associerade med sämre utfall. Lägre tryck tolererades 
längre perioder än höga tryck. Vi fann även att en högre dos av ICP var korrelerat till sämre 
utfall, framför allt om hjärnans förmåga till reglering av blodflödet (autoreglering) var nedsatt. 
I studie IV undersökte vi orsakssamband mellan ICP, autoreglering, ICP-sänkande 
behandlingar och relaterade faktorer, och utfall. Vi fann ett direkt orsakssamband mellan 
autoreglering och utfall, men inte mellan ICP och utfall. Resultaten tyder på att intrakraniella 
tryckstegringar tolereras sämre om autoreglering är nedsatt, och att autoregleringen visar ett 
starkare orsakssamband mot utfall än tryckstegringar i sig. 

I studie II och III användes en klustringsmetod för att identifiera subgrupper av patienter med 
TBI på IVA. I studie II hittade vi sex distinkta kluster. Dessa kan sammanfattningsvis tolkas 
utifrån medvetandegrad och faktorer relaterade till metabolismen och njurpåverkan. I studie 
III undersöktes sjukdomsförlopp under första veckan på IVA. Hur många olika förlopp som 
förekommer kunde vi inte fastställa i analysen, men oavsett antal olika förlopp var 
glukosvariation och hjärnskademarkörer mätta över tid viktiga faktorer i modellerna, oavsett 
antal förlopp. Trots att ingen information om utfall inkluderades i modellerna visade klustren 



och sjukdomsförloppsbanorna tydliga skillnader i utfall, vilket tyder på att de reflekterar 
biologiska processer. 

 

  



 

 

Abstract 
Severity of traumatic brain injury is usually classified by Glasgow coma scale (GCS) as “mild”, 
"moderate" or "severe’, which does not capture the heterogeneity of the disease. According to 
current guidelines, intracranial pressure (ICP) should not exceed 22 mmHg, with no further 
recommendations concerning individualization or tolerable duration of intracranial 
hypertension. The aims of this thesis were to identify subgroups of patients beyond 
characterization using GCS, and to investigate the impact of duration and magnitude of 
intracranial hypertension on outcome, using data from the observational prospective study 
Collaborative European neurotrauma effectiveness research in TBI (CENTER-TBI). 

To investigate the temporal aspect of tolerable ICP elevations, we examined the correlation 
between dose of ICP and outcome represented by 6-month Glasgow outcome scale extended 
(GOSE). ICP dose was represented both by the number of events above thresholds for ICP 
magnitude and duration and by area under the ICP curve (i.e., “pressure time dose” (PTD)). A 
variation in tolerable ICP thresholds of 18 mmHg +/- 4 mmHg (2 standard deviations (SD)) for 
events with duration longer than five minutes was identified using a bootstrapping technique. 
PTD was correlated to both mortality and unfavorable outcome.  

A cerebrovascular autoregulation (CA) dependent ICP tolerability was identified. If CA was 
impaired, no tolerable ICP magnitude and duration thresholds were identified, while if CA was 
intact, both 19 mmHg for 5 minutes or longer and 15 mmHg for 50 minutes or longer were 
correlated to worse outcome. While no significant difference in PTD was seen between 
favorable and unfavorable outcome if CA was intact, there was a significant difference if CA 
was impaired. In a multivariable analysis, PTD did not remain a significant predictor of 
outcome when adjusting for other known predictors in TBI. In a causal inference analysis, both 
cerebrovascular autoregulation status and ICP-lowering therapies represented by the therapy 
intensity level (TIL) have a directional relationship with outcome. However, no direct causal 
relationship of ICP towards outcome was found. 

By applying an unsupervised clustering method, we identified six distinct admission clusters 
defined by GCS, lactate, oxygen saturation (SpO2), creatinine, glucose, base excess, pH, 
PaCO2, and body temperature. These clusters can be summarized in clinical presentation and 
metabolic profile. When clustering longitudinal features during the first week in the intensive 
care unit (ICU), no optimal number of clusters could be seen. However, glucose variation, a 
panel of brain biomarkers, and creatinine consistently described trajectories. Although no 
information on outcome was included in the models, both admission clusters and trajectories 
showed clear outcome differences, with mortality from 7 to 40% in the admission clusters and 
4 to 85% in the trajectories. Adding cluster or trajectory labels to the established outcome 
prediction IMPACT model significantly improved outcome predictions. 

The results in this thesis support the importance of cerebrovascular autoregulation status as it 
was found that CA status was more informative towards outcome than ICP magnitude and 
duration. There was a variation in tolerable ICP intensity and duration dependent on whether 



CA was intact. Distinct clusters defined by GCS and metabolic profiles related to outcome 
suggest the importance of an extracranial evaluation in addition to GCS in TBI patients. 
Longitudinal trajectories of TBI patients in the ICU are highly characterized by glucose 
variation, brain biomarkers and creatinine. 
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1 Introduction 
Traumatic brain injury (TBI) is said to be one of the most complex diseases in the body’s most 
complex organ.1 With an estimated 82,000 TBI-related deaths and 2.1 million hospital 
discharges in Europe alone in 2012, TBI is a major contributor to mortality and morbidity 
world-wide, with large between-countries differences.2,3 Historically, TBI has been the young 
man’s injury, with road traffic incidents (RTI) as the most common cause. Although men still 
constitute almost two thirds of the patients and are mostly injured in RTIs, an increasing portion 
of the patients are older women with fall injuries, likely due to an ageing population.2,4,5  

The most severely injured patients are treated in highly specialized neurointensive care units, 
where both brain-specific and general physiologic parameters are extensively monitored to 
guide treatment as to avoid secondary brain injury. Treatment and monitoring 
recommendations are mostly supported by consensus recommendations as evidence is 
generally weak.3,5,6 In fact, only 23% of the randomized controlled trials (RCTs) in the field 
have generated positive results, where some interventions even have shown to be harmful.7,8 A 
commonly hypothesized reason for this is the lack of a proper sub-classification of TBI patients 
based on pathoanatomical properties, but on broad symptomatology. Such sub-classifications 
may have potential to act as inclusion criteria in TBI clinical trials and pave the way to more 
successful RCTs.3,9,10  

One such initiative towards a refined classification is the Collaborative European Neurotrauma 
Effectiveness Research in TBI (CENTER-TBI), a large European multinational prospective 
observational study including more than 4,500 patients across all severities of TBI.11 This thesis 
consists of four sub-studies in CENTER-TBI, with focus on patients in the intensive care unit 
(ICU) stratum. The aims of the studies are to characterize TBI patients beyond GCS and to 
investigate the impact of intracranial hypertension and associated physiology towards outcome. 
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2 Literature review 

2.1 TBI classifications and outcome predictions 

TBI is broadly defined as “an alteration in brain function, or other evidence of brain pathology, 
caused by an external force”.12 While TBI is often considered a single type of injury, it 
encompasses a wide range of injury mechanisms and pathophysiological patterns. More than 
100 different TBI prognostic models are available.13 Which one to use depends on the purpose 
– outcome prediction, severity stratification or surgical management. Age and Glasgow coma 
scale (GCS) are consistently identified as the most important predictors for outcome. 
Classifying TBI by mechanism of injury such as blunt, penetrating, or blast trauma can be 
valuable when considering whether the patient requires surgery or not, but does not contain 
much information about the actual injury.10 Focal or diffuse injury stratification, as seen on 
computed tomography (CT), might be useful for early clinical management, such as surgery.  

Disease severity is commonly classified by GCS, where 13-15 is classified as mild, 9-12 as 
moderate and 3-8 as severe TBI,9,14 GCS is a clinical scale introduced almost fifty years ago, 
where eye opening, motor response and verbal response are scored. It has been criticized for 
not reflecting the pathoanatomical or physiological component of brain injury and can be 
confounded by other factors such as intubation, sedation, alcohol, or drug abuse.15 In addition, 
there is an increased awareness of a substantial morbidity burden in patients with mild TBI 
(GCS 13-15), where a significant proportion of patients do not fully recover six months post-
injury.4,5 Despite these limitations, GCS is still one of the strongest predictors of outcome, and 
has shown a good inter-rater reliability even in relatively inexperienced clinicians.10,16  

2.1.1 CT classifications 

To capture the intracranial pathology in TBI, multiple CT models have been developed during 
the last thirty years. The first model was the Marshall CT classification, developed in the early 
1990’s. It classifies diffuse and mass lesions into six classes: Diffuse injury grade I-IV based 
on degree of cistern compression and magnitude of midline shift and evacuated vs. non-
evacuated mass lesion. It is commonly used to describe patients with diffuse brain injuries and 
has been shown to correlate to intracranial pressure and outcome.17 Major drawbacks of the 
Marshall CT include not integrating information about traumatic subarachnoid hemorrhage 
(tSAH), which is strongly associated with worse prognosis, and not discriminating between 
different types of intracranial lesions.10,17 The Rotterdam CT score is a refinement of the 
Marshall CT classification, where compression of basal cisterns, presence of midline shift, 
epidural mass lesion and presence of intraventricular blood or subarachnoid hemorrhage are 
considered.17,18 The Stockholm CT score developed in 2010 has been shown superior to both 
Rotterdam and Marshall CT models. It uses information about midline shift in millimeters, 
subarachnoid hemorrhage/intraventricular hemorrhage, presence of epidural hematoma, 
diffuse axonal injury and subdural hematoma to predict outcome.19,20 In 2014, Raj et al. 
developed the Helsinki CT score which, like the Stockholm score, better predicts outcome than 
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the Marshall and Rotterdam CT models.21 However, only patients with intracranial lesions on 
admission CT were included in the development of the model, limiting its generalizability.  

2.1.2 Outcome prediction models 

Yet another approach to TBI classification is by outcome prognosis. Models such as IMPACT 
and CRASH have been developed for predictions of mortality and unfavorable outcome.13,16 
The CRASH model uses information about age, GCS, pupillary reactivity, and major 
extracranial injury to predict outcome in the full spectrum of TBI patients, with an extended 
model adding characteristics on CT.  

The most used outcome prediction model is the IMPACT model. It was developed in 2008 
using data from eleven prospective studies of patients with moderate and severe TBI.16 Patient 
characteristics available in the first few hours post-injury (including pre-injury features) were 
considered as predictors and included based on the importance determined by Nagelkerke’s R2 
in multivariable analysis. Three models with increasing complexity and prognostic ability were 
developed: The core, extended and lab models. The three strongest outcome predictors were 
included in the core model: GCS motor score of 2 (extension at painful stimulus) (odds ratio 
(OR) 7.2, 95% confidence interval (CI) 6.3-8.3), compared to GCS motor score 5-6 
(localizes/obeys pain); absence of pupillary reactivity (OR 5.9, 95% CI 5.3-6.6); and age (OR 
2.2, 95% CI 2.0-2.3) in univariate analyses. The additional predictors included in the extended 
model are the Rotterdam CT score, secondary insults of hypoxia and hypotension, tSAH and 
epidural hematoma (EDH), with the addition of glucose and hemoglobin in the lab model. The 
IMPACT model showed good external validity in a sub-population with severe TBI in the 
CRASH trial mentioned above.  

More recently, the IMPACT model has been shown to overestimate the mortality risk,4,22 but 
work on updating the model is ongoing (personal communication, E Steyerberg). Nonetheless, 
it is still regarded gold standard in outcome predictions in TBI and added value of other 
predictors such as APACHE II, biomarkers and coagulation factors has been evaluated.23–25 By 
addition of brain biomarkers to the IMPACT extended model, a relative increase in 
Nagelkerke’s R2 of 48 to 65% was seen in the CENTER-TBI cohort.23  

In a recent study, mortality predictions using different methodological approaches were made 
in the CENTER-TBI China Registry cohort.26 Performance of models using logistic regression, 
LASSO regression, support vector machines (SVM), and XGBoost models were developed 
and validated in the CENTER-TBI European Registry cohort. The machine learning method 
XGBoost was found to outperform the other models. However, after reducing the number of 
included features, the difference between the other models was eliminated. 

 



 

 5 

2.2 Intracranial pressure 

One of the most central physiologic parameters in neurocritical care is intracranial pressure. 
According to the Monro-Kellie doctrine, the intracranial compartment space can be seen as a 
closed volume, where the sum of the volumes of cerebral blood, cerebrospinal fluid (CSF) and 
the brain is constant. If any of the volumes increase, compensatory mechanisms such as 
displacement of venous blood or CSF must occur to keep ICP within normal range (0-10 
mmHg). When these mechanisms are not sufficient, the ICP will be raised, eventually leading 
to neuronal injury, herniation and brain death.27 

The Brain Trauma Foundation (BTF) guidelines state that ICP intensities above 22 mmHg 
should be treated, a recommendation based on one study,27,28 and in Europe, most centers 
employ 20 mmHg as a treatment threshold.29 Recent work has shown that thresholds might be 
individualized, and tolerable ICP levels might depend on the duration of the elevation and the 
cerebrovascular autoregulation status.30–32 Therefore, ICP should be interpreted in the context 
of related factors, such as cerebrovascular autoregulation and cerebral perfusion pressure 
(CPP). 

2.2.1 The ICP dose concept 

In current guidelines, the temporal aspect of ICP elevations is overlooked. Duration thresholds 
for ICP elevations have been investigated, and a trend is seen towards a better tolerability of 
lower pressures for longer durations. However, proposed cutoffs vary between studies: Güiza 
et al. suggested 35 mmHg for 5 minutes or 20 mmHg for 37 minutes in a multi-center study,30 
and Donnelly suggested 20 mmHg for 13 minutes in a single-center study.33 

Another way of measuring ICP dose is by calculating area under the ICP curve above different 
thresholds, generating a “pressure time dose” (PTD). The dose above different thresholds has 
been associated with worse outcome in several studies, both in TBI and in subarachnoid 
hemorrhage.34–36 

2.2.2 Cerebrovascular autoregulation 

Cerebrovascular autoregulation (CA) is essential for survival. In this thesis we recognize it as 
the mechanism of maintaining cerebral blood flow (CBF) constant within wide ranges and 
changes in CPP by rapid regulation of resistance of the cerebral vasculature (Figure 1A). 
Ranges of CPP outside the lower and upper limits of autoregulation (LLA and ULA) will lead 
to changes in CBF. CPP below LLA will lead to a sharp decrease in CBF leading to 
hypoperfusion and ischemia, while CPP above ULA may lead to brain edema and blood brain 
barrier (BBB) disruption.37 Although different techniques such as intraparenchymal flow 
meters and transcranial doppler can measure CBF continuously, their implementation is not 
always feasible. The state of cerebrovascular autoregulation can be assessed by the pressure 
reactivity index (PRx), a measure of how much a fluctuation in arterial blood pressure (ABP) 
leads to changes in ICP. It is calculated as the moving correlation coefficient (ranging from -1 
to 1) of ABP and ICP, typically in thirty consecutive 10-second averages.38,39 Longer time 
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periods of up to 20 minutes have been suggested as well and shown to correlate to outcome.40–

42 In a healthy brain, the correlation between ABP and ICP is negative, while, in case of brain 
injury, increases in ABP can lead to increases in ICP, i.e., a positive PRx (Figure 1B). PRx 
values of +0.2 or +0.3 are commonly used as thresholds for impaired autoregulation, as these 
have been found to correlate with worse outcome.28,31,38,39 

Even though PRx is defined, in part, by ICP, the relationship between PRx and ICP is not fully 
understood. Elevated ICP has been shown to correlate to impaired CA.38 A retrospective single-
center study summarizing data from the past twenty-five years showed a significant decrease 
in average ICP over time (19 to 12 mmHg), but no change in PRx,43 suggesting some degree 
of independence between PRx and ICP. The unresponsiveness to ICP-lowering treatments has 
been demonstrated,44,45 and the burden of impaired CA has been shown greater than ICP, CPP 
and brain tissue oxygen (PbtO2) derangements in moderate/severe TBI.37 Yet, there are no 
recognized treatments for impaired CA, and studies have not been able to show relationships 
between commonly used medications such as sedatives and vasopressors.46,47 

 

 

Figure 1: A. Lassen’s curve which describes the relationship between mean arterial blood pressure 
(ABP) and cerebral blood flow (CBF). Between the lower limit of autoregulation (LLA) and upper limit 
of autoregulation (ULA), the blood flow is approximately constant. Below LLA, CBF decreases, which can 
lead to hypoperfusion and ischemia, while above ULA CBF increases, which can lead to brain edema and 
blood barrier disruption. B. Pressure reactivity index (PRx) representing cerebrovascular reactivity. In 
a healthy brain, the correlation between ABP and intracranial pressure (ICP) is negative, maintaining ICP 
with changes in blood pressure. After brain injury, the reactivity may become impaired and the relationship 
between ABP and ICP becomes positive. 
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2.2.3 Cerebral perfusion pressure 

While the brain is vulnerable to elevated pressure, which may lead to neuronal damage and 
herniation, oxygen and metabolite delivery is dependent on CPP, the driving pressure for 
cerebral blood flow (CBF). CPP is defined as the difference in arterial blood pressure (ABP) 
and ICP. The relative importance of ICP and cerebral perfusion pressure (CPP) is not clear. 
Optimal CPP levels seem to vary by individual and can be defined as the CPP where the 
cerebrovascular autoregulation is maximized (CPPopt). CPPopt as a treatment target has been 
associated with improved outcomes and COGITATE, a multi-center phase II RCT has shown 
that CPPopt-guided treatment is safe, even in cases where CPP is above 70 mmHg. However, 
a larger RCT will be needed to evaluate the benefits of this treatment approach.48,49 Meanwhile, 
BTF recommends a CPP target between 60 to 70 mmHg to prevent both ischemia and 
hyperperfusion.27 

Historically, there has not been a consensus on the reference level of the arterial blood pressure 
chosen to compute CPP. Some studies report foramen of Monro as reference level, while others 
report level of heart or simply do not specify the reference level. Using the heart as zero level 
can lead to an overestimation of CPP if defined as the driving pressure over the brain. In ICU 
patients that commonly have a 30-degree head elevation, and an ABP reference level at heart, 
CPP will be overestimated with approximately 10-13 mmHg. This contributes to difficulties in 
comparing results from different studies. The latest BTF guidelines do not address this 
ambiguity and still advocate for arterial pressure dome placement at heart level for the arterial 
component of CPP calculations.27 BTF CPP level recommendations must also therefore or be 
seen in this light. In a recent update of practices for managing severe TBI in the ICU, the 
foramen of Monro was suggested as the preferable reference level for CPP monitoring,50 and 
the COGITATE study adopted this level as well.48 

 

2.3 Management of TBI in the ICU 

Preventing secondary brain injury is the primary goal in neurointensive care. With multimodal 
monitoring, ICP-lowering therapies, and optimization of physiological parameters, the goals 
are to reduce the burden of intracranial hypertension, maintain an adequate CPP and avoid 
second insults such as hypoxia and hypotension. 

2.3.1 Multimodal monitoring in TBI 

Patients treated for severe TBI in the ICU are extensively monitored, and large amounts of 
structured, semi-structured and unstructured data of different types and frequencies are 
collected from each patient.51 This advanced multimodal monitoring (MMM) aims to identify 
neurological deterioration and to guide treatments through both general physiological 
monitoring (e.g., blood pressure, electrocardiography (ECG), and oxygen saturation) and brain-
specific measures (e.g., ICP, PbtO2, cerebral blood flow (CBF) and cerebral metabolism 
through cerebral microdialysis (CMD)). Knowledge is power, and information retained 
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through this multifaceted monitoring is believed to improve the quality of and outcome. 
However, how to present and interpret integrated signals from different monitoring modalities 
is complex and may be a challenge:52 Regional measures such as PbtO2 and CMD are sensitive 
to probe locations in relation to the brain lesion while other measures such as ICP or CPP 
represent global measures of brain physiology. Suggested targets for separate modalities have 
been presented,50,52,53 but trends may be more relevant (Figure 2).54 

Measuring ICP is recommended for all patients with GCS £ 8 and an abnormal CT scan.27 It is 
the most commonly used brain-specific monitoring modality, although there are large between-
center variations to comply with this recommendation.29,55 PbtO2 monitoring is becoming 
increasingly popular as it reflects the balance between brain oxygen consumption and delivery 
and can identify hypoxic episodes poorly identified by ICP/CPP monitoring. 50,52,56 Brain 
ischemia is an important contributor to secondary brain injury and has shown correlations with 
worse outcomes in TBI. Consensus-based treatment algorithms guided by ICP and PbtO2 
monitoring have been published,50,56 and three RCTs are currently investigating the efficacy of 
PbtO2 monitoring57–59 which may further add evidence to multimodal monitoring strategies. 

2.3.2 ICP monitoring 

Monitoring ICP with an external ventricular drain (EVD) is considered gold standard.60 It has 
the advantage of allowing for ICP control using CSF drainage and is more accessible for 
resource-limited settings. However, drainage itself may interfere with autoregulation 
measurements. An additional method, and the most commonly used monitoring technique, is 
the placement of an intraparenchymal catheter in brain tissue,29 allowing for easier monitoring 
of pressure reactivity and waveform analysis of ICP. Non-invasive monitoring with 
transcranial doppler (TCD) is increasingly used, although this technique only provides 
intermittent monitoring of ICP and has not shown to be sufficiently accurate for replacing 
invasive pressure monitoring techniques.61 Automated ICP recording is preferable to manual 
recording of end-hour values as it detects ICP doses more accurately, although the two methods 
show good agreement of recorded absolute values.62,63  

In 2012, Chesnut et al. published the only RCT on the benefit of ICP monitoring, where no 
difference in outcome was seen between patients with treatment directed by ICP monitoring or 
a combination of clinical and imaging examination.64 Generalization of the results have been 
questioned, as the study was conducted in South America where the standard mode of 
monitoring is the clinical and radiological examination, while that of high-income countries is 
ICP monitoring. Several observational studies have shown increased survival in patients with 
monitoring, and ICP monitoring is recommended in severe TBI by the Brain Trauma 
Foundation (BTF) guidelines.27,65 
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Figure 2: Multimodal monitoring of a patient with traumatic brain injury. Intracranial pressure (ICP), 
arterial blood pressure (ABP), cerebral perfusion pressure (CPP), cerebrovascular autoregulation (PRx) and 
brain tissue oxygenation (PbtO2) are continuously monitored. In this figure, the trends of the high-resolution 
signals are represented. Note the assessment of cerebrovascular autoregulation status, PRx is represented by 
a color band, corresponding to degree of impairment from green to yellow to red. 

 

2.3.3 ICP-lowering therapies 

Clinical interventions used to treat elevated ICP are usually applied in a stepwise manner. The 
therapy intensity level (TIL) scale can be used to quantify the intensity of applied therapies to 
gain ICP control. It represents eight categories of ICP lowering therapies: Positioning, sedation 
and neuromuscular blockade, hyperosmolar therapy, ventilation strategy, CPP management, 
CSF fluid drainage, and surgery for intracranial hypertension. Therapies associated with higher 
risks of adverse outcomes – e.g., secondary decompressive craniectomy, metabolic suppression 
with barbiturates, intensive hyperventilation (PaCO2 < 4 kPa) and hypothermia (< 35 °C) – 
generate higher sub-scores than those associated with lower risks (i.e., basic care). Although 
being a consensus-based weighting of therapies, it has been shown to be a reliable measure of 
therapy intensity.44 A similar approach to interventions and their associated risks can be seen 
in a published treatment algorithm for intracranial hypertension.6 A group of reputable 
international experts proposed a three-tiered implementation of eighteen ICP lowering 
therapies and advised against the use of ten therapies. Basic severe-TBI care was expected to 
be delivered to all patients, including head elevation, intubation and mechanical ventilation, 
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and avoidance of fever. Non-recommended treatments included scheduled bolus of 
hyperosmolar infusions, furosemide administration and routine therapeutic hypothermia 
targeted at below 35 °C. However, in practice, the stepwise escalation in treatment intensity is 
often lacking.66 

The first tier includes interventions such as CPP targets of 60 to 70 mmHg (with arterial CPP 
component likely referenced at heart level), increased sedation, PaCO2 at lower end of normal, 
intermittent hypertonic saline boluses. The second tier include mild hypocapnia, 
neuromuscular paralysis and CPP goals titrated by individual cerebrovascular autoregulation 
evaluation. The third tier includes barbiturate-induced coma, secondary decompressive 
craniectomy and mild hypothermia (35-36 °C).  

The risks associated with the recommendations are increased in each tier. Bolus doses of the 
hyperosmolar agents hypertonic saline and mannitol are commonly used therapies to reduce 
ICP. Hypertonic saline has been suggested to be more effective in maintaining its ICP-lowering 
effect and avoiding hypoperfusion than mannitol boluses.67,68 Serum sodium levels are 
normally tightly regulated. Increased variability in sodium has been found to be associated with 
worse outcomes.69 Proposed explanations of this mechanism suggest serum sodium to mark 
either osmotic injury induced by rapid changes, or treatment intensity reflecting injury severity. 

Third-tier therapies are recommended to treat refractory intracranial hypertension. 
Hypothermia is one of the commonly used therapies, although no beneficial effects on 6-month 
outcome has been shown despite multiple RCTs on the subject. The multi-center Prophylactic 
Hypothermia Trial to Lessen Traumatic Brain Injury-RCT (POLAR-RCT) study in 2018 
showed no benefit on outcome of prophylactic hypothermia targeted at 33 °C compared to 
normothermia (37 °C) and the European Study of Therapeutic Hypothermia (32-35 °C) for 
Intracranial Pressure Reduction after Traumatic Brain Injury (Eurotherm3235) investigated the 
effect of hypothermia to treat ICP > 20 mmHg, finding that the intervention group did worse 
and was consequently stopped preterm.70,71 However, prophylactic hypothermia was applied 
as an early intervention in both studies, and it remains unclear if the results can be generalized 
to common clinical use, as a late rescue therapy for refractory ICP elevations, as this was not 
the indication in either the Eurotherm3235 or POLAR study.  

Concerning decompressive craniectomy, the multi-center RCT Decompressive Craniectomy 
(DECRA) studied decompressive craniectomy as a rescue therapy for ICP refractory to first-
tier therapies in patients with diffuse severe traumatic brain injury and found a greater risk of 
unfavorable outcome in the intervention group, with no difference in mortality between the two 
groups.72 Hutchinson and colleagues reported lower mortality but higher rates of vegetative 
state for patients with TBI and refractory ICP > 25 mmHg in the multi-center RCT Randomized 
Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of Intracranial Pressure 
(RESCUEicp).73 The results in both studies could have been negatively impacted by the use of 
bifrontal decompressive craniectomy (100% in DECRA and 63% in RESCUEicp), a surgical 
method which in retrospective studies have been shown to be associated with more 
complications than the more commonly used unilateral approach. 
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In summary, hypothermia treatment below 35 °C is associated with worse outcome compared 
with normothermia treatment and decompressive craniectomy seems to be associated with 
unfavorable outcome, although it might reduce mortality. 

 

2.4 Non-neurological organ dysfunction in TBI 

TBI is commonly associated with extracranial injuries.4 Severe extracranial trauma may 
aggravate the brain injury by second insults such as hypotension or hypoxia, which are known 
predictors for worse long-term outcome in TBI. However, isolated TBI is per se associated 
with acute extracranial complications not related to polytrauma,74–80 with reported incidences 
of 68-89%.75,80,81 

Sepsis, acute kidney injury,74,82,83 pulmonary complications such as acute respiratory distress 
syndrome (ARDS),84 myocardial injury,85 and coagulopathy86–88 are all known complications 
associated with TBI. Until recently, associations were only known in the acute phase of TBI 
and extracranial organ injury. In 2022, a single-center study found an association between TBI 
and chronic complications such as hypertension and diabetes.89  

Disturbed glucose homeostasis expressed by both hyperglycemia and increased glycemic 
variability has been found to correlate with worse outcomes in patients with TBI.90 Suggested 
mechanisms postulate neuronal and mitochondrial damage due to oxidative stress, a marker of 
a greater sympathetic stimulation or simply reflecting less attentive care.90,91 

The etiology of extracranial organ dysfunction is most likely multifactorial, although exact 
mechanisms still largely remain unclear. Proposed mechanisms include activation of the 
sympathetic nervous system through the hypothalamic-pituitary-adrenal axis leading to 
excessive release of catecholamines and glucocorticoids.75 Induction of immunological 
response has also been suggested as a pathway towards secondary insults to the brain: A 
disruption of the blood brain barrier in TBI in combination with neuroinflammation may induce 
a systemic inflammatory cascade with release of cytokines and chemokines.75,92 
Pharmacological treatments such as norepinephrine used to increase cerebral perfusion 
pressure and hyperosmolar therapy to treat cerebral edema may also contribute.74,78,79,93 

Effects of non-neurological dysfunction on outcome remain unclear, as study results are 
diverging.80,81 

 

2.5 Phenotypes and endotypes in critical care 

Endotypes are subgroups of a health condition with distinct underlying pathobiological 
mechanisms. It contrasts to the related concept of phenotypes, where the subgroups are defined 
by similar characteristics but without the suggested underlying mechanism. The abundant data 
collected in an ICU is a gold mine for data-driven machine learning approaches to identifying 
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potential endotypes. Indeed, data-driven unsupervised clustering methods are gaining in 
popularity and have been used to describe endotypes in the ICU, in both sepsis and ARDS, 
subgroups which potentially can benefit from different treatment approaches.94,95   

Machine learning methods have also been applied to temporal ICU data to identify disease 
trajectories in critical illness, information that might be used to forecast the course of disease 
and thus allow earlier interventions to avoid clinical deterioration. Peelen et al. modeled daily 
states of multi-organ failure in sepsis patients in the ICU using dynamic Bayesian networks 
and showed that once an organ failure exists, it takes time to resolve and Eriksson et al. 
identified five longitudinal trajectories of organ dysfunction post trauma using group-based 
trajectory modeling (GBTM).96,97 Cohen et al. used a hierarchical clustering algorithm on 
physiological minute data to define ten states in 17 critically ill trauma patients and found 
associations that could not be identified neither using traditional statistical methods nor by 
clinical expertise. All patients spent time in more than one of the states, and the states could be 
related to outcome, such as multiple organ failure, mortality and infection.98  

 

2.6 Phenotypes in TBI 

A commonly hypothesized reason to the absence of treatment effects in many TBI studies is 
lack of an individualized treatment approach in a heterogeneous group of patients, where 
patients traditionally are included based on GCS and not underlying pathophysiology.3,15,99 
During the last decade, several suggestions on phenotypes in TBI have been published.100 Most 
studies focus on the milder spectrum of the disease and post-concussion symptoms, which is 
outside the scope of this thesis, but proposed phenotypes including patients with severe TBI 
have gained much attention.99,101 

The two studies identifying phenotypes including patients across all severities in the acute 
phase are by Folweiler et al. and Gravesteijn et al.102,103 Folweiler elegantly identified three 
sub-phenotypes defined by hematological and coagulation factors (platelet count, hemoglobin, 
prothrombin time, INR, hematocrit), and glucose. Gravesteijn identified four subphenotypes 
by cause of injury, major extracranial injury, and GCS. 

Although focusing on mild TBI, Yuh et al. identified phenotypes based on radiological 
findings.104 By hierarchical clustering, three clusters of intracranial lesions were described: (1) 
Epidural hematoma (EDH) alone, (2) Subdural hematoma (SDH) in combination with 
contusion and subarachnoid hemorrhage (SAH), and (3) coexisting intracranial hemorrhage 
(ICH) and petechial hemorrhage. These clusters were externally validated.  

By solely focusing on longitudinal intracranial pressure (ICP) trajectories, Jha et al. identified 
six trajectories with different temporal profiles by applying the longitudinal clustering method 
GBTM. Not only the trajectories with high ICP showed relations with unfavorable outcomes, 
but also did two trajectories with low ICP levels. Furthermore, the expression of the gene 
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ABCC8 (coding for the sulfonylurea receptor-1, which regulates edema) was different between 
the identified groups. 

The identified subphenotypes of TBI all go beyond a description by GCS and are 
pathobiologically plausible. However, where you search, you shall find, which results in the 
above diverse descriptions of phenotypes – that are largely dependent on which features are 
included in the specific model. Thus, these phenotypes should presently be regarded as 
hypotheses until further validation is performed. 

None of the above approaches included information on outcome in the models, but 
nevertheless, all identified clusters showed distinct differences in outcome, indicating 
important underlying pathophysiological processes. 

In summary, there have recently been several novel and seemingly clinically relevant 
phenotypes presented in the TBI field, possibly reflecting significant pathobiological 
differences. However, to advance the field of precision medicine in TBI, these need to not only 
be recognized but also implemented in clinical studies to test efficacy of interventions and 
treatments. 

 

2.7 Causal inferences in TBI  

Randomized controlled trials (RCTs) are considered the gold standard when evaluating cause 
and effect relationships in medicine and are the cornerstone of evidence-based medicine. Such 
studies are often time-consuming, expensive and may put patients at risk of interventions with 
unknown effects. During the last decades, causal inference methods have been developed, used 
to investigate causal relationships in observational data. These methods can be seen as 
complementing RCTs, when such studies may not be possible to conduct. 

Causal inference methods were first developed in the field of social sciences, where RCTs are 
inherently difficult to conduct. In 2021, David Card, Joshua Angrist and Guido Imbens were 
awarded Sveriges Riksbank Prize in Economic Sciences on Memory of Alfred Nobel for their 
work on causal inference methodology. They used these methods to analyze observational data 
on the labor market. 

At the same time, the use of causal inference methods in medicine is becoming increasingly 
popular, and within the field of TBI, a few studies have been published during the last few 
years. In 2017, Gao et al. investigated the relationships between mean arterial pressure (MAP), 
heart rate (HR) and ICP and outcome using Granger causality, which is commonly used to 
investigate causal relationships among time-series data.105 A strong interdependence of the 
features were found, where MAP was identified as driver of ICP and heart rate. The authors 
not only found this relationship, but also identified a potential physiologic mechanism of 
impaired vasoreactivity and baroreceptor sensitivity in severe brain injury. The directional 
relationship of MAP on ICP was confirmed in a later study.106 This study used data from 47 
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patients from the CENTER-TBI high-resolution sub-study cohort to analyze relationships 
between PbtO2, ICP and MAP, but no causal relationship of MAP or ICP on PbtO2 was found. 
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3 Research aims 
The overall aim of this thesis is to apply novel analytical methods to investigate 
pathophysiological patterns in patients with TBI requiring ICU care. More specifically, the 
aims are to: 

• Evaluate ICP tolerability using and further develop a visualization methodology earlier 
described by Güiza et al.30 in a multicenter dataset. 
 

• Investigate the uncertainty of ICP tolerability thresholds for duration and intensity. 
 

• Investigate ICP dose and its relationship to outcome. 
 

• Present a pathophysiological characterization of TBI patients using a multi-
dimensional unsupervised cluster analysis on admission features. 
 

• Describe pathophysiological trajectories of TBI patients during the first week of ICU 
stay. 

 
• Investigate causal relationships between ICP, cerebrovascular autoregulation status, 

ICP targeted therapies and long-term outcome. 
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4 Materials and methods 

4.1 CENTER-TBI 

The Collaborative European neurotrauma effectiveness research in TBI (CENTER-TBI) is an 
international prospective observational cohort study.11 Its aims are to improve characterization 
and classification of TBI and identify the most effective treatments in TBI, by using novel 
analytical methods and comparative effectiveness research. Data has been collected between 
December 2014 and December 2017 from 4,509 patients admitted to one of the 63 study centers 
in 19 countries, making it the largest observational study in TBI. All patients met the inclusion 
criteria: 

• Clinical diagnosis of TBI. 
• Presenting at a study hospital with a TBI within 24 hours of injury. 
• Indication of a head CT scan. 

Included patients were stratified by their initial level of care: Emergency room (ER) stratum 
(n=848), where patients were sent home after assessment in the ER; Admission stratum 
(n=1,523), where patients were admitted to a ward, and ICU stratum (n=2,138), where patients 
were admitted to an ICU. At the time of writing, 218 scientific papers have been published with 
results generated from CENTER-TBI (6 March 2023). These cover a wide range of topics, 
from descriptive analyses of the cohort to validations of outcome assessment tools and in-depth 
analysis of physiological high-resolution signals. 

4.1.1 Demographics 

The median age of included patients were 50 years (interquartile range (IQR) 30-66), and 3,023 
(67%) were male. Overall median GCS was 15 (IQR 10-15), and 6-month mortality was 12% 
(n=473). By comparison, the ICU cohort (n=2,138) had a median age of 49 (IQR 29-65), 
n=1,562 (73%) were male, median GCS was 9 (IQR 4-14) and 6-month mortality was 21% 
(n=394). A detailed description of the cohort is provided in the publication “Case-mix, care 
pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI”.4 The 
CENTER-TBI cohort was older, and fall injuries were more common than previously described 
in other studies.4 

4.1.2 Data collection 

More than 2,500 variables were collected for each patient.107 These included data on 
demographics, medical history, injury mechanisms, lab values, CT scan results, physiological 
parameters such as vital signs and intracranial pathology, given treatments and outcome 
assessments.11 Data for the CENTER-TBI study was collected through the Quesgen e-case 
report form (CRF) (Quesgen Systems Inc, USA), hosted on the INCF platform, and extracted 
via the INCF Neurobot tool (INCF, Sweden). For patient monitoring and data collection in the 
High-Resolution repository, the ICM+ platform (University of Cambridge, UK) and/or Moberg 
Neuromonitoring system (Moberg Research Inc., USA) were used. 
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4.2 Data curation 

Crucial for all research studies is high-quality reliable data. Much time is spent on collecting 
and registering data, but the process of curating the data is often overlooked. During the course 
of the CENTER-TBI study, the need for structured data curation was highlighted to ensure 
high-quality sub-studies. A multidisciplinary data curation task force (DCTF) was established, 
consisting of expertise with diverse medical, database, statistical and technical domain 
knowledge.  The DCTF continuously, along with ongoing data collection, explored data for 
inconsistencies. If an issue was found, it could be reported back to the recruiting site, a filter 
could be applied centrally, or if an issue were judged unresolvable, be described in a data 
dictionary. 

The first step in a data curation process should start before data collection: Making sure 
relations and syntax in the database are adequate, applying hard limits for acceptable input 
values, and only making possible combinations of parent/child questions possible to answer 
(e.g., one can only provide an answer to “type of ICP monitor” if the question “ICP 
monitoring?” has a positive answer). It is also important with proper instructions on 
interpretations of questions, such as which measurement each hour should be recorded – 
maximum, minimum, mean, median, last, or first value. Each recording should be accompanied 
with a timestamp to avoid different interpretations of how days post injury are defined. The 
need for a standard regarding definitions and data collection have led to the development of 
Common Data Elements (CDE) in TBI data collection and research.108 CDEs are well defined 
variables suggested to be recorded in clinical TBI studies to increase the ability of pooling data 
from different studies and make comparative effectiveness research between centers possible. 
Checklists for standardizing data collection to improve data quality have been developed by 
the Data Access Quality and Curation for Observational Research Designs (DAQCORD) 
initiative.51,109 

High-resolution data collected in the ICU is inherently noisy, with incomplete data and 
artifacts. This requires special attention from a data curation perspective. To use collected data 
for analyses, there is a need for detection and removal of artifacts, e.g., apparent outliers or 
ECG disturbances caused by patient turning or a sternal rub. Data cleaning and dealing with 
artifacts is usually time-consuming and done manually post-hoc,51 although methods for 
automatic detection and removal of artifacts have been proposed, such as the DeepClean 
algorithm developed by Edinburgh and Ercole.110,111  

An important conclusion from CENTER-TBI is the importance of allocating resources for data 
curation – it has been estimated that 15-20% of a large study’s budget should be spent on such 
quality-enhancing activities.112 
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4.2.1 Missing data mechanisms 

Clinical data is rarely complete, as observations almost always are missing to some extent. The 
reasons for missingness may vary and may bias results. It is important to understand the 
structure of the missingness before deciding how to handle it. Different techniques for 
imputation exist, while some analytical methods are insensitive to missingness and do not 
require imputation to perform analyses (such as the probabilistic graph models used in study 
II and III) but may still be affected by structures of missingness.  

Missing completely at random (MCAR), missing at random (MAR) and missing not at random 
(MNAR) are the important mechanisms for missing data. If MCAR, missing values are 
randomly distributed over the dataset, e.g., missing oxygen saturation measurements due to 
accidental displacement of the pulse oximeter. If data is MAR, the missingness is related to 
other variables in the dataset, such as ICP measurements that are only available for patients 
with ICP monitoring. In case data is MNAR, the missingness is attributed to the values of the 
variable itself, as is the case if overweight patients are more reluctant to report their weight in 
a survey.113 This structure is difficult to detect and may highly influence the validity of the 
results. 

There are several methods for handling missingness. Some methods, such as the mixture of 
probabilistic graph models used in study II and III, simply leave out the missing value but use 
all other available data for the analysis. If the analytical method to be used cannot handle 
missing data, a common approach is imputation. The most recommended method is multiple 
imputation by chained equations (MICE). This algorithm first creates several imputation sets 
using regression of all other available data and drawing from a distribution. In analysis, all 
imputed datasets are pooled to generate a final estimate of the missing features retaining 
uncertainty of imputation.  

How to impute may depend on the type of variable: Longitudinal data may be imputed by linear 
or higher order interpolation. Single imputation, such as replacing all missings with the overall 
mean, or by last observation carried forward (LOCF) are other types of imputation. They are 
usually not recommended as they often lead to a false decrease in standard deviation. However, 
there are situations when LOCF may be suitable to use, such as in study III where CT findings 
are propagated until a new CT scan is made – absence or presence of pathology is assumed to 
remain. Another method is the complete-case analysis (CCA), where objects with one or more 
missing variables are excluded from further analysis. It is usually not recommended to use 
CCA as it may limit the cohort size, leaving out large amounts of important information.  

 

4.3 Selected clustering algorithms and considerations 

Clustering is the task where unlabeled data (i.e., outcome is unknown) is divided into groups 
with similar characteristics. Machine learning methods for unlabeled data are commonly called 
unsupervised algorithms. In contrast, classification methods are using labeled data (i.e., known 
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outcome) to group and sort data, and are examples of supervised algorithms. There is an 
abundance of clustering methods, all with their own advantages and disadvantages. Clustering 
algorithms can broadly be classified by four general strategies: Centroid-based, density-based, 
distribution-based, and hierarchical clustering (Figure 3). 

 

 

Figure 3: The four clustering strategies. A. Hierarchical clustering is creating a tree-like structure, where 
objects are grouped stepwise by similarity, until all objects are assigned to one group. B. Centroid-based 
clustering is creating clusters by assigning objects to the cluster where the distance to the cluster mean or 
medoid is minimized. C. Density-based clustering groups objects in areas of high density into clusters, 
allowing different shapes of the clusters. D. Distribution-based clustering is a ‘soft’ clustering method, where 
objects are assigned to all clusters, but with different probabilities. 

 

4.3.1 A selection of clustering methods 

In study II and III, a mixture of probabilistic graph models was used for clustering. This 
section will briefly explain the used method, as well as a few other clustering methods that 
have been used in TBI research. 

4.3.1.1 Mixture of probabilistic graph models 

A mixture of probabilistic graph models is an unsupervised density-based clustering model. 
One of the most commonly used density-based cluster models is a Gaussian Mixture Model. 
However, it can only handle continuous variables. In contrast, a mixture of probabilistic graph 
models can handle a mix of continuous and categorical variables as the distributions for each 
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feature are simply multiplied together. In addition, it does not require complete data, 
eliminating the need for imputation of missing data. In a probabilistic graph model, the 
probability distributions of input features are considered, and the joint probability distribution 
over all input features is written as a product expansion. The simplest product expansion is 
when all input features are independent, in which case the joint distribution is the product of 
the individual feature distributions. In the more general case, for each set of input features that 
are directly correlated, a compensating factor needs to be included in the product.  

A mixture of probabilistic graph models were used for clustering of baseline data in study II, 
and for longitudinal data in study III. In study III, the method was extended with a Markov 
model to handle longitudinal data. By including joint distributions of features on two 
consecutive days, the temporal relation between longitudinal data was considered in the model.  

4.3.1.2 The Expectation Maximization (EM) algorithm 

The expectation maximization (EM) method is an algorithm which can be used to generate 
clusters using a density-based cluster model. It is a generalization of the maximum likelihood 
estimation of incomplete data.114,115 The EM algorithm was used in study II and III.  

Conceptually, the EM algorithm is a two-step iterative algorithm: In the E (expectation) step, 
the cluster membership probabilities for each patient are calculated based on the given 
parameter values in each cluster. In the M (maximization) step, a re-estimation of parameter 
distributions is done based on the cluster membership probabilities (i.e., for continuous data, 
mean and variance, and for categorical data relative frequencies in each category). These steps 
are repeated until the cluster membership probabilities do not change above a set threshold 
(indicating stability) or a maximum number of iterations is reached, whichever comes first. In 
study II and III, the probability change threshold was set to 10-6, and maximum number of 
iterations to 1,000. 

The EM method is a so-called “soft” clustering algorithm, that is – each patient is assigned to 
every cluster by a probability between 0 and 1. However, to make the results easier to interpret, 
patients in study II and III were assigned to the cluster with highest cluster membership 
probability. 

4.3.1.3 Other clustering methods used in TBI research 

There is no single method that is unambiguously good to use when analyzing data – which 
method to use is somewhat a matter of taste, as all methods have their advantages and 
disadvantages. Some other unsupervised clustering methods that have proven useful in TBI 
research include partitioning around medoids (PAM) algorithm, hierarchical clustering, and 
group-based trajectory mean (GBTM) clustering. 

Both Gravesteijn et al. and Folweiler et al. used the clustering method partitioning around 
medoids (PAM) to identify subgroups of TBI patients.102,103 PAM is similar to k-means, with 
the distinction that a real object is used as the medoid (compared to the mean of different objects 
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in the case of k-means). The data is split into k clusters, and the medoid is defined as the object 
with the minimal average dissimilarity compared to all other objects in the cluster. 

Hierarchical clustering was used by Yuh when describing radiological sub-phenotypes in mild 
TBI associated with outcome.104 The method can be implemented bottom-up 
(“agglomerative”) or top-down (“divisive”), and the resulting clustering is presented as a 
dendrogram (Figure 3A). The most common approach is the bottom-up algorithm: In the first 
step, each object is treated as separate clusters. The similarity with the other objects (clusters) 
are determined by some measure, e.g., the Euclidean distance in between. The most similar 
clusters according to this measure are grouped. In the following step, the similarity of the new 
clusters are determined, usually by one of the following three approaches: The distance 
between the clusters are represented by (1) the minimum distance between two objects 
belonging to different clusters, (2) the maximum distance between two objects belonging to 
different clusters, or (3) the mean distance between each object in one cluster and all other 
objects in the other clusters. This algorithm is then repeated until all objects belong to the same 
cluster. 

GBTM is a method for analyzing trajectories – development over time – of subpopulations in 
a cohort,116,117 such as ICP trajectories described by Jha et al.118 It is a method based on finite 
mixture models and maximum likelihood estimations.116 Each subgroup trajectory can be 
estimated by a polynomial of degree k, described by a set of parameters Ω. The optimal number 
of trajectories is selected by using the Bayesian information criterion (BIC): If the difference 
between two models with n and n+1 number of subgroups is greater than a set threshold, a new 
model is created with n+1 number of subgroups.119 

4.3.2 Selecting an appropriate number of clusters 

Although different techniques to investigate the optimal number of clusters exist, the number 
of clusters is set, most commonly, rather arbitrarily. However, there are a few objective 
measures to use to determine the optimal number. In study II and III, the cluster similarity 
index (CSI) was used, as described in more detail below. Other useful methods include the 
silhouette and elbow methods, information criterions (AIC/BIC) and gap statistics. A few of 
them will be described in more detail below. 

4.3.2.1 CSI 

CSI, or cluster similarity index, is a measure of the reproducibility of a model. It can be 

calculated as 
∑ "($)!
"#$
&

 (Eq 1), where j=number of patients, f(x)=1 if a patient appears in the same 

cluster in two compared models. If not, f(x)=0. Notably, this index requires that the 
corresponding clusters are aligned in the compared cluster models. When clusters are randomly 
generated, models can be similar, but cluster indices may not correspond (cluster 1 in one 
model may correspond to the cluster called 2 in another model). To overcome this issue, the 
algorithm we developed translated the cluster indices as to maximize CSI. 
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In study II and III, CSI was calculated for all pairwise combinations of models (i.e., in study 
II, twenty models, and study III, twenty-five models), and median and standard deviations 
were calculated. 

A lower number of clusters will naturally generate a higher CSI, as it is more likely to find two 
patients with cluster assignment agreement in a model with few clusters by chance compared 
to a model with a higher number of clusters. This is true for a sufficiently small number of 
clusters. In the case when number of clusters approaches number of patients, the CSI will again 
rise, to finally reach one when there is one cluster per patient. In study II and III, the first case 
is true, i.e., the number of clusters is small compared to the number of patients. To adjust for 
this “per chance” higher CSI for fewer clusters, a penalty of 1/number of clusters were 
subtracted from the CSI when comparing models with different number of clusters. 

There are several similar measures to CSI. The most well-known is the Jaccard index, where 

𝐽(𝐴, 𝐵) = |(⋂*|
|(∪*|

 (Eq 2), which can be expressed as the number of times a patient appears in the 

same cluster in model A and B divided by 2 ´ number of patients in the study. We developed 
another measure which we called Pairwise similarity index (PSI). This measure can be 
expressed as Eq 1, but j=number of pairs of patients, and f(x)=1 if both patients in a pair appear 
in the same or in different clusters in both models. However, as CSI was more intuitive, we 
used this measure in our studies. 

4.3.2.2 Elbow method 

The idea behind the elbow method is to find the number of clusters with the minimum within-
cluster sum of squares (WSS). An increasing number of clusters will result in a decrease in 
WSS. By plotting WSS vs. number of clusters, the optimal number of clusters can be 
determined by identifying the curve’s “elbow”, i.e., the point where the curve is flattening out. 
A major drawback of this method is that if the decrease rate in WSS is constant, which often is 
the case, no elbow will be found. 

4.3.2.3 Silhouette method 

In k-means (and k-medoids) clustering, the Silhouette method is one of the most used methods 
for finding the optimal number of clusters. Simplified, it is a measure of how similar each 
datapoint is to other points in its cluster compared to the separation between other clusters. 
When all objects are clustered, the average Euclidean distance between each point and all other 
points assigned to the same cluster is calculated. This is compared to the average distance to 
all other points belonging to other clusters, generating a silhouette index between -1 and 1. The 
higher the index, the better separation of the clusters. A silhouette coefficient of 0 indicates no 
separation between clusters, while a negative coefficient indicates that samples are wrongly 
classified. A major drawback with the silhouette method is that it is computationally time-
consuming, especially if the number of samples and features in the model are large. 
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4.4 Bootstrapping 

Bootstrapping is a technique commonly used in machine learning for internal validation in a 
dataset. It is used in study I and III. By bootstrapping with replacement, “new” cohorts, 
usually of the same sample size as the original cohort, are randomly generated. “With 
replacement” indicates that a patient in the original cohort may appear more than once in the 
bootstrapped cohort, to allow for variation from the original cohort. This is a technique used to 
estimate uncertainty in an analysis, as it allows for calculations of means and confidence 
interval estimates. Despite its simplicity, bootstrapping is computationally time-consuming as 
the analysis is repeated commonly 1,000 times. 

 

4.5 Mutual information 

In high-dimensional models, it is not uncommon to, at a first stage, remove features that are 
redundant and do not add information to outcome. A commonly used dimensionality-reduction 
(feature selection) technique in machine learning is by evaluating the mutual information (MI) 
for each feature. MI is a measure of the dependency of two features (in the context of this thesis: 
the dependency between cluster label and features). It can be explained as the reduction of 
uncertainty (measured by entropy) on values of one feature Y (cluster label) when the other 
feature X (clinical variable) is known: 𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) where H denotes entropy. 
MI detects both linear relationships and nonlinear dependencies.120 

 

4.6 Causal inference 

The study of causal relationships in statistics is a relatively new area of research, and it is 
claimed that the first time it was mathematically described was in the 1920's.121 The 
development of the field has accelerated during the last four decades, and a wide range of 
methods have been implemented. It is beyond the scope of this thesis to describe them all in 
detail. This section will focus on the PC algorithm used for causal inference analysis in cross-
sectional data and Granger-causality used for analysis of temporal data. 

4.6.1 The PC algorithm 

In study IV, the PC algorithm for causal inference is used. It is one of the oldest and most 
widely used algorithms, and is named after its authors Peter Spirtes and Clark Glymour.122,123 
By testing for conditional independence in cross-sectional data, causal relationships are 
determined. The result is best presented in a conditional graph for easy interpretation. The 
relations between included features (“nodes”) are investigated in a stepwise approach, where 
each pair of relations are tested for conditional independence of all other features related to one 
of the features. The algorithm is described in Figure 4.123 
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Figure 4: PC algorithm. Correlations between all pairs of features (“nodes”) are calculated. If two nodes are 
independent (not significantly correlated, i.e., a ⫫ b), edges (connections) are removed. In study IV, we set 
the threshold of significance to 0.01. A. A fully connected undirectional graph. B. Unconditional 
independence is tested. Edges are removed between independent features. C. Pairs of nodes still correlated 
are tested for independence conditional on one feature (a⫫b | c) (“a is independent of b, conditional on c”). 
Conditional independence is tested for all features connected to at least one of the nodes a and b. If a and b 
are conditionally independent on c, the edge between a and b is removed, and c is added to the separation set 
of a,b. In this example, (a⫫b | c) and (b⫫d | c), removing the edges between a–b and b–d, and c is in the 
separation sets of a,b and b,d. Each pair with an edge between them are then tested for pairwise conditional 
independence on pairs of features that are correlated with at least one of the nodes, e.g.,  (a⫫c | (b,d)). This 
process can be repeated conditioned on triplets of features, and so on, until the number of edges are 
sufficiently reduced. D. When all conditional independencies are removed, we have produced the so-called 
“skeleton”, and causal relationships can be investigated. This is done by analyzing still correlated nodes and 
their separation set. If a–b–c is correlated, but no correlation is found between a and c directly, and b is not 
in the separation set of (a,c), it can be concluded that a à b ß c. In the case b is present in the separation set 
of (a,c), a causal relationship cannot be determined between a,b,c and we can only conclude that there is a 
correlation between the features. 

 

4.6.2 Granger causality 

Clinical monitoring data is usually longitudinal, highlighting the importance of time-series 
causal inference methods in the ICU setting. One of the most popular methods to investigate 
causality in time-series data is Granger causality (implemented by Granger in 1969). It can be 
summarized as “X Granger-causes Y if predicting Y based on past observations of X performs 
better than predicted Y based on its past only”.124 Granger causality (GC) assumes linear 
correlations, stationary time-series, and autoregression, assumptions that often are violated in 
real-world data.125 Extended Granger causality and nonlinear Granger causality are two 
extensions of GC suitable for analysis of non-linear data. In a review published in 2021, 
Edinburgh et al. investigated ten different causality indices for time-series data, and concluded 
that the agreement between the methods were in general high, with nonlinear GC and transfer 
entropy as the top performing methods.125 

 

4.7 Methodological summary of the studies 

All studies included the patients in the CENTER-TBI ICU sub-cohort (n=2,138). The general 
exclusion criteria were < 18 years old (n=132) and missing GOSE at 6 months post-injury 
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(n=238), leaving n=1,728 patients eligible for further analyses. In study I, patients with high-
resolution monitoring (n=273) of ICP for longer than 24 hours and with baseline data recorded 
were included (n=227). Study II and III included all 1,728 patients in the analyses. Study IV 
included all patients in the high-resolution sub-cohort who had intraparenchymal ICP 
monitoring and with monitoring data during first day post-injury (n=201). 

Outcome was represented by Glasgow outcome scale extended (GOSE) at six months post-
injury, a clinical evaluation scale ranging from 1 (dead) to 8 (without any brain injury-related 
disability) (Table 1).126 If GOSE was missing at 6 months but available at other timepoints, the 
score was imputed using assessments at other timepoints. This imputation was done centrally 
in CENTER-TBI and described elsewhere.127 

 

GOSE Description 
1 Dead 
2 Vegetative state 
3 Lower severe disability 
4 Upper severe disability 
5 Lower moderate recovery 
6 Upper moderate recovery 
7 Lower good recovery 
8 Upper good recovery 

Table 1: Glasgow outcome scale extended (GOSE). GOSE is commonly dichotomized into unfavorable 
(GOSE 1-4) and favorable (GOSE 5-8) outcome. 

 

4.7.1 Study I 

In study I, one-minute averages of ICP and arterial blood pressure (ABP) was calculated from 
10 s-averages of high-frequency (up to 500 Hz) signals. Pressure reactivity index (PRx) was 
calculated as the moving Pearson correlation between ICP and ABP. 

For each threshold of ICP from 10 to 40 mmHg, and duration of 5 to 360 minutes, the number 
of events was calculated. An event was defined as an ICP above the set threshold for a duration 
of longer than the time threshold. In total, 11,036 thresholds were considered. For each 
threshold, the correlation between the number of events and the outcome represented by GOSE 
was calculated. A more negative correlation represents a correlation towards a higher number 
of events and worse outcome, as low GOSE represents worse outcome. The correlation 
coefficients (from -1 to +1) were then visualized in a grid, where negative correlations were 
represented as red, and positive correlations as blue. 

To investigate the uncertainty of the results, bootstrapping with replacement was performed 
(N=1,000), and correlations of number of events and GOSE were calculated for each threshold 
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in each sub-cohort. The results were graphically visualized as described above, but with 
addition of the +-2 standard deviations from the mean transition line.  

The mean PRx for each event was calculated. A threshold of +0.3 was set for impaired 
autoregulation, as previously described.28,128,129 Sub-analyses as described above were made 
on data stratified by cerebrovascular autoregulation status. 

In addition to the correlation plots described above, “pressure time dose” (PTD) was calculated 
and related to outcome. PTD was calculated as the area under the ICP curve above different 
thresholds of ICP (Figure 5), for thresholds of ICP from 0 to 40 mmHg. Total PTD and PTD 
stratified by intact or impaired cerebrovascular autoregulation were calculated and related to 
outcome (unfavorable/favorable outcome and mortality at 6 months post-injury). The average 
PTD for patients with each outcome and above each threshold of ICP was calculated. The 
distributions were compared using the Kolmogorov-Smirnov non-parametric test, with level of 
significance set to 0.05. A multivariable logistic regression model adjusting for the IMPACT 
core features (age, GCS motor score and pupil reactivity) and maximum daily therapy intensity 
level (TIL) was performed. 

 

 

Figure 5: Pressure time dose (PTD) was calculated as area under the curve of the ICP curve above 
different thresholds of ICP. In this figure, the definition of PTD10 is illustrated. 

  

4.7.2 Study II 

Thirty-three early features (Table 1) were included in the clustering analysis. These were 
selected out of clinical interest and experience and were collected within 24 hours post-injury. 

The features were clustered using a mixture of probabilistic graph models and the EM 
algorithm. As some of the included features showed a strong correlation, compensating factors 
were included in the model to limit the impact of correlation. 

To determine the optimal number of clusters, and find the model best fitted to the data the 
cluster similarity index was calculated. Ten models of each number of clusters, from three to 
fifteen, were randomly generated. The model with highest log likelihood (indicating best fitted 
model) for each number of clusters were kept, and the rest were discarded. This was repeated 
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twenty times, generating in total twenty models of each number of clusters, and median CSI 
was calculated. 

The clusters were evaluated by calculating the mutual information (MI) between each cluster 
label and feature. All features with MI > 0.1 were used for a qualitative analysis of the clusters. 
Univariable logistic regression was performed to determine the pseudo-explained variance 
between cluster index and outcome, and a multivariable logistic regression analysis was 
performed to investigate if the clusters added explained variance in addition to the IMPACT 
extended variables. 

4.7.3 Study III 

A clustering of baseline and longitudinal data from the first week in ICU was performed. A set 
of features representing baseline characteristics, clinical management, physiological 
monitoring values, lab values, brain biomarkers and CT characteristics was included in the 
model. Continuous features measured more than once daily were represented by daily mean 
and range (difference between maximum and minimum value). Longitudinal features were 
represented once per day, e.g., “mean glucose day 1”, “mean glucose day 2”, and so on. Thus, 
a total of 452 unique representations of fifty-nine features were included in the model. 

The method used for clustering in study II was used to investigate trajectories during the first 
week of ICU stay, but with a Markovian extension to handle longitudinal data. 

Due to methodological issues when handling longitudinal features, missing longitudinal data 
was imputed by either interpolation or last value carried forward, as judged most appropriate. 
In addition, an incremental seed was used when creating the models: First, a model of two 
clusters were created, with patients randomly assigned at initialization. The cluster 
memberships in the model with highest log likelihood was then used to initialize a model of 
three clusters, where a subset of patients in each cluster were assigned to each cluster. In 
addition, a randomly selected subset of patients were assigned to a third cluster. This process 
was then repeated for up to twelve clusters, in total twenty-five times. 

Cluster stability was assessed as described in study II. 

To determine the importance of each feature, MI was calculated between the cluster label and 
each feature. For each number of clusters, average MI for each feature and day, and weekly 
overall average for each feature was calculated. 

Improvement of the IMPACT extended model outcome prediction by addition of trajectory 
membership was evaluated using a multivariable logistic regression model. The uncertainty in 
predictions were estimated by bootstrapping with replacement (1,000 times), and the results 
were adjusted for the bias of adding more features (i.e., the trajectory label) in the model. 
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4.7.4 Study IV 

The relations between the following features were assessed: ICP, PRx, MAP, heart rate, oxygen 
saturation, arterial partial pressure of carbon dioxide, ICP dose above 20 mmHg, total TIL, and 
GOSE 6 months post-injury. The features were represented by their weekly averages. A 
multivariable logistic regression analysis towards outcome was performed. Causal 
relationships between all features were investigated using the PC algorithm described in section 
4.6.1 above.  

4.7.5 Software 

In study II and III, the cluster development, CSI and mutual information calculations were 
performed using open-source code developed in C++ by Professor Holst. In study IV, 
conditional and unconditional dependencies were calculated using Python version 3.8.15. 

All other analyses were performed using the statistical software R (version 3.5.0 In study I and 
version 4.0.5 in study II-IV). 

 

4.8 Ethical considerations 

CENTER-TBI was approved by local ethical boards at all participating sites (Stockholm dnr: 
2014/1473-31/4). The study was conducted in accordance with all relevant laws of the EU and 
all relevant laws of the country where the participating sites were located. Informed consent 
was obtained by the patients or legal representative/next of kin for all patients recruited and 
was documented in the e-CRF. The CENTER-TBI management committee has approved all 
sub-studies included in this thesis. 

Given the observational nature of the studies, participation is not associated with clear risks nor 
benefits of the individual patient. In large observational datasets, there is always to some extent 
a risk of identification of individual patients. To minimize this risk, several actions have been 
taken to increase the anonymization: Patient IDs and admission sites have been masked. All 
timepoints are made relative to time of injury, which is set to 1970-01-01 for all patients, and 
free text has been manually gone through and potential identifiers have been removed. 
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5 Results 
 

5.1 Study I 

5.1.1 Number of ICP insults are correlated to outcome 

The correlations of number of events above thresholds of ICP (10 to 40 mmHg) and durations 
(longer than 5 to 360 minutes), vs. outcome represented by 6-month GOSE were calculated for 
1,000 bootstrapped populations with the same sample size as the full cohort (n=227) (Figure 
6B, the non-bootstrapped results are visualized in Figure 6A). A mean threshold of 18 mmHg 
+/- 4 mmHg (2 standard deviations [SD]) for events with duration longer than five minutes was 
found (Figure 6B). The transition line can be interpreted as the thresholds above which the 
number of insults are correlated with a worse outcome. Above the transition line +2 SD (22 
mmHg), there is a strong correlation of events to worse outcome. 

Area under the ICP curve – pressure time dose (PTD) – above all thresholds of ICP from 0 to 
40 mmHg was calculated for each patient and correlated to GOSE (Figure 7A). Patients with 
unfavorable outcome had significantly higher PTD above ICP 20 and 25 mmHg compared to 
those with favorable outcome (p=0.014) (Figure 7B). Patients who died within 6 months post 
injury had a significantly higher PTD for all thresholds of ICP 10 mmHg and above (p=0.004 
for PTD20) (Figure 7C). 

 

Figure 6: Thresholds of ICP intensity and duration. The color in each pixel corresponds to the correlation 
between number of events above the threshold of duration and intensity vs outcome represented by 6-month 
GOSE. A. Overall ICP burden. B. The analysis was repeated 1,000 times on bootstrapped cohorts. Black line 
represents mean transition line, white line represent +2 SD, grey line -2 SD. C. ICP burden if cerebrovascular 
autoregulation was intact, and D. if autoregulation was impaired. 
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5.1.2 Cerebrovascular autoregulation correlates with ICP tolerability 

24.9% of overall total monitoring time was spent with impaired cerebrovascular autoregulation 
(defined as PRx > 0.3). If intact autoregulation, 19 mmHg for 5 minutes or longer, or 15 mmHg 
for 50 minutes or longer were correlated to worse outcome (Figure 6C), while if impaired 
autoregulation, no ICP intensity and duration thresholds associated with better outcome were 
identified (Figure 6D). 

In periods with intact autoregulation (PRx £ 0.3), no significant differences in doses of PTD 
were seen between patients with favorable and unfavorable outcome (Figure 8A), while a small 
but statistically significant increase in doses above ICP thresholds of 0 and 20-30 mmHg was 
seen in patients who died (Figure 8C).  

Differences in PTD with impaired autoregulation were remarkably larger between the groups, 
both when stratified by unfavorable outcome and mortality (Figure 8B,D). These differences 
were statistically significant above all ICP thresholds for mortality, while only statistically 
significant above ICP 0 and 20 mmHg for unfavorable outcome. However, in a multivariable 
analysis, adjusted for the IMPACT core model variables age, GCS motor score and pupillary 
reactivity, and maximum total therapy intensity level, PTD20 was not a significant predictor of 
unfavorable outcome (OR 1.0, 95% CI 0.99-1.00; p=0.39), but rather of 6-month mortality (OR 
1.0, 95% CI 1.00-1.01; p=0.012). Neither PTDintact (OR 1.0, 95% CI 0.99-1.01; p=0.238) nor 
PTDimpaired (OR 1.02, 95% CI 1.00-1.02; p=0.236) above 20 mmHg were significant predictors 
for outcome when adjusted for the same features. 

 

Figure 7: Pressure time dose (PTD) stratified by outcome. A. PTD per GOSE category. B. PTD stratified 
by favorable and unfavorable outcome. C. PTD stratified by 6-month mortality. GOSE: Glasgow outcome 
scale extended. 
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Figure 8: PTD stratified by outcome and cerebrovascular autoregulation status. PTD with impaired 
autoregulation were higher above all thresholds of ICP for both unfavorable outcome and mortality compared 
to favorable outcome and survival (B, D), while no differences in PTD with intact autoregulation were seen 
(A, C).  

 

5.2 Study II 

5.2.1 Six clusters exhibit distinct patient profiles distinguished by GCS and 
metabolic state 

To determine optimal number of clusters, ten models were created for each number of clusters, 
and the model with highest log likelihood was chosen as the best model. This was repeated 
twenty times, generating twenty models for each number of clusters. Cluster similarity index 
was calculated for each number of clusters: six clusters had the highest median CSI, when a 
penalty of 1/n(clusters) had been subtracted. The clusters were identified using thirty-three 
baseline features collected at admission or during the first 24 hours post-injury. Nine of these 
features were identified as being of most importance to describe the clusters, defined by a 
mutual information (MI) above 0.1: GCS motor score, GCS total score, lactate, oxygen 
saturation (SpO2), creatinine, glucose, base excess, pH, PaCO2, and body temperature (Figure 
9).  

In aggregate, the clusters could be identified by a combination of GCS and degree of metabolic 
derangement (Figure 10). 
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Figure 9: Relative differences in profiles of the identified clusters. Each cluster profile is represented by 
the most prominent features (defined as mutual information > 0.1). These features were GCS motor score, 
GCS total score, lactate, oxygen saturation (SpO2), creatinine, glucose, base excess (BE), pH, arterial partial 
pressure of carbon dioxide (PaCO2), and body temperature. 

 

5.2.2 Clusters improve current outcome predictions 

Information on outcome was not included in the clustering. In all clusters except two (B and C 
– clusters with moderate TBI according to GCS), the IMPACT extended model overestimated 
the mortality risk, but underestimated the risk of unfavorable outcome. 

By adding the cluster label to the IMPACT extended model, a small but statistically significant 
increase in Nagelkerke’s R2 were seen both for functional outcome and mortality (0.42 to 0.44; 
p=0.001, and 0.36 to 0.38; p=2.9´10-5, respectively). This improvement is in the same 
magnitude as extending the IMPACT core model with the laboratory values (hemoglobin and 
glucose). 
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Figure 10: Descriptive analysis of the identified clusters. 

  

5.3 Study III 

5.3.1 Glycemic variation and brain biomarkers largely define trajectories during 
first week in ICU 

Using cluster similarity index (CSI) as a measure of robustness could not support a particular 
number of clusters, as no distinct peak was seen. This suggests that the number of trajectories 
TBI patients most likely follow in the first week of ICU stay may be a continuum between two 
and twelve. 

Glycemic variation, a panel of serum brain biomarkers (Tau, UCH-L1, GFAP, NFL, and 
S100B) and serum creatinine were consistently among the most prominent features in 
describing the clusters from two to twelve clusters, expressed as generating the highest weekly 
average mutual information. A day-by-day analysis revealed a similar pattern on all individual 
days. In addition, mean ICP and sodium variation appeared to be more important on early days. 

5.3.2 Trajectories are related to previously described admission clusters and 
improve outcome predictions 

Outcome was not considered when generating the clusters. In spite of this, there was a clear 
difference in outcomes between the trajectories (Figure 11), which, in the case of six clusters, 
ranged from 3.7% (n=16) to 65% (n=134) mortality and 18% (n=78) to 85% (n=174) 
unfavorable outcome. 
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The trajectory assignments in models of three to twelve trajectories added substantial 
information to outcome prediction beyond that of the IMPACT lab model, with absolute 
increases in bias-adjusted Nagelkerke’s R2 ranging from 0.02 to 0.09 for mortality and ranging 
from 0.03 to 0.09 for unfavorable outcome.  

 

 

Figure 11: Outcomes in clusters for models of two to twelve number of clusters. Outcome is represented 
by Glasgow outcome scale extended (GOS-E) where 1 represents “dead” and 8 represents fully recovered. 

 

5.4 Study IV 

5.4.1 A directional relationship of pressure reactivity and therapy intensity level 
on outcome 

In a multivariable regression including MAP, PRx, ICP dose above 20 mmHg and TIL towards 
outcome, PRx (p<0.0001) and TIL (p=0.01) were the only significant predictors of mortality. 
PRx (p=0.01), TIL (p=0.001), and MAP (p=0.01) were significant predictors for unfavorable 
outcome defined as GOSE £ 4. 

The PC algorithm was then used to investigate the causal relationships in a stepwise manner. 
The results are presented graphically in Figure 12. Correlations still significant when 
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conditioned on three features were ICP and PTD20; ICP and PRx; heart rate and PRx; PaCO2 
and TIL; TIL and GOSE; and PRx and GOSE (Figure 12F). Causal relationships were though 
only possible to determine for TIL on GOSE and PRx towards GOSE. 

 

 

 

Figure 12: Stepwise implementation of the PC algorithm. A. The complete undirected graph. B. In the 
first step, all unconditional significant correlations are investigated. C. In step 2, all correlations are 
conditionally tested on one feature. D. Step 3, all remaining significant correlations are conditionally tested 
on two features. E. Step 4, all remaining significant correlations are conditionally tested on three features. F. 
Directional relationships of the remaining significant correlations are determined. 
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6 Discussion 
This thesis has investigated different aspects of TBI patients admitted to the ICU. Contributions 
to pathophysiological characterization of this group of patients have here been made by 
investigation of ICP tolerability in relation to cerebrovascular autoregulation, characterization 
of patients by admission features using an unsupervised clustering method, and identification 
of features important in longitudinal assessment during the first week of ICU stay. However, 
the results need to be interpreted in the context of current evidence, which is the aim of this 
discussion. 

 

6.1 The ICP dose concept 

The concept of ICP dose has indeed been well-studied.30,32,34–36,62,130–134 Work is ongoing 
hoping to bring the concept to clinical implementation.132,133 However, there is not yet a 
consensus on which threshold of ICP should be used to calculate dose, or a consensus even on 
how to define it- as number of events of intracranial hypertension, or area under the curve 
above a certain threshold. In study I, we identified an association between dose tolerability and 
cerebrovascular autoregulation status.130 In addition, we identified a degree of certainty of 
tolerable thresholds of ICP intensity and duration: 18 +/- 4 mmHg (2 SD) for five minutes. 
Thus, even 5-minute long ICP events above 22 mmHg are, with high certainty, correlated with 
worse outcome.  

It is biologically plausible that prolonged periods of intracranial hypertension aggravate injury, 
although sharp rises with short duration, as those that appear in this study, still have potential 
of neuronal damage and are thus important to prevent. However, chronic intracranial 
hypertension may lead to an adaptation to high pressures. In fact, patients have been shown to 
tolerate pressures as high as 40 mmHg.31 This may reflect a right-shift in the ICP vs CBF curve, 
similar to what is seen in chronic systemic hypertension.  

The dose concept may be appealing for several physiological processes. In fact, CPP dose has 
been shown to correlate with outcome, where tolerability was greater when cerebrovascular 
autoregulation was intact.135 Dose of intraoperative hypotension has also been investigated, 
where larger doses were associated with increased risk of myocardial and kidney injury as well 
as with mortality.136–138  

Before a consensus is reached on how to define and measure ICP dose, it may be premature to 
include the concept in current guidelines, even though Meyfroidt et al. recommend taking the 
dose of ICP into consideration in a recent management update.50 In addition, the introduction 
of the dose concept will not replace the need of identifying thresholds of absolute values of 
ICP: dose calculations require computational resources which may not be available in low-
resource settings and should rather be seen as a possible additional biomarker in TBI. 
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6.2 Time for revision of ICP thresholds? 

A fixed ICP level has been questioned as a treatment target. During recent years, several studies 
have indicated that it might not be ICP elevations above a fixed target that are harmful, but the 
total dose of ICP over time.34,35 Zeiler and Lazaridis have also shown that individualized 
thresholds of ICP strengthen the association to outcome and may be lower than guideline 
thresholds,31,32 but more studies are needed before it can be implemented in clinical praxis. 
Results from other studies indicate that ICP tolerability may vary depending on the 
cerebrovascular autoregulation status, represented by the moving average correlation 
coefficient between MAP and ICP – the pressure reactivity index (PRx). During episodes of 
impaired autoregulation, very few tolerable ICP levels have been identified.30 

Brain Trauma Foundation (BTF) guidelines state 22 mmHg as a threshold of ICP, a 
recommendation that has not been changed since the last version of the guidelines in 2016.27 
This threshold is based on one single previous study where values above were found to be 
associated with mortality.28 Since then, cumulative evidence suggests that tolerable ICP 
thresholds may be slightly lower than those suggested by guidelines.30–32,130,134,139 

Common clinical practice in Europe focuses on avoiding values above 20 mmHg.29 Rather than 
a treatment threshold, 20-22 mmHg might be regarded a medical emergency, as values above 
this threshold are associated with increased mortality while thresholds for favorable outcome 
are lower.  

The concept of individual thresholds is appealing, and doses above individualized thresholds 
have been shown to correlate stronger with outcome than those above generalized 
thresholds.31,32 In study I, we found a population-dependent and cerebrovascular 
autoregulation status-dependent variation in threshold.130 Multiple findings of lower 
tolerability in older patients further support the use of individualized thresholds.28,140 ICP 
thresholds associated with worse outcome have also been shown to be lower over time.140 The 
use of an individualized approach is indeed advocated by leading experts in the field of 
TBI.50,141,142 However, most TBIs occur in low- and middle-income countries, where resources 
are limited, and this approach may not be feasible. Fixed thresholds may thus still be needed to 
guide treatment as to improve outcome. 

ICP is not an isolated physiologic parameter and is confounded by ICP management therapies 
and closely associated with its derived measures CPP and PRx. It should be interpreted in 
combination with treatments and other brain physiology measures such as PbtO2, cerebral 
metabolism and blood flow.50,141,143 In fact, Kim et al. have proposed a novel index called 
duration of severe hypoperfusion (dHP) defined by simultaneous PRx > 0.2, CPP < 70 mmHg, 
and ICP above 20 or 22 mmHg. A 25-minute duration of dHP was significantly correlated to 
6-month mortality.144 

The variation in suggested ICP targets, and its interplay with other facets of brain physiology 
(e.g., cerebrovascular autoregulation) and treatments make the “true” tolerable threshold 
difficult to determine. In addition, thresholds identified in observational studies are most likely 
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biased by recommendations, where the negative impact of ICP above recommended thresholds 
simply may reflect refractory ICP. 

A new recommendation will most likely be consensus-based. The question remains if it will be 
lower than today’s 22 mmHg threshold or if it will be individualized. However, it is important 
to remember that the primary aim with an ICP threshold is to avoid second insults which can 
aggravate the primary injury. A holistic TBI-management approach (as suggested by Chesnut 
et al.) may be a better target than an ICP-focused one in improving outcome after TBI.142 

 

6.3 The role of cerebrovascular autoregulation 

In study I, we found a difference in ICP tolerability depending on cerebrovascular 
autoregulation. In the visualization plots of duration and magnitude of ICP elevations, no 
tolerable ICP levels were identified if autoregulation was impaired (PRx ³ 0.3), while 19 
mmHg for 5 minutes or longer, or 15 mmHg for 50 minutes or longer, were correlated with 
worse outcome if autoregulation was intact. Group differences (i.e., survivors vs. non-survivors 
and favorable vs. unfavorable outcome) in PTD were also larger in periods of impaired 
autoregulation than in periods of intact autoregulation. This result raised the question of 
causality: are ICP and autoregulation causal factors of outcome or rather associations related 
to injury severity? In study IV, we did a follow-up analysis where causal relationships of these 
parameters in combination with other ICP-related factors and treatments were investigated, and 
a directional relationship of PRx and TIL on outcome was revealed. When conditioning on 
other features, no direct causal relationship between ICP and outcome were found. However, 
the analysis was made on weekly averages of the features, and it is possible that additional 
causal relationships can be identified on daily sub-analyses. 

This result is interesting and raises the question if we should use a PRx-guided treatment 
approach rather than an ICP-focused one. Indeed, PRx has in multiple studies been shown to 
correlate to outcome.28,38,134,145 On the other hand, PRx has been shown to not correlate with 
therapeutic intensity,45,146 why may preclude its use as a treatment target in TBI. However, PRx 
have proven useful in identifying optimal CPP levels48,147 and individualized ICP 
thresholds,31,32 supporting a greater role in TBI management than only being a marker of 
disease. Incorporating assessment of cerebrovascular autoregulation status by PRx assessment 
and MAP challenges to assess optimal CPP have been suggested in recent consensus-based 
management algorithms.6,50 

 

6.4 Phenotyping of TBI patients 

There has been a strong call to identify TBI endotypes; subgroups of patients which might 
benefit from different treatment approaches. The hope is also that this may yield important 
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subgroup analyses in clinical trials to find effective treatments targeted to different groups of 
patients.3,9,11  

In study II, we included a wide range of clinically interesting and relevant features, both 
previously identified to be associated with outcome and features judged to be of clinical 
interest. Six endotypes were identified and could be described by GCS and pattern of metabolic 
derangement represented by glucose, body core temperature, pH, lactate, base excess, arterial 
partial pressure of carbon dioxide, oxygen saturation, and creatinine. Notably, two different 
types of metabolic derangement were observed: in a group with intermediate GCS (mean 9-
12), the pattern might be interpreted more as the result of a general stress response, with high 
glucose and lactate, whereas, in a group with low GCS (<9), the pattern may be presumably 
related to systemic shock and possibly a different genesis of lactate, associated with 
extracranial injuries. 

Although no information on outcome was included in the model, the described clusters added 
information towards outcome in addition to previously identified important outcome predictors 
of the IMPACT model. To our knowledge, this is the most extensive unsupervised clinical 
endotyping of TBI patients in the ICU. An inflammatory response to TBI is gaining more 
attention. Unfortunately, inflammatory markers were not available in our dataset, but would be 
valuable to assess in the clusters. In addition, the biomarker and genetic profiles of the clusters 
would be interesting to assess, as there is an emerging belief that current classification models 
of TBI can be significantly improved by including genetic markers and biomarkers. However, 
to date, no classifications in TBI have incorporated these markers.4,10  

In study III, we described trajectories during the first week of ICU. No fixed number of clusters 
were found to best distinguish the trajectories, supporting there may rather be a continuum of 
trajectories. All number of clusters between two and twelve performed similarly with respect 
to cluster similarity, prediction improvement beyond IMPACT model and outcome 
distributions. The most important finding was the relatively high contribution of biomarkers of 
brain injury and homeostasis, which consistently in our analyses showed to be of greatest 
importance in defining trajectories. The importance of biomarker assessment has been 
highlighted before: A relationship to intracranial lesions has been described both in the acute 
phase,148,149 longitudinally150,151 and in late functional assessment.152 Currently, few centers, 
that we are aware of, use serial brain injury biomarkers as a monitoring modality in clinical 
practice. Our results further support the incorporation and extension of serial biomarker 
sampling in clinical TBI management algorithms. 

Variations in daily values of glucose and sodium were shown to be of greater importance than 
absolute values, although daily variations were, in general, low. This does not exclude absolute 
values of these features from being important. However, the results are supported by previous 
observational studies,69,153 although causal relationships are not well-understood. Suggested 
mechanisms of injury related to glucose variation are oxidative stress triggered by altering 
glucose levels, an association with sympathetic stimulation and hyperactivation seen in TBI, 
or simply a marker of less attentive care.90 Sodium homeostasis is also important and has been 
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reported to correlate with outcome.69 There are several possible explanations to the observed 
variation: sodium may either be a marker of treatment intensity, since hypertonic saline is a 
commonly used method of ICP management, or a neuroendocrine disturbance of antidiuretic 
hormone (ADH) secretion. Serum creatinine as a recurrent important factor when describing 
the clusters and trajectories, predominantly on early days post-injury requires attention. The 
exact mechanism remains unknown, but pre-injury comorbidities, colloidal ICP lowering 
treatments, polytrauma and systemic hypotension may possibly be contributing. 

Although our proposed endotypes show explainable underlying mechanisms, it is important to 
stress that the results have not been validated in an external cohort and the results still need to 
be regarded as hypothesis-generating. If external validation is successful, restratification 
according to the proposed subgroups of study cohorts in previous interventional studies could 
be performed, to investigate treatment effects in the hypothesized groups. Only then, if the 
endotypes still seem promising, may a clinical implementation of these results be feasible. 

In summary, the temporal patterns of both intra- and extracranial features such as glucose 
variation, brain biomarkers and serum creatinine may add valuable information towards 
outcome in TBI. However, underlying mechanisms still need to be investigated further. 

 

6.5 Methodological considerations 

The results in this thesis are all derived from prospectively collected observational data from 
63 centers in 19 European countries. Data was often irregularly sampled and not complete, with 
different mechanisms for missingness. In addition, physiological features could not be assumed 
to be linearly dependent, and not only continuous but also categorical features were collected, 
adding further demands to choice of analytical methods and considerations. 

To enhance the quality of the data in CENTER-TBI, much time was spent on data curation 
through a team effort between clinical experts and persons with technical expertise. With time, 
the awareness of its importance increased. No matter how careful you are in designing 
databases and CRFs – when data will be collected by people from 19 centers in different 
countries with different practices and habits, individual interpretations are to some extent 
inevitable. The importance of data curation is often overseen. It is indeed a time-consuming 
task, but not only will it increase the quality of the dataset, but also lead to a better 
understanding of a study’s strengths and limitations. 

6.5.1 High-resolution ICP signals 

In study I, we analyzed data from high-resolution ICP signals. Patients with both EVD and 
parenchymal ICP sensors were included. In other studies, patients with EVD are often excluded 
as the dynamics of registered ICP signals are difficult to interpret in relation to open drains. To 
not limit our already small sample size (n=227) we decided to include these patients (n=23 
[10%]) after manual inspection of the ICP signals, where we could not identify longer periods 
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of open drains. Patients with decompressive craniectomy (DC) were included in the analysis 
(n=53 [23%]) as well. This choice was justified as sub-analyses excluding craniectomized 
patients showed no large differences in the intensity and duration plots in concert with results 
from a previous study on the same cohort which could not identify large differences in pressure 
dynamics between DC and non-DC patients.154 

6.5.2 Clustering considerations 

When deciding which clustering method to use, we searched for a method suitable for handling 
not only continuous but also categorical data. The method should preferably be insensitive to 
missingness, as we wanted to avoid imputation, and not require linear dependency of included 
features. In addition, we wanted to perform unsupervised clustering, as we were searching for 
patterns beyond those that could immediately be related to outcome but may still benefit from 
differentiated therapies. This led us to the choice of probabilistic graph models and expectation 
maximization algorithm in study II and III. 

Results generated by clustering are left to some degree of interpretation. Results are sensitive 
to which features were included in generating the model, the number of clusters decided to use, 
and method selection. These are reasons why results generated by unsupervised clustering 
should be regarded as hypothesis-generating rather than hypothesis-tested. Trying to objectify 
our interpretations, we limited our primary feature selection to previously known outcome 
predictions in TBI and other features of clinical interest, judged by clinical experience in the 
team. Number of clusters was sought by the optimization of the cluster similarity index in 
combination with clinical feasibility. For the final interpretation of the clusters, mutual 
information – commonly used in machine learning for this purpose – was used to limit the 
features for interpretation. Nevertheless, it is impossible to claim that the final interpretation is 
completely objective and that the results can be generalized without further validation and 
testing. 

6.5.3 A few remarks on causal inference 

In study IV, we wanted to investigate causal relationships between signals of different 
frequencies, such as high-frequency physiologic signals of ICP, MAP, and PRx, low-frequency 
PaCO2, and ICP-lowering treatments and outcome. The main question was the causal relations 
to outcome. One may argue that a correlation identified through classic logistic regression 
analysis would be enough to claim causality to outcome, as there is a clear temporal relationship 
between the measurements and outcome six months later. However, as we also wanted to 
understand the inter-relationships and its directions of ICP and related measures, logistic 
regression would not be enough to answer our question. 

We had access to high-resolution signals of ICP, MAP and PRx. Averaging signals over time 
will lead to loss of information, such as variability and intermittent peaks. To be able to analyze 
these signals in relation to other less frequently sampled signals, reducing the high-frequency 
signals was necessary. Despite this, we could identify a directional relationship of PRx on 
outcome and TIL on outcome. However, it is possible that averaging over shorter time periods 
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may have revealed additional causal relationships, which should be investigated further in 
follow-up analyses. The validity of the causal relationship of TIL on outcome may be debated 
as high tier-treatments are related to injury severity, which we did not adjust for in our analysis. 
To investigate the relationship of TIL on outcome further, injury severity score (ISS) should 
be included in future models. 
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7 Conclusions 
In this thesis we have characterized TBI patients by previously unidentified patterns: 

• There is a variation in ICP magnitude and duration thresholds associated with outcome, 
with a stronger association and lower thresholds if cerebrovascular autoregulation is 
impaired. The pressure time dose of ICP shows an even stronger association with 
outcome when autoregulation is impaired. Causal inference analysis suggests impaired 
cerebrovascular autoregulation to be more directly causally related to outcome than ICP 
itself. The results highlight the importance of ICP dose, individualized ICP thresholds 
and a continued focus on cerebrovascular autoregulation. 

 

• TBI patients may be characterized not only by brain-specific pathophysiology, but 
through extracranial manifestations, such as metabolic derangement. Whether these are 
markers of disease severity or concurrent extracranial disease or rather aggravators of 
second insult, remains to be investigated. 

 

• Glycemic variation and serial brain biomarker sampling were identified as the most 
important descriptors of trajectories in TBI patients in the ICU. These trajectories were 
found to relate with outcome. This points to a need for studies on the effects of glycemic 
variation in TBI patients and supports the use of serial biomarkers as a monitoring 
modality. 

 

• Unsupervised clustering methods and novel causal inference methods may complement 
traditional statistical methods and RCTs, but generated results need to be validated 
before potential clinical implementation. 
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8 Future directions 
Given the observational nature of the study, the results presented in this thesis should be 
regarded as hypothesis-generating rather than scientific proof. Before the findings can be 
clinically implemented, results need to be externally validated to prove generalizability, and 
underlying mechanisms needs to be better understood. 

The ICP dose has been extensively studied from different perspectives and studies are currently 
underway aiming to bring the concept into clinical practice. However, the lack of a consensus 
on how to define the dose – by number of events above thresholds of ICP and duration or by 
pressure time dose (PTD), and if so, above which threshold – may slow down its clinical 
implementation. A review of the available literature in the field may be an important next step 
followed by a consensus statement to unify the TBI research community. 

The admission clusters and longitudinal trajectories found in these studies need to be validated 
in external datasets. If validation is successful, a next step towards implementation is to classify 
patients in previous interventional studies according to the endotypes to investigate differences 
in treatment responses. If the endotypes still are promising, stratification of patients in 
prospective RCTs may increase the probability of identifying effective treatments. 

The proposed endotypes support an important role of extracranial manifestations of TBI and 
its potential to aggravate brain injury. Though recognized, exact mechanisms remain largely 
unclear. Future studies are needed to better understand the interplay of TBI and systemic 
manifestations such as inflammation and sympathetic hyperactivation. Additionally, 
investigating if genetic patterns might be related to clusters could help identify mechanisms. 

Causal inference in TBI is still largely an understudied area of research. These tools are gaining 
momentum in several fields but have been used to a limited extent in medicine. If proven 
advantageous in TBI research, they may act as a complement to RCTs, although it is unlikely 
that analytical methods on observational data will outperform well-conducted RCTs. 
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