
ResTP: A Configurable and Adaptable
Multipath Transport Protocol for

Future Internet Resilience

By

Truc Anh N. Nguyen

Copyright c© 2021

Submitted to the graduate degree program in Electrical Engineering
& Computer Science and the Graduate Faculty of the University of
Kansas in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

——————————————–
Chairperson: Prof. Victor S. Frost

——————————————–
Prof. Bo Luo

——————————————–
Prof. Taejoon Kim

———————————————
Prof. Morteza Hashemi

——————————————–
Prof. Hyunjin Seo

Date Defended: 3 September 2021

The Dissertation Committee for Truc Anh N. Nguyen
certifies that this is the approved version of the following dissertation:

ResTP: A Configurable and Adaptable Multipath Transport Protocol for
Future Internet Resilience

——————————————–
Chairperson: Prof. Victor S. Frost

Date approved: 3 September 2021

ii

Abstract

Motivated by the shortcomings of common transport protocols, e.g., TCP, UDP, and

MPTCP, in modern networking and the belief that a general-purpose transport-layer pro-

tocol, which can operate efficiently over diverse network environments while being able to

provide desired services for various application types, we design a new transport protocol,

ResTP. The rapid advancement of networking technology and use paradigms is contin-

ually supporting new applications. The configurable and adaptable multipath-capable

ResTP is not only distinct from the standard protocols by its flexibility in satisfying the

requirements of different traffic classes considering the characteristics of the underlying

networks, but by its emphasis on providing resilience. Resilience is an essential property

that is unfortunately missing in the current Internet. In this dissertation, we present

the design of ResTP, including the services that it supports and the set of algorithms

that implement each service. We also discuss our modular implementation of ResTP in

the open-source network simulator ns-3. Finally, the protocol is simulated under various

network scenarios, and the results are analyzed in comparison with conventional proto-

cols such as TCP, UDP, and MPTCP to demonstrate that ResTP is a promising new

transport-layer protocol providing resilience in the Future Internet (FI).

iii

Page left intentionally blank.

iv

Acknowledgments

I would like to sincerely thank my current advisor, Prof. Victor S. Frost for his support

and guidance. Without his help, I would not have been able to continue my study and

complete my dissertation.

I would like to sincerely thank my deceased advisor, Prof. James P.G. Sterzenz for his

support and guidance during the initial years of my Ph.D study.

I would like to thank my committee members, including the former members Prof. Gary

Minden, Prof. Michael Welzl, and Prof. Justin Rohrer, and the current members Prof.

Bo Luo, Prof. Huynjin Seo, Prof. Taejoon Kim, and Prof. Morteza Hashemi for their

valuable feedback to improve this dissertation.

I would like to thank the ResiliNets group members for their suggestions and discussions

about research ideas. I especially would like to thank Siddharth Gangadhar for collab-

orating with me on multiple TCP-related publications and for his work on the TCP

post-processing scripts to produce useful statistics from ns-3 simulations. These scripts

are used to generate some of the results present in this dissertation

I would like to thank the Information and Telecommunication Technology Center (ITTC)

network system administrators and the ITTC administrative staff for their support during

the development of this dissertation.

Last but not least, I would like to thank my family for being my biggest supporters.

Without their love and encouragement, I would not have gone this far.

v

Page left intentionally blank.

vi

Contents

1 Introduction and Motivation 1

1.1 Thesis Statement . 2

1.2 Proposed Solution . 3

1.3 ResTP vs. Conventional Protocols . 4

1.4 Contributions . 6

1.5 Relevant Publications . 6

1.6 Additional Publications . 7

1.7 ns-3 Implementation Models . 8

1.8 Organization . 9

2 Background and Related Work 11

2.1 Connection Establishment . 11

2.2 Error Control . 13

2.3 Congestion Control . 20

2.3.1 Multipath Congestion Control . 25

2.4 Packet Scheduling . 27

2.5 SCPS-TP and Space Communications . 27

2.5.1 Space Communication Environment Characteristics and TCP Short-
comings . 28

2.5.2 SCPS-TP . 30

2.6 Transport Protocols for Real Time Multimedia Applications 31

vii

3 ResTP Design 35

3.1 ResTPDU . 35

3.1.1 Basic ResTPDU . 36

3.1.2 CRC Extension . 39

3.1.3 Flow Control Extension . 40

3.1.4 Cookie Response Extension . 41

3.1.5 FEC Extension . 41

3.1.6 Sequence Number Extension . 42

3.1.7 ARQ Extension . 43

3.1.8 SACK Extension . 44

3.1.9 SNACK Extension . 45

3.1.10 HARQ Extension . 49

3.1.11 MP CAPABLE Extension . 50

3.1.12 MP JOIN Extension . 51

3.1.13 Data Sequence Signal (DSS) Extension 53

3.2 ResTP Extension Precedence . 55

3.3 Single- and Multi-Path Communication Modes 56

3.3.1 Single-Path Communication Mode 56

3.3.2 Multi-path Communication Mode 57

3.4 Cross-Layering Framework . 60

3.5 ResTP Modules . 61

3.5.1 Main Module . 61

3.5.2 Helper Module . 61

3.5.3 Framing Module . 62

3.5.4 Flow Control Module . 62

3.5.5 Connection Management Module 62

3.5.6 Congestion Module . 67

3.5.7 Ordering Module . 68

3.5.8 Reliability Module . 69

3.5.9 ACK Module . 74

3.5.10 Scheduling Module . 78

3.6 ResTP Data Loss Handling . 78

3.7 ResTP for Real-Time Multimedia Applications 80

3.8 ResTP Solutions for UDP, TCP, and MPTCP Shortcomings 81

viii

4 ResTP Performance Evaluation and Analysis 83

4.1 Single-Path ResTP with File Transfer Application 84

4.1.1 Simulation Setup and Topology 84

4.1.2 ResTP Configuration . 85

4.1.3 Simulation Results and Analysis 85

4.2 Single-Path ResTP with Web Services 87

4.2.1 Simulation Setup and Topology 87

4.2.2 ResTP Configuration . 89

4.2.3 Simulation Results and Analysis 89

4.3 Multipath ResTP with Web Services . 95

4.3.1 Simulation Setup and Topology 95

4.3.2 Simulation Results and Analysis 97

4.4 Single-Path ResTP over Satellite Communications 98

4.4.1 Simulation Setup and Topology 98

4.4.2 ResTP Configuration . 99

4.4.3 Simulation Results and Analysis 99

4.5 Single-Path ResTP with Real-Time Applications 102

4.5.1 Simulation Setup and Topology 103

4.5.2 ResTP Configuration . 104

4.5.3 Simulation Results and Analysis 105

4.6 ResTP-GeoDivRP Under Network Challenges 108

4.6.1 Simulation Setup and Topology 108

4.6.2 ResTP Configuration . 109

4.6.3 Simulation Results and Analysis 110

5 Why ResTP and Its Deployability? 113

6 Conclusion and Future Work 115

ix

A ResTP Implementation, Verification, and Validation in ns-3 117

A.1 Implementation . 117

A.2 Verification . 121

A.3 Validation . 123

A.3.1 Simulation Topology . 123

A.3.2 ResTP vs. UDP Using CBR Traffic 124

A.3.3 ResTP vs. TCP Using Bulk Data 126

A.3.4 ResTP Opportunistic vs. Three-Way Handshake 129

x

List of Figures

2.1 Stop-and-Wait Retransmission Scheme 16

2.2 Go-Back-N Retransmission Scheme . 17

2.3 Fast Retransmit Retransmission Scheme 18

2.4 Selective Repeat Retransmission Scheme 19

3.1 Basic ResTPDU . 36

3.2 CRC-extension . 39

3.3 flow-control-extension . 40

3.4 Cookie response extension . 41

3.5 FEC extension . 41

3.6 Sequence number extension . 42

3.7 ARQ extension . 43

3.8 ARQ with SACK extension . 44

3.9 ARQ with SNACK extension . 45

3.10 Example of a reordering queue . 46

3.11 SACK extension upon the arrival of packet 14 47

3.12 SNACK extension upon the arrival of packet 14 47

3.13 SACK extension upon the arrival of packet 15 47

3.14 SNACK extension upon the arrival of packet 15 48

3.15 SACK extension upon the arrival of packet 17 48

3.16 SNACK extension upon the arrival of packet 17 49

3.17 HARQ extension . 49

3.18 MP CAPABLE extension . 50

3.19 MP JOIN extension for initial SYN . 51

3.20 MP JOIN extension for SYN-ACK . 52

xi

3.21 MP JOIN extension for ACK . 53

3.22 DSS extension . 54

3.23 ResTP single-path communication . 56

3.24 ResTP multi-path hot-standby communication 57

3.25 ResTP multi-path spreading communication 57

3.26 ResTP multi-path hot-standby communication with path failure 58

3.27 ResTP multi-path spreading communication with path failure 58

3.28 ResTP in the ResiliNets protocol stack 60

4.1 Single router simulation topology . 84

4.2 Throughput of ResTP vs. TCP using short file transfer over lossy link . . 86

4.3 PLT comparison under no-loss scenario 90

4.4 PLT comparison under SYN-loss scenario 92

4.5 PLT comparison underSYN/ACK-loss scenario 93

4.6 PLT comparison under SYN-and-SYN/ACK-loss scenario 95

4.7 Multipath topology for comparing ResTP in its multipath mode and MPTCP 96

4.8 Instantaneous throughput of ResTP and TCP with multiple outages of
the satellite link . 100

4.9 ResTP sink traffic trace with multiple outages of the satellite link 100

4.10 TCP sink traffic trace with multiple outages of the satellite link 101

4.11 ResTP vs. TCP RTO events . 102

4.12 Topology for simulating ResTP vs. UDP and TCP with VoIP traffic . . . 103

4.13 Voice packet lateness vs. sequence number when using TCP with three-
way handshake . 106

4.14 Voice packet lateness vs. sequence number when using ResTP with op-
portunistic handshake . 107

4.15 Sprint network topology challenge profile 109

4.16 Sprint network topology with multiple paths (dashed lines are paths used
by MPTCP, and solid lines are paths used by ResTP) 110

4.17 Sprint network ResTP throughput compared to MPTCP 111

A.1 ResTP class diagram in ns-3 . 119

A.2 Single router simulation topology . 123

A.3 Throughput of ResTP vs. UDP using CBR traffic over lossy link 125

xii

A.4 Throughput of ResTP vs. TCP using bulk send over lossy link 127

A.5 Throughput of ResTP vs. TCP using bulk send over lossy link 128

A.6 Average throughput of OPT vs. 3WH with increasing bottleneck delay . 130

A.7 Instantaneous throughput of OPT and 3WH when SYN dropped 131

xiii

Page left intentionally blank.

xiv

List of Tables

3.1 FEC encoding types . 42

3.2 ResTP extension precedence . 56

3.3 ResTP solutions to UDP, TCP, and MPTCP shortcomings 82

4.1 ResTP-3WH-ARQ configuration for evaluating ResTP with file transfer
application in comparison with TCP . 85

4.2 ResTP-3WH-HARQ configuration for evaluating ResTP with file transfer
application in comparison with TCP . 85

4.3 Flow Completion Time of ResTP vs. TCP 85

4.4 ResTP configuration for evaluating ResTP opportunistic handshaking with
web services in comparison with TCP’s 3WH and TFO 89

4.5 PLT comparison under no-loss scenario showing percentage of ResTP OPT
improvement when comparing with 3WH 91

4.6 PLT comparison under SYN-loss scenario showing percentage of ResTP
OPT improvement when comparing with 3WH 91

4.7 PLT comparison under SYN-loss scenario showing percentage of ResTP
OPT improvement when comparing with TFO 92

4.8 PLT comparison under SYN/ACK-loss scenario showing percentage of ResTP
OPT improvement when comparing with 3WH 93

4.9 PLT comparison under SYN/ACK-loss scenario showing percentage of ResTP
OPT improvement when comparing with TFO 94

4.10 PLT comparison under SYN-and-SYN/ACK-loss scenario showing percent-
age of ResTP OPT improvement when comparing with 3WH 94

4.11 PLT comparison under SYN-and-SYN/ACK-loss scenario showing percent-
age of ResTP OPT improvement when comparing with TFO 94

4.12 PLT comparison under no-loss scenario showing percentage of ResTP OPT
(MPResTP) improvement when comparing with 3WH (MPTCP) 97

4.13 PLT comparison under SYN-loss scenario showing percentage of ResTP
OPT (multipath mode) improvement when comparing with 3WH (MPTCP) 97

xv

4.14 ResTP configuration for handling link outages in satellite communications 99

4.15 Unreliable ResTP (UDP-like) configuration for multimedia real-time ap-
plications . 104

4.16 ResTP-3WH-FUL-ARQ configuration for multimedia real-time applications104

4.17 ResTP-3WH-PAR-ARQ configuration for multimedia real-time applications105

4.18 Voice flow statistics for UDP, TCP, and different ResTP configurations
when RTT is 60 ms, and PER is 0.02. 105

A.1 Simulation parameters . 124

xvi

Chapter 1

Introduction and Motivation

The Internet has been dominated by the two standard transport-layer protocols for

decades: the Transmission Control Protocol (TCP) [1–4] and the User Datagram Proto-

col (UDP) [5]. While UDP is a light-weight protocol, which provides connectionless and

unreliable datagram transmissions between communicating hosts, TCP is a connection-

oriented and reliable transport protocol, which provides flow control, congestion control,

and in-order data delivery service. Both of these have made significant contributions to

the success of the Internet, especially in sustaining the global network’s scalability, ro-

bustness, and stability. However, the emergence of new application classes and dynamic

network environments as a result of the rapid growth in networking technologies and use

paradigms has challenged the performance of both UDP and TCP since the modern net-

works are characteristically different from the environments for that these protocols were

tailored. As their design assumptions are violated, impairments are inevitable. These

issues have resulted in numerous research efforts and studies, yielding scores of propos-

als, ranging from modifications and extensions on top of the standards to new protocols.

Unfortunately, the majority of these approaches tend to address specific problems for

particular networks and application types instead of seeking for a general solution that

can demonstrate itself as a potential candidate for the Future Internet (FI).

1

1.1 Thesis Statement

The inflexibility of TCP and UDP in satisfying the requirements of different traffic types

and adapting to various network environments is mainly caused by their fixed service

sets. An obvious example is the debate among multimedia application developers when

making their decisions on whether to select UDP or TCP as the underlying transport

protocol. Given that these applications are loss-tolerable, but delay-sensitive, the light-

weight UDP is the winner. However, its lack of congestion control poses a high risk to

the network stability. Furthermore, the Internet as it is today with UDP and TCP is not

a resilient system. Therefore, our thesis statement is:

A configurable and adaptable multipath-capable general-purpose transport-

layer protocol designed to achieve resilience and survivability is necessary for

Future Internet. Composability and cross-layering are essential to allow the

protocol to provide resilient services to different application classes operating

across various network environments, each with distinct characteristics.

The goal of this dissertation is fourfold:

1. Introduce a new general-purpose transport-layer protocol for FI resilience that is

designed based on an extensive study of the conventional protocols.

2. Present a highly modular implementation of the protocol in the ns-3 open-source

network simulator [6] with the focus on reducing the complexity while increasing

its extensibility as the protocol evolves over time.

3. Discuss the evaluation of the protocol by simulating it under a variety of network

scenarios when carrying different traffic types.

2

4. Present a comparison of ResTP with the conventional protocols UDP, TCP, and

MPTCP

1.2 Proposed Solution

We designed a new transport-layer protocol for FI named Resilient Transport Protocol

(ResTP), which was originally proposed [7] as the general-purpose version of the domain-

specific Aeronautical Transport Protocol (AeroTP) for a highly-dynamic airborne teleme-

try network environment [8–10]. To achieve resilience, the protocol development process

follows closely the set of design principles derived from the ResiliNets framework, in which

resilience is defined as the ability of the network to provide and maintain an acceptable

level of service in face of various faults and challenges to normal operation [11]. With

this definition, resilience covers a broad number of relevant disciplines, including those

relating to challenge tolerance (fault tolerance, survivability, disruption tolerance), trust-

worthiness (reliability, performability, security), robustness, and complexity. Similar to

the conventional protocols, ResTP supports multiple transport-layer services, including

multiplexing/demultiplexing, connection management, error control, transmission con-

trol (flow/congestion), and multipath data transfer. However, unlike the current trans-

port protocols, each of ResTP services is implemented by a set of algorithms that have

been shown to exhibit their value in different network environments for different types

of traffic. The mechanisms make up the ResTP functionalities are composable, resulting

in multiple ResTP modes (or configurations) that are specifically tailored for particular

networks and applications. When ResTP runs on top of the GeoDiverse Routing Proto-

col (GeoDivRP), a routing protocol that is capable of providing a set of geographically

diverse paths developed by other member of the ResiliNets group [12–14], cross-layering

is exploited to survive network challenges.

3

ResTP employs modular design and modular programming that are especially crucial

for the flexible ResTP to achieve low complexity and high extensibility as the protocol

evolves along with the networking technology evolution.

1.3 ResTP vs. Conventional Protocols

ResTP is not the first transport-layer protocol that employs algorithm composibility,

and obviously not the only protocol that allows data transmissions on multiple paths

simultaneously. However, to the best of our knowledge, ResTP is the first composible

and adaptive multipath transport protocol of which the development is solely motivated

by the determination to increase resilience and survivability.

TP++ [15] is another composable transport protocol developed for heterogeneous high-

speed networks. Similar to ResTP, TP++ is designed to carry different types of traffic,

including transactions, bulk data transfer, and delay-sensitive services. However, TP++

only supports single-path transmissions. Furthermore, the protocol only implements

multiple algorithms for its error control service, while utilizing a timer-based connection

management scheme and assuming that congestion control is handled by the underlying

network.

CTP [16] is a configurable and extensible transport protocol that is implemented using

the Cactus microprotocol composition framework [17]. It provides various transport-

layer services and functionalities, including reliability, ordering, security, jitter control,

congestion control, flow control, data and header compression, MTU discovery, message

fragmentation and collation, and connection management with each service implemented

by multiple algorithms. However, similar to TP++, CTP is a single-path protocol. More-

over, the goal of CTP is to serve new application classes and networking environments

without targeting to achieve resilience and survivability.

4

Multipath Transmission Control Protocol (MPTCP) [18] is a recent TCP extension that

utilizes TCP options to allow communication between a pair of hosts through multi-

ple paths concurrently. MPTCP utilizes TCP 3-way handshake for the master subflow

establishment and 4-way handhskae for all subsequent subflows. All subflows (except

the master one) can be used as part of the connection immediately or for backup only.

The closing of an MPTCP connection requires the terminations at both connection and

subflow levels, each through the exchange of FIN messages as in regular TCP. For flow

control, MPTCP maintains a single receiving buffer that is shared by all subflows and

uses connection-level ACKs to slide the window. In addition, the protocol employs the

ARQ with retransmissions error control technique at both connection and subflow levels.

For congestion control, there have been multiple coupled congestion control algorithms

proposed for MPTCP, including the Link Increase Algorithm (LIA) [19], Opportunis-

tic Linked-Increased Algorithm (OLIA) [20], Balanced Linked Adaptation Algorithm

(BALIA) [21], and Weighted Vegas (WVEGAS) [22].

MPTCP inherits the strictly intertwined flow/error/congestion control limitation of TCP

and can only provide a fixed set of services. This limits the flexibility of MPTCP in

supporting diverse network applications. ResTP, even in its multipath mode, is capable

of configuring its service (by mixing and matching its sets of mechanisms) to meet specific

application requirements.

Because the functionality of MPTCP is constructed based on TCP options and the

imposed limitation on the total option length, extensions or modifications on MPTCP

when desired are also constrained.

MPTCP creates subflows by using all possible endpoint addresses, path qualities are not

verified before they are utilized. The protocol neither has any knowledge of the charac-

teristics of these paths nor can ensure their disjointness until it starts to use them [23].

5

Furthermore, MPTCP provides no mechanisms for the application and network layers

to participate in the path selection process. On the other hand, the ResTP-GeoDivRP

protocol stack with cross layering allows both the upper and lower layers to engage in

path selection. The protocol stack also allows geographically diverse paths to be selected

for data transmissions, resulting in the achievement of not only fault tolerance, but also

survivability.

1.4 Contributions

The main contributions of this dissertation are:

1. Design a new transport-layer protocol, ResTP for FI resilience.

2. Implement a model of the protocol in the ns-3 network simulator.

3. Simulate and compare the performance of ResTP with the conventional protocols

using various application and network types to highlight the protocol potentials.

1.5 Relevant Publications

The research presented in this dissertation has resulted in a number of publications,

including the following.

Journal articles

Peer-reviewed conference proceedings

5. Truc Anh N. Nguyen and James P.G. Sterbenz, “Connection Management in a

Resilient Transport Protocol,” 13th International Conference on Design of Reliable

Communication Networks (DRCN 2017), Munich, March 2017.

6

4. Yufei Cheng, Truc Anh N. Nguyen, Md. Moshfequr Rahman, Siddharth Gan-

gadhar, and James P.G. Sterbenz, “Geodiverse Routing Protocol with multipath

forwarding compared to MPTCP,” 8th International Workshop on Resilient Net-

works Design and Modeling (RNDM 2016), Sweden, September, 2016.

3. Yufei Cheng, Truc Anh N. Nguyen, Md. Moshfequr Rahman, Siddharth Gan-

gadhar, Mohammed J.F. Alenazi, and James P.G. Sterbenz, “Cross-Layer Geodi-

verse Protocol Stack for Resilient Multipath Transport and Routing using Open-

Flow,” 12th International Conference on Design of Reliable Communication Net-

works (DRCN 2016), Paris, France, March 2016.

2. Truc Anh N. Nguyen, Justin P. Rohrer, and James P.G. Sterbenz, “ResTP -

A Transport Protocol for FI Resilience,” 10th International Conference on Future

Internet Technologies (CFI 2015), Seoul, Korea, June 2015.

1. Justin P. Rohrer, Kamakshi Sirisha Pathapati, Truc Anh N. Nguyen, and James

P.G. Sterbenz, “Opportunistic Transport for Disrupted Airborne Networks,” The

IEEE Military Communications Conference (MILCOM), Orlando, FL, USA, 29

Oct–1 Nov, 2012, pp. 737–745.

1.6 Additional Publications

Other publications have been resulted from my research during my graduate studies.

4. James P.G. Sterbenz, Justin P. Rohrer, Mohammed J.F. Alenazi, Truc Anh N.

Nguyen, Egemen K. Centinkaya, Hemanth Narra, Kamakshi S. Pathapati, and

Kevin Peters, “Distuption-Tolerant Airborned Networks and Protocols,” in UAV

Networks and Communications, Cambridge University Press, 2018, pp.587–95.

7

3. Truc Anh N. Nguyen and James P.G. Sterbenz, “An Implementation and Anal-

ysis of SCPS-TP in ns-3,” Workshop on ns-3 (WNS3’17), Porto, Portugal, June

13–14, 2017, pp. 1–7.

2. Truc Anh N. Nguyen, Siddharth Gangadhar, and James P.G. Seterbenz, “Per-

formance Evaluation of TCP Congestion Control Algorithms in Data Center Net-

works,” 11th International Conference on Future Internet Technologies (CFI 2016),

Nanhing, China, June 15–17, 2016, pp. 21–28.

1. Truc Anh N. Nguyen, Siddharth Gangadhar, and James P.G. Sterbenz, “An Im-

plementation of Scalable, Vegas, Veno, and YeAH Congestion Control Algorithms

in ns-3,” Workshop on ns-3 (WNS3’16), Washington, USA, June 15–16, 2016, pp.

17–24.

1.7 ns-3 Implementation Models

I have contributed many models to the ns-3 community 1 as the results of my research

work during my graduate studies.

1. Scalable TCP (STCP), 2016 (collaborate)

2. TCP Vegas, 2016

3. TCP Veno, 2016

4. Yet Another Highspeed TCP (YeAH), 2016

5. TCP Illinois, 2016 (collaborate)

1The community actively encourages submission of new features and models to ns-3. These sub-
missions must follow the ns-3 coding and engineering guidelines and include documentation, tests, and
examples before they are reviewed by other members [24].

8

6. TCP Westwood(+), 2013 (collaborate)

7. Burst error model, 2013

1.8 Organization

The rest of this dissertation is organized as follows: Chapter 2 presents a discussion of

transport-layer algorithms and protocols that are adopted by or closely related to ResTP.

In Chapter 3, we explain in details the design of ResTP including its header, modules,

and the algorithms implemented inside each module. In Chapter 4, we evaluate the

performance of ResTP by simulating the protocol with different applications and network

types in comparison with conventional transport-layer protocols. Chapter 5 presents our

thoughts on ResTP deployability. Finally, Chapter 6 concludes our dissertation with

directions for future work. Details on the implementation verification and validation of

ResTP in ns-3 is presented in Appendix A.

9

Page left intentionally blank.

10

Chapter 2

Background and Related Work

In this chapter, we discuss the different transport-layer services and algorithms that are

related to or adopted by ResTP. We also give a summary of the transport protocols

that guided the development of ResTP. The discussion highlights the drawbacks of the

existing protocols and methods and present ResTP as a solution.

2.1 Connection Establishment

Connection management refers to the mechanism employed by a transport protocol to

allocate, synchronize, and deallocate states while allowing the communicating parties

to negotiate their operation modes and resources needed for their association. A reli-

able connection management, which can be achieved by combining different handshaking

techniques, timers, and unique connection identifiers ensures a complete data transmis-

sion between end hosts with no ambiguity caused by data or acknowledgement duplica-

tions from either the current connection or previous ones [25]. Connection management

schemes are classified into two main categories: connectionless and connection-oriented.

In the connectionless (CL) transport service, individual datagrams are exchanged be-

tween communicating hosts with no initial setup. Unless the protocol provides acknowl-

11

edgement service for the transmitted data, which requires some state information to be

retained at the sender, there is normally no information regarding to the association being

maintained. Hence, the CL technique cannot protect the data from loss, missequencing,

and duplication [26]. UDP is an example of a connectionless transport protocol.

In the connection-oriented (CO) transport service, user data are exchanged over a con-

nection that can be explicitly or implicitly established and released with state information

maintained at both endpoints to ensure that they are in synchronization during the com-

munication lifetime. Based on the approach used to manage state information at end

hosts (end-to-end (E2E) state management), the CO mechanism is categorized into three

groups: timer-based, handshake-based, and hybrid. In the timer-based or pure soft state

(SS) approach, timers are implemented at both ends to determine the state retention

intervals, and all installed states will eventually timeout unless the end systems keep re-

freshing them. Because of the time-out characteristic, no explicit messages are required

to remove state information. Delta-t [27], VMTP [28], and TP++ [15] are examples

of transport-layer protocols that employ the timer-based technique. In the handshake-

based (packet-exchange based) or pure hard state (HS) approach, communicating hosts

are required to explicitly exchange control messages (signaling) to initiate and terminate

a connection. At the transport layer, signaling may be accomplished in-band or out-

of-band. While the former allows control and data messages to be multiplexed on the

same connection, the latter transmits them on separate connections [26]. APPN [29–32]

and Datakit [33–35] are a couple of examples that implement the pure HS approach.

The hybrid approach incorporates both control messages and timers into the connection

management. TCP and its variants, NETBLT [36], and HULA [37] are transport-layer

protocols that employ the hybrid scheme.

A TCP connection is established using its well-known three-way handshake procedure

with the exchange of SYN, SYN-ACK, and ACK messages before the actual data transmis-

12

sion. The use of any optional TCP options such as window scaling [38], timestamps [38],

or selective acknowledgement (SACK) [39] is also negotiated through these signaling

packets. A TCP connection is terminated using the graceful acknowledged FIN exchange

method [40], which allows a full-duplex connection to close only when both ends have no

more data to send while ensuring that all data transmitted before the FIN segments are

fully received. Before tearing down the connection, the closing initiator (or initiators if

both ends close simultaneously) enters a waiting period, which has the length of twice

the maximum packet lifetime (MPL) to handle any outstanding data. Hence, TCP con-

nection termination is a hybrid approach that employs both timers and explicit control

messages.

Because TCP does not allow any application data to be transmitted during the estab-

lishment phase, it costs the protocol one whole round trip time (RTT) just to perform

the connection setup. The TCP handshake especially adds a significant latency to short

flows that normally terminate within a few RTTs. TCP Fast Open (TFO) [41, 42] ad-

dresses this issue by allowing communicating hosts to transmit and process data during

the initial handshake after the client (connection initiator) obtains a security cookie from

the server with that it wishes to communicate.

ResTP supports three connection establishment schemes: connectionless, three-way hand-

shake, and ResTP opportunistic. The opportunistic approach improves the three-way

handshake overhead while being resilient to SYN or SYN-ACK losses. Section 3.5.5 ex-

plains the ResTP connection establishment in more details.

2.2 Error Control

A reliable transport protocol that operates on top of an unreliable network layer needs to

implement an error control mechanism to detect and correct (or request for a correction

13

of) errors introduced into data packets when they are being transferred over error-prone

channels. Error control algorithms are classified into 3 categories: ARQ (automatic

repeat request), FEC (forward error correction), and HARQ (hybrid ARQ).

ARQ protocols provide reliable data transfer by requesting a retransmission of a corrupted

packet after detecting an error in the received data. Fundamentally, in order to handle

bit errors properly, ARQ protocols need to possess three capabilities: error detection,

receiver feedback, and retransmission [43]. While the first two are implemented on the

receiver side, the last one is employed by the sender of the protocol. There are multiple

bit-level error detection techniques, and the simplest is parity checks. Single parity bit is

able to detect a single bit error in a packet. When using this method, the sender appends

an additional bit into the original d-bit data such that the total number of (d + 1) bits

is either even (even parity scheme) or odd (odd parity scheme). On the other end, the

receiver counts the number of 1s in the received bits and checks against the scheme in

use to detect an error. Two-dimentional parity allows the detection and correction of a

single bit error in a packet by diving the original data into multiple rows and columns and

appending a parity bit to each row and column as in the single parity scheme. Another

error detection technique is checksumming. With this method, d-bit data are treated as

k-bit integers, and the sum of these integers is used to detect bit errors. The Internet

protocols, UDP, TCP, and IP, implement the checksumming method by treating data as

16-bit integers, calculating their sum, and performing the 1 s complement of the sum.

However, while UDP and TCP compute checksum over both header and data fields, IP

computes checksum over the IP header only. The receiver’s operations involve calculating

the sum of the received data together with the checksum and taking the 1 s complement

of the total. The result is error-free if it contains all 1s. Finally, another widely-used

bit-level error detection technique is CRC (cyclic redundancy check) or polynomial codes.

CRC operation involves the use of an (r + 1)-bit generator G that is known by both the

14

sender and receiver. The sender then appends an additional r-bit R to any d-bit data

D that it wants to transmit so that the (r + d)-bit result is divisible by the generator

G using modulo-2 arithmetic with no remainder as formulated in Equation 2.1 [43].

The receiver checks for errors by reverting the sender’s operations: dividing the received

(r+d)-bit data by the generator G. An error has occurred if the division gives a nonzero

remainder. Comparing with the checksumming method, CRC is more powerful, but with

higher overhead.

D × 2rXORR = nG (2.1)

The integrity of the data, after being inspected, is informed back to the sender by the

receiver through an explicit feedback such as a positive ACK or negative ACK (NAK).

An ACK is used if the data is error-free, and a NAK is used if the data is corrupted.

Hence, a NAK is also a transmission request.

There are multiple common ARQ retransmission schemes including Stop-and-Wait, Go-

Back-N , Fast Retransmit, and Selective Repeat. In the Stop-and-Wait approach shown

in Figure 2.1, individual segment is transmitted and acknowledged (either ACKed or

NAKed) before the next packet is sent. A sequence number is assigned to each packet,

which allows the receiver to distinguish between an original and a retransmission of a

packet in case both versions are correctly arrived at the receiver. One of the reasons that

causes the sender to introduce a duplicate packet into the network is its reception of a

corrupted ACK or NAK. Furthermore, communication channels can also lose or delay

packets in addition to corrupt bits. Hence, a timer is used to trigger a retransmission in

case the sender does not receive an ACK for the outstanding data. To prevent premature

retransmission, the timer’s value is supposed to be greater than the network’s RTT

(round-trip time). Obviously, this Stop-and-Wait approach introduces significant delay

15

0

0

A0

1

tack

1

RS

1

A1

Figure 2.1: Stop-and-Wait Retransmission Scheme

and underutilization, especially in long-delay environments. A calculation shows that it

takes 30.008 ms for a Stop-and-Wait sender located on the West Coast of the United

States to transmit a single 1000-byte packet to (and receive its ACK from) a receiver

located on the East Coast over a cross-country channel with an RTT of 30 ms and a

transmission rate of 1 Gb/s. This is equivalent to the sender utilization of only 0.00027

and the effective throughput of only 267 kb/s [43].

The Go-Back-N approach (Figure 2.2) allows multiple packets to be in flight simulta-

neously. The Go-Back-N protocol is also referred as the sliding-window protocol since

the sender operates over a window of N transmittable sequence numbers with the left

boundary of this window sitting at the oldest unacknowledged sequence number and

moving inward as the sender advances its transmission. The size of the window N places

an upper limit on the number of outstanding packets before an ACK arrives. Similar to

16

 	
A0	
A1	

A1	

0	
1	

2	
3	
4	
5	

6	

2	
3	
4	
5	

6	

A1	

A2	
A3	
A4	
A5	

A1	

0	
1	
2	
3	

5	
4	

tack	

R	 S	

Figure 2.2: Go-Back-N Retransmission Scheme

the Stop-and-Wait scheme, each packet is associated with a retransmission timer that is

set by the sender when the packet is placed in the network. The receiver is expected to

save and cumulatively acknowledge in-sequence packets while retransmitting the previ-

ous ACK and discarding out-of-order packets. The sender views a duplicate ACK as an

indication of data loss, but it does not retransmit the missing packet until the retrans-

mission timer expires, upon which the sender goes back and resends all packets starting

with the lost one informed by the duplicate ACK. Although the Go-Back-N with its

pipeline transmission mechanism is an improvement of the Stop-and-Wait, it still suffers

significant loss penalty in high bandwidth-×-delay networks due to its retransmission

policy. Given that high speed connections require large number of outstanding bytes

at a given time to achieve full utilization, retransmitting all transmitted data that may

have successfully reached the other end adds additional unnecessary RTTs without any

17

4	
3	

2	

5	

3	

0	
0	
1	

1	
tack	

A1	
A1	

2	 3	

A3	
A4	

4	
5	

A5	

5	

2	

A2	

4	 A1	

A1	

A0	

5	

S	 R	

6	
6	

Figure 2.3: Fast Retransmit Retransmission Scheme

benefit gain. Furthermore, waiting for the timer to expire before retransmitting the lost

segment delays the loss recovery, which is further intensified if the network links have

high RTT.

The Go-Back-N shortcomings motivate the development of a new ARQ retransmission

algorithm called Fast Retransmit. As shown in Figure 2.3, instead of waiting for the

expiration of the retransmission timer, this algorithm uses the receipt of a certain number

of duplicate ACKs (usually 3) as the trigger for the lost segment’s resend, allowing

more promptly loss recovery. However, Fast Retransmit still suffers from the Go-Back-

N inefficiencies caused by the unnecessary retransmissions of all previously transmitted

18

7	
6	

4	

2	

8	

2	

3	

0	
0	
1	

A0	

1	

A1	

tack	

A3	

A4	

43	
543	

A5	

A2	

5432	

A6	
A7	

8	
7	

A8	

3	

6	

S	 R	

5

Figure 2.4: Selective Repeat Retransmission Scheme

data following the loss.

Selective Repeat (Figure 2.4) enhances the Go-Back-N retransmission policy by retrans-

mitting only the data received in error (either corrupted or lost). This algorithm implies

two requirements: (1) the receiver needs to buffer all received packets, including those

that arrive out-of-order, and (2) the sender needs to know which packet is missing among

all the currently outstanding ones. The first requirement increases the receiver’s com-

plexity and requires larger receiving buffer space when comparing with the Go-Back-N

mechanism. In order to satisfy the second requirement, the receiver needs to acknowledge

each correctly received packet individually, including the out-of-order packets.

Early TCP implementations [1] use the Go-Back-N approach as the retransmission

scheme. After the occurrence of a series of congestion collapses in 1986, Fast Retransmit

19

is introduced into TCP as one of the several new algorithms (slow start, round-trip-time

variance estimation, congestion avoidance, and fast retransmit) to handle congested con-

ditions [44]. TCP can perform Selective Repeat when employing the SACK (selective

acknowledgement) option [39]. SACK is now the most common implementation.

Adopting the modular design, ResTP’s error control is handled by multiple modules,

including its reliability module discussed in Section 3.5.8 and ACK module discussed in

Section 3.5.9. ResTP can provide different level of reliability depending on the techniques

it employs in a specific configuration.

2.3 Congestion Control

Congestion in a packet-switching network happens when network resources such as com-

munication links and memory buffers are saturated, resulting in significant delay of mes-

sage delivery, data losses, waste of system resources, and possible network collapse [45].

From a user experience, this is a degradation in the quality of service provided. As band-

width becomes cheaper due to the rapid growth of networking technologies, high-speed

communication or high performance networking emerges when Internet service providers

(ISPs) add bandwidth to their connections. Hence, modern congestion control is not

only about avoiding congestion or keeping the queue occupancy small, but also on how

to efficiently utilize all the available capacity to avoid wasting network resources while

ensuring fairness among the competing flows [46].

A connection’s maximum data delivery rate is determined by the slowest link (the bottle-

neck) of a path, and this bottleneck is fully utilized if the amount of inflight data (data

sent but not acknowledged) matches exactly the bandwidth-×-delay product (BDP),

which is determined by Equation 2.2 [47] with b representing the available bottleneck

bandwidth, and RTTmin the minimum round-trip delay, which is controlled by the round-

20

trip propagation time RTprop. RTprop and b are the two physical properties of a path that

bound transport performance [48].

bdp = b× RTTmin (2.2)

If the amount of in-flight data is smaller than BDP, the bottleneck capacity is not fully

utilized, and bandwidth is wasted. On the other hand, if the amount of in-flight data

is larger than BDP, the bottleneck link is overloaded, and the (inflight − BDP) excess

creates a queue. When this queue is exhausted, packets are dropped. Studies have shown

that increasing the bottleneck queue’s buffer size is not a solution to congestion because

it leads to undesirable high latency and delay variation due to exceeded buffering, a

phenomenon known as bufferbloat [49]. Furthermore, packet loss can occur despite of

the maximum buffer capacity [46]. Hence, the goal of a congestion control mechanism is

to determine the amount of data to transmit at a time t to match the inflight with the

BDP. Unfortunately, endpoints do not have knowledge of the exact BDP. Instead, they

need an algorithm employed in their congestion control to estimate the value.

Congestion control is more challenging when considering shared bottleneck. When mul-

tiple flows coexist on a bottleneck, it is not only desirable for the bottleneck to be fully

utilized, but fairly shared among all flows. Towards this goal, a congestion control mech-

anism must be able to converge to a fair share over a shared bottleneck and maximize

its throughput over an independent one.

Existing congestion control algorithms can be broadly divided into two main categories:

open loop and close loop [45]. Close loop algorithms make their control decisions based

on some feedback either from destination to source (global) or from intermediate neigh-

bors (local). The feedback can be either implicit or explicit. Close loop congestion

control algorithm with implicit feedback does not require feedbacks to be explicitly sent

21

in any specific messages. Algorithms under this group include the standard TCP conges-

tion control algorithm [50] and its derivatives. Close loop congestion control algorithm

with explicit feedback requires feedback to be explicitly transmitted either as separate

or piggybacked messages. Explicit feedbacks are further classified into persistent and

responsive. While a persistent feedback is available at all times, a responsive feedback is

only available in response to certain conditions. In summary, explicit congestion notifi-

cation (ECN) algorithms are grouped into four main categories: close loop control with

persistent and global feedback, close loop control with persistent and local feedback, close

loop control with responsive and global feedback, and close loop control with responsive

and local feedback. On the other hand, open loop congestion control algorithms make

their control decision based only on their knowledge of local node such as local links’

capacity and available buffers in the system. Open loop control can either be exhibited

at the source or destination.

Congestion control algorithms can also be categorized based on the control method em-

ployed by an algorithm, the metric used to infer a congestion event, or the network

domain for which the algorithm was designed.

When using the control method as the classification criterion, congestion control ap-

proaches can be divided into two categories: window-based and rate-based. Window-

based algorithms use a window of maximum in-flight packets to control the transmission

rate of the sender. The update of this window is dictated by the feedback from the

receiver. Rate-based algorithms allow the sender to transmit at a specific rate until a

new rate is informed by the receiver or a network component.

When using the congestion metric as a criterion, congestion control algorithms can be

divided into four groups: loss-based, delay-based, hybrid, and congestion-based. Loss-

based algorithms treat the loss of a packet as an indication of congestion. However,

22

the assumption that congestion is the only source of data drops behind these loss-based

approaches has been challenged by the growing adoption of wireless networks in which

corruption, i.e., a bit error is more likely the cause of a loss. Some loss-based protocols

are extended with a bandwidth estimation algorithm. Delay-based algorithms interpret

the increasing delay due to queue growth as a congestion signal. It is important to

note that queuing can only be the single factor that constitutes to packet latency if a

burst of packets are assumed to be routed along the same path [46]. TCP Vegas [51],

TCP Low Priority (TCP-LP) [52] are a couple examples of delay-based congestion con-

trol algorithms. Hybrid algorithms such as Compound TCP (CTCP) [53] and TCP

Illinois [54] combine both loss- and delay-based schemes. Recently, Google introduces a

new congestion-based congestion control scheme named TCP Bottleneck Bandwidth and

Round-trip propagation time (BBR) that responds to actual congestion instead of packet

loss or transient queue delay [48].

Transport-layer congestion control algorithms can also be classified based on the domain

that they target. Original algorithms such as the standard TCP [50] was designed to

prevent congestion collapses in wired networks. These early techniques operate with

an assumption that all packet losses during a connection lifetime are caused by conges-

tion. This assumption is challenged with the emergence of wireless environments that are

characterized by high random-loss rate. As a result, the wired-based algorithms suffer

significant performance degradation when being deployed in wireless networks because

they trigger an unnecessary sending rate reduction when data packets are corrupted. This

shortcoming is the main motivation behind many new proposals for wireless channels.

The coexistence of both wired and wireless links in a network path rises another issue: the

congestion control algorithm needs to distinguish the different sources of packet losses in

such a heterogeneous environment. Furthermore, as mentioned previously, the emergence

of high-speed communication or high performance networking requires congestion control

23

algorithms to go beyond their original design goal of avoiding congestion or consistently

keeping queue occupancy small to efficiently utilize the available capacity of transmission

facilities. High bandwidth, when coupling with long delay such as in the space or inter-

planetary communication, places another demand on tranport-layer congestion control

design: how to promptly react to congestion taking into account the much longer delay

both data and feedback need to take when traversing the network. These requirements

begin another generation of congestion control techniques for high BDP environment.

When service prioritization among different traffic types is considered, another group of

congestion control algorithms specifically designed for low priority data transfer emerges.

TCP Westwood [55] and TCP Veno [56] are a couple of congestion control algorithms de-

signed to enhance TCP performance in wireless networks. TCP Hybla [57] addresses the

RTT disparity problem occured in heterogeneous network. HighSpeed TCP (HSTCP) [58],

Scalable TCP (STCP) [59], Binary Increase Congestion Control (BIC) [60], Yet Another

Highspeed (YeAH) [61], and CUBIC [62] target high BDP environments. Incast con-

gestion Control for TCP (ICTCP) [63] implements a receive-window-based congestion

control algorithm for TCP to eliminate incast congestion in data center networks (DCNs).

A taxonomy of TCP congestion control techniques in both wired and wireless net-

works [64] also categorizes TCP variants based on the device entity that is responsible for

handling the congestion control functionality. Using this criterion, TCP congestion con-

trol algorithms can be classified into four groups: sender, receiver, sender and receiver,

and sender or receiver. In sender-centric protocol (SCP), the data sender performs the

congestion control based on the receiver’s feedback in acknowledgement (ACK) packets.

SCP is the most deployed TCP technique. On the other hand, in receiver-centric proto-

col (RCP), the receiver fully controls the congestion control functionality. In RCP, the

sender only transmits data upon the reception of an explicit request from the receiver.

Moreover, the sender’s transmission rate is also receiver-dictated. TCP-Real [65] is an

24

RCP example. Hybrid-centric protocol (HCP) is capable of operating the congestion

control functionality at both sender and receiver sides. Detection of Out-of-Order and

Response (DOOR) [66] and TCP friendly rate control (TFRC) [67] are hybrid-centric

protocols. Finally, some variants such as the mobile-host control protocol (MCP) [68]

can utilize either SCP or RCP depending on whether a mobile station is a sender or a

receiver.

2.3.1 Multipath Congestion Control

As in single-path protocols, congestion control plays a crucial role in multipath transport-

layer protocols. Three desirable properties of a practical multipath congestion control

algorithm are identified when the LIA algorithm for MPTCP was developed (more details

later) [19]:

1. Property 1 (Improve throughput): A multipath flow should perform at least as well

as a single path flow would on the best of its paths.

2. Property 2 (Do no harm): A multipath flow should not take up more capacity from

any path or collection of paths than if it was a single path flow using only the best

path.

3. Property 3 (Balance congestion): A multipath flow should move as much traffic as

possible off its most congested paths.

While properties 1 and 2 ensure fairness at the shared bottleneck, property 3 captures

the resource pooling principle to increase robustness and maximize utilization [69].

Given that a large number of traffic flows in the current Internet are mice flows (i.e. short

messages), a multipath flow should react promptly to this dynamic environment as these

25

short flows come and leave the network. This requirement defines the fourth desirable

property of a practical congestion control algorithm:

4. Property 4 (Responsiveness): A multipath flow should quickly adapt to network

dynamics. Responsiveness measures the rate at which the congestion control algo-

rithm is able to converge to its equilibrium [70].

In a study on the relationship between three performance metrics: friendliness, respon-

siveness, and window fluctuation using a fluid model, it is shown that the design of

MPTCP algorithms involves inevitable tradeoffs, and one of them is the tradeoff between

responsiveness and TCP-friendliness. Therefore, it is impossible to develop a superior

algorithm for all of these metrics [70].

A multipath flow is also required to provide a Pareto-optimal allocation [20] of resources

as the regular TCP always does. This leads to the definition of the fifth desirable property

of a practical congestion control algorithm:

5. Property 5 (Pareto-optimality): It is impossible for one user to increase the through-

put without penalizing another or without increasing the congestion cost [20].

Early versions of MPTCP and SCTP let each subflow control its own congestion window

by running the standard AIMD TCP NewReno algorithm [50] independently. While this

decoupling approach is simple, it leads to an important problem, TCP-unfriendliness.

When sharing the bottleneck with TCP flows, a multipath connection that utilizes N

subflows executing the decoupled algorithm is approximately N times as aggressive as

each of the TCP flows [71]. As the failure of the decoupling mechanism in achiev-

ing TCP-friendliness validated in many studies, various multipath congestion control

algorithms that employ sub-window correlation have been proposed. Many algorithms

26

achieve TCP-friendliness by coupling the standard AIMD’s increases of the subflows such

as EWTCP [71], Coupled [72,73], Semicoupled [74], or LIA [19,74].

ResTP allows the integration of multiple congestion control algorithms into the protocol

although for our analysis presented in this dissertation, only the NewReno and Coupled

algorithms are implemented to be used in single-path and multipath ResTP connection,

respectively (see Section 3.5.6 for more details).

2.4 Packet Scheduling

Packet scheduling plays a crucial role in the efficient performance of a multipath transport-

layer protocol. A packet scheduler is responsible for distributing individual data packets

among multiple available subflows, given the heterogeneous characteristics of the physical

paths and the dynamics of the underlying network. For a multipath transport protocol

that ensures in-order data delivery at the receiver, a wrong scheduling decision might

lead to head-of-line blocking or receive-window limitation [75].

Many scheduling methods have been proposed and studied, including the round robin

technique that selects a path in a round-robin fashion, the RTT-aware method that

selects a path with minim RTT, or a scheduler that selects a subflow based on its current

congestion situation [76].

ResTP currently supports two basic scheduling algorithms: round robin and best RTT.

Section 3.5.10 explains ResTP packet schedulers in more details.

2.5 SCPS-TP and Space Communications

The advancements in networking technologies has introduced many network environ-

ments with distinct characteristics from the wired network for which the conventional

27

Internet transport protocols were tailored. One of those environments is the space com-

munication environment. In this section, we discuss the characteristics of this network,

the limitations of TCP, and one of the protocol design for space communications, SCPS-

TP, from which we learn many techniques and apply to our ResTP design.

2.5.1 Space Communication Environment Characteristics and
TCP Shortcomings

In space communications or in wireless communications in general, bit errors are common,

and their rate can be very high (e.g., on the order of 10−1 for deep space missions [77]).

Unfortunately, standard TCP always assume that a loss is caused by a congestion event.

As the result, the protocol invokes its congestion control algorithm and unnecessarily

reduces its transmission rate (by reducing its congestion window), causing a drop in its

throughput.

Space communication channels are also known to be bandwidth-asymmetric with the

forward link (from the spacecraft to the ground) capacity substantially larger than the

return link (from the ground to the spacecraft) capacity. This assymmetry is typically

on the order of at least 1000:1 in spacecraft missions [77]. TCP depends heavily on its

ACK packets to determine its sending rate and requires an ACK to be generated for

every other data packet received when no losses happen. Otherwise, the receiver has to

acknowledge every packet following a loss. Due to the limited bandwidth available to the

reverse channel, these ACK packets may congest the channel, resulting in delayed or lost

ACK packets, and hence limiting the TCP throughput.

In addition, space communication channels are characterized by long propagation de-

lay. The range from user to geostationary Earth orbit (GEO) satellite is a minimum of

36, 000 km, introducing a propagation delay of about 250 ms for a single hop between a

28

user pair [78]. Deep-space (interplanetary) communication links even have much longer

propagation delay. For example, the propagation delay from Earth to Mars is approx-

imately 4 to more than 20 minutes, to Jupiter is approximately 30 to 45 minutes, to

Saturn is between 70 to 90 minutes, depending on their orbital locations [77]. This long

delay means several things to TCP. First, the one-RTT overhead introduced by its 3-way

handshake now becomes a more prominent problem. TCP also needs to stay longer in its

slow start phase, during which the available link capacity is not fully utilized. For GEO

satellites, the time required by the slow start phase to reach a bit rate of 10 Mb/s when

using average packet length of 1000 bits is around 5.73 seconds even when the receiver

is required to acknowledge every received segment. For short flows, it is possible that

the entire data transfer only happens in the slow start phase [79]. Furthermore, long

propagation delay causes ACK packets longer time to get back to the data transmitter,

delaying the transmitter’s response to loss events when they happen.

In space communications, there is no assurance that a connectivity is episodic. Within

the Interplanetary Internet, a significant source of periodic link outages is orbital obscu-

rations, in which communicating systems lose line-of-sight because of moving planetary

bodies [77]. TCP does not have any mechanism to properly handle a temporary link

outage. Without a steady flow of acknowledgments, the TCP sender will assume that a

congestion event has happened, invoke its congestion control algorithm, reduce its send-

ing rate, retransmit data packets, and back-off its retransmission timer. The consequence

of this behavior is a significant degradation in its throughput, if not a connection abortion

when TCP reaches its retransmission threshold before the link is restored.

These characteristics of space communication channels and the limitations of TCP are

discussed in many research work [77,79,80].

29

2.5.2 SCPS-TP

Satellite Communication Transmission Protocol (SCPS-TP) [80] comprises of a set of

extensions to TCP to improve its performance in the space communication environment.

Each extension is a solution to the shortcoming of TCP caused by a specific charac-

teristic of the space network. Instead of assuming that every loss is congestion-based

and always invoking its congestion control algorithm, SCPS-TP implements a distinct

approach to respond to the three possible sources of loss in space communication: con-

gestion, corruption, and link outage. To cope with congestion-induced losses, SCPS-TP

utilizes the TCP Vegas congestion control algorithm [51]. However, if a loss is caused

by corruption, the protocol does not invoke TCP Vegas. Hence, the sending rate is not

reduced, and the retransmission timer is not backed-off. When a loss is caused by a link

outage, SCPS-TP enters persist mode, suspends all timers and ceases all transmissions.

Instead, the protocol only sends periodic probe packets. Determining cause of a loss is

difficult. SCPS-TP implements two approaches to determine the source of packet loss.

With the first approach, it uses a parameter that can be set by a network manager. This

parameter has its default value set to ’corruption‘ because bit errors happen more often

in space communication than congestion. With the second approach, SCPS-TP learn

about the source of loss through explicit signaling from intermediate nodes.

SCPS-TP addresses the shortcoming of TCP when transmitting over asymmetric chan-

nels by modifying the acknowledging frequency. Instead of sending an ACK every other

receive segment when no losses happen and immediately sending an ACK for every seg-

ment received when losses happen, SCPS-TP sends an ACK every configurable period

of time. This ACK-delay duration is related to the RTT estimation. In addition, header

compression is implemented in SCPS-TP as a second technique to enhance the protocol

throughput on asymmetric channels. Header compression is also a mechanism used by

30

SCPS-TP to improve performance on bandwidth-constrained channels.

Furthermore, SCPS-TP employs a new acknowledgment method, selective negative ac-

knowledgment (SNACK). The format of SNACK allows the receiver to inform multiple

losses to the sender in one segment (similar to SACK [39]), which is beneficial in high

bit-error rate environment, but is more bit-efficient than SACK.

2.6 Transport Protocols for Real Time Multimedia

Applications

One of the most known protocols for real-time conversation applications is the real-time

transport protocol (RTP) [81]. RTP provides end-to-end delivery services for audio and

video data, including payload type identification, sequence numbering, timestamping,

and delivery monitoring. However, the protocol does not provide any mechanism to

ensure timely data delivery or other quality-of-service (QoS) guarantees. RTP typically

runs on top of UDP to make use of UDP’s multiplexing and checksum services. Every

media chunk is encapsulated inside an RTP packet, which is in turn encapsulated in a

UDP segment before being passed down to IP.

Using the Internet for the delivery of real time multimedia applications prompts the de-

velopers to select between UDP and TCP. Those who choose UDP prefer its light-weight

design with no latency introduced by the protocol when transmitting data. Packets are

immediately delivered to the application without worrying about its ordering. Lost pack-

ets are simply ignored without the need for retransmissions. These properties make UDP

more attractive to delay-sensitive real-time application than TCP, which favors reliability

over timeliness.

While UDP has been more favorable for real-time multimedia applications, researchers

have learned that packet losses can have a significant impact on the performance of these

31

applications. Real-time video and audio streaming is actually more sensitive to network

loss than jitter for two reasons: First, these applications tend to use a large playback

buffer (at least in the order of hundreds of milliseconds), which can insulate the playback

from the network jitter. Second, the contents of these applications are typically highly

compressed to reduce the required data rate, a single loss of an important packet may

cause a noticeable disruption in the content reception [82]. Many real-time applications

rather receive damaged packets with a few single-bit errors than losing a full packet [83].

As the result, many researchers have proposed some modifications to UDP to address

some level of packet losses while others promote the use of TCP (with proper extensions

and modifications) to take full advantage of the protocol’s error recovery and congestion

control.

UDP Lite [83] promotes the use of partial checksum in UDP to prevent packets with a

few acceptable bit errors from being dropped. The protocol replaces the existing UDP

header field Length with a new Coverage field, which specifies the amount of sensitive

data the sending application wants UDP Lite to include in the checksum calculation.

Any errors occur outside of the sensitive part of the data are ignored, and the whole

packet is passed to the receiving application as a normal packet. For this mechanism to

work, the link layer checksum or CRC needs to be disabled.

UDP-Liter [84] takes advantage of the concept proposed in UDP Lite but addresses the

two issues associated with the protocol: its backward incompatibility with traditional

UDP and its lack of flexibility for the receiving application to choose how it wants to

handle corrupted packets. To avoid modifying the UDP header, UDP-Liter allows the

sending application to convey its wish to discard a keep a packet when the checksum fails

through a new parameter in its BSD socket() function call. Similarly, UDP-Liter uses

a new parameter passed in the BSD recvfrom() function call to differentiate a damaged

packet from a normal one when it reaches the receiving side. This is useful when the

32

receiver wants to handle the two types of packets differently.

Research work on TCP for real-time multimedia applications are the various solutions for

the common problem: How to modify or extend TCP so that the protocol can provide

both reliable and timely data delivery while keeping its congestion control benefit intact?

TCP-RTM [82] extends TCP with a real-time mode (RTM) to support real-time traffic.

The extension allows the receiver to read beyond a hole in its receiving buffer and accept

the out-of-order data following that hole. With this modification, the receiver is never

blocked from waiting for the hole to be filled by a retransmission. On the sending side,

TCP-RTM allows the sender to discard the oldest data segment queuing in the send

buffer waiting to be acknowledged or transmitted if the buffer is full. In order for the

application to determine which frames are lost and skipped over by the receiver, TCP-

RTM employs multiple framing techniques to ensure that the application-level frame

boundaries always align with TCP segment boundaries for applications with fixed- and

variable-sized frames. Moreover, the authors propose two application-level techniques

to maximize the benefits of TCP-RTM: a TCP-sized playback buffer that allows TCP

to recover from a packet loss using its fast retransmit within the playback delay, and a

heart-beat packet transmission when the receiver has not received any new data from the

sender for some period of time. This heart-beat message serves as an affirmation from the

receiver that all data have successfully received so the sender can continue transmitting

new data. The message is significantly useful when an ACK loss suspends the sender’s

transmission due to its congestion window constraint, especially during slow start.

ResTP implements multiple algorithms that can be employed for real-time multimedia

traffic including its partially reliable and partially ordering techniques. The performance

of these algorithms and how they are configured in ResTP are discussed in Section 4.5.

33

Page left intentionally blank.

34

Chapter 3

ResTP Design

In this chapter, we present the design of ResTP, starting with its header and header’s

extensions, the services that it provides as a transport-layer protocol in both unipath and

multipath modes, and the algorithms that implement each of those services. As high-

lighted in Chapter 1, our design of ResTP follows the set of design principles established

in the ResiliNets framework [11], and is guided by our studies and analysis of well-known

transport protocols, especially TCP, UDP, TP++, SCPS-TP, and MPTCP to achieve

resilience and survivability.

3.1 ResTPDU

Given that ResTP is a composite protocol that can operate in multiple modes with

different configurations, it is essential for its header to be extensible, and the header fields

to be added only when necessary to minimize the overhead. We start with the basic (the

minimal) ResTP transport protocol data unit (ResTPDU) format shown in Figure 3.1 1,

which is utilized when ResTP operates as a lightweight and unreliable protocol similar

to UDP. We then define multiple header extensions that allow the protocol to provide

more complicated services to the upper application layer.

1Packet headers are shown using the IETF standard method.

35

3.1.1 Basic ResTPDU

The header fields are constructed with the most significant byte first, which means that

the version field is located at the four most significant bits of the first byte in our header.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| HL | Flags |Ord| Flow | P | Error |

| | |-+

| | |C|E|U|A|P|R|S|F|P|F|C|C|O|C|M|M| |E|A|C|F|N|S|D|

| | |W|C|R|C|S|S|Y|I|A|U|K|O|P|X|P|P| |N|R|R|E|A|A|E|

| | |R|E|G|K|H|T|N|N|R|L|I|N|T|F|?|M| |C|Q|C|C|K|K|L|

+-+

| Cong | FC | | | Sched | |

|-+-+-+-+-+-+-+-| k | |-+-+-+-| |

| | |W| (# of | Resv. | |F|R| |

|BitVect| |I| paths)| | |R|R| |

| | |N| | | |R|S| |

+-+

| Source Port Number | Destination Port Number |

+-+

\ \

/ Payload (variable length) /

\ \

+-+

Figure 3.1: Basic ResTPDU

• Version: 4 bits (mandatory, unsigned integer)

The ResTP version number. For the current implementation, this field has a value

of 0.

• HL: 4 bits (mandatory, unsigned integer)

The ResTP header length (the number of 32-bit words in the header).

• Flags: 8 bits (mandatory, unsigned integer)

The ResTP flags. This field includes 2 Explicit Congestion Notification (ECN) bits

36

(CWR and ECE) [3] and 6 TCP flags [1]. In ResTP, they have the same meanings as

in TCP, with ACK, RST, SYN, and FIN used for connection establishment and termi-

nation. These flags are also used for TCP splicing and TCP segment translating

when ResTP is deployed at the gateways in the future implementation of ResTP.

• Ord: 2 bits (unsigned integer)

The ordering service in operation.

PAR: partially-ordered data delivery

FUL: ordered data delivery

• Flow: 6 bits, 4 in use (unsigned integer)

The flow management paradigm in operation.

CKI: cookie flag used in cookie request/response to set up opportunistic connection

establishment

CON: connection-oriented connection establishment paradigm

OPT: opportunistic connection establishment paradigm

CXF: custody transfer at realm gateways

Note that some of these bits, when set, indicate the use of associated extensions.

• P: 2 bits (mandatory, unsigned integer)

The path mode (uni-path or multi-path) in operation.

MP?: ResTP is in single-path (multi-path) mode if this bit is 0 (1).

MPM: ResTP is in hot-standby multi-path mode if this bit is 0, and the protocol is

in spreading multi-path mode if this bit is 1. Note that the value in MPM is valid

only when MP? is set to “1”.

• Error: 8 bits, 6 in use (mandatory, unsigned integer)

The error correction mode and the corresponding acknowledgment packet format

37

in operation.

ENC: FEC-encoded

ARQ: automatic repeat request

CRC: CRC-32 cyclic redundancy code

FEC: forward error correction

NAK: negative acknowledgment

SAK: selective acknowledgment

DEL: delayed ACK

Note that some of these bits, when set, indicate the use of associated extensions.

When both SAK and NAK are set to “1”, it signifies the Selective Negative Acknowl-

edgment (SNACK) mechanism originally introduced in SCPS-TP [85,86].

• Congestion (Cong): 4 bits (unsigned integer)

The bit vector specifying the congestion control algorithm in operation. This 4-bit

field can specify up to (24 - 1) different single-path congestion control algorithms

and (24 - 1) different multipath congestion control algorithms depending on the

MP? mode. We use bit vector to accommodate the plethora of proposed algorithms

should ResTP be used to study congestion control techniques. In the current im-

plementation, ResTP supports NewReno and BIC.

0001: NewReno (single path) / NewReno (multipath)

0010: BIC (single path)

• FlowControl (FC): 4 bits (mandatory, unsigned integer)

The flow control technique in operation.

• k: 4 bits (mandatory, unsigned integer)

The number of paths that are used for data transfer. When MP? in P is 0, k has a

value of 1. When MP? is 1, the value in k is greater than 1.

38

• Reserved: 4 bits (mandatory, unsigned integer)

Reserved for future use; must be 0.

• Source port number: 16 bits (mandatory, unsigned integer)

The source port number. The 4-tuple (source port number, source IP address, desti-

nation port number, destination IP address) identifies the connection (association)

to which the ResTPDU belongs.

• Destination port number: 16 bits (mandatory, unsigned integer)

The ResTP destination port number. The receiver uses this port number to de-

multiplex the ResTPDU to the correct receiving application.

• Payload: variable length

The application data transmitted in the ResTPDU.

3.1.2 CRC Extension

0 1 2 3

+-+

| ... | HEC CRC-16 |

+-+

| Payload CRC-32 |

+-+

Figure 3.2: CRC-extension

The CRC extension depicted in Figure 3.2 is appended to the basic ResTPDU when

cyclic redundancy check is enabled (CRC bit in Error is set to 1) to detect bit errors on

both the header and the payload.

39

• HEC CRC-16: 16 bits (unsigned integer)

The integrity check for the header using cyclic redundancy check with a 16-bit

generator.

• Payload CRC-32: 32 bits (unsigned integer)

The integrity check for the data using cyclic redundancy check with a 32-bit gen-

erator. This field only presents if the ResTPDU carries some payload.

CRC is used for ResTP instead of checksum because unlike TCP that was tailored for

wired networks, ResTP is also designed for wireless environments that are known to

have higher error rates. The generator polynomials G(x) used to compute the CRCs are

implementation-specific.

3.1.3 Flow Control Extension

0 1 2 3

+-+

| ... | Window |

+-+

Figure 3.3: flow-control-extension

The flow control extension (Figure 3.3) is appended to the header whenever flow control

is enabled.

• Window: 16 bits (unsigned integer)

The number of segments beginning with the one indicated in the acknowledgment

field which the sender of this ResTPDU is willing to accept.

40

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

\ \

/ Cookie /

\ \

+-+

Figure 3.4: Cookie response extension

3.1.4 Cookie Response Extension

The cookie response extension is used in the client-authentication process of an oppor-

tunistic connection (see Section 3.5.5 for more details).

• Cookie: 32 to 128 bits (4 to 16 bytes) (unsigned integer)

The Cookie has a non-zero value and is sent by a server (this ResTPDU’s source)

in response to a previous client’s request (this ResTPDU’s destination).

3.1.5 FEC Extension

To support the FEC (forward error correction) error control mechanism, the basic header

is extended with the FEC Type and FEC Range as depicted in Figure 3.5. FEC usage

is negotiated using the FEC bit in the Error header field.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| FEC Type | FEC Range |

+-+

Figure 3.5: FEC extension

• FEC Type: 8 bits (unsigned integer)

The FEC encoding scheme used for this connection. Table 3.1 describes the schemes

41

Value Type Description
0 Undefined
1 Basic XOR Payload of encoded packet is the XOR

of payloads of every packet, up to 16
packets in 1 encoded packet.

2 Interleaved XOR Payload of encoded packet is the XOR
of payloads of every other packets, up
to 8 packets in 1 encoded packet.

Table 3.1: FEC encoding types

currently supported by ResTP and their corresponding values in this field. The

basic XOR and interleaved XOR are the two FEC types designed for TCP-IR

(TCP Instant Recovery) [87,88]. ResTP allows the employment of any other FEC

schemes.

• FEC Range: 24 bits (unsigned integer)

The number of packets encoded in the payload. When FEC is used, this field is

only valid if the ENC bit is set. The field has an additional meaning when HARQ

is used.

3.1.6 Sequence Number Extension

0 1 2 3

+-+

| Sequence Number |

+-+

Figure 3.6: Sequence number extension

• Sequence Number: 32 bits (unsigned integer)

The sequence number assigned to this ResTPDU.

42

0 1 2 3

+-+

| Sequence Number |

+-+

| Acknowledgement Number |

+-+

Figure 3.7: ARQ extension

3.1.7 ARQ Extension

To support the ARQ (automatic repeat request with retransmissions) error control mech-

anism using positive ACK (acknowledgement), the basic header needs to be extended

with the Sequence Number and Acknowledgement Number fields as depicted in

Figure 3.7. ARQ usage is negotiated using the ARQ bit in the Error header field.

• Sequence Number: 32 bits (unsigned integer)

The sequence number assigned to this ResTPDU.

• Acknowledgement Number: 32 bits (unsigned integer)

The acknowledgement sequence number (RCV.NXT) assigned to this ResTPDU.

If this ResTPDU is not an ACK, it carries the sequence number 0 in this field. If

this ResTPDU is an ACK with the ACK bit in the Flags field set, it carries the next

sequence number the sender of this ResTPDU is expecting to receive.

Note that this extension is mandatory when the ARQ error control is employed, regardless

of the ACKing mechanism. In addition, it must precede the NACK, SACK, and SNACK

extensions when they are attached to the same ACK packet.

43

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Left Edge of First Block |

+-+

| Right Edge of First Block |

+-+

\ \

/ ... /

\ \

+-+

| Left Edge of nth Block |

+-+

| Right Edge of nth Block |

+-+

Figure 3.8: ARQ with SACK extension

3.1.8 SACK Extension

Following the TCP SACK (selective acknowledgement) option definition [39], our SACK

extension for ResTP has the format shown in Figure 3.8. Although ResTP does not

impose any limitations on the maximum length of its extension, given the format of SACK

that requires 64 bits to inform a single block of received data, a ResTP implementation

may limit the maximum number of SACK blocks that can be appended to a packet.

SACK usage is negotiated using the SAK bits in the Error header field.

• Left Edge of ith Block: 32 bits (unsigned integer)

The sequence number of the first segment in the ith block being reported in this

ResTPDU.

• Right Edge of ith Block: 32 bits (unsigned integer)

The sequence number of the last segment in the ith block being reported in this

ResTPDU.

44

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Hole1 Offset | Hole1 Size |

+-+

\ \

/ Bit Vector (variable length) /

\ \

+-+

Figure 3.9: ARQ with SNACK extension

3.1.9 SNACK Extension

The ResTP’s SNACK (selective negative acknowledgment) extension (Figure 3.9) has the

fields presented in the SCPS-TP SNACK option [86], including Hole1 Offset, Hole1

Size, and the optional Bit Vector.

• Hole1 Offset: 16 bits (unsigned integer)

The offset (in packet units) from the current acknowledgment number of the first

hole being reported in this ResTPDU. The offset is calculated by subtracting the

current acknowledgment number from the sequence number of the first packet in

the hole using integer arithmetic.

• Hole1 Size: 16 bits (unsigned integer)

The size (in segment units) of the first hole that is reported in this ResTPDU.

• Bit Vector: variable length

Information about additional segments following the first hole (Hole1) being re-

ported in this ResTPDU. A “0” represents a missing segment while a “1” repre-

sents a received segment. Zeros are padded to the right of the last “1” when needed

to ensure the Bit Vector ending on an octet boundary, and these zeros shall be

ignored when processing the Bit Vector [86].

45

…

Expected SN
(RCV.NXT)

Packet # 10

Missing or corrupted packets

Error-free packets

Figure 3.10: Example of a reordering queue

To demonstrate the difference between SACK and SNACK in ResTP, we provide an

example to illustrate the use of each given the out-of-sequence receiving buffer shown in

Figure 3.10.

We assume that all segments from 1 to 9 have been received correctly, and after that the

sender transmits a burst of 8 segments. In this burst, segments 10, 11, 12, 13, and 16

are lost, and segments 14, 15, and 17 successfully arrive at the receiver. We assume that

the ResTP receiver will send an ACK for every out-of-order packet received.

Upon receiving segment 14, the receiver generates the following NACK, SACK, and

SNACK depending on which ACK mechanism is negotiated at the beginning at the

connection. The Acknowledgment Number field carries a value of 10 because the

receiver is waiting for the 10th segment after having received all of the first nine segments

correctly.

Figure 3.11 shows how the receiver reports the out-of-order block of received data in a

SACK format. The equal values in the left and right edge indicate that this block has

only one segment.

46

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Left edge of 1st block = 14 |

+-+

| Right edge of 1st block = 14 |

+-+

Figure 3.11: SACK extension upon the arrival of packet 14

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| 0 | 4 |

+-+

| 10000000 | |

+-+

Figure 3.12: SNACK extension upon the arrival of packet 14

Figure 3.12 shows the values inside SNACK fields to report the missing segments when

14 arrives.

Upon the arrival of 15, another out-of-packet, the receiver generates another duplicate

ACK with the Acknowledgment Number field again having a value of 10.

This time, the right edge of the first block, which is the only block of the SACK extension

has a value of 15, instead of 14 (Figure 3.13).

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Left edge of 1st block = 14 |

+-+

| Right edge of 1st block = 15 |

+-+

Figure 3.13: SACK extension upon the arrival of packet 15

47

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| 0 | 4 |

+-+

| 11000000 | |

+-+

Figure 3.14: SNACK extension upon the arrival of packet 15

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Left edge of 1st block = 17 |

+-+

| Right edge of 1st block = 17 |

+-+

| Left edge of 2nd block = 14 |

+-+

| Right edge of 2nd block = 15 |

+-+

Figure 3.15: SACK extension upon the arrival of packet 17

When 15 arrives, the only change in the SNACK extension is the Bit Vector field

(Figure 3.14).

Upon the arrival of 17 (16 is lost as in our assumption), the receiver transmits another

duplicate ACK with Acknowledgment Number having a value of 10. Attached to

this ACK is a SACK, or SNACK extension.

According to the SACK policy [39], the receiver must arrange the block that is most

recently formed by the newly coming packet first. That is why we have the value 17 in

both the left and right edge of the first block as shown in Figure 3.15.

For SNACK, the only field that has a different value is Bit Vector as shown in Fig-

ure 3.16.

48

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| 0 | 4 |

+-+

| 11010000 | |

+-+

Figure 3.16: SNACK extension upon the arrival of packet 17

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| FEC Type | FEC Range |

+-+

| Sequence Number |

+-+

| Acknowledgement Number |

+-+

Figure 3.17: HARQ extension

3.1.10 HARQ Extension

To support the HARQ (hybrid ARQ) error control mechanism, the basic header is ex-

tended with both the ARQ and FEC extensions (Figure 3.17. HARQ usage is negotiated

using the ARQ and FEC bits in the Error header field.

• FEC Range: 24 bits (unsigned integer)

If the ENC bit is set, this field specifies the number of segments encoded in the

payload of this ResTPDU. If the ENC bit is not set, but the ACK bit is set, this field

specifies the number of segments that cannot be recovered by the encoded packet

that triggers this RESTPDU transmission.

49

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| ... |A|B|C|D|E|F|G|H|

+-+

| |

| Sender’s Key |

| |

+-+

| |

| Receiver’s Key |

| |

+-+

Figure 3.18: MP CAPABLE extension

3.1.11 MP CAPABLE Extension

The MP CAPABLE extension is used to initiate a multipath ResTP connection. MP CAPABLE

is present in the SYN, SYN-ACK, and ACK of the three-way handshake to establish the

first (master) subflow. The format of this extension shown in Figure 3.18 is similar to

the MPTCP’s MP CAPABLE option’s format in RFC 6824 [18].

• Flags: 8 bits (mandatory, unsigned integer)

The MP CAPABLE extension’s flags. These flags have the same meanings as those

in the corresponding MPTCP option.

A: This bit, when set to “1”, indicates that the integrity checks for both header and

payload are required.

B: This bit is an extensibility bit for future use. For the current ResTP implemen-

tation, B must have a value of 0.

C through H: These bits are used to negotiate the crypto algorithm to be used. One

of these bits must be set to “1”, which means that a crypto algorithm must be

specified. Otherwise, the extension is ignored. As in MPTCP, the current ResTP

50

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| ... | |B| Address ID |

+-+

| Receiver’s Token |

+-+

| Sender’s Random Number |

+-+

Figure 3.19: MP JOIN extension for initial SYN

implementation only supports the HMAC-SHA1 algorithm, which is indicated by

setting the H bit to 1.

• Sender’s key: 64 bits (mandatory for the three-way handshake’s SYN and ACK

packets, unsigned integer)

A key generated by the connection’s initiator that is used to authenticate subse-

quent subflows.

• Receiver’s key: 64 bits (mandatory for the three-way handshake’s SYN-ACK and

ACK packets, unsigned integer)

A key generated by the connection’s responder that is used to authenticate subse-

quent subflows.

3.1.12 MP JOIN Extension

The MP JOIN extension is used to add a new subflow to an existing multipath ResTP

connection, and is only present in the three-way handshake’s SYN, SYN-ACK, and ACK.

The format of MP JOIN is similar to the MPTCP MP JOIN option’s format [18].

The MP JOIN format for the SYN packet is illustrated in Figure 3.19.

51

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| ... | |B| Address ID |

+-+

| |

| Sender’s Truncated HMAC |

| |

+-+

| Sender’s Random Number |

+-+

Figure 3.20: MP JOIN extension for SYN-ACK

• Flags: 4 bits, 1 in use (mandatory, unsigned integer)

The MP JOIN flags.

B: backup bit indicating the subflow is used as a backup only when it is set to “1”

• Address ID: 8 bits (mandatory, unsigned integer)

The source address of this MP JOIN packet.

• Receiver’s Token: 32 bits (mandatory, unsigned integer)

The token used to identify the connection to which the subflow wants to join. This

is a cryptographic hash of the MP JOIN receiver’s key exchanged in the initial

MP CAPABLE handshake. For the current ResTP specification, the token is the

most significant 32 bits of the result generated using the SHA-1 algorithm.

• Sender’s random number: 32 bits (mandatory, unsigned integer)

Random numbers (nonces) generated by the sender of this MP JOIN to prevent

relay attacks.

The MP JOIN format for the SYN-ACK packet is illustrated in Figure 3.20.

52

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

| |

| Sender’s HMAC |

| |

| |

+-+

Figure 3.21: MP JOIN extension for ACK

• Sender’s truncated HMAC: 64 bits (mandatory, unsigned integer)

The truncated (leftmost 64 bits) HMAC generated by the sender of this MP JOIN

packet.

• Sender’s random number: 32 bits (mandatory, unsigned integer)

A random number generated by the sender of this MP JOIN packet.

The MP JOIN format for the ACK packet is illustrated in Figure 3.21.

• Sender’s HMAC: 160 bits (mandatory, unsigned integer)

The HMAC generated by the sender of this MP JOIN packet

3.1.13 Data Sequence Signal (DSS) Extension

The Data Sequence Signal (DSS) extension has two purposes. First, it is used to define

the mapping between subflow-level sequence space to the connection level to ensure in-

order data delivery to the recipient application. Second, it is used as a connection-level

ACK, which is called Data ACK in MPTCP terminology. The format of DSS is similar

to the MPTCP DSS option’s format [18].

53

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |F|M|A| Data-Level Length |

+-+

| Data ACK |

+-+

| Data Sequence Number (DSN) |

+-+

| Subflow Sequence Number (SSN) |

+-+

| Payload CRC-32 |

+-+

Figure 3.22: DSS extension

• F: 1 bit (mandatory, unsigned integer)

The flag used to indicate ”DATA FIN”, which is the connection-level FIN. The en-

abling of this flag implies that the mapping covers the last data sent from the

sender.

• M: 1 bit (mandatory, unsigned integer)

The flag used to indicate that the packet contains a data sequence mapping, which

in turn implies the presence of Data Sequence Number (DSN), Subflow Sequence

Number (SSN), Data-Level Length, and Payload CRC-32 fields.

• A: 1 bit (mandatory, unsigned integer)

The flag used to indicate the presence of Data ACK.

• Data-level length: 16 bits (mandatory, unsigned integer)

The length (in packets) for which this mapping is valid.

• Data ACK: 32 bits (mandatory, unsigned integer)

Data-level acknowledgment number.

54

• Data sequence number (DSN): 32 bits (mandatory, unsigned integer)

The starting data-level sequence number for this mapping.

• Subflow sequence number (SSN): 32 bits (mandatory, unsigned integer)

The starting subflow-level sequence number for this mapping.

• Payload CRC-32: 32 bits (mandatory, unsigned integer)

The integrity check for the payload covered in this mapping if the use of payload

integrity check has been negotiated at the establishment of the first subflow of this

multipath ResTP connection.

3.2 ResTP Extension Precedence

Unlike TCP options, ResTP extensions do not have the Kind field to specify the type of

each extension as well as marking the beginning and the end of each extension when they

are appended to the basic header. Hence, in ResTP, the flags in the basic header plays a

very important role in letting the endpoints know what extensions they should expect in

the header. Moreover, ResTP requires that once a service is negotiated at the beginning

of a connection, all subsequent packets must carry the corresponding flags. For example,

the OPT bit signifying the use of the opportunistic connection management scheme has to

be ON in the initial setup messages (SYN, SYN-ACK, and ACK) and in all of the following

packets. If the hosts have agreed to use FEC as the error control technique, all packets

exchanged during the communication must have the FEC bit in Error set to “1”.

Furthermore, a ResTP segment may contain multiple extensions, it is necessary for ResTP

to establish an extension precedence rule as shown in Table 3.2 so that the hosts know

how to extract and deserialize a packet’s header.

55

Precedence Extension
1 basic header (Figure 3.1)
2 cookie response (Figure 3.4)
3 MP CAPABLE (Figure 3.18, MP JOIN (Figures 3.19, 3.20, 3.21))
4 DSS (Figure 3.22)
5 FEC (Figure 3.5, ARQ (Figure 3.7), HARQ (Figure 3.17)
6 SACK (Figure 3.8), SNACK (Figure 3.9)

Table 3.2: ResTP extension precedence

Figure 3.23: ResTP single-path communication

3.3 Single- and Multi-Path Communication Modes

ResTP is both a uni- and multi-path transport-layer protocol. The end-systems negotiate

the communication mode that they want to operate in using the main header’s P field.

3.3.1 Single-Path Communication Mode

ResTP is in its unipath E2E communication (Figure 3.23) when both MP? and MPM are

unset and the total number of paths used for data transfer specified in k has a value of

1 throughout the whole connection lifetime.

56

Figure 3.24: ResTP multi-path hot-standby communication

k = 3

Figure 3.25: ResTP multi-path spreading communication

3.3.2 Multi-path Communication Mode

ResTP is in its multipath E2E communication when MP? is set to “1”, and the value in k

is greater than 1. Furthermore, ResTP supports two multi-path sub-modes (or subflow

policies): hot-standby (MPM = 0) shown in Figure 3.24 and spreading (MPM = 1) shown

in Figure 3.25

When operating in hot-standby, the protocol transmits data on one primary path and

only utilizes a different path in the set of secondary paths that are in hot-standby state

when the main one fails as illustrated in Figure 3.26. Comparing to the traditional single-

path communication, this mode allows faster restoration when the primary path fails,

yet with the possibility of some data losses. The degree of losses depends on how fast

57

Figure 3.26: ResTP multi-path hot-standby communication with path failure

k = 3

Figure 3.27: ResTP multi-path spreading communication with path failure

ResTP is able to learn about the failure and make the transition. With cross-layering,

ResTP can be explicitly notified about the disruption of the main path by the lower

layer, allowing a more promptly switching to an alternate path.

Using one path for data transfer and only replacing it with a second path in the event

of its failure is also referred as the ‘all-or-nothing’ approach. Another instance of the

hot-standby policy is to completely saturate one path before utilizing an additional path,

which is referred as the ‘overflow’ approach [18].

When operating in its spreading mode, ResTP actively distributes data among all estab-

lished paths. This is where all ResTP multi-path components (packet scheduler, path

manager, ...) get involved. A spreading communication is able to survive the failure of

individual paths with no loss to the application (Figure 3.27).

58

The selection between the hot-standby and spreading subflow policies is based on many

factors including path characteristics and application requirements. When considering

path characteristics alone, with high-bandwidth and low-delay links, the need to simul-

taneously spread data across multiple paths is small, so the hot-standby subflow policy

may be more suited to reduce the overall complexity as many components (coupled con-

gestion control, packet scheduler) are not required. With low-bandwidth and high-delay

links, the spreading mode could be more beneficial as ResTP pools multiple paths to

increase the throughput.

Bandwidth-intensive applications typically benefit from the spreading mode to maxi-

mize their throughput. However, in an environment with high-bandwidth and low-delay

channels, developers may choose to run their applications over ResTP in its overflow

hot-standby mode if system complexity needs to be taken into considerations.

A study [89] on the suitability of multi-path transports (CMT-SCTP and MPTCP) for

latency-sensitive traffic including live video communication (Skype), gaming (Massive

Multiplayer Online or MMO), and Web traffic shows that multi-path communication can

reduce latency significantly when paths have similar delay and loss rate. However, in

asymmetric scenarios, the latency reduction is not achieved. The study also emphasizes

that the scheduling mechanism employed plays an important role on the performance of

multi-path transports as a scheduler designed for throughput maximization may lead to

latency increase in some scenarios with heterogeneous paths. When discussing the impact

that MPTCP may have on applications in RFC 6897 [90], the authors also state that

the jitter perceivable to an application may appear higher when spreading data across

subflows with different delays, and the delay and jitter of data transport over MPTCP

highly depend on the congestion control and scheduling algorithms that are in operation.

So, when using ResTP, the users may want to exploit the flexibility in its design to

experiment with different congestion and scheduling algorithms to find the best fit.

59

For loss-intolerant applications, utilizing multiple links simultaneously could minimize

data losses upon link failures. In a more stable network environment, unless the ap-

plications are also bandwidth-intensive, spreading data over multiple paths may not be

necessary. Choosing the most reliable link with low error rate and operating in the

hot-standby mode with the ARQ or HARQ error control may be sufficient.

3.4 Cross-Layering Framework

path char

dials knobs

{ss, tm}

GeoDivRP

ResTP

App

{k,d,[h,t]}

K32

D74

D43

D32

Figure 3.28: ResTP in the ResiliNets protocol stack

The ResTP-GeoDivRP protocol stack supports cross-layering as illustrated in Figure 3.28.

In the model, the downward knobs K allow service tuning from the application layer while

the upward dials D allow feedback updating from the network layer. Specifically, ResTP

receives the service specification (ss) and threat model (tm) from the application. Based

on the information, ResTP then determines and adapts its mechanisms and resilient

services to satisfy the application requirements. When being deployed together with

60

the GeoDivRP routing protocol [12–14] and operating in its multipath mode, ResTP

requests the GeoDivRP to calculate k number of d-geodiverse paths meeting [h,t] stretch

(number of additional hops for diverse paths) and skew (delay difference across paths)

criteria, where d is the distance between the paths. These paths, when being passed

up to ResTP will be used for actual data transfer. This ResiliNets framework therefore

achieves survivability.

3.5 ResTP Modules

In this section, we explain all the modules that made up our ResTP transport-layer

protocol, starting with the heart of the protocol, the main module.

3.5.1 Main Module

The main module must be present in every ResTP configuration. It performs multiple

tasks and is critical to the operation of the protocol:

• The module is the connection point between ResTP and the upper and lower layer.

• The module performs multiplexing and demultiplexing.

• The module holds variables shared among the other modules and coordinates their

operations when they are present in a configuration.

3.5.2 Helper Module

This module performs functions and calculations that are necessary for other modules to

operate such as the round trip time estimation.

61

3.5.3 Framing Module

The framing module converts application-layer frames into ResTP segments. There are

two framing modes handled by the framing module. The fixed-size framing mode ensures

that each application-layer frame is written as a separate ResTP segment on the sending

end and read as a separate ResTP segment on the receiving end. With this mode, packet

boundaries are reserved even on retransmissions (through ARQ or HARQ with fully

reliable service enabled). The coalesce framing mode allows multiple application-layer

frames to be combined in a single ResTP segment. The framing module participates in

every ResTP configuration, and one of the two framing modes needs to be enabled.

3.5.4 Flow Control Module

Flow control in ResTP is handled by the flow control module, which limits a ResTP

sender’s transmission rate to avoid overwhelming the receiver. ResTP currently imple-

ments only the TCP-like windowed flow control although, which can be enabled through

the WIN bit in FC.

3.5.5 Connection Management Module

The connection management module handles the establishment and termination of a

ResTP connection (both single-path and multipath).

Single-Path Connection Management

ResTP supports three connection establishment schemes: UDP’s connectionless, TCP’s

three-way handshake, and ResTP’s opportunistic that can be specified using the cor-

responding bits in the Flow header field. ResTP employs the TCP’s four-way FIN

62

exchange termination technique in all of its reliable connections.

Connectionless Connection Establishment

Operated in the same way as UDP, in a connectionless connection, ResTP communicating

hosts do not exchange any signaling messages. Application data are transmitted as soon

as the connection is opened, and none of the bits in Flow are set in the header of these

data packets to signify that the connectionless scheme is currently in operation.

Three-Way Handshake

Following the TCP’s connection establishment scheme, ResTP communication hosts ex-

change SYN, SYN-ACK and ACK messages to initiate a three-way handshake connection

before any data are allowed to be transmitted. ResTP requires all packets sent during

this type of connection, including signaling, data, and ACK packets to have the CON bit

in Flow set to “1”.

We assume that Host A is the connection initiator. Host A begins by sending a SYN

packet to host B. This signaling message is a non-payload packet that carries the basic

ReaTP header illustrated in Figure 3.1 with the SYN bit in Flags and the CON bit in

Flow set to “1”. Host B, upon receiving Host A’s SYN, replies with a SYN-ACK if it

accepts the communication request. This SYN-ACK has the same format as the SYN with

the ACK bit in Flags also set to “1”. The connection is established when Host A sends

an ACK back to Host B acknowledging the receipt of the SYN-ACK. This ACK’s header

has ACK in Flags and CON in Flow set to “1”. All data packets following the final ACK

signaling message must have the CON bit enabled.

Opportunistic

63

As mentioned in Section 2.1, TCP 3-way handshake adds an RTT to the overall net-

work delay, which is significant for short flows such as short Web transfers, especially

over a high-latency environment. To address this shortcoming, ResTP proposes an en-

hanced handshake approach called opportunistic (ResTP OPT). Introduced in our pre-

vious publication [91], ResTP’s opportunistic allows data to be exchanged and delivered

to the application during the establishment process. TCP Fast Open (TFO) also allows

data transmission during handshake, but takes a slightly different approach than our

opportunistic. First, TFO transmits the initial application data inside the SYN segment.

So the amount of data transmitted is limited to the amount that fits within the SYN.

ResTP’s opportunistic transmits application data during the handshake in separate pack-

ets. Hence, the client can send as much data as permitted by the congestion and flow

control that are in use (note that QUIC [92] also employs this approach but QUIC is not

a pure transport-layer protocol as TCP and ResTP).

Second, TFO does not consider control (signaling) segment losses in its design. Mea-

surements show that control packets do get lost at a relatively high rate of 0.5% [93].

Specifically, a measurement at the University of Innsbruck employee’s web mail server

shows that out of a total of 737, 188 recorded connection requests, 730, 523 (99.1%) are

successful, and 5162 (0.7%) of the successful connections require more than one SYN

packet. A second measurement performed at the university’s Internet proxy shows that

out of a total of 1, 721, 382 logged connection attempts, 1, 708, 442 (99.2%) are success-

ful, and 2, 148 of those successful connections require multiple SYN-ACK and SYN control

packets. TCP sets its retransmission timeout (RTO) to be 3 seconds during the hand-

shake (the first RTT). Hence, a SYN or SYN-ACK loss costs the connection at least an

additional 3-second delay. ResTP’s opportunistic mitigates this issue by turning on the

SYN bit for the first data packet sent after initial SYN control message and the SYN and

ACK bits for the first data packet sent after initial SYN-ACK control messages. These

64

flags serve as the second SYN and SYN-ACK to survive any initial losses.

As highlighted in RFC 7413 [42], allowing data to be transmitted and passed up to the

application layer before the 3-way handshake is completed opens up many serious vulner-

abilities. To address these security issues, ResTP OPT adopts the client authentication

process proposed in TFO. A client that wants to use the opportunistic mechanism should

first transmit a cookie request to the server. The cookie request is a SYN packet that

contains the basic header shown in Figure 3.1 with no payload, and with the SYN, OPT,

and CKI flags set to 1. The server then generates a cookie and sends it back in a cookie

response, which has the same format as the cookie request, except with the addition of

the Cookie extension (Figure 3.4). The response is a SYN-ACK packet that has both the

SYN and ACK flags set to 1 in addition to the OPT, and CKI bits. The client then caches

the cookie for future ResTP opportunistic connections.

To illustrate our opportunistic connection establishment scheme, we assume that a client

wants to request a file from a server, and the client has been fully authenticated by the

process described above. It means that the client has obtained a cookie and is ready to

initiate its web page request through the following steps:

1. The client sends a SYN packet to the server. This SYN has no payload and carries

the ResTP basic header (Figure 3.1) extended by the Cookie extension containing

the cookie the client obtained previously. The header has the OPT bit in Flow, and

SYN in Flags set to “1”.

2. The client sends its request for the file. This request packet serves two purposes:

file request and duplicated SYN. Hence, the request needs to carry the cookie and

has both SYN and OPT enabled. In case the initial SYN is lost, the connection setup

can still proceed when the server receives this request from the client.

65

3. When the server receives the client’s SYN, the server checks the client’s cookie to

ensure that the request is from an authenticated client. If the server decides to

accept the communication request, the server responds with a SYN-ACK message

as normal. This message’s header has the bits OPT, SYN, and ACK enabled.

4. When the server receives the client’s request, there are two possibilities. If the

server has not received the initial SYN packet, the server treats this request as a

SYN and performs the cookie verification before acknowledging with a SYN-ACK.

If the server already received the initial SYN, the server ignores the cookie and the

SYN flag and only processes the actual request.

5. The server sends the requested file back to the client. This response serves two

purposes: file response and duplicated SYN-ACK. The response’s header has the

Flags:SYN, Flags:ACK, and Flow:OPT bits enabled.

6. If the client receives the normal SYN-ACK packet, it acknowledges the receipt with

an ACK packet as normal. If the client receives the response (but have not received

any SYN-ACK), the client treats this response as a SYN-ACK to move the connection

to the established state before processing the data file carried in the response.

We note that while the use of the Cookie option in TCP for TFO is limited by the

maximum 40-byte option length allowed in a TCP segment and the presence of other

options, ResTP does not have that concern because our protocol does not impose any

limits on the number of extensions carried in a ResTP packet.

Multipath Connection Management

ResTP supports the standard three-way handshake and opportunistic connection estab-

lishment techniques when operating in its multipath mode.

66

Three-Way Handshake

With three-way handshake, ResTP follows the MPTCP’s connection initiation described

in Section 3.1 of RFC 6824 [18] with some minor modifications. All the initial signaling

messages must have the MP? and MPM bits properly set (in addition to those bits described

in the single-path three-way handshake section above). The value of k, which specifies the

total number of paths the two hosts use for this communication session must be initialized

to 1 for the master subflow and incremented every time a new subflow is added. If the

multipath bits (MP? and MPM) are not correctly enabled during the handshaking, ResTP

will fall back to its single-path mode (with three-way handshake enabled).

Opportunistic

ResTP OPT in multipath mode operates as in unipath mode. As with the three-way

handshake technique, all initial signaling messages must have MP? and MPM in the P header

field properly set in order to differentiate between single-path and multipath operations.

3.5.6 Congestion Module

Congestion module handles congestion control for both single and multi-path ResTP con-

nections. To accommodate the different congestion control algorithms proposed, ResTP

uses a bit vector to identify a specific algorithm. If MP? is set to 0, the Cong field

specifies a single-path algorithm, and if MP? is set to 1, this field specifies a multipath

algorithm.

The current ResTP implementation only supports three congestion control algorithms:

no congestion control, TCP NewReno, and TCP BIC.

67

3.5.7 Ordering Module

The ordering module controls the order in which data are delivered to the receiving

application with respect to the order in which they were transmitted. ResTP provides

three types of ordering service to the application: unordered, partially ordered, and

ordered delivery.

Unordered Data Delivery

With the unordered service, a ResTP receiver delivers data to the application as soon as

they arrive without worrying about their orders. When this service is in operation, none

of the bits in the Ord header field are enabled.

Ordered Data Delivery

With the in-order data delivery service, the receiver keeps out-of-order packets (those that

have sequence numbers greater than the next expected sequence number) buffered until

all of their predecessors have been received and delivered. This is the exact mechanism

employed by TCP and MPTCP. To negotiate the in-order data delivery, the communi-

cating hosts use the FUL bit in the Ord header field. All packets transmitted during the

lifetime of an in-order data delivery connection need to enable this FUL bit.

Partially-Ordered Data Delivery

With partially-ordered data delivery, the receiver allows out-of-order packets to be de-

livered to the receiving application when the application is waiting for more packets, but

the next expected in-order packets have not yet arrived. With this service, some data

can make it on time for their delivery while some have to miss the deadline. The amount

of out-of-ordered data passed to the application depends on many factors, including the

68

underlying network delay and error rate. This service is especially useful for real-time

multimedia applications. The partially-ordered data delivery is enabled using the PAR

bit in the Ord header field.

3.5.8 Reliability Module

The reliability module handles the error control functionality of ResTP. Basically, it

performs two main tasks: error detection and error recovery.

Error detection is achieved using CRC (cyclic redundancy check) once enabled through

the CRC bit in the Error header field. When CRC bit is set to “1”, ResTP performs error

check on both the header and the payload (if present).

We use the more powerful cyclic redundancy check (CRC) instead of checksum for bit

error detection in ResTP because unlike TCP that was designed for wired networks,

ResTP is also tailored for wireless environments, in which bit errors are more common,

and the error rates are much higher.

Error recovery is accomplished using one of the three mechanisms supported by ResTP:

FEC (forward error correction), ARQ (automatic repeat request with retransmission),

and HARQ (hybrid ARQ).

Unreliable

ResTP can be configured to provide no reliability service at all, in which neither an error

check is performed nor a lost packet is recovered. In this case, the reliability module is

unplugged, and ResTP is said to operate in its unreliable mode.

69

Quasi Reliable

In its quasi reliable mode, ResTP provides some level of statistical reliability by relying

on open-loop error recovery mechanisms such as FEC.

The current ResTP implementation supports two XOR-based FEC encoding types pro-

posed by TCP-IR [87, 88]: the basic XOR technique that encodes every data packet up

to 16 packets in a single encoded one, and the interleaved XOR technique that encodes

every other ResTP packet up to 8 packets in a single encoded one. Basic XOR can re-

cover a single packet loss in the encoding range while interleaved XOR can recover two

consecutive losses.

The use of FEC is negotiated using the FEC bit in Error and the FEC extension (Fig-

ure 3.5) during the initial handshake. In these signaling messages, the FEC Range field

in the FEC extension has a value of 0.

After the communicating hosts agree to use one of the supported encoding type for their

communication, all packets exchanged afterward must have the FEC bit set, and those

that carry an encoded payload also need to have the ENC bit set with an appended FEC

extension. The FEC Range field in an encoded packet must be non-zero to specify

the number of packets encoded in the payload. Furthermore, the quasi reliable mode

requires all data packets (regular and encoded) to have a sequence number carried in the

Sequence Number extension (Figure 3.6).

The behavior of the ResTP sender when operating in its quasi reliable mode follows the

TCP-IR sender’s. Before a regular data packet is transmitted, an FEC timer is set. The

duration of this timer is currently set to RTT/4, but this value can be adjusted if desired.

When the timer fires, an encoded packet is created and transmitted. The payload of this

packet is the XOR of the payloads of every (basic XOR) or every other (interleaved

70

XOR) packets that were not encoded before, and the sequence number of this packet is

the sequence number of the first packet it encodes.

On the receiver’s side, when FEC is enabled, the receiver keeps a copy of the last 15

packets in its buffer even if they have been consumed by the application layer. When the

receiver receives an FEC encoded packet, the receiver checks the FEC Range field to

determine the range of packets encoded. If all packets in the encoding range have been

received successfully, the receiver discards the encoded packet. If there is a lost packet

in the encoding range, the receiver will try to reconstruct the packet.

Fully Reliable

The fully reliable mode guarantees correct data delivery by preserving the E2E (end-to-

end) ACK semantics with ARQ or HARQ error correction mechanism. When ResTP

operates in its fully reliable mode, the ACK module (described in the following section)

must be plugged in. Furthermore, fully reliable can be configured in combination with

either unordered or ordered data delivery service discussed in the previous section

Fully Reliable with ARQ

ARQ usage is negotiated using the ARQ bit in Error. All packets transmitted during

the connection must carried an ARQ extension with a Sequence Number field and an

Acknowledgment as illustrated in Figure 3.7.

The behavior of the ResTP sender and receiver in the fully reliable mode with ARQ

follows the behavior of TCP entities, except that the sender’s retransmission behavior

depends on the ACK technique employed:

1. Positive ACK and fast retransmit: If positive ACK is enabled, the sender employs

fast retransmit, and a retransmission event is triggered when the sender receives

71

three duplicate ACKs or when the retransmission timer (RTO) expires depending

on which event happens first.

2. Positive ACK and periodic probe: This retransmission behavior is especially use-

ful when handling link outages. When the RTO expires, ResTP ceases its new

data transmission, suspends its RTO and transmits periodic probe packets (see

Section 3.6 for more details on ResTP loss handling).

3. Delayed ACK: If delayed ACK is enabled, fast retransmit is disabled (the reason is

explained in the ACK module section). One way to speed up the loss recovery in

this case is through the help of a SNACK, which gives the sender more information

about the state of the receiving buffer than a single ACK header field used in

delayed ACK.

4. Selective ACK: If selective ACK is enabled, ResTP employs selective repeat and

retransmits only lost packets identified in the SACK extension. A retransmission

is also triggered when the RTO expires before the sender receives any SACK, but

this behavior is not desirable.

5. Selective negative ACK: If SNACK is enabled, ResTP also employs selective repeat

and retransmits only lost packets identified in the SNACK extension. RTO is set,

but a retransmission through RTO is not desirable.

Fully Reliable with HARQ

The use of HARQ is negotiated using the FEC and ARQ bits in Error. All signaling

messages (SYN, SYN-ACK, and ACK) exchanged during the initial handshake must carry

the HARQ extension (Figure 3.17) consisting of both the FEC and ARQ extensions

(Figure 3.5 and 3.7, respectively). All packets exchanged after the handshake must carry

72

the ARQ extension if they are regular data packets, and both FEC and ARQ extensions

if they are encoded or ACK packets.

On one end, the sender encodes packets the exact same way as when it is in quasi reliable

mode with FEC. On the other end, the receiver also processes encoded packets the same

way it does in quasi reliable mode. However, in addition to an attempt to recover lost

packets based on the encoded data, the receiver also sends an ACK back to the sender.

If a loss can be recovered successfully, the receiver sends a regular positive ACK back to

the sender. This ACK carries both the FEC and ARQ extensions, but the FEC Range

field has a value of 0. If none of the packets in the encoding range can be recovered,

the receiver sends a positive ACK, but with the FEC Range specifying the loss range.

The loss range is the offset between the sequence number of the next expected packet

(rcv nxt) and the sequence number of the last packet lost.

When receiving an ACK with a zero FEC Range field, the sender can adjust its conges-

tion window according to the algorithm currently in operation if the congestion module

is plugged in and congestion control is enabled. When receiving an ACK with non-zero

FEC Range field, the sender extracts the loss range and tries to recover lost packets

through Fast Retransmit.

Partially Reliable

ResTP operates in partially reliable mode when both ARQ and partially ordered data

delivery are enabled (both ARQ and PAR bits are set to 1). The sender operates as a

normal ARQ without having to retransmit some lost packets if the receiver has skipped

them.

73

3.5.9 ACK Module

The ACK module handles the different acknowledgment techniques provided by ResTP,

including positive ACK, delayed ACK, negative ACK (NACK), selective ACK (SACK),

and selective negative ACK (SNACK).

Positive ACK

The positive ACK technique is enabled through the ACK bit in Flags with the se-

quence number of acknowledgment number extension (Figure 3.7) appended to every

ACK packet. There are a couple of differences between the ResTP’s positive ACK and

the traditional cumulative ACK employed by TCP. First, the receipt of a positive ACK

does not necessarily indicate that the receiver (the ACK generator) has received all data

packets whose sequence numbers less than the acknowledgment number specified in the

ACK. It only means that the receiver has advanced its receive pointer (rcv next ptr) and

no longer needs the data prior to the acknowledgment number specified in this ACK.

ResTP relaxes the traditional meaning of cumulative ACK because in addition to sup-

porting fully reliable and ordered data delivery services, ResTP also supports partial

reliable and partially-ordered services. With these services, the receiver is allowed to

generate an ACK even some data are missing, and the sender is allowed to discard those

data without worrying about retransmitting them.

Second, ResTP’s positive ACK does not have to come with the fully reliable and ordered

data delivery services as in TCP. For example, ResTP can be configured as an unreliable,

unordered protocol that provides only flow control and congestion control. In this case, a

regular flow of ACKs would be needed for the proper function of the selected congestion

and flow control algorithms, so the ACK module with the positive ACK scheme enabled

must be plugged while the reliability module and ordering module can be unplugged.

74

With the positive ACK technique, the receiver transmits an ACK for every other packets

received. When an out-of-order queue forms, the receiver acknowledges every packet

received. When positive ACK is used together with the partially-ordered technique,

the receiver also transmits an ACK whenever the application reads pass the hole and

advances its receive pointer.

Delayed ACK

The delayed ACK technique is similar to the positive ACK except that the ACK trans-

mission frequency is delayed for a configurable period of time (delay period). Delayed

ACK is especially useful in network environments with asymmetric channels such as the

space communication in which the capacity of the forward link (from the spacecraft to

the ground) is substantially larger than the capacity of the reverse link (from the ground

to the spacecraft). If the receiver generates an ACK for every other packet received as

in the positive ACK technique, the reverse link may be overrun.

There are some limitations of delayed ACK that we want to emphasize. Delayed ACK

impairs the function of TCP congestion control algorithms that are currently employed by

ResTP because these algorithms require a steady flow of ACKs to correctly determine the

data sending rate. Hence, delayed ACK should not be enabled when ResTP is configured

with those algoritms. In the future, ResTP can be extended with an open-loop rate based

congestion control algorithm (similar to the one suggested by SCPS-TP [80]) that works

better with delayed ACK. Furthermore, delayed ACK should not be combined with the

partially-ordered data delivery mechanism. When the application skips a hole in the

receiver buffer, the receiver should send an ACK immediately so that the sender can

continue to send out new data. Lastly, delayed ACK does not work well with Fast

Retransmit because the sender may never receive enough duplicate ACKs (normally 3

duplicate ACKs) to trigger the fast retransmit due to the reduced ACK frequency.

75

Future work on ResTP requires more simulations and analysis to determine an optimal

value (or range of value) for the delay period considering different network conditions

including their latency characteristic.

Delayed ACK is enabled through the DEL bit in Error, and every ACK packet’s header

carries the extension illustrated in Figure 3.7.

Selective ACK

Selective ACK is used in combination with positive ACK or delayed ACK to inform

multiple holes in the receiving buffer and is negotiated using the SAK bit in Error. When

enabled, a SACK extension (Figure 3.8) is appended to an ACK packet whenever a

hole exists. ResTP follows the SACK generation and processing policy outlined in RFC

2018 [39]. Because ResTP does not limit the size of its extension, ResTP implements

a configurable parameter to limit the number of SACK blocks that can be appended to

an ACK due to the large number of bytes requires to signify a contiguous data block in

SACK.

Selective negative ACK

Similar to SACK, selective negative ACK (SNACK) can be combined with either positive

ACK or delayed ACK to inform multiple holes in the receiving buffer. For the signaling

SYN, SYN-ACK, and ACK messages, the use of SNACK is negotiated using both the SAK

and NAK bits or only the NAK bit in Error. If a SNACK does not carry the Bit Vector

field, it is basically a NACK, which signifies a single hole in the receiving buffer. In this

case, only the NAK bit is enabled. On the other hand, if a SNACK signifies multiple holes

in Bit Vector, both SAK and NAK bits are enabled. Based on these flags, a SNACK

recipient can determine the presence of the optional Bit Vector field.

76

Both SACK and SNACK have the ability to convey multiple missing holes in the receiving

buffer, which helps the data sender recover from multiple losses faster than when only

positive ACK is employed. The benefit of being able to recover from multiple losses

per sending window is even intensified when dealing with long-delay channels. However,

because the format of SNACK is more bit-efficient than SACK, SNACK is more suitable

for lossy and bandwidth-constrained network environments.

SCPS-TP treats SNACK as a request for retransmission. It means that when the data

sender receives a SNACK, it needs to retransmit all the missing data signified by the

SNACK immediately. In ResTP, the decision to retransmit all missing data does not

depend on whether the sender receives a SNACK or a SACK, but on the reliability

and ordering techniques that are in operation. If ResTP is configured with partially

reliable and partially ordered data delivery services, the sender will retransmit all missing

segments upon a SNACK receipt. This is to increase the chance that these missing

data can arrive on time to fill up the holes in the receiving buffer before the receiving

application reads the data.

Duplicate ACK

ResTP provides a parameter to enable duplicate ACK transmissions. When enabled, the

data receiver retransmits its last sent ACK packet if it has not received any new data

from the sender for a configurable period of time. ACK duplication is useful when the

ACK channel is noisy, and an ACK loss may block the sender from transmitting new

data because it has drained its congestion window. Without receiving an ACK on time,

the sender has to timeout and resets its window.

77

3.5.10 Scheduling Module

The scheduling module handles the distribution of data packets among available paths

when ResTP operates in its multipath spreading mode (MPM and MP?) set to 1. ResTP

currently supports two packet scheduling algorithms: round robin enabled through the

RRS bit and fastest RTT enabled through the FRS bit in Sched.

3.6 ResTP Data Loss Handling

Because ResTP is designed as a general-purpose transport-layer protocol that can be

employed in different network environments, including wired and wireless, the protocol

needs to be able to cope with different sources of data loss, including one caused by

congestion, corruption, and link outage.

The first step in handling data loss is to identify the source of loss. The current ResTP

implementation only supports a static loss identification: the protocol uses a parameter

that can be set by a network manager to determine the type of packet losses. In the future,

dynamic loss identification will be studied and incorporated into ResTP so that the

protocol can operate more efficiently, especially over mixed wired and wireless network.

One way of implementing dynamic loss identification for ResTP is to exploit the cross-

layering framework employed by the ResiliNets protocol stack (ResTP working together

with GeoDivRP), which allowing the lower layer to communicate directly with ResTP

about the cause of a drop.

When the loss parameter is set to congestion, ResTP plugs in its congestion control

module and invoke its NewReno algorithm. The protocol also selects ARQ with positive

ACK as its error control mechanism with ordered data delivery service, three-way hand-

shake as its connection management method, and the windowed flow control technique.

78

This configuration of ResTP matches the algorithms implemented by the standard TCP,

which has been known for handling network congestion efficiently. We note that this

default configuration can be changed if desired. For example, instead of NewReno, a

different congestion control algorithm can be used.

When the loss parameter is set to corruption, ResTP automatically disables its congestion

control module while enabling its reliability module by default. ARQ with positive ACK

is selected to retransmit lost packets. The three-way handshake is employed as the

connection establishment technique, and the windowed flow control is enabled. Instead

of disabling congestion control, the network manager can plug in the module and use an

algorithm that handles corruption-based losses better than the standard NewReno.

When the loss parameter is set to link outage, ResTP is configured with three-way

handshake connection establishment, ARQ with positive ACK and periodic probe error

control, NewReno congestion control, and windowed flow control. In this default configu-

ration, when a loss happens, ResTP will cease its transmission, suspend its retransmission

timer and only transmits periodic probe packets. This mechanism allows ResTP to sus-

tain its throughput and prevents the protocol from exceeding its retransmission threshold

and aborting the connection in the worst case. ResTP uses the last transmitted data

packet as probe packet. We do not use dummy segments as probe packets because we

want every chance to transmit useful data, especially when a connection is failure-prone.

In addition, because the current version of ResTP does not implement a link failure de-

tection mechanism (it uses a parameter to pre-set different sources of loss), ResTP only

starts sending probe packet when an RTO happens. For simplicity, ResTP also uses this

RTO to time its probe transmission.

The idea having different modes for handling different causes of losses is inspired by

SCPS-TP although SCPS-TP does not provide the flexibility to configure the desired

79

algorithms like ResTP.

3.7 ResTP for Real-Time Multimedia Applications

ResTP provides multiple configurations for real-time multimedia applications. If time-

liness is the only concern, the unreliable ResTP configuration should be able to quickly

transport the application-layer data across the network. This configuration is as simple

and light-weight as UDP and performs as well as the standard Internet protocol. In

case timeliness is the requirement, but congestion and corruption should also been taken

care of, ResTP provides an all-in-one configuration consisting of congestion control, er-

ror, and flow control that is specifically tailored for real-time multimedia applications to

make sure the data are delivered on time.

Based on our simulations and analysis, the most suitable ResTP configuration that can

achieve reliability without sacrificing timeliness is ResTP-3WH-PAR-ARQ. In this sec-

tion, we explain the techniques that this configuration consists of. In Section 4.5, we

simulates and analyzes its performance in comparison with TCP.

ResTP-3WH-PAR-ARQ consists of the three-way handshake technique, partially-ordered

data delivery, and ARQ with SACK or SNACK error control. With this configuration,

the fixed framing mode inside the framing module (Section 3.5.3) must be enabled.

The implementation of the partially-ordered data delivery technique in ResTP includes

the enabling of either SACK or SNACK extension. SNACK is a better choice if the

network is bandwidth-constrained or bandwidth-asymmetric. When a hole exists in its

reordering buffer, the ResTP receiver immediately transmits an ACK with a SACK or

SNACK letting the sender know the exact data that are missing. While waiting for

missing segments, if the receiving application requests data, the receiver passes all data

80

currently in its buffer (including out-of-order packets) up the stack. This is the skip-over

hole technique implemented in TCP-RTM. Whenever the receiver has to skip over a hole,

it immediately informs the sender through an ACK so that the sender can discard the

segments instead of trying to retransmit them. Before this ACK, the sender will try to

retransmit missing data upon a SACK or SNACK reception.

ResTP for real-time multimedia applications is different from TCP-RTM in multiple

ways. First, ResTP does not require an application-level framing technique. ResTP’s

framing module with the fixed-size mode enabled will ensure that packet boundaries are

maintained between application-level frames and transport-level segments. Second, with

ResTP, the application does not have to worry about sending periodic heartbeat packets

to keep the data stream flowing in case ACKs are lost. If the reverse channel is lossy,

ResTP can be configured with duplicate ACK enabled to wake the sender up occasionally.

ResTP can efficiently handle real-time multimedia traffic without any changes from the

applications. Third, in addition to minimizing the delay caused by the ARQ technique,

ResTP can be configured with its opportunistic handshaking to further reduce overall

latency.

3.8 ResTP Solutions for UDP, TCP, and MPTCP

Shortcomings

In Table 3.3, we summarize the shortcomings of the conventional transport protocol

(UDP, TCP, and MPTCP) and how ResTP addresses those issues using the ResiliNets

framework that it employs and the algorithms (discussed above) that it implements. In

Chapter 4, we perform various simulations to demonstrate the ResTP benefits highlighted

in this table.

81

L
im

it
a
ti

o
n
s

o
f

U
D

P
,

T
C

P
,

a
n
d

M
P

T
C

P
R

e
sT

P
so

lu
ti

o
n
s

T
C

P
(a

n
d

M
P

T
C

P
)

3-
w

ay
h
an

d
sh

ak
e

ad
d
s

la
te

n
cy

,
es

-
p

ec
ia

ll
y

to
sh

or
t

fl
ow

s
O

p
p

or
tu

n
is

ti
c

al
lo

w
s

d
at

a
to

b
e

p
ro

ce
ss

ed
d
u
ri

n
g

se
tu

p
,

h
en

ce
sa

v
in

g
an

R
T

T
T

C
P

F
as

t
O

p
en

(T
F

O
)

is
u
n
ab

le
to

su
rv

iv
e
S
Y
N

,
S
Y
N
-

A
C

,
or

b
ot

h
lo

ss
O

p
p

or
tu

n
is

ti
c

ca
n

su
rv

iv
e

th
es

e
lo

ss
es

w
it

h
ou

t
re

tr
an

-
m

is
si

on
s

or
co

n
n
ec

ti
on

re
-s

ta
rt

U
D

P
&

T
C

P
d
o

n
ot

p
er

fo
rm

w
el

l
in

d
iff

er
en

t
n
et

w
or

k
en

v
ir

on
m

en
ts

C
om

p
os

ib
il
it

y
al

lo
w

R
es

T
P

to
b

e
en

v
ir

on
m

en
t-

sp
ec

ifi
ca

ll
y

cu
st

om
iz

ed
U

D
P

&
T

C
P

ar
e

u
n
ab

le
to

se
rv

e
d
iff

er
en

t
ap

p
li
ca

ti
on

cl
as

se
s

d
u
e

to
th

ei
r

fi
x
ed

se
ts

of
se

rv
ic

es
C

om
p

os
ib

il
it

y
al

lo
w

s
R

es
T

P
to

b
e

ap
p
li
ca

ti
on

-
sp

ec
ifi

ca
ll
y

cu
st

om
iz

ed
U

D
P

&
T

C
P

d
o

n
ot

h
av

e
m

ec
h
an

is
m

to
su

rv
iv

e
li
n
k

ou
ta

ge
L

in
k

ou
ta

ge
h
an

d
li
n
g

te
ch

n
iq

u
e

h
el

p
s

R
es

T
P

sa
ve

d
at

a
fr

om
b

ei
n
g

lo
st

w
h
en

fa
ci

n
g

li
n
k

b
re

ak
ag

e
M

P
T

C
P

ca
n
n
ot

su
rv

iv
e

n
et

w
or

k
ch

al
le

n
ge

R
es

T
P

-G
eo

D
iv

R
P

ca
n

su
rv

iv
e

n
et

w
or

k
ch

al
le

n
ge

T
ab

le
3.

3:
R

es
T

P
so

lu
ti

on
s

to
U

D
P

,
T

C
P

,
an

d
M

P
T

C
P

sh
or

tc
om

in
gs

82

Chapter 4

ResTP Performance Evaluation and
Analysis

The implementation of our ResTP in ns-3 along with the verification and validation of

our model are described in Apendix A. In this Chapter, we present our performance

evaluation and analysis of ResTP through multiple sets of simulations to show:

1. The advantages of our opportunistic approach in improving the completion time of

short flows when comparing with TCP (and MPTCP)’s three-way handshake, and

in surviving SYN or SYN-ACK or both SYN and SYN-ACK loss without having to

wait for their retransmissions or re-start the connection when comparing with TFO

(TCP Fast Open).

2. The benefits of ResTP’s composability and custom configurations in serving differ-

ent application classes and adapting to different network environments.

3. The ability of ResTP in surviving link outages in networks with intermittent con-

nectivity

4. The benefits of cross-layering and the ResiliNets protocol stack in surviving network

failures when comparing ResTP-GeoDivRP with MPTCP.

83

4.1 Single-Path ResTP with File Transfer Applica-

tion

In this set of simulations, we compare the performance of ResTP with TCP when trans-

porting data files across network. File transfer applications require a fully reliable and

in-order data transfer service, which is the exact service that TCP provides. We expect

ResTP to perform as well as TCP in this scenario.

4.1.1 Simulation Setup and Topology

Figure 4.1 illustrates the topology that we use for this set of simulations. A single

traffic generator (source) communicates with a receiver (sink) through a router. The link

between the source and the router has a bandwidth of 10 Mb/s and a delay of 0.01 ms.

The link between router and the sink has a bandwidth varied from 2 Mb/s to 10 Mb/s,

a delay 0.01 ms, and a bit error rate varied from 10−7 to 10−4. The router implements a

drop-tail queue that has a size of the bandwidth-×-delay product (BDP). TCP employs

the NewReno congestion control algorithm. The file size varies from 250 kB, 500 kB, and

1000kB.

source sink

bottleneck link access link
router

10 Mb/s 2 Mb/s

45 ms 0.01 ms

Figure 4.1: Single router simulation topology

84

4.1.2 ResTP Configuration

ResTP has two configurations that can be used for reliable file transfer: ResTP-3WH-

ARQ (Table 4.1) and ResTP-3WH-HARQ (Table 4.2).

CM FC CC Ordering Reliability ACK
3WH windowed NewReno ordered fully reliable with ARQ positive ACK

Table 4.1: ResTP-3WH-ARQ configuration for evaluating ResTP with file transfer ap-
plication in comparison with TCP

CM FC CC Ordering Reliability ACK
3WH windowed NewReno ordered fully reliable with HARQ positive ACK

Table 4.2: ResTP-3WH-HARQ configuration for evaluating ResTP with file transfer
application in comparison with TCP

4.1.3 Simulation Results and Analysis

We compare the performance of ResTP with TCP when they transfer a small data file

of size 250 kB, 500 kB, and 1000 kB across an error-prone link.

Figure 4.2 illustrates the average throughput of ResTP and TCP when the file size is

1000 kB for different PER values. ResTP achieves slightly higher throughput than TCP

for PER values smaller than 0.2.

File size PER TCP ResTP % Latency Reduction
250 kB 0.01 2.55 s 1.39 s 45.5%
500 kB 0.01 4.93 s 2.30 s 53.3%
1 MB 0.01 10.2 s 6.30 s 38.2%

250 kB 0.1 40.3 s 32.5 s 19.4%
500 kB 0.1 78.8 s 73.0 s 7.4%
1 MB 0.1 118 s 107 s 9.3%

Table 4.3: Flow Completion Time of ResTP vs. TCP

When we consider the flow completion time (FCT), a more important performance metric

than throughput from a user perspective, especially for short flows, ResTP with HARQ

85

th
ro

u
g

h
p

u
t

[M
b

/s
]

packet error rate (PER)

ResTP-HARQ+NewReno

TCP

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0E+00 1E-01 2E-01 3E-01 4E-01 5E-01

Figure 4.2: Throughput of ResTP vs. TCP using short file transfer over lossy link

86

is able to reduce the time it takes to complete the file transfer. Table 4.3 presents the

average FCT after 20 replications for each PER value of 0.01 and 0.1. ResTP is able

to reduce up to 53.3% of the TCP latency. With the 1000-kB file size, the percentage

of latency reduction achieved by ResTP is 38.2% at 0.01 PER and 9.3% at 0.1 PER.

The higher the PER, the smaller the latency improvement is because more packets are

dropped, and some of the dropped packets are the FEC encoded packets that help the

receiver recovering losses without waiting for retransmissions.

4.2 Single-Path ResTP with Web Services

In this section, we evaluate the performance of single-path ResTP, specifically its oppor-

tunistic connection management scheme when handling web browsing traffic using the

Hypertext Transfer Protocol (HTTP) in comparison with TCP’s three-way handshake

and TFO (TCP Fast Open).

4.2.1 Simulation Setup and Topology

We start with the HTTP application that is part of the standard ns-3 release [94]. This

implementation models a persistent connection, which is kept open until the client discon-

nects. At the beginning, the client opens a connection to the server. After the connection

is established, the client sends a request packet asking for a main object. By default,

each client’s request has a constant size of 350 bytes. The size of a main object is de-

termined by a truncated log-normal random distribution with a mean of 10710 bytes,

a standard deviation of 25032, a lower bound of 100 bytes and an upper bound of 2

MB. After receiving the main object, the client parses the object to determine if there

are any embedded objects. If there are, the client sends requests for them sequentially.

A request for a subsequent embedded object is sent only after the previous object has

87

been completely received. The number of embedded objects in a page is determined by a

truncated Pareto distribution with a scale parameter of 2, a shape parameter of 1.1, and

an upper bound of 55. These default values result in the number of embedded objects

falling within [0, 53)] interval with an actual mean of approximately 3.95. The size of an

embedded object is determined by a truncated log-normal distribution with a mean of

7758 bytes, standard deviation of 126168 bytes, a lower bound of 50 bytes, and an upper

bound of 2 MB. After all embedded objects are received, the client enters its reading time

for the downloaded web page before requesting another page. The parsing and reading

time are determined by an exponential distribution with a mean of 130 ms, and 30 s,

respectively.

On the server side, main objects and embedded objects are generated without any delay.

The maximum transmission unit (MTU) size is randomly generated with a 24% chance

for a low MTU size of 536 bytes, and a 76% chance for a high MTU of 1400 bytes. This

means that if generated main object and embedded object size is greater than the MTU

size, the server transmits its response in multiple packets.

The client and the server communicate through a 5 Mb/s point-to-point link. The channel

delay ranges from 20 ms to 500 ms (RTT from 40 to 1000 ms). We modify the HTTP

application to use ResTP protocol instead of TCP. For a fair comparison, we implement

TFO inside ResTP. As previously mentioned, ResTP design and implementation allow

the protocol to be extended with minimal effort when we want to demonstrate that

capability.

The metric that we study in these simulations is the page load time (PLT). PLT is the

amount of time for a client to see the whole web page (including main and embedded

objects) loaded on the client’s web browser after he/she initiates a search (or enters

a URL). The ns-3’s ThreeGppHttpClient requests multiple pages during a simulation

88

duration. We only keep track of the PLT for the first page that the client requests,

which consists of a 79453-byte main object and a 226-byte embedded object. We vary

the simulation duration depending on the channel delay to ensure that at least the first

page is received by the client successfully.

We compare the performance of TCP’s 3-way handshake, TFO, and ResTP’s oppor-

tunistic under four scenarios: no loss, one SYN loss, one SYN-ACK loss, and one SYN

and SYN-ACK loss.

4.2.2 ResTP Configuration

In these simulations, ResTP is configured with the same mechanisms employed by the

traditional TCP, except is connection establishment technique. Table 4.4 shows the

modules that are plugged in for this configuration and the corresponding algorithms

employed. We note that the main module is present in every ResTP configuration so it

is not included in the table. Background on single-path connection establishment at the

transport layer is provided in Section 2.1, and design details on ResTP’s opportunistic

approach is discussed in Section 3.5.5.

CM FC CC Ordering Reliability ACK
opportunistic windowed NewReno ordered fully reliable with ARQ positive ACK

Table 4.4: ResTP configuration for evaluating ResTP opportunistic handshaking with
web services in comparison with TCP’s 3WH and TFO

4.2.3 Simulation Results and Analysis

Figure 4.3 shows the page load time with increasing RTT when no losses occur, and

Table 4.5 presents the improvement percentage of ResTP OPT over the conventional

3WH (because ResTP OPT performs as well as TFO in this scenario, a table for ResTP

89

OPT and TFO is omitted). The time it takes to download a page is longer when the

channel latency increases. However, because both ResTP OPT and TFO allow data

to be transmitted and delivered to the application during the handshake, they achieve

lower page load time than 3WH. We also note that our ResTP’s connection establishment

technique OPT performs close to TFO as expected when no signaling messages are lost.

The approach of transmitting data during the initial RTT in separate packets that ResTP

OPT employs does not have any negative impacts on its performance when comparing

with TFO.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700 800 900 1000

p
a
g

e
 l
o
a
d

 t
im

e
 (

P
LT

)
[s

]

RTT [ms]

Page Load Time vs. RTT

3WH
TFO

ResTP OPT

Figure 4.3: PLT comparison under no-loss scenario

Figure 4.4 plots the page load time with increasing RTT when the initial SYN is dropped,

and Tables 4.6 and 4.7 calculate the improvement percentage of ResTP OPT over 3WH

and TFO, respectively. In this scenario, the opportunistic approach (OPT) has the best

performance. Both 3WH and TFO require a SYN retransmission, which only happens

when the SYN retransmission timer expires after 3 seconds (the 3-second RTO value is

90

RTT (ms) PLT: 3WH (s) PLT: ResTP OPT (s) Improv.
40 0.407 0.366 10.32%
200 1.683 1.482 11.94%
400 3.279 2.871 12.44%
600 4.877 4.271 12.43%
800 6.476 5.671 12.43%
1000 8.076 7.071 12.44%

Table 4.5: PLT comparison under no-loss scenario showing percentage of ResTP OPT
improvement when comparing with 3WH

used by TCP and kept intact in ResTP for the handshake messages when information

needed to calculate RTO is still missing). We can verify this 3-second delay by comparing

a PLT value of 3WH and TFO in this scenario with the previous no-loss case. The

difference between the two PLTs is exactly 3 seconds.

ResTP OPT, on the other hand, does not need to wait for the second SYN. As soon as

the server receives the initial page request (the first data packet) from the client, which

is sent right after transmitting the SYN, the server can accept the connection and start

sending out its responses because the request carries both SYN flag and the cookie.

RTT (ms) PLT: 3WH (s) PLT: ResTP OPT (s) Improv.
40 3.407 0.366 89.26%
200 4.683 1.482 68.35%
400 6.279 2.871 54.28%
600 7.877 4.271 45.78%
800 9.476 5.671 40.15%
1000 11.076 7.071 36.16%

Table 4.6: PLT comparison under SYN-loss scenario showing percentage of ResTP OPT
improvement when comparing with 3WH

Figure 4.5, Table 4.8, and Table 4.9 compare the performance of the three handshake

technique when the initial SYN-ACK is dropped. While 3WH requires the SYN-ACK

to be retransmitted after 3 seconds, TFO and ResTP OPT can proceed as soon as the

client receives the first in-sequence data packet from the server. We emphasize that while

91

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500 600 700 800 900 1000

p
a
g

e
 l
o
a
d

 t
im

e
 (

P
LT

)
[s

]

RTT [ms]

Page Load Time vs. RTT

3WH
TFO

ResTP OPT

Figure 4.4: PLT comparison under SYN-loss scenario

RTT (ms) PLT: TFO (s) PLT: ResTP OPT (s) Improv.
40 3.365 0.366 89.12%
200 4.480 1.482 66.92%
400 5.871 2.871 51.10%
600 7.271 4.271 41.26%
800 8.671 5.671 34.60%
1000 10.071 7.071 29.79%

Table 4.7: PLT comparison under SYN-loss scenario showing percentage of ResTP OPT
improvement when comparing with TFO

ResTP OPT explicitly turns on the SYN-ACK flag for this data packet to allow the data

packet act as a regular SYN-ACK in case the SYN-ACK is lost, TFO does not have this

feature. RFC 7413 [42] does not discuss how the client would handle a data packet,

instead of a SYN-ACK after sending SYN. In our implementation of TFO, we allow the

client to accept an in-order data packet in place of a SYN-ACK during its SYN-SENT

state and proceed with the final ACK transmission to end the establishment process.

Because of this implementation, TFO is able to achieve the same performance as our

92

ResTP OPT when the SYN-ACK is dropped. ResTP OPT does not cause such confusion

in implementation.

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500 600 700 800 900 1000

p
a
g

e
 l
o
a
d

 t
im

e
 (

P
LT

)
[s

]

RTT [ms]

Page Load Time vs. RTT

3WH
TFO

ResTP OPT

Figure 4.5: PLT comparison underSYN/ACK-loss scenario

RTT (ms) PLT: 3WH (s) PLT: ResTP OPT (s) Improv.
40 3.407 0.367 89.23%
200 4.683 1.483 68.33%
400 6.279 2.879 54.15%
600 7.877 4.277 45.70%
800 9.476 5.676 40.10%
1000 11.076 7.076 36.11%

Table 4.8: PLT comparison under SYN/ACK-loss scenario showing percentage of ResTP
OPT improvement when comparing with 3WH

Figure 4.6, Table 4.10, and Table 4.11 show the results of the three handshake techniques

when both SYN and SYN-ACK are dropped. 3WH suffers the most since it has no

mechanism to survive handshake message losses, and it only allows application data to

be exchanged after the handshake is completed.

93

RTT (ms) PLT: TFO (s) PLT: ResTP OPT (s) Improv.
40 0.366 0.367 0%
200 1.482 1.483 0%
400 2.872 2.879 0%
600 4.272 4.277 0%
800 5.672 5.676 0%
1000 7.072 7.076 0%

Table 4.9: PLT comparison under SYN/ACK-loss scenario showing percentage of ResTP
OPT improvement when comparing with TFO

RTT (ms) PLT: 3WH (s) PLT: ResTP OPT (s) Improv.
40 6.407 0.367 94.27%
200 7.683 1.483 80.70%
400 9.279 2.879 68.97%
600 10.877 4.277 60.68%
800 12.477 5.676 54.51%
1000 14.077 7.076 49.73%

Table 4.10: PLT comparison under SYN-and-SYN/ACK-loss scenario showing percentage
of ResTP OPT improvement when comparing with 3WH

RTT (ms) PLT: TFO (s) PLT: ResTP OPT (s) Improv.
40 3.366 0.367 89.10%
200 4.482 1.483 66.91%
400 5.872 2.879 50.97%
600 7.272 4.277 41.19%
800 8.672 5.676 34.55%
1000 10.072 7.076 29.75%

Table 4.11: PLT comparison under SYN-and-SYN/ACK-loss scenario showing percentage
of ResTP OPT improvement when comparing with TFO

In this section, we show that ResTP and its opportunistic connection establishment

technique (OPT) addresses TCP 3WH’s shortcomings when servicing Web traffic. By

allowing application data to be exchanged during the first RTT when the handshake is

happening, ResTP OPT saves a traffic flow (especially short flow) a whole RTT. As a

resilient transport protocol, ResTP takes a step further to not only reduce latency, but

also survive signaling message losses, a capability that is missing in TCP Fast Open

94

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800 900 1000

p
a
g

e
 l
o
a
d

 t
im

e
 (

P
LT

)
[s

]

RTT [ms]

Page Load Time vs. RTT

3WH
TFO

ResTP OPT

Figure 4.6: PLT comparison under SYN-and-SYN/ACK-loss scenario

(TFO).

4.3 Multipath ResTP with Web Services

In this section, we evaluate the performance of ResTP opportunistic handshake when

ResTP operates in its multipath mode. We compare the performance of ResTP OPT

with the standard three-way handshake employed by MPTCP using the same HTTP

model used in the previous single-path study.

4.3.1 Simulation Setup and Topology

Figure 4.7 illustrates the topology we use in this set of simulations. All links have the

same data rate of 2 Mb/s. The access link between the hosts and the routers have a

negligible delay of 0.1 ms while the links connecting the routers have varying delays.

95

client server

R1

2 Mb/s 2 Mb/s

0.01 ms 0.01 ms

2 Mb/s

R2

R3 R4
2 Mb/s

2 Mb/s

0.01 ms

2 Mb/s

0.01 ms

Figure 4.7: Multipath topology for comparing ResTP in its multipath mode and MPTCP

96

ResTP is configured with the same set of algorithms employed by MPTCP, except the

handshaking technique. Every main object generated by the HTTP server has a minimum

size of 100 bytes and a maximum size of 2 KB.

4.3.2 Simulation Results and Analysis

Tables 4.12 and 4.13 show the page load time (PLT) for ResTP OPT and MPTCP three-

way handshake (3WH) when there are no losses and when the initial SYN is dropped.

In both scenarios, the opportunistic handshaking technique helps reduce the PLT. The

improvement percentage is proportional with the network latency. Especially when SYN

is dropped, ResTP OPT performs much better than 3WH because it does not require a

SYN retransmission for completing the handshaking.

RTT (ms) PLT: 3WH (s) PLT: ResTP OPT (s) Improv.
40 1. 771 1.726 2.54%
60 1.831 1.766 3.55%
80 1.891 1.806 4.49%
100 1.951 1.846 5.38%
200 2.251 2.046 9.11 %

Table 4.12: PLT comparison under no-loss scenario showing percentage of ResTP OPT
(MPResTP) improvement when comparing with 3WH (MPTCP)

RTT (ms) PLT: 3WH (s) PLT: ResTP OPT (s) Improv.
40 4. 771 1.726 63.82%
60 4.831 1.766 63.44%
80 4.891 1.806 63.08%
100 4.951 1.846 62.71%
200 5.251 2.046 61.04%

Table 4.13: PLT comparison under SYN-loss scenario showing percentage of ResTP OPT
(multipath mode) improvement when comparing with 3WH (MPTCP)

97

4.4 Single-Path ResTP over Satellite Communica-

tions

In this set of simulations, we compare the performance of ResTP with TCP in a satellite

network that has no assurance of an episodic connectivity. Our simulations demonstrate

that as a resilient transport protocol, ResTP has a mechanism to handle link outages

and achieve better performance than TCP in this scenario.

4.4.1 Simulation Setup and Topology

In our simulation, we use Satellite Network Simulator 3 (SNS3), a satellite network ex-

tension to the ns-3 platform [95,96]. This module implements a full interactive multi-spot

beam satellite network with a GEO (geostationary satellite) and transparent star (bent-

pipe) payload and adopts the Digital Video Broadcast - Return Channel via Satellite -

2nd generation (DVB-RCS2) and Digital Video Broadcasting - Satellite - 2nd generation

(DVB-S2) communication standards to model the return and forward links.

Our simulation topology consists of a single user terminal (UT) and a single gate-

way (GW) communicating through a GEO satellite located at a latitude of 0.0, lon-

gitude of 33.0, and an altitude of 35786000.0. Unlike UT, GW has multiple net devices

(ns3::SatNetDevice) to serve multiple spot-beams. In our simulation, we enable only

one spot-beam to provide service for the only UT we create. When we simulate a link

outage, we bring down both the forward and return satellite links. To emphasize the

impact of link outage handling at the transport layer, we disable link-layer ARQ on both

up and down directions.

A data generator (source) is connected with the UT using a CSMA channel. This

source transmits traffic as fast as possible to a server located on the GW side using

98

ns3::BulkSendApplication, until the application is stopped at the end of our 1000-

second simulation duration.

We simulate three link failure events: a 10-second outage from second 20 to second 30, a

100-second outage from second 200 to second 300, and a 50-second outage from second

600 to second 650. A tracker is installed at the server to compute the instantaneous

throughput every 50 seconds.

4.4.2 ResTP Configuration

ResTP is configured to use the same NewReno congestion control algorithm, 3-way hand-

shake connection establishment, and ARQ error control technique as in TCP (Table 4.14).

However, ResTP’s ’source-of-loss‘ parameter is set to link outage (instead of congestion

or corruption). This setting allows ResTP to enable its link outage handling technique

when a loss happens as described in Section 3.6.

CM FC CC Ordering Reliability ACK
3WH windowed NewReno ordered fully reliable with ARQ & periodic probe positive ACK

Table 4.14: ResTP configuration for handling link outages in satellite communications

4.4.3 Simulation Results and Analysis

Figure 4.8 plots the instantaneous throughput of TCP and ResTP. ResTP achieves much

higher throughput than TCP because when in its link-failure mode, ResTP does not

reset its sending rate. Instead, ResTP only suspends its normal data transmission and

starts sending probe packet. Once the link is recovered, ResTP resumes its transmission

at the same rate as it did before the failure.

Comparing Figure 4.9 to Figure 4.10 in that we trace all the packets received at the sink,

we can see that while ResTP is able to survive all three outages and continues to transmit

99

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900 1000

in
st

a
n
ta

n
e
o
u
s

th
ro

u
g

h
p

u
t

[K
b

/s
]

time [s]

Instantaneous Throughput (ResTP vs. TCP)

ResTP
TCP

Figure 4.8: Instantaneous throughput of ResTP and TCP with multiple outages of the
satellite link

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000

b
y
te

s
re

ce
iv

e
d

time [s]

ResTP Sink Traffic

Packet

Figure 4.9: ResTP sink traffic trace with multiple outages of the satellite link

100

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000

b
y
te

s
re

ce
iv

e
d

time [s]

TCP Sink Traffic

Packet

Figure 4.10: TCP sink traffic trace with multiple outages of the satellite link

traffic until the end of the simulation, TCP is only able to survive the first outage. At the

second link failure happening at second 200, due to the long outage duration, TCP finally

runs out of its data retransmission attempts and has to abort the whole connection. This

explains the 0-throughput of TCP after the second 300 shown in Figure 4.8.

Figure 4.11 plots all the RTO events during the 1000-simulation duration, the time at

which each event happens and the RTO value when the timer is expired. Every time

an RTO occurs, TCP doubles its value for the next retransmission. On the other hand,

ResTP does not back off its timer. ResTP also uses RTO to time its probe packet

transmission, which explains the many RTO events happening during the three link

outage periods in the ResTP plot.

In this section, we show that ResTP, as a transport protocol designed for different network

environments, works better than the traditional TCP in satellite networks when link

101

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

rt
o
 v

a
lu

e
 [

s]

simulation time [s]

RTO Events (ResTP vs. TCP)

ResTP
TCP

Figure 4.11: ResTP vs. TCP RTO events

outages occur. When the duration of an outage is short, ResTP achieves higher thoughput

than TCP. When the duration of an outage is long, ResTP is able to survive the loss

while TCP has to abort its whole connection.

4.5 Single-Path ResTP with Real-Time Applications

In this set of simulations, we compare the performance of ResTP with UDP and TCP

when they transport real-time multimedia data. The simulation analysis serves two

purposes:

• It shows that ResTP can be configured to satisfy the application’s transport-layer

preference without any modifications required to the application.

102

• It shows that ResTP can be configured to achieve both timeliness and reliability, a

property that cannot be found in UDP or TCP.

4.5.1 Simulation Setup and Topology

The topology we use in this set of simulations is illustrated in Figure 4.12. The two

access links connecting our voice sender and receiver with the two routers R0 and R1

have a bandwidth of 100 Mb/s with a negligible delay. The bottleneck link connecting

the two routers is where we introduce extra latency and packet losses into the network.

For the results presented in Table 4.18, the bottleneck link has a delay of 30 ms and a

loss rate of 0.02 PER.

sender receiver

bottleneck link

R0 R1

Figure 4.12: Topology for simulating ResTP vs. UDP and TCP with VoIP traffic

We use the voice model proposed for the LAA Wi-Fi coexistence project in ns-3 [97] with

a few modifications to suit our needs, including the capability to use UDP, TCP, and

ResTP as the transport-layer protocols. This voice model generates VoIP traffic based

on a configurable packet size and packet transmission interval. These two attributes are

calculated according to the voice codec we want to study.

Our experiments use the G.711 VoIP codec technology with a bit rate of 64 Kb/s, a voice

payload size of 160 bytes, and a voice packet inter-arrival time of 20 ms.

103

The application exports trace sources for each packet that it sends and receives. Every

packet carries a sequence number and a timestamp. Based on a packet’s timestamp (the

time the client transmits the packet) and its arrival time at the server, its latency can

be calculated. A packet is lost if it causes a gap in the data sequence passed to the

application, and a packet is delayed if its latency exceeds a predefined threshold, which

is set to 160 ms for our study. This latency threshold is calculated based on the playback

delay calculation suggested for TCP-RTM. Basically, when TCP and fully-reliable ResTP

are used, some delay generated due to the ARQ technique is inevitable. This latency is

proportional to the network RTT. It takes at least 3/2 RTT for the voice sender to learn

about a loss and for the retransmitted packet to reach the receiver.

4.5.2 ResTP Configuration

For this set of simulations, we compare three different ResTP configurations with UDP

and TCP.

CM FC CC Ordering Reliability ACK
none none none none none none

Table 4.15: Unreliable ResTP (UDP-like) configuration for multimedia real-time appli-
cations

ResTP-3WH-FUL-ARQ (Table 4.16) employs the exact mechanisms adopted by TCP.

We include this configuration to show that ResTP can achieve comparable performance

to TCP, although not ideal for real-time multimedia applications.

CM FC CC Ordering Reliability ACK
3WH windowed BIC ordered fully reliable with ARQ positive ACK

Table 4.16: ResTP-3WH-FUL-ARQ configuration for multimedia real-time applications

ResTP-3WH-PAR-ARQ (Table 4.17) provides a partially-ordered data delivery service.

This configuration is expected to perform better than ResTP-3WH-FUL-ARQ and TCP

104

and is designed for those multimedia applications that usually prefer the full set of services

(congestion, error, and flow control) provided by TCP but do not want to trade reliability

for timeliness.

CM FC CC Ordering Reliability ACK
3WH windowed BIC partially-ordered partially reliable with ARQ positive ACK

Table 4.17: ResTP-3WH-PAR-ARQ configuration for multimedia real-time applications

4.5.3 Simulation Results and Analysis

Table 4.18 summarizes the number of voice packets sent, received, lost, and delay along

with the received and sent ratio, the latency mean, and latency standard deviation for

UDP, TCP, and the three ResTP configurations included in this study. The bottleneck

delay is 30 ms (equivalent to a 60-ms RTT), and the PER is 2%. Every simulation has

a duration of 120 ms.

Protocol Sent Rcvd Rcvd/Sent Lost Delayed Lat.Mean Lat.Stddev
UDP 4949 4862 0.982 87 0 32.046 0.000

ResTP-unreliable 4949 4862 0.982 87 0 32.048 0.000

TCP (without SACK) 4949 4178 0.844 559 212 49.015 55.709
TCP (with SACK) 4949 4394 0.888 459 96 41.924 35.627

ResTP-3WH-FUL-ARQ 4949 4773 0.964 0 176 52.096 73.228

ResTP-3WH-PAR-ARQ 4949 4922 0.995 3 24 37.130 19.440

Table 4.18: Voice flow statistics for UDP, TCP, and different ResTP configurations when
RTT is 60 ms, and PER is 0.02.

First, when ResTP is configured as a light-weight protocol that only performs simple mul-

tiplexing/demultiplexing as UDP, it performs as well as the standard protocol (ResTP-

unreliable vs. UDP). The two protocols correct no packet losses as we can see that the

2% network loss rate is reflected by the 87 (out of 4949 packets sent) packets lost at the

application layer.

105

Second, we can see the impact of SACK on error correction when comparing the perfor-

mance of TCP with and without SACK enabled. SACK allows the receiver to inform

the sender the exact lost packets.

Third, correct framing impacts the overall performance. ResTP-3WH-FUL-ARQ em-

ploys the same set of algorithms as TCP (with SACK), except that its framing mod-

ule 3.5.3 can ensure that each application-layer packet is written and read as a separate

ResTP segment.

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

v
o
ic

e
 p

a
ck

e
t

la
te

n
e
ss

 [
m

s]

voice packet sequence number

Voice packet lateness vs. sequence number

TCP

Figure 4.13: Voice packet lateness vs. sequence number when using TCP with three-way
handshake

Fourth, if we want to achieve both timeliness and reliability, ResTP-3WH-PAR-ARQ is

the configuration to use. Out of the 87 lost packets, the partially-reliable mechanism can

correct 84 of them although this error correction capability results in 24 packets delayed.

However, overall, ResTP-3WH-PAR-ARQ achieves the least amount of packets lost and

delayed. In addition, some of the delayed packets are not caused by the ARQ technique,

106

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

v
o
ic

e
 p

a
ck

e
t

la
te

n
e
ss

 [
m

s]

voice packet sequence number

Voice packet lateness vs. sequence number

ResTP-OPT-FUL-ARQ

Figure 4.14: Voice packet lateness vs. sequence number when using ResTP with oppor-
tunistic handshake

but the three-way handshake. In Figures 4.13 and 4.14, we plot the delays of all packets

against their sequence numbers when there are no errors introduced into the network. We

can see that in this scenario, all packet delays occur at the beginning of the connection,

and the number of delayed packets are reduced when ResTP OPT is used. Hence, we

can replace the 3WH in ResTP-3WH-PAR-ARQ with ResTP OPT to further improve

the performance, especially to protect the protocol against an initial SYN loss.

Finally, when losses occur, the congestion control algorithm that we select for ResTP

also plays an important role in its overall performance. We note that here, we select BIC

instead of NewReno because NewReno always reduces the sender’s transmission rate by

half without considering the source of packet losses.

107

4.6 ResTP-GeoDivRP Under Network Challenges

In the last set of simulations, we perform some preliminary simulations to demonstrate the

ResiliNets stack (Figure 3.28)’s performance in face of regional challenges in comparison

to MPTCP [98]. Through these simulations, we show that with the geographically-

separated paths provided by GeoDivRP, the ResTP-GeoDivRP stack can achieve higher

throughput and better resilience than MPTCP when challanges occur.

More details about this comparison and the GeoDivRP design and implementation can

be found in one of our publications [99]. 1

4.6.1 Simulation Setup and Topology

To study the performance of the ResTP-GeoDivRP protocol stack under different net-

work challenges, a set of challenge profiles have been developed. Figure 4.15 illustrates

these profiles on the Sprint physical network [100]. The green circles depict the Mid-

west challenge profile, which represents a super storm sweeping from the southwest to

the northeast direction. The blue circles depict the coastline challenge profile, which

represents a hurricane on the East Coast. The red circles depict the cascading challenge

profile, which represents a power blackout affecting a region growing in size.

In this work, we focus on the impact of the cascading profile (red circles) affecting the

region where the most shortest paths occur. Figure 4.16 shows the Sprint topology with

the three challenge scenarios originating around Nashville and growing larger in range.

The small green circle challenge occurs at 20− 40 s, the yellow circle challenge occurs at

60 − 80 s, and the large red circle one occurs at 100 − 120 s.

1My contribution for this work is only the initial multipath ResTP implementation, which follows
the same MPTCP model used for comparison with ResTP. Simulations and other work are contributed
by the other authors.

108

Figure 4.15: Sprint network topology challenge profile

Traffic starts from node 1 at Oklahoma City to node 3 at Washington D.C. Each link

has a bandwidth of 100 Mb/s.

The dashed lines represent the three node-disjoint paths calculated using Suurballe’s

algorithm [101,102] used by MPTCP for transmitting the traffic across the network. The

solid lines represent the three geographically-disjoint paths calculated by GeoDivRP and

utilized by ResTP. While MPTCP uses St. Louis, Kansas City, and Atlanta as its next

hops for the three subflows, ResTP uses Omaha, Nashville, and Houston as the next

hops.

4.6.2 ResTP Configuration

In this early work of the ResiliNets protocol stack development, ResTP has a similar

implementation as MPTCP [98]. Its number of paths k header field is set to 3, and the

109

1 2

3

Oklahoma City

Washington
 D.C.

Nashville

7 8

9

10

4

Omaha Chicago

5

6

Houston New Orleans

Jacksonville

Raleigh

Cleveland

MPTCP

ResTP

Figure 4.16: Sprint network topology with multiple paths (dashed lines are paths used
by MPTCP, and solid lines are paths used by ResTP)

protocol operates in its spreading mode with all the three paths utilized for transporting

traffic. The only main difference between ResTP and MPTCP in this simulation is the

paths that they use for data transfer.

4.6.3 Simulation Results and Analysis

Figure 4.17 shows the average throughput of ResTP in comparison with MPTCP when

the three cascading challenge scenarios are applied to the Sprint network.

At 20 s when the first challenge starts, the throughput of both ResTP and MPTCP are

degraded with the failure of the shortest path used by both protocols. From 60 − 80 s

when the second challenge occurs, MPTCP achieves only half of the throughput achieved

by ResTP because it looses 2 out of the 3 subflows in operation. From 100 − 120 s, the

throughput of MPTCP reaches 0 since all the three paths that it uses fail due to the third

challenge. Overall, ResTP (by using the paths provided by GeoDivRP) achieves around

110

av
er

ag
e

th
ro

ug
hp

ut
 [M

b/
s]

simulation time [s]

Sprint ResTP
Sprint MPTCP

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0 20 40 60 80 100 120 140 160

Figure 4.17: Sprint network ResTP throughput compared to MPTCP

30% to 40% higher throughput than MPTCP when using the geographically-disjoint

paths provided by GeoDivRP.

111

Page left intentionally blank.

112

Chapter 5

Why ResTP and Its Deployability?

When we design ResTP, we are fully aware that the ossification of the current Inter-

net’s transport layer has limited networked applications to choose only UDP or TCP

despite their limitations and the presence of many better transport protocols having

been proposed. However, as we have seen, UDP and TCP are too constrained for the

Future Internet (FI), in which we expect to see new technology and application types

emerge. Every time a new network challenge arises or a new application becomes the

killer app, these protocols, especially TCP will have to be modified and extended. Even

an extension of TCP is limited by its allowed option length and its rigidly intertwined

flow/error/congestion control property. Furthermore, although we have seen a plethora

of TCP variants (and we expect to see a plethora of MPTCP variants) proposed to keep

the standard protocol up-to-date with the networking advancements, not many of them

have gained wide acceptance and adoption in practice.

We believe that the FI needs a more flexible transport-layer protocol than the current

UDP, TCP, or even MPTCP. This flexibility allows the protocol to smoothly evolve

with the advancement of networking technology, allowing it to serve different types of

applications and operate over different types of networks. This premise motivated the

design of ResTP.

113

We understand that for ResTP to be widely adopted and deployed, more studies are

needed. Moreover, the successful deployment and adoption of a transport-layer protocol

depend on several factors, considering the complexity of the Internet [103]. However,

based on our simulation analysis and results presented in this dissertation, we believe

that ResTP is a potential candidate for the FI.

We note that ResTP is also very useful in transport-layer protocol studies and research

given that new algorithms can be easily implemented and tested in ResTP.

114

Chapter 6

Conclusion and Future Work

In this dissertation, we present the design, implementation, and evaluation analysis of a

general-purpose, composible transport-layer protocol of which the development is solely

motivated by the determination to increase resilience and survivability. The composibility

of ResTP allows the protocol to provide different sets of services to different application

classes depending on their specific requirements. All ResTP components are pluggable

and completely independent of each other. The modification of a component should

not affect the others and even the failure of a component should allow the protocol to

continue to operate.

Our simulation results show that ResTP can be utilized the same way as TCP and UDP

and achieve a similar performance under the same network environments. However, un-

like TCP and UDP with a fixed set of services, ResTP can have multiple configurations.

The opportunistic connection establishment is shown to perform better than the con-

ventional 3-way handshake and TCP Fast Open. The multipath mode of ResTP, when

incorporating with the GeoDivRP routing protocol, forms a ResiliNets protocol stack

that provides higher throughput and better resilience than MPTCP in face of regional

challenges.

Specifically, we show that:

115

• ResTP can perform as well as TCP when handling file transfer. With this type of

traffic, ResTP can be configured with either ARQ and HARQ.

• ResTP with its opportunistic connection establishment handles web transfers better

than TCP and MPTCP because this handshaking technique takes less time to

complete than the standard three-way handshake, therefore reducing the overall

flow completion time for short flows. ResTP even performs better than TCP Fast

Open when signaling messages are lost.

• ResTP provides multiple configurations for real-time multimedia applications such

as VoIP. ResTP-unreliable is suitable for those applications that prefer the sim-

plicity of UDP, and ResTP-3WH-PAR-ARQ is suitable for those applications that

concern about the network congestion and corruption, but also require timeliness

in data delivery. ResTP-unreliable performs as well as UDP, and ResTP-3WH-

PAR-ARQ performs much better than TCP.

• ResTP can survive link outage in a network that has no assurance of an episodic

connectivity such as the satellite communication while TCP cannot.

• ResTP-GeoDivRP can survive different network challenges when operating together

and exploiting cross-layering.

For our future work, we plan to design and implement dynamic data loss identification

for ResTP so that the protocol can learn about different type of losses and adjust its

configuration in run time. We also plan to extend our study of ResTP in its multipath

mode. We also want to implement ResTP in the Linux kernel and study the protocol

using real networks.

116

Appendix A

ResTP Implementation, Verification,
and Validation in ns-3

We implemented ResTP in an open-source network simulator for a better and easier

evaluation of our design. We can obtain valuable insights about the behaviors of ResTP

across a wide range of network conditions and traffic classes using simulation. We choose

ns-3 [6] as our platform due to the variety of network technologies that it supports. The

ns-3 system is actively maintained and up-to-date with new models being reviewed and

merged on a regular basis. Furthermore, it can interact with the real world, creating

networks that contain both real and simulated components, which is a useful feature for

our study of ResTP in the future. In addition, this implementation of ResTP in ns-3

provides a prototype of functional protocol software.

A.1 Implementation

Our implementation of ResTP in ns-3 is greatly inspired by the TCP module in this

platform and the recent TCP refactoring work that splits the congestion component from

the main socket TcpSocketBase class as part of the ns-3 community’s ongoing effort to

modularize the TCP module and simplify its base code [104]. The multipath extension

117

of ResTP is based on the recent MPTCP model [105, 106] that is undergoing the ns-3

review process for merging into the standard release.

Because ResTP is designed as a flexible protocol that is capable of supporting alternative

algorithms, its implementation needs to be highly modular to reduce the complexity and

increase the extensibility of the model should the protocol be extended to accommodate

new functionalities. Each service supported by ResTP (flow control, error control, con-

gestion control, ...) is an independent and pluggable software component of the whole

protocol so that the unplugging of any of them should leave the rest intact. This ap-

proach allows the entire ResTP module to be easily extended when needed, and to be

maintained with the minimal cost.

The ResTP model resides in the same ns-3 Internet module as TCP and UDP. Figure A.1

illustrates some of the main ResTP classes and their relationships.

• ResTPSocket: The abstract class ResTPSocket is the base class of all ResTP sock-

ets.

• ResTPSocketBase: ResTPSocketBase is a subclass of ResTPSocket. It provides

a single-path socket interface to the upper application layer. ResTPSocketBase

also connects with and collaborates the operations of individual components that

implement different ResTP transport-layer services.

• MpResTPSocketBase: MpResTPSocketBase has the same functionalities as ResTPSocketBase,

but for multi-path ResTP sockets.

• ResTPL4Protocol: ResTPL4Protocol handles ResTP socket creation and multi-

plexing (sending packets down the stack) and demultiplexing (receiving packets

from the lower network layer and forwarding them to the correct ResTP socket).

118

R
esTPSocketB

ase

R
esTPC

onnectionless

R
esTP

O
p
po
rtun

istic

R
esTPA

rq

R
esTPFec

R
esTPH

a
rq

R
esTPN

ew
R
en
o

R
esTPW

indow

M
pR

esTPSocketB
ase

R
esTPSocket

R
esTPTxB

uffer

R
esTPH

eader

R
esTPC

onnectionO
ps

R
esTPErrorO

ps

R
esTPFlow

O
ps

R
esTPC

ongestionO
ps

R
e
sT
P
E
xte

n
sio

n

R
esTP

Exten
sio

n
M
p

R
esT

P
E
xte

n
sio

n
Fe
c

R
esTPL4Protocol

-m
_sockets

*

-m
_
e
xte

n
sio

n
s

*

R
esTPR

xB
uffer

M
p
R
esTP

Su
b
flo

w

M
pR

esTPM
ap
ping

M
pR

esTPSched
u
ler

M
p
R
esTPSch

ed
u
lerR

R

Figure A.1: ResTP class diagram in ns-3

119

• ResTPTxBuffer: ResTPTxBuffer implements the ResTP sending buffer used to

store all the data that the sending application wishes to transmit across the network.

Depending on what services are enabled for a particular ResTP configuration, this

buffer handles stored data differently. For example, if quasi-reliable data delivery

is enabled, the buffer removes originally transmitted packets after they are encoded

inside an FEC packet. On the other hand, if fully-reliable data delivery is required,

transmitted packets are deleted from this buffer only after they are acknowledged.

• ResTPRxBuffer: ResTPRxBuffer implements the reordering buffer for ResTP. Sim-

ilar to ResTPTxBuffer, ResTPRxBuffer behaves differently according to different

services.

• ResTPHeader: ResTPHeader implements all the fields in the basic ResTP header de-

scribed in Figure 3.1. It also includes methods for appending additional extenstions

to the basic header depending on how ResTP is configured.

• ResTPExtension: ResTPExtension is the base class for all ResTP extension imple-

mentations, including ResTPExtensionFec and ResTPExtensionMp shown in the

class diagram and others defined and explained in Section 3 but not shown due to

space limitation and readability purpose.

• ResTPCongestionOps: ResTPCongestionOps is the ResTP congestion base class.

Any specific congestion control algorithm for both single-path and multi-path ResTP

such as the NewReno algorithm (ResTPNewReno) shown in the class diagram should

be implemented as a derived class of this class.

• ResTPErrorControlOps: ResTPErrorControlOps is the ResTP error control base

class. Any specific error control algorithm (ResTPFec for FEC, ResTPArq for ARQ,

or ResTPHarq for HARQ) should be implemented as a derived class of this class.

120

• ResTPConnectionOps: ResTPConnectionOps is the ResTP connection management

base class. Each connection establishment scheme supported by ResTP, includ-

ing our proposed opportunistic algorithm (ResTPOpportunistic) should be imple-

mented as a derived class of ResTPConnectionOps.

• ResTPFlowOps: ResTPFlowOps is the ResTP flow control base class. Each flow

control algorithms supported by ResTP should be implemented as a derived class

of this class.

• MpResTPSubflow: MpResTPSubflow handles individual subflow of a multipath ResTP

connection.

• MpResTPMapping: MpResTPMapping maps ResTP connection-level sequence number

(DSN) to the subflow-level sequence number (SSN).

• MpResTPScheduler: MpResTPScheduler is the base class for all multipath ResTP

scheduling implementations in ns-3. Any specific scheduling algorithm such as the

round robin scheduler (MpResTPSchedulerRR) shown in the class diagram should

be implemented as a derived class of this class.

A.2 Verification

We verify the correctness of our ResTP implementation by writing several unit tests to

ensure all the implemented functionalities of ResTP working as intended. Each of these

unit tests is created as a TestSuite class that inherits from the base class TestSuite. Each

test suite contains multiple test cases to completely exercise a given ResTP functionality.

All of the tests can be run using the Python program test.py. More information about

the ns-3 testing framework can be found in the documentation of each release [107].

Some ResTP unit tests include:

121

• ResTPHeaderTestSuite: The test ensures correct header serialization and deseri-

alization, with and without extensions.

• ResTPExtensionTestSuite: The test ensures correct serialization and deserializa-

tion of each ResTP extension.

• ResTPTxBufferTestSuite: The test ensures correct packet (and size) are added to

and extracted from the buffer. Correct sequence number assignment is also verified

in this test.

• ResTPArqTestSuite: The test ensures correct ARQ implementation. The sender

correctly generates packet with the right sequence number for transmissions and

correctly removes acknowledged data from the transmit buffer after receiving an

ACK. The receiver correctly generates ACK packet with the right sequence number

after receiving a new packet.

• ResTPFecTestSuite: The test ensures correct FEC implementation. The sender

correctly encodes an FEC packet, and the receiver correctly decodes an FEC packet

and recovers the lost data.

• ResTPHarqTestSuite: The test ensures correct HARQ implementation.

• ResTPOptTestSuite: The test ensures correct opportunistic connection establish-

ment implementation.

• MpResTPMappingTestSuite: The test ensures connection-level sequence numbers

map correctly with subflow-level sequence numbers.

122

A.3 Validation

We validate our ResTP model by using it to simulate same network scenarios as UDP and

TCP and compare their performance. The UDP and TCP performance are predictable

in these cases.

source sink

bottleneck link access link
router

10 Mb/s 2 Mb/s

45 ms 0.01 ms

Figure A.2: Single router simulation topology

A.3.1 Simulation Topology

The simulation topology that we use for validating ResTP is illustrated in Figure A.2,

which consists a single traffic generator (source) communicating with a receiver (sink)

through a router. The access link between the source and the router has bandwidth of 10

Mb/s with a negligible delay of 0.01 ms while the bottleneck link between the router and

the sink has a bandwidth of 2 Mb/s and a delay of 45 ms. Packet errors are introduced

into the bottleneck link with rates ranging from 0 to 0.5 using ns3::RateErrorModel.

Specifically, packet error rate (PER) used in our simulations have values of 0, 0.001,

0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. The router implements a drop-tail queue

that has a size of the bandwidth-×-delay product (BDP). All the simulation parameters

are summarized in Table A.1 for result reproduction when needed.

123

Parameter Values
Access link bandwidth 10 Mb/s

Access link propagation delay 0.01 ms
Bottleneck link bandwidth 2 Mb/s

Bottleneck link propagation delay 10 ms – 300 ms
Packet ADU size 1400 B

Error model Rate Error Model
Packet error rate [0, 0.5]
Application type Bulk send (TCP) and CBR (UDP)

CBR rate 1.12 Mb/s
Simulation time 100 s

Queue size BDP
Queue type Drop-tail

Congestion control algorithm NewReno

Table A.1: Simulation parameters

A.3.2 ResTP vs. UDP Using CBR Traffic

We compare ResTP with UDP using CBR traffic. To be compatible with UDP, ResTP is

configured to operate in its unreliable mode that provides only the multiplexing and de-

multiplexing service. The flow, congestion, and error control components are unplugged.

The connection management component is plugged in with the connectionless scheme

enabled. ResTP utilizes the basic ResTPDU (Figure 3.1) with none of the bits in the

Flags, Flow, P, and Error header fields enabled. The value in Cong is 0.

We simulate CBR traffic using ns3::OnOffApplication. The sending application trans-

mits data at a rate of 1.12 Mb/s with an application data unit (ADU) of 1400 bytes

during its ON time, which is equivalent to a transmission of 10, 000 packets during our

100-second simulation period. Each simulation for a PER value is repeated 10 times with

varying random seed, resulting in a total of 100 runs to obtain a 95% confidence interval.

Figure A.3 plots the throughput of ResTP and UDP as the packet error rate increases.

As expected, they achieve very similar performance. Their throughputs keep dropping

124

th
ro

u
g

h
p

u
t

[M
b

/s
]

packet error rate (PER)

ResTP

UDP

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

0E+00 1E-01 2E-01 3E-01 4E-01 5E-01

Figure A.3: Throughput of ResTP vs. UDP using CBR traffic over lossy link

125

with increasing PER given that both UDP and ResTP in its unreliable mode implement

no mechanisms to recover from losses.

A.3.3 ResTP vs. TCP Using Bulk Data

The next step in our ResTP validation process is to compare the performance of ResTP

with TCP using bulk data transfer. We simulate two different configurations of ResTP.

The ResTP-ARQ+NewReno configuration implements the 3-way handshake connection

establishment technique, the ARQ with positive ACK error control mechanism, and

the NewReno congestion control algorithm as in TCP. The ResTP-ARQ configuration

unplugs the congestion control module and only performs the ARQ error correction (sim-

ilar to Reliable Data Protocol (RDP) [108]). As we mention previously, this capability

is impossible for TCP given its rigidly intertwined transfer control. For both of these

configurations, ResTP utilizes the basic ResTPDU depicted in Figure 3.1 with the ARQ

with positive ACK extension in Figure 3.7. We use large receive buffers for both TCP

and ResTP so that it does not impact our results.

We simulate bulk data traffic using ns3::BulkSendApplication, in which the send-

ing application generates and transmits data as fast as possible until the application is

stopped at the end of our 100-second simulation duration. Both ResTP and TCP have

a sending buffer to store the application data until they can be transmitted. Each sim-

ulation for a value of PER is replicated 20 times, resulting in a total of 200 simulation

runs for each protocol.

Figures A.4 and A.5 show the results obtained when all three protocols (two ResTP

configurations and TCP) attempt to transport bulk data across a lossy link. Overall, their

throughputs degrade with increasing PER. When PER is low, the ARQ error correction

technique can make up the lost packets through retransmissions. When PER is high,

126

th
ro

u
g

h
p

u
t

[M
b

/s
]

packet error rate (PER)

ResTP-ARQ

ResTP-ARQ+NewReno

TCP

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0E+00 1E-01 2E-01 3E-01 4E-01 5E-01

Figure A.4: Throughput of ResTP vs. TCP using bulk send over lossy link

127

more retransmissions are required and retransmission timeouts (RTOs) also happen more

frequently, causing a degradation in their performances.
p

a
c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

 (
P

D
R

)

packet error rate (PER)

ResTP-ARQ

ResTP-ARQ+NewReno

TCP

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0E+00 1E-01 2E-01 3E-01 4E-01 5E-01

Figure A.5: Throughput of ResTP vs. TCP using bulk send over lossy link

When ResTP is configured with the same algorithms as TCP, we expect a similar

performance between the two protocols. This is shown clearly in the throughputs of

ResTP-ARQ+NewReno and TCP. ResTP-ARQ is able to achieve higher throughput

than both TCP and ResTP-ARQ+NewReno. This is due to the well-known limitation

of the NewReno congestion control algorithm when dealing with corruption-based losses.

Every time the sender receives three duplicate ACKs due to a loss, NewReno enters its

recovery phase and halves its congestion window while the ARQ performs a retransmis-

sion. The higher the number of losses, the more often the window is reduced. At the

PER value of 0.4 when the majority of losses are triggered by RTOs, and on each RTO,

128

NewReno re-initializes the congestion window to 1, which completely hinders the growth

of this window.

We are unable to obtain the average throughput for ResTP-ARQ+NewReno and TCP

at PER of 0.5 because at some runs among the total 20 runs, the receiver receives only

a single packet, causing the throughput value that is defined as the ratio of number of

received bytes and receive duration to be undefined.

A.3.4 ResTP Opportunistic vs. Three-Way Handshake

We also perform a validation of our ResTP opportunistic handshake technique by com-

paring it with the standard three-way handshake using the same topology as in the

previous validations. Both the access and the bottleneck links have the same bandwidth

of 5 Mb/s. We vary the bottleneck delay from 10 ms to 300 ms, and trigger a drop of the

initial SYN control packet. The traffic generator sends data to the sink as fast as possi-

ble until the simulation ends at 100 second using ns3::BulkSendApplication. We first

simulate ResTP with opportunistic, and then use our protocol for three-way handshake.

Figure A.6 plots the average throughput of both algorithms when the bottleneck delay

increases. Overall, the opportunistic approach achieves a higher throughput than the

3-way handshake approach as expected.

We take a closer look at the reason behind the greater performance of the opportunistic

mechanism by examining their instantaneous throughput at the 100 ms delay. As shown

in Figure A.7, when the initial SYN is dropped, ResTP with the 3-way handshake con-

nection establishment has to wait for 3 seconds to receive a retransmission of the SYN.

On the other hand, with the opportunistic approach, the protocol can start its initial

setup upon the arrival of the data packet that is transmitted immediately after the initial

SYN. Because this packet also carries a SYN flag in its header, the receiver can treat it

129

av
er

ag
e

th
ro

ug
hp

ut
 [M

b/
s]

delay [ms]

OPT

3WH

0

1

2

3

4

5

0 50 100 150 200 250 300

Figure A.6: Average throughput of OPT vs. 3WH with increasing bottleneck delay

130

th
ro

ug
hp

ut
 [M

b/
s]

time [s]

OPT

3WH

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 1 2 3 4 5 6 7 8 9 10

Figure A.7: Instantaneous throughput of OPT and 3WH when SYN dropped

131

as a connection request and respond with a SYN-ACK, which allows the connection to

proceed. This behavior is especially beneficial to short flows that tend to have a strict

restriction in their completion time. The benefit is even more significant when these flows

have to traverse through long-delay channels.

132

Bibliography

[1] J. Postel. Transmission Control Protocol. RFC 793 (Standard), 1981. Updated by

RFCs 1122, 3168.

[2] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122

(Standard), October 1989. Updated by RFCs 1349, 4379.

[3] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion

Notification (ECN) to IP. RFC 3168 (Proposed Standard), September 2001.

[4] F. Gont and S. Bellovin. Defending against Sequence Number Attacks. RFC

6528(Standards Track), 2012.

[5] J. Postel. User Datagram Protocol. RFC 768 (Standard), 1980.

[6] The ns-3 network simulator. http://www.nsnam.org, July 2009.

[7] Justin P. Rohrer, Ramya Naidu, and James P. G. Sterbenz. Multipath at the

Transport Layer: An End-to-End Resilience Mechanism. In Proceedings of the

IEEE/IFIP International Workshop on Reliable Networks Design and Modeling

(RNDM), pages 1–7, St. Petersburg, Russia, October 2009.

[8] Justin P. Rohrer, Erik Perrins, and James P.G. Sterbenz. End-to-End Disruption-

Tolerant Transport Protocol Issues and Design for Airborne Telemetry Networks. In

133

http://www.nsnam.org

Proceedings of the International Telemetering Conference, San Diego, CA, October

27–30 2008.

[9] Justin P. Rohrer, Abdul Jabbar, Egemen K. Çetinkaya, Erik Perrins, and

James P.G. Sterbenz. Highly-Dynamic Cross-Layered Aeronautical Network Ar-

chitecture. Aerospace and Electronic Systems, IEEE Transactions on, 47(4):2742

–2765, October 2011.

[10] Justin P. Rohrer, Kamakshi Sirisha Pathapati, Truc Anh N. Nguyen, and James

P. G. Sterbenz. Opportunistic transport for disrupted airborne networks. In Pro-

ceedings of the IEEE Military Communications Conference (MILCOM), pages 737–

745, Orland, FL, November 2012.

[11] James P. G. Sterbenz, David Hutchison, Egemen K. Çetinkaya, Abdul Jabbar,

Justin P. Rohrer, Marcus Schöller, and Paul Smith. Resilience and survivability in

communication networks: Strategies, principles, and survey of disciplines. Com-

puter Networks, 54(8):1245–1265, 2010.

[12] Yufei Cheng, Junyan Li, and James P. G. Sterbenz. Path Geo-diversification:

Design and Analysis. In Proceedings of the 5th IEEE/IFIP International Workshop

on Reliable Networks Design and Modeling (RNDM), Almaty, September 2013.

[13] Yufei Cheng, M. Todd Gardner, Junyan Li, Rebecca May, Deep Medhi, and

James P.G. Sterbenz. Optimised Heuristics for a Geodiverse Routing Protocol.

In Proceedings of the IEEE 10th International Workshop on the Design of Reliable

Communication Networks (DRCN), pages 1–9, Ghent, Belgium, April 2014.

[14] Yufei Cheng, M. Todd Gardner, Junyan Li, Rebecca May, Deep Medhi, and

James P.G. Sterbenz. Analysing GeoPath Diversity and Improving Routing Per-

formance in Optical Networks. Computer Networks, 82:50–67, May 2015.

134

[15] David Feldmeier. An overview of the TP++ transport protocol project. In

Ahmed N. Tantawy, editor, High Performance Networks: Frontiers and Experi-

ence, volume 238 of Kluwer International Series in Engineering and Computer

Science, chapter 8. Kluwer Academic Publishers, Boston, MA, USA, 1993.

[16] Patrick G. Bridges, Gary T. Wong, Matti Hiltunen, Richard D. Schlichting,

and Matthew J. Barrick. A Configurable and Extensible Transport Protocol.

IEEE/ACM Trans. Netw., 15(6):1254–1265, December 2007.

[17] Matti A Hiltunen, Richard D Schlichting, Xiaonan Han, Melvin M Cardozo, and

Rajsekhar Das. Real-time dependable channels: Customizing QoS attributes for

distributed systems. IEEE Transactions on Parallel and Distributed Systems,

10(6):600–612, 1999.

[18] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for Mul-

tipath Operation with Multiple Addresses. RFC 6824 (Experimental), January

2013.

[19] C. Raiciu, M. Handly, and D. Wischik. Coupled Congestion Control for Multipath

Transport Protocols. RFC 6356 (Experimental), 2011.

[20] R. Khalili, T-Labs., N. Gast, M. Popovic, and J.Y. Le Boudec. Mptcp is not pareto-

optimal: Performance issues and a possible solution. Networking, IEEE/ACM

Transactions, 21(5):1651 – 1665, October 2013.

[21] Qiuyu Peng, Anwar Walid, Jaehyun Hwang, and Steven H. Low. Multipath tcp:

Analysis, design and implementation. IEEE/ACM Transactions on networking,

3(5):6, December 2014.

[22] Yu Cao, Tsinghua Univ, Mingwei Xu, and Xiaoming Fu. Delay-based congestion

control for multipath tcp. Network Protocols (ICNP), 20(5):1–10, November 2012.

135

[23] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T. Loo. Impact of Path

Characteristics and Scheduling Policies on MPTCP Performance. In 2014 28th

International Conference on Advanced Information Networking and Applications

Workshops, pages 743–748, May 2014.

[24] ns-3 contributing code. https://www.nsnam.org/develop/contributing-code/,

September 2018.

[25] R. W. Watson and S. A. Mamrak. Gaining efficiency in transport services by

appropriate design and implementation choices. ACM Transactions on Computer

Systems, 5(2):97–120, May 1987.

[26] W. A. Doeringer, D. Dykeman, M. Kaiserswerth, B. W. Meister, H. Rudin, and

R. Williamson. A survey of light-weight transport protocols for high-speed net-

works. IEEE Transactions on Communications, 38(11):2025–2039, Nov 1990.

[27] Richard W. Watson. The Delta-t Transport Protocol: Features and Experience. In

Local Computer Networks, 1989., Proceedings 14th Conference on, pages 399–407,

October 1989.

[28] D Cheriton and D Cheriton. VMTP: A transport protocol for the next generation

of communication systems. ACM SIGCOMM Computer Communication Review

(CCR), 16(3):406–415, September 1986.

[29] A. Baratz, J. Gray, P. Green, J. Jaffe, and D. Pozefsky. Sna networks of small

systems. IEEE Journal on Selected Areas in Communications, 3(3):416–426, May

1985.

[30] James Martin, Kathleen Kavanagh Chapman, et al. SNA: IBM’s networking solu-

tion. Prentice-Hall, Inc., 1987.

136

https://www.nsnam.org/develop/contributing-code/

[31] Thomas J Routt. Distributed SNA: A network architecture gets on track. In

Systems network architecture, pages 167–180. IEEE Press, 1992.

[32] RJ Sundstrom, JB Staton, GD Schultz, ML Hess, and GA Deaton. SNA direc-

tionsa 1985 perspective. In AFIPS Conference Proceedings; vol. 55 1986 National

Computer Conference, pages 537–551. AFIPS Press, 1986.

[33] GL Chesson. Datakit software architecture. Proc. ICC, pages, 20:1–20, 1979.

[34] A. Fraser. Towards a universal data transport system. IEEE Journal on Selected

Areas in Communications (JSAC), 1983.

[35] A. G. Fraser and W. T. Marshall. Data transport in a byte stream network. IEEE

Journal on Selected Areas in Communications, 7(7):1020–1033, Sep 1989.

[36] D.D. Clark, M.L. Lambert, and L. Zhang. NETBLT: A bulk data transfer protocol.

RFC 998 (Experimental), March 1987.

[37] U. Maheshwari. HULA: An Efficient Protocol for Reliable Delivery of Messages.

Technical report, Cambridge, MA, USA, 1997.

[38] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance.

RFC 1323 (Proposed Standard), May 1992.

[39] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledg-

ment Options. RFC 2018 (Proposed Standard), 1996.

[40] Carl A Sunshine and Yogen K Datal. Connection management in transport proto-

cols. Computer Networks (1976), 2(6):454–473, 1978.

[41]

137

[42] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. TCP Fast Open. RFC 7413

(Experimental), December 2014.

[43] James F Kurose and Keith W Ross. Computer networking: a top-down approach.

Pearson Education, Inc, 2017.

[44] Van Jacobson. Congestion Avoidance and Control. In Symposium proceedings on

Communications architectures and protocols, SIGCOMM ’88, pages 314–329, New

York, NY, USA, 1988. ACM.

[45] Cui-Qing Yang and A. V. S. Reddy. A taxonomy for congestion control algorithms

in packet switching networks. IEEE Network, 9(4):34–45, July 1995.

[46] Michael Welzl. Network congestion control: managing internet traffic. John Wiley

& Sons, 2005.

[47] M. Hock, R. Bless, and M. Zitterbart. Experimental evaluation of BBR congestion

control. In 2017 IEEE 25th International Conference on Network Protocols (ICNP),

pages 1–10, Oct 2017.

[48] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and

Van Jacobson. Bbr: Congestion-based congestion control. Queue, 14(5):50:20–

50:53, October 2016.

[49] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark buffers in the internet. Queue,

9(11):40:40–40:54, November 2011.

[50] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modification

to TCP’s Fast Recovery Algorithm. RFC 6582 (Standards Track), 2012.

138

[51] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: new

techniques for congestion detection and avoidance. SIGCOMM Comput. Commun.

Rev., 24(4):24–35, 1994.

[52] A. Kuzmanovic and E. W. Knightly. TCP-LP: a distributed algorithm for low

priority data transfer. In IEEE INFOCOM 2003. Twenty-second Annual Joint

Conference of the IEEE Computer and Communications Societies (IEEE Cat.

No.03CH37428), volume 3, pages 1691–1701 vol.3, March 2003.

[53] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach for

High-Speed and Long Distance Networks. In Proceedings IEEE INFOCOM 2006.

25TH IEEE International Conference on Computer Communications, pages 1–12,

April 2006.

[54] S Liu, T Başar, and R Srikant. TCP-Illinois: A loss- and delay-based congestion

control algorithm for high-speed networks. ScienceDirect - Performance Evaluation,

65:417–440, 2008.

[55] S. Mascolo, C. Casetti, M. Gerla, M.Y. Sanadidi, and R. Wang. TCP westwood:

Bandwidth estimation for enhanced transport over wireless links. In Proceedings

of the 7th annual international conference on Mobile computing and networking,

pages 287–297. ACM, 2001.

[56] Cheng Peng Fu and S. C. Liew. TCP Veno: TCP enhancement for transmission

over wireless access networks. IEEE Journal on Selected Areas in Communications,

21(2):216–228, Feb 2003.

[57] Carlo Caini and Rosario Firrincieli. Tcp hybla: a tcp enhancement for heteroge-

neous networks. International journal of satellite communications and networking,

22(5):547–566, 2004.

139

[58] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649 (Experimen-

tal), December 2003.

[59] Tom Kelly. Scalable TCP: improving performance in highspeed wide area networks.

SIGCOMM Comput. Commun. Rev., 33(2):83–91, April 2003.

[60] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion control

(BIC) for fast long-distance networks. In INFOCOM 2004. Twenty-third Annual

Joint Conference of the IEEE Computer and Communications Societies, volume 4,

pages 2514–2524, 2004.

[61] Andrea Baiocchi, Angelo P Castellani, and Francesco Vacirca. YeAH-TCP: yet

another highspeed TCP. In Proc. PFLDnet, volume 7, pages 37–42, 2007.

[62] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: a new TCP-friendly high-speed

TCP variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008.

[63] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and Yongguang Zhang. ICTCP:

Incast Congestion Control for TCP in Data-center Networks. IEEE/ACM Trans.

Netw., 21(2):345–358, April 2013.

[64] L. C. Kho, X. Dfago, A. O. Lim, and Y. Tan. A taxonomy of congestion control

techniques for tcp in wired and wireless networks. In 2013 IEEE Symposium on

Wireless Technology Applications (ISWTA), pages 147–152, Sept 2013.

[65] Vassilios Tsaoussidis and Chi Zhang. TCP-Real: receiver-oriented congestion con-

trol. Computer Networks, 40(4):477–497, 2002.

[66] Feng Wang and Yongguang Zhang. Improving TCP performance over mobile ad-

hoc networks with out-of-order detection and response. In Proceedings of the ACM

140

International Symposium on Mobile Ad Hoc Networking and Computing (Mobi-

Hoc), pages 217–225, Lausanne, Switzerland, 2002. ACM Press.

[67] S. Floyd, M. Handley, J. Padhye, and J. Widmer. TCP Friendly Rate Control

(TFRC): Protocol Specification. RFC 5348 (Proposed Standard), 2008.

[68] Y. Shu, W. Ge, N. Jiang, Y. Kang, and J. Luo. Mobile-Host-Centric Transport Pro-

tocol for lt;newline/ gt;EAST Experiment. IEEE Transactions on Nuclear Science,

55(1):209–216, Feb 2008.

[69] Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun. The Resource Pool-

ing Principle. SIGCOMM Comput. Commun. Rev., 38(5):47–52, September 2008.

[70] Qiuyu Peng, Anwar Walid, and Steven H. Low. Multipath TCP Algorithms: The-

ory and Design. SIGMETRICS Perform. Eval. Rev., 41(1):305–316, June 2013.

[71] Michio Honda, Yoshifumi Nishida, Lars Eggert, Pasi Sarolahti, and Hideyuki

Tokuda. Multipath congestion control for shared bottleneck. In Proc. PFLDNeT

workshop, volume 357, page 378. Citeseer, 2009.

[72] Frank Kelly and Thomas Voice. Stability of End-to-end Algorithms for Joint Rout-

ing and Rate Control. SIGCOMM Comput. Commun. Rev., 35(2):5–12, April 2005.

[73] Huaizhong Han, Srinivas Shakkottai, C. V. Hollot, R. Srikant, and Don Towsley.

Multi-path TCP: A Joint Congestion Control and Routing Scheme to Exploit Path

Diversity in the Internet. IEEE/ACM Trans. Netw., 14(6):1260–1271, December

2006.

[74] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design,

Implementation and Evaluation of Congestion Control for Multipath TCP. In

141

Proceedings of the 8th USENIX Conference on Networked Systems Design and Im-

plementation, NSDI’11, pages 99–112, Berkeley, CA, USA, 2011. USENIX Associ-

ation.

[75] Christoph Paasch, Simone Ferlin, Ozgu Alay, and Olivier Bonaventure. Experi-

mental evaluation of multipath tcp schedulers. In Proceedings of the 2014 ACM

SIGCOMM workshop on Capacity sharing workshop, pages 27–32. ACM, 2014.

[76] F. Yang, P. Amer, and N. Ekiz. A Scheduler for Multipath TCP. In 2013 22nd

International Conference on Computer Communication and Networks (ICCCN),

pages 1–7, July 2013.

[77] Robert C Durst, Patrick D Feighery, and Keith L Scott. Why not use the standard

internet suite for the interplanetary internet, 2000.

[78] Bruce Elbert. Introduction to satellite communication. Artech House, 2008.

[79] Ian F. Akyildiz, Giacomo Morabito, and Sergio Palazzo. TCP-Peach: A New

Congestion Control Scheme for Satellite IP Networks. IEEE/ACM Trans. Netw.,

9(3):307–321, June 2001.

[80] Robert C. Durst, Gregory J. Miller, and Eric J. Travis. TCP extensions for space

communications. In MobiCom ’96: Proceedings of the 2nd annual international

conference on Mobile computing and networking, pages 15–26, New York, NY,

USA, November 1996. ACM Press.

[81] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport

Protocol for Real-Time Applications. RFC 3550 (Standard), 2003.

142

[82] Sam Liang and David Cheriton. TCP-RTM: Using TCP for real time multimedia

applications”, booktitle = in International Conference on Network Protocols, year

= 2002.

[83] Lars-Ake Larzon, Mikael Degermark, and Stephen Pink. UDP lite for real time

multimedia applications. Citeseer, 1999.

[84] PP-K Lam and Soung C Liew. UDP-Liter: an improved UDP protocol for real-

time multimedia applications over wireless links. In 1st International Symposium

onWireless Communication Systems, 2004., pages 314–318. IEEE, 2004.

[85] Robert C. Durst, Gregory J. Miller, and Eric J. Travis. TCP extensions for space

communications. Wireless Networks, 3(5):389–403, October 1997.

[86] CCSDS-The Consultative Committee for Space Data Systems. Space Commu-

nications Protocol Specification (SCPS)-Transport Protocol (SCPS-TP). http:

//public.ccsds.org/publications/archive/714x0b2.pdf, October 2006.

[87] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-

well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh

Govindan. Reducing Web Latency: The Virtue of Gentle Aggression. SIGCOMM

Comput. Commun. Rev., 43(4):159–170, August 2013.

[88] T. Flach, N. Dukkipati, and B. Raghavan. TCP Instant Recovery: Incorporating

Forward Error Correction in TCP. Internet-Draft, 2013.

[89] Venkata Yedugundla, Simone Ferlin, Thomas Dreibholz, Ozgu Alay, Nicolas Kuhn,

Per Hurtig, and Anna Brunstrom. Is Multi-Path Transport Suitable for Latency

Sensitive Traffic? COMNET, 105, 05 2016.

143

http://public.ccsds.org/publications/archive/714x0b2.pdf
http://public.ccsds.org/publications/archive/714x0b2.pdf

[90] M. Scharf and A. Ford. Multipath TCP (MPTCP) Application Interface Consid-

erations. RFC 6897 (Informational), 2013.

[91] T. A. N. Nguyen and J. P. G. Sterbenz. Connection Management in a Resilient

Transport Protocol. In DRCN 2017 - Design of Reliable Communication Networks;

13th International Conference, pages 1–8, 2017.

[92] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,

Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bai-

ley, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti,

Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi.

The QUIC Transport Protocol: Design and Internet-Scale Deployment. In Proceed-

ings of the Conference of the ACM Special Interest Group on Data Communication,

SIGCOMM ’17, pages 183–196, New York, NY, USA, 2017. ACM.

[93] Dragana Damjanovic, Philipp Gschwandtner, and Michael Welzl. Why is this web

page coming up so slow? investigating the loss of SYN packets. In International

Conference on Research in Networking, pages 895–906. Springer, 2009.

[94] 3gpp http applications. http://www.nsnam.org, July 2009.

[95] Satellite network simulator 3 (sns3). https://www.sns3.org.

[96] Satellite network simulator 3 (sns3) implementation. https://github.com/sns3/

sns3-satellite.

[97] LBT Wi-Fi Coexistence Module Documentation. https://www.nsnam.org/

~tomh/ns-3-lbt-documents/html/lbt-wifi-coexistence.html.

[98] David Gómez Fernández. Multipath tcp in ns-3. https://github.com/

dgomezunican/multipath-ns3.13, 2013.

144

http://www.nsnam.org
https://www.sns3.org
https://github.com/sns3/sns3-satellite
https://github.com/sns3/sns3-satellite
https://www.nsnam.org/~tomh/ns-3-lbt-documents/html/lbt-wifi-coexistence.html
https://www.nsnam.org/~tomh/ns-3-lbt-documents/html/lbt-wifi-coexistence.html
https://github.com/dgomezunican/multipath-ns3.13
https://github.com/dgomezunican/multipath-ns3.13

[99] Yufei Cheng, Md. Moshfequr Rahman, Truc Anh N. Nguyen, Siddharth Gangad-

har, Mohammed J.F. Alenazi, and James P.G. Sterbenz. Cross-layer geodiverse

protocol stack for resilient multipath transport and routing using openflow. In 12th

International Conference on Design of Reliable Communication Networks, 2015.

[100] Justin P. Rohrer, Mohammed J. F. Alenazi, and James P. G. Sterbenz. ResiliNets

Topology Map Viewer. http://www.ittc.ku.edu/resilinets/maps/, January

2011.

[101] J. W. Suurballe. Disjoint Paths in a Network. Networks, 4(2):125–145, 1974.

[102] J. W. Suurballe and R. E. Tarjan. A Quick Method for Finding Shortest Pairs of

Disjoint Paths. Networks, 14(2):325–336, 1984.

[103] Alexandros Kostopoulos, Henna Warma, Tapio Levä, Bernd Heinrich, Alan Ford,

and Lars Eggert. Towards multipath tcp adoption: Challenges and opportunities.

In NGI, pages 1–8. Citeseer, 2010.

[104] Maurizio Casoni and Natale Patriciello. Next-generation TCP for ns-3 simulator.

Simulation Modelling Practice and Theory, 66:81–93, 2016.

[105] MPTCP Implementation for ns-3 (Code Review). https://codereview.appspot.

com/369810043/, 2019.

[106] Kashif Nadeem and Tariq M. Jadoon. An ns-3 mptcp implementation. In Trung Q.

Duong, Nguyen-Son Vo, and Van Ca Phan, editors, Quality, Reliability, Security

and Robustness in Heterogeneous Systems, pages 48–60, Cham, 2019. Springer In-

ternational Publishing.

[107] ns-3 testing framework. https://www.nsnam.org/docs/release/3.29/manual/

html/test-framework.html, September 2018.

145

http://www.ittc.ku.edu/resilinets/maps/
https://codereview.appspot.com/369810043/
https://codereview.appspot.com/369810043/
https://www.nsnam.org/docs/release/3.29/manual/html/test-framework.html
https://www.nsnam.org/docs/release/3.29/manual/html/test-framework.html

[108] D. Velten, R.M. Hinden, and J. Sax. Reliable Data Protocol. RFC 908 (Experi-

mental), July 1984. Updated by RFC 1151.

146

	Introduction and Motivation
	Thesis Statement
	Proposed Solution
	ResTP vs. Conventional Protocols
	Contributions
	Relevant Publications
	Additional Publications
	ns-3 Implementation Models
	Organization

	Background and Related Work
	Connection Establishment
	Error Control
	Congestion Control
	Multipath Congestion Control

	Packet Scheduling
	SCPS-TP and Space Communications
	Space Communication Environment Characteristics and TCP Shortcomings
	SCPS-TP

	Transport Protocols for Real Time Multimedia Applications

	ResTP Design
	ResTPDU
	Basic ResTPDU
	CRC Extension
	Flow Control Extension
	Cookie Response Extension
	FEC Extension
	Sequence Number Extension
	ARQ Extension
	SACK Extension
	SNACK Extension
	HARQ Extension
	MP_CAPABLE Extension
	MP_JOIN Extension
	Data Sequence Signal (DSS) Extension

	ResTP Extension Precedence
	Single- and Multi-Path Communication Modes
	Single-Path Communication Mode
	Multi-path Communication Mode

	Cross-Layering Framework
	ResTP Modules
	Main Module
	Helper Module
	Framing Module
	Flow Control Module
	Connection Management Module
	Congestion Module
	Ordering Module
	Reliability Module
	ACK Module
	Scheduling Module

	ResTP Data Loss Handling
	ResTP for Real-Time Multimedia Applications
	ResTP Solutions for UDP, TCP, and MPTCP Shortcomings

	ResTP Performance Evaluation and Analysis
	Single-Path ResTP with File Transfer Application
	Simulation Setup and Topology
	ResTP Configuration
	Simulation Results and Analysis

	Single-Path ResTP with Web Services
	Simulation Setup and Topology
	ResTP Configuration
	Simulation Results and Analysis

	Multipath ResTP with Web Services
	Simulation Setup and Topology
	Simulation Results and Analysis

	Single-Path ResTP over Satellite Communications
	Simulation Setup and Topology
	ResTP Configuration
	Simulation Results and Analysis

	Single-Path ResTP with Real-Time Applications
	Simulation Setup and Topology
	ResTP Configuration
	Simulation Results and Analysis

	ResTP-GeoDivRP Under Network Challenges
	Simulation Setup and Topology
	ResTP Configuration
	Simulation Results and Analysis

	Why ResTP and Its Deployability?
	Conclusion and Future Work
	ResTP Implementation, Verification, and Validation in ns-3
	Implementation
	Verification
	Validation
	Simulation Topology
	ResTP vs. UDP Using CBR Traffic
	ResTP vs. TCP Using Bulk Data
	ResTP Opportunistic vs. Three-Way Handshake

