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Abstract

Since convolutional neural network (CNN) was first implemented by Yann LeCun et al. in 1989,

CNN and its variants have been widely implemented to numerous topics of pattern recognition,

and have been considered as the most crucial techniques in the field of artificial intelligence and

computer vision. This dissertation not only demonstrates the implementation aspect of CNN, but

also lays emphasis on the methodology of neural network (NN) based classifier.

As known to many, one general pipeline of NN-based classifier can be recognized as three

stages: pre-processing, inference by models, and post-processing. To demonstrate the importance

of pre-processing techniques, this dissertation presents how to model actual problems in medical

pattern recognition and image processing by introducing conceptual abstraction and fuzzification.

In particular, a transformer on the basis of self-attention mechanism, namely beat-rhythm trans-

former, greatly benefits from correct R-peak detection results and conceptual fuzzification.

Recently proposed self-attention mechanism has been proven to be the top performer in the

fields of computer vision and natural language processing. In spite of the pleasant accuracy and

precision it has gained, it usually consumes huge computational resources to perform self-attention.

Therefore, realtime global attention network is proposed to make a better trade-off between effi-

ciency and performance for the task of image segmentation. To illustrate more on the stage of

inference, we also propose models to detect polyps via Faster R-CNN - one of the most popular

CNN-based 2D detectors, as well as a 3D object detection pipeline for regressing 3D bounding

boxes from LiDAR points and stereo image pairs powered by CNN.

The goal for post-processing stage is to refine artifacts inferred by models. For the semantic

segmentation task, the dilated continuous random field is proposed to be better fitted to CNN-

based models than the widely implemented fully-connected continuous random field. Proposed

approaches can be further integrated into a reinforcement learning architecture for robotics.
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Chapter 1

Introduction to Artificial Neural Networks

Abstract

Artificial neural network (ANN) has been developed to simulate groups of biological neu-

rons both in their organization form and reactions to external stimuli. ANNs are considered

as one of the most crucial techniques to bestow intelligence on machines. Based on the

neuron types, ANNs can be categorized as conventional feed-forward network (FFN), re-

current neural network (RNN) including Boltzmmann machine, Hopfield neural network,

long/short-term memory (LSTM), special FFN - convolutional neural network and hybrid

neural network (HNN). Though there are huge varieties of ANN, this chapter focuses on

introducing several popular neural networks in those categories except the convolutional

neural network (CNN), for which relevant techniques and basic concepts are demonstrated

in Chapter 2.

1.1 Model the Biological Neurons

For decades, neurologists have striven to acquire knowledge on the biomechanism of brain and ner-

vous system. One intuitive motivation of this research is to get a thorough comprehension upon the

neural mechanism that the brain learns, memorizes, and infers in response to outer stimuli. Mean-

while, computer scientists and computational mathematicians aim to establish explainable neural

network models on the nervous system according to the knowledge of biological nervous system.

These models make artificial intelligence feasible, but are still under development nowadays. In

1
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Figure 1.1: Sketch of a biological neuron.

1949, Donald Hebb published his book The Orgnization of Behavior: A Neuropsychological The-

ory and Hebb’s rule (60) quickly became popular among academia. The rule states that neurons

that fire together are wired together. If using a weight to quantify the relevance between two neu-

rons, then it increases when both neurons are activated simultaneously, while reduces when they

activate separately. Hebb’s rule represents the very beginning of quantifying stimuli via weights

between neurons. However, it does not cover the structural modeling of a simplified biological

neuron. As depicted in Fig. 1.1, brain nervous system consists of numerous neurons: ~0.1 mil-

lion neurons in fruit fly’s brain, and 1.4 - 1.6 billion in human’s brain. One neuron has multiple

dendrites and one axon, external stimuli is carried between neurons via synapse, which release a

chemical, namely neurotransmitter. The whole picture is much more complex, since the neurons

are connected densely more than the style shown in Fig. 1.1.

1.2 Feed-forward Network

1.2.1 Perceptron

FFN is a category of neural networks that stimuli is unidirectionally transmitted starting at the input

layer, and terminated at the output layer. In 1958, Frank Rosenblatt from Coneel Aeronautical

2
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Figure 1.2: Perceptron architecture and its multi-layered form.

Laboratory invented the perceptron algorithm (156), which immediately attracted the attention of

academia, and being recognized as the prototype of FFN. Perceptron is the mathematic abstract of

one biology neuron that simplifies the dendrites, axon, and stimuli transmission.

1.2.1.1 Perceptron Model

As shown in Fig. 1.2, perceptron is an artificial neuron for binary classification. Its feed-forward

stream can be denoted by a mathematic model: Given input vector X = [x1, ...,xn+1]
T ∈ Rn+1,

where xn+1 = b is the bias; corresponding weights vector W = [ω1, ...,ωn,1]
T ∈Rn+1, where ωn+1

is the weight to the bias b; activation function f (·). The output scalar y is then formulated as

z =
n+1

∑
i=1

ωixi =W T X , y = f (z) =

 1, z ≥ 0

−1, z < 0
. (1.1)

Primitive Perceptron Learning Algorithm Given a train set T := {si},1 ≤ i ≤ N; sample si :=

(Xi, ŷi), where input vector Xi ∈Rn+1, and the label variable ŷi ∈ {−1,1} indicates the category Xi

belongs to; learning rate 0 < η ≤ 1. Let E := {Xi | yi ̸= ŷi, ∀1 ≤ i ≤ N}, which denotes the set of

3



all incorrectly predicted samples, Rosenblatt’s criterion function Γ(W ) is defined as

Γ(W ) =− ∑
Xi∈E

ŷiW T Xi, (1.2)

Γ(W ) is non-negative since ŷiW T Xi ≤ 0 for any misclassified sample. The target for learning is

to learn the optimized W ∗ by minimizing Γ(W ): W ∗ = minW Γ(W ). Alg. 1 shows the steps of

primitive perception in learning W from T without gradient back-propagation since the activa-

tion function f is discontinuous. Train set is considered as linear separable if ∃γ ∈ R s. t. ∀si ∈

T , ŷiW T Xi > γ , Novikoff proved that, if the training set T is linear separable, then the primitive

perceptron algorithm converges within finite iterations.

Algorithm 1: Primitive perceptron learning algorithm.
1 Initialize W , set total iterations Ns and threshold ε;
2 while Γ(W )> ε and current iteration ≤ Ns do
3 for each Xi do
4 if ŷiW T Xi ≤ 0 then
5 W :=W +ηXi;

6 current iteration increased by 1;

7 return W

Multi-Layer Perceptrons The term ‘Perceptron’ can be either interpreted as the singe-layer

perceptrons network or the single perceptron depicted as Fig. 1.2. One perceptron cannot find a

hyper plane in nonlinear-separable sample space (128). However, multi-layer perceptrons (MLP)

overcome this defect and become the main stream research (159) on neural networks till the 21st

century. As illustrated in Fig. 1.2, MLP consists of one input layer, multiple hidden layers of

perceptrons1, and one output layer. Note that the nodes are densely-connected such that MLP

is also named as the fully-connected layers. The input and output layers are not perceptrons but

abstract layers. Hidden layers are perceptrons whose states are not observable to users, this is the

main reason why MLP is known as a ‘black box’ for users.

1In contrast to MLP, Perceptron has only one hidden layer.
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Figure 1.3: Sigmoid and hyperbolic tangent activation functions.

1.2.1.2 Gradient Back-Propagation.

Modern MLP is more powerful than primitive MLP due to the gradient back-propagation (BP)

training algorithm and larger amount of activation functions. The primitive MLP2 only implements

two kinds of activation functions:

f (z) := sigmoid(z) = σ(z) =
1

1+ e−z , f (z) := tanh(z) = σ(z) =
ez − e−z

ez + e−z , (1.3)

where variable z is defined the same as Equ. 1.1. Two activation functions are continuous such that

both are differential (see Fig. 1.3), i.e., for sigmoid(z), 0 < σ(z)< 1, σ ′(z) = (1−σ(z))σ(z),∀z ∈

R. It’s obvious that σ ′(z) achieves its maximum 0.25 at z = 0.5; for the hyperbolic tangent acti-

vation function tanh(z), −1 < σ(z) < 1, σ ′(z) = 4/(2+ e2z + e−2z),∀z ∈ R with a maximum 1.0

at z = 0. BP algorithm can be denoted as updating weights for all perceptrons leveraged on the

partial derivatives of outputs with respect to inputs.

2The MLP implemented in Rumelhart et al.’s work.
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MLP Learning Algorithms. Given the training set T and the MLP model shown in Fig. 1.2,

loss function3 L(W ) is proposed to evaluate the similarity between the distribution of predicted out-

put Y = [y1, ...,ym] and its corresponding groundtruth Ŷ = [ŷ1, ..., ŷm]. Mean squared error (MSE,

L2-norm) and mean absolute error (MAE, L1-norm) are the earliest criterion metrics applied to

loss function:

L(W ) := MSE(Y ) =
1
m

m

∑
i=1

(yi − ŷi)
2, L(W ) := MAE(Y ) =

1
m

m

∑
i=1

|yi − ŷi|. (1.4)

In addition to the notations mentioned above, the variables related to layers and the order of

perceptron should be made explicitly. Define the number of hidden layers as nh, the output of k-th

hidden layer as Yk =
[
yk

1, ...,y
k
nk

]
, 0 ≤ k ≤ nh, where yk

i signifies the i-th output of perceptron from

the k-th layer. It should be noted that Ynh = Y and nnh = m, Y0 = X and n0 = n+ 1 according to

both definitions. The weights matrix Wk of the k-th layer collects the weights of all perceptrons as

Wk =
[
W k

1 , ...,W
k
nk

]
, W k

i ∈ Rnk−1×1 and k ≥ 1.

Algorithm 2: MLP learning algorithm - standard SGD optimizer
1 Initialize W = {W1, ...,Wnh} by non-zero numbers. set total iterations Ns;
2 while current iteration ≤ Ns do
3 for each Xi do
4 One forward pass. From 1st hidden layer to the nh-th hidden layer, recursively

calculate Y1, ...,Ynh−1 and Ynh = Y using Yi =W T
i Yi−1, i ≥ 1;

5 Calculate loss L(W ) using Eqn. 1.4;
6 Update all weights inversely from the nh-th hidden layer back to the 1st hidden

layer using Wi :=Wi −η
∂L(W )

∂Wi
;

7 current iteration increased by 1;

8 return W

The fundamental learning algorithm, namely standard stochastic gradient descent (SGD) learn-

ing algorithm is demonstrated as Alg. 2. Standard SGD algorithm updates W after one sample is

fed to MLP, while for the batch SGD algorithm (refer to Alg. 3), the training set is grouped into

3Y is derived from the mapping from known sample space and unknown parametric space, thus can be regarded as
a function with respect to the parameter W .
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Algorithm 3: MLP learning algorithm - batch SGD optimizer
1 Initialize W = {W1, ...,Wnh} by non-zero numbers. set total iterations Ns;
2 while current iteration ≤ Ns do
3 for every batch of Nb samples do
4 Nb forward passes. From 1st hidden layer to the nh-th hidden layer, recursively

calculate Y1, ...,Ynh−1 and Ynh = Y for Nb samples using Yi =W T
i Yi−1, i ≥ 1;

5 Calculate Nb losses L(W ) = {L1(W ), ...,LNb(W )} using Eqn. 1.4;
6 Update all weights inversely from the nh-th hidden layer back to the 1st hidden

layer using Wi :=Wi − η

Nb
∑

Nb
i=1

∂Li(W )
∂Wi

;

7 current iteration increased by 1;

8 return W

batches with each contains Nb samples, the weights are then updated per batch. The most crucial

step of BP algorithms is to calculate the gradients ∂L(W )
∂Wi

.

Chain Rule for BP Algorithms. Gradients ∂L(W )
∂Wi

can be calculated via chain rule (formulated

as Corollary 1.2.0.3) and partial derivatives with respect to vectors and matrix. Two useful rules

for the partial derivatives can be described as Corollary 1.2.0.1 and Corollary 1.2.0.2.

Corollary 1.2.0.1. Given linear transformation Y =W T X ,Y ∈ Rm×1,W ∈ Rn×m,X ∈ Rn×1, then

∂Y
∂X =W T in the Jacobian layout.

Proof. According to the condition Y =W T X , Yi = ∑ j W( j,i)X j ⇒ ∂Yi
∂X j

=W( j,i), the Jacobian matrix

∂Y
∂X

=


∂Y1
∂X1

· · · ∂Y1
∂Xn

... . . . ...

∂Ym
∂X1

· · · ∂Ym
∂Xn

=


W(1,1) · · · W(n,1)

... . . . ...

W(m,1) · · · W(n,m)

=W T .

Corollary 1.2.0.2. Given linear transformation Y =W T X ,Y ∈ Rm×1,W ∈ Rn×m,X ∈ Rn×1, then

∂Y
∂W = [X , · · · ,X ]T , which has the dimensions m×n in the Jacobian layout.

Proof. According to the condition Y = W T X , Yi = ∑ j W( j,i)X j, and ∂Y
∂W = ∑

m
i=1

∂Yi
∂W . ∂Yi

∂W is per-

formed for every component of Y , and only i-th component of Y yields a non-zero derivative X j
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with respect to W( j,i), otherwise the derivative is 0, i.e,

∂Yi

∂W
=



0 0 · · · 0
...

... · · · ...

X1 X2 · · · Xn

...
... · · · ...

0 0 · · · 0


m×n

,

where the i-th row equals to XT , therefore ∂Y
∂W = ∑

m
i=1

∂Yi
∂W = [X , · · · ,X ]T ∈ Rm×n.

Corollary 1.2.0.3 (Chain rule for BP Algorithms).

∂L(W )

∂Wk
=

∂L(W )

∂Ynh

•
∂Ynh

∂Ynh−1
• · · · • ∂Yk+1

∂Yk
•

∂Yk

∂Wk
, 1 ≤ k ≤ nh. (1.5)

The forwarding of perceptrons in k-th hidden layer can also be modeled by Eqn. 1.3, that

Yk = σ(Zk) = σ(W T
k Yk−1). According to Corollary 1.2.0.3, the loss δk back-propagated to the k-th

hidden layer, and the gradients propagated from Yk to Wk can be denoted as

δk =
∂L(W )

∂Ynh

•
∂Ynh

∂Ynh−1
• · · · • ∂Yk+1

∂Yk
,

∂Yk

∂Wk
=

∂Yk

∂Zk
· ∂Zk

∂Wk
. (1.6)

The chain rule can now be written in a gradients/loss back-propagation form:

∂L(W )

∂Wk
= δk •

∂Yk

∂Zk
•

∂Zk

∂Wk
. (1.7)

Computational Form of Chain Rule. Eqn. 1.7 represents the back-propagation process of gra-

dients, whereas its form cannot be directly applied to implementations. To further calculate the
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values with Corollary 1.2.0.1 and 1.2.0.2, components of Eqn. 1.7 can be reformulated as

δk =
∂L(W )

∂Ynh

•
∂Ynh

∂Ynh−1
• · · · • ∂Yk+1

∂Yk
= δnh

•

k+1

∏
i=nh

∂Yi

∂Yi−1

= δnh
•

k+1

∏
i=nh

ni

∑
j=1

∂yi
j

∂Zi
•
∂ (W T

i Yi−1)

∂Yi−1
= δnh

•

k+1

∏
i=nh

ni

∑
j=1

∂yi
j

∂Zi
•W T

i ,

∂Yk

∂Zk
•

∂Zk

∂Wk
=

nk

∑
j=1

∂yk
j

∂Zk
•
∂ (W T

k Yk−1)

∂Wk
=

nk

∑
j=1

∂yk
j

∂Zk
• [Yk−1, · · · ,Yk−1]

T
nk×n(k−1)

(1.8)

Eqn. 1.8 indicates one important point of view that if a variable is relevant to multiple sources,

the summation of gradients from all these sources equals the gradient propagated to that variable.

There are derivatives
∂yi

j
∂Zi

,k ≤ i ≤ nk, that remain to be quantified. Given the fact that yi
j is the j-th

component of vector σ(Zi) according to Eqn. 1.3, thus
∂yi

j
∂Zi

=
[
0, · · · ,0,σ ′(yi

j),0, · · · ,0
]
, where

only j-th component is non-zero. Thus,
∂yi

j
∂Zi

acts as a j-th column selector for matrices W T
i and

[Yk−1, · · · ,Yk−1] in Eqn. 1.8. As a result, it can be rewritten as Eqn. 1.9:

ni

∑
j=1

∂yi
j

∂Zi
•W T

i =


σ ′(yi

1) · · · 0
... . . . ...

0 · · · σ ′(yi
ni
)


ni×ni

•W T
i := AiW T

i . (1.9)

Likewise, we can reformulate Eqn. 1.8 as

δk = δnh
•

k+1

∏
i=nk

ni

∑
j=1

∂yi
j

∂Zi
•W T

i = δnh
•

k+1

∏
i=nk

AiW T
i ,

∂Yk

∂Zk
•

∂Zk

∂Wk
=

ni

∑
j=1

∂yk
j

∂Zk
• [Yk−1, · · · ,Yk−1]

T
nk×n(k−1)

= Ak [Yk−1, · · · ,Yk−1]
T

(1.10)

Thereafter, the final computational form of chain rule is described as Corollary 1.2.0.4.

Corollary 1.2.0.4 (Computational form of chain rule).

∂L(W )

∂Wk
= δnh

(
k+1

∏
i=nk

AiW T
i

)
Ak [Yk−1, · · · ,Yk−1]

T . (1.11)
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Gradient Vanishing Problem Sigmoid and tanh activation function suffers from gradient van-

ishing problem especially when nh is large enough. In this part, the gradient vanishing problem is

addressed via computational form as illustrated in Corollary 1.2.0.4. It is obvious that the activa-

tion functions affect the gradients via matrix Ai, k ≤ i ≤ nh. Assume the loss is low enough such

that ∂L(W )
∂Wk

→ 0, and it indicates δnh,W
T
i ,Yk are all very low in their induced norms. In this case,

for instance, ∥AiWiT∥ ≤ ∥Ai∥ ·∥W T
i ∥,∀k ≤ i ≤ nh, and refer to Eqn. 1.3, the ranges of sigmoid and

tanh activation functions are (0,0.25] and (0,1.0] respectively. Therefore, ∥AiW T
i ∥ ≤ ∥W T

i ∥,∀k ≤

i ≤ nh, and after multiplying Ai for nh − k+1 times, the gradients may diminish towards zeros.

Another issue for sigmoid and tanh activation functions is the early saturation issue. This issue

also reflects the gradient vanishing problem. Refer to Fig. 1.3, the gradients of both functions

drop to nearly 0 when |z| > 4 for sigmoid, and |z| > 2 for tanh, which are liable to step into

the saturation regions in which the weights will not be updated. The gradient vanishing problem

restricts the depth of primitive MLP until novel activation functions such as ReLU are proposed

for deeper neural networks. These novel activation functions are discussed in Chapter 2.

1.2.2 Radial-Basis Function Network

Another typical FFN is Radial-Basis Function (RBF) Network (17; 108). The historical motiva-

tions of RBF network are to approximate arbitrary continuous functions and to solve the classical

XOR problem that Perceptron cannot realize XOR logic4 since Perceptron cannot partition non

linear-separable sample space. RBF network implements a radial-basis kernel φ(·) to project the

distance vector between one neuron center and one sample to an infinite dimensional space, i.e,

Φ(∥X −Ci∥) = exp(−∥X −Ci∥2

2σ2
i

), (1.12)

4But for MLP the problem is solved.
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Figure 1.4: Perceptron architecture and its multi-layered form.

where X ∈ Rn×1 signifies the input of a sample from the training set T with an annotation

Ŷ ∈ Rm×1, Ci ∈ Rn×1 is the center of i-th neuron, and σi signifies the radius of i-th neuron. Dis-

tinguished from Perceptron, RBF network (see Fig. 1.4) is composed of three featured layers:

the input layer that collects input vectors, the hidden layer that computes distance vectors then

projects them via RBF kernel, and the output layer that aggregates intermediate outputs of neurons

by weights.

As depicted in Fig. 1.4, one feed-forward pass of RBF network firstly collects an input sample

X = [x1, · · · ,xn]
T and feed it to t RBF neurons respectively. The intermediate outputs of hidden

layer Z = [z1, · · · ,zt ]
T are then transmitted to the output layer consists of m linear neurons, which

behaves similar to the perceptron without activation function. The final output Y = [y1, · · · ,ym]
T

can be aggregated into the loss function as shown in Eqn. 1.4.

To learn parameters from T , the weights in output layer can be learnt via loss back-propagation.

Centers matrix C = [C1, · · · ,Ct ] and radius σi, 1 ≤ i ≤ t must be preset before training since the

necessary initialization of centers and radius can not be learnt via gradient back-propagation, e.g.,

∂Φ

∂σi
= exp(−∥X −Ci∥2

2σ2
i

) •
∥X −Ci∥2

σ3
i

,

whose initial values of Ci and σi must be preset. This requirement brings about another challenge of
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how to properly set the initial values. There are two categories of approaches to achieve this goal.

One category of approaches aims at randomly assigning values as for perceptrons, and the other one

predicts more reasonable structure information via clustering, e.g., K-Means algorithm (117) for

assigning centers and radius while it costs additional computational resources to cluster samples.

The later yields more precise results since random assignment often leads to false centers and

radius such that the RBF network is more liable to fall into local optimum.

1.3 Recurrent Neural Network

One intuitive way to understand RNN is that RNN is a category of neural networks that each

neuron can take its current output as part of its next input. RNN can vary in organization form and

neuron composition. The latest RNN techniques have set the records for multiple NLP tasks such

as voice recognition, machine translation, speech generation etc. This section does not intend to

go through details in proofs and theorems due to their weak relevance to CNN, but to present a

conceptual introduction to the fundamental mechanism.

1.3.1 Hopfield Nerual Network

Hopfield network (65) is widely known as the first RNN model in history. Its topology simulates

more connections than the Perceptron among biological neurons. One most distinguish feature of

Hopfield network is its ability to recurrently update hidden states of neurons by time, which is also

termed as associate memory. Hopfield network can be further categorized as continuous Hopfield

neural network (CHNN, 1984) and discrete Hopfield neural network (DHNN, 1990). The main

differences between CHNN and DHNN are the form of energy functions and the way energy

functions are optimized. Moreover, classical DHNN aims at modeling the biological process of

associating, that the outputs are deduced by input samples without global optimization, while

CHNN aims at seeking the global optimum of energy function, which is regarded as a solver for

varieties of dynamics optimization problems.

12
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Figure 1.5: Topology of a discrete Hopfield neural network with 6 binary neurons.

Topology of Hopfield Neural Network The topology of DHNN and CHNN are the same com-

pete graph G = ⟨V ,E ⟩. V = {Vi|1 ≤ i ≤ N} is the set of vertices, and E the set of edges that

connects vertices. The graph is weighted and undirected, Fig. 1.5 depicts an example of N = 6

complete graph of DHNN.

Each vertice of G indicates a binary neuron, the i-th neuron receives inputs from all other

neurons as well as an direct input xi(t) at discrete time t. Similar to the activation function of a per-

ceptron, the next output yi(t +1) = f
(

∑
N
k=1,k ̸=i ω(k,i)yk(t)+ xi(t)

)
, where sign activation function

f can be valued as [0,1] or [−1,1]. yi(t) is also termed as activity of i-th neuron or the strength of

synaptic input form i-th neuron to any other neuron.

Hebb’s rule (60) and Storkey’s rule (182) have been implemented to train a DHNN. The updates

of weights are performed locally since both learning algorithms only take neurons associated to

similar patterns or neurons nearby into consideration. As Hopfield networks intends to memorizes

and associate states of neurons, the unsupervised training process does not require ground-truth

annotations but the input patterns only. The convergence of state transition among neurons has

been proved to be a minimum of Lyapunov function (8), an important stability corollary under the

context of state space (225) and Lyapunov stability in control theories. The feed-back topology

and time-series logic indicate that the Hopfield network is also a non-linear control system whose
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state space at timestamp t +1 is depending on its previous state space at t.

1.3.2 Boltzmann Machine

Perceptron and RBF network etc. are all trained with samples and ground-truth, which is also

known as the supervised learning. Boltzmann machine (3) is an unsupervised neural network with

the same topology as Hopfield network as shown in Fig. 1.5. Distinguished from the complete

graph of Hopfield network, the graph of Boltzmann machine is termed as probability undirected

graph that merely depicts the dependence of hidden vertices H = {hi|1 ≤ i ≤ Nh} and visible

vertices V = {vi|1 ≤ i ≤ Nv}. Also, as Boltzmann machine does not have any exterior outputs such

that gradient back-propagation algorithms cannot be directly implemented to Boltzmann machine.

However, by minimizing the same energy function as of DHNN towards anticipated probability

distribution of states, Boltzmann machine can be trained via simulated annealing (139) algorithm.

1.3.2.1 Restrict Boltzmann Machine

Smolensky named one variant of Boltzmann machine as Harmonium in 1985, later in 2006, Hinton

& Salakhutdinov proposed restrict Boltzmann machine (RBM), and invented the fast contrastive

divergence learning algorithm for its training. RBM simplifies the dense connection of visible and

invisible neurons that RBM is composed by a two-layer structure of which the first layer is named

after visible layer and the other is named after invisible layer. All neurons in visible layer are

connected to those in invisible layers, while there are no connections between any two neurons

in the same layer. The training process of RBM reveals the modern form of learning - feed-

forward, with back-propagation via Gibbs sampling (48) and loss constructed by contrasting target

distributions to the predicted distribution. Later in 2009, Salakhutdinov & Larochelle proposed

an deeper RBM, namely deep Boltzmann machine (DBM) that stacks multiple RBMs. Despite

the innovative idea for the modern neural network structure, DBM and RBM cannot be efficiently

implemented for large-scale real-world problems.
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Figure 1.6: Vanilla recurrent neural network and long/short-term memory cell.

1.3.2.2 Deep Belief Network

The widely-known gradient back-propagation algorithm (see Alg. 2) is originated from Hinton’s

work on deep belief network (DBF) that describes a category of deep neural networks with hidden

units (latent variables), whose neurons are disconnected in the same layer, whereas connected

between layers. The gradient back-propagation updates weight ωi j(t) at the timestamp t + 1 by

adding the increments derived from the partial derivative of a loss function in regarding to ωi j(t).

This training strategy is firstly implemented to RBM, it then becomes the modern training strategy

for DBF, such as MLP and autoencoder (91).

1.3.3 Long/Short-Term Memory

In the field of classifying and predicting on time-series data, states of long distance recurrent neu-

rons of vanilla RNN (39; 80) solver are overwhelmed by nearby neurons. Long/Short-term memory

network (LSTM) is proposed by Hochreiter & Schmidhuber to strengthen the impact of long-term

relationships. Moreover, LSTM alleviates the vanilla RNN’s well-known long-term gradients van-

ishing (or exploding) problem by leveraging on the gated structure of neurons. LSTM sets records

for the prediction tasks based on time-series data, whose long and short term relationships between

moments are particularly important.
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The structural differences between vanilla RNN and LSTM are shown in Fig. 1.6. Unfolded

RNN has one hidden layer to receive time-series data. The hidden state ht at timestamp t only

transmits to the neighboring neuron. There are weights matrices signifying the transitions W t
x from

input xt to the hidden state at moment t, W t
t−1 from hidden state at moment t −1 to the hidden state

at moment t, and W y
t from the hidden state at moment t to output yt . It shoud be noted that, as there

are lots of connections in LSTM, the weights matrices are not annotated in the figure.

1.3.3.1 Vanilla RNN Inference

Using a hyperbolic tangent activation function tanh, and assume the xt and ht are column vectors

with the same size5, the state update can be formulated as

yt := f (xt ,ht) :=W y
t • ht , ht := tanh(W t

x xt +W t
t−1ht−1).

Three weights matrices are the trainable parameters of vanilla RNN model that memories the state

of vanilla, which are trained via ground-truth and gradient back-propagation algorithm as MLP.

Gradient vanishing problem occurs when the sequence is long enough, that the gradients propagate

to very early inputs are recurrently multiplied to small values till diminishing, or it may propagate

to exploding values that disable the entire network.

1.3.3.2 State Updating in LSTM

Besides the tanh (T in Fig. 1.6) activation that output values ranged from -1 to 1, LSTM also

implements sigmoid activation function sigmoid (S in Fig. 1.6). As depicted in Fig. 1.6, the output

for forget gate is O f = ct−1 ⊙ ft , where ct−1 is the cell state at moment t − 1, ⊙ signifies the

Hadamard product, and ft = sigmoid(W f
x xt +Wf ht−1) ∈ (0,1). It is obvious that if ft → 1, then

O f ≈ ct−1 indicating almost nothing is forgot; if ft → 0, then O f ≈ 0 indicating everything is

almost forgot. For the input gate, state it = sigmoid(W i
xxt +Wiht−1), and new information c̃t =

tanh(W c
x xt +Wcht−1), then the cell update ct = Oi +O f , where Oi = it ⊙ c̃t . Since each element of

5The same assumption for the variables c, h, x, y etc. except the weight matrix W .
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c̃t can be negative, positive or zero, Oi signifies a residual to update the previous cell state ct . The

output gate has two tasks outputting the cell state ct and hidden state ht to the moment at t +1, as

well as formulating hidden state ht as the cell output yt for training. The hidden state is formulated

as ht = ot ⊙ tanh(ct), where ot = sigmoid(W o
x xt +Woht−1). ht can be viewed as part of cell state

ct being exposed to the exterior, while hiding the other parts of cell state. Cho et al. proposed a

variant of LSTM, which is known as the gated recurrent unit (GRU) that exposes the entire cell

state to the exterior. Both LSTM and GRU outperform vanilla RNN in the speech translation task.

1.4 Introduction to Convolutional Neural Network

MLP and RNN try to mimic the brain neurons in different topologies, while CNN aims at sim-

ulating animals’ visual cortices. Different from other categories of artificial neural networks in-

troduced so far, CNN has a shorter history of development due to insufficient knowledge upon

human’s cone cells and the difficulties in training. Though CNN belongs to the category of FFN, it

has gained huge popularity in the field of computer vision and pattern recognition on both 1D and

multi-dimensional signals.

1.4.1 Milestones

Understanding the Visual Receptive Field The modeling of animals’ receptive field (72; 73)

indicates facts that one visual neuron is activated only to a region of visual space and visual cells

are sensitive to the orientations of straight edges within one receptive field, while being insensitive

to spacial locations of the edges. The idea that visual neurons can be individually activated by local

visual stimuli, along with the spacial invariant property establishes the foundations of CNN.

Neocognitron The first prototype of CNN is named after ‘neocognitron’ (44), which is inspired

by Hubel & Wiesel’s works. In this work, Fukushima & Miyake construct a layer-by-layer com-

putational model to model the visual cortex. Neocognitron is a hierarchy model that takes single

circular-shaped receptive field of an image as its input, then connects to its higher-level recep-
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Figure 1.7: LeNet-5 (92) architecture for handwriting recognition.

tive fields in the following layers. The design of neocognitron that receptive fields are sparsely

correlated evolves to the modern convolutional neural network architecture.

Achieve Shifting Invariance Waibel et al. introduced the time delay neural network (TDNN)

whose motivation is to automatically classify 1-D phoneme in speech recognition. This work firstly

achieved shift-invariance via removing uncorrelated dependencies in gradients back-propagation

training and convolution. Hampshire & Waibel expanded the vanilla TDNN to 2-D case that can

process images, which inspires the principles for modern CNN. However, their proposed neural

networks are trained via Bayesian maximum-a-posteriori (MAP) learning (127) other than the

gradients back-propagation.

Modern Convolutional Neural Network In 1989, LeCun et al. proposed a widely-known 5-

layered CNN (see Fig. 1.7), namely LeNet-5, that solves the training problem for 2D image input

using gradients back-propagation. Training of LeNet-5 is achieved by minimizing a global loss

function using gradient-based approaches. Another essential contribution of this work is the train-

ing for multi-layer CNN. Each layer of LeNet can be interpreted as a graph transformer (GT)

module that gets graph/graphs input and output a graph. Cascade GT modules construct a hierar-

chical GT network (GTN) that communicates states and gradients in the form of directed graphs

between modules. It is also noteworthy that its gradients back-prorogation learning makes three ap-

proximations to drop the off-diagonal gradients, ensures that second derivatives are non-negative,
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and calculates an average of gradients on a small subset instead of the entire training set. As for

the architecture of LeNet-5, its backbone network consists of 4 convolutional layers, and its head

network consists of 2 fully-connected layers and 1 RBF layer. This backbone-head architecture

features the modern architecture of CNN.

1.4.2 From Time-Series to Image Filtering

1.4.2.1 Cross-Correlation and Convolution

Concepts of cross-correlation and convolution are derived from the time-series analysis of signal

processing (134). Given two continuous time-series 1D signals x(t) and w(t) in the real number

field, the cross-correlation between two signals is defined as

(x◦w)(τ) =
ˆ +∞

−∞

x(t)w(t + τ)dt, (1.13)

that is, given an offset τ ∈ R, w(t) is firstly shifted τ moments leftwards if τ > 0, or rightwards if

τ < 0, then multiplies x(t) across the time domain, followed by the integration. The convolution

between x(t) and w(t) is defined as

(x∗w)(t) =
ˆ +∞

−∞

x(τ)w(t − τ)dτ, or

(x∗w)(τ) =
ˆ +∞

−∞

x(t)w(−t + τ)dt.
(1.14)

Relate Eqn. 1.14 to Eqn. 1.13, at the moment τ , convolution firstly flips the signal w(t) to

w(−t) then performs cross-correlation with respect to the offset τ . For the discrete times-series

signals x[t] and w[t], the cross-correlation and convolution are defined as

(x◦w)(τ) =
+∞

∑
t=−∞

x[t]w[t + τ], (x∗w)(t) =
+∞

∑
τ=−∞

x[τ]w[t − τ]. (1.15)
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Figure 1.8: One vanilla convolutional layer.

1.4.2.2 2D Discrete Convolution

An image can be viewed as the discrete form of 2D signals whose integral coordinates (i, j) of pix-

els indicate the moments along height-wise and width-wise dimensions. The 1D-case of Eqn. 1.14

can be promoted to 2D-case (or higher dimension), i.e.,

(x∗w)(i, j) =
+∞

∑
τ1=−∞

+∞

∑
τ2=−∞

x[τ1,τ2]w[i− τ1, j− τ2]. (1.16)

Eqn. 1.16 demonstrates the convolution in a row-wise style. The convolution can also be

performed column-wise by exchanging the variables τ1 and τ2. Here x(t) signifies an input image,

and w(t) is known as the filtering kernel for a image filter. Similar to the 1D case, the filtering

kernel is flipped as w(−i,− j) first at the moment (τ1,τ2), which can be described as rotation by

180◦. Also, 0s can be assigned to indexes outside the boundaries of a fixed-sized filtering kernel.

1.4.3 Vanilla Convolutional Network

The convolutional layers of LeNet (92) are widely implemented in state-of-the art CNN-based

approaches. A 32×32 Input image is down-sampled by convolutions to smaller feature volumes

with multi-channel feature maps. In 1990, Yamaguchi et al. implemented max-pooling as a down-
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sampling technique for TDNN, which becomes popular to CNN implementations. To illustrate

the changes in feature sizes (see Fig. 1.8), assume the size of input feature map6 to a vanilla

convolution layer is H ×W ×Cin, the zero-padding length is ∆H and ∆W such that the size of

padded image is Win×Hin = (H+2∆H)×(W +2∆W ) and the filter-size of convolutional kernel is

h×w. Assume there are Cout sets of convolutional kernels in the vanilla convolutional layer, theses

kernels independently filter the input feature volume w/o mutual connections between any two

kernels7. Moreover, assume the kernel slides across the feature plane with height-wise stride sh

and width-wise stride sw. Eqn. 1.17 illustrates the calculation of sizes to the output feature volume.

Hout = ⌊H +2∆H −h
sh

⌋+1, Wout = ⌊W +2∆W −w
sw

⌋+1. (1.17)

It should be noted that w ≤ Win and h ≤ Hin, the depth (or channels) of output feature vol-

ume is equivalent to Cout . CNN is trained via BP learning, different from the GTN-based gradi-

ents back-propagation (92). A numerical analysis for fully-convolutional neural network will be

demonstrated in Chapter 2.

1.5 Hybrid Neural Network

Biological neurons can either be simulated via computational models such as CNN, or they can

be simulated via physical simulation, or being simulated using both. A representative category

of HNN is Spiking neural network (SNN, 116). SNN simulates the bioelectrical signals of brain

cells, that each spike neuron is considered as a response function w.r.t. continuous timing. When a

spiking neuron fires, the output a strong pulse, otherwise the output response is weak. This process

can be modeled as feeding analogy signal to SNN, and then get boolean outputs, which can be

implemented to logic devices (202). SNN has been extended to a deeper network (138), but not yet

competitive against non-spiking neural network in image recognition tasks. Recently, novel HNNs

6An color image can be regarded as a feature volume with three RGB channels, while a greyscale can be regarded
as a one-channel feature map.

7How convolutional kernels filter input feature volume will be illustrated in Chapter 2.
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have been proposed to construct a physical neural network (210) or link to real biological nerve

system such as the brain of a fruit fly (100).
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Chapter 2

Methodology of Convolutional Neural Network

Abstract

This chapter is an overview of the fundamental theories and techniques of modern CNN.

The basics of a convolutional layer with activation function and deconvolutional layer are

introduced in Section. 2.1. BP learning algorithms for CNN without leveraging on graph

models are discussed in Section 2.2. In terms of constructing a convolutional neural network,

several crucial techniques are introduced, including loss functions (Section. 2.3), pooling

(Section. 2.4), and normalization (Section. 2.5). Finally, the implementation procedures

are illustrated in Section. 2.6, along with the techniques for training such as regularization,

dropout layer, and optimizers. As the development of modern CNN evolves very fast, there

will be more and more novel techniques to boost the performance of modern CNN.

2.1 Convolutional Layer and Deconvolutional Layer

2.1.1 Activation Function

In convention, as well as imitating the behavior of visual neurons, each CNN layer is followed by

an activation layer according to MLP and RNN designs. This layer processes all features from a

feature volume x and outputs a feature volume y exactly the same size as x. To avoid the classical

gradient diminishing problem for multi-layer CNN using sigmoid or tanh activation functions,

rectified linear unit (ReLU) (129) activation function with the form y = ReLU(x) = max(0,x)

becomes popular for the deep CNN network. At beginning, ReLU is implemented for RBM, later
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becomes popular for CNN for its simplicity and easy implementation. Its non-linearity ensures

that multi-layer CNN acts different from a single-layer CNN. The fact that when input x > 0, the

derivative of ReLU(x) is always 1 such that it populates gradients without loss, and this feature of

ReLU is particularly suitable for ultra-deep CNN designs. However, it implies another problem

that if the gradients are large enough in layers, the gradient back-propagated to shallow hidden

layers would be extremely large, that is, the problem of gradient exploding.

One may wonder what’s the best activation function layer for an given task using CNN. Unfor-

tunately, the performance of activation functions tends to be unpredictable, and it largely depends

on the input data and the model itself. There are varieties of activation functions since the proposal

of ReLU , for instance, leaky rectified linear unit (Leaky ReLU , 115) that alleviates the ‘dead neu-

ron’ problem caused by the negative inputs to ReLU , Gaussian error linear unit (GELU , 192) that

smooths the rigid ReLU function, and ReLU6 (68) that adds a constant upper-bound 6 to ReLU

when x≥ 6 to control the output etc. To be consistent with the notations in Chapter 1, the activation

function layer is represented by σ(x).

2.1.2 Deconvolution or Transposed Convolution?

2.1.2.1 Deconvolutional Layer

Deconvolution is a classical problem in signal processing. The task of deconvolution is to inverse

the effect caused by a convolutional kernel, which is also called image restoration (22). Wiener

filtering is widely implemented to remove known types of noises in images such as white noise

and Gaussian blurring. Also, deconvolution can be estimated using inverse Fourier transform from

frequency domain to spacial domain. The basic perspective of deconvolution is that, it reconstruct

the original image. This idea is further implemented as a deconvolutional layer (228; 227), but not

in the sense of classical image filtering. In this work, the authors implement a pipeline that has the

potential to be fitted to a CNN by minimizing the reconstruction error of input image. One decon-

volutional layer introduces sparse pooling and unpooling techniques, and multiple deconvolutional

layers can be stacked to a network, which is then trained using gradients back-propagation. The
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卷积网络中的误差反向传播算法 
 
一. 仅有卷积层+激活函数层 
 
前向过程如下图所示：图中给出了滤波器和特征图的尺寸信息，蓝色为隐含层(1 ≤ 𝑙𝑙′ ≤ 𝑙𝑙)，绿色

为输入层(𝑙𝑙′ = 0)，橙色为输出层(𝑙𝑙′ = 𝑙𝑙 + 1)和损失函数层𝐿𝐿(𝑦𝑦𝑙𝑙 ,𝑦𝑦)。第𝑙𝑙′激活函数层的输出为𝑦𝑦𝑙𝑙′，
设所有激活层都采用相同的激活函数𝜎𝜎(∙)，则𝑦𝑦𝑙𝑙 = 𝜎𝜎(𝑢𝑢𝑙𝑙)，𝑢𝑢𝑙𝑙为第𝑙𝑙层卷积层的输出结果。 
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1. 输出层向第𝒍𝒍层隐含层的反向误差传播 

 

(1) 前向过程 

对于𝑦𝑦𝑙𝑙 = 𝜎𝜎(𝑢𝑢𝑙𝑙)的前向过程，有如下关系成立：𝑢𝑢𝑙𝑙 = ∑ 𝑂𝑂1𝑙𝑙 [𝑘𝑘]𝐶𝐶𝑙𝑙−1
𝑘𝑘=0 ，表示卷积层的最终输出𝑢𝑢𝑙𝑙由𝐶𝐶𝑙𝑙

个滤波器组的滤波结果分别按像素对应位置堆叠而成，这样特征图𝑢𝑢𝑙𝑙具有𝐶𝐶𝑙𝑙个通道。𝑂𝑂1𝑙𝑙 [𝑘𝑘] =

⋃ 𝑂𝑂2𝑙𝑙 [𝑠𝑠, 𝑘𝑘]𝐶𝐶𝑙𝑙−1−1
𝑠𝑠=0 ，表示第𝑘𝑘组滤波器的最终输出特征图𝑂𝑂1𝑙𝑙 [𝑘𝑘]是由该组𝐶𝐶𝑙𝑙−1个滤波器在其对应通道

𝑠𝑠上的滤波结果分别按照像素对应关系相加和而成，这样使得每组滤波器的输出单通道特征图。

最后，𝑂𝑂2𝑙𝑙 [𝑠𝑠, 𝑘𝑘] = 𝜔𝜔𝑠𝑠𝑘𝑘
𝑙𝑙 [ℎ𝑙𝑙 ,𝑤𝑤𝑙𝑙] ∗ 𝑦𝑦𝑠𝑠𝑘𝑘𝑙𝑙−1[𝐻𝐻𝑙𝑙−1,𝑊𝑊𝑙𝑙−1] + 𝑏𝑏𝑠𝑠𝑘𝑘𝑙𝑙 [𝐻𝐻𝑙𝑙 ,𝑊𝑊𝑙𝑙]，即是单个滤波器核𝜔𝜔𝑠𝑠𝑘𝑘

𝑙𝑙 在输入特征

图𝑦𝑦𝑠𝑠𝑘𝑘𝑙𝑙−1上的卷积运算，还要在输出特征图的每个像素位置处加上相同的偏置项𝑏𝑏𝑠𝑠𝑘𝑘𝑙𝑙 。整理所有变

量，可得如下关系： 

𝑦𝑦𝑙𝑙 = 𝜎𝜎(𝑢𝑢𝑙𝑙) = 𝜎𝜎 �� � 𝜔𝜔𝑠𝑠𝑘𝑘
𝑙𝑙 [ℎ𝑙𝑙 ,𝑤𝑤𝑙𝑙] ∗ 𝑦𝑦𝑠𝑠𝑘𝑘𝑙𝑙−1[𝐻𝐻𝑙𝑙−1,𝑊𝑊𝑙𝑙−1] + 𝑏𝑏𝑠𝑠𝑘𝑘𝑙𝑙 [𝐻𝐻𝑙𝑙 ,𝑊𝑊𝑙𝑙]

𝐶𝐶𝑙𝑙−1−1

𝑠𝑠=0

𝐶𝐶𝑙𝑙−1

𝑘𝑘=0

� 

我们感兴趣的是𝑂𝑂2𝑙𝑙 [𝑠𝑠, 𝑘𝑘]的数学形式，即卷积运算的具体计算形式。根据信号处理中的卷积有以

下结论（之前的资料需改正变量𝑖𝑖, 𝑗𝑗的顺序）： 

𝑂𝑂[𝑃𝑃,𝑄𝑄] = � � 𝑥𝑥[𝑖𝑖, 𝑗𝑗]
+∞

𝑖𝑖=−∞

⨂
+∞

𝑗𝑗=−∞

𝜔𝜔[𝑚𝑚1 − 𝑖𝑖,𝑚𝑚2 − 𝑗𝑗] 

考虑原点位于左上角图像坐标系，沿图像宽度延伸方向为 Y 轴，高度延伸方向为 X 轴。当
ℎ𝑙𝑙 ,𝑤𝑤𝑙𝑙为奇数时，设𝑚𝑚 = (ℎ𝑙𝑙 − 1)/2,𝑛𝑛 = (𝑤𝑤𝑙𝑙 − 1)/2，若卷积核的局部坐标系以中心像素坐标为

原点，方向为图像坐标系正向，则卷积核权重可由其局部坐标变量(𝑝𝑝, 𝑞𝑞)，其中 𝑝𝑝 ∈ [−𝑚𝑚,𝑚𝑚],𝑞𝑞 ∈
[−𝑛𝑛,𝑛𝑛]，自上而下，自左向右地进行遍历。同时，(𝑝𝑝, 𝑞𝑞)还可表示为相对于卷积核中心(0,0)的偏移

量。容易得知，在卷积过程中，该中心位置在图像坐标系下的坐标为(𝑚𝑚 + 𝑖𝑖𝑆𝑆𝐻𝐻𝑠𝑠𝑘𝑘𝑙𝑙 ,𝑛𝑛 + 𝑗𝑗𝑆𝑆𝑊𝑊𝑠𝑠𝑘𝑘
𝑙𝑙 )，𝑆𝑆𝐻𝐻𝑠𝑠𝑘𝑘𝑙𝑙

和𝑆𝑆𝑊𝑊𝑠𝑠𝑘𝑘
𝑙𝑙 分别为沿 X 和 Y 方向上的步长，𝑖𝑖, 𝑗𝑗为整数且0 ≤ 𝑖𝑖 ≤ 𝐻𝐻𝑙𝑙 − 1，0 ≤ 𝑗𝑗 ≤ 𝑊𝑊𝑙𝑙 − 1。由此可得

图像卷积计算式为： 

𝜔𝜔𝑠𝑠𝑘𝑘
𝑙𝑙 ∗ 𝑦𝑦𝑠𝑠𝑘𝑘𝑙𝑙−1 = � � � � � 𝜔𝜔𝑠𝑠𝑘𝑘

𝑙𝑙 (𝑝𝑝, 𝑞𝑞)
𝑚𝑚

𝑝𝑝=−𝑚𝑚

𝑛𝑛

𝑞𝑞 =−𝑛𝑛

⋅ 𝑦𝑦𝑠𝑠𝑘𝑘𝑙𝑙−1(𝑝𝑝 + 𝑚𝑚 + 𝑖𝑖𝑆𝑆𝐻𝐻𝑠𝑠𝑘𝑘𝑙𝑙 , 𝑞𝑞 + 𝑛𝑛 + 𝑗𝑗𝑆𝑆𝑊𝑊𝑠𝑠𝑘𝑘
𝑙𝑙 )�
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Figure 2.1: A (l +1)-layers convolutional neural network framework.

name ‘deconvolutional layer’ becomes widely known among computer vision community (173)

although it is not mathematically strict in definition.

2.1.2.2 Transposed Convolutional Layer

Dumoulin & Visin argued that the ‘deconvolutional layer’ has already been defined as the ‘inverse

of convolution’ such that it cannot be redefined, and they defined the ‘transposed convolution’

instead. Shi et al. showed that the transposed convolution layer can achieve the same result as of the

fractional convolution layer (147). Transposed convolution is not the convolution with a transposed

kernel, but firstly padding zeros to the input feature, then performing vanilla convolution using a

fixed-sized convolutional kernel. More details of the calculations can be found in the guide (38)

for more details in the calculations. It should be noted that deconvolutional layer is used for up-

sampling the feature map to desired sizes. This indicates the capability of CNN in learning missing

information in low-resolution images by minimizing the errors between reconstructed feature map

and its groundtruth.

2.2 Gradients Back-propagation with Activation Functions

In this section, we firstly establish a simple convolutional neural network to illustrate the variables,

and the relevance between inputs and outputs. Then the gradients back-propagation algorithms

for hidden layers is demonstrated in mathematical notations to explore the possibilities to train the

built CNN from scratch. As there are varieties of convolutional networks, this section only focuses
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Figure 2.2: An example of one convolutional layer with a 3-set kernel activation.

on the vanilla CNN described in Chapter 1.

2.2.1 Model and Constraints

Lets consider a (l+1)-layers CNN model as shown in Fig. 2.1 with each hidden convolutional layer

followed by an activation layer1. The l blue blocks signify all l′− th, 1 ≤ l′ ≤ l feature volumes,

each feature volume is the output of one hidden convolutional layer. The orange blocks indicate the

l′− th (l′ = l+1) output layer that computes loss w.r.t. groundtruth as a scalar L(yl,y). Assume all

activation function layers are leveraged on the same activation function σ(·), i.e., output of l′− th

hidden layer yl′ = σ(ul′) where ul′ is the intermediate results input to its following activation layer.

y in the loss function signifies the groundtruth.

2.2.2 Gradients to the Last Hidden Layer

2.2.2.1 Forward Pass

For the l − th hidden layer, we know that, yl = σ(ul), ul =
⋃Cl

k=1 Ol
1[k], which indicates that the

intermediate output ul of the last hidden layer is the channel-wise concatenation of Cl filtering

results by Cl sets (or groups) of convolutional kernels with the same size of hl ×wl . Concatenated

in this way, feature volume ul has Cl channels. Moreover, Ol
1[k] = ∑

Cl−1

s=1 Ol
2[s,k], which signifies

1The activation function layer is not annotated Fig. 2.1 since it can be combined into a vanilla convolutional layer
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that the output of k− th set of convolutional kernels (refer to Fig. 2.2) is the element-wise addition

of the outputs Ol
2 using Cl−1 filters2 in that set. Ol

2 is formulated as

Ol
2[s,k] = ω

l
sk[h

l,wl]⊛ yl−1
sk [H l−1,W l−1]+bl

sk[H
l,W l], (2.1)

where bl
sk is the bias to each kernel with a size of H l ×W l , ‘⊛’ operator signifies the convolution

(refer to Eqn. 1.16) without flipping. Organize the variables and Eqn. 2.1, Eqn. 2.2 denotes the

relation between convolution and yl:

yl = σ(ul) = σ

 Cl⋃
k=1

Cl−1

∑
s=1

(
ω

l
sk[h

l,wl]⊛ yl−1
sk [H l−1,W l−1]+bl

sk[H
l,W l]

) . (2.2)

What we are interested in is the computational form of Ol
2. Refer to Eqn. 1.16, firstly, set a

feature coordinate system whose origin locates at the very top-left corner, the Y -axis stretches along

width-wise direction, while the X-axis stretches along height-wise direction. If both hl and wl are

odd numbers3, we let m = hl−1
2 , n = wl−1

2 . Also, if the local coordinate system of a convolutional

kernel takes its center as the local origin, and its increasing directions of axis are consistent with

feature coordinate system, then the weights of the convolutional kernel can be traversed via local

coordinates. In addition, (p,q) can also denote the offsets relative to center (0,0). With these

notations, it is obvious that, during the convolution process, the image of kernel center in feature

coordinate system is (m+ iSH l
sk,n+ jSW l

sk), where SH l
sk and SW l

sk signify the strides along X-

and Y - axis, i, j are integers within the ranges [0,H l − 1], [0,W l − 1]. Now we can formulate the

convolution4 as

ω
l
sk ⊛ yl−1

sk =
H l−1⋃
i=0

W l−1⋃
j=0

[
m

∑
p=−m

n

∑
q=−n

ω
l
sk(p,q) • yl−1

sk (p+m+ iSH l
sk,q+n+ jSW l

sk)

]
. (2.3)

2Each convolutional filter convolves one channel of feature map of the input H l−1 ×W l−1 ×Cl−1 feature volume.
Therefore, there are totally Cl−1 convolutional kernels in each set.

3Which is natural since odd kernel sizes are usually implemented, otherwise using the halves of hl and wl .
4This only performs the cross-correlation step of Eqn. 1.16 since we assume the kernel ω l

sk has been transposed
beforehand. The

⋃
operator also signifies height-wise or width-wise concatenation here.
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If hl and wl are both even numbers, let m = hl

2 , n = wl

2 . In this case, the center of convolutional

kernel is ambiguous since local center (0,0) doesn’t exist. However, we can still leverage on the

relative positions for calculations. Rethink the Eqn. 2.3, if we move the origin of local coordinate

system to the top-left corner of kernel, the convolution can be formulated as

ω
l
sk ⊛ yl−1

sk =
H l−1⋃
i=0

W l−1⋃
j=0

[
hl−1

∑
p=0

wl−1

∑
q=0

ω
l
sk(p,q) • yl−1

sk (p+ iSH l
sk,q+ jSW l

sk)

]
. (2.4)

Eqn. 2.4 can be applied to both the cases when hl, wl are odd or even. Take Eqn. 2.4 into the

expression of Ol
2 (Eqn. 2.1), this output can be formulated as

Ol
2[s,k] =

H l−1⋃
i=0

W l−1⋃
j=0

[
hl−1

∑
p=0

wl−1

∑
q=0

ω
l
sk(p,q) • yl−1

sk (p+ iSH l
sk,q+ jSW l

sk)

]
+bl

sk[H
l,W l]. (2.5)

After the modeling of one convolutional layer (with an activation function layer), the next step

is to calculated the gradients back-propagation in that layer.

2.2.2.2 Gradients Back-Propagation

Similar to MLP, we can also apply BP algorithm (refer to Alg. 2) for updating the weights of ω l
sk

iteratively by

ω
l
sk = ω

l
sk −η∆ω

l
sk, (2.6)

where η is the learning rate, and ∆ω l
sk indicates the gradients back-propagated from loss function

to the kernel. The key is then to compute the mathematic form of ∆ω l
sk. According to the chain

rule, we know

∆ω
l
sk(p,q) = ∑

∂L
∂ω l

sk(p,q)
= ∑

[
∂L
∂yl ⊙

∂yl

∂ul ⊙
∂ul

∂Ol
1[k]

⊙
∂Ol

1[k]
∂Ol

2[s,k]
⊙

∂Ol
2[s,k]

∂ω l
sk(p,q)

]
, (2.7)

where the summation operator denotes the gradients propagated to wl
sk(p,q) equals to the total

contribution of all related terms, and the Hadamard product ‘⊙’ indicates the contribution is only
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relates to the corresponding position between feature volumes.

Consider each term of Eqn. 2.7, ∂L
∂yl has a size of H l ×W l ×Cl , ∂yl

∂ul has a size of H l ×W l ×Cl .

∂ul

∂Ol
1[k]

only related to k− th output of Ol
1, which has a size of H l ×W l ×Cl that all channels except

k− th channel are filled with zeros, while the k− th channel of feature map is filled with ones.

This indicates the transition of errors from the loss to the k− th feature map. ∂Ol
1[k]

∂Ol
2[s,k]

indicates the

error transition from k− th feature map to the filtering output of s− th kernel, which has a valid

size of H l ×W l ×1, and being filled with ones. Thus, we can expand it to the same H l ×W l ×Cl

gradients volume as of ∂ul

∂Ol
1[k]

. The last term ∂Ol
2[s,k]

∂ω l
sk(p,q)

is directly relevant to ω l
sk. In the following

part, we are going to deduce a computational form of this derivative.

According to Eqn. 2.5, it is obvious that

∂Ol
2[s,k]

∂ω l
sk(p,q)

=
H l−1⋃
i=0

W l−1⋃
j=0

yl−1
sk

(
p+ iSH l

sk,q+ jSW l
sk

)
, (2.8)

in which 0 ≤ p ≤ hl −1, 0 ≤ q ≤ wl −1, and the size of its gradient matrix is H l ×W l ×1. Eqn. 2.8

can also be extended to H l ×W l ×Cl by padding zeros. Therefore, Eqn. 2.7 can be expressed as

∆ω
l
sk(p,q) = ∑

 ∂L
∂yl ⊙σ

′(ul)

∣∣∣∣
sk
⊙

H l−1⋃
i=0

W l−1⋃
j=0

yl−1
sk

(
p+ iSH l

sk,q+ jSW l
sk

)
H l×W l

. (2.9)

Let δ l
sk =

∂L
∂yl ⊙σ ′(ul)

∣∣∣
sk

denote the gradient matrix transmitted to the s− th filtering output,

∆ω
l
sk(p,q) = ∑

δ
l
sk ⊙

H l−1⋃
i=0

W l−1⋃
j=0

yl−1
sk

(
p+ iSH l

sk,q+ jSW l
sk

)
H l×W l

= ∑

H l−1⋃
i=0

W l−1⋃
j=0

[
δ

l
sk(i, j) • yl−1

sk

(
p+ iSH l

sk,q+ jSW l
sk

)]
H l×W l

=
H l−1

∑
i=0

W l−1

∑
j=0

[
δ

l
sk(i, j) • yl−1

sk

(
p+ iSH l

sk,q+ jSW l
sk

)]
,

(2.10)
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The gradient computation for the entire kernel is then formulated as

∆ω
l
sk[h

l,wl] =
hl−1⋃
p=0

wl−1⋃
q=0

H l−1

∑
i=0

W l−1

∑
j=0

[
δ

l
sk(i, j) • yl−1

sk

(
p+ iSH l

sk,q+ jSW l
sk

)]
. (2.11)

Eqn. 2.10 is the computational form for ∆ω l
sk(p,q), it can be inferred from the conclusion that

each position of kernel is related to multiple positions depending on how the kernel moves across

a feature map. It is the underlying reason for single convolutional kernel to be sparsely connected

to a feature map. This also expands the receptive field that is explicitly considered as the entire

region of the convolutional kernel. Take a 2-D cross-correlation into consideration, Eqn. 2.11 can

be further simplified as Corollary. 2.2.0.1:

Corollary 2.2.0.1 (Strided Convolution). Given a 2D feature map y ∈ RH×W , 2D convolutional

kernel ω ∈ Rh×w, the gradients matrix δ ∈ RH×W back propagated to y. The gradients ∆ω back-

propagated to ω can be defined as a strided convolution

∆ω = δ ⊚ y =
h−1⋃
p=0

w−1⋃
q=0

H−1

∑
i=0

W−1

∑
j=0

[δ (i, j) • y(p+ ish,q+ jsw)] , (2.12)

where sh and sw are strides along height-wise and width-wise directions respectively. The Con-

straints of models, local and feature coordinate systems, operators are consistent with the defini-

tions in Section. 2.2.2.

Noted that strided convolution is not the same 2D convolution (refer to Eqn. 1.16) in the con-

text of signal processing due to the strides and non-transposed kernel. It’s easier to compute the

gradients to bias matrix bl
sk[H

l,W l], which is a H l ×W l matrix equals to δ l
sk according to Eqn. 2.2.
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Figure 2.3: Sliding kernel (left) and fixed kernel (right) at meantime.
The figures only show the case when height-wise and width-wise strides (SH l,SW l) are divisible
by (H l−1 −hl,W l−1 −wl) respectively.

2.2.3 Another Perspective to Convolution

Convolution can be viewed in another perspective via relative motion. To illustrate this concept,

reconsider the cross-correlation term in Eqn. 2.4 as

(ω l
sk ◦ yl−1

sk )(i, j) =
hl−1

∑
p=0

wl−1

∑
q=0

ω
l
sk(p,q) • yl−1

sk (p+ iSH l
sk,q+ jSW l

sk). (2.13)

(i, j) indicates the i− th height-wise position and j− th width-wise position of sliding kernel

wl
sk on fixed feature map yl−1

sk . The range of i, j depends on the sizes of both:

0 ≤ i ≤ ⌊H l−1 −hl

SH l
sk

⌋= H l −1, 0 ≤ j ≤ ⌊W l−1 −wl

SW l
sk

⌋=W l −1.

This is to say, as shown in Fig. 2.3 (left image), feature map yl
sk is fixed and the convolutional

kernel slides from the initial position (i, j) (the lower-right yl−1 in left image), and ends at the

last position as depicted as the upper-left yl−1. This process can also be viewed as an reversed

sliding of yl−1 along padded ω l
sk (denoted as ω l in the figure). For the former case, we deduce the

Eqn. 2.8, but it is applicable to calculate the gradients w.r.t. yl−1
sk in Eqn. 2.13. However, the latter,
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or the equivalent form can be described as:

(yl−1
sk ◦ω

l
sk)(i, j) =

H l−1−1

∑
p=0

W l−1−1

∑
q=0

yl−1
sk (p,q) • ω̃

l
sk(p+ h̃l

0 − iSH l
sk,q+ w̃l

0 − jSW l
sk), (2.14)

in which ω̃ l
sk indicates the entire padded map (Fig. 2.3, right image), the coordinates are computed

by transition. The first element of original ω l
sk in feature coordinate system of ω̃ l

sk is (h̃l
0, w̃

l
0) =

((H l −1) • SH l
sk,(W

l −1) • SW l
sk), and the ‘large kernel’ moves leftwards and upwards towards the

origin of feature coordinate system with strides SH l
sk and SW l

sk.

2.2.4 Gradients Between Hidden Layers

In this section, the gradients back-propagation between hidden layers are presented in mathemat-

ical notations. The constraints are the same as those in section. 2.2.2. Assume we’ve known the

gradients volume δ l =
{

δ l
k|1 ≤ k ≤Cl} back-propagated to the l − th layer, and we know that δ l

k

is propagated to δ l
sk with the same valid values whereas different in sizes. If we can deduce the

relationship between δ l
sk and δ

l−1
sk , then the gradients transmitted to the (l −1)− th layer become

more explicit. Recall the definition δ l
sk = ∂L

∂yl ⊙σ ′(ul)
∣∣∣
sk

, likewise, δ
l−1
sk = ∂L

∂yl−1 ⊙σ ′(ul−1)
∣∣∣
sk

.

Apply chain rule to δ l
sk, that

δ
l−1
sk =

∂L
∂yl ⊙

∂yl

∂ul ⊙
∂ul

∂Ol
1[k]

⊙
∂Ol

1[k]
∂Ol

2[s,k]
⊙

∂Ol
2[s,k]

∂yl−1 ⊙σ
′(ul−1)

∣∣∣∣
sk

= δ
l
sk ⊙

∂Ol
2[s,k]

∂yl−1
sk

⊙σ
′(ul−1

k )

, (2.15)

Ol
2[s,k] is calculated according to Eqn. 2.1, 2.4 and 2.14, and

Ol
2[s,k] = ω

l
sk ⊛ yl−1

sk +bl
sk =

H l−1⋃
i=0

W l−1⋃
j=0

(yl−1
sk ◦ω

l
sk)(i, j)+bl

sk. (2.16)
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It is obvious that we can utilize Eqn. 2.14 and 2.16 to compute the term

∂Ol
2[s,k]

∂yl−1
sk (p,q)

=
H l−1⋃
i=0

W l−1⋃
j=0

ω̃
l
sk(p+ h̃l

0 − iSH l
sk,q+ w̃l

0 − jSW l
sk). (2.17)

According to Eqn. 2.17, the sizes of both δ l
sk and Ol

2 are H l ×W l ×1, which is not consistent

with the size of yl
sk and the following term σ ′(ul−1

k ), as well as the output δ
l−1
sk . Thus, there is a

shape transformation during the calculation phase of δ l
sk ⊙

∂Ol
2[s,k]

∂yl−1
sk

. First, calculate δ l
sk ⊙

∂Ol
2[s,k]

∂yl−1
sk (p,q)

that indicates the propagation from δ l
sk to yl

sk(p,q), next, sum up all contributions to form the

overall contribution to the element yl
sk(p,q), the last step is to construct the overall contribution

map from δ l
sk to ysk. With Eqn. 2.17, this procedure is formulated as:

δ
l
sk ⊙

∂Ol
2[s,k]

∂yl−1
sk

=
H l−1−1⋃

p=0

W l−1−1⋃
q=0

∑

H l−1⋃
i=0

W l−1⋃
j=0

δ
l
sk(i, j) • ω̃

l
sk(p+ h̃l

0 − iSH l
sk,q+ w̃l

0 − jSW l
sk)


=

H l−1−1⋃
p=0

W l−1−1⋃
q=0

[
H l−1

∑
i=0

W l−1

∑
j=0

δ
l
sk(i, j) • ω̃

l
sk(p+ h̃l

0 − iSH l
sk,q+ w̃l

0 − jSW l
sk)

]

:= δ
l
sk ⊖ ω̃

l
sk.

(2.18)

The defined operator ‘⊖’ indicates an inverted strided convolution, which leads to the corollary

of inverted strided convolution on below. Corollary. 2.2.0.2 can be promoted to shallower layers,

which facilitates the computation of weights updating according to corollary. 2.2.0.1.

Corollary 2.2.0.2 (Inverted Strided Convolution). Given constraints of models, local and feature

coordinate systems, operators are consistent with the definitions in section. 2.2.2 and 2.2.3. The

relation of values between gradient matrices δ l
sk and δ

l−1
sk can be formulated using the inverted

stride convolution defined in section. 2.2.4 as

δ
l−1
sk = δ

l
sk ⊖ ω̃

l
sk ⊙σ

′(ul−1
k ). (2.19)
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2.3 Loss Function

Loss function is a general concept to measure the error between target and outcome, thus can

be various in its form and highly-customized. The target of loss function5 for CNN is to mini-

mize the pixel-wise loss between groundtruth and predicted feature map. Loss function can be

implemented to binary (0-1) and multi-class classification problem. The most commonly imple-

mented loss functions include but not limited to MSE, MAE (both are introduced in section. 1.2

for MLP), Kullback-Leibler divergence (KL-Divergence, 88), cross-entropy loss, focal loss (103),

Huber loss (74), ranking loss (24) or alike contrastive loss(201), triplet loss (166), and margin

loss (157) for metric learning.

2.3.1 KL-Divergence

KL-Divergence is also named after ‘relative entropy’. The term entropy6 signifies the uncertainty

of a random variable defined in information theory. Assume a discrete random variable X with

limited possible values, the probabilistic distribution is defined as P(X = xi) = pi, 0 ≤ pi ≤ 1, and

1 ≤ i ≤ n, then the entropy of X is defined as

H(X) =

 −∑
n
i=1 pi log pi, pi ̸= 0

0, pi = 0
, (2.20)

due to the irrelevance to the exact values of X , H(X) merely depends on the distribution of X , thus

in the following part of this section, we let H(p) denotes H(X).

2.3.1.1 Properties of Entropy

The first property of entropy is the range of H(p): 0 ≤ H(p)≤ logn.

5It can also be named after the term ‘error function’, or ‘cost’.
6In physics, entropy is the measure for thermal energy and molecular randomness, which has a similar idea, but

different definition from the entropy in informatics.
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Proof. ∀0 ≤ pi ≤ 1, − log pi ≥ 0, this indicates H(p)≥ 0. Also, according to Jensen’s inequality,

H(p) = ∑
n
i=1 pi log 1

pi
≤ log

(
∑

n
i=1 pi • 1

pi

)
= logn. Therefore, 0 ≤ H(p)≤ logn.

Binary entropy indicates X can either be 0 or 1, the distribution of X is written as P(X = 1) =

p, P(X = 0) = 1− p, 0 ≤ p ≤ 1. Then when p = 0.5, binary entropy achieves its global maximum

if its base a > 1, and its global minimum if the base 0 < a < 1.

Proof. For binary entropy, H(p) =−p log p− (1− p) log(1− p). If p = 0, H(p) = 0, for the rest

of 0 < p ≤ 1, H(p) is continuous and differentiable. H ′(p) = log(1− p)− log p = log 1−p
p . Let

H ′(p) = 0, then p = 0.5. Next, discuss if this point is a global maximum or minimum. We know

the second derivative H ′′(p) = 1
p(1−p) ln 1

a < 0 if a > 1, and H ′′(p)> 0 if 0 < a < 1, therefore this

property is proven.

The third property is related to the second property and it describes how entropy measures

uncertainty. As the base a > 1 is commonly implemented for binary entropy, that when p =

0.5 binary entropy reaches its global maximum. This indicates the randomness of X achieves its

maximum, while for p = 0 or p = 1, the randomness drops to 0.

2.3.1.2 Relative Entropy

Given 1D true probability distributions p(x) and another 1D predicted probability distribution q(x),

where x ∈ X , X is the discrete probability space. KL-Divergence is a measure for evaluating the

similarity between two distributions. This relative entropy is defined mathematically as

DKL(p ∥ q) = ∑
x∈X

p(x) log
p(x)
q(x)

. (2.21)

Relative entropy has two important properties. The first one is DKL(p ∥ q) ≥ 0, and it can be

proved via Jensen’s inequality or Gibbs’ inequality. Two proofs are presented on below.

Proof. (using Jensen’s inequality) We know that log function is convex, so as to its linear combi-
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nations, thus the conditions are satisfied for Jensen’s inequality. We have

−DKL(p ∥ q) = ∑
x∈X

p(x) log
q(x)
p(x)

≤ log ∑
x∈X

(
p(x) •

q(x)
p(x)

)
= log

(
∑

x∈X

p(x)

)
= 0,

such that DKL(p ∥ q)≥ 0.

Proof. (using Gibbs’ inequality) Gibbs’ inequality states that, assume P = {p1, · · · , pn} is a dis-

crete probability distribution, then for any other discrete probability distribution Q = {q1, · · · , pn},

−∑
n
i=1 pi log pi ≤−∑

n
i=1 pi logqi, this would directly deduce the corollary DKL(p ∥ q)≥ 0.

The other important feature is that, DKL(p ∥ q) may not equal to DKL(q ∥ p).

2.3.2 Cross-Entropy Loss

Cross-entropy is defined as the summation of relative entropy and the entropy of true distribution:

H(p,q) = H(p)+DKL(p ∥ q), (2.22)

it is obvious from this definition that when p and q are the same distributions, DKL(p ∥ q) = 0 such

that H(p,q) hits its minimum H(p), which is the constant entropy of true distribution once p is

defined. Therefore, minimizing cross-entropy is equivalent to minimize KL-Divergence between

two distributions. Moreover, we can deduce the computational form of cross-entropy loss from

Eqn. 2.22 that

CELoss(p,q) =− ∑
x∈X

p(x) logq(x). (2.23)

2.3.3 Focal Loss

Lin et al. put forward the concept of focal loss for 2D object detection task, which contributes to

the competitive performance in their model than larger models. Focal loss aims at alleviating the

class imbalance problem using cross-entropy loss. Consider a binary classification problem that

BCELoss(p,q) =−p0 logq0 − p1 logq1.
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If we implement one-hot encoding of groundtruth, e.g., for a 3-classes classification problem,

the category zero is represented using a vector [1,0,0]T , likewise, category one and two are rep-

resented as [0,1,0]T and [0,0,1]T . The advantage of one-hot encoding is that the category a pixel

belongs to is described as a simple probability distribution. In this case, the binary cross-entropy

loss would be

BCELoss(p,q) =

 − logq1 , argmax(p) = 1

− log(1−q1) , argmax(p) = 0
, (2.24)

the focal loss for Eqn. 2.24 is defined as

FLoss(p,q) =

 −α(1−q1)
γ logq1 , argmax(p) = 1

−(1−α)qγ

1 log(1−q1) , argmax(p) = 0
, (2.25)

where 0 < α < 1, γ > 0 are hyper-parameters that regulate the importance between positive and

negative samples, hard (False Negatives) samples and easy (True Negative) samples, respectively.

For the multi-class classification problem (more than 2 categories) and one-hot encoding, how-

ever, (103) didn’t show the multi-class focal loss. In our work (122), the following focal loss for

multi-class classification is tested.

FLoss(p,q) =−αi(1−qi)
γ logqi, i = argmax(p), and ∑

i
αi = 1. (2.26)

2.3.4 Ranking Loss

Retrieval using deep learning techniques is known as the metric learning (87), which mainly lever-

ages on a category of loss functions, i.e., the ranking loss. Distinguished from cross-entropy loss

that evaluate the similarity between two probability distributions, ranking loss aims at calculating

the relative distances between input images or vectors. There are various names for ranking loss

in different scenarios, such as contrastive loss, margin loss, hinge loss for support vector machine

(SVM, 29) etc. For instance, the triplet loss (166) is one of the most popular ranking loss, which
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can be defined as the sum of all Euclidean distances:

T Loss = ∑max(0, ∥ E(A)−E(P) ∥2 − ∥ E(A)−E(N) ∥2 +β ),

where E(·) signifies an embedding function that projects input to another regulated feature space,

A signifies an anchor input, P the positive input of the same class as of the anchor, N the negative

input belongs a different class. β is a margin between positive and negative inputs.

2.4 Pooling Layer

2.4.0.1 Max Pooling and Avergae Pooling

A category of crucial down-sampling techniques is known as pooling. Max-pooling is the earli-

est pooling technique introduced for the CNN architecture. Max-pooling process is the same to

convolution except the cross-correlation stage, that max-pooling simply calculate the maximum

value on the feature map within the region of ‘sliding convolutional kernel’ as the pooling result.

In this way, the output of max-pooling has the same number of channels as its input, and the sizes

calculated as the convolution (refer to Eqn. 1.17). Max-pooling can be formulated using notations

in Section. 2.2 as the following l − th layer after the feature volume yl−1 with a kernel ω l
mp,

max_pooling(ω l
mp,y

l−1
k ) =

H l−1⋃
i=0

W l−1⋃
j=0

[
hl−1
max
p=0

wl−1
max
q=0

yl−1
k (p+ iSH l

sk,q+ jSW l
sk)

]
. (2.27)

Similarly, when calculating the average over the region, average-pooling is formulated as:

avg_pooling(ω l
ap,y

l−1
k ) =

H l−1⋃
i=0

W l−1⋃
j=0

[
1

hl • wl

hl−1

∑
p=0

wl−1

∑
q=0

yl−1
k (p+ iSH l

sk,q+ jSW l
sk)

]
. (2.28)

Gradients back-propagated in max-pooling layer can be regarded as directly populating the

gradients from the output to all activated positions. This process is sparse according to the H l ×W l

activated positions of total H l−1×W l−1 positions. One significant defect of max-pooling is related
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to this sparsity, that strong responses are overwhelming. While for the average-pooling, which

can be viewed as a average filtering with a filter filled with 1
hl •wl , the back-propagated averaged

gradients are related to more regions as a convolutional kernel. However, average-pooling tends to

weaken strong responses, thus bringing more noise than max-pooling.

2.4.0.2 Global Pooling

Global max-pooling and global average-pooling (102) are more aggressive pooling approaches

than the techniques mentioned above. These two techniques perform pooling over the entire feature

map yl−1
k . Usually, global pooling layer is set as the layer following the last hidden convolutional

layer (e.g., after the l − th layer). Compare to a fully-connected layer, global pooling layer has no

trainable parameters, and being much simpler than the linear projection.

2.5 Normalization Layer

Normalization layer contributes greatly to the stability of training a neural network by reducing the

internal covariate shift (76). The shift occurs in every intermediate feature volume, that the network

tends to greatly change the distribution in each layer. However, we want to output a conditional

probability distribution that is the same as the groundtruth. This is how the shift contradicts with

our target. What normalization in neural networks does is to enforce the same variance and mean

to the outputs of intermediate layers, which is similar to the widely-implemented whitening during

pre-processing. For CNN, this technique is especially crucial. Normalization of feature volume

can be performed along channels, or layer-wise, or simply element-wise. The following part of

this section introduces several normalization techniques.

2.5.1 Batch Normalization

An example is shown in Fig. 2.4, given a mini-batch x consisted of 3 feature volumes x1 (green),

x2 (blue), and x3 (orange). Batch norm (76) has three steps. The first step is to calculate the batch
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Figure 2.4: Visualization of batch norm, layer norm, instance norm and group norm.

mean and variance µB and σB as

µB =
1
3

3

∑
i=1

xi, σB =
1
3

3

∑
i=1

(xi −µB)
2.

Step 2 is to normalize the entire mini-batch with with the batch mean and variance as x̂i =

xi−µB√
σ2

B+ε
. The last step is to scale and shift normalized features as y = γ • x̂ + β . ε is a small

float to avoid zero denominator, scalars γ and β are trainable parameters. The authors argued

that the scale and shift step slacks the rigid normalization by bringing in tuneable adjustments to

variance and mean, which may enhance the performance. On the other hand, this also brings in

uncertainties against normalization, which requires to be further studied. Another potential issue

related to batch norm is related to the testing stage, that if the testing batchsize is different from

the batchsize set for training, the trained scale and shift may result in unexpected outcomes. In

real-world implementations, the training for scale and shift can be turned off manually.
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2.5.2 Layer Normalization

As shown in Fig. 2.4, layer normalization (7) firstly calculates the mean and variance from each

feature volume without the scale and shift, then normalizes each feature volume with the calculated

mean and variance. The authors present its superior convergence speed in training against batch

normalization, and shows that layer normalization benefits the training of RNN in batches greatly.

2.5.3 Instance Normalization

To improve the performance of CNN for the image generator in a generative adversarial network

(GAN, 53), instance normalization (195) has the possibility to dramatically outperform batch nor-

malization. As shown in Fig. 2.4, instance normalization normalizes all features in one channel

across the entire mini-batch using their mean and variance to preserve the feature styles.

2.5.4 Group Normalization

Group normalization (211) firstly divides feature positions into groups, then normalizes each group

with its mean and variance. Also the normalized features can be scaled and shifted. Group normal-

ization is a flexible technique. It can be transformed into batch normalization, layer normalization,

or instance normalization by setting the shape of a group.

2.5.5 More Normalization Layers

Besides the four normalization techniques mentioned above, there are also weight normaliza-

tion (163) for regulating weights during training, batch-instance normalization (130) that allows the

complement of batch normalization and instance normalization, switchable normalization (110),

and cosine normalization (109) etc.
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2.6 Training, Test and Validation

2.6.1 Pre-Processing

When preparing a dataset for training a CNN, the first and foremost step is to modify the dateset

as desired to boost the generalization ability of the model. There are many widely-implemented

techniques for pre-processing, such as normalization, decoupling, purging, enhancement etc.

2.6.1.1 Normalization

The normalization (136) mentioned here is similar to the normalization layer. It enforces the dis-

tribution with given mean and variance upon samples such that the samples are subject to identical

distribution, which may boost the performance7. Another advantage of this step is that the learn-

able parameters of batch normalization layers could learn this distribution, which may stabilize

training. However, mean and variance need to be manually set, and improper mean and variance

may lead to severe gradient exploding or vanishing problems.

Uniformization is the most popular technique in normalization for neural networks. As the data

are various in their values, it should be rescaled within a certain range to enhance the robustness of

neural networks. Although rescaling to range [0,1] fits most cases, the resolution becomes much

lower for the data with a broader value range such that useful signals are dominated by noisy spikes.

In this case, normalization and data purging are always necessary before any uniformization.

2.6.1.2 Decoupling

The purpose of feature decoupling is to map raw feature to separable space for the neural networks

to learn more reasonable hyper-planes that better partition the sample space to semantic categories.

Decoupling is widely-implemented to machine learning tasks, such as the word embedding (98),

principle component analysis (PCA, 2), and singular value decomposition (181) etc.

Raw samples may appear to be duplicated or low in quality thereby need to be purged (10).

7If being lucky enough, the unknown distribution of samples may be regulated to µ ≈ 0, σ ≈ 1.
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This step is particularly important for supervised learning or small datasets, i.e, the quality of an-

notations often dominates the performance, and incorrect annotations are intuitively misleading for

the neural networks. Therefore, they should be purged for better training performance. However,

the low-quality samples can sometimes enhance the performance since they prevent the neural net-

work from overfitting. In reality, it is almost impossible to be assure that there exist no low-quality

samples even for a small dataset. The circumstances become worse for large datasets. The role of

data purging remains to be further explored.

2.6.1.3 Enhancement

Data enhancement (176), or data augmentation, has become the most successful technique de-

ployed for CNN. It is especially useful when the dataset is small, such that the samples cannot

represent the sample space8. The aims for data enhancement are to balance number of samples in

different categories, to enlarge dataset by bringing in synthetic samples, and to improve robustness

of network via affine transformations such as random rotation, random shift and random flipping,

image processing such as changing the colour contract or hue, image brightness or saturation,

Gaussian blurring, and adding pepper or white noise etc. There are also special pre-processing

techniques for different tasks depending on specific tasks. For example, for image retrieval, lower

image resolution by blurring or reduce contextual information via masking, random cropping for

generate training samples for high-resolution images, randomly shuffle training samples in order

to prevent overfitting, which is also an underlying regularization approach.

2.6.2 Training

With pre-processed samples fed to a CNN-based model, one or more forward pass is firstly per-

formed using initialized trainable parameters, then these parameters are updated from the loss

function back to the input layer via gradient propagation. This progress forms one iteration during

8Fewer samples indicate sparser sampling, distribution retrieval of sample space is severely ill-posed due to the
sparse sampling.
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Figure 2.5: Generalization ability in training, and L1-, L2- regularization terms.

training. The weights updating during one iteration can be regulated via regularization approaches

or L1- and L2-terms, as well as optimized by optimizers. The purposes of implementing the tech-

niques during training is to reach the global optimum of the convex parametric space.

2.6.2.1 Regularization

The generalization ability of one neural network model measures how good the model could clas-

sify novel samples (50; 91). Generalization ability is evaluated using the terms under-fitting,

properly-fitted, and over-fitting (refer to Fig. 2.5). LeCun et al. defined the regularization as the the

modification of learning algorithm so as to maximize its generalization ability. It should be noted

that maximizing generalization ability is not achieved via finding the minimum of loss function in

training (see Fig. 2.5), and the data enhancement mentioned above belongs to one category of reg-

ularization. L1-norm regularization and L2-norm regularization are the most popular approaches9

by adding a penalty term to the loss function as L1-penalty or L2-penalty, i.e.,

L(ω) = L0(ω)+λ∥ω∥1, L(ω) = L0(ω)+
λ

2
∥ω∥2

2, (2.29)

9L1- and L2- regularization are also termed as the Lasso regression and Ridge regression respectively in the topic
of linear regression (16).
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Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using
dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)
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Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

dropout noise is applied to the input layer and fully connected layer. The minibatch size is also set
to 128 similar to previous experiments.

Interestingly, although both Adam and Adagrad make rapid progress lowering the cost in the initial
stage of the training, shown in Figure 3 (left), Adam and SGD eventually converge considerably
faster than Adagrad for CNNs shown in Figure 3 (right). We notice the second moment estimate v̂t
vanishes to zeros after a few epochs and is dominated by the ε in algorithm 1. The second moment
estimate is therefore a poor approximation to the geometry of the cost function in CNNs comparing
to fully connected network from Section 6.2. Whereas, reducing the minibatch variance through
the first moment is more important in CNNs and contributes to the speed-up. As a result, Adagrad
converges much slower than others in this particular experiment. Though Adam shows marginal
improvement over SGD with momentum, it adapts learning rate scale for different layers instead of
hand picking manually as in SGD.

7

Figure 2.6: Optimizers comparison (83) on MNIST (32) dataset.

where ω is the parameters (all kernel weights for CNN) of the model, λ is a manually-set co-

efficient for scaling. Fig. 2.5 illustrates the 2D case that ω = {ω1,ω2}, ∥ω∥1 = |ω1|+ |ω2| and

∥ω∥2 =
√

ω2
1 +ω2

2 . As depicted in Fig. 2.5, the contour lines indicate positions where the original

loss function L0 has the same values in its bird’s eye view, and the L1-regularization term has a

squared boundary, the L2-regularization term has a circular boundary. An ideal training of ω starts

from the initial point (between the contours) and ends at the global optimal point that signifies the

first time L0 intersects with the L1- and L2-penalty boundaries LeCun et al.. It has been proven

that optimization of neural networks belongs to the category of convex optimization (16), thus

there exists the global optimum that can be reached via gradients decent algorithms.

It can be inferred from Fig. 2.5 that L1-regularization may result in sparse parametric space

since the path of L0 is more liable to reach tips of the L1-penalty contour than the edges, while

for L2-penalty term, its smoother contour is less likely to result in zero weights. As a result,

L1-penalty is preferred in feature engineering, with which the dimension of parameters space is

reduced, and L2-penalty is more popular in neural networks since this sparsity may result in dead

neurons. Regularization effectively prevents the training from overfitting due to the penalties on

parameters. However, it doesn’t guarantee the convergence towards global optimum.
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2.6.2.2 Dropout layer

Another widely-known regularization approach to prevent the training of CNN from over-fitting

is the implementation of dropout layers (31; 180). During training, one dropout layer multiplies a

gated variable to each intermediate output of the previous layer. The variable has a probability p to

generate 1, otherwise 0, which is subject to Bernoulli distribution. This is to say, the dropout layer

temporarily removes neurons from its previous layer with a probability of p. In the test phase,

dropout layers are ignored, but the weights of the layer before a dropout layer are scaled by p to

generate the expected outputs at training time.

2.6.2.3 Optimizers

One of the most important techniques for neural networks is the rules to update trainable weights,

which at meantime, serve as effective regularization approaches. These rules are termed after op-

timizers. In Chapter 1, the SGD (Alg. 2 and 3) optimizer has been introduced. Brief introductions

to other popular optimizers are presented in the following part of this section.

Adam optimizer (83) gains its popularity among CNN-based neural networks due to its sim-

plicity and fast convergence (refer to Fig. 2.6). This optimizer involves two other optimizers:

root-mean-square propagation (RMSprop) optimizer and SGD with momentum optimizer. The

SGD with momentum optimizer (160; 186) is presented below. Supposed mt denotes the t − th

moment (t ≥ 0) of weights gradient ∆ωt =
∂L
∂ωt

, then

mt+1 = β1mt +(1−β1)∆ωt , m0 = 0, (2.30)

substitute original ∆ωt (as Eqn. 2.6) by mt , the SGD optimizer update ωt with a learning rate η as

ωt+1 = ωt −ηmt . (2.31)

RMSprop improves the AdaGrad (37) optimizer. AdaGrad introduces adaptive learning rate to
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replace the process of manually-tuning10 the learning rate during training as

ωt+1 = ωt −
η√

Gt+1 + ε
∆ωt , Gt+1 = Gt +∥∆ωt∥2

2, (2.32)

where G0 = 0, ε is a small constant to ensure that the denominator is non-zero. Note that Gt

also penalizes large gradients despite Gt may increase by time till infinity. RMSprop constructs a

different adaptive learning rate term:

vt+1 = β2vt +(1−β2)∥∆ωt∥2
2, ωt+1 = ωt −

η
√

vt+1 + ε
∆ωt , (2.33)

where v0 = 0, β2 is a forgetting factor between [0,1]. Larger β2 results in memorizing the old

gradients and forgetting the new gradients, which is similar the behavior of β1. Adam optimizer

combines Eqn. 2.30 and Eqn. 2.33, it is updated during iterations as Alg. 4.

Algorithm 4: Adam Optimizer.
1 Initialize β1 = 0.9,β2 = 0.999,m0 = 0,v0 = 0, t = 0, total iterations Ns,ε ,η ;
2 while t < Ns do
3 Calculate ∆ωt =

∂L
∂ωt

;
4 mt+1 := β1mt +(1−β1)∆ωt ;
5 vt+1 := β2vt +(1−β2)∥∆ωt∥2

2;
6 Calculate normalized states: m̂t =

mt+1
1−β

t+1
1

, v̂t =
vt+1

1−β
t+1
2

7 Update weights: ωt+1 = ωt −η
m̂t√
v̂t+ε

8 t := t +1;

9 return W

Other optimizers including ADADELTA (226), Adam with weight decay (AdamW, 107), and

SGD with Nesterov momentum (131) etc. Note that the state-of-the-art optimizers cannot guaran-

tee achieving the global optimum, but merely provide more feasible solutions to reach the global

optimum, which remains to be a crucial research topic in the field of deep learning.

10For first iterations, set several larger learning rates, set smaller learning rates later to ensure fast convergence.
Modulating learning rate can also be achieved via implementing an exponential function.
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2.6.3 Test

Test a neural network is similar with training the neural network for one iteration11. Compare to

the training phase, test doesn’t need the loss function and any gradient computation. The only

things test phase needs are the test samples and the model including weights and operations other

than the gradients. It should be noted that the behavior of batch normalization layer and dropout

layer are different form those during training. Also, as test requires a batchsize, if the batchsize is

different from that of training, the original batch updating rules may not be suitable for test batches.

However, during my test, the results were not greatly affected. Another thing is to accelerate

the inference time during test. Single-precision or integer data type is much faster than double-

precision type, but this reduction will result in drop in the performance due to the loss of precision.

Selection of test samples matters the most. If the features of test samples are coupled with

training samples, or merely part of the training samples, the test result is not accountable. On

the other hand, if the test samples are sampled from a different sample space than that of training

samples, the test may fail due to its novelty. To avoid this dilemma as much as possible, a dataset

should be manually divided into, at least, training-set and test-set. The novel test samples are

collected in similar conditions as the training samples.

2.6.4 Validation

Validation stage is always accompanied after training or during the process of training. The goal

of validation is to evaluate the effects of training which is similar with testing. In some cases,

validation stage can be skipped if the performance of training has already been verified. Validation

during training leverages on evaluation metrics to verify the network by using a portion of training

samples12. Though these metrics cannot prove the generalization ability of the network, we can

still utilize them for judging if the training evolves into the over-fitting stage since the value of loss

function are not intuitive sometimes, or we can at least predict the performance of the network in

11Usually, the entire training procedure is divided into epochs, and each epoch is composed of several iterations.
12If the inference is fast, or the dataset is small, all training samples can be used for validation.
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case training an unpleasant model may take a long period of time.

Validation after training suits the circumstance of large dataset when validation during training

is inapplicable. K-fold cross-validation (45; 91) is the most commonly implemented approach.

K-fold cross-validation constructs training-set and validation-set at the same time by splitting the

entire training-set into K groups, and then takes one group as the validation-set, the others as

a new training-set. For each group, it generates a pair of new training-set and validation-set in

this way, validates results on the validation set, then discards the model and record all scores on

metrics. Finally, it summarizes K-groups of scores and usually takes the mean values as the overall

validation performance.

2.7 Pre-Processing: Beat-Rhythm Transformer

2.7.0.1 Overview

In this section, a beat-rhythm transformer13(BRTransformer) is proposed as an example to illustrate

the necessity of pre-processing. The BRTransformer is also one of the very first works that pro-

posed self-attention mechanism (196) that inspires the designs of self-attention modules in CNN.

This section first introduces the necessity of the Atrial Fibrillation (AF) detection, then demon-

strates pre-processing techniques to detect R-peaks and how conceptual abstraction and fuzzifica-

tion could simplify this real-world problem.

2.7.0.2 Concepts and Related Works

Paroxysmal Atrial Fibrillation (PAF) Event Atrial fibrillation (AF) is the most common sus-

tained arrhythmia (19). In the United States, the percentage of Medicare fee-for-service beneficia-

ries with AF in 2010 was reported as 2% for those <65 years of age and 9% for those ≤ 65 years

of age (78). AF events are characterized by disorganized atrial electrical activity and contraction.

The incidence of AF in patients with acute coronary syndrome ranges from 10% to 21% and in-

13Source codes are presented in Appendix.A
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Figure 2.7: ECG comparison on normal type (137) and AF-events (126).

creases with patient age and severity of myocardial infarction. In the medicare population, AF

is associated with increased in-hospital mortality rate (25.3% with AF versus 16.0% without AF),

30-day mortality rate (29.3% versus 19.1%), and 1-year mortality rate (48.3% versus 32.7%). With

multivariate adjustment, AF remains an independent predictor of death (79). Clinical symptoms of

AF events (refer to Fig. 2.7) include irregularly rhythm (R-R intervals), no P-waves absence of an

isoelectric baseline, variable ventricular rate, QRS komplexes that are usually lower than 120ms,

and possible fibrillatory waves that are fine or coarse, etc.

According to the presentation and duration of AF, AF events can be classified as first episode,

recurrent AF, PAF (Also known as intermittent AF), persistent AF, long-standing persistent AF,

and permanent AF. Though AF is the most frequent arrhythmia for doctors to diagnose by elec-

trocardiogram (ECG), PAF often remains unrecognized (1) due to its unpredictable paroxysmal

symptom that occurs suddenly and then stops within 7 days. Sometimes, it may last for less than

24 hours (40). Moreover, it’s unrealistic to personally monitor PAF events for days without inter-

ruption.

In this example, we explore the potentials of automatically detecting AF events regarding to

the rhythm symptom. As one of the most significant symptoms of PAF, the heat-beat rhythm can

be represented via intervals between consecutive R-peaks (see Fig. 2.7). Therefore, accurate R-

peak detection algorithm is required to construct rhythmic features for detecting PAF events from
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recorded raw ECG samples.

R-peak detection ECG records the electrical signal form the cardioid to examine cardiac condi-

tions. A typical cardiograph may sample the electrical signal at 1kHz, and down-sample to 500Hz,

250Hz and 200Hz in excellent concordance (89). The schematic diagram of norm heat-beat is

shown in Fig. 2.7 that, three waves, namely P, R, T, characterize one heart-beat, while the Q, S val-

ley and R-peak of R wave indicate the most salient feature of the heart-beat. Among all the P, R, T

peaks, R-peak is the most distinctive feature to be detected (121; 120; 42; 161; 150; 183; 30; 148).

Distances between R-peaks represent the rhythmic feature of heart-beats. In clinical practice, it

usually takes hours to record an raw ECG sample that consists of more than 720,000 sampled sig-

nals (200Hz). Thus, real-time peak detection in the pre-processing stage is necessary, so as to its

following real-time implementations that predict AF events via positions of detected R-peaks.

PAF event classification The common approach to detect PAF event is the diagnosis by doctors’

expertise. Only a few approaches are proposed to solve the problem by algorithms for classifica-

tion, especially via implementation of machine learning techniques (185). As the state-of-the-art

performer for language translation, Transformer (196) converts sentences to desired translations

in an end-to-end fashion. We believe the sequence-to-sequence translating mechanism of Trans-

former can be accommodated to the task of PAF event detection.

BRTransformer Transformer is often viewed as the fourth category of neural networks for

NLP tasks apart from RNN (26), CNN, and graph neural network (GNN, 165). Typical Trans-

former (196) consists of an encoder and a decoder networks, along with the final linear layer for

modulating the predicted word vectors. Input word vectors of sentences are positionally encoded

and fed to the encoder networks. The encoder then performs multi-head self-attention on the word

vectors, and feed forward feature vectors to the decoder network that has the same architecture as

the encoder network.

The overall process of transformer in NLP is sequence-to-sequence. However, it cannot be
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Figure 2.8: BRTransformer work flow, transformer image from (196).

directly applied to the AF event detection task. Therefore, we propose to reformulate the detection

task as a classification task using fuzzy subset of membership quantification (118) and rhythm

embedding (98). A fuzzy subset of membership indicates a category that one variable belongs

to, e.g., when we describe the air temperature, there’s no theoretical boundary of judging if the

temperature is high, median, or low, whereas we can still quantify the air temperature to fuzzy

subsets of membership ‘low’, ‘median’, ‘high’ based on the real-life experiences.

Rhythms of heart-beats can also be categorized into fuzzy subsets of membership. With the

quantification of rhythms, we construct a word embedding of rhythms, i.e., the rhythm embed-

ding, which reformulates the detection task to classify rhythms into PAF and non-PAF events in a

sequence-to-sequence fashion.

2.7.0.3 Methodology

Pipeline The pipeline of proposed BRTransformer is demonstrated in Fig. 2.8. As there are

multi-channel ECG signals, we only leverage on the raw signals whose R-peaks can be detected.

Raw ECG signal has noises both in high frequency and low frequency. Therefore, we implemented

the Butterworth bandpass filter (20) to filter those signals (205) since normal heart-beat period is

definitely restrained to a certain range. Salient R-peaks can be detected using proposed LGFPD,

the intervals are then calculated as the differential of the R-peak coordinates. With the intervals,

semantic levels of amplitude can be manually defined using categories range from 0 to Nl + 2
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Figure 2.9: Sample re-balance procedure before feeding to BRTransformer.

since the last two category corresponds to the non-PAF event (Nl + 1) and PAF (Nl + 2) event.

Fuzzification is then performed via max-min normalizing and projecting the intervals to the fuzzy

categories of levels (0 to Nl). For those extremely large abnormal intervals, we bound the their

categories to Nl . In this way, the fuzzification has set the raw training data for a transformer (196).

At this point, the pre-processing stage has not been finished yet. We may observe only a very

small proportion of PAF events among the ECG signals collected for hours in training set (205). To

balance this improper potion of samples, we construct a mini-batch of training samples as depicted

in Fig. 2.9 to collect all PAF and non-PAF episodes and random sample four episodes. We define

the PAF episode as the positive sample, and the non-PAF as the negative sample. Moreover, if

positive episodes are shorter than the desired length, one shorter episode is padded by reflection,

while the other is padded with zeros. If the other way around, we directly sample two samples with

the desired length. Also, two negative episodes are resized to the fixed length. Finally, the four

samples are stacked alternately before feeding to the BRTransformer. It should be noted that this

is not the end of pre-processing stage since the transformer only accepts embedded vectors. In the

following part, the rest of pre-processing stage will be presented along with the transformer.

R-peak detection using Local-Global Filtering Peak Detector (LGFPD) We proposed the

LGFPD R-peak detector in the pre-processing stage. LGFPD algorithm is shown as LGFPD-B

(Alg. 5), LGFPD-C (Alg. 6), and LGFPD-F (Alg. 7) without considering the boundary conditions

between global windows. Expending the furthest range of variable j to min(iWg,Ns) in Alg. 5 will
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solve the boundary conditions.

Algorithm 5: Local-Global Filtering Peak Detector - Base (LGFPD-B).
1 Read the discrete input signal s[t], t = 1, · · · ,Ns;
2 Initialize global window size Wg, bin number Nb, height threshold Th, temporary result

Rt = {} which is an empty set and the final result R = {}, f ound_mark = False;
3 Partition s[t] to ⌊ Ns

Wg
⌋+1 global windows, let i = 0;

4 for i := 1 to Ns do
5 Get values in the i− th global window: V = {s[k]|(i−1)Wg ≤ k ≤ min(iWg,Ns)−1};
6 Find maximum and minimum values: vmax := max(V ), vmin := min(V );
7 for (i−1)Wg ≤ j < min(iWg,Ns)−1 do
8 if s[ j]≥ s[ j+1] then
9 if f ound_mark is False then

10 s[ j]→ Rt , set f ound_mark to True

11 else
12 if f ound_mark is True then
13 set f ound_mark to False

14 Calculate resolution vmax−vmin
Nb

, project all peaks in R to the bin according to resolution;
15 Count the number of peaks falling in each bin as bin_counts = {c1, · · · ,cNb};
16 From the lowest bin (1− st bin) to the highest (Nb − th bin), find the bin with

maximum count: c∗ = argmax(bin_counts);
17 Calculate the baseline as the average over all peaks in c∗− th bin;
18 Calculate amplitiute for all peaks in other bins above (not including) c∗− th bin using

the baseline as the common vally of waves;
19 Filter the calculated amplitiutes by thresholding with Th;
20 Save the filtered peaks (locations and amplititudes) to R;

21 return R

LGFPD-F and LGFPD-C are based on the results of LGFPD-B. LGFPD-C remove all non-

maxima peaks in the local window, while LGFPD-F only removes all non-local maxima peaks in

the local window, which follows the same procedures as the raw-peak detection in Alg. 5. We

tested three algorithms on a test signal with a length of 20,000. The results are shown in Fig. 2.11.

LGFPD-C refines 41 peaks that are detected by LGFPD-B to 21 peaks, while LGFPD-F locates 23

peaks.

BRTransformer In this example, a transformer is implemented for the classification stage. The

input samples are represented by intervals with fuzzification, but still they need to be embedded
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Algorithm 6: Local-Global Filtering Peak Detector - Combined (LGFPD-C).
1 Execute Alg. 5 first to yield the raw result R;
2 Initialize local window radius rc
3 for the first ungrouped peak to the last ungrouped peak in R do
4 collect all peaks fallen within radius rc, mark all those peaks as grouped peaks;
5 Find the highest peak in that group, removes all other peaks in that group;

6 return R

Algorithm 7: Local-Global Filtering Peak Detector - Filtered (LGFPD-F).
1 Execute Alg. 5 first to yield the raw result R;
2 Initialize local window radius r f
3 for the first ungrouped peak to the last ungrouped peak in R do
4 collect all peaks fallen within radius rc, mark all those peaks as grouped peaks;
5 Detect local maxima from the group as the inner for-loop in Alg. 5;
6 Depricate all other peaks in that group;

7 return R
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Figure 2.12: Positional embedding of conceptualized and fuzzified batch of samples.
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Figure 2.13: Scaled dot-product attention and multi-head attention (196).

into higher-dimensional space. Transformer (196) firstly encodes the position using cosine and

sine function as

PE(pos,2i) = sin(
pos

10000
2i

dmodel

), PE(pos,2i+1) = cos(
pos

10000
2i

dmodel

), (2.34)

where 0 ≤ i ≤ dmodel represents one dimension of embedding feature space, variable pos signifies

one position in the fixed length of input batch, which, as depicted in Fig. 2.12, we use the variable

‘l’ to represent this fixed length adjusted during conceptualization and fuzzification. Positional en-

coding has the dimension of l×1×dmodel , which is previously propagated to the size l×4×dmodel

by duplication. The addition is performed elements wise, which introduces positional information

to the embedded batch to boost the performance of transformer.

Transformer leverages on the self-attention mechanism. This type of attention is achieved via

the multi-head self-attention module (196), which is the most crucial design in transformer. Multi-

head self-attention module is illustrated in Fig. 2.13. It is composed of multiple scaled dot-product

attention modules that are based on self-attention mechanism.

As depicted in Fig. 2.13, for each l × 1 × dmodel sample Xi, 1 ≤ i ≤ 4, in a l × 4 × dmodel
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mini-batch after positional encoding (Fig. 2.12), the sample is fed to three branches to generate

query (Q), keys (K) and values (V) matrices by linearly projecting the sample to dk-dimensional

space (Q and K), and dv-dimensional space (V) as the dot-product of matrices Xi •W Q, Xi •W K, Xi •

WV , where W K, W Q, WV are dmodel × dk, dmodel × dk,dmodel × dv translatable weights matrices,

respectively. The next step is to correlate each query with all keys by dot-product as Q • KT . Note

that the product may be large such that there could be gradient exploding issues. Q • KT is scaled

by their dimension 1√
dk

. The last step is to output the feature as so f tmax
(

QKT
√

dk

)
V . The so f tmax(·)

operation is necessary since the l× l correlation matrix of Q and K depicts the feature correlations

in l positions. Softmax operation is enforced to each row in the correlation matrix. Not only this

softmax operation normalizes the row-wise vectors corresponding to each query, but also assigns

the positions w/ the largest responses with higher values. Both functions make the correlation

matrix a non-negative weights matrix for V. As a result, the output feature is a weighted-sum of l

values along dv dimensions. The self-attention is achieved via matrix multiplications, which can

be regarded as measuring the cosine similarities between feature vectors.

Multi-head self-attention is also shown in Fig. 2.13. The figure presents a multi-head attention

module with h scaled dot-product attention modules. The output feature of all scaled dot-product

attention modules are concatenated as a l×dv×h feature volume and linearly projected (weighted-

sum) to the same dimension l × dv as the original output feature. Multi-head attention alleviates

the problem of local maximum, that one head tends to predict the strongest correlations and fails

to model other weaker but crucial correlations. Multiple heads provide more correlations, and the

following weighted-sum operation may rectify those overwhelming correlations to enhance the

capability of transformer. Another thing should be noted is the sample Xi from the batch as we

discussed above. In fact, all sampling share the same weights matrix W Q, W K, WV , while the

multi-head attention does share weights between heads as W Q
j , W K

j , WV
j , 1 ≤ j ≤ h.
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Intervals Detector LGFPD Groundtruth

Classifiers baseline BRTransformer baseline BRTransformer

Score -0.0878 0.1589 0.0000 0.4375

Heads - 32 - 32

encoders & decoders - 10 - 10

dmodel - 1024 - 1024

dv, dk - 512 - 512

Table 2.1: BRTransformer performance on validation set.

2.7.0.4 Experiments

We divide the entire training set to validation-set ad new training-set to verify the performance of

BRTransformer. To compare the performance with the baseline, we further test the validation-set

with the baseline approach implemented in the evaluation codes (205). The results are shown in

Tab. 2.1. The evaluation metrics are provided by Wang & cpsc2021 and larger value indicates better

results. After training for 20 epochs, each includes 200 iterations with a exponentially-decayed

learning rate 1.0, though LGFPD may not detect the same peaks as the ground-truth annotations,

BRTransformer still outperforms the baseline. When tested on groundtruth, baseline fails to show

valid results, while BRTransformer outperform base by a large margin with a faster inference rate

at 5.34 records/s on a NVIDIA GTX3090 GPU.

2.7.0.5 Conclusion

Processing dynamic ECG signals is one of the most commonly implemented non-invasive tech-

nique in monitoring as well as in clinical diagnosis for cardiovascular disease. Early, fast screen-

ing, and detection of PAF events are particularly important for practical diagnosis. In this section,

we proposed BRTransformer, a sequential-to-sequential translator for the classification task of PAF

events from ECG signals. To detect the R-peaks of ECG, we also designed an efficient local-global

filtered peak detector (LGFPD). BRTransformer takes sequences of detected R-peak intervals as
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the input, then translates the intervals to PAF events and non-PAF events without rings and bells.

Proposed approach is tested on the public-available dataset provided by 4th China Physiological

Signal Challenge 2021, and it outperforms the baseline approach by a large margin with fast infer-

ential performance.
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Chapter 3

Pre-Processing: Stereo Frustums for 3D Object Detection

Abstract

We proposed a light-weighted stereo frustums matching module for 3D objection detection.

The proposed framework takes advantage of a high-performance 2D detector and a point

cloud segmentation network to regress 3D bounding boxes for autonomous driving vehicles.

Instead of performing traditional stereo matching to compute disparities, the module directly

takes the 2D proposals from both the left and the right views as input. Based on the epipolar

constraints recovered from the well-calibrated stereo cameras, we propose four matching al-

gorithms to search for the best match for each proposal between the stereo image pairs. Each

matching pair proposes a segmentation of the scene which is then fed into a 3D bounding

box regression network. Results of extensive experiments on KITTI dataset demonstrate that

the proposed Siamese pipeline1 outperforms the state-of-the-art stereo-based 3D bounding

box regression methods.

3.1 Introduction

How to regress accurate 3D bounding boxes (bbox) for autonomous driving vehicles has become a

pivotal topic recently. This technique can also benefit mobile robots and unmanned aerial vehicles

with regard to scene understanding and reasoning. In this chapter, we propose a Siamese pipeline

method for 3D object detection.

1Relevant works are published as (124)
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Given a pair of stereo images and the point cloud data collected by velodyne (Geiger et al.),

many approaches on a basis of deep-learning theories have been proposed to generate 3D bbox

artifacts which can also be projected to a bird’s-eye view (BEV) of LiDAR data for localization

evaluation. According to the number of image views these approaches utilized, they can be divided

into three categories: monocular view (208; 143; 36; 175; 212; 99; 86; 171), binocular views

(95; 84; 207; 25; 146), and non-view approaches (237; 219; 200; 111; 215; 220; 172) that only

processes point cloud. Mono-view based approaches focus on sensor-fusion of the camera and

LiDAR sensors in either a global or a local manner, while non-view approaches extract point cloud

features from hand-crafted voxels or raw coordinates. Compared to the extensive development in

both categories mentioned above, there are fewer stereo-based and stereopsis-LiDAR-fusion works

for 3D object detection.

Considering the runtime of stereo matching, coarse disparity map generated by fast stereo

matching and GPU acceleration achieves real-time frame-rate, yet less accurate 3D detection re-

sults (84) compared with that of coarse-to-fine disparity map (207). However, it usually takes a

few minutes to generate one panorama of coarse-to-fine disparity map before performing object

detection tasks. Moreover, pixel-level stereo matching is sensitive to the error in the epipolar line

calculated from camera calibration as stereo matching assumes all epipolar lines to be horizontal.

We propose to reduce runtime by performing RoIs-level stereo matching instead of matching all

pixels, and by a fast epipolar line searching strategy which calculates epipolar line from calibration

data. We show in Section 3.4.4 that most of the runtime goes to point cloud processing.

Most stereo-based methods rely on stereo matching of stereopsis to generate depth maps for

3D object detection (84; 207; 25), and one Stereo R-CNN based method (95) directly regresses

keypoints of 3D bbox from the left-right correspondence of regional proposals (RoIs). In stereo

matching, very close objects are usually located on the border area in both views with very large

disparities. Therefore, part of the same object can be missing in either view. In this case, stereo-

based methods may be unable to locate matched keypoints by stereo matching. Furthermore,

considering the perspective changes, the same object may appear distinctively in both views due
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to occlusions. These situations may cause intrinsic ambiguities in stereo matching. As shown in

Fig. 3.1, the proposed method, by taking advantage of LiDAR-based 3D object detection methods,

neither relies on stereo matching at pixel level nor predicts key points from corresponding RoIs.

To circumvent the matching ambiguities, several approaches introduce spatial constraints as 3D

anchors (146) and regress point cloud proposals transformed from dense disparity maps (84; 207).

However, the design of a grid of anchors which has a proper density as well as high average preci-

sion (AP) for continuous space needs to be hand-crafted. Inspired by a novel single-frustum based

method (208), we propose to solve the ambiguities by making full use of the spatial information

for multi-modal regression. A novel module is proposed to directly map the point cloud onto the

RoIs of the stereo image pairs and perform matching, by means of the normalized cross-correlation

or the proposed 3D Intersection of Union (IoU) matching cost, and fast epipolar line search. This

module correlates the 2D detection and synchronized 3D point cloud, and a novel network pipeline

is proposed to accommodate this module.

The sparse nature of LiDAR points substantially reduces the number of points to be processed

compared to the point cloud generated by the dense disparity map. Therefore, using LiDAR data

can alleviate the computational burden of high-density matching at the pixel level. As to the per-

spective change, according to the setup of datum collecting vehicle, the baseline of stereo cameras

is 0.54m such that both views trap the same set of 3D keypoints from an object even though regions

of the object appear distinctively. In addition, our method is robust to a slight disturbance on 2D

bboxes (see Section 3.4.2).

The main contributions of this chapter include:

• We propose an embedded light-weight matching module to generate 3D segmentation propos-

als by the RoIs from stereopsises.

• The proposed 3D IoU cost and epipolar line search algorithm are efficient in finding matches

without Cython or GPU acceleration.

• The proposed Siamese architecture bridges the gap between stereopsis and real LiDAR points

by integrating the point cloud segmentation network with 2D RoIs.
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Figure 3.1: Illustration of stereo frustums.
Valid inliers (green points) are segmented from inliers for predicting 3D bounding box (green).

Given accurate 2D bboxes, the intersection of two frustums encloses the point cloud of the
interested object with less ambiguity than single-frustum based and stereo-only methods,

optimizing search space and being robust to perspective change.

The proposed framework has been evaluated extensively on the KITTI dataset (46). The exper-

imental results outperform previous stereo-based 3D bbox regression approaches. When testing

on KITTI validation set, our method maintains as high AP on car detection as F-PointNets (FPN)

(143), and outperforms FPN on pedestrian detection. The proposed approach runs on average at

2-3 frames per second.

3.2 Related Works

3.2.1 Monocular Pipeline for 3D Detection

Du et al. (36) propose a general pipeline to detect cars from point cloud subsets constrained by

monocular 2D detections. Three categories of normalized templates generalized from CAD models

are fitted to 3D proposals in each subset. Each proposal is generated by RANSAC algorithm. The
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voxelized 3D proposals with the highest matching scores are fed to a two-stage refinement network.

Another improvement of the monocular pipeline is FPN for the purpose of regressing amodal

3D bbox including bbox sizes, orientation, and 3D bbox center. To our best knowledge, this

work firstly proposes the concept of frustum which assigns bins and scores to point cloud subsets

constrained by 2D detections. Instead of voxelizing the point cloud (237) before feeding it into a

segmentation network followed by a T-Net to regress offset of 3D bbox center, the authors of (143)

design and apply the initial feature extraction networks PointNet(v1) (144) and PointNet++(v2)

(145) that learn point coordinates directly. In following sections, we denote FPN with PointNet++

backbone as FPNv2.

RoarNet (175) points out that the performance of FPN degrades if the camera sensors and velo-

dyne sensor are not synchronized. This work proposes a geometric agreement search by selecting

the best projection from a 2D detection to its 3D bbox within single frustum with the help of spa-

tial scattering to refine the location of 3D bbox. This improvement alleviates but can not solve the

ambiguity of monocular back-projection (see Fig. 3.1). Recently, F-ConvNet (208) ranks leading

position on KITTI benchmark. It proposes a sliding-window fashion along frustum to solve the

localization ambiguity. As one of the state-of-the-art monocular detectors, F-ConvNet remedies

improper hand-crafted divisions by concatenating point features from all windows, and learns valid

objectness by a fully-convolutional network.

3.2.2 Stereo-Based Methods

Several works have discussed the possibilities of 3D bbox regression by 2D detection w/o auxiliary

depth information. Li et al. (95) propose a new end-to-end approach based on stereo R-CNN to

perform regional detection, and it is also integrated to a 2D-keypoint prediction network designed

for vertex estimation of 3D bbox. Nevertheless, the predicted 2D-keypoints are lack of accuracy

considering perspective changes. In addition, the orientation of the object is not included in the re-

gression artifacts. 3DOP (25) trains a structured SVM to generate 3D bbox proposals, which learns

weights for an energy function that incorporates the point cloud density, free space, height prior,
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and height contrast information. However, without taking advantage of dense epipolar constraints

in raw stereopsis, 3DOP predicts less accurate 3D bboxes than our approach.

Recently, a triangulation learning network (146) aims at learning epipolar constraints. The net-

work requires anchors grid and 3D bbox ground truth to train. Left and right RoIs are selected by

frustum-like forward-projection of 3D bboxes before cosine similarity is imposed on their feature

maps. By cosine coherence scores computed from the left-right RoI pairs, the reweighting pro-

cess weakens the signals from noisy channels. This method does not utilize dense raw epipolar

constraints, and heavily relies on sparse anchor grids for localization. Also, this method brings in

ambiguity since it searches among all potential anchors captured by a single frustum.

RT3D (84) and Pseudo-LiDAR (207) estimate RGB-D image from stereopsis, then transform

it into the point cloud, and regress 3D bbox with off-the-shelf clustering or LiDAR-based meth-

ods. RT3D presents a realtime detection scheme but comes with lower AP, while Pseudo-LiDAR

predicts a less accurate depth map than real LiDAR data, which we will show in our experiments

that, by the same FPN detector, our method achieves higher AP.

Another trend for object detection is through sensor fusion, i.e., to synchronize signals from

multiple sensors. You et al. (221) proposed a scheme, namely PL++, to fuse sparse LiDAR points

and the corresponding point cloud generated from the RGB-D image. As one of the top performers

in 3D object detection, PL++ takes advantage of highly precise LiDAR points in localization.

Zhang et al. (231) designed a deep network that fuses accurate depth maps, color images, and

optical flow data. The model outperforms state-of-the-art works by a large margin. In order to

further explore accurate RGB-D image in object detection, Tian et al. (194) proposed a novel

representation for a 2D convolutional network that encodes depth map, multi-order depth template,

and height difference map. This approach achieves real-time performance, as well as being robust

to insufficient illumination and partial occlusion.
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Figure 3.2: Siamese pipeline for 3D object detection.
Arrows signify flow directions, the dash line signifies an inspection of flow node. Feature

extraction backbone and CNN object detector of sibling branches share the same weights and
parameters.

3.3 Stereo Frustums Pipeline

In this section, we propose a Siamese pipeline (SFPN) that takes advantage of over-constrained

epipolar geometry. Section 3.3.1 describes the dense epipolar constraints that SFPN bases on.

Section 3.3.2 introduces an overview of stereo frustum pipeline. Section 3.3.3 introduces four

RoIs matching methods that our module has implemented. In this section, we assume the 2D

object detections on both views are consistent with their ground truths.

3.3.1 Dense Epipolar Constraints

Notations. Let F ∈ R3×3 be the fundamental matrix defined by the left-right camera coordi-

nate systems (see Fig. 3.3) whose optical centers are O2 and O3 respectively. Let S2 = {li|i =

1,2, ...,m} be the set of bboxes centered at li in the left view, S3 = {ri|i = 1,2, ...,n} be the set

of bboxes centered at ri in the right view, Pc denotes the point cloud set of scene, with Pc(li) a

subset of Pc by forward projecting Pc to the bbox region centered at li, Nthres denotes the minimum

number of spacial points required for the multi-modal regression network, and N(Pc(li)) denotes

the number of inliers of Pc(li). SPFN is valid if the following two constraints are satisfied:
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Figure 3.3: Coordinate systems of the KITTI data-collection vehicle (46)
. P0 is a LiDAR point in velodyne coordinate system (blue), its forward-projections in left view
and right view are denoted as p2 and p3 respectively. O2 and O3 are the optical centers (orange)
of left color camera and right color camera, O0 (orange) is the optical center of rectified camera

coordinate system (gray-scale camera 0), and OR (green) is the optical center of reference camera
coordinate system. Rotation from reference camera system (green) to rectified camera system

(orange) is denoted as RR0.

(1) One-to-one onto mapping. ∃S
′

2 ⊆ S2 and ∃S
′

3 ⊆ S3 subject to, ∀li ∈ S
′

2, ∃r j ∈ S
′

3 such

that rT
j Fli = 0, and ∀r j ∈ S

′
3, ∃li ∈ S

′
2 such that rT

j Fli = 0.

(2) Minimum intersection. Given conditions (1), suppose Nsec is number of inliers in the stereo-

frustums intersection as shown in Fig. 3.1, ∀li ∈ S
′

2, ∃r j ∈ S
′

3 subject to rT
j Fli = 0, then Nsec =

N(Pc(li)∩Pc(r j))≥ Nthres.

The one-to-one onto mapping constraint finds all spacial points that are forward-projected to

matched the left and right RoIs, and the minimum intersection constraint is designed for the multi-

modal regression network, ensuring that the regression will not fail due to too few spacial points

as the input. It is widely known that the initial step after installing mounted devices is to get

calibration information for all sensors including camera sensors, velodyne sensors, and IMU sen-

sors. Then, fine-tune all sensors according to the calibration data until an acceptable error rate is

observed. For the KITTI dataset, we assume the data collection system is well-calibrated, thus

calibration files are reliable enough.
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A necessary constraint for stereo matching based approaches is that, the stereo search can be

performed horizontally. To relax this constraint, it is important to estimate the epipolar constraints

from calibration files. In Section 3.3.3, we employ a searching algorithm based on the estimated

epipolar constraints other than the horizontal search strategy.

Fundamental matrix. In KITTI dataset, the fundamental matrix between the left and the right

image planes I2, I3 can be calculated as:

F = K−T
c3 [tc3

c2]×K−1
c2 , (3.1)

where Kc2,Kc3 are non-singular 3×3 intrinsic matrices of the left and right cameras respectively,

tc2
c3 is a 3D translation vector2 from the left to the right camera coordinate system (see Fig. 3.3), [·]×

indicates the antisymmetric matrix of a vector. Using homogeneous coordinates of image points,

∀p3 ∈ I3 and its correspondent image point p2 ∈ I2 subject to pT
3 F p2 = 0, by which the epipolar

line through p3 or p2 can be deduced directly. To compute tc3
c2 of Eq. (6.1), according to the KITTI

calibration methodology (46), we know the projection from a 3D point P̃0 to its image p̃0 in each

image plane can be denoted as p̃i = [Kci|Ci]P̃0 = P(i)
rect P̃0, i ∈ {0,1,2,3}, where Ci is the last column

of projection matrix P(i)
rect , and i denotes the i-th camera: value ‘2’ stands for the left camera, ‘3’

for the right camera, and ‘0’ for the gray-scale camera selected as the rectified camera. Then, we

have the result

tc3
c2 = K−1

c2 C2 −K−1
c3 C3. (3.2)

Proof The coordinate systems of KITTI data-collection vehicle are depicted in Fig. 3.3. Assume

P0 is a inhomogeneous-coordinate point in rectified camera coordinate system, its images in left

and right image planes are p2 and p3 (homogeneous-coordinates), respectively. According to the

2Each pair of subscript and superscript indicates the from-to relation, the same notation applies to other translation
vectors and rotation matrices in this chapter.
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pinhole model, we have:

p3 = Kc3(Rc3
c0P0 + tc3

c0)⇒ p3 = [Kc3Rc3
c0|Kc3tc3

c0]P0, (3.3)

where Rc3
c0 and tc3

c0 are 3× 3 rotation matrix and 3× 1 translation vector from the rectified camera

coordinate system to right camera coordinate system. Likewise,

p2 = Kc2(Rc2
c0P0 + tc2

c0)⇒ p2 = [Kc2Rc2
c0|Kc2tc2

c0]P0. (3.4)

According to the projection matrix P(i)
rect mentioned above, we know pi = [Kci|Ci]P0. Comparing

the projection matrices [Kc2|Ci] and [Kc3|C2] with the projection matrices in Eq. (6.3) and Eq.

(6.4), respectively, we have the following observations:

Rc3
c0 = Rc2

c0 = I ⇒ Rc3
c2 = I, tci

c0 = K−1
ci Ci, i = 2,3, (3.5)

which indicates the rotation between the left camera and right camera can be ignored. It can be

derived from Eq. (6.5) that

tc3
c2 = tc2

c0 − tc3
c0 = K−1

c2 C2 −K−1
c3 C3, QED. (3.6)

It is necessary to prove Equ. (6.1) as well. Consider Eq. (6.3), Eq. (6.4) again, we have

K−1
c3 p3 = Rc3

c0P0 + tc3
c0, K−1

c2 p2 = Rc2
c0P0 + tc2

c0, (3.7)

and by using the observation Rc3
c0 = Rc2

c0 = I from Eq. (6.5) and eliminating P0, we have

K−1
c3 p3 − tc3

c0 = K−1
c2 p2 − tc2

c0 ⇒ K−1
c2 p2 −K−1

c3 p3 = tc3
c2. (3.8)
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Premultiply [tc3
c2]× to both sides of Eq. (6.8):

[tc3
c2]×K−1

c2 p2 = [tc3
c2]×K−1

c3 p3, (3.9)

by premultiplying (K−1
c3 p3)

T to both sides of Eq. (6.9), we have

(K−1
c3 p3)

T [tc3
c2]×K−1

c2 p2 = 0. (3.10)

which can be rearranged as

pT
3 (K

−T
c3 [tc3

c2]×K−1
c2 )p2 = 0. (3.11)

It is obvious that F = K−T
c3 [tc3

c2]×K−1
c2 , and tc3

c2 can be calculated by Eq. (6.6), QED.

3.3.2 Pipeline For Stereo Frustums

Each matched RoIs pair from left-right views encodes dense epipolar constraints between pixels

and their corresponding 3D spacial points. Though fewer LiDAR points are forward-projected to

front-view, we observe that ∼10,000 points are captured by most bboxes. Among these points,

there are many outliers that do not belong to the interested objects. As pointed out by Zhou et al.

(237) that it enforces high computational cost to FPN, our matching module effectively filters out

15% to 49% of points by dense epipolar constraints and thus can greatly speed up the networks

that process point cloud.

The proposed Siamese pipeline is shown in Fig. 3.2. The stereopsis is fed to a 2D object

detector. The detector can be any of traditional ones, such as the CNN-based detectors as Faster R-

CNN (153), RetinaNet (103), the leading PC-CNN-V2 (36) on KITTI object detection benchmark,

and others (114; 94). An accurate detector is crucial before populating the RoIs pairs into the

matching module. Theoretically, each RoI in the left view should have its counterpart in the right

view since one-to-one onto mapping constraint will be inconsistent otherwise. Also, If one salient

object fails to be detected simultaneously in both views, it would lower both detection precision
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and recall. Note that only the objects in the left view have their ground truths, thus we focus on

matching RoIs of the right view to the left RoIs. The matching module follows the one-to-one

mapping constraint or its relaxed form and takes all right RoIs as candidates. The goal is to find

all matches to objects in the left view by the matching costs, which is illustrated in Section 3.3.3.

In the light of valid pairs proposed by the matching module and forward-projection matrices,

the scene is segmented into 3D RoIs subject to minimum intersection constraint, whose semantic

information and objectness scores are inherited from the 2D detections. A segmentation network

refines the 3D RoIs with the extracted point-wise features. Furthermore, multi-modal regressor

estimates the orientation, sizes of 3D bbox, and localization. To verify the validity of SFPN, we

employ Faster R-CNN and Mask R-CNN (57) as the 2D detectors, FPNv2 as the point cloud

segmentation and multi-modal regression networks.

3.3.3 Matching Algorithms

Notations. Consider the centers of bboxes as potential matches, let Dthres be the threshold of

distance to the epipolar line, Pthres the threshold of regional similarity, Pli is the RoI image patch

centered at li, Probi j = NCC(Pli,Pr j) denotes the normalized cross-correlation operator, dist(r j,ei)

is the operator to compute the distance from r j to the epipolar line ei of li, IoUi j = N(Pc(li)∩

Pc(r j))/N(Pc(li)∪Pc(r j)) as 3D IoU matching cost, P3d_thres the probability threshold of the 3D

IoU cost. We then formulate four matching algorithms as:

(1) RoIs matching by 3D IoU cost and epipolar line search (3DCES, Alg. 8), which relaxes the

one-to-one onto mapping constraint to left view only for alleviating computational burden.

(2) RoIs matching by 3D IoU cost and method of exhaustion (3DCME, Alg. 9), which relaxes the

one-to-one onto mapping constraint.

(3) RoIs matching by regional similarity cost (RSC, Alg. 10), which relaxes the one-to-one onto

mapping constraint.

(4) RoIs matching by regional similarity cost and left-right consistency check (RSCCC, Alg. 11),

which strictly follows the one-to-one onto mapping constraint.
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The epipolar line constraint facilitates searching for a fast pixel-level matching. As for RoI-

level matching, we adapt this approach for faster search to RSC, RSCCC, and 3DCES. Experiments

on both regional similarity and 3D IoU costs show the effectiveness of epipolar line search. The

matching module is designed using Python without any Cython and GPU acceleration, or paral-

leled programming. On account of the compatibility purpose, 3DCME and 3DCES merely return

matches as RSC and RSCCC do. We will show in the experiments that SFPN directly processes

raw point cloud with high efficiency, and RSC achieves the shortest runtime among the four mod-

ules. As previous works done by Li et al. (95) and Qin et al. (146) have designed learning-based

methods to find RoIs matches as RSC and RSCCC, we are seeking the possibilities to design

learning-based 3DCME and 3DCES.

In order to deploy the most appropriate module for different tasks, it is recommended to inspect

the groud-truth of the labeled dataset. In terms of a stereo camera configuration, if the groud-truths

of both views are provided, then RSCCC may be implemented for the reason that 2D detection in

both views can be described as ‘reliable’, which reduces unreliable matches by left-right consis-

tency check while maintains high efficiency in RoIs matching. If the groud-truth of one view is

unavailable, the view without ground-truth is thereby unreliable. In this case, although implemen-

tation of RSC is the fastest in runtime, 3DCES may be the best choice as a trade-off of runtime and

detection performance. Moreover, 3DCME is better implemented in case of a very sparse LiDAR

scene for its ability to find accurate matches of frustums. Reader may refer to Section 3.4.2 for

comparisons on the performance of the proposed matching modules and Section 3.4.4 for details

on the runtime analysis.

3.4 Experiments

In this section, we present both validation and testing results on publicly available KITTI dataset.

The dataset consists of 7,481 annotated (2D/3D bbox labeled in left view only) image pairs with

corresponding point clouds and calibrations, 7518 unlabeled testing image pairs with correspond-

ing point clouds and calibrations. In our experiments, 20% of 7,481 randomly shuffled training
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Algorithm 8: 3DCES
Require:

S2,S3,Pthres,Dthres,Pc;
Ensure:

1: Compute set of epipolar lines E = {Fli|∀li ∈ S2};
2: ∀li ∈ S2, search leftwards in right view along ei ∈ E , calculate

Ri = {r j|∀r j ∈ S3, dist(r j,ei)< Dthres};
3: Compute costs Ci = {IoUi j|∀r j ∈ Ri,∃IoUi j ̸= 0};
4: Find match. If Ci ̸=∅ and ∃r j ∈ Ri s.t. IoUi j ≥ max(P3d_thres,max(Ci)), let mi = (li,ri);
5: return M ;

Algorithm 9: 3DCME
Require:

S2,S3,P3d_thres,Pc;
Ensure:

1: ∀li ∈ S2, let Ci = {IoUi j|∀r j ∈ S3,∃IoUi j ̸= 0};
2: Find match. If Ci ̸=∅ and ∃r j ∈ S3 s.t. IoUi j ≥ max(P3d_thres,max(Ci)), let mi = (li,ri);
3: return M ;

samples are divided as the validation set, 2 categories of objects - ‘Car’ and ‘Pedestrian’ are exam-

ined for 3D/BEV detections. Also, we compare proposed SPFN with the state-of-the-arts including

Pseudo-LiDAR (207), Stereo R-CNN (95), TLNet (146), et. al.

3.4.1 Experiments Setup

The 2D detector Faster R-CNN (153) (VGG-16 backbone) is trained on KITTI training set to

provide shared weights and parameters for the sibling branches as shown in Fig. 3.2, and Mask

Algorithm 10: RSC
Require:

S2,S3,Pthres,Dthres;
Ensure:

1: Compute set of epipolar lines E = {Fli|∀li ∈ S2};
2: ∀li ∈ S2, search leftwards in right view along ei ∈ E , calculate

Ri = {r j|∀r j ∈ S3, dist(r j,ei)< Dthres};
3: Perform RoI alignment to Pli and Pr j , compute set of costs Ci = {Probi j|∀r j ∈ Ri,Ri ̸=∅};
4: Find match. If Ci ̸=∅ and ∃r j ∈ Ri s.t. Probi j ≥ max(Pthres,max(Ci)), let mi = (li,ri);
5: return M ;
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Algorithm 11: RSCCC
Require:

S2,S3,Pthres,Dthres;
Matches of left-to-right RoIs pairs, Ml =∅;
Matches of right-to-left RoIs pairs, Mr =∅;

Ensure:
1: Compute sets of epipolar lines

Er = {Fli|∀li ∈ S2} and El = {rT
i F |∀ri ∈ S3};

2: ∀li ∈ S2, search leftwards in right view along ei ∈ Er, calculate
Ri = {r j|∀r j ∈ S3, dist(r j,ei)< Dthres}, ∀ri ∈ S3, search rightwards in left view along
ei ∈ El , calculate Li = {l j|∀l j ∈ S2, dist(l j,ei)< Dthres};

3: Perform RoI alignment to Pli and Pr j , compute two sets of costs
Cli = {Probi j|∀r j ∈ Ri,Ri ̸=∅} and Cri = {Prob ji|∀l j ∈ Li,Li ̸=∅};

4: Find matches from either view. If Cli ̸=∅ and ∃r j ∈ Ri s.t. Probi j ≥ max(Pthres,max(Cli)),
let Ml = Ml ∪{(li,ri)}. If Cri ̸=∅ and ∃l j ∈ Li s.t. Prob ji ≥ max(Pthres,max(Cri)), let
Mr = Mr ∪{(l j,ri)};

5: return M = Ml ∩Mr;
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Figure 3.4: P-R curves of 3D object detection results.
Moderate level is presented. (a) Car category at IoU threshold 0.7. (b) Pedestrian category at IoU
threshold 0.5.
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R-CNN (57) (ResNet backbone + Feature Pyramid Network) is pre-trained on COCO dataset. We

train FPNv2 with raw LiDAR data other than segmented point cloud from the matching module.

In this way, each module pairs with FPNv2 as 3DCES-FPNv2, 3DCME-FPNv2, RSC-FPNv2,

RSCCC-FPNv2. Before testing, several parameters need to be manually set: the percentage of

bbox size Senlarge to be enlarged, distance threshold Dthres from the bbox center to the epipolar

line, similarity threshold Pthres for the template matching, the minimum number of inliers of stereo-

frustums intersection Nthres and P3d_thres the 3D IoU threshold. We set Senlarge to 8%, Nthres to 5,

Dthres=30px, Pthres=0.4, and P3d_thres=0.5. In this section, we enforce enlargement to all bboxes

unless specified by ‘NE’ (w/o enlargement).

2D Detector AP2D APBEV AP3D

Faster R-CNN(NE) 65.9 56.6 55.5
Mask R-CNN(NE) 85.8 74.2 73.5

Faster R-CNN 65.9 57.7 56.7
Mask R-CNN 85.8 83.0 82.2

Table 3.1: 3D object detection on car category using two 2D detectors.
APs(%) at Moderate level with IoU=0.5. Enlarged bboxes of both views by 8% on height and

width. Only 3DCES-FPNv2 is tested.

It should be noted that the reported 2D detection results come from 2D detection stage other

than the projection of the predicted 3D bounding box to the front view. Tab. 5.1 shows that when

the 2D detection AP is low, enlarging bboxes slightly increases APBEV and AP3D since the original

bboxes are not precise enough to capture all keypoints. On the other hand, in terms of SFPN’s serial

pipeline structure, higher 2D detection AP may result in better 3D detection. We also observe that,

if setting P3d_thres to a larger threshold, the number of total matches drops greatly and vice versa,

which behaves similar to 2D IoU during the detection phase.

3.4.2 Quantitative Evaluation on Validation Set

The results of BEV and 3D object detection are presented in Tab. 3.2, Tab. 3.3, Tab. 3.4, and Tab.

3.5. Both RSC and RSCCC require RoI alignment during matching. RSC is designed to relax

the one-to-one onto mapping constraint by merely finding matches to RoIs in the left view while
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RSCCC strictly follows this constraint. As shown in the detection results, RSCCC-FPNv2 achieves

better performance than RSC-FPNv2 with IoU=0.7, which provides evidence for the effectiveness

of this constraint. 3DCME depends on the proposed 3D IoU without RoI alignment or epipolar line

search, which achieves better AP than 3DCES with epipolar line search. We will show in Section

3.4.4 that RSC runs faster than the other three matching methods, and 3DCME is the slowest but

with the highest AP.

3.4.2.1 Overview on Comparisions

3DCES-FPNv2 and 3DCME-FPNv2 achieve competitive performance among all state-of-the-art

stereo-based methods because of highly precise LiDAR data. Although almost all listed stereo-

based methods yield higher 2D detection AP (IoU=0.7) on either the validation set or the test set,

3DCES-FPNv2 and 3DCME-FPNv2 regress disproportional accurate 3D bboxes when projected

to BEV. It is interesting that RSCCC-FPNv2 and RSC-FPNv2 outperform their learning-based

versions (without LiDAR data) Stereo-RCNN (∼10%) and TLNet(∼35%) by a large margin.

Method Type
IoU=0.5

AP2D Easy Mode Hard
RSC-FPNv2(ours) Stereo+LiDAR 85.8 71.9 68.4 61.5

RSCCC-FPNv2(ours) Stereo+LiDAR 85.8 71.9 68.2 61.4
3DCME-FPNv2(ours) Stereo+LiDAR 85.8 82.9 82.9 75.7
3DCES-FPNv2(ours) Stereo+LiDAR 85.8 83.1 83.0 75.7

PSMNET-AVOD (207) Stereo - 89.0 77.5 68.7
Stereo R-CNN (95) Stereo - 87.1 74.1 58.9

3DOP (25) Stereo - 55.0 41.3 34.6
TLNet (146) Stereo - 62.5 46.0 41.9

Table 3.2: BEV results on validation set.
Car category is evaluated with IoU=0.5 and all APs in ‘%’. Moderate AP2D on validation set is

reported.

3.4.2.2 Comparision with Pseudo-LiDAR

Tab. 3.6 shows the comparison with a recently published Pseudo-LiDAR (207) method. Compared

with FPNv2 on validation set and the car category, 3DCES-FPNv2 and 3DCME-FPNv2 achieve
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Method Type
IoU=0.7

AP2D Easy Mode Hard
RSC-FPNv2(ours) Stereo+LiDAR 54.2 67.1 58.0 51.3

RSCCC-FPNv2(ours) Stereo+LiDAR 54.2 68.4 58.6 51.8
3DCME-FPNv2(ours) Stereo+LiDAR 54.2 79.8 72.9 65.7
3DCES-FPNv2(ours) Stereo+LiDAR 54.2 78.4 72.2 65.1

PSMNET-AVOD (207) Stereo - 74.9 56.8 49.0
Stereo R-CNN (95) Stereo 88.3 68.5 48.3 41.5

3DOP (25) Stereo - 55.0 9.5 7.6
TLNet (146) Stereo - 29.22 21.9 18.8

Table 3.3: BEV results on validation set.
Car category is evaluated with IoU=0.7 and all APs in ‘%’. Moderate AP2D on validation set is

reported.

Method Type
IoU=0.5

AP2D Easy Mode Hard
RSC-FPNv2(ours) Stereo+LiDAR 85.8 70.7 67.1 54.0

RSCCC-FPNv2(ours) Stereo+LiDAR 85.8 70.4 66.9 53.9
3DCME-FPNv2(ours) Stereo+LiDAR 85.8 82.5 82.3 75.0
3DCES-FPNv2(ours) Stereo+LiDAR 85.8 82.4 82.2 74.9

PSMNET-AVOD (207) Stereo - 88.5 76.4 61.2
Stereo R-CNN (95) Stereo - 85.8 66.3 57.2

3DOP (25) Stereo - 46.0 34.6 30.1
TLNet (146) Stereo - 59.5 43.7 38.0

Table 3.4: 3D detection results on validation set.
Car category is evaluated with IoU=0.5. 3DCME-FPNv2 achieves the best performance on

validation set out of stereo-based methods.

Method Type
IoU=0.7

AP2D Easy Mode Hard
RSC-FPNv2(ours) Stereo+LiDAR 54.2 58.5 53.7 47.4

RSCCC-FPNv2(ours) Stereo+LiDAR 54.2 58.7 53.9 47.5
3DCME-FPNv2(ours) Stereo+LiDAR 54.2 73.0 67.3 61.2
3DCES-FPNv2(ours) Stereo+LiDAR 54.2 72.5 66.7 60.9

PSMNET-AVOD (207) Stereo - 61.9 45.3 39.0
Stereo R-CNN (95) Stereo 88.3 54.1 36.7 31.1

3DOP (25) Stereo - 6.6 5.1 4.1
TLNet (146) Stereo - 18.2 14.3 13.7

Table 3.5: 3D detection results on validation set.
Car category is evaluated with IoU=0.7. 3DCME-FPNv2 achieves the best performance on

validation set out of stereo-based methods.
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competitive results although they suffer from lower recall (see Fig. 3.4a) considering mismatches

in both views. In order to explore potentials of proposed method, we specifically select PSMNET-

AVOD that achieves the best performance among the methods proposed in (207). As mentioned

in Section 3.1, dense disparity map generates a coarse estimation of the scene which is sensitive

to the focal length and baseline of the stereo cameras. According to Pseudo-LiDAR (207), its

point cloud detector AVOD and FPN are trained by fine-grained, sparse LiDAR points, therefore

its performance may not compete with the state-of-the-art methods based on real-LiDAR data.

Method AP2D Easy Mode Hard
3DCME-FPNv2(ours) 57.4 57.6 47.1 40.7
3DCES-FPNv2(ours) 57.4 57.8 47.3 40.8
FPNv2(our results) 57.4 55.6 49.1 42.6
PSMNET-FPN (207) - 33.8 27.4 24.0

FPN (207) - 64.7 56.5 49.9

Table 3.6: 3D detection results on validation set.
Pedestrian category is evaluated.

Method AP2D Easy Mode Hard
3DCME-FPNv2(ours) 57.4 62.6 53.7 46.6
3DCES-FPNv2(ours) 57.4 60.8 52.8 45.9
FPNv2(our results) 57.4 58.5 51.5 44.8
PSMNET-FPN (207) - 41.3 34.9 30.1

FPN (207) - 69.7 60.6 53.4

Table 3.7: BEV detection results on validation set.
Pedestrian category is evaluated. Results of FPN in the table are presented in (208).

Tab. 4.7 shows the BEV results compared to FPNv2 on validation set, along with another

similar comparison with (207). 3DCME-FPNv2 achieves better performance than FPNv2 by 4.1%

at Easy level, 2.2% at Moderate level, and 1.8% at Hard level. The improvements are mainly

derived from enlarged bboxes since they enrich sparse segmentation captured by stereo frustums.

These enlarged bboxes are especially efficient for pedestrians whose poses vary. For 3D object

detection, 3DCES-FPNv2 achieves higher AP at Easy level, but is less precise than FPNv2 at

Moderate and Hard levels. To conclude, when comparing margins to corresponding FPN detection
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results in Tab. 4.7 and Tab. 3.6, our methods outperform pseudo-LiDAR based PSMNET-FPN by

significant margins.
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Figure 3.5: Runtime comparison between matching modules and original FPNv2.
The figure is best viewed in colour mode. Processing time (millionsecond) is calculated by

averaging runtime of validating 1,496 samples.

3.4.3 Quantitative Evaluation on Test Set

In this subsection, we present the performance of 3DCES-FPNv2 on KITTI leaderboard (Geiger et al.)

among all stereo-based submissions. We take Mask R-CNN (57) as the 2D detector as it has a

higher detection AP over Faster R-CNN (see Section 3.4.1). FPNv2 is trained on our training set

other than all 7,481 samples. Tab. 3.8 and Tab. 3.9 present 3D object detection results, Tab. 3.10

and Tab. 3.11 present BEV detection results.

It can be observed that from Tab. 3.9 and Tab. 3.11, proposed method outperforms stereo-

based method in detecting pedestrians. However, as there are more samples in the cyclist category

than that of the validation set, while Mask R-CNN mistakes the cyclist category as the pedestrian

category, we believe this is one of the main factors that lower the detection APs. In terms of

the performance in 3D object detection, 3DCES-FPNv2 achieves competitive performance among

80



(a) 3D(left) and BEV(right) detections. More persons than cars.

(b) 3D(left) and BEV(right) detections. Car category only.

Figure 3.6: Qualitative evaluation on validation set using Mask R-CNN detector.
Red bboxes in BEV indicate ground truths, and green bboxes indicate detections. Cyclist category

is not evaluated in our experiments. However, Mask R-CNN (57) misclassifies cyclists as
pedestrians, therefore significantly increases false positive rate in detecting pedestrians.
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stereo-based methods. It should be noted that untrained Mask R-CNN provides much lower 2D

detection AP at 46.68% which is 38.47% less than 85.15% of PL++(SDN+GDC) (221). Nonethe-

less, the proposed method maintains disproportionate performance in 3D object detection, which

proves the effectiveness of the proposed pipeline.

Method Type AP2D Easy Mode Hard
3DCES-FPNv2(ours) Stereo+LiDAR 46.68 58.88 51.92 44.59
Pseudo-LiDAR (207) Stereo 67.79 54.53 34.05 28.25

Pseudo-LiDAR++ (221) Stereo 82.90 61.11 42.43 36.99
PL++(SDN+GDC) (221) Stereo+LiDAR 85.15 68.38 54.88 49.16

ZoomNet (213) Stereo 83.92 55.98 38.64 30.97
Stereo R-CNN (95) Stereo 85.98 47.58 30.23 23.72

StereoFENet (9) Stereo 85.70 29.14 18.41 14.20
OC Stereo (141) Stereo 74.60 55.15 37.60 30.25
RT3DStereo (84) Stereo 45.81 29.90 23.28 18.96

TLNet (146) Stereo 63.53 7.64 4.37 3.74

Table 3.8: 3D detection APs(%) on test set(Geiger et al.).
Car category is evaluated. Moderate 2D detection APs are reported. With much lower 2D

detection AP, proposed method has the potential to outperform PL++(SDN+GDC).

Method Type AP2D Easy Mode Hard
3DCES-FPNv2(ours) Stereo+LiDAR 51.83 37.16 29.77 26.61

OC Stereo (141) Stereo 30.79 29.79 20.80 18.62
RT3Dstereo (84) Stereo 29.30 4.72 3.65 3.00

Table 3.9: 3D detection APs(%) on test set (Geiger et al.).
Pedestrian category is evaluated.

3.4.4 Runtime

With a fixed number of LiDAR points (e.g., 1024) fed into FPNv2, 3D detection phases have almost

the same computation costs (see Fig. 3.5). Therefore, it is necessary to show runtime efficiency of

the stereo frustums pipeline. As depicted in Fig. 3.5, all shown phases are tested with a 2.5Ghz

CPU except for the 3D detection phase which is tested with a P100 GPU. RSC-FPNv2 is the

fastest among the four methods, RSCCC-FPNv2 doubles the matching time of RSC-FPNv2 but

only slightly increases the overall preparation time, 3DCME significantly increases RoIs matching
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Method Type AP2D Easy Mode Hard
3DCES-FPNv2(ours) Stereo+LiDAR 46.68 74.20 65.74 58.35
Pseudo-LiDAR (207) Stereo 67.79 67.30 45.00 38.40

Pseudo-LiDAR++ (221) Stereo 82.90 78.31 58.01 51.25
PL++(SDN+GDC) (221) Stereo+LiDAR 85.15 84.61 73.80 65.59

ZoomNet (213) Stereo 83.92 72.94 54.91 44.14
Stereo R-CNN (95) Stereo 85.98 61.92 41.31 33.42

StereoFENet (9) Stereo 85.70 49.29 32.96 25.90
OC Stereo (141) Stereo 74.60 68.89 51.47 42.97
RT3Dstereo (84) Stereo 45.81 58.81 46.82 38.38

TLNet (146) Stereo 63.53 13.71 7.69 6.73

Table 3.10: BEV detection APs(%) on test set (Geiger et al.).
Car category is evaluated.

Method Type AP2D Easy Mode Hard
3DCES-FPNv2(ours) Stereo+LiDAR 51.83 31.61 24.84 21.96

OC Stereo (141) Stereo 30.79 24.48 17.58 15.60
RT3Dstereo (84) Stereo 29.30 3.28 2.45 2.35

Table 3.11: BEV detection APs(%) on test set (Geiger et al.).
Pedestrian category is evaluated.

time while 3DCES reduces the time almost by half. Thus, 3DCES is efficient in matching as well as

maintaining detection AP as 3DCME does. Most runtime of data-preparation phase goes to point

cloud processing, which remains to be optimized by high-performance computing techniques.

3.4.5 Qualitative Results

The results of 3D detection and BEV detection using SPFN on the validation set are visualized

in Fig. 3.6. The BEV detections are depicted on a sparse point cloud generated by the 3DCES

matching module. Fig. 3.6a shows that two pedestrians are missed due to unsatisfying illumination

condition that invalids the 2D detector, another two pedestrians are missed due to large occlusion

and too small in dimensions. Despite the missed detections, SFPN is capable of regressing highly

precise bboxes that enclose irregular objects as pedestrians. There is a very close object in Fig.

3.6b which is not detected due to too few clues of objectness in that region. Also, largely occluded

objects in Fig. 3.6b can hardly be detected. Nevertheless, RoIs locate both very near and near
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(around 40m, which almost reaches the valid-range limit of LiDAR sensor) objects precisely. Some

faraway objects located at 50-70m can be detected by SFPN but with less precision. To further

study segmented point cloud of the faraway objects, the number of points in each segmented point

cloud is usually less than 100, we believe this number is around the borderline threshold Nthres.

3.5 Conclusion

In this chapter, we have proposed four matching modules to bridge the gap between 2D object

detection on stereopsis and real LiDAR data via dense epipolar geometry constraints: the one-to-

one onto mapping and minimum intersection. To accommodate the proposed matching modules,

we have proposed a stereo frustum pipeline for 3D object detection where the 2D detection results

are fed to the matching module to generate matches to segment the point cloud of the scene, and

the 3D segmentation proposals are then fed to a refinement network for more precise objectness

segmentation, followed by a multi-modal regression network.

By integrating with the F-PointNets, our stereo frustum pipeline can achieve 2-3 frames per

second without coding optimization. Although this frame rate is not yet applicable for real-time

applications, its speed can be further increased if we adopt techniques like GPU acceleration. More

efficient matching algorithms and 2D detection models are also expected. The proposed pipeline

outperforms the state-of-the-art stereo-based approaches with a lower 2D detection average preci-

sion, it has the potential to outperform the state-of-the-art LiDAR and stereo fusion approaches if

better 2D detection models are adopted.

We are currently working to design end-to-end matching modules for 3DCES and 3DCME

to achieve more effective representation to encode the sparse point cloud. Some future work in-

cludes leveraging the reliability of both views for better performance in the detection accuracy and

recall, optimizing runtime not only at the coding level, but also seeking into the possibilities of

implementing distributed parallel computing techniques.
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Chapter 4

Inference: 2D Object Detection Using Faster R-CNN

Abstract

Polyp has long been considered as one of the major etiologies to colorectal cancer which is

a fatal disease around the world, thus early detection and recognition of polyps plays an cru-

cial role in clinical routines. Accurate diagnoses of polyps through endoscopes operated by

physicians becomes a chanllenging task not only due to the varying expertise of physicians,

but also the inherent nature of endoscopic inspections. To facilitate this process, computer-

aid techniques that emphasize on fully-conventional image processing and novel machine

learning enhanced approaches have been dedicatedly designed for polyp detection in en-

doscopic videos or images. Among all proposed algorithms, deep learning based methods

take the lead in terms of multiple metrics in evolutions for algorithmic performance. In this

work, a highly effective model, namely the faster region-based convolutional neural network

(Faster R-CNN) is implemented for polyp detection. In comparison with the reported results

of the state-of-the-art approaches on polyps detection, extensive experiments demonstrate

that the Faster R-CNN achieves very competing results, and it is an efficient approach for

clinical practice1.

4.1 Introduction

It is well known that the predecessor of colorectal cancer (CRC), also termed as colon cancer,

is most likely to be a polyp. According to the statistics of American Cancer Society, colorectal
1Relevant works are published as (125).
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carcinoma is the third most commonly diagnosed cancer and the second leading cause of death

from cancers in the United States (203). CRC is the fourth cause of cancer death worldwide with

around 750,000 new cases diagnosed in 2012 alone (49).

Pathologically, neoplastic polyps may chronically turn into cancer, located hiddenly on col-

orectal wall unless filmed during colonoscopy, which is the main diagnostic procedure of doctors.

Though this process may be intuitively achieved successfully, approximately 25% of polyps are

missed (189), which brings about potential risks to patients’ lives. For early diagnoses and preven-

tion of colon cancer, an urgent task for physicians and computer vision researchers is to find more

reliable, accurate and even faster approaches for polyp detection. In response to the demands, well-

designed grand challenges organized by Medical Image Computing and Computer Assisted Inter-

vention (MICCAI) and International Symposium on Biomedical Imaging (ISBI), have attracted a

lot of attention worldwide.

Specifically, multiple factors affect either the process of manual inspection or computer-aided

detection significantly. For the first and foremost, it is common that during the clinical prac-

tices, physicians usually operate conventional colonscope for hours to seek, observe, and diagnose

polyps, when considering the heavy workload of physicians that leads to both mental and physical

fatigue, even an experienced doctor would miss or wrongly diagnose benign polyps. Therefore,

automatic computer-aid system is urgently in modern medicine communities (5; 75).

In regard to computer-aid methods, the factors are diverse. There are varieties of noises in the

videos which can be classified as the specular highlights caused by illumination along with the

non-Lambertian colorectal walls, the curving veins distributed around the polyps, the polyp like

bulges on internal wall to lumen, blob-like matters such as bubbles that always being observed, and

the insufficient illumination that shield all regions of interest (ROI). These noises may invalidate

the state-of-the-art conventional and learning-based approaches (77; 190; 189). Our experiments

show that, in some rare cases, Faster R-CNN (154) may mistake some oval specular highlights for

polyps.

Another factor is the shape information. Polyps are not always appeared as regular oval lumps,
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(a) (b) (c)

Figure 4.1: Features of Faster R-CNN detector.
(a) Successfully detect a largely occluded (approximately 50%) polyp with low intensities. (b)

Blob-like objects as bubbles are neglected. (c) Very large polyp detected.

furthermore, they can be various in their sizes from 3mm to more than 10mm or more variable

due to projective transformation and distortions of imaging sensors. Conventional hand-crafted

approaches and some fusion approaches often suffer from this factor in that they are initially de-

signed according to the morphological features of polyp (203; 189; 190; 216; 119).

Bernal et al. (14) categorize off-the-shelf methods for polyp detection into three classes: hand-

crafted, hybrid, and end-to-end learning. Our work emphasizes on the deep learning solution to

polyp detection, and provide evaluation of variations in parameters. Our contributions include:

• To our best knowledge, this work provides the first evaluation for polyp detection using Faster-

RCNN framework. In addition to reducing the false positive rate during the test phase whose

goal is to lower the risks for misdiagnosis when taking the detector for clinical practice, our

system provides a good trade-off between efficiency and accuracy.

• We demonstrate a fine-tuned set of parameters for polyps detection in endoscopic videos that

outperform many state-of-the-art methods. The testing results set a novel baseline for polyp

detection.

• We compare and analyze the experimental results and reveal insights for better solution when

deal with small dataset consisted of endoscopic videos. The proposed framework together with

the trained parameters are available for the research community on the author’s website.
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Figure 4.2: Structure for polyp detection.
The image is best viewed in its colored version that the red arrow signifies the convolution-ReLU

flow, green arrow the max pooling flow, purple arrow the 1×1-convolution or fully-connected
flow, blue arrow the ROI pooling flow, and black arrow represents the normal datum flow. Noted
that all operations of the same sized convolutional kernel is only labeled at the first appearance of
that flow. The input frame is selected from new CVC-ClinicDB (CVC-ClinicDB2017), resizing to

800×600.

4.2 Related Works

According to MICCAI 2015 challenge evaluations, fully CNN based methods with or without

data augmentation outperform fusion methods and hand-crafted when considering the evalua-

tion metrics in most cases: Recall, Precision, F-scores (e.g. CUMED, OUS in all videos and

videos with only polyp frames). However, high false positive rate has been observed during the

experiments (158) that a novel data augmentation technique - random view aggregation is im-

plemented, while for pursuing the highest F-scores and remedying the deficiencies of 2D-CNNs,

online and offline 3D-fully convolutional networks (FCNs) are integrated to acquire the final con-

fidence map (223). For 2D-CNNs, most of related works focus on no more than 5-convolutional

layered deep CNNs such as AlexNet (191), but a few (158) have experimented on deeper networks.

It remains to be a key topic whether light weighted CNNs can achieve the same capacity as their

very deep counterparts. Still, we believe that a trade-off between architectural complexity and run-

time would contribute to the ideal design, which is the main reason that we choose VGG16 (177),

once achieved 92.7% top-5 test accuracy in ImageNet dataset as the feature extractor.
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To the best of our knowledge, Faster-RCNN is the first detector so far that replaces hand-

crafted ROI selection step with a network i.e., the regional proposal network (RPN) towards fully

end-to-end fashion. Its structure is developed from previous R-CNN (52) and Fast-RCNN (51).

Recently, an improvement of Faster R-CNN, i.e., the Mask R-CNN (58) is proposed by extending

a novel multi-task branch: mask sub-network for segmentation purpose along with replacement of

ROI Pooling layer by ROI Align layer. We apply Faster R-CNN without the sub-network for its

redundancy in detecting polyps.

Other novel end-to-end detectors such as You Only Look Once (YOLOv1) (82), YOLOv2 (152),

SSD (104), so far, most of them have been implemented and tested on other public or private

datasets such as COCO, ImageNet, etc. Although these approaches could fulfill realtime require-

ments (up to more than 24fps), the ROIs are randomly chosen without an end-to-end fashion, and

the mAP is compromised in terms of polyp detection as reported in (140) that examines YOLOv1

on ASU-Mayo Clinic dataset(190).

4.3 Architecture of Faster R-CNN

4.3.1 Backbone Structure

Fig. 4.2 illustrates the complete testing structure of this work. The backbone (58) computes high-

level features of entire test frame such that the weights between ROIs are shared, which is different

from previous R-CNN and patchwise OUS (14) methods. Faster R-CNN removes all subsequent

layers of 512 feature maps conv5_3 whose shape is 50×37 for each. In reference to VGG16 and

ZFnet, it is reported that the latter runs faster up to 17fps, while the former runs at 5fps (154),

on a K40 GPU. When comparing mAPs on PascalVOC 2007, ZFnet backbone achieves highest

59.9%, and VGG16 78.8%. VGG16 thus benefits for its deep feature extraction process besides its

relatively high speed compared to CUMED (14) that runs at 5fps on a more advanced TitanX GPU

for former CVC-ClinicDB (CVC-ClinicDB2015) (12).
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4.3.2 RPN and Head Networks

The conv5_3 is fed to two sibling branches - RPN and Head (58). After performing 3×3 con-

volution, RPN constructs 9 anchors at each position on the resulted feature map, the anchors are

designed according to 3 scales (small, medium, large) with 3 different ratios of 1:1, 1:2, 2:1. As

a result, it outputs maximum 50×37×9×4=66600 positional coordinates of all 16650 potential

proposals (for each proposed, the coordinates in the test image are the center (xa,ya), width wa

and height ha of the bounding box), and 50×37×9×2=33300 scores per proposal being the back-

ground or polyp. During the training, not all proposals are transformed to training samples, of

which a limited number of refined proposals e.g. 2000, are selected by trimming invalided bound-

ing boxes along the borders; proposals with intersection of union (IoU) between 0.3 and 0.7, and in

the meantime, keep as many positive samples (IoU>0.7) as possible, and replenish with negative

samples (IoU<0.3); and applying non-maximum suppression (NMS) to the scores Sbg and Sob j, as

depicted in Fig. 4.2.

During the testing process, we let RPN generate 150 top proposals further trimmed by NMS

of the scores sob j and sbg, afterall, RPN is trained for valid regional proposals better than its coun-

terpart - selective search. Refined candidates are then mapped to anchors on conv5_3. The Head

network leverages on each anchor to yield the detection outcomes.

As shown in Fig. 4.2, the blue arrow represents the ROI pooling process. All 150 anchors are

resized to the same size, which is equivalent to a single-layered SPPnet (59). This procedure is

essential as it transforms different scaled feature map into the two following 4096 fix-length fully-

connected layers, each is followed by a dropout layer with a probability of 0.5, which makes the

softmax classifier applicable. In addition to regress bounding box of predicted ROIs (x,y,w,h), the

Head output 2-class probabilities of the correspondent ROIs to be either background Pbg or polyp

Ppolyp.
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4.3.3 Loss Function

Either RPN or the Head loss functions (154) of Faster R-CNN consists of two parts i.e., the classi-

fication loss Lcls and bounding box regression loss Lreg. Suppose the ground truth of a proposal to

be {x∗,y∗,w∗,h∗,P∗
i }, among which P∗

bg = 1 and P∗
polyp = 0 if the proposal is positive, and P∗

bg = 1

and P∗
polyp = 0 if negative. To alleviate the influence of scales during training, the coordinates are

parameterized as  tx = (x− xa)/wa, ty = (y− ya)/ha,

tw = log(w/wa), th = log(h/ha), t∗x = (x∗− xa)/wa, t∗y = (y∗− ya)/ha,

t∗w = log(w∗/wa), th = log(h∗/ha),

(4.1)

and the general loss function is denoted as

L({Pbg,Ppolyp},{ti}) =
1

Ncls
[Lcls(Pbg,P∗

bg)+

Lcls(Ppolyp,P∗
polyp)]+λ

1
Nreg

∑
i

P∗
i Lreg(ti, t∗i ),

(4.2)

where Ncls denotes the mini-batch size, Nreg the number of all proposals from an image for training.

Here the classification loss Lcls(Pi,P∗
i ) = −P∗

i log(Pi), where Ppoyp +Pbg = 1, Ppoyp and Pbg are

outputs of softmax classifier, and the bounding box regression loss Lreg(ti, t∗i ) = R(ti−t∗i ), in which

R(·) is smooth L1 function for Head loss denoted as

R(x) =

 0.5x2 |x|< 1

|x|−0.5 otherwise.
(4.3)

For joint training, the total loss is the sum of RPN and Head losses. while applying 4-step

training, two losses are tuned alternately.
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Table 4.1: Validation metrics for polyp detection.

Polyp Detection

True Positive (TP) Indicate polyp presence in a frame with polyp

False Positive (FP) Indicate polyp presence in a frame without polyp

True Negative (TN) Indicate polyp missing in a frame without polyp

False Negative (FN) Indicate polyp missing in a frame with polyp

Precision 100× TP
TP+FP

Recall 100× TP
TP+FN

Accuracy 100× TP+TN
TP+TN+FP+FN

F1-score 2× Precision×Recall
Precision+Recall

F2-score 5× Precision×Recall
4×Precision+Recall

Reaction Time (RT) Delay between the first TP and polyp frame

Mean Distance(MD) N/A

4.4 Implementation Details

4.4.1 Data Preparation

The framework is tested using the following public datasets tested during our experiments include:

• CVC-Clinic2015 (CVC15). Contains 612 still frames whose ground-truths are labeled by the

Computer Vision Center (CVC), Barcelona, Spain are selected from 29 endoscopic videos by

courtesy of Hospital Clinic, Barcelona, Spain. This dataset is designed as the training set for

MICCAI2015 and ISBI2015 sub-challenges for polyp detection in endoscopic videos.

• CVC-Clinic2017. A new database for MICCAI2017 endoscopic sub-challenge, which consists

of 18 different sequences, and all of which showing no more than one polyp and have up to

11954 frames. The test set contains 18 different videos, and has up to 18733 frames.

• CVC-ColonDB (13). Small public dataset maintained by the CVC group, which contains

300 frames from 15 different videos along with their corresponding ground-truth masks, non-
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Table 4.2: Validation metrics for polyp localization.

Polyp Localization

True Positive (TP) Correctly predict polyp location within polyp frame

False Positive (FP) Wrongly predict polyp location within polyp frame

True Negative (TN) N/A

False Negative (FN) Indicate polyp missing in a frame with polyp

Precision 100× TP
TP+FP

Recall 100× TP
TP+FN

Accuracy N/A

F1-score 2× Precision×Recall
Precision+Recall

F2-score 5× Precision×Recall
4×Precision+Recall

Reaction Time (RT) N/A

Mean Distance(MD) Mean Euclidean distance between polyp centers

informative region masks, contour of the polyp masks.

• CVC-EndoSceneStill (197). The CVC group combines CVC-ColonDB with CVC-ClinicDB2015

into a new dataset with explicit divisions for train, test, and validation respectively, which is

composed of 912 frames obtained from 44 video sequences collected from 36 patients.

We randomly select 16 sequences from CVC-ClinicDB2017 training set for training Faster

R-CNN. To test the performance of trained model on CVC-ColonDB, CVC-ClinicDB2015 and

CVC-EndoSceneStill, only the training sets are chosen.

Only simple transformations are made to the raw images without augmentation. All training

frames are resized to 384×288, which is close to original resolutions of samples for not incorporat-

ing much distortions, and in the validation set, monochrome tiff images from CVC-Clinic2015 are

transformed to chromatic counterparts. In addition, the training samples are flipped horizontally.
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Table 4.3: Fine-tuned detection results for 300 proposals on accuracy, precision and recall.

Dataset TP FP TN FN Accuracy Precision Recall

CVC-Clinic2015-train 607 0 0 5 99.2 100.0 99.2

CVC-ColonDB 292 0 0 8 97.3 100.0 97.3

CVC-EndoSceneStill 181 0 0 2 98.9 100.0 98.9

Average - - - - 98.5 100.0 98.5

Table 4.4: Fine-tuned detection results for 300 proposals on F1-/F2-scores and RT.

Dataset TP FP TN FN F1-score F2-score RT (in frame)

CVC-Clinic2015-train 607 0 0 5 99.6 99.3 0

CVC-ColonDB 292 0 0 8 98.6 97.9 0

CVC-EndoSceneStill 181 0 0 2 99.5 99.1 0

Average - - - - 97.1 99.2 0

4.4.2 Training

Instead of the 4-steps alternately training strategy to optimize RPN and Head losses, we test an-

other approximately joint optimization (AJO) proposed by authors of (154) that takes a mini-batch

as input and optimizes both losses at the same time. Nevertheless, there is no differential error

increments for stochastic gradient descent (SGD) method at RoI pooling layer, the remedy is to

propagate these increments backwards without processing. In contrast the 4-steps training meth-

ods, AJO has nearly the same test mAP on PascalVOC 2007 whereas faster during training (save

up to 9 hours).

The training datasets contains 11954 images in total. We train Faster R-CNN on a K40c GPU

with default parameters except setting mini-batch size to 128, all batches are normalized by sub-

traction of fix mean values. Training took no more than 4 days for fine-tuned network without

observation of overfitting. In addition, VGG16 is initialized by ImageNet weights. And after

70000 iterations, fully-trained network saw the convergence except for class loss, which indicates

that the fully trained Faster-RCNN using AJO may fail to detect polyps.
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Table 4.5: Fine-tuned localization results for 300 proposals and comparison (part. 1).

Method Dataset TP FP FN Precision Recall

Faster R-CNN

CVC-Clinic2015-train 523 81 8 86.6 98.5

CVC-ColonDB 262 30 8 89.7 97.0

CVC-EndoSceneStill 149 32 2 82.3 98.7

Average - - - - 86.2 98.1

Darknet-YOLO-EIR (140) ASU-Mayo Clinic 2245 1005 2068 69.1 52.1

Table 4.6: Fine-tuned localization results for 300 proposals and comparison (part. 2).

Method Dataset F1-score F2-score MD (in pixels)

Faster R-CNN

CVC-Clinic2015-train 92.2 95.9 27

CVC-ColonDB 93.2 95.5 21

CVC-EndoSceneStill 89.8 95.4 25

Average - 91.7 95.6 25

Darknet-YOLO-EIR (140) ASU-Mayo Clinic 59.4 62.5 -

4.4.3 Validation

Our polyp detection tasks include predicating whether a frame shows a polyp, and localizing the

exact location of a polyp. To track training status, we utilize the rest two sequences of CVC-

ClinicDB2017 training set as validation sets for evaluating the performance that contain 1178

frames, 910 of which contain a polyp. All evaluation metrics are consistent with MICCAI2017

sub-challenge except F-scores as shown in Tab. 4.1 and 4.2. Noted that FN, TP are counted once

per frame, and FP, FN multiple times per frame.

Training sets of other datasets are considered as validation sets except for CVC-EndoSceneStill

where the dataset has its own division up to 183 frames. 1, 25, 50, 100, 200, 300 regional proposals

are tested respectively for each dataset.
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4.5 Experiments

4.5.1 Detection

Tab. 4.3 and 4.4 show the fined-tuned results of 300 proposals which yields the best performance

upon metrics whereas having the longest runtime. Typically, the detector runs at 17fps for 1 pro-

posal which reaches the lower bound of realtime application, and 0.9fps for 300. Parameters are set

as follows: Thresholds for RPN NMS, confidence of detection are 0.7 and 0.3, top 1,000,000 pro-

posals before feeding to RPN NMS to ensure 100% detection rate, a higher confidence threshold

0.5 would drop the rate to 97.4%. It can be inferred from the detection results that the detection rate

reaches a high level for CVC-Clinic2015, CVC-ColonDB and CVC-EndoSceneStill for the reason

that each frame of these datasets contains at least one polyp. During the test of the experiments, due

to the lower threshold set for confidence, the higher FN rate is observed during detection. More-

over, it is crucial to make a good trade-off between the performance and speed if an automatic

detector is designed for real practice. We found on CVC-ColonDB that number of proposals influ-

enced the detection rate greatly that the accuracy reduced from 97.3% for 300 proposals to 88.3%

for 1 proposal. This trend is identical with that of CVC-Clinic2015 and CVC-EndoSceneStill.

Table 4.7: Performance comparison.

Novel detectors (14) implemented on CVC-Clinic2015DB testing set, and Faster R-CNN
implemented on training set.

Method Dataset Precision Recall F1-score F2-score

ASU CVC15test 97.2 85.2 90.8 87.4

CUMED CVC15test 91.7 98.7 95.0 97.2

CVC-Clinic CVC15test 83.5 83.1 83.3 83.2

OUS CVC15test 90.4 94.4 92.3 93.6

PLS CVC15test 28.7 76.1 41.6 57.2

SNU CVC15test 26.8 26.4 26.6 26.5

Ours CVC15train 86.2 98.1 91.7 95.6
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4.5.2 Localization

Corresponding localization results are shown in Tab. 4.5, 4.6 and 4.7. To compute MD, the Eu-

clidean distance between the center of detected bounding box and that of ground truth is considered

as the reference to judge if the detected center locates within the ground truth radius. Relatively

high FP, FN rates are observed on CVC-Clinic2017 dataset, while for other three datasets, all met-

ric values lay around 80%. These results can be regarded as the baseline for polyp localization in

future works. In Tab. 4.5 and 4.6, it is denoted that though Darknet YOLO-EIR achieves realtime

performance, the metrics are not sufficient for clinic use yet considering our 1 proposal results on

CVC-ColonDB that the precision, recall, F1 and F2 scores, MD are 91.3%, 87.4%, 89.3%, 88.1%,

18 pixels respectively.

In comparison, as is manifested in Tab. 4.7, the outcomes indicate that Faster R-CNN achieves

competitive performance compared to novel learning-based techniques, CUMED, ASU, and OUS

(14) on videos with only polyp frames. Noted that these methods take one detection as TP if the

detected center falls within the area of ground-truth mask, which is slightly different from MD

metric. To be more specific, MD metric implemented here is more strict for it only considers

the shortest side of the ground-truth box. During the experiments, we did not validate Faster R-

CNN on the private ASU-Mayo Clinic dataset and the MICCAI2015 testing dataset due to their

unavailability. However, the design of test set may differ from that of training set, this potential

problem is alleviated by the various sets of polyps under different conditions from CVC15 training

set and the similar sources of samples.

4.5.3 Fine-Tuning vs from Scratch

On small polyp datasets, we are interested in the resultant performances by training from scratch

or fine-tuned. For fully trained Faster R-CNN, all weights are initialized by random sampling

from Gaussian distribution with zero mean and a standard deviation of 0.01. Fine tuned network

manifests high performance during the test as shown in Tab. 4.3, 4.4, 4.5 and 4.6. The fully-trained

network, on the other hand, requires a few more days for training, and it has been observed that
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(a) Small polyp. (b) Irrgular shape.

(c) Oval specular highlight. (d) Polyp-like intervention.

Figure 4.3: Failure modes for Faster R-CNN.
The green bounding box signifies groudtruth. (a) Small-sized polyps are missed. (b) Detector
fails to locate low-contrast irregular polyp. (c) Area of specular highlight tricks the detector

where there is no polyp. (d) In a frame without polyp, some suspicious area may trick both the
detector and human eyes.

the lower mAP of fully-trained network might due to the AJO strategy in that the anchors are more

sensitive to the initialized weights and RPN fails to provide sufficient positive samples.

The Faster R-CNN detector can detect largely occluded polyp and being robust to illumina-

tion changes as is depicted in Fig. 4.1a, also, noises as circular bubbles (Fig. 4.1b) are correctly

predicted by the detector, even in the case that there are other tissues except polyp, and the detec-

tor correctly localizes the polyp in frames. Another advantage is that very large polyps that may

occupy whole receptive field are successfully detected.

On the other aspect, although the detector is more liable to locate large polyps, it misses some

very small polyps in the frames, as depicted in Fig. 4.3a, which accounts for the high FP rate in
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Tab. 4.5, especially when predicting validation sequence 17 of CVC-Clinic2017. It should note

that the detector learns the oval shape of polyp so firmly that it mistakes false areas (Fig. 4.3b-

4.3d) as the real polyps, which causes high localization FP rate with respect to all datasets. In our

future work, we would focus on solutions to these issues.

4.6 Conclusion

Faster R-CNN has been a fully end-to-end approach for object detection tasks on public datasets

of natural scenes. For polyp detection and localization in endoscopic videos, this work first applies

Faster R-CNN with VGG16 as the backbone. Through extensive experimental evaluation, the

proposed approach exhibits potentials for reaching the best performance on precision, as well as

yields competitive results in other metrics. The high detection performance indicates that Faster

R-CNN could help lower the risk of missing polyps during colonoscopy examination even if RPN

predicts only 1 proposal per test. On the other side, Faster R-CNN shows high false-positive rate

in frames with presence of polyp during localization tests, which needs to be further investigated

and discussed.
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Chapter 5

Inference: Self-Attention Mechanism for Semantic

Segmentation

Abstract

In this chapter, we proposed an end-to-end realtime global attention neural network (RGANet)

for the challenging task of semantic segmentation. Different from the encoding strategy de-

ployed by self-attention paradigms, the proposed global attention module encodes global

attention via depthwise convolution and affine transformations. The integration of these

global attention modules into a hierarchical architecture maintains high inferential perfor-

mance. In addition, an improved evaluation metric, namely MGRID, is proposed to alleviate

the negative effect of non-convex, widely scattered ground-truth areas. Results from exten-

sive experiments on state-of-the-art architectures for suction region segmentation manifest

the leading performance of proposed approaches1 for robotic monocular visual perception.

5.1 Introduction

Correct bin picking by suction from cluttered environment is nontrivial for a robotic hand (230),

since robotic hands have little prior knowledge of spatial shape by category, texture of material, or

normal vectors of surfaces. To assist robotic hand in localizing feasible areas to pick by suction,

Zeng et al (230) names the adsorbability of objects in a clustered scene as the affordance map (see

Fig. 5.5), indicating the possibilities of objects being picked up.

1Relevant works are published as (122)
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Figure 5.1: Hierarchical inference architecture of 5-scales RGANet5.
Backbone network consists of encoder and decoder (167) networks. One IB processes feature

volume at a scale, and the decoder network interacts with encoder at all scales, generating
high-order feature volumes. The decision unit has a Head to group both high-order features and

raw image channels, and a GAM to acquire the final segmentations (affordance maps).

Predicting affordance maps is a variant of semantic segmentation. In practice, realtime visual

perception with light computational liability is preferred, especially for robotic bin picking by

suction. It should be noted that, the predicted affordance maps are not yet applicable enough

for actual bin picking. Post-Refinement of estimating normal vectors of 3D surfaces, registering

affordance maps to multiple coordinates systems, calibrations on robotic hand and cameras, and

data stream synchronization etc. are necessary though time-consuming. Therefore, predicting

more reliable affordance maps in real time with low-cost inferential processors will greatly benefit

the real-world implementations.

We propose to efficiently predict affordance maps by realtime global attention network (RGANet),

which can be easily adapted to other semantic segmentation tasks. As depicted in Fig. 5.1, RGANet

is a light-weighted hierarchical architecture composed of inference blocks (IBs) that are based on

attention mechanism (71; 196). For the purpose of preserving full-size activation of feature maps,

pooling and dropout layers are deprecated. To explore the potentials of proposed global attention

modules (GAMs), we adopt a GAM-enhanced encoder-decoder (167) backbone network.
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Figure 5.2: Forward pass of RGANet5.
It should be noted that detailed framework of ESS, GAM and decision unit are presented in

Section 5.4, thereby corresponding blocks (in deeper blue color) do not represent feature maps.
The network takes monocular input image, and outputs pixel-wise, one-hot encoded predictions
of background (blue), negative sample (green), suction areas (red) respectively. The dashed line

indicates the highway between encoder and decoder can be disconnected.

5.2 Motivation

RGANet for the challenging segmentation task It becomes more intricate given the constraint

that, the very limited information offered is the RGB images of cluttered scene, and plausible areas

for suction annotated by various human experts. Individuals may make mistakes while annotating

images in their unique styles, which diversifies annotations greatly and makes it more difficult for

traditional machine vision techniques to forge ahead with.

Realtime inference with global attention Vanilla convolution convolves and aggregates fea-

ture maps faster than fully connected layers due to shared weights. Depth-wise convolution (27)

further reduces parameters by convolving groups of feature maps separately then concatenates.

We propose to reformulate self-attention mechanism by implementing long convolutional kernels

(please refer to section 5.4.2) and depth-wise convolutions instead of computing cosine similarities

of feature vectors (196) or pure matrix multiplication (71) upon feature volumes.

Our perception is that, single convolutional kernel only needs to encode neighboring features

other than entire feature volume, which can be mutually correlated by affine-transforming into

global encoding. This is beneficial for reducing the computational complexity of self-attention
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mechanism (196), which significantly increases inferential frame-rate to meet the requirement of

realtime performance.

Rethink the bottleneck layers for global attention Dense block (70) densely concatenates fea-

ture maps derived from a sequential of bottleneck layers, then outputs a squeezed feature volume

that may loss crucial contextual information. Therefore, we feed GAM the concatenated features,

as a replacement of the squeezed feature volume, to enhance its global encoding capability.

Improved metric to evaluate unbalanced predictions During the evaluation phase, due to

those unconnected ground-truth areas that are distributed across the entire image per the trade-

off circumstance illustrated in Fig. 5.4b, generally applied segmentation metrics fail to correctly

evaluate predictions. Thus, we propose Mean-Grid Fbeta-score (MGRID), a novel metric for seg-

mentation evaluation, to alleviate the flaw via two-stage operations: partition and synthetics.

To summarize our contributions, this paper highlights the following novelties:

i. Propose a one-stage hierarchical inference architecture for semantic segmentation without any

auxiliary losses.

ii. Propose the GAM for realtime inference2 - 54fps on a GTX 1070 laptop, and 134fps with a

V100 GPU.

iii. Propose the metric MGRID for evaluating widely-distributed predictions.

5.3 Related Works

5.3.1 Predict Affordance Maps

Zeng et al (230) implemented two FCNs (105) with ResNet-101 (188) backbones to fuse color

and depth streams of cluttered scene. This approach yields 83.4% precision at Top-1% percentile

affordance proposals. Azpiri et at (6) further refined the Top-1% percentile precision to ∼94% by

2Our Pytorch implementation of RGANet can be found at https://github.com/xiangyu8/RGANet_
evaluation
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a deep Graph Convolutional Network backbone, which outperforms FCN (ResNet-101 backbone)

by ∼2%. Neither of these two approaches takes colored images as the only input, thus consum-

ing much inference time in processing depth information. Shao et at (168) proposed to predict

affordance map by sharing a ResNet-50 backbone between colored image stream and depth image

stream, and a U-Net (155) to fuse features at different scales. Their approach is annotation-free,

but requires the robotic hand to attempt to find the most possible points for suction, which is more

expensive than deriving direct predictions from monocular images.

5.3.2 Self-Attention Modules in Semantic Segmentation

Self-Attention mechanism was first proposed in the field of nature language processing (196) for

temporal domain. Wang et al (206) adapted the idea to domain within which a feature vector is

spatially related to all other features in the feature volume. The features that are highly related

will generate strong response, which facilitates network to model the non-local relations across the

entire volume.

Li et al (93) designed a fully convolutional feature pyramid attention module for replacing

the spatial-pyramid-pooling module (233) and a global-attention-upsample module with which

high-level features perform global average pooling (236) as the guidance for low-level features.

Woo et al (209) believed that simple channels-wise attention and spatial-wise attention sub-modules

can boost representation power of CNNs. Recently, OCNet (224) efficiently aligned a global

relation module and a local relation module which divided and merged feature volumes in dif-

ferent styles. Bello et al (11) proposed to augment standard convolution by attention mechanism.

Cao et at (21) proposed a global-context block that benefited from simplified non-local block (206)

and squeeze-excitation module (69). The proposed GAM in this paper is inspired by the criss-

cross attention (CCA) mechanism of CCNet (71). CCNet approximates non-local attention by two

cascade CCA modules, each of which correlates all feature vectors aligned horizontally and verti-

cally. Though current attention-based approaches achieve state-of-the-art quantitative performance

among semantic segmentation approaches, they usually have very high computational complexities
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(a) Illustration of ESS-3 framework (3 BottleNecks).
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Figure 5.3: ESS-3 and realtime GAM.
(a) ESS-n block first expands input channel Cin channels to s× k channels by 1×1 convolution,
where scalers s and k control the number of expanded channels; then it squeezes intermediate
features to k channels by 3×3 convolution, densely stacking all k-channel features gradually

towards final n× k+Cin channels. Specially, we set Cin = k to enforce the entire network scalable
w.r.t. ratio k. (b) Query and key of GAM are derived from affine transforms, and either query or
key is channel-wise (1× c and c×1 depth-wise convolutions) and spatial-wise (w×1 and 1×h

depth-wise convolutions), globally related by matrix multiplication and aggregation layers.

that reduce the practicability for deployment.

5.4 Methodology

One specific forward pass of the proposed framework is illustrated in Fig. 5.2. RGANet5 has 5 lev-

els of inference blocks (IBs), and each block applies to a 2× down-sampling of its previous feature

map to capture features at each scale. The decoder network is composed of vote & upsample (VU)

blocks and excite-squeeze-stack (ESS) bottleneck layers for better decoding capabilities. Due to

the enhancement of GAM at each IB, we only utilize 3×3 standard convolution w/o pooling layers

to downsample features, and 1×1 convolution for reformulating feature depth. We have tested

large kernels for down-sampling, but they didn’t outperform 3×3 convolutions.
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5.4.1 Hierarchical Inference Architecture

RGANet5 is designed as a single ‘distillation tower’ (see Fig. 5.2) with 5 temperature levels, each

level is composed of one IB. The architecture is expandable such that RGANetn has n cascade

IBs. Each IB halves input feature size, then modulates channels to ratio k = 15 by a standard 3×3

convolution. ESS block (see Fig. 5.3a) is regarded as the backbone for IB, and we adopt ESS-3,

ESS-6, ESS-12, ESS-24 for IB-1 and IB-2, IB-3, IB-4, IB-5 respectively. Output of GAM (refer

to Fig. 5.3b) is directly added to the output feature volume x of ESS block as the residual λ · x,

which formulates the incremental up-sampling layers accordingly. The final output takes the form

(1+λ ) · x, where λ is the learnable weights volume that has the same size of x, and operator ‘·’

signifies element-wise product. Therefore, non-negative activation of GAM artifact is preferred,

and Batch-Norm (BN) layers are necessary to restrict its upper bound.

As the synthesis of 5-scales distillation artifacts, highway connections not only populate pre-

vious inferences to up-sampling layers accordingly, they also facilitate gradient back-propagation

during training phase, especially for a very deep network. The ‘vote & upsample’ (VU) block

(see Fig. 5.2) weights concatenated input feature maps by 1×1 convolution without bias, and these

weighted features are then 2× upsampled via nearest interpolation. If inferring without last two

ESS-3 blocks, RGANet will not yield fine-grained predictions. Also, we notice that IB-1 is di-

rectly linked to the last UV4 block, which performs poorly without Decision Unit (DU) shown in

Fig. 5.2. DU consists of feature modulating head to deduct channels from k+3 to the number of

classes by 1×1 convolution, and one last GAM that yields predictions.

5.4.2 Realtime Global Attention

Fig. 5.3b illustrates the pipeline of the GAM. With a batch-size of 1, input feature volume x filtered

by previous ESS block has a shape of h×w×c, which is rotated to c×h×w query Q(c,h,w) (upper

branch, blue color) and w× c× h key K(w,c,h) (lower branch, purple color). Query conducts

channel-wise attention via depth-wise sliding w kernels W (c,1) shaped c× 1 across c− h view,

which results in a c× 1×w feature volume Qc. Similarly, h horizontal positions are encoded by
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1×h depth-wise convolutional kernel W (1,h), mapping into the c×1×w horizontally positional

encoding Qh. Key is transformed accordingly except the sizes of kernels, and we denote its artifacts

as channel-wise encoding Kc and vertically positional encoding Kv. The final output Fout is then

formulated as:

Fout = λ ·x = f{rot[QhQc]
⋃

rot[KvKc]} ·x, (5.1)

where rot[·] operator signifies rotation; f{·} operator performs 1×1 convolution to resize 2c-

channels to c-channels with Swish activation function (149), then maps to [0, 1] weights volume

via Sigmoid or Softmax functions; ‘lhs
⋃

rhs’ operator concatenates lhs and rhs features. Let ‘∗’

denote the depth-wise convolution, we know:

Qh = Q(c,h,w)∗W (1,h),Qc = Q(c,h,w)∗W (c,1),

Kv = Q(w,c,h)∗W (w,1),Kc = Q(w,c,h)∗W (1,c).
(5.2)

Considering Eqn. (6.1) and Eqn. (6.2), RGA’s total number of trainable parameters is 2hw+

cw+hc (excluding BN layer, bias and 1×1 point-wise convolution), while for vanilla convolution

with the same kernel height and width, this number becomes hw2 +wh2 + cw2 + ch2. In terms

of global attention, although matrix multiplication operation only correlates features horizontally

and vertically aligned for any feature vector, Qh, Qc, Kv and Kc themselves are the artifacts of

global depth-wise convolutions, resulting in each element in these 4 Queries and Keys bounds other

elements with shared weights. We can also treat RGA as the type of ‘learnable global attention’.

Furthermore, all affine operations of RGA module are differentiable. We didn’t observe vanishing,

or exploding gradients issues during training.

Different from the criss-cross attention mechanism (71) via two cascade CCA Modules with

shared weights, GAM realizes global correlation of feature vectors in an all-in-one fashion without

calculating the standard matrices multiplication of Query and Key. Furthermore, GAM does not

rely on the dot-product of channel-wise feature vectors, but the depth-wise convolutional kernels

to encode the correlations.
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5.4.3 Rethink Densely-Stacked Bottlenecks

A Dense block (70) has multiple densely connected Bottlenecks (BNK) modules, each BNK acts

in a stack-squeeze manner, and the last one outputs a k-channels feature volume.

The ESS-n block, as illustrated in Fig. 5.3a, outputs a stacked (n+1)k-channels feature volume

by n densely connected BNKs, each contributes k-channels of features, and we let Cin = k. Each

channel of stacked feature maps shows one degree of filtered raw input features, such that RGA

modules are capable of correlating high-order features to low-level features. RGANet5 adopts

ESS-3 for IB-1, ESS-3 for IB-2, ESS-6 for IB-3, ESS-12 for IB-4, and ESS-24 for IB-5. One of

our future works is to let RGA module ignore noisy low-level features, and to locate more reliable

high-order features.

5.4.4 MGRID metric for Evaluation

Existing evaluation metrics poorly treat the special case of a prediction map as illustrated in

Fig. 5.4b that, when original predictions cover object-1 (red), but fail to locate object-2 (green)

at the left-bottom corner of image, off-the-shelf metrics yield the same results if part of object-1

relocates to the object-2, because this relocation does not affect paranormal statistics of TP, FN,

TN and FP. In reality, we want predictions to be able to cover more objects, such that a robotic

hand would seek-and-pick all objects even though Precision or Recall is yet not favorable enough

(e.g., ∼15% Recall on object-2 alone). It would be more reasonable to assign higher score for the

prediction map that covers 2 objects.

Partition 2-Stage MGRID metric aims to remedy the issue mentioned above. As shown in the

third image of Fig. 5.4b, during partition stage, predication map is manually divided into four

cells, and each cell is treated fairly against any other cell. An ideal partition will separate objects

by different cells. Next, only calculate Fbeta-scores (or any other existing metrics) for all cells

that contain predictions and categorical ground-truth (non-zero TP, FP or FN samples), using the
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definition

Fβ =
(1+β 2)T P

β 2(T P+FN)+T P+FP+ ε
, (5.3)

where ε = 1 × 10−31, β > 1 weights Recall more than Precision, and 0 < β < 1 weights the

opposite. While instance-based metric is intractable for localizing instances, the partition step

efficiently simplifies this process. Furthermore, it is feasible to substitute the Fbeta-score metric

by other existing metrics, e.g., IoU, Precision, Accuracy etc.

Synthetics The second step is to synthesize all n Fbeta-scores F = {Fβ (i)|i = 1,2, ...,n} col-

lected from all partitions, and any Fbeta-score F ∈F is curved by a regulator as shown in Fig. 5.4a,

which takes the form

Γ(F) =

 S(F −Fm)
3 +Cm, 0 < F ≤ 100%

0, F = 0
, (5.4)

where coefficients 0 < Fm, Cm < 1 require to be manually set. Fig. 5.4a shows the curve by setting

(Fm,Cm) = (0.5,0.525), then S is calculated as S = (1−Cm)/(1−Fm)
3. Let T = [Fm/(1−Fm)]

3,

then intercept B at F = 0 can be denoted as Cm(1+ T )− T . To make the regulator effective, B

should fall within the interval (0,Fm), which leads to valid ranges of Fm and Cm:

T
1+T

<Cm <
Fm +T
1+T

, 0 < Fm < 1. (5.5)

The final confidence score is derived by

MGRID =
1
n ∑

F∈F

Γ(F). (5.6)

If calculating the average metrics over entire image without non-linear curvature function Γ(F),

according to our tests, the average is much similar to the Fbeta-score without partition, since scores

of all cells tend to compensate each other during the phase of addition. Also, the cubic form of
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Figure 5.4: MGRID metric.
(a) Synthetic function. (b) A special case for predicting suction areas when the same precision

and recall indicate better predictions for real-world implementation, and how MGRID mitigates
the circumstance by partition and synthetics. True Negative (TN) and False Positive (FP) samples

stay unchanged during the processes.

Γ(F) consumes less computational resources than slanted sine and cosine curvature functions.

Eventually, non-linear Γ(F) strengthens the impact of cells with low Fbeta-scores, and weakens

those with high scores.

5.5 Experiments

5.5.1 Configuration

Public-available suction dataset (229) consists of camera intrinsics and pose records, RGB-D im-

ages of clutter scenes and their backgrounds, and labels. We only adopted color images and labels

w/ a train-split of 1470 images and a test-split of 367 images, each image has a resolution of

480×640. All colored images were normalized to tensors valued between 0 and 1, which were not

resized or padded during training and testing.

5.5.2 Train and Test

We implemented AdamW optimizer (106) with AMSGrad (151), compared two weighted loss

function during training - focal loss (FLoss) (103) and cross-entropy loss (CELoss). Assume y

denotes the prediction, y′ the one-hot encoded ground-truth, n the total number of classes, and γ

and α are constants, then FLoss and CEloss are denoted as:
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FLoss(y,y′) =−
n

∑
c=1

αc ∑
c
(1− y)γ logy,

CELoss(y,y′) =−
n

∑
c=1

αc ∑
c

logy
(5.7)

where ∑
n
c=1 αc = 1, αc ≥ 0, γ > 0, and all y ∈ [0,1]. Training-set is augmented during training

by random hue, flip, rotation, blur, shift etc.

Online testing comes simultaneously during training, which shows calculations of IoU, preci-

sion, and recall of running batches. The offline testing loads checkpoint, merely evaluates the class

corresponds to predicted suction areas.

All experiments were conducted using a GTX1070 laptop, and one Tesla V100 GPU. Network

scaler k was set to 15 constantly for a better trade-off between module size and performance. We

set constant learning rate to 1.5× 10−4, weights-decay rate to 0; γ = 1.3, α1 = 0.25 and α2 =

0.25 upon background and negative samples, α3 = 0.5 upon suction areas because of unbalanced

proportions; default MGRID parameters β = 0.5, grid intervals (δH ,δW ) = (12px,12px), Cm and

Fm took the same values as illustrated in Fig. 5.4a. The training of RGANet5 lasted for ∼2 days.

Multiple metrics are implemented to evaluate affordance maps. Note that for the suction

dataset, users only care about feasible regions to adsorb. Therefore, only the category that rep-

resents predicted suction areas is evaluated, and the final scores are the averages by all frames of

test-set.

5.5.3 Ablation Study

NVIDIA mixed-precision training technique is adopted by all frameworks in Tab. 5.1 to enlarge

batch size. In our experiments, larger batch size enables faster convergence.

Presence of GAM In Tab. 5.1, we present several cases when GAMs in DU or IBs are removed.

Blocking highways have unpredictable influence on the performance over test-set, since each

branch of highway provides both useful and noisy contextual information. Nevertheless, GAM
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Frameworks Block DU GA AW MGRID IoU

RGANet-B4 1,2,3,4 31.34 33.73

RGANet-B4 1,2,3,4 ✓ ✓ 33.46 36.49

RGANet-B3 1,2,3 ✓ ✓ 34.20 37.84

RGANet-B2 1,2 ✓ ✓ 34.58 37.95

RGANet-B1 1 ✓ ✓ 34.96 37.11

RGANet-NB – 33.66 36.65

RGANet-NB – ✓ 33.83 36.80

RGANet-NB – ✓ 34.63 38.08

RGANet-NB – ✓ ✓ 34.80 38.01

RGANet-NB – ✓ ✓ ✓ 36.55 40.58

Table 5.1: Ablation study on GAM and CELoss w/ adaptive weights (AW).
All averaged evaluation metrics are presented in ‘%’. ‘Block’ indicates the highway to which
IB is blocked, ‘DU’ refers to the existence of GAM in DU, ‘GA’ indicates all GAMs in IBs, and
‘RGANet’ denotes the RGANet5 architecture. FLoss performs poorly due to the uncertainty arisen
from γ .

shows a favor of features at all scales, especially the high-order IB-4 features.

As illustrated in Tab. 5.1, GAM in DU behaves as the decoder in self-attention mechanism (196),

and it should pair with the encoding GAMs in the backbone network. We also noted that the fully

convolutional version of RGANet5-NB alone shows a competitive performance, which indicates

the effectiveness of densely-stacked BNKs.

Adaptive weights for CELoss Adaptive weights (AW) are computed as the reversed global pro-

portions of all categories in training-set. Compared to the roughly-estimated weights [α1,α2,α3]

= [0.25, 0.25, 0.5], normalized AW takes the values [0.063, 0.266, 0.671]. According to Tab. 5.1,

AW efficiently boosts the performance of RGANet5-NB by ∼2% in the metrics of MGRID and

IoU.
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Input CCNet DDRNet ShelfNetRGANet-NBGround Truth

Figure 5.5: Qualitative results on test-set.
Red regions indicate the highest affordance for adsorption, which corresponds to white regions in

ground-truth.

Group 1 - Large Models Backbone Parameters Inference Time FLOPs

RGANet5-NB + AW (Ours) - 3.41M 7.51ms / 133fps 1.57B

CCNet (ResNet101) (71) ResNet101 71.27M 51.03ms / 19fps 73.03B

FCN (ResNet50) (105) ResNet50 32.96M 22.85ms / 43fps 32.48B

FCN (ResNet101) (105) ResNet101 51.95M 39.41ms / 25fps 50.72B

DeepLabv3 (ResNet50) (43) ResNet50 39.64M 32.71ms / 30fps 38.40B

DeepLabv3 (ResNet101) (43) ResNet101 58.63M 49.17ms / 20fps 56.63B

BiSeNetv1 (222) ResNet18 23.08M 9.65ms / 103fp/s 9.53B

Table 5.2: Comparison with large semantic segmentation models in model size.
Using a Tesla V100 GPU, all averaged evaluation metrics are presented in ‘%’. Proposed ap-
proaches achieve competitive performance with the least total parameters, indicating a better trade-
off between model size and performance.
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Group 1 - Large Models Backbone IoU F1 MGRID

RGANet5-NB + AW (Ours) - 40.58 53.26 36.55

CCNet (ResNet101) (71) ResNet101 43.83 57.00 38.90

FCN (ResNet50) (105) ResNet50 42.15 55.32 37.91

FCN (ResNet101) (105) ResNet101 42.28 55.51 37.69

DeepLabv3 (ResNet50) (43) ResNet50 43.17 56.32 38.42

DeepLabv3 (ResNet101) (43) ResNet101 41.98 55.05 37.55

BiSeNetv1 (222) ResNet18 37.64 50.38 34.18

Table 5.3: Comparison with large semantic segmentation models in metrics.
Using a Tesla V100 GPU, all averaged evaluation metrics are presented in ‘%’. Proposed ap-
proaches achieve competitive performance with the least total parameters, indicating a better trade-
off between model size and performance.

Group 2 - Light-Weighted Models Backbone Parameters Inference Time FLOPs

RGANet5-NB (Ours) - 3.41M 7.51ms / 133fps 1.57B

DeepLabv3 (164) MobileNetv2 4.12M 2.92ms / 342fps 1.16B

DDRNet-23-slim (64) - 5.69M 1.23ms / 813fps 1.07B

HRNet-small-v1 (204) - 1.54M 1.84ms / 543fps 0.97B

HarDNet (23) - 4.12M 1.63ms / 613fps 1.03B

ShelfNet (238) ResNet18 14.57M 2.06ms / 485fps 2.91B

STDCv1 (41) - 14.23M 2.45ms / 408fps 5.48B

Table 5.4: Comparison with light-weighted semantic segmentation models in model size.
Using a Tesla V100 GPU. All averaged evaluation metrics are presented in ‘%’.
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Group 2 - Light-Weighted Models Backbone IoU F1 MGRID

RGANet5-NB (Ours) - 38.01 50.21 34.80

DeepLabv3 (164) MobileNetv2 34.61 47.33 31.76

DDRNet-23-slim (64) - 32.30 43.95 32.30

HRNet-small-v1 (204) - 34.31 46.28 31.97

HarDNet (23) - 35.15 47.13 32.61

ShelfNet (238) ResNet18 36.17 48.61 33.32

STDCv1 (41) - 36.10 48.34 33.19

Table 5.5: Comparison with light-weighted semantic segmentation models in metrics.
Using a Tesla V100 GPU, all averaged evaluation metrics are presented in ‘%’.

5.5.4 Compare to State-of-the-Arts

We conducted experiments to compare RGANet5 with several novel semantic segmentation ap-

proaches. These approaches can be divided into two groups - one group that has much more pa-

rameters/FLOPs that substantially can outperform RGANet, and the other one that has comparable

model sizes. As shown in Tab. 5.2 and 5.3, Deeplabv3 (43) and FCN (105) do not rely on attention

mechanism, while CCNet (71) has merely two cascade CCA modules that bring in tremendous

amount of trainable parameters and operations. Light-weighted RGANet with 6 GAMs, on the

other hand, achieves competitive performance (2-4% less) against the best performer on the test-

set. Also, RGANet5 outperforms BiSeNetv1 (222), another attention-based realtime approach, by

∼ 6× less parameters and FLOPs.

As illustrated in Tab. 5.5, the proposed approach achieves the best IoU, F1 and MGRID score

when compared with top-tier realtime approaches selected from Cityscape Leader Board (135).

Although behaving better in metrics evaluation, RGANet runs relatively slow due to the fact that

PyTorch is well-optimized for convolutional neural networks. It is one of our future works to

further optimize RGANet for faster and more accurate inference. Readers may refer to Fig. 5.5 for

our qualitative evaluation.
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5.6 Conclusion and Future Works

Firstly, we introduced a novel light-weighted, hierarchical inference network embedded with re-

altime global attention modules. Densely connected excite-squeeze-stack blocks generate feature

volume as the input to realtime global modules, and the attention module correlates features via

learnable weights and affine transformations. Ablation study, as well as the comparison with the

state-of-the-art approaches manifests the competitive performance of the proposed RGANet5. Sec-

ondly, we designed the MGRID metric, which effectively leverages on the weights of predictive

regions via partition and synthesis stages. Our future works include but not limit to, enhancing the

encoding capability of inferential blocks by efficient backbone networks and optimizations.
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Chapter 6

Post-Processing: Dilated Continuous Random Field for

Semantic Segmentation

Abstract

Mean field approximation methodology has laid the foundation of modern Continuous Ran-

dom Field (CRF) based solutions for the refinement of semantic segmentation. In this chap-

ter, we propose to relax the hard constraint of mean field approximation - minimizing the

energy term of each node from probabilistic graphical model, by a global optimization with

the proposed dilated sparse convolution module (DSConv). In addition, adaptive global

average-pooling and adaptive global max-pooling are implemented as replacements of fully

connected layers. In order to integrate DSConv, we design an end-to-end, time-efficient

DilatedCRF pipeline. The unary energy term is derived either from pre-softmax and post-

softmax features, or the predicted affordance map using a conventional classifier, making it

easier to implement DilatedCRF for varieties of classifiers. We also present superior exper-

imental results of proposed approach1 on the suction dataset comparing to other CRF-based

approaches.

6.1 Introduction

An affordance map indicates valid areas for suction-based bin-picking, ignored background, and

negative samples that signify an object w/o valid suction areas. The annotations are labeled by

1Relevant works are published as (123)
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multiple human experts, which is not precise enough due to several reasons: the same object is

annotated in various styles by different experts; annotations are yielded via seemingly paradox-

ical inferences, e.g., a glass is pickable while a plastic ball is not; some objects, such as a laser

pen, or largely occluded objects, are labeled as pickable in some affordance maps, whereas being

unpickable in others.

Therefore, the task to predict precise suction area is challenging given such conditions. No

matter which approach is implemented to solve this challenging semantic segmentation task, the

goal of CRF based post-processing is to refurbish the predictions into more fine-grained artifacts.

As to the post-processing itself, real-time performance is preferred for robotic applications.

As one of the most popular works in demonstrating CRF for the field of semantic segmenta-

tion, the DenseCRF (85), proposes mean field approximation theory to approximate global energy

minimization by optimizing local unary and pairwise potentials that encode relative positional and

color information of entire image (see Fig. 6.1), and the message passing from other features to

the local feature becomes the computational bottleneck, especially when the image is large in size.

DenseCRF proposes to further boost the efficiency by lattice permutation (4), which reduces the

computational complexity from O(N2) to O(N). Still, it remains to be a key topic seeking the

perfect trade-off between better global approximation and efficiency.

We investigate the implementation of standard convolution upon CRF, and decreasing the usage

of fully-connect layers. During the message-passing stage of CRF shown in Fig. 6.1, it seems

natural that multiple linear layers can learn relative relationship between a local feature and all

other features by connecting all these features and output pairwise energy terms. This assumption

relies on massive multiplications between large volumes of matrices, and may overfit small datasets

due to the huge number of trainable parameters. In order to reduce trainable parameters, and

design a high-performance CRF for the general task of semantic segmentation, we propose the

dilated sparse convolution (DSConv) module2 that performs fast channel-wise convolution with

a static kernel, then extract global energy terms using adaptive global max pooling (AGMP) and

2Our Pytorch implementation can be found at https://github.com/dunknowcoding/DilatedCRF
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Figure 6.1: Message-passing sketches for DenseCRF and DilatedCRF.

Better viewed in colored mode. The green blocks indicate feature vectors indexed by pixel
coordinates, one red block represents a focus on the active message, and the white blocks signify
the encoded pairwise energy terms indexed by pixel coordinates. Different from DenseCRF that

encodes relative positional information and features then aggregates via weighted sum, our
proposed DilatedCRF predicts the global energy map end-to-end via proposed DSConv module.

adaptive global average pooling (AGAP) as replacements of linear layers. With DSConv modules,

a full-size Dilated CRF

successfully boost the quantitative performance of the state-of-the-art LR-ASPP (67) approach by

total 0.36M parameters.

DSConv module correlates features in a global manner other than following the mean field

approximation methodology. Since DilatedCRF is end-to-end trained with a GPU, it can learn

trainable parameters globally without customized CPU-only operations, e.g., the computation of

potentials with L2-norms and convolution optimized by lattice permutation (85; 235), patch-wise

multiplication (193), etc. Also, it should be noted that, the massive concatenation of output fea-

tures, and memory transfer consume the majority of runtime. One of our future works is to accel-

erate these trivial operations.
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6.2 Continuous Random Field (CRF)

6.2.1 The General Form

Suppose a label space L = {li}, i = 1, ...,h×w, h and w are the height and width of the ground-

truth, random variable li ∈ {yi}, i = 1,2,3, yi corresponds to a category of the suction dataset (229),

and input feature volume X = {xi}, i = 1, ...,h×w, each xi is a 3-D feature vector. According

to Hammersley-Clifford theorem (Refer to Appendix. B), the CRF defined by L and X is then

denoted as a Gibbs distribution over the set C of all maximal cliques:

P(L |X ) =
∏c∈C ψc(L |X )

Z(X )
, (6.1)

potential ψc(L |X ) signifies a strict positive function defined on maximal clique c of undirect

graph G. In the context of semantic segmentation, let V be the set of all spatial locations, E the

edges that connect vertices from V , then G = (V,E). Z(X ) is the normalization factor that ensures

P(L |X ) a valid probabilistic distribution,

Z(X ) = ∑
L

∏
c∈C

ψc(L |X ). (6.2)

CRF refinement is achieved by the maximum a posteriori (MAP) labeling L ∗= argmaxL P(L |X )

w.r.t. ground-truth.

Complete graph G is ideal for refinement. However, its defect is also noteworthy - massive

computation to exhaustively enumerate all possible combinations of random variable L . To avoid

the prod operation, exponential function is applied to potentials such that

P(L |X ) =
exp(−E(L |X ))

Z(X )
, (6.3)

where the Gibbs energy E(L |X ) = ∑c∈C ψc(L |X ). According to (6.3), optimization of a CRF

can be denoted as L ∗ = argminL E(L |X ), Z(X ) is ignored because it only depends on input
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Figure 6.2: DilatedCRF pipeline.
‘Raw label’ signifies the predicted affordance map or raw feature volume since all of them encode
the unary energy term presented in (6.7). The forward passing has three stages - down-sampling

by a manually specified scale (multipliers 1/8, 1/4 and 1/2 for the suction dataset (229)),
DilatedCRF, and up-sampling to original label sizes, the final softmax operation interprets Gibbs
energy (refer to (6.3)) optimization as minimizing the KL-Divergence between refined label and

one-hot encoded ground-truth2.

feature volume X .

6.2.2 DenseCRF for Semantic Segmentation

Dense CRF employs a fully-connected graph G such that there’s only one maximal clique. Let

N = h×w, the Gibbs energy has the form

E(L |X ) = ∑
1≤i≤N

ψu(li|X )+ ∑
1≤i< j≤N

ψp(li, l j|X ), (6.4)

where ψu, ψp are unary and pairwise potentials respectively. Commonly-implemented Dense-

CRF (85) defines ψu(L |X ) as the output of a classifier given input X , and ψp as

ψp(li, l j|X ) = µ(li, l j)
M

∑
m=1

w(m)k(m)(xi,x j), (6.5)

where µ(li, l j) is the compatibility function which is manually assigned by Potts model µ(li, l j) =

[li ̸= l j], each w(m) is a learnable weight, and k(m) indicates a Gaussian kernel.

DenseCRF also approximates true distribution P(L |X ) via mean field. It computes a distri-
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Figure 6.3: DSConv module.
A DSConv module takes down-sampled label volume as the input. Two up-sampled features after

linear layers are normalized using Layer Normalization (7), and activated by ReLU6 function.
Concatenation of global pooling artifacts (in green or purple) is the computational bottleneck of
proposed DilatedCRF. The folding operation reverses the unfolding of the input feature volume.

bution Q(L |X ) that minimize KL-divergence against P(L |X ), which takes the form

Q(L |X ) =
N

∏
i=1

Qi(li|X ). (6.6)

The assumption of mean field approximation is dedicate, that vertices of G are conditional

independent from each other. Therefore, minimizing the energy of each node Qi results in an

approximation of global minimum.

6.3 Related Works

6.3.1 Conventional CRF

Most of works on CRF are based on mean field approximation theory. For super-pixel image

segmentation, Sulimowicz et al (184) formulate super-pixel cue onto pairwise potentials, which

outperforms DenseCRF; Ma et al (113) introduce two coefficients to unary and pairwise potentials

for better encoding super-pixel energy terms; Li et al (97) define a third potential to model the cost

of assigning super-pixel labels; Yang et al (218) define a interlayer high order potential to enhance
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super-pixel segmentation. These works improve DenseCRF w/o adapting CRF to neural networks,

which are categorized as conventional CRF.

6.3.2 Refinement for Neural Networks

As a widely-applied refinement tool for CNN-based approaches, CRF has been proved to be ef-

fective in medical image segmentation, according to the references (232; 112; 33). Lai et al (90)

integrate DenseCRF into their DeepSqueezeNet for better performance. Zheng et al (234) present

a fusion strategy of DenseCRF and attention module for unsupervised video object segmentation.

Shimoda et al (174) compare their proposed approach with the refinement output of CRF, and

come to the conclusion that their approach is superior, which indicates the failure of CRF in the

processing of certain datasets.

6.3.3 CRF as Neural Networks

Recently, several works emphasize on the possibilities of adapting CRF to neural network. CRF-

RNN (235) is the first architecture that trains a DenseCRF end-to-end via Convolutional Neural

Network (CNN) and Recurrent Neural Network (RNN). This work breaks down DenseCRF to

common CNN operations except the lattice permutation during message passing of pairwise en-

ergy term, and trains these operations iteratively as a RNN. Vemulapalli et al (198) propose the

Gaussian mean field approximation that computes pairwise energy into three steps - a CNN to

generate features, a similarity layer that computes similarity scores, and a matrix generation layer

that compute Gaussian weights. Although CNN is well-integrated into the GaussianCRF pairwise

energy term, the Gaussian filtering process requires non-standard neural network operations.

Another variant is to compute CRF as a CNN. Teichmann and Cipolla (193) design a Con-

vCRF that constraints the fully-connected computational graph G into locally-connected blocks

via Manhattan distance, which greatly boosts the efficiency of message passing process with the

cost of losing long-range connections. Nguyen et al (132) take the advantages of Gated Recurrent

Unit (26) (GRU), reformulating CRF-RNN as CRF-GRU that avoids the gradient vanishing and
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(a) Loss.
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(b) Jaccard Index.
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(c) Precision.
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(d) Recall.

Figure 6.4: Training Performance w.r.t. epochs.
Red curves: octant-size (60×80), blue curves: quarter-size (120×160), green curves: half-size

(240×320). Jaccard Index, precision and recall are calculated by averaging all batches (120
images per batch) of an epoch. Three metrics reach their maximums at epoch 25.

exploding problem of RNN. The gated architecture also enables CRF-GRU to model long-term re-

lationships. Lin et al (101) propose to learn unary and pairwise energies via fully-connected layers

from node and edge feature vectors that are yielded from a manually-constructed CRF graph and

a convolutional network.
2Specifically, the final softmax layer encapsules Gibbs energy term E(L |X ) without the negative sign shown in

(6.3), indicating the tendency of neural network to learn the maximal probability distribution P(L ∗|X ) via gradients
back-propagation, whereas how to reach the optimal L ∗ remains to be solved.

3Note that Eg(L |X ) is not finalized by an activation function after the weighted sum operation.
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6.4 Methodology

6.4.1 Dilated CRF

Proposed DilatedCRF reformulates Gibbs energy term as fully-learnable unary Eu(xi) and global

potential3 Eg(L |X ):

E(L |X ) = ∑
1≤i≤N

ψu(xi)︸ ︷︷ ︸
Eu(xi)

+ ∑
1≤i≤N

2

∑
j=1

w(i)
j ψ

(i)
j (L |X )︸ ︷︷ ︸

Eg(L |X )

. (6.7)

In (6.7), ψu(xi) = wT
u xi, wu is a weights vector with the same length as xi, which learns the

unary term in (6.4). Particularly, X is the raw input affordance map, which can either be the

artifacts after final softmax layer, or the output using conventional classifiers such as random for-

est (217). Unary potential ψu, global potentials ψ1 and ψ2 can be optimized iteratively during

training. ψ j is defined as

ψ j(L |X ) := W jf j(X ), (6.8)

where Wi is a trainable weights matrix that up-samples global feature fi to desired length h×w.

Moreover, Wi learns the mapping from X to potential ψ j(L |X ) which is not necessarily a valid

probability distribution. Follow the DSConv architecture shown in Fig. 6.3, let d be the total

number of convolution kernels, and k-th kernel has a convolutional stride of sk,1 ≤ k ≤ d, define

n := [N−1
sk

+1] as the length of output feature, we have

f1(X ) =
1

n+1

d⋃
k=1

n

∑
λ=0

wT
(1,λ )x1+λ sk

, (6.9)

f2(X ) =
d⋃

k=1

max
0≤λ≤n

wT
(2,λ )x1+λ sk

, (6.10)

the operator
⋃

signifies the concatenation operation of elements. DilatedCRF is trained end-to-end

to minimize KL-Divergence between L and the ground-truth. All weights are learnable through
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gradients back-propagation since (6.7) - (6.10) are differential.

6.4.2 Architecture

Fig. 4.2 illustrates standard operations to perform DilatedCRF inference. We implement a 3× 3

fractional max-pooling (54) layer to down-sample the input label, and nearest interpolation to up-

sample refined feature maps. Each channel of the 3-channels unary energy term is computed via

1×1 convolution and batch normalization (BN) layer.

The main contribution of this chapter is the DSConv module that encodes the short-term and

long-term relationship between feature vectors. As shown in Fig. 6.3, input feature volume is un-

folded into a long vector with the shape of (h′×w′,c,1), sparse convolution using static kernel

filtering has d := [
√

h′×w′/α],α = 2,10 strides to perform global correlations, which, in our ex-

periment, we let α = 2 for octant-size, quarter-size, half-size, and 10 for full-size DilatedCRFs.

The AGAP operation (refer to (6.9)) computes average energy intensity, and AGMP operation (re-

fer to (6.10)) locates the strongest response for feature xi. Both features effectively encode the

contribution of xi with less parameters than that of implementing two independent linear layers.

Additionally, raw input feature is concatenated with the average global feature and maximal global

feature for the purpose of reusing features and alleviating the vanishment of gradients. The linear

up-sampling operation is based on (6.8), which is the most critical procedure to learn the rela-

tion between ψ
(i)
j (L |X ) and xi. Equation (7) is realized by performing 1× 1 convolution upon

concatenated features.

6.4.3 Training

Assume the true conditional probability distribution of ground-truth is denoted as G(L ∗|X ), KL-

Divergence is calculated by

KLD(G||P) = ∑
L

G(L ∗|X ) log
G(L ∗|X )

P(L |X )
. (6.11)
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Items Full-Size Half-Size LR-ASPP (67)

Total parameters (M) 0.09 21.66 -

Inference time (ms) 13.99 159.43 -

Accuracy (%) 96.56 ± 2.76 96.22 96.61 ± 2.80

Jaccard Index (%) 40.75 ± 23.42 40.77 ± 23.20 40.07 ± 23.72

Precision (%) 57.37 ± 28.12 53.09 ± 27.68 58.16 ± 28.20

Recall (%) 58.47 ± 24.78 64.42 ± 23.74 56.02 ± 25.76

Dice Coefficient (%) 53.94 ± 24.24 54.03 ± 24.01 53.07 ± 24.86

Table 6.1: DilatedCRF evaluation on test set (part. 1), all metrics are formatted as mean± std.
Our training samples are derived from state-of-the-art LR-ASPP (67), and average inferential run-
time over test set is reported. Inference time of LR-ASPP is not presented because we only focus
on the CRF-based post-processing.

Items Quarter-Size Octant-Size LR-ASPP (67)

Total parameters (M) 2.77 0.36 -

Inference time (ms) 18.81 8.91 -

Accuracy (%) 96.35 ± 2.78 96.29 ± 2.71 96.61 ± 2.80

Jaccard Index (%) 41.21 ± 23.30 39.84 ± 22.67 40.07 ± 23.72

Precision (%) 54.30 ± 27.58 54.67 ± 28.23 58.16 ± 28.20

Recall (%) 62.84 ± 23.85 61.11 ± 23.17 56.02 ± 25.76

Dice Coefficient (%) 54.45 ± 24.08 53.20 ± 23.69 53.07 ± 24.86

Table 6.2: DilatedCRF evaluation on test set (part. 2), all metrics are formatted as mean± std.
Our training samples are derived from state-of-the-art LR-ASPP (67), and average inferential run-
time over test set is reported. Inference time of LR-ASPP is not presented because we only focus
on the CRF-based post-processing.
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If G is one-hot encoded, KL-Divergence equals the value of cross-entropy loss (CELoss), we

thereby utilize a weighted form of CELoss function for training DilatedCRF:

CELoss(l, l∗) =−∑
cls
(βcls ∑

cls
log l), (6.12)

where βcls is a manually-set weight for the category cls, and the subscript variable cls ∈ {0,1,2}

indicates a category of {‘background’, ‘negative samples’, ‘valid suckable area’}.

We trained the network by setting β to (0.25, 0.25, 0.5), the weight assigned for category 2 is

larger than other weights because the valid suckable regions usually occupy a small portion of the

image, while we only need to evaluate this category. The suction dataset (229) has a training split

of 1470 images, and a testing split of 367 images, each image has a resolution of 480×640.

6.5 Experiments

6.5.1 Implementation Details

Training and test We follow a four-stages strategy to train and test DilatedCRF w/ a RTX3080

GPU:

• Pre-train classifiers on the training set.

• Generate predicated post-softmax4 affordance maps for both training and test sets.

• Train DilatedCRF using the predicted affordance maps w/ AdamW optimizer (w/o weight decay)

and a learning rate of 1×10−3.

• Test the DilatedCRF using a selected checkpoint, and evaluate results by segmentation metrics.

Typically, it takes around 5 hours to train a half-size DilatedCRF. We quantitatively evaluate

the results by Jaccard Index, Precision, Recall, Dice coefficient, and Accuracy, which are defined

4Alternatively, pre-softmax affordance maps are also theoretically valid.
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Items ConvCRF DenseCRF

Inference time (ms) 14.10 450.16

Accuracy (%) 96.40 ± 2.84 96.74 ± 2.89

Jaccard Index (%) 34.35 ± 22.95 33.76 ± 25.63

Precision (%) 54.23 ± 29.17 60.49 ± 32.35

Recall (%) 48.76 ± 28.43 43.31 ± 30.74

Dice Coefficient (%) 46.77 ± 25.94 45.05 ± 28.75

Table 6.3: Performance of ConvCRF and DenseCRF on test set.
The metrics are formatted as mean± std. We implement the same LR-ASPP unary as illustrated in
Tab. 6.1 and 6.2 .

as

Jaccard =
TP

FP+FN+TP
, (6.13)

Accuracy =
TP+TN

FP+TP+FN+TN
, (6.14)

Precision =
TP

FP+TP
, Recall =

TP
TP+FN

, (6.15)

Dice =
2 ·Precision ·Recall
Precision+Recall

. (6.16)

Performance in Training In Fig. 6.4, we report more training details for half-size, quarter-size

and octant-size DilatedCRFs. Over-fitting is not observed as loss curves (in Fig. 6.4a) converge at

around 0.11, and curves of metrics arrive at their maximums before the convergence.

It can also be inferred from Fig. 6.4b-6.4d that quarter-size DilatedCRF manifests the fastest

convergence speed during training, and Jaccard Index curves behaves extremely similar to preci-

sion curves, which indicates precision is more decisive than recall for the suction dataset. Although

differ in sizes, all three models converge to the same numerical level upon the training set.

Test performance As shown in Tab. 6.1 and 6.2, all DilateCRFs outperform the original LR-

ASPP (67) approach on Recall and Dice scores, which indicates the potential of DilatedCRF in

locating more objects, while maintaining high precision and lower uncertainties manifested by
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GTScene Unary LR-ASPP ConvCRF DenseCRF Ours - OS Ours - QS Ours - HS Ours - FS

Figure 6.5: Visualization of affordance maps.
Black, grey, white regions correspond to background, negative samples, suction areas

respectively. ‘OS’ - octant-size DilatedCRF, ‘QS’ - quarter-size DilatedCRF, ‘HS’ - half-size
DilatedCRF, and ‘FS’ - full-size DilatedCRF.

standard deviation. Octant-size DilatedCRF has the coarsest affordance predictions for the 8×

lower down-sampling, however, it shows competitive performance both in Accuracy and Jaccard

Index, and only takes additional 9ms inference runtime for refinement. The quarter-size Dilated-

CRF performs the best among all DilatedCRFs considering the trade-off between inference time

and all metrics. Furthermore, it achieves the highest Dice score. Half-size DilatedCRFs continue

to robustly improve Recall score whereas the twofold enlargements of image height and width

greatly slows down inference procedure, bringing in more noisy features. For full-size Dilated-

CRF w/o the down-sampling and up-sampling layers shown in Fig. 4.2, coefficient α is set to 10,

which dramatically boosts the runtime efficiency.

6.5.2 Compare to other CRFs

In this section, we report our quantitative and qualitative results with ConvCRF (193) and Dense-

CRF (85). ConvCRF is tested w/ a RTX3080 GPU, and DenseCRF is tested w/ a 3.60GHz Intel

i9-10850K CPU.
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Quantitative Evaluation As shown in Tab. 6.3, DenseCRF achieves the highest average pre-

cision 60.49% and accuracy 96.74% among all tested approaches. However, due to the largest

variances, DenseCRF does not perform as stably as desired. Also, its lower recall and Jaccard

index significantly degrade its performance on test set. ConvCRF, in the other hand, make a rela-

tively better trade-off between recall and precision. It is noteworthy that, although ConvCRF has

an average performance, it runs 32× faster than DenseCRF.

Qualitative Results Fig. 6.5 depicts affordance maps, images of scenes, and post-softmax unary

maps. Both ConvCRF and DenseCRF enhance boundaries better than neural network based ap-

proaches. Nonetheless, the defects of these two approaches are obvious. First, they tend to filter

out small regions, which may lower the success rate of suction-type picking. Second, the relation-

ships between separated regions may not being well-encoded due to the chromatic continuities of

raw scenes, which results in largely-connected affordance maps.

In comparison with ConvCRF and DenseCRF, the proposed approaches better recognize the

relationships between separated regions, and locate more objects whereas some of them are not

from the ground-truth. Although these predictions are categorized as false negatives, as depicted

in Fig. 4.3, a robotic hand may successfully pick an object from bins under the guidance of these

predictions. Generally, the proposed approaches directly learn vanilla features from unary maps,

progressively refine memorized features towards the ground-truth. Furthermore, we test the check-

point after 200 epoches, and discover a similar performing trend as of DenseCRF, i.e., higher

accuracy and precision but lower recall and Jaccard index than LR-ASPP artifacts, which indicates

the potential of DSConv module to approximate the global optimum of fully-connect CRF.

6.6 Conclusion and Future Works

We propose DilatedCRF to approximate fully-connected CRF without relying on mean-field ap-

proximation. DilatedCRF reformulate unary and pairwise energy terms as learnable unary and

global energy terms. The reformulation adapts the end-to-end neural networks to conventional
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CRF without CPU-only operations, which is faster and more liable for real-world implementations.

To realize this reformulation, we design a dilated sparse convolution module that takes advantages

of adaptive global average-pooling and adaptive global max-pooling, as well as the 3-stages Di-

latedCRF pipeline to accommodate varieties of unary maps. Extensive experimental results show

the high efficiency, and competitive performance of the DilateCRF pipeline for realtime robotic

suction-type bin-picking.

Our future works include:

• Apply highly-precise backbone networks to better learn the unary terms.

• Use network adaptive searching strategies to find the best strides for DSConv module.

• Integrate high-order contextual information into global energy terms, this may further enhance

the regional encoding capabilities of DilatedCRF.

• Speed up the inferential procedures of full-size and half-size models by reducing concatenation

operations.
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Chapter 7

More Future Works: Knowledge Repository

Abstract

Reinforcement learning is a powerful robotic learning tool by interacting with the environ-

ment. Visual clues are crucial for agents to learn about the environment without direct con-

tact. However, visual clues are not perfect, this is the mission of knowledge repository to

utilize the clues and refine them. Knowledge repository has two main functions. The first

one is to store knowledge of models and inferential results to help evolving visual clues. The

second is to update models and make decisions/changes on action graph and multi task is

preferred.

7.1 Introduction to Reinforcement Learning

Supervised/semi-supervised/unsupervised machine learning approaches aim at exploring the fea-

tures encoded by datasets using computational models. Reinforcement learning (RL, 187) is a

different category of machine learning methodology that doesn’t rely on certain dataset or model,

but actively learn states and takes the rewarded actions to better interact with an environment,

which has long been implemented by human brain (reinforcement, (35)). RL is realized via greedy

strategies to maximize the pay-off and randomized strategies such as the Markov decision process

(MDP, 81) that predicts the best action policy for delayed reinforcement and interval-based tech-

niques on second-order information of certainty or variance upon the values of actions. RL can
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Figure 7.1: Robotic system powered by knowledge repository for reinforcement learning.

also be achieved via leaning a model1, which indicates the possibilities of combining CNN-based

neural networks into the routine of RL.

7.2 Technique Route

As mentioned in previous chapters, CNN can be involved in the inference process as well as the

post-processing process. It should be noted that, even the most state-of-the-art approaches are to

explore the upper bounds of given compute vision tasks, such that the deduced visual clues could

be more reliable for real-world implementations. The visual clues can be the direct semantic results

such as the description of an image, affordance maps, bounding boxes, or the features that can be

forged into higher-level artifacts. The visual clues can be improved under the framework of RL, as

depicted in Fig. 7.1.

1Currently there’s no absolute conclusion on the superiority of model-based RL approaches over model-free ap-
proaches.
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7.2.1 Environment

As the source of knowledge, environment is an objective entity composed of knowledge from dif-

ferent levels, such as the rigidity of materials, colors, illumination, temperature, humidity, distance,

motion states, and the underlying emotion, psychic states, intents of human beings or animals etc.

All these knowledge can be quantified so as to be transformed into data. Visual clues, however,

only occupies a small portion of the environment.

7.2.2 Observations

Visual clues are the direct result of observations. The concept observation under the context of

robotic implementation is also termed as the reading of sensors. Above all, observations are the

knowledge collected from the environment. The quality of sensors defines the quality of observa-

tions. In particular, as CNN is directly related to visual clues, the visual perception is regarded as

an independent branch as shown in Fig. 7.1.

7.2.3 Inference Engine

The inference engine is the preliminary processor that collects knowledge of observations and

outputs low-level visual clues with the assistance of a database. In the meantime, the inference

engine also performs necessary computations on the state of environment and estimate short-long

term rewards for given tasks based on the visual clues. Though multi-functional the inference

engine is, it does provide the optimal control policy not on the action strategy for the agents but

more facts on the environment.

7.2.4 Knowledge Repository

The tasks for knowledge repository are to infer optimal strategies for the actions as well as for the

policies to update visual clues. It is easier to understand the optimal strategies for actions using RL

theories. However, the optimal visual clue is hard to define. From the perspective of tasks, optimal
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visual clues are the most helpful evidences for the environment that the agents can perform the

simplest actions to achieve the ultimate goal. For instance, a robotic hand can always use the least

movements to grasp an object using affordance maps with 100% success rate, then the affordance

maps can be defined as the optimal visual clues. As to the visual clue in the context of computer

vision, we hope the visual clues are consistent and even more excellent than human’s inference.

Unfortunately, fewer visual clues have achieves the anticipation. To conclude, the optimal visual

clues should meet both criterions.

Knowledge repository refines the visual clues according to the performance of visual clues in

practice, as well as improves the quality of visual clues themselves. To achieve this goal, the mod-

els stored in the inference engine should be shared with knowledge repository such that knowledge

repository can gain full control of the models and their hyper-parameters. The most crucial part is

to establish the policy to update the models and fine-tune the parameters based on the rewards and

states of the environment.

The other task of knowledge repository is to infer the optimal action scheme for the agents.

There are many works (187) in this field. This indicates that knowledge repository can leverage on

the benefits of both model-based and model-free approaches.

7.2.5 The Agent

Action scheme directly controls the serving system, which sends quantified controlling signals

to the control system and effectors and collect feedback from the control system to achieve the

optimal control. The basic actions include translation and rotation, and complex behaviors such as

grasping, staring, following, dancing, and pouring water etc. The effector is the last stage of the

agent, which directly interacts with the environment. In case of anomaly, such as when an effector

grasps an egg and the egg tends to break under improper stress, the sensors immediately send

abnormal readings to inference engine, and the inference engine will set the exceptional handling

as the first priority, which means it sends direct commands to serving system to stop the anomaly.

This is the last piece to fit the whole picture.
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Chapter 8

Summary of Contribution and Discussion

8.1 Summary of Contribution

This chapter concludes the contributions of my work at each individual stage. Implementation

of CNN is a broad and complicated topic. My study applies CNN approaches in pre-processing,

inference, and post-processing phases in computer vision.

Given a fully-convolutional neural network whose final activation layer is directly linked to the

loss function layer, strided convolution (Corollary 2.2.0.1) is proposed in Chapter 2.7 to demon-

strate the gradients back-propagation from the loss function to the last hidden layer. By solving the

dual problem of convolution, inverted strided convolution (Corollary 2.2.0.1) is proposed to ex-

press the gradients propagated between two consecutive hidden layers. In Subsection. 2.7, to our

best knowledge, it is the first work that proposes to implement a pre-processing transformer (BR-

Transformer) for the task of PAF event detection from ECG records. Among the pre-processing

steps of BRTransformer, conceptualization and fuzzification are crucial to establish connections

between semantic categories and intervals of R-peaks.

In Chapter 3, we proposed a novel stereo-frustums module for classifiers based on stereopair

and LiDAR point clouds inputs. Stereo-Frustums module is regarded as the pre-processing tech-

nique that matches 2D proposals from left-view and right-view in different styles, as well as re-

duces the number of LiDAR points fed to its following regression network via segmentation by

projection. The proposed module can segment the LiDAR points of scene efficiently without be-

ing accelerated by the optimization of compilers and existing toolboxes, which is listed among our

future works. Experiments on KITTI benchmark have shown the superior performance of proposed

137



pre-processing module over stereo-only based approaches in pedestrian and car detection.

Chapter 4 and 5 present my work at the inference phase. In Chapter 4, we proposed to solve the

polyp detection problem using Faster R-CNN. As the first work that implemented Faster R-CNN,

the popular CNN-based 2D detector in the field of computer vision to the task of polyp detection

in the field of medical image processing, we evaluated the performance of polyp detection using

convincing metrics and public datasets. Our evaluation is able to identify the advantages and

challenges of CNN-based 2D detectors over real-world polyp videos.

In Chapter 5, we proposed an end-to-end realtime global self-attention based neural network

(RGANet) for the task of image segmentation. In particular, we emphasize its implementation

in the robotic bin-pick task by suction. RGANet outperforms top-tier real-time segmentation ap-

proaches. It also achieves competitive performance against larger models. During the evalua-

tion phase, we proposed an evaluation metic, MGRID, to mitigate the negative effect of widely-

scattered prediction. Our metric can greatly reduce the necessity of manually annotating every

instance in an image.

Implementation of CNN in post-processing phase is presented in Chapter 6. We designed an

end-to-end DilatedCRF for the purpose of boosting both the quantitative and qualitative perfor-

mance of image segmentation by classifiers. The main contribution of DilatedCRF is the approx-

imation of pairwise energy term of a regular CRF using proposed DSConv module that leverages

on adaptive global maximum pooling and adaptive global average pooling techniques.

Beyond the implementation of CNN, the future work of knowledge repository is introduced in

Chapter 7. Knowledge repository can fuse the CNN-based models that infer visual clues into the

architecture of typical reinforcement learning. The advantages of knowledge repository not only

lie in its fine-tuning the hyper-parameters of CNN-based models towards high-quality visual clues,

but also constructing an action graph that enables an agent’s better problem-solving ability in its

interaction with the environment.

138



8.2 Discussion

CNN approaches are powerful and efficient when being applied in the context of computer vision.

But they have limitations in general. Corollary 2.2.0.1 and Corollary 2.2.0.1 are designed for the

framework of standard fully convolutional neural network with activation functions, they cannot

be directly implemented to other types of convolutions, nor to the multi-branch architecture frame-

work. BRTransformer better works with 1-D ECG signal that depicts the very salient R-peaks.

The size of on typical checkpoint is 565MB such that it may be inappropriate to directly deploy

BRTransformer onto a mobile system. Faster R-CNN based 2-D detector for polyp detection only

takes no more than one proposal with the highest score into consideration, which indicates that

there should be only one polyp at a time. Stereo frustums module may not be able to find correct

matches sometimes. In this case, single frustum pre-processing is recommended. Also, Stereo

frustums based 3-D object detection heavily relies on the quality of 2-D bounding boxes. There-

fore, these 2-D proposals greatly affect the performance of stereo frustums. RGANet is designed

for semantic segmentation with few categories. For multi-classification tasks, categories with the

highest proportions may dominate such that other categories tend to be merged into those cate-

gories. The limitation of DilatedCRF is its weak robustness against noisy unary energy maps since

the adaptive global max-pooling operation in DSConv module is liable to memorizing the positions

of noise.

Mimicking biological neurons and their operation mechanism in machine learning has always

been challenging. Modern CNN approaches have evolved fast in theories and techniques. Where

lies the limitations today lies the research opportunities in the future.
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Appendix A

Source Codes for BRTransformer

The evaluation and baseline repository is forked from (205). Coding platform: Pytorch 1.8.2,

Windows10, Python 3.8.12, C-compiler: MinGW-gcc. Required libs: tqdm, numpy, wfdb 3.4.0,

scipy 1.7.1.

The following license must be included for any purpose of implementing source codes.

©Copyright <2022> <Xi Mo, the University of Kansas>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions

of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-

THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Listing A.1: main.c
1 /* *******************************************************************************

2 * Description : Local−Global Fi l ter ing Peak Detector (LGFPD)

3 * Author: Xi Mo

4 * Ins t i tu te : University of Kansas

5 * License : MIT License

6 * Date : 10/6/2021
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7 * HowTo:

8 * 1) Prepare 1D signal dataset as "*. txt"

9 * 2) Set f i l e path and/ or parameters and compile , or

10 * using arguments :

11 * <path / to / data >: default − signal . txt ;

12 * maxlength per l ine <= 50 chars ;

13 * ints , f l oa t s and seperators ’ \ t ’

14 * ’ ’ , ’ \ r ’ and ’ , ’ only ;

15 * <GlobalWindowSize>: default − 400

16 * <AmplititudeLevel >: default − 10

17 * <LocalWindowSize] >: default − 92

18 * <HeightThreshold >: default − 1.9

19 ******************************************************************************** */

20

21 #include <stdio.h>

22 #include <string.h>

23 #include <stdlib.h>

24 #include <windows.h>

25 #include "headers/stack.h"

26 #include "headers/utils.h"

27

28

29 int main(int argc, char** argv) {

30 getParameters(argc, argv);

31 loadDataset(cfg.dataPath);

32 / / show_all_pikes ( f ind_all_spikes ( dataset ) ) ;

33 / / find_combine_spikes ( dataset ) ;

34 / / show_combine_pikes ( ) ;

35 / / free ( dstack ) ;

36 find_filter_spikes(dataset);

37 show_filter_pikes();

38 free(dstack);

39 / / system("pause") ;

40 return 0;

41 }

Listing A.2: headers/stack.c
1 /* ******************************************************************

2 * Description : dynamic stack implementation

3 * Modified : Xi Mo

4 * Date : 10/6/2021

5 * Reference :

6 * https : / / blog . csdn . net / coding1994 / ar t i c l e / de ta i l s /52745773

7 ******************************************************************* */

8

9 #include "stack.h"

10 #include <stdio.h>

11 #include <malloc.h>

12 #include <assert.h>

13

14 int top_element_dstack = -1;

15 int dstack_size;

16 int top_element_cstack = -1;

17 int cstack_size;
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18

19

20 /* create double stack */

21 void create_dstack(size_t size) {

22 dstack_size = size;

23 top_element_dstack = -1;

24 dstack = (double**)malloc(sizeof(double*) * dstack_size);

25 for (int i = 0; i < dstack_size; i++) {

26 dstack[i] = (double*)malloc(sizeof(double) * 2);

27 }

28 if(dstack == NULL) {

29 printf("ERROR: stack malloc failed\n");

30 system("pause");

31 exit(3);

32 }

33 }

34

35

36 /* create char stack */

37 void create_cstack(size_t size) {

38 cstack_size = size;

39 top_element_cstack = -1;

40 cstack = (char*)malloc(cstack_size * sizeof(char));

41 if(cstack == NULL) {

42 printf("ERROR: stack malloc failed\n");

43 system("pause");

44 exit(3);

45 }

46 }

47

48

49 /* destroy double stack */

50 void destroy_dstack(void) {

51 assert(dstack_size > 0);

52 for (int i = 0; i < dstack_size; i++) {

53 free(dstack[i]);

54 }

55 free(dstack);

56 dstack_size = 0;

57 dstack = NULL;

58 }

59

60

61 /* destroy char stack */

62 void destroy_cstack(void) {

63 assert(cstack_size > 0);

64 cstack_size = 0;

65 free(cstack);

66 cstack = NULL;

67 }

68

69

70 /* push double */

71 void push_dstack(double lhs, double rhs) {

72 assert(!is_dstack_full());

73 top_element_dstack += 1;
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74 dstack[top_element_dstack][0] = lhs;

75 dstack[top_element_dstack][1] = rhs;

76 }

77

78

79 /* push char */

80 void push_cstack(char value) {

81 assert(!is_cstack_full());

82 top_element_cstack += 1;

83 cstack[top_element_cstack] = value;

84 }

85

86

87 /* pop double */

88 void pop_dstack(void) {

89 assert(!is_dstack_empty());

90 top_element_dstack -= 1;

91 }

92

93

94 /* pop char */

95 void pop_cstack(void) {

96 assert(!is_cstack_empty());

97 top_element_cstack -= 1;

98 }

99

100

101 /* purge double */

102 void purge_dstack() {

103 if (!is_dstack_empty()) {

104 top_element_dstack == -1;

105 }

106 }

107

108

109 /* purge char */

110 void purge_cstack() {

111 if (!is_cstack_empty()) {

112 top_element_cstack = -1;

113 }

114 }

115

116

117 /* top double */

118 void top_dstack(void) {

119 assert(!is_dstack_empty());

120 point.pos = dstack[top_element_dstack][0];

121 point.height = dstack[top_element_dstack][1];

122 }

123

124

125 /* top char */

126 char top_cstack(void) {

127 assert(!is_cstack_empty());

128 return cstack[top_element_cstack];

129 }
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130

131

132 /* i s dstack empty */

133 int is_dstack_empty(void) {

134 assert(dstack_size > 0);

135 return top_element_dstack == -1;

136 }

137

138

139 /* i s cstack empty */

140 int is_cstack_empty(void) {

141 assert(cstack_size > 0);

142 return top_element_cstack == -1;

143 }

144

145

146 /* i s dstack f u l l */

147 int is_dstack_full(void) {

148 assert(dstack_size > 0);

149 return top_element_dstack > dstack_size - 1;

150 }

151

152

153 /* i s cstack f u l l */

154 int is_cstack_full(void) {

155 assert(cstack_size > 0);

156 return top_element_cstack > cstack_size - 1;

157 }

Listing A.3: headers/stack.h
1 /* ******************************************************************

2 * Description : dynamic stack implementation

3 * Modified : Xi Mo

4 * Date : 10/6/2021

5 * Reference :

6 * https : / / blog . csdn . net / coding1994 / ar t i c l e / de ta i l s /52745773

7 ******************************************************************* */

8

9 #ifndef _STACK_H_

10 #define _STACK_H_

11

12 #include<stdlib.h>

13

14 / / global variable

15 double** dstack;

16 char* cstack;

17 static int peakNum;

18 double runtime;

19

20 extern int top_element_dstack;

21 extern int dstack_size;

22 extern int top_element_cstack;

23 extern int cstack_size;

24
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25 struct POINT {

26 double pos;

27 double height;

28 } point;

29

30 extern void create_dstack(size_t);

31 extern void destroy_dstack(void);

32 extern void push_dstack(double, double);

33 extern void pop_dstack(void);

34 extern void top_dstack(void);

35 extern void purge_dstack(void);

36 extern int is_dstack_empty(void);

37 extern int is_dstack_full(void);

38

39 extern void create_cstack(size_t);

40 extern void destroy_cstack(void);

41 extern void push_cstack(char);

42 extern void pop_cstack(void);

43 extern char top_cstack(void);

44 extern void purge_cstack(void);

45 extern int is_cstack_empty(void);

46 extern int is_cstack_full(void);

47

48 #endif

Listing A.4: headers/utils.c
1 /* ******************************************************************

2 * Description : Tool functions

3 * Author: Xi Mo

4 * Ins t i tu te : University of Kansas

5 * License : MIT License

6 * Date : 10/6/2021

7 ******************************************************************* */

8

9 #include "utils.h"

10 #include "stack.h"

11 #include <stdlib.h>

12 #include <stdio.h>

13 #include <string.h>

14 #include <stdbool.h>

15 #include <limits.h>

16 #include <sys/time.h>

17

18

19 /* acquire configuration parameters */

20 void getParameters(int argc, char** argv) {

21 switch (argc) {

22 case 2:

23 strcpy(cfg.dataPath, argv[1]);

24 cfg.winSize = 400;

25 cfg.ampLv = 10;

26 cfg.combine = 92;

27 cfg.thres = 1.9;

28 break;
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29 case 3:

30 strcpy(cfg.dataPath, argv[1]);

31 cfg.winSize = atoi(argv[2]);

32 cfg.ampLv = 10;

33 cfg.combine = 92;

34 cfg.thres = 1.9;

35 break;

36 case 4:

37 strcpy(cfg.dataPath, argv[1]);

38 cfg.winSize = atoi(argv[2]);

39 cfg.ampLv = atoi(argv[3]);

40 cfg.combine = 92;

41 cfg.thres = 1.9;

42 break;

43 case 5:

44 strcpy(cfg.dataPath, argv[1]);

45 cfg.winSize = atoi(argv[2]);

46 cfg.ampLv = atoi(argv[3]);

47 cfg.combine = atoi(argv[4]);

48 cfg.thres = 1.9;

49 break;

50 case 6:

51 strcpy(cfg.dataPath, argv[1]);

52 cfg.winSize = atoi(argv[2]);

53 cfg.ampLv = atoi(argv[3]);

54 cfg.combine = atoi(argv[4]);

55 cfg.thres = atof(argv[5]);

56 break;

57 default:

58 strcpy(cfg.dataPath, "signal.txt");

59 cfg.winSize = 400;

60 cfg.ampLv = 10;

61 cfg.combine = 92;

62 cfg.thres = 1.9;

63 }

64 }

65

66

67 /* read dimensions from one sample */

68 int getDimension(char* buffer) {

69 int dims = 0, idx = 0;

70 bool isNum = false;

71 while (buffer[idx] != ’\0’) { / / get data dimension

72 if (buffer[idx] == ’\t’ || buffer[idx] == ’ ’ ||

73 buffer[idx] == ’,’ || buffer[idx] == ’\r’ ||

74 buffer[idx] == ’\n’) {

75 if (dims || !dims && isNum) { / / head

76 if (buffer[idx] == ’\n’ && isNum) { / / t a l i \n

77 dims++;

78 }

79 else if (buffer[idx] != ’\n’ && isNum) { / / interval

80 isNum = false;

81 dims++;

82 }

83 }

84 }
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85 else {

86 isNum = true;

87 if (buffer[idx+1] == ’\0’) { / / t a i l EOF

88 dims++;

89 }

90 }

91 idx++;

92 }

93 return dims;

94 }

95

96

97 /* dataloader */

98 void loadDataset(char* root) {

99 char buffer[51];

100 int rowNum = 0;

101 int preDim = 0, colNum = 0;

102 int idx = 0, dim = 0;

103 bool isFirst = true, isNum = false;

104 FILE* fp = fopen(root, "r");

105

106 if (fp == NULL) {

107 printf("ERROR: incorrect dataset path or file format\n");

108 system("pause");

109 exit(1);

110 }

111 / / preload and check dataset

112 printf("Checking dataset ...\n");

113 while ((fgets(buffer, 51, fp)) != NULL) { / / get f i l e length

114 if (strlen(buffer) != 1) {

115 rowNum++;

116 colNum = getDimension(buffer);

117 if (isFirst) {

118 preDim = colNum;

119 isFirst = false;

120 }

121 if (colNum != preDim) {

122 printf("ERROR: unmatched dimensions detected,"\

123 "please check redundant seperators or values\n");

124 system("pause");

125 exit(2);

126 }

127 }

128 }

129 / / load dataset

130

131 rewind(fp);

132 double **data = (double**)malloc(sizeof(double*) * rowNum);

133 for (int i = 0; i < rowNum; i++) { / / create 2D array

134 data[i] = (double*)malloc(sizeof(double) * colNum);

135 }

136 create_cstack(51);

137 while ((fgets(buffer, 51, fp)) != NULL) {

138 if (strlen(buffer) != 1) {

139 while (buffer[idx] != ’\0’) {

140 if (buffer[idx] == ’\t’ || buffer[idx] == ’ ’ ||
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141 buffer[idx] == ’\r’ || buffer[idx] == ’,’ ||

142 buffer[idx] == ’\n’) {

143 if (dim || !dim && isNum) { / / head

144 push_cstack(’\0’);

145 data[(int)(dim/colNum)][dim%colNum] = atof(cstack);

146 purge_cstack();

147 dim++;

148 }

149 else if (buffer[idx] != ’\n’ && isNum) {

150 isNum = false;

151 push_cstack(’\0’);

152 data[(int)(dim/colNum)][dim%colNum] = atof(cstack);

153 purge_cstack();

154 dim++;

155 }

156 }

157 else {

158 isNum = true;

159 if (buffer[idx+1] == ’\0’) { / / t a i l EOF

160 push_cstack(buffer[idx]);

161 push_cstack(’\0’);

162 data[(int)(dim/colNum)][dim%colNum] = atof(cstack);

163 destroy_cstack();

164 }

165 else {

166 push_cstack(buffer[idx]);

167 }

168 }

169 idx++;

170 }

171 idx = 0;

172 }

173 }

174

175 fclose(fp);

176 dataset.value = data;

177 dataset.row = rowNum;

178 dataset.column = colNum;

179 }

180

181

182 /* LGFPD−B algorithm */

183 double** find_all_spikes(struct DATASET data) {

184 / / time s ta t s

185 struct timeval startTime, endTime;

186 gettimeofday(&startTime, NULL);

187 / / detection resul ts

188 double **spikes = (double**)malloc( / / create 2D array

189 sizeof(double*) * (int)(data.row/2));

190 for (int i = 0; i < (int)(data.row/2); i++) {

191 spikes[i] = (double*)malloc(sizeof(double) * 2);

192 }

193 / / local variables

194 int scales = (int)(data.row /cfg.winSize);

195 int incr, delta, sIdx, bound, mIdx;

196 double min, max, reslution, base, sum, amp;
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197 double x0, y0, x1 = 0, y1 = 0;

198 double save[2];

199 double ***level = (double***)malloc( / / create 3D array

200 sizeof(double**) * cfg.ampLv);

201 for (int i = 0; i < cfg.ampLv; i++) {

202 level[i] = (double**)malloc(sizeof(double*) * cfg.winSize);

203 for (int j = 0; j < cfg.winSize; j++) {

204 level[i][j] = (double*)malloc(sizeof(double) * 3);

205 }

206 }

207 int* lvIdx = (int*)malloc(sizeof(int) * cfg.ampLv);

208 for (int i = 0; i < cfg.ampLv; i++) {

209 lvIdx[i] = 0;

210 }

211 / / find peaks

212 for (int i = 0; i < scales; i++) {

213 incr = i? -1: 0;

214 delta = i * cfg.winSize;

215 / / prepare for amplititude leve l s

216 min = dataset.value[delta][1];

217 max = dataset.value[delta][1];

218 if (i == scales - 1) { / / set bound

219 bound = !(data.row % cfg.winSize) ?

220 cfg.winSize : data.row % cfg.winSize;

221 }

222 else {

223 bound = cfg.winSize;

224 }

225 for (int s = delta + 1; s < delta + bound; s++) {

226 if (dataset.value[s][1] < min) {

227 min = dataset.value[s][1];

228 }

229 if (dataset.value[s][1] > max) {

230 max = dataset.value[s][1];

231 }

232 }

233 reslution = (max - min) / cfg.ampLv;

234 / / get amplititude and coordinates

235 if (!i) {

236 x0 = dataset.value[incr + delta][0];

237 y0 = dataset.value[incr + delta][1];

238 }

239 else {

240 x0 = x1; y0 = y1;

241 }

242 while (incr < bound - 1) {

243 incr++;

244 x1 = dataset.value[incr + delta][0];

245 y1 = dataset.value[incr + delta][1];

246 if (y1 < y0) {

247 save[0] = x0; save[1] = y0;

248 while (incr < bound - 1 && y1 <= y0) {

249 incr++;

250 x0 = x1; y0 = y1;

251 x1 = dataset.value[incr + delta][0];

252 y1 = dataset.value[incr + delta][1];
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253 }

254 if (incr < bound) {

255 sIdx = (int)((save[1] - min) / reslution);

256 if (sIdx >= cfg.ampLv) {

257 sIdx = cfg.ampLv - 1;

258 }

259 level[sIdx][lvIdx[sIdx]][0] = save[0];

260 level[sIdx][lvIdx[sIdx]][1] = save[1];

261 level[sIdx][lvIdx[sIdx]][2] = (save[1] + y0) / 2;

262 lvIdx[sIdx] += 1;

263 x0 = x1; y0 = y1;

264 }

265 }

266 else if (y1 > y0) {

267 while (incr < bound - 1 && y1 >= y0) {

268 incr++;

269 x0 = x1; y0 = y1;

270 x1 = dataset.value[incr + delta][0];

271 y1 = dataset.value[incr + delta][1];

272 }

273 }

274 else {

275 x0 = x1; y0 = y1;

276 }

277 }

278 / / get baseline

279 mIdx = 0;

280 for (int s = 1, tmp = lvIdx[0]; s < cfg.ampLv; s++) { / / max index

281 if (lvIdx[s] > tmp) {

282 tmp = lvIdx[s];

283 mIdx = s;

284 }

285 }

286 sum = 0.0;

287 for (int s = 0; s < lvIdx[mIdx]; s++) {

288 sum += level[mIdx][s][2];

289 }

290 base = sum / lvIdx[mIdx];

291 / / thresholding

292 for (int s = 0; s < cfg.ampLv; s++) {

293 if (s <= mIdx) {

294 continue;

295 }

296 for (int j = 0; j < lvIdx[s]; j++) {

297 amp = level[s][j][1] - base;

298 if (amp >= cfg.thres) {

299 spikes[peakNum][0] = level[s][j][0];

300 spikes[peakNum][1] = amp;

301 peakNum++;

302 }

303 }

304 }

305 for (int s = 0; s < cfg.ampLv; s++) {

306 lvIdx[s] = 0;

307 }

308 }
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309 / / sort spikes

310 quick_sort(spikes, 0, peakNum - 1);

311 / / release memory

312 for (int i = 0; i < cfg.ampLv; i++) {

313 for (int j = 0; j < cfg.winSize; j++) {

314 free(level[i][j]);

315 }

316 free(level[i]);

317 }

318 free(level);

319 free(lvIdx);

320 release_dataset_memory();

321 gettimeofday(&endTime, NULL);

322 runtime = (endTime.tv_sec - startTime.tv_sec) * 1000 +

323 (endTime.tv_usec - startTime.tv_usec) * 0.001;

324 return spikes;

325 }

326

327

328 /* LGFPD−C algorithm */

329 void find_combine_spikes(struct DATASET data) {

330 / / time s ta t s

331 struct timeval startTime, endTime;

332 gettimeofday(&startTime, NULL);

333 / / detection resul ts

334 double** spikes = find_all_spikes(data);

335 create_dstack(peakNum);

336 / / local variables

337 double idx;

338 if (!peakNum) {

339 printf("ERROR: cannot find any peaks\n");

340 system("pause");

341 exit(4);

342 }

343 for (int i = 0; i < peakNum; i++) {

344 if (i == 0) {

345 push_dstack(spikes[0][0], spikes[0][1]);

346 idx = spikes[0][0];

347 }

348 else {

349 if (spikes[i][0] - idx <= cfg.combine &&

350 spikes[i][1] > dstack[top_element_dstack][1]) {

351 pop_dstack();

352 push_dstack(spikes[i][0], spikes[i][1]);

353 idx = spikes[i][0];

354 }

355 else if (spikes[i][0] - idx > cfg.combine) {

356 push_dstack(spikes[i][0], spikes[i][1]);

357 idx = spikes[i][0];

358 }

359 }

360 }

361 / / free space

362 for (int i = 0; i < (int)(data.row/2); i++) {

363 free(spikes[i]);

364 }
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365 free(spikes);

366 gettimeofday(&endTime, NULL);

367 runtime = (endTime.tv_sec - startTime.tv_sec) * 1000 +

368 (endTime.tv_usec - startTime.tv_usec) * 0.001;

369 }

370

371

372 /* LGFPD−F algorithm */

373 void find_filter_spikes(struct DATASET data) {

374 / / time s ta t s

375 struct timeval startTime, endTime;

376 gettimeofday(&startTime, NULL);

377 / / detection resul ts

378 double sentinal = (double)INT_MIN;

379 double** temp = find_all_spikes(data);

380 if (!peakNum) {

381 printf("ERROR: cannot find any peaks\n");

382 system("pause");

383 exit(4);

384 }

385 double** spikes = (double**)malloc(sizeof(double*) * (peakNum + 1));

386 for (int i = 0; i < peakNum + 1; i++) {

387 spikes[i] = (double*)malloc(sizeof(double) * 2);

388 if (i != peakNum) {

389 for (int j = 0; j < 2; j++) {

390 spikes[i][j] = temp[i][j];

391 }

392 }

393 else {

394 spikes[i][0] = (double)INT_MAX;

395 spikes[i][1] = sentinal;

396 }

397 }

398 for (int i = 0; i < (int)(data.row/2); i++) {

399 free(temp[i]);

400 }

401 free(temp);

402 create_dstack(peakNum + 1);

403 / / local variables

404 int flag, cLen = 0;

405 double idx, mElem, lhs, rhs;

406 double** collect = (double**)malloc(sizeof(double*) * (peakNum + 1));

407 for (int i = 0; i < peakNum + 1; i++) {

408 collect[i] = (double*)malloc(sizeof(double) * 2);

409 }

410 for (int i = 0; i < peakNum + 1; i++) {

411 if (cLen == 0) {

412 collect[cLen][0] = spikes[i][0];

413 collect[cLen][1] = spikes[i][1];

414 idx = spikes[i][0];

415 cLen++;

416 }

417 else {

418 if (spikes[i][0] - idx <= cfg.combine) {

419 collect[cLen][0] = spikes[i][0];

420 collect[cLen][1] = spikes[i][1];
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421 idx = spikes[i][0];

422 cLen++;

423 }

424 else { / / empty co l lec t ion

425 mElem = collect[0][1];

426 for (int s = 1; s < cLen; s++) {

427 if (collect[s][1] > mElem) {

428 mElem = collect[s][1];

429 }

430 }

431 for (int s = 0; s < cLen; s++) {

432 if (cLen == 1) {

433 push_dstack(collect[s][0], collect[s][1]);

434 idx = collect[s][0];

435 break;

436 }

437 else if (!s && s < cLen - 1) { / / border conditions

438 lhs = sentinal;

439 rhs = collect[s + 1][1];

440 flag = 1;

441 }

442 else if (s == cLen - 1 && cLen > 1) {

443 lhs = collect[s - 1][1];

444 rhs = sentinal;

445 flag = 2;

446 }

447 else {

448 lhs = collect[s - 1][1];

449 rhs = collect[s + 1][1];

450 flag = 3;

451 }

452 if (collect[s][1] == mElem &&

453 (flag == 1 || flag == 2)) {

454 push_dstack(collect[s][0], collect[s][1]);

455 }

456 else {

457 if (lhs < collect[s][1] && rhs < collect[s][1]) {

458 push_dstack(collect[s][0], collect[s][1]);

459 }

460 }

461 }

462 cLen = 1;

463 collect[0][0] = spikes[i][0];

464 collect[0][1] = spikes[i][1];

465 idx = spikes[i][0];

466 }

467 }

468 }

469 / / free space

470 for (int i = 0; i < peakNum + 1; i++) {

471 free(spikes[i]);

472 free(collect[i]);

473 }

474 free(spikes);

475 free(collect);

476 gettimeofday(&endTime, NULL);
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477 runtime = (endTime.tv_sec - startTime.tv_sec) * 1000 +

478 (endTime.tv_usec - startTime.tv_usec) * 0.001;

479 }

480

481

482 /* swap for quick sort */

483 void swap(double* lhs, double* rhs) {

484 double tmp;

485 tmp = *lhs;

486 *lhs = *rhs;

487 *rhs = tmp;

488 }

489

490

491 /* quick sort */

492 void quick_sort(double** peaks, int low, int high) {

493 int left = low, right = high;

494 double pos = peaks[left][0], height = peaks[left][1];

495

496 if (low >= high) {

497 return;

498 }

499 while (left < right) {

500 / / search from right to l e f t

501 while (left < right && peaks[right][0] >= pos) {

502 right--;

503 }

504 swap(&peaks[left][0], &peaks[right][0]);

505 swap(&peaks[left][1], &peaks[right][1]);

506 / / search from l e f t to right

507 while (left < right && peaks[left][0] <= pos) {

508 left++;

509 }

510 swap(&peaks[right][0], &peaks[left][0]);

511 swap(&peaks[right][1], &peaks[left][1]);

512 }

513 / / pivot location when equals

514 peaks[left][0] = pos;

515 peaks[left][1] = height;

516 / / recursion

517 quick_sort(peaks, low, left - 1);

518 quick_sort(peaks, left + 1, high);

519 }

520

521

522 /* print LGFPD−B resul ts */

523 void show_all_pikes(double** peaks) {

524 FILE *fp = fopen("LGFPD-B.txt", "w+");

525 fprintf(fp, "\n=======================================\n"\

526 " \tParameters:"\

527 "\n=======================================\n\n");

528 fprintf(fp, "dataset:\t\t%s\n", cfg.dataPath);

529 fprintf(fp, "valid data length:\t%d\n", dataset.row);

530 fprintf(fp, "global windowSize:\t%d\n", cfg.winSize);

531 fprintf(fp, "bin number:\t\t%d\n", cfg.ampLv);

532 fprintf(fp, "local windowSize:\t%d\n", cfg.combine);
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533 fprintf(fp, "height threshold:\t%.3f\n", cfg.thres);

534 fprintf(fp, "runtime:\t\t%.3fms\n", runtime);

535 fprintf(fp, "\n=======================================\n"\

536 " %d Peaks detected by LGFPD-B:"\

537 "\n=======================================\n\n",

538 peakNum);

539 printf("\nPeaks detected by LGFPD-B:\n\n");

540 for (int i = 0; i < peakNum; i++) {

541 printf("[ %-6d %6.2f ]\n", (int)peaks[i][0], peaks[i][1]);

542 fprintf(fp, "[ %-6d %6.2f ]\n", (int)peaks[i][0], peaks[i][1]);

543 }

544 fprintf(fp, "\n---------------------------------------\n");

545 printf("\nTotal peaks detected: %d\n", peakNum);

546 printf("Time elapse: %.3fms\n", runtime);

547 printf("Full report has been written to: LGFPD-B.txt\n\n");

548 }

549

550

551 /* print LGFPD−C resul ts */

552 void show_combine_pikes(void) {

553 FILE *fp = fopen("LGFPD-C.txt", "w+");

554 fprintf(fp, "\n=======================================\n"\

555 " \tParameters:"\

556 "\n=======================================\n\n");

557 fprintf(fp, "dataset:\t\t%s\n", cfg.dataPath);

558 fprintf(fp, "valid data length:\t%d\n", dataset.row);

559 fprintf(fp, "global windowSize:\t%d\n", cfg.winSize);

560 fprintf(fp, "bin number:\t\t%d\n", cfg.ampLv);

561 fprintf(fp, "local windowSize:\t%d\n", cfg.combine);

562 fprintf(fp, "height threshold:\t%.3f\n", cfg.thres);

563 fprintf(fp, "runtime:\t\t%.3fms\n", runtime);

564 fprintf(fp, "\n=======================================\n"\

565 " %d Peaks detected by LGFPD-C:"\

566 "\n=======================================\n\n",

567 top_element_dstack);

568 printf("\nPeaks detected by LGFPD-C:\n\n");

569 for (int i = 0; i < top_element_dstack; i++) {

570 printf("[ %-6d %6.2f ]\n", (int)dstack[i][0], dstack[i][1]);

571 fprintf(fp, "[ %-6d %6.2f ]\n", (int)dstack[i][0], dstack[i][1]);

572 }

573 fprintf(fp, "\n---------------------------------------\n");

574 printf("\nTotal peaks detected: %d\n", top_element_dstack);

575 printf("Time elapse: %.3fms\n", runtime);

576 printf("Full report has been written to: LGFPD-C.txt\n\n");

577 }

578

579

580 /* print LGFPD−F resul ts */

581 void show_filter_pikes(void) {

582 FILE *fp = fopen("LGFPD-F.txt", "w+");

583 fprintf(fp, "\n=======================================\n"\

584 " \tParameters:"\

585 "\n=======================================\n\n");

586 fprintf(fp, "dataset:\t\t%s\n", cfg.dataPath);

587 fprintf(fp, "valid data length:\t%d\n", dataset.row);

588 fprintf(fp, "global windowSize:\t%d\n", cfg.winSize);
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589 fprintf(fp, "bin number:\t\t%d\n", cfg.ampLv);

590 fprintf(fp, "local windowSize:\t%d\n", cfg.combine);

591 fprintf(fp, "height threshold:\t%.3f\n", cfg.thres);

592 fprintf(fp, "runtime:\t\t%.3fms\n", runtime);

593 fprintf(fp, "\n=======================================\n"\

594 " %d Peaks detected by LGFPD-F:"\

595 "\n=======================================\n\n",

596 top_element_dstack);

597 printf("\nPeaks detected by LGFPD-F:\n\n");

598 for (int i = 0; i < top_element_dstack; i++) {

599 printf("[ %-6d %6.2f ]\n", (int)dstack[i][0], dstack[i][1]);

600 fprintf(fp, "[ %-6d %6.2f ]\n", (int)dstack[i][0], dstack[i][1]);

601 }

602 fprintf(fp, "\n---------------------------------------\n");

603 printf("\nTotal peaks detected: %d\n", top_element_dstack);

604 printf("Time elapse: %.3fms\n", runtime);

605 printf("Full report has been written to: LGFPD-F.txt\n\n");

606 }

607

608

609 /* release dataset mem */

610 void release_dataset_memory() {

611 for (int i = 0; i < dataset.row; i++) {

612 free(dataset.value[i]);

613 }

614 free(dataset.value);

615 }

Listing A.5: headers/utils.h
1 /* ******************************************************************

2 * Description : header for Tool functions

3 * Author: Xi Mo

4 * Ins t i tu te : University of Kansas

5 * License : MIT License

6 * Date : 10/6/2021

7 ******************************************************************* */

8

9 #ifndef _UTILS_H_

10 #define _UTILS_H_

11

12 #include <stdlib.h>

13

14 / / configurations

15 struct CONFIG {

16 char dataPath[200];

17 size_t winSize;

18 size_t ampLv;

19 size_t combine;

20 double thres;

21 } cfg;

22

23 / / dataset

24 struct DATASET {

25 double** value;
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26 int row;

27 int column;

28 } dataset;

29

30 extern void getParameters(int, char**);

31 extern void loadDataset(char*);

32 extern double** find_all_spikes(struct DATASET);

33 extern void find_combine_spikes(struct DATASET);

34 extern void find_filter_spikes(struct DATASET);

35 extern void show_all_pikes(double**);

36 extern void quick_sort(double**, int, int);

37 extern void show_combine_pikes(void);

38 extern void show_filter_pikes(void);

39 extern void release_dataset_memory(void);

40

41 #endif

Listing A.6: main.py
1 import copy

2 import time

3 import torch.nn as nn

4 import torch

5 import math

6 import os

7 from tqdm import tqdm

8 from utils.arch import Transformer

9 from utils.dataloader import ECG, analyse_validation_results

10 from utils.configuration import cfg

11

12

13 def train(model, device):

14 model.train() # turn on train mode

15 criterion = nn.CrossEntropyLoss()

16 optimizer = torch.optim.SGD(model.parameters(), lr=cfg[’lr’])

17 scheduler = torch.optim.lr_scheduler.StepLR(optimizer, cfg[’lr’], gamma=0.95)

18 fileList = sorted(cfg[’ckptPath’].glob("*.pt"), reverse=True, key=lambda item: item.stat().st_ctime)

19 if len(fileList) and not cfg[’scratch’]:

20 ckptPath = fileList[0]

21 checkpoint = torch.load(ckptPath, map_location=device)

22 model.load_state_dict(checkpoint[’model_state_dict’])

23 else:

24 trainData = ECG([cfg[’trainset1’]], "train", cfg[’limit’], cfg[’categories’], cfg[’lb’], cfg[’ub’], cfg[’seqLen’], cfg[’iters’])

25 trainSet = torch.utils.data.DataLoader(trainData, collate_fn=trainData.collate_fn_train)

26 print(f"\nTrain {cfg[’epoch’]} epoches:")

27 for i in range(cfg[’epoch’]):

28 _iter_, tLoss = 0, 0.

29 with tqdm(total = cfg[’iters’], desc=f"Epoch {i+1: 3d}", unit="iters") as pbar:

30 for batch in trainSet:

31 _iter_ += 1

32 data, label = batch

33 # label = torch . ones ( label . shape )

34 output = model(data, label, device)

35 loss = criterion(output.permute(0, 2, 1), label.to(device))

36 optimizer.zero_grad()
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37 loss.backward()

38 tLoss += loss.item()

39 aLoss = tLoss / _iter_

40 # torch .nn . u t i l s . clip_grad_norm_ (model . parameters ( ) , 0 .5)

41 optimizer.step()

42 lr = scheduler.get_last_lr()[0]

43 ppl = math.exp(aLoss)

44 pbar.set_postfix({’loss_mean’: aLoss, ’ppl’: ppl, ’lr’: lr, ’device’: device}, refresh=True)

45 pbar.update(1)

46 scheduler.step()

47 torch.save({’model_state_dict’: model.state_dict()}, cfg[’ckptPath’].joinpath(f"{str(i+1)}.pt"))

48

49

50 def test(model, device):

51 model. eval() # turn on evaluation mode

52 testData = ECG([cfg[’testset’]], "test", cfg[’limit’], cfg[’categories’], cfg[’lb’], cfg[’ub’], cfg[’seqLen’])

53 testSet = torch.utils.data.DataLoader(testData, collate_fn=testData.collate_fn_test)

54 print(f"\nTest {len(testData)} samples:")

55 with tqdm(total= len(testData), desc=None, unit="files") as pbar:

56 for batch in testSet:

57 pred = torch.zeros(cfg["seqLen"], 1, cfg[’d_model’])

58 name, data, length = batch

59 for bIdx in range(0, data.size(1)):

60 output = model(data[:, bIdx:bIdx+1], data[:, bIdx:bIdx+1], device)

61 pred = torch.cat((pred, output.detach().cpu()), dim=1)

62

63 pred = pred[:, 1:, :]

64 pbar.set_postfix({’filename’: name, ’length’: length, ’device’: device}, refresh=True)

65 pbar.update(1)

66 pred = torch.argmax(torch.softmax(pred, 2), 2)

67 analyse_validation_results([name, testData.data[name], pred])

68

69

70 def main():

71 device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)

72 nToken = cfg[’limit’] + cfg[’categories’] + 2

73 model = Transformer(cfg[’maxLen’], nToken, cfg[’d_model’], cfg[’n_head’], cfg[’n_encoder’],

74 cfg[’n_decoder’], cfg[’n_ffwrd’], cfg[’dropout’], cfg[’activation’]).to(device)

75 if cfg[’train’]:

76 train(model, device)

77 else:

78 test(model, device)

79 if cfg[’evaluation’]:

80 command = "python " + r"scripts/official/score_2021.py "

81 os.system(command + str(cfg[’testset’]) + " " + cfg[’predictValPath’])

82

83

84 if __name__ == "__main__":

85 main()

Listing A.7: uils/arch.py
1 import torch

2 import torch.nn as nn

3 import numpy as np
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4 import math

5

6

7 class Transformer(nn.Module):

8 def __init__(self, maxLen = 5000, token=64, d_model = 256, head=8, encoder=6,

9 decoder=6, ffwrd=512, dropout=0.1, activation=’relu’):

10 super().__init__()

11 self.dropout = nn.Dropout( p=dropout)

12

13 self.transformer = nn.Transformer(d_model, head, encoder, decoder, ffwrd, dropout, activation)

14 self.seq2vec = nn.Embedding(token, d_model)

15 self.d_model = d_model

16 position = torch.arange(maxLen).unsqueeze(1)

17 div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))

18 pe = torch.zeros(maxLen, 1, d_model)

19 pe[:, 0, 0::2] = torch.sin(position * div_term)

20 pe[:, 0, 1::2] = torch.cos(position * div_term)

21 self.register_buffer(’pe’, pe)

22

23 def forward(self, _input_, _target_, device):

24 _input_, _target_ = _input_.to(device), _target_.to(device)

25 _input_ = self.seq2vec(_input_) * math.sqrt(self.d_model)

26 _target_ = self.seq2vec(_target_)

27 in_mask = self.getMask(_input_.shape[0]).to(device)

28 tar_mask = self.getMask(_target_.shape[0]).to(device)

29 return self.transformer(self.embedding(_input_), _target_, in_mask, tar_mask)

30

31 def embedding(self, _input_):

32 return self.dropout(_input_ + self.pe[:_input_.size(0)])

33

34 @classmethod

35 def getMask(cls, size):

36 return torch.triu(torch.ones(size, size) * float(’-inf’), diagonal=1)

Listing A.8: uils/configuration.py
1 from pathlib import Path

2

3

4 cfg = {

5 # mode for BRTransformer

6 ’train’: False,

7 ’evaluation’: True,

8 # Paths for loading / saving data

9 ’trainset1’: Path(r"datasets/training_I").resolve(), # can l i s t more sets

10 ’trainset2’: Path(r"datasets/training_II_train").resolve(),

11 ’testset’: Path(r"datasets/validation_II").resolve(),

12 ’ckptPath’: Path(r"checkpoint").resolve(),

13 ’predictValPath’: r"predictions_validation",

14 # for dataset

15 ’limit’: 100, # base num of semantic se ts

16 ’categories’: 2, # number of categories , f ixed number

17 ’seqLen’: 200, # trimmed sequence length

18 ’lb’: 20, # lower bound for determining lowest semantic set

19 ’ub’ : 620, # upper bound for determing highest semantic set
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20 # for transformer

21 ’d_model’: 1024, # dimension of word vector

22 ’maxLen’: 1001, # maximum length for posit ional encoding

23 ’n_head’: 32, # number of attention heads

24 ’n_encoder’: 10, # number of encoders

25 ’n_decoder’: 10, # number of decoders

26 ’n_ffwrd’: 512, # dimension of hiden feed−forward layer

27 ’dropout’: 0.0,

28 ’activation’: ’relu’,

29 # for training

30 ’scratch’: True, # Turn on to enforce training from scratch

31 ’iters’: int(200), # i terat ions

32 ’epoch’: 50, # epoches

33 ’lr’: 1, # learning rate

34 # for tes t ing

35 ’testBatch’: 10 # Number of f i l e s to be tested as a batch

36 }

Listing A.9: uils/dataloader.py
1 import numpy as np

2 from tqdm import tqdm

3 from pathlib import Path

4 import os

5 from scripts.official.entry_2021 import load_data

6 from scripts.official.score_2021 import RefInfo

7 from scripts.official.utils import save_dict

8 from torch.utils.data import IterableDataset

9 from utils.configuration import cfg

10 import torch

11

12

13 class ECG(IterableDataset):

14 def __init__(self, pathList, mode = "train", lim = 60, cat = 2,

15 lb = 20, ub = 620, seqLen = 1000, iters = 1e5):

16 super().__init__()

17 self.pathList = pathList

18 self.lim = lim

19 self.cat = cat

20 self.nToken = lim + cat + 1

21 self.seqLen = seqLen

22 self.iters = int(iters)

23 self.ub = ub

24 self.lb = lb

25 self.mode = mode

26 if mode == "train":

27 self.data, self.posIdx, self.negIdx = self.read_train_set()

28 else:

29 self.data = self.read_test_set()

30

31 def __len__(self):

32 return len(self.data)

33

34 def __getitem__(self, item):

35 pass
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36

37 def __iter__(self):

38 if self.mode == "train":

39 for _ in range(self.iters):

40 Index = np.random.choice(self.posIdx, 2, True).tolist()

41 Index.extend(np.random.choice(self.negIdx, 2, False).tolist())

42 yield Index

43 else:

44 for k, v in self.data.items():

45 yield k, v

46

47 @classmethod

48 def batchify(cls, data):

49 rawLen = data.shape[0]

50 seqLen = int(cfg[’seqLen’])

51 rmd = rawLen % seqLen

52 if rmd:

53 padLen = rawLen + seqLen - rmd

54 data = np.pad(data, (0, seqLen - rmd), ’constant’)

55 else:

56 padLen = rawLen

57 T = torch.tensor(data, dtype=torch. long)

58 T = T.view(seqLen, padLen // seqLen).contiguous()

59 return T, rawLen

60

61 def collate_fn_train(self, idx):

62 posIdx1, posIdx2, negIdx1, negIdx2 = idx[0]

63 pos1, pos2 = self.pad(posIdx1), self.truncate(posIdx2)

64 neg1, neg2 = self.truncate(negIdx1), self.truncate(negIdx2)

65 sample = np.vstack((pos1[0], neg1[0], pos2[0], neg2[0]))

66 label = np.vstack((pos1[1], neg1[1], pos2[1], neg2[1]))

67 sample = torch.from_numpy(sample). long().t().contiguous()

68 label = torch.from_numpy(label). long().t().contiguous()

69 return sample, label

70

71 def collate_fn_test(self, idx):

72 name, sample = idx[0]

73 sample, length = self.batchify(sample)

74 return name, sample, length

75

76 def truncate(self, idx, positive = False):

77 data, label = self.data[idx]

78 if not positive:

79 start = np.random.randint(0, max(label.size - self.seqLen, 1), 1)[0]

80 delta = data.size - start

81 padLen = self.seqLen - delta if delta < self.seqLen else 0

82 if not padLen:

83 data = data[start: start + self.seqLen]

84 label = label[start: start + self.seqLen]

85 else:

86 data = np.pad(data, (0, padLen), constant_values=0)

87 label = np.pad(label, (0, padLen), constant_values=cfg[’limit’] + cfg[’categories’])

88 else:

89 padLen = self.seqLen - data.size if data.size < self.seqLen else 0

90 if not padLen:

91 data = data[: self.seqLen]
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92 label = label[: self.seqLen]

93 else:

94 data = np.pad(data, (0, padLen), constant_values = 0)

95 label = np.pad(label, (0, padLen), constant_values = cfg[’limit’] + cfg[’categories’])

96 return [data, label]

97

98 # for cat = 2 only

99 def pad(self, idx):

100 data, label = self.data[idx]

101 tail = label.size - 1

102 while label[tail] != cfg[’limit’] + cfg[’categories’] + 1 and tail > 0: tail -= 1

103 if not tail: tail = 1

104 tail += 1

105 if tail < self.seqLen:

106 padLen = self.seqLen - tail

107 data = np.pad(data[: tail], (0, padLen), "reflect")

108 label = np.pad(label[: tail], (0, padLen), "reflect")

109 else:

110 data = data[: self.seqLen]

111 label = label[: self.seqLen]

112 return [data, label]

113

114 @classmethod

115 def raw2fuzzy(cls, raw, lb = 20, ub= 620, lim = 60):

116 raw[raw > ub] = ub

117 raw[raw < lb] = lb

118 slope = float(lim / (ub - lb))

119 fuzzySet = slope * (raw - lb)

120 return fuzzySet.astype(np.int16)

121

122 @classmethod

123 def get_label_from_array(cls, posIntv, label):

124 for item in posIntv: # for s e l f . cat = 2 only

125 for cIdx in range(item[0], item[1]):

126 label[cIdx] += 1

127 return label

128

129 def read_train_set(self):

130 tranSet, posIdx, negIdx = [], [], []

131 cumSum = 0

132 for path in self.pathList:

133 fileList = open(os.path.join(path, "RECORDS"), ’r’).read().splitlines()

134 totalFile = len(fileList)

135 with tqdm(total = totalFile, unit = "file", desc=f"Collecting training set from {str(path)}") as pbar:

136 for idx, file in enumerate(fileList):

137 filePath = os.path.join(path, file)

138 TrueRef = RefInfo(filePath)

139 beatLoc = TrueRef.beat_loc

140 data = self.raw2fuzzy(np.diff(beatLoc), self.lb, self.ub, lim = self.lim)

141 label = np.ones(data.size) * (cfg[’limit’] + cfg[’categories’])

142 if not TrueRef.endpoints_true.size:

143 negIdx.append(cumSum + idx)

144 else:

145 posIdx.append(cumSum + idx)

146 label = self.get_label_from_array(TrueRef.endpoints_true, label)

147 tranSet.append([data, label])
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148 pbar.update(1)

149 cumSum += totalFile

150 return tranSet, posIdx, negIdx

151

152 def read_test_set(self):

153 testSet = {}

154 for path in self.pathList:

155 fileList = open(os.path.join(path, "RECORDS"), ’r’).read().splitlines()

156 totalFile = len(fileList)

157 with tqdm(total = totalFile, unit = "file", desc=f"Collecting test set from {str(path)}") as pbar:

158 for file in fileList:

159 TrueRef = RefInfo(os.path.join(path, file))

160 beatLoc = TrueRef.beat_loc

161 testSet[ file] = self.raw2fuzzy(np.diff(beatLoc), self.lb, self.ub, lim = self.lim)

162 pbar.update(1)

163 return testSet

164

165

166 def analyse_validation_results(patch):

167 if not Path(cfg[’predictValPath’]).is_dir(): Path(cfg[’predictValPath’]).mkdir()

168 name, raw, pred = patch

169 pred = pred.view(-1).contiguous()

170 idx, start, end, results = 0, None, None, []

171 while idx < len(raw):

172 if idx == len(raw)-1 and start is not None:

173 results.extend([[start, idx]])

174 if pred[idx] >= cfg[’limit’] + cfg[’categories’] + 1 and end is None:

175 start, end = idx, False

176 elif pred[idx] < cfg[’limit’] + cfg[’categories’] + 1 and start is not None:

177 results.extend([[start, idx]])

178 start, end = None, None

179 idx += 1

180 results = {’predict_endpoints’: results}

181 save_dict(os.path.join(cfg[’predictValPath’], name + ’.json’), results)

182 # resul ts = { ’ predict_endpoints ’: resul ts }

183 # save_dict ( os . path . join ( cfg [ ’ predictValPath ’ ] , name + ’ . json ’) , resul ts )

184

185

186 def evaluate_results():

187 command = "python " + r"scripts/official/score_2021.py "

188 os.system(command + str(cfg[’valset’]) + " " + str(cfg[’predictValPath’]))

189

190

191 if __name__ == "__main__":

192 trainPath = Path(r"../datasets/training_II_train").resolve()

193 dataSet = ECG([trainPath])

194 dataset = torch.utils.data.DataLoader(dataSet, collate_fn=dataSet.collate_fn)

195 for item in dataset:

196 print(item)

197 print(dataset)
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Appendix B

Hammersley-Clifford Theorem

B.1 Markov Random Field (MRF)

MRF (170; 96) is the probabilistic undirected graph (PUG) model that represents a joint probability distribu-

tion with Markov properties. The undirected graph is denoted as G = ⟨V ,E ⟩, which denotes a probabilistic

distribution P(Y ), Y ∈Y , where Y ∈Rn, Y is a set of random variables. Each vertice of G represents a random

variable Yv ∈ Y, v ∈ V defined on v. Probabilistic dependency of random variables is depicted by the edge set

E . MRF has three distinguished Markov properties:

• Pairwise Markov property. Let u,v ∈ V denote two disconnected vertices, the rest of vertices R = {∀r|r ̸=

u, r ̸= v, r ∈ V } and YR = {∀Yr|r ∈ R}, then the conditional probability P(Yu,Yv|YR) = P(Yu|YR) • P(Yv|YR),

where P(Yu|YR) and P(Yv|YR) are marginal probabilistic distributions of P(Yu,Yv|YR).

• Local Markov property. Let v ∈ V , Cv = {∀u|u⊥v, u ̸= v, u ∈ V }, the operator ⊥ signifies the existence of

direct edge connections, let Rv = {∀u|u ̸= v, u /∈Cv, u ∈ V } denotes the rest of vertices, then P(Yv,YRv |YCv) =

P(Yv|YCv) • P(YRv |YCv).

• Global Markov property. Let V ⊂ V , CV = {∀u|u ⊥V, u ∈ V }, R = {∀u|u /∈V, u /∈CV , u ∈ V } denotes the rest

of vertices, then P(YV ,YR|YCV ) = P(YV |YCV ) • P(YR|YCV ). This property is also called ‘the Markov blanket’ that

separates vertices and ensures the conditional independence of partitioned random variables.

The sufficient condition of a joint probability distribution P(Y ) defined on an undirected graph G being a

MRF is one of the three Markov properties listed above. Another equivalent form for local Markov property

can be described as corollary. B.1.0.1:

Corollary B.1.0.1. Local Markov property ⇔ P(Yv|YCv) = P(Yv|YV \v) .

Proof. Sufficiency. If P(Yv,YRv |YCv)=P(Yv|YCv) •P(YRv |YCv), then P(Yv,YRv |YCv)=P(Yv|YCv ,YRv) •P(YRv |YCv)=P(Yv|YCv) •

P(YRv |YCv)⇒ P(Yv|YCv ,YRv) = P(Yv|YV \v) = P(Yv|YCv). Next, prove the necessity.
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Proof. Necessity. If P(Yv|YV \v)=P(Yv|YCv), then P(Yv,YRv |YCv)=P(Yv|YCv ,YRv) •P(YRv |YCv)=P(Yv|YV \v) •P(YRv |YCv)=

P(Yv|YCv) • P(YRv |YCv). Therefore, corollary B.1.0.1 is proved.

B.2 Hammersley-Clifford Theorem

A clique is defined as one compete subgraph of G that each pair of vertices in that subgraph are connected by

an edge. Maximal clique is the clique that doesn’t serve as the proper subset of any other clique. Note that

maximal clique is different from the maximum clique, which has the largest number of vertices than any other

clique. Factorization of G is defined as the product of functions defined on the set of all maximal cliques C of

G, and this product equals to P(Y ):

P(Y ) =
1
Z ∏

C∈C

ΨC(YC), Z = ∑
Y

∏
c∈C

ΨC(YC), (B.1)

where ΨC is a positive potential function defined on the random variables YC of the maximal clique C, Z is a

normalizer that sums up the prods of potentials with all possible values of the random variable set Y such that

P(Y ) ≤ 1, and becomes a valid probability distribution by ensuring ∑Y P(Y ) = 1. P(Y ) that can be factorized

as Eqn. B.1 is named after a Gibbs distribution. Hammersley-Clifford theorem (28; 34; 179; 55; 142; 169; 15)

describes the relationship between a Gibbs distribution and MRF that, Gibbs distribution is equivalent to MRF.

Proof. Sufficiency of Hammersley-Clifford theorem. For any vertice v ∈ V , if P(Yv|YCv) = P(Yv|YV \v), where

Cv = {∀u|u ⊥ v, u ∈ V }, which is equivalent to the local Markov property according to corollary. B.1.0.1, then the

proposition - ‘a Gibbs distribution is a MRF’ will be proved. Let set Dv = v∪Cv, we have

P(Yv|YCv) =
P(Yv,YCv)

P(YCv)
=

∑V \Dv P(Y )

∑v ∑V \Dv P(Y )
=

∑V \Dv ∏C∈C ΨC(YC)

∑v ∑V \Dv ∏C∈C ΨC(YC)
, (B.2)

where P(Yv,YCv), P(YCv) are signified by their marginal probabilities, and the normalizer Z is reduced by substituting

P(Y ) with Eqn. B.1. In addition, let Rv = {∀C|v ∈ C, C ∈ C } be the set of cliques that contains vertice v (different

from the set Rv defined for local Markov property), Rc
v = C −Rv be the complement set. Eqn. B.2 is then reformatted

as
∑V \Dv ∏C∈C ΨC(YC)

∑v ∑V \Dv ∏C∈C ΨC(YC)
=

∑V \Dv

(
∏C∈Rv ΨC(YC) • ∏C∈Rc

v
ΨC(YC)

)
∑v ∑V \Dv

(
∏C∈Rv ΨC(YC) • ∏C∈Rc

v
ΨC(YC)

) . (B.3)

The maximal cliques that contains v must come from Dv, since if v /∈ Dv, v ∈C′, while maximal clique C′ contains

v, which, according to the definition of maximal clique, C′ must be connected to v such that C′ ⊆ Dv thereby v ∈ Dv,
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which contradicts with v /∈ Dv. Thus, Rv ⊆ Dv,we can rewrite Eqn. B.3 as

∑V \Dv

(
∏C∈Rv ΨC(YC) • ∏C∈Rc

v
ΨC(YC)

)
∑v ∑V \Dv

(
∏C∈Rv ΨC(YC) • ∏C∈Rc

v
ΨC(YC)

) = ∏C∈Rv ΨC(YC) • ∑V \Dv ∏C∈Rc
v
ΨC(YC)

∑v ∏C∈Rv ΨC(YC) • ∑V \Dv ∏C∈Rc
v
ΨC(YC)

=
∏C∈Rv ΨC(YC)

∑v ∏C∈Rv ΨC(YC)

=
∏C∈Rv ΨC(YC) • ∏C∈Rc

v
ΨC(YC)

∑v ∏C∈Rv ΨC(YC) • ∏C∈Rc
v
ΨC(YC)

=
∏C∈C ΨC(YC)

∑v ∏C∈C ΨC(YC)
.

(B.4)

The nominator and denominator of last equity of Eqn. B.4 can both divide the normalizer Z at same time, which

formulates the form as shown in Eqn. B.1, and draws to the conclusion that

∏C∈C ΨC(YC)/Z
∑v ∏C∈C ΨC(YC)/Z

=
P(Y )

P(YV \v)
=

P(Yv,YV \v)

P(YV \v)
= P(Yv|YV \v). (B.5)

Proof. Necessity of Hammersley-Clifford theorem. For any subset S ⊆ V , construct a potential function fS(YS) on

the subset S with the form

fS(YS = yS) = ∏
V⊆S

P(YV = yV ,YV \V = 0)(−1)|S|−|V |
, (B.6)

in which keep the random variables in subset V active, while setting probabilities of the rest in subset S to zero, and

the | · | operator denotes the number of vertices in the subset. If |S|−|V | is even, then (−1)|S|−|V | equals to 1, otherwise

-1. Eqn. B.6 has two properties that are crucial to prove the necessity of Hammersley-Clifford theorem.

• The 1st property - ∏S⊆V fS(YS) = P(Y ).

• The 2nd property - If S is not a clique, then fS(YS) = 1.

Prove the 1st property first. It can be deducted that

∏
S⊆V

fS(YS)⇔ ∏
V⊆V

fV (YV ). (B.7)

∏S⊆V fS(YS) = ∏S⊆V ∏V⊆S P(YV = yV ,YV \V = 0)(−1)|S|−|V |
according to Eqn. B.6, in which S can be viewed as

the independent variable with elements of V the constants given S. On the other hand, it can also be viewed as the

function depends on V , i.e., ∏V⊆V fV (YV ) = ∏S⊆V ∏V⊆S P(YV = yV ,YV \V = 0)(−1)|S|−|V |
once V is given such that

elements of S are constants. Both views are concluded as the Eqn. B.7. The largest benefit of changing the viewpoint

is that the original problem related to fS(YS) can be interpreted as solving the duality fV (YV ). Let’s focus on this dual

problem of calculating ∏S⊆V fS(YS).

Given some certain V ⊆ V , we can use a strategy to search for all prodding terms related to S. Firstly, let

S := V , then we find the only prodding term ∆
(−1)0

V = P(YV = yV ,YV \V = 0)(−1)0
; Next, let S := V ∪ v1, v1 ∈ V and
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v1 /∈ V , as there are C1
|V |−|V | ways to choose v1, and in each way there exists only one valid (others are all ones since

|S :=V |− |V |= 0) prodding item ∆
(−1)1

V according to Eqn. B.6. Continue searching, let S :=V ∪{v1,v2}, v1,v2 ∈ V

and v1,v2 /∈ V , note that we’ve covered the case for V w/ additional one vertice, thus there exists only one valid

prodding item ∆
(−1)2

V for each choice according to Eqn. B.6, and there are C2
|V |−|V | ways to choose. Similarly, choose S

until S := V when at most |V |− |V | additional elements can be chosen, and the only valid prodding term for choosing

additional |V |−|V | elements is ∆
(−1)|V |−|V |

V , which has C|V |−|V |
|V |−|V | ways to choose. Collect all valid prodding terms using

this searching strategy, we have:

∏
V⊆V

fV (YV ) = ∏
V⊆V

∆
C0
|V |−|V |(−1)0+C1

|V |−|V |(−1)1+C2
|V |−|V |(−1)2+···+CV |−|V |

|V |−|V |(−1)V |−|V |

V . (B.8)

According to Binomial theorem that (a+ b)n = C0
nanb0 +C1

nan−1b1 + · · ·+Cn
na0bn, let a = 1, b = −1 such that

(1−1)n =C0
n −C1

n + · · ·+Cr
n(−1)r + · · ·+Cn

n(−1)n, Eqn. B.8 is then reformulated as

∏
V⊆V

fV (YV ) = ∏
V⊂V

fV (YV ) • fV (YV ) = fV (YV ) = P(Y ), (B.9)

which proves the first property according to Eqn. B.7.

The second step is to prove the second property. Since S is not a clique, we can always find two vertices a and b

such that there’s no connection (both direct or indirect) between a and b. fS(YS) can be denoted by vertices a,b that,

fS(YS)= ∏
V⊆S

P(YV = yV ,YV \V = 0)(−1)|S|−|V |
= ∏

V⊆S\{a,b}

[
P(YV ,YV \V = 0) • P(YV∪{a,b},YV \(V∪{a,b}) = 0)

P(YV∪{a},YV \(V∪{a}) = 0) • P(YV∪{b},YV \(V∪{b}) = 0)

](−1)|S|−|V |

,

(B.10)

which remains to be proved. Eqn. B.10 can be more explicitly denoted by ∆V as

fS(YS) = ∏
V⊆S\{a,b}

[
∆V • ∆V∪{a,b}

∆V∪{a} • ∆V∪{b}

](−1)|S|−|V |

. (B.11)

To prove Eqn. B.11, for each V ⊆ S \ {a,b}, construct three sets V ∪ {a}, V ∪ {b}, V ∪ {a,b}. Next, for all

V ⊆ S\{a,b}, construct all their three-types sets, as a result, the union of all these sets along with all V s is equivalent

to {∀V |V ⊆ S}. Under this circumstance, fS(YS) can be reformulated as

fS(YS) = ∏
V⊆S

∆
(−1)|S|−|V |

V = ∏
V⊆S\{a,b}

[
∆
(−1)|S|−|V |

V • ∆
(−1)|S|−|V |−1

V∪{a}
• ∆

(−1)|S|−|V |−1

V∪{b}
• ∆

(−1)|S|−|V |−2

V∪{a,b}

]

= ∏
V⊆S\{a,b}

∆
(−1)|S|−|V |

V • ∆
(−1)|S|−|V |

V∪{a,b}

∆
(−1)|S|−|V |

V∪{a}
• ∆

(−1)|S|−|V |

V∪{b}

= ∏
V⊆S\{a,b}

[
∆V • ∆V∪{a,b}

∆V∪{a} • ∆V∪{b}

](−1)|S|−|V |

,

(B.12)
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which proves proposition Eqn. B.11. Next, rewrite ∆V and ∆V∪{a} as

∆V = P(YV ,YV \V = 0) = P(Ya = 0|Yb = 0,YV \(V∪{a,b}) = 0,YV ) • P(Yb = 0,YV \V∪{a,b}) = 0,YV ),

∆V∪{a} = P(YV∪{a},YV \(V∪{a}) = 0) = P(Ya|Yb = 0,YV \(V∪{a,b}) = 0,YV ) • P(Yb = 0,YV \(V∪{a,b}) = 0,YV ),

(B.13)

where YV \V = 0 indicates Ya = 0. Similarly, rewrite ∆V∪{a,b} and ∆V∪{b} as

∆V∪{a,b} = P(Ya|Yb,YV \(V∪{a,b}) = 0,YV ) • P(Yb,YV \(V∪{a,b}) = 0,YV ),

∆V∪{b} = P(Ya = 0|Yb,YV \(V∪{a,b}) = 0,YV ) • P(Yb,YV \(V∪{a,b}) = 0,YV ).

(B.14)

It can be derived from Eqn. B.13 and B.14 that,

∆V

∆V∪{a}
=

P(Ya = 0|Yb = 0,YV \(V∪{a,b})=0,YV )

P(Ya|Yb = 0,YV \(V∪{a,b}) = 0,YV )
,

∆V∪{a,b}
∆V∪{b}

=
P(Ya|Yb,YV \(V∪{a,b})=0,YV )

P(Ya = 0|Yb,YV \(V∪{a,b}) = 0,YV )
. (B.15)

According to the assumption of MRF, as well as the equivalent fact of pairwise Markov property (proof is similar

to corollary. B.1.0.1), as vertice a and b are not connected, they are conditional independent such that

P(Ya = 0|Yb = 0,YV \(V∪{a,b})=0,YV ) = P(Ya = 0|Yb,YV \(V∪{a,b})=0,YV ),

P(Ya|Yb = 0,YV \(V∪{a,b})=0,YV ) = P(Ya|Yb,YV \(V∪{a,b})=0,YV ).

(B.16)

Take Eqn. B.15 and B.16 into Eqn. B.12, then the second property is proven. Note that under the assumption of

MRF properties, the probabilities in Eqn. B.13 and B.14 are positive to ensure that the potential function fS(YS) is

positive. The final step is to deduce the necessity of Hammersley-Clifford theorem by two properties, and it is obvious

that ∏S⊆V fS(YS) = P(Y ) for all cliques S of V , which also satisfies the condition of all maximal cliques S of V since

a maximal clique is not a proper subset of any other cliques. This indicates that a MRF can be represented by a Gibbs

distribution, therefore the necessary condition of Hammersley-Clifford theorem is proven.
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