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Abstract

Matched processing is a fundamental filtering operation within radar signal

processing to estimate scattering in the radar scene based on the transmit signal.

Although matched processing maximizes the signal-to-noise ratio (SNR), the filtering

operation is ineffective when interference is captured in the receive measurement.

Adaptive interference mitigation combined with matched processing has proven to

mitigate interference and estimate the radar scene. A known caveat of matched

processing is the resulting sidelobes that may mask other scatterers. The sidelobes

can be efficiently addressed by windowing but this approach also comes with limited

suppression capabilities, loss in resolution, and loss in SNR. The recent emergence of

mismatch processing has shown to optimally reduce sidelobes while maintaining

nominal resolution and signal estimation performance. Throughout this work,

re-iterative minimum-mean square error (RMMSE) adaptive and least-squares (LS)

optimal mismatch processing are proposed for enhanced signal estimation in unison

with adaptive interference mitigation for various radar applications including random

pulse repetition interval (PRI) staggering pulse-Doppler radar, airborne ground

moving target indication, and radar & communication spectrum sharing. Mismatch

processing and adaptive interference cancellation each can be computationally

complex for practical implementation. Sub-optimal RMMSE and LS approaches are

also introduced to address computational limitations. The efficacy of these algorithms

is presented using various high-fidelity Monte Carlo simulations and open-air

experimental datasets.
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Preface

The essence of radar systems is to characterize the information in a free-space environment using

reflections from electromagnetic (EM) waves. One integral radar application is moving target

indication (MTI) which extracts range, velocity, and angular location of moving targets, known

in short as movers, from the radar scene. Radars operate within the radio spectrum of the EM

spectrum. In this band of the EM spectrum, unavoidable sensitivity loss occurs due to thermal

noise within the radio frequency (RF) receiver from signal amplification [1]. The radar receiver

can encounter further loss from EM interference (EMI) during free-space propagation due to a

separate emitting RF device [2] and phenomenological interference from reflections that have little

to no velocity (known as clutter) [3]. Noise and interference each corrupt the radar measurements

and limit the radar performance in characterizing illuminated scatterers.

Radar signal processing is tasked with regaining sensitivity loss from noise by using a filter

coherent or "matched" to the transmit signal. However, such a filter is ineffective with

interference. Instead, a filter with cancellation properties is necessary to mitigate the interference

and regain sensitivity. The emergence of digital technologies has spawned a generation of

algorithms that perform mismatch filtering for signal estimation and adaptive interference

cancellation. This work explores the performance their combination provides. The mismatch

algorithms provide improvement for signal estimation, but they come with a caveat: an increase

in the computational resources necessary to compute them. Such an increase hinders real-time

processing. Therefore, sub-optimal mismatch approaches are also explored.

In Chapter 1, an overview of radar fundamentals is presented. The chapter covers a wide range

of topics such as pulse compression waveforms, open-air propagation of an EM waves, and signals

models of collected radar returns. Information on side looking airborne radar and clutter is also

presented. The chapter is meant to provide the radar knowledge necessary for subsequent chapters.
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Chapter 2 explores a waveform diverse transmission approach known as random staggered

pulse repetition interval (PRI) radar. Using matched processing on a random PRI staggering

transmission introduces atypical sidelobes structures with higher-than-normal power. Clutter

further exacerbates the problem. Adaptive processing using re-iterative minimum mean-square

error (RMMSE) in conjunction adaptive clutter cancellation is proposed for enhanced signal

estimation. A partial adaptive RMMSE approach is proposed for real-time application. The

proposed methods are examined via high fidelity Monte Carlo simulations and ground-based

pulse-Doppler radar measurements captured at the University of Kansas (KU).

Chapter 3 explores least-squares (LS) optimal and RMMSE adaptive processing for airborne

ground MTI (GMTI) radar. Airborne radar succumbs to a coupling of velocity and angular

location information making robust clutter cancellation difficult [4]. Space-time adaptive

processing (STAP) is a proven adaptive cancellation approach that accounts for angle-Doppler

coupling to facilitate the suppression of clutter. The chapter proposes mismatch processing and

STAP together. STAP is well-known to be computationally expensive [4]. Therefore, partial

adaptive STAP is combined with reduced rank LS and partial adaptive RMMSE. The proposed

methods are also examined via high fidelity Monte Carlo simulations. The experimental analysis

is performed on the synthetic aperture radar (SAR) GMTI GOTCHA dataset from the Air Force

Research Laboratory (AFRL/RYA) [5].

Chapter 4 explores shared spectrum between radar and mobile communications. The chapter

proposes a method to operate radar in the presence of interference from a mobile communication

system by leveraging digital beamforming for signal separation and RMMSE via adaptive pulse

compression (APC) for simultaneous estimation and cancellation. A suboptimal APC approach

that performs over blocks of data instead of single samples is explored for improved

computational efficiency. The proposed methods are examined using a synthetic dataset generated

from the separate collections of long term evolution (LTE) wireless and ground-based

pulse-Doppler radar transmissions on the same radar receiver. Each collection was performed at

KU and later combined off-line. The radar signal processing within each chapter was performed

xvi



off-line. Conclusions and future work for each chapter is described in Chapter 5.

Two appendices accompany the chapters. The first appendix presents derivations for the

maximum signal-to-noise ratio (SNR) and signal-to-interference-plus-noise ratio (SINR) filters.

The second appendix presents a list of acronyms and mathematical notations. Below is a brief

overview of some notations outlined in Appendix B. Scalar quantities are denoted in lowercase

italic letter e.g., a. Uppercase italic letters likewise denote a scalar quantity to the describe "the

number of" a quantity, or a set (when explicitly written). Vector quantities are denoted in

lowercase bold letter e.g., a. All vector quantities are column vectors unless otherwise specified.

Uppercase bold letters represent a matrix quantity e.g., A. The transposition, complex

conjugation, and conjugate transposition (Hermitian) operations are denoted as superscripts,

respectively, as (•)T , (•)∗, and (•)H . A vector with N number of scalar quantities is represented

as a = [ a0 a1 · · · aN−1 ]T with a dimension of N × 1. A matrix with M number of N × 1

vector quantities is A = [ a0 a1 · · · aM−1 ] with a of dimension N ×M which can be

expanded to

A =



a0,0 a0,1 · · · a0,M−1

a1,0
. . . . . . ...

... . . . . . . aN−2,M−1

aN−1,0 · · · aN−1,M−2 aN−1,M−1


.

In some instances, a vector or matrix quantity will have a subscript defining its dimension. For

example, an identity matrix having a size of N ×N is IN×N . A bold number with a subscript

defining its dimension is a quantity containing only that number e.g., 0N×1. The element-wise

(Hadamard) product operation is denoted with the symbol �. The Kronecker product operation is

denoted with the symbol ⊗. The expected value operator of a quantity is denoted as E {•}. The

norm operation of a quantity is denoted as ‖•‖.

xvii



Chapter 1

Radar Background

Radar systems fundamental functions are search and detection, tracking, and imaging [2]. The

focus of this work is on search and detection. Radars illuminate the environment using an

electromagnetic (EM) wave from a transmit radar aperture. The scattering from the scene

illumination is collected at a receive radar aperture. Desired scatterers are called targets.

Unwanted scatterers that do not pertain to the radar application are called clutter [2].

Search radars scan a radar scene for potential targets. Moving target indication (MTI) is a radar

application that detects moving targets, also known as movers, by discriminating their angular

location and velocity from clutter. MTI has a myriad of applications such as airport surveillance

and automotive collision avoidance to name a few. MTI considers clutter to be scatterers with

zero velocity or a slow-moving velocity below a user-defined velocity threshold. Some examples

of stationary clutter include the Earth’s surface and man-made objects like buildings. Naturally

moving environmental effects such as trees blowing in the wind or ocean waves are examples of

non-stationary, slow-moving clutter. Non-stationary clutter is called internal clutter motion (ICM)

and causes challenges in the detection of movers [6, 7].

Range, velocity, and angular location of scatterers are measured from reflected radar signals.

Range is the distance between the radar and scatterer. Range measures the round-trip time delay

from a radar pulse in fast-time signals. Velocity is obtained via the Doppler effect. The Doppler

frequency is measured from a slow-time delay of multiple radar pulses. Angular location is

obtained by measuring the direction-of-arrival (DOA) of an EM wave which corresponds to a

spatial frequency. The spatial frequency is measured from the delay of the EM wave across a

phased array of antenna elements also known as element-space signals. Fast-time, slow-time, and
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element-space signals leverage the delay of the radar pulse but in different ways. Signal

coherence is performed for each signal in receive processing to obtain an estimate of the desired

information.

Interference limits the performance of estimating scatterer information. The primary

interference source radar systems must combat is thermal noise. Radars operate in the radio

frequency (RF) band of the EM spectrum. In RF, analog components in the radar receiver

generates thermal noise [1]. Noise limits the radar dynamic range, decreases the radar sensitivity,

and corrupts the receive radar signals. In addition to noise, a separate operating RF device

overlapping in time and spectrum causes unintentional EM interference (EMI) to the radar.

Lastly, in a radar scene there is an abundance of clutter measured relative to the number of

movers. The aggregate of clutter will result in a high-power response that can mask slower

movers with lower power. The unwanted clutter response poses a problem to the detection of

other movers. Therefore, clutter is considered an interference source in MTI radar as well.

Receive signal processing can maximize the signal strength via signal coherence and minimize

interference strength via attenuation. Filtering, whether it be low-pass, band-pass, band-stop and/or

high-pass filtering, is used to fulfill receive signal processing objectives. In the following sections,

signal coherence of fast-time, slow-time, and element-space signals in the presence of noise and

interference is examined. After, an overview of clutter cancellation in side-looking airborne radar

(SLAR) is presented. The background information on SLAR can be relaxed to ground-based and

stationary radars.

1.1 Pulse Compression Waveforms

A complex-valued baseband representation of a pulse waveform is characterized by a time-varying

amplitude A(t) and phase Φ(t)

s (t) = A(t)e jΦ(t) (1.1)
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for a time duration of 0≤ t ≤ τ where τ is the pulse duration [8, 9]. Waveform modulation can be

performed in amplitude and/or phase. The waveform is fed through a high-power amplifier (HPA)

to increase the signal transmit power. Higher signal energy increases the energy on scatterers

thereby increasing the probability of detection. The amplifier is driven into saturation to maximum

output power. The relationship between input power and output power of a HPA is non-linear

which will result in waveform distortion when performing amplitude modulation in a saturated

HPA [10]. Accordingly, radar systems primarily avoid amplitude modulation by having a constant

modulus amplitude of A(t) = 1.

A simple radar pulse is a rectangular function absent of phase modulation Φ(t) = 0 and has

a constant modulus amplitude. A fundamental phase modulation is linear frequency modulation

(LFM) known as a chirp. A LFM waveform has time varying phase of

Φ(t) = π
B
τ

t2 (1.2)

where B = | fstart − fend| is a 3 dB swept bandwidth from a start frequency fstart to an end

frequency fend. Although the phase is parabolic, the LFM waveform get its name from the

relationship between phase and frequency. Performing the time derivative of the phase produces

the instantaneous frequency

f (t) =
1

2π

d
dt

Φ(t) =
B
τ

t. (1.3)

By observation, (1.3) is a linear function with a rate of change B/τ called the chirp rate [8]. The

instantaneous frequency can be swept in a positive or negative manner. A positive chirp rate is

called an up-chirp. Conversely, a negative chirp rate is called a down-chirp. Up- and down-chirps

exhibit similar waveform properties.

Substituting (1.2) into (1.1) and considering constant modulus, the baseband representation of

a chirp waveform is

s (t) = e jπ(B/τ)t2
(1.4)
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[8, 9]. The radar waveform is upconverted to a RF carrier frequency fRF for operation in the EM

spectrum

sRF (t) = Re
{

s (t)e j2π fRFt
}

(1.5)

[8] where Re{•} takes the real component of a complex-valued quantity. For example, the real-

valued passband representation of a LFM waveform is sRF (t) = cos(2π fRFt +π(B/τ)t2) . Figure

1.1 shows the relationship between instantaneous frequency and pulse duration for a simple pulse

and up-chirp LFM with fstart = −0.5B and fend = 0.5B [8]. The power spectral density of the

waveforms is presented in Fig. 1.2.

A radar waveform determines range resolution and energy-on-target. Range resolution is the

separability between two closely spaced scatterers. Being able to discern two scatterers increases

the detection probability. Energy-on-target is the amount of signal energy on scatterers in a scene.

The energy-on-target is directly related to scatterer signal strength sensed at the receiver. A shorter

radar pulse duration provides higher range resolution. A longer radar pulse duration provides

higher energy-on-target. A simple pulse must trade-off between range resolution and energy-on-

target using the pulse duration. Frequency modulation waveforms provide range resolution of a

shorter pulse while sustaining the energy-on-target of a longer pulse [8].

Waveform performance is characterized by the sidelobes of its normalized autocorrelation. The

autocorrelation describes how rapidly a signal changes as a function of time [11]. The normalized

autocorrelation is

r (t) =
s∗ (−t)∗ s (t)

τ́

0
|s (t)|2dt

(1.6)

where (•)∗ denotes complex conjugation, ∗ denotes continuous convolution operation such that

for casual functions a(t) ∗ b(t) =
t́

0
a(τ)b(t− τ)dτ for t ∈ [0,∞), and the energy of a waveform

is Es = 〈s∗ (t) ,s (t)〉=
τ́

0
|s (t)|2dt [8] where 〈a (t) ,b (t)〉 denotes a continuous-time inner product

between arbitrary continuous functions a (t) and b (t). Figure 1.3 depicts the autocorrelation of
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Fig. 1.1: Instantaneous frequency versus time for an unmodulated waveform (blue) and a LFM
waveform (red)

Fig. 1.2: Spectrum of an unmodulated waveform (blue) and a LFM waveform (red)
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unmodulated and LFM waveforms. An unmodulated waveform produces a triangle function as its

autocorrelation response. The autocorrelation for a LFM is

rLFM (t) = sinc
((

1− |t|
τ

)
πBτ

)
(1.7)

[8]. The time-bandwidth product Bτ is a fundamental quantity of a radar waveform due to its direct

relationship to fast-time signal coherence performance. The time-bandwidth product of a simple

pulse is Bτ = 1 which also shows that the bandwidth and pulse duration are inversely proportional

for a simple pulse. A LFM always has a time-bandwidth product greater than one. The time-

bandwidth product of the LFM waveform depicted in Figure 1.3 is Bτ = 100. An ideal waveform

would produce an impulse for its autocorrelation response which means energy does not spread

over delay. An LFM produces a sinc response that approximates the impulse with increase time-

bandwidth product. The autocorrelation response contains mainlobe and sidelobes responses. The

mainlobe defines the range resolution. The sidelobes describe the energy spread in adjacent range

Mainlobe

Sidelobes

Fig. 1.3: Normalized autocorrelation of a unmodulated waveform (blue) and a LFM waveform
(red)
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samples.

Two popular range resolution metrics include the half-power and Rayleigh resolutions [8].

The half-power resolution, also referred to as 3 dB resolution, characterizes the 3 dB loss from

the mainlobe peak power. The Rayleigh resolution, often referred to as null-to-null resolution, is

the width of the first nulls on each side of the mainlobe. For a LFM waveform, the nulls occur

approximately at t ≈±1
/

B when Bτ > 10 [8]. The Rayleigh resolution of a LFM waveform is

δR =
c

2B
(1.8)

[8]. A lower resolution is desirable and improves with increasing bandwidth.

Relatively speaking, the LFM peak sidelobe level is considered high and problematic to radar

detection. A LFM have a peak sidelobe power of approximately -13.2 dB below the mainlobe peak

power. Radars require a high degree of sensitivity to detect radar reflections. In receive processing,

sidelobes from one scatterer can mask mainlobes of other scatterers in nearby delay intervals. The

sidelobes of a waveform autocorrelation response can be modified by changing the linearity of the

instantaneous frequency. Phase-coded and non-linear FM waveforms can produce lower sidelobes.

However, phase-coded waveforms cannot achieve the wide bandwidth possibilities of a LFM [12].

The disadvantage of implementing non-linear FM waveforms is there complexity to implement in

hardware. The improvement in digital technology, such as arbitrary waveform generation, has led

to a surge in waveform diversity [13]. Legacy radar systems would require hardware upgrades to

facilitate advance technologies which can be costly.

The simplicity to implement a LFM in hardware is a trade-off that is often taken since the

high sidelobes can be mitigated in receive processing. One of the most common receive

processing methods to mitigate range sidelobes in receive processing is windowing. Windowing

is an amplitude weighting of the receive filter and is computationally inexpensive to perform. A

signal mismatch occurs with windowing causing a minor loss in signal strength. Windowing and

mismatch loss is discussed further in Section 1.6. The use of LFM waveforms within legacy
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systems are prevalent due to their simplicity to implement. Since a LFM waveform is a

fundamental waveform, it is implemented within this work. Nonetheless, this work is generalized

such that other phase modulations are applicable.

1.2 Radar Transmission, Scattering, and Reception

An overview of the free-space transmission of radar systems is presented. Consider a monostatic

radar configuration where the transmit and receive antennas are colocated. The passband waveform

is emitted from the transmit antenna into the radar scene as an EM wave. The emitted EM wave

propagates into the environment at the speed of light and illuminates scatterers [2]. The EM wave

in the far-field is assumed to be a plane wave and impinges on scatterers in the radar scene [2].

The emitted EM wave travels to a scatterer and encounters atmospheric refraction on the way.

Atmospheric refraction from particles in the air (such as water vapor or oxygen) absorbs the

radiated energy causing a carrier frequency dependent attenuation to the transmit signal.

Scattering can be forward-scattering or backscattering [14]. For narrowband signal in the far field,

movers have point reflectively and clutter has surface reflectively [14]. The roughness of a

scatterer surfaces can be specular and/or diffuse [14]. Specular surfaces include roads or standing

water. A diffuse surface includes corn fields or wooded areas. Two-way propagation from

backscattering is collected at the receiver. There exist bi- and multi-static transmit/receive

schemes in which forward-scattering must be considered as well.

For a simple pulse transmitted from a isotropic antenna, the transmitted power density of the

EM plane wave is

QTx =
PTxATx

λ 2
RFR2 (1.9)

[14] where PTx is the peak power of the radar transmitter, ATx is the effective aperture of the

transmit antenna, λRF = c/ fRF is the carrier wavelength at the speed of light c, and R is the range

from the radar to a scatter in the radar environment. The transmit power density is typically seen

with the antenna gain. The relationship between effective aperture and antenna gain is
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GTx = 4πATx
/

λ 2
RF [14].

The transmit power density incident on a scatterer interacts with the scatterer radar cross

section (RCS) denoted σRCS. RCS incorporates the backscattering coefficient of the scatterer and

is determined by the scatterer physical size and EM properties [14]. The power reflected from the

illuminated scatterer has a power density of

Qrefl =
QTxσRCS

4πR2 . (1.10)

After reflection, the plane wave travels a distance R back to the receiver. Again, experiencing

atmospheric refraction. The receive signal power of the emission is

Pr = QreflARx =
PTxATxARxσRCS

4πλ 2
RFR4 (1.11)

where ARx is the effective aperture of the receive antenna [14]. The signal is sent through an

amplifier in the receiver, down-conversion from passband to baseband, in-phase/quadrature (IQ)

sampling (also known as discretization), and quantization. At this point, the signal is ready for

digital signal processing. After signal processing, the signal is sent for detection processing.

Ideally, the signal strength will be fully preserved from transmit to receive. However, loss

is inherent in the propagation chain. The signal experiences a two-way path loss represented by

1/R4 in (1.11). The quantity illustrates that signal energy decreases with distance from the radar.

Another factor to signal loss is thermal noise in the radar receiver. In the universe, any blackbody

with a temperature above absolute zero generates random motion of charged particles known as

thermal noise [10].

Thermal noise power of a radar receiver is

Pv = kzT0FBRx (1.12)

where kz is Boltzmann’s constant, T0 is the standard temperature (typically set to room
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temperature of 290 K), F is the noise figure, and BRx is the instantaneous receiver bandwidth

[14]. Assuming the instantaneous receiver bandwidth is driven by the waveform bandwidth, the

noise power becomes dependent on the receiver noise figure. Thermal noise is attributed to active

components in the receiver. For a device operating in the RF band, thermal noise dominates other

noise sources such as atmospheric noise [1]. The amplifier is the primary active component that

generates noise in the receiver. Low-noise amplifiers (LNAs) are readily used in the RF receiver

to reduce the noise figure. The noise power can be obtained by determining the receiver noise

figure. A key metric to analyze the effects of noise on the signal is signal-to-noise ratio (SNR)

SNR =
Pr

Pv
(1.13)

[14]. The probability of detection is a function of SNR [15]. The noise contribution can drop the

SNR below a detection threshold.

Interference sources during open-air transmission can trump thermal noise in its detriment to

the radar signal. The aggregate of clutter reflections from the radar transmission may overpower

reflections for a desired mover. Also, EMI from a separate operating RF device, specifically a

wireless communication transmission, can also overpower the transmitted radar signal. EMI

constructively and destructively interferes with the radar signal effectively causing a decorrelation

of the receive signal with the transmit radar waveform. Interference with higher power than

thermal noise causes radar sensitivity to diminish effectively setting a higher "noise floor."

As an example, consider a wireless communication signal operating in-band with a radar. The

communication device transmits with a peak power Pc on an isotropic antenna, an effective aperture

Ac, and range Rc to the radar. The communication signal is a one-way transmission to the radar with

a direct line-of-sight to the radar receive antenna. The power density of the EM wave propagating

from the communication system is

Qc =
PcAc

λ 2
RFR2

c
(1.14)

assuming the radar is in the far-field of the communication signal such that the signal power density
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captured by the effective aperture of the radar receiver is a plane wave. The interference power

captured by the radar receiver is

Pi = QcARx =
PcAcARx

λ 2
RFR2

c
(1.15)

which is equivalent to Friis transmission equation [16].

Thermal noise and interference are additive in their impact on the radar signal as seen in

Figure 1.4. Interference effect on the receive signal strength is analyzed via the

signal-to-interference-plus-noise ratio (SINR). SINR considers the ratio of the receiver power

relative to the linear combination of interfering sources

SINR =
Pr

Pi +Pv
. (1.16)

The incorporation of the interference source makes the probability of detection a function of SINR

[15]. Assuming the interference power is significantly larger than the noise power i.e., Pi >> Pv,

then (1.16) can be approximated to signal-to-interference ratio (SIR)

SINR|Pi>>Pv
≈ SIR =

Pr

Pi
. (1.17)

The interference power presented in (1.15) is only an example. Interference from a wireless

communication is addressed in Chapter 5. Interference from clutter is addressed in Chapters 3

and 4.

A radar can improve SINR by increasing the transmit power, increasing the size of the

effective aperture, and/or closing the distance to the scatterer when operating at a given carrier

Fig. 1.4: General signal flow diagram
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frequency. Transmit parameters are often optimized to achieve the best possible SINR. For

example, the transmit power is maximized since the transmit amplifier is driven into saturation.

The effective aperture is dependent on the physical array element whether it be a parabolic

antenna, horn antenna, etc. [17]. Also, antenna size increases with increasing wavelength (in

order words antenna size increases with decreasing carrier frequency) [17]. Lastly, the option to

change the radar physical location is not always available. The next option to increase SINR is

exploiting signal coherence in each signal dimension. Signal coherence increases signal strength

in noise-limited and interference-limited environments to improve SNR and SINR. The

improvement subsequently improves the probability of detection.

1.3 Fast-Time Signals

Consider the transmission of a pulse train, into the radar scene as depicted in Figure 1.5. The

interval between start of pulses is the pulse repetition interval (PRI). The number of pulses emitted

per second is the pulse repetition frequency (PRF). These quantities are inversely proportional

fr =
1
Tr

(1.18)

where fr denotes PRF and Tr denotes PRI [2]. The PRI contains the transmit pulse and a receive

time interval. The receive time interval is a "listening period" for scatterer reflections to be

collected by the receiver. Fast-time signals considers the reflections captured from the start of the

Fig. 1.5: Pulse train
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transmission. If a radar transmits and receive from a single aperture, then the portion of the PRI

corresponding to the pulse duration is a blind region. The ratio between pulse duration and PRI,

τ/Tr, is called the duty cycle [8]. A FM waveform with a duty cycle of 100% is called a FM

continuous-wave (FMCW) [9, 18]. MTI systems typically have low duty cycles below 30%.

Range is extracted from the fast-time interval collected at the receiver. Consider a pulse

transmitting into an open-air environment with scatterers present. The time delay of the pulse

from transmission to reception is the round-trip time delay denoted as T∆. Using the relationship

between the speed of the EM wave in free space and delay, the range of a reflected pulse is

R =
cT∆

2
(1.19)

[2]. The same waveform is transmitted every pulse for coherent gain at the caveat of range

ambiguities. The maximum unambiguous range

Rmax =
cTr

2
(1.20)

is the distance the radar cannot disambiguate pulse returns [2]. Pulse agility is a waveform diversity

method that avoids range ambiguities by transmitting a different waveform pulse-to-pulse [19, 20].

Pulse agile radar waveforms are not considered within this work.

Considering the transmission of a radar waveform s(t) illuminating scatterers in a radar scene.

The fast-time receive signal model detailing the response captured at the radar receiver after signal

amplification is described using a linear model

y (t) = s (t)∗ x (t)+ i (t)+ v (t) (1.21)

where x (t) is complex scatterers in the radar range profile, i (t) is interference captured by the radar

during open-air propagation, and v (t) is thermal noise from the radar receiver. The waveform s(t)

is deterministic since it is a known quantity. The range profile, noise (which is always present), and
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EMI (which may or may not be present) are characterized statistically due to the unpredictability of

illuminated scatterers in the scene, EMI source signal, and random nature of particles, respectively.

Each are considered a continuous random process. The processes are assumed to be stationary in

a wide sense since the mean of the signal is expected to remain constant over the time interval of

collection [11]. Specifically, the signals are also assumed to be weakly ergodic with zero-mean.

For long collection intervals (on the order of seconds) this assumption breaks down and must be

accounted for. Typical PRI values of MTI systems allow for this assumption to hold.

Noise is characterized as a Gaussian process. Thermal noise contribution to the receive signal

is also called additive white Gaussian noise (AWGN). "Additive" due to its linear combination with

the desired signal and "white" based on the flat RF frequency response (in a nod to the color white

in the optical region). The statistical distribution of the clutter within the range profile changes

depending on terrain, material, and RCS [3, 4, 21]. The interference signal randomness depends

on the type of waveform being transmitted. For example, commercial communications signals

will be random due information modulation symbols being random. A separate radar transmitting

in a similar nature as the one being presented will not be random. Subsumed into i(t) is also

a convolution operation since the interference waveform reflects off scatterers on the way to the

radar receiver.

Pulse compression is the operation of passing the receive signal through a filter in fast-time to

determine the impulse response of the open-air environment. The impulse response of the open-air

environment corresponds to the range delay of scatterers. A well-known pulse compression filter

is the band-pass, finite impulse response (FIR) filter matched to the radar waveform [8, 9]. The

namely match filter is

uMF (t) =
s∗ (−t)

τ́

0
|s (t)|2dt

(1.22)

for 0 ≤ t ≤ τ [9]. The match filter maximizes SNR in fast-time. The pulse compression response
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from the application of the match filter to the receive signal is

z (t) = uMF (t)∗ y (t)

=

ˆ Tr

0
r (t−ζ )x (ζ )dζ + ī (t)+ v̄ (t)

= x̄(t)+ ī (t)+ v̄ (t)

(1.23)

where x̄(t) =
´ Tr

0 r (t−ζ )x (ζ )dζ contains the desired response x(t) and range sidelobe

contributions from nearby scattering, ī(t) = uMF(t) ∗ i(t) is filtered interference, and

v̄(t) = uMF(t)∗ v(t) is filtered noise. The pulse compression response is passed through a detector

to determine if any scattering is within the range profile [15]. The filter converts the receive signal

from fast-time to time delay which is subsequently mapped to range using the relationship

t = 2R/c. Note, the name "match filter" strictly describes a pulse compression filter. The term

"matched" is used to describe any filter leveraging the transmit signal for the receive filter to

maximize SNR. Matched filters are later used within the description of slow-time, element-space,

and space-time signals.

The estimate of the range profile is equivalently stated as the pulse compression response x̂(t)=

z(t) where •̂ denotes an estimate of a quantity. The distinction is made to avoid confusion later

since receive processing to obtain velocity and angular location can be performed before or after

pulse compression without the loss of generality. Pre-pulse compression processing uses y(t) from

(1.21) and post-pulse compression processing uses z(t) from (1.23).

The pulse compression response represents the importance of waveform design relative to the

autocorrelation response. When multiple scatterers are in the radar scene, the receive response is a

superposition of autocorrelation responses (which for a LFM is a sinc-like response) scaled by the

complex amplitude of the scattering. Sidelobes from other range delays contribute detrimentally

to the range delay under test. Pulse compression improves SNR and SINR by the time-bandwidth

of the waveform.

A discrete form of pulse compression is implemented after analog-to-digital conversion (ADC).
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Define fs as the receiver sampling frequency and Ts = 1/ fs as the receiver sampling period. The

number of samples to characterize a waveform with duration τ is

Ls = fsτ. (1.24)

The discrete representation of the waveform is a Ls×1 waveform vector is

s = [ s [0] s [1] · · · s [Ls−1] ]T (1.25)

such that s[`s] = s(`sTs) for `s = 0,1, . . . ,(Ls−1) and (•)T denotes transposition. The number of

fast-time samples is obtained using the PRI

Lf = fsTr. (1.26)

Collecting Lf fast-time samples of the receive signal from (1.21) forms

yf (`) = [ y [`] y [`+1] · · · y [`+Lf−1] ]T (1.27)

where yf (`) is a Lf× 1 fast-time signal vector. The discrete representation of the receive signal

model is

yf (`) = SxR (`)+ if (`)+vf (`) (1.28)

where xR(`) = [ x(`) x(`+1) · · · x(`+LR−1) ]T is a LR× 1 discretized range profile with

LR = Lf + Ls − 1 being the number of samples after discrete circular convolution,

if(`) = [ if(`) · · · if(`+1) · · · if(`+Lf−1) ]T is a Lf × 1 interference vector,

vf(`) = [ vf(`) · · · vf(`+1) · · · vf(`+Lf−1) ]T is a Lf × 1 noise vector, and
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S = [ s0 s1 · · · sLR−1 ] is a Lf×LR convolution matrix where the `R column is

s`R =


[ s[Ls− `R] · · · s[Ls] 01×(Lf−`R+1) ]T 0≤ `R ≤ Ls

[ 01×(Ls−`R) s 01×(Lf−`R+)) ]T Ls < `R ≤ Lf−LR

[ 01×`R s[0] · · · s[`R− (L−LR)] ]
T Lf−LR < `R ≤ LR.

(1.29)

The complex scattering observed at x [`] is an aggregate of the many scatterers located in that range

bin. Each scatterer has a corresponding power since each may have a different RCS.

Each thermal noise sample in the noise vector is assumed to have a Gaussian distribution. The

samples are also independent of each other E{v(i)v( j)} = E{v(i)}E{v( j)}. When considering

the properties together, the noise samples fall under the criterion of independent and identically

distributed (IID). Accordingly, the noise vector is a complex normal random vector with a mean

vector 0Lf×1 and Lf×Lf covariance matrix Rf,v = σ2
v ILf×Lf where σ2

v is the variance (see Appendix

A equation (A.2) for a formal definition of the covariance matrix). The variance is likewise noise

power.

The discrete match filter is

UMF =
1

sHs
S (1.30)

where the energy of the discrete-time waveform (using a vector inner product) is

Es = sHs = ‖s‖2 = Ls. Implementation of discrete pulse compression response is

z (`) = x̂R (`) = UH
MFyf (`) (1.31)

where x̂R(`) is a LR × 1 estimate of range profile. A common response that occurs in pulse

compression is range straddling which occurs when a scatterer mainlobe falls between sample

points. Therefore, a given response cannot be fully match. Range straddling is reduced by

increasing the range resolution. Also, contained within the application of the filter in (1.31) is the

matrix inner product SHS/Ls. The inner product has basis vectors of time-shifted versions of the
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discretized normalized autocorrelation. Pulse compression and ADC stages can be interchanged

without the loss of generality.

1.4 Slow-Time Signals

Slow-time is formed from the collection of a pulse train by a pulse-Doppler radar. Multiple PRIs

are oriented and aligned by their respective fast-time signals. Figure 1.6 depicts the formation

of the slow-time dimension. A moving scatterer shifts the RF frequency of the radar EM wave

impinging onto it. The amount of frequency shift caused by the mover is the Doppler frequency

[2]. An estimate of Doppler spectrum is obtained by examining the spectral content of a slow-time

signal. A scatterer with velocity vs has a Doppler frequency of

fD =
2vmov

λRF
(1.32)

[2]. Only the radial velocity relative to the radar position can be observed [2]. Movers closing in

on the radar have a positive Doppler frequency shift and movers traveling away have a negative

shift.

A continuous slow-time signal model is presented to provide a general understanding of slow-

time. The continuous model is not achievable as slow-time can only be in samples. The purpose is

to provide a theoretical basis to the practical discrete slow-time signal model which effectively is

slow-time sampling. The continuous slow-time model is

y
(
tψ , t

)
= rect

(
tψ
) ∞̂

−∞

[s (t)∗ x ( fD, t)]e j2π fDtψ d fD + i
(
tψ , t

)
+ v
(
tψ , t

)
(1.33)

where the slow-time duration is limited by the duration of the coherent processing interval (CPI)

from 0 ≤ tψ ≤ TCPI. The slow-time signal of interest corresponds to a time-limited complex

sinusoid with Doppler frequency fD. The application of the pulse compression filter to (1.33)
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Fig. 1.6: Slow-time formation

obtains the range, slow-time response

z
(
tψ , t

)
= h(t)∗ y

(
tψ , t

)
= rect

(
tψ
) ∞̂

−∞

Trˆ

0

r (t−ζ )x ( fD,ζ )e j2π fDtψ dζ d fD + ī
(
tψ , t

)
+ v̄
(
tψ , t

)

= rect
(
tψ
) ∞̂

−∞

x̄( fD, t)e j2π fDtψ d fD + ī
(
tψ , t

)
+ v̄
(
tψ , t

)
(1.34)

where x̄( fD, t) =
´ Tr

0 r (t−ζ )x ( fD,ζ )dζ subsumes the aggregate of range sidelobe contributions,

ī
(
tψ , t

)
is filtered interference in range, and v̄

(
tψ , t

)
is filtered noise in range. The Doppler

spectrum is band-unlimited due to the time limitation on the signal. To put into context, this

means infinite number of velocities are possible for examination. In the discrete model, uniform

sampling restricts the unambiguous Doppler spectrum to a maximum frequency corresponding to

the slow-time sampling frequency.

Doppler processing is a Doppler spectrum estimation technique performed using a normalized
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Fourier transform (FT) since the slow-time signal is a complex sinusoid. The normalized FT is

a collection of Doppler frequency shifted band-pass filters matched to the slow-time signal and

hence maximizes SNR in the Doppler spectrum. Performing Doppler processing yields the range-

Doppler response

x̂ ( fD, t) =
1
Et

TCPIˆ

0

z
(
tψ , t

)
e− j2π fDtψ dtψ

=
1

TCPI

∞̂

−∞

x̄
(

fq, t
)

sinc
(

fq− fD
)

d fq + ī( fD, t)+ v̄( fD, t)

=
1

TCPI

∞̂

−∞

Trˆ

0

sinc
(

fq− fD
)

x
(

fq,ζ
)

r (t−ζ )dζ d fq + ī( fD, t)+ t ( fD, t)

(1.35)

where the energy is Et =
´ TCPI

0

∣∣e j2π fDtψ
∣∣2dtψ = TCPI, ī( fD, t) is filtered interference in range and

Doppler, and v̄( fD, t) is filtered noise in range and Doppler. The time-limitation of the slow-time

signal response leads to a sinc response in Doppler. The range-Doppler response, also called a

range-Doppler map, is an aggregate of a multivariate response (and will be a multivariate sinc

response for an LFM waveform due to the waveform autocorrelation) scaled by the scatterer

complex amplitude. Contained in each Doppler frequency bin are the desired response (at

fD = fq), sidelobe responses from adjacent frequencies (at fD 6= fq), interference, and noise.

Upon estimation of the spectrum, the Doppler frequencies are subsequently mapped to velocity

using (1.32).

Next, the discrete slow-time model is presented. To reiterate, slow-time is obtained by

orienting PRIs in parallel. Each PRI in the CPI is the start of a new slow-time sample. The

slow-time sampling period and sampling frequency corresponds to PRI and PRF, respectively.

Denote the ψth slow-time sample and its corresponding PRI Tr,ψ . Considering a transmission of

Ψ pulses with corresponding Ψ PRIs, the receive signal model for the ψth PRI is

y (ψ, t) = ∑
fD∈FD

[s (t)∗ x ( fD, t)]e j2π fDTacc,ψ + i (ψ, t)+ v (ψ, t) (1.36)
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where Tacc,ψ is the accumulation time for ψ = 1, 2,..., Ψ PRIs. Define accumulation time as

Tacc,ψ =
ψ − 1

∑
i = 0

Tr,i (1.37)

where Tr,0 = 0 for mathematical convenience such that Tacc,1 corresponds to the first pulse. The set

FD contains Doppler frequencies of all scatterers captured by the receiver. The number of scatterers

is unknown. Consequently, the cardinality of FD is unknown. Implementing pulse compression

produces the following result

z (ψ, `) = ∑
fD∈FD

x̄ ( fD, `)e j2π fDTacc,ψ + ī (ψ, `)+ v̄ (ψ, `) . (1.38)

The emission of multiple pulses from a PD radar can increase SINR as well. Coherent

integration, also known as pre-summing, is an aggregate of slow-time samples. Define Γ as the

number of slow-time samples to be integrated and M as the number of samples after pre-summing

such that

M =
Ψ

Γ
(1.39)

where Γ is an integer factor of Ψ. Using the signal model, pre-summing of slow-time samples is

z (m, t) =
1
Γ

Γ−1

∑
γ=0

z (γ +mΓ, t). (1.40)

for m = 0,1, . . . ,M− 1 PRIs. Presumming exhibits a coherent gain of Γ. The technique exploits

constructive and destructive interference. The signal component is coherent (constructive

interference) while the interference and noise components are not (destructive interference).

The trade-off of pre-summing occurs in the Doppler spectrum. Presumming performs a

Γ-tap FIR low-pass filter of the Doppler spectrum. Hence, the unambiguous Doppler frequency is

reduced causing higher velocity scatterers that were not initially aliased to become aliased. When
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considering pre-summing, the slow-time receive signal model becomes

z (m, t) = ∑
fD∈FD

x̄ ( fD, `)e j2π fDTacc,ψ + ī (m, t)+ v̄ (m, t) (1.41)

where the accumulation time is written in a similar manner as (1.37) by replacing ψ with m.

Presumming can be performed after pulse compression as well.

The Doppler frequency is typically expressed in normalized terms. Explicitly define the

duration of the CPI and average PRI, respectively, as

TCPI =
M−1

∑
m=0

Tr,m and (1.42)

Tr,avg =
1
M

TCPI. (1.43)

The normalized Doppler frequency is the relationship between the Doppler frequency and the

average PRI

ω = fDTr,avg. (1.44)

Next, define εm as a mth normalized PRI by average PRI

εr,m =
Tr,m

Tr,avg
. (1.45)

The normalized accumulation time is

εacc,m =
Tacc,m

Tr,avg
=

m−1

∑
i=0

εr,i (1.46)

where similarly εr,0 = 0 for convenience such that εacc,0 = 0 corresponds to the first pulse. The

relationship of Doppler frequency and accumulation time is

fDTacc,m =
(

fDTr,avg
) Tacc,m

Tr,avg
= ωεacc,m. (1.47)
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For uniform PRI, the PRIs do not deviate from the average PRI meaning εacc,m = 1 since

Tr,avg = Tr,m for all M. The normalized accumulation time changes when changing the PRI from

pulse to pulse known as staggering. The mth slow-time sample in normalized frequency terms

after the implementation of ADC is

z [m, `] = ∑
ω∈Ω

x̄ [ω, `]e j2πωεacc,m + ī [m, `]+ v̄ [m, `] . (1.48)

where Ω is a set of normalized Doppler frequencies corresponding to the scattering within the radar

scene. Contributions from range sidelobe responses are subsumed in a similar manner as (1.34).

Across slow-time samples, the scatterers have a linear phase progression. The phase

progression is a result of a time-varying change in range and a pulse-to-pulse phase rotation [22].

The phase progression across slow-time samples for a scatterer is characterized by the M × 1

temporal steering vector

ct (ω) = [ 1 e j2πωεacc,1 · · · e j2πωεacc,M−1 ]T . (1.49)

The temporal steering vector is in Vandermonde form and contains samples of a complex sinusoid

with a normalized Doppler frequency ω [22]. The steering vector structure holds under the

assumption that the scatterer acceleration is stationary within the CPI. The rate at which the phase

progresses over slow-time corresponds to a Doppler frequency since frequency is the time

derivative of phase. The collection of M PRIs in a CPI yields the M×1 temporal data vector

zt (`) = ∑
ω∈Ω

x̄ [ω, `]ct (ω)+ it (`)+vt (`)

= CtxD (`)+ it (`)+vt (`)

(1.50)

where zt (`) = [ z [0, `] z [1, `] · · · z [M−1, `] ]T is the M× 1 slow-time measurement vector,

it (`) = [ ī [0, `] ī [1, `] · · · ī [M−1, `] ]T is a M × 1 slow-time interference vector,

vt (`) = [ v̄ [0, `] v̄ [1, `] · · · v̄ [M−1, `] ]T is a M × 1 slow-time noise vector, and Ct is a
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M× c{Ω} bank of temporal steering vectors, xD is a c{Ω}× 1 vector containing the illuminated

scatterers in Doppler where c{•} denotes cardinality of a set.

Unavoidable model mismatch begins to occur for slow-time sampling for high dynamic range

operation and higher radar sensitivity. Unknown errors can be a result of timing jitter due to

hardware tolerances and finite granularity of the Doppler spectrum. The granularity is controllable

to some degree by the oversampling amount [23]. Mismatch error effects can be modeled within

the temporal steering vector by incorporating a mth timing error offset Terr,m and Doppler frequency

discretization error offset fD,err

c(ω;ηt) = [ e j2πωεacc,0ηt,0 e j2πωεacc,1ηt,1 · · · e j2πωεacc,M−1ηt,M−1 ]T

= c(ω)�ht

(1.51)

where the M× 1 slow-time error vector is ht = [e j2πηt,0 e j2πηt,1 ... e j2πηt,M−]T which captures the

mth mismatch error

ηt,m =
(

fD,errTr,avg
) Terr,m

Tr,avg
(1.52)

collected into a M×1 vector ηt = [ηt,0 ηt,1 ... ηt,M−1]
T and � is denotes the Hadamard (element-

wise) product [23].

Since errors are unknown, they can be viewed as a form of calibration tolerance for hardware

and processing fidelity [23]. Hence, the tolerance limit can only be quantified. Under the

assumption that the the frequency discretization is uniform in the Doppler spectrum and jittering

is invariant of Doppler, the slow-time signal model can be modified to include the modeling errors

zt (`) = (CtxD (`))�ht + it (`)+vt (`) = CtxD (`)+ et (`)+ it (`)+vt (`) (1.53)

where et(`) = (CtxD(`))� (ht − 1M×1) = [ξ (0, `) ξ (1, `) ... ξ (M−1, `)]T is model mismatch

error vector [23]. The modeling errors amplitude and phase distributions are statistically IID

pulse-to-pulse with zero-mean. Also, modeling errors, source signals, and the additive noise are
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all statistically independent [23]. These assumptions allow for mathematical tractability but

emphasize that the error is unknown [23].

A PD radar transmitting the same PRI creates a uniform sampling in slow-time. A drawback

of uniform slow-time sampling is its inability to disambiguate mover Doppler frequencies greater

than the PRF. The maximum unambiguous Doppler frequency for a uniform PRI transmission is

ωmax =
frTr,avg

2
(1.54)

[24]. Aliasing occurs due to the inability to distinguish between two Doppler frequencies. Aliasing

happens at integer multiples of the PRF since the samples of the complex sinusoid land on the same

points temporally. All scatterers, aliased or not, fold in the first PRF regime between -PRF/2 and

PRF/2. All others PRF regimes replicate the folding occurring in the first PRF regime. Having

all scatterers in one regime is not desirable since movers with Doppler frequencies greater than

the PRF will be detected at an incorrect velocity. Earlier, it was shown that range is limited by the

duration of the PRI which is inversely proportional to PRF. The relationship between unambiguous

range and unambiguous velocity is a well-known trade space and the basis of high, medium, and

low PRF regimes that define radar applications [2].

Staggering the PRI pulse-to-pulse incurs a non-uniform sampling in slow-time. Figure 1.7

depicts an example of a slow-time sampling for an arbitrary Doppler frequency is shown.

Non-uniform sampling increases the uniqueness of the sampling to a given sinusoid thus reducing

aliasing and improving the unambiguous Doppler frequency (and velocity detection) of the radar

Fig. 1.7: Real part of an arbitrary Doppler response undergoing slow-time sampling based on a)
uniform PRIs and b) randomly staggered PRIs
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system. Staggering increases the extent of the unambiguous Doppler frequency to integer

multiples of the least common multiple of the PRFs

ωmax =
ζext

2
=

Tr,avgLCM{fr}
2

(1.55)

[21, 25] where ζext = Tr,avgLCM{fr} is the Doppler extent, fr = [ fr,0 fr,1 · · · fr,M−1 ]T is a

vector of the transmitted PRFs, and LCM{•} denotes the LCM operator. The Doppler extent could

be quite large for some random staggering sequences. A maximum frequency is set to a practical

value, denoted ζmov, within the parameters of the application to include all expected movers such

that ζmov ≤ ζext.

The true Doppler frequencies of the mover and clutter are unknown. For this reason, the

Doppler spectrum is estimated over a set of test frequencies. Using distinct frequency points to

perform Doppler processing makes the estimate susceptible to Doppler straddling. Straddling

occurs when a scatterer true Doppler frequency lands between discrete test frequencies. To

compensate, the spectrum is oversampled beyond the Doppler resolution to increase the

possibility of cohering to a signal.

Define the number of frequency points to the extent of the Doppler spectrum as

LD = ζmovKDM (1.56)

for an oversampling factor KD. Define the Doppler resolution as

δ fD =
1

TCPI
=

1
MTr,avg

(1.57)

[24] and normalized Doppler resolution using (1.44) as

δω =
1
M
. (1.58)
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The granularity of the oversampled spectrum is

∆ω =
δω

KD
=

1
KDM

. (1.59)

For staggering, the granularity of the spectrum is maintained. As a result, the number of frequency

points LD will increase proportionally with the additional spectrum beyond the first PRI regime.

After the collection of slow-time data, Doppler processing is performed using a normalized

discrete Fourier transform (DFT). Each column in the matrix is essentially a Doppler filter. The

DFT structure inherently considers evenly spaced temporal samples (in other words a uniform PRI

transmission). Compensation of the FT is required to maximize signal coherence for non-uniform

sampling, or staggered PRI transmission, using the non-uniform DFT [26]. The non-uniform DFT

structure becomes a DFT when uniform sampling. The range-Doppler estimate is obtained by

applying Doppler processing to pulse compressed fast-time data

x̂ [ω, `] =
1
M

M−1

∑
m=0

z [m, `]e− j2πωεacc,m = uH
DP (ω)zt (`) (1.60)

where the Doppler filter is

uDP (ω) =
ct (ω)

cH
t (ω)ct (ω)

. (1.61)

The Doppler filter is a bandpass FIR filter centered at ω . A different filter is formed for each

frequency examined hence the uniform or non-uniform DFT matrix. The energy in the temporal

steering vector is cH
t (ω)ct (ω) = ||ct (ω) ||2 = M for all ω [22]. When considering oversampling

in Doppler, a M×LD bank of Doppler filters is formed

UDP =
1
M

Ct (1.62)

where Ct is a M×LD bank of temporal steering vectors

Ct = [ ct (−ωmax) · · · ct (−∆ω) ct (0) ct (∆ω) · · · ct (ωmax) ]. (1.63)
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Since (1.63) is known, the M× c{Ω} bank of mover steering vectors presented in previous slow-

time signal models is replaced by the M×LD bank of temporal steering vectors. The filters are

applied to the slow-time receive vector to obtain the LD×1 estimate of the Doppler spectrum for

the `th range sample

x̂D (`) = UH
DPzt (`) . (1.64)

Figure 1.8 presents a oversampled Doppler processing estimate for a uniform PRI transmission

using a single point target at zero-Doppler and M = 10 pulses. The range-Doppler response is sent

through a detector for either 1-D Doppler detection or 2-D range-Doppler detection.

The abundance of clutter can result in a Doppler sidelobe response that can potentially masks

slower movers. Therefore, clutter is considered an interference source in MTI radar. The slow-time

Aliased 
Region

Aliased 
Region

Fig. 1.8: Doppler processing of a single point target at zero-Doppler
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signal model at the `th range sample when considering movers and clutter scatterers separately is

zt (`) = ∑
ωmov∈Ωmov

x̄ [ωmov, `]ct (ωmov)+ ∑
ωclu∈Ωclu

x̄ [ωclu, `]ct (ωclu)+ et (`)+vt (`)

= Ct,movxD,mov (`)+Ct,cluxD,clu (`)+ et (`)+vt (`)

= zt,mov (`)+ zt,clu (`)+ et (`)+vt (`) .

(1.65)

where subscript "mov" denotes movers, subscript "clu" denotes clutter, Ω = [ Ωmov Ωclu ] is a

set containing mover and clutter normalized Doppler frequencies, Ct,mov is a M×c{Ωmov} bank of

temporal steering vectors corresponding to movers, Ct,clu is a M×c{Ωclu} bank of clutter temporal

steering vectors, zt,mov is the mover receive data, and zt,clu is the clutter receive data.

The contribution of the interference sources in Doppler are likewise examined via SINR.

Assume the signal is being estimated at Doppler cell-under-test (CUT) frequency ω , the

application a Doppler filter to the signal model in (1.65) is

x̂ [ω, `] = uH
DP (ω)zt,mov (`)+uH

DP (ω)zt,clu (`)+uH
DP (ω)et (`)+uH

DP (ω)vt (`)

= x̄(ω)uH
DP (ω)ct (ω)+ ∑

ωκ 6=ω

ωκ∈Ω

x̄ [ωκ , `]uH
DP (ω)ct (ωκ)+uH

DP (ω)et (`)+uH
DP (ω)vt (`).

(1.66)

Note, the following inner product is true uH
DP (ω)ct (ω) = 1. The interference within the CUT

contains Doppler sidelobe responses from surrounding clutter and movers in the spectrum. The

mitigation of clutter signals becomes an accompanying method to increase SINR since Doppler

processing maximizes the signal strength.

The signal component of Doppler SINR is the average signal power

Pr (ω, `) = E
{∣∣x̄ [ω, `]uH

DP (ω)ct (ω)
∣∣2}= ρ [ω, `]

∣∣uH
DP (ω)ct (ω)

∣∣2 (1.67)

where ρ[ω, `] = E{|x̄[ω, `]|2} is the power of the complex amplitude. The sources causing loss to
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the signal strength consists of model mismatch error, clutter, and noise. The power of the mismatch

error is

Pe (ω, `) = E
{
|uH

DP (ω)et (`)|2
}
= uH

DP (ω)Rt,err (`)uDP (ω) (1.68)

where the temporal error covariance matrix is

Rt,err (`) = σ
2
t,errIM×M� ∑

ω∈Ω

ρ [ω, `]ct (ω)cH
t (ω) (1.69)

and σ2
t,err = (1/M)E{(ht−1M×1)

H(ht−1M×1)} is the modeling error "noise" power [23]. The

interference power contribution from clutter is

Pi (ω, `) = ∑
ωκ 6=ω

ωκ∈Ω

E
{∣∣x [ωκ , `]uH

DP (ω)ct (ωκ)
∣∣2}= uH

DP (ω)Rt,clu (`)uDP (ω) (1.70)

where the temporal clutter covariance matrix is

Rt,clu (`) = ∑
ωκ 6=ω

ωκ∈Ωclu

ρ [ωκ , `]ct (ωκ)cH
t (ωκ). (1.71)

Lastly, define the average noise power as

Pv (ω, `) = E
{
|uH

DP (ω)vt (`)|2
}
= uH

DP (ω)Rt,v (`)uDP (ω) (1.72)

where the noise covariance matrix is

Rt,v (`) = E
{

vt (`)vH
t (`)

}
= σ

2
v IM×M. (1.73)

The noise samples are temporally uncorrelated from pulse to pulse [4]. Consequently, the noise

correlation between two pulses is E{v(i, `)v∗( j, `)} = σ2
v δi j where the Kronecker delta defined is
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δi j = 1 when i = j and δi j = 0 when i 6= j. The temporal noise sample is Gaussian distributed

with zero-mean and noise power σ2
v and falls under the IID criterion. The optimal interference

covariance matrix containing clutter noise, and modeling errors is

Rt,opt (`) = Rt,clu (`)+Rt,err (`)+Rt,v (`) . (1.74)

Define SINR as a function of range and Doppler

SINR(ω, `) =
Pr (ω, `)

Pe (ω, `)+Pi (ω, `)+Pv (ω, `)
=

ρ [ω, `]
∣∣uH

DP (ω)ct (ω)
∣∣2

uH
DP (ω)Rt,opt (`)uDP (ω)

. (1.75)

1.5 Element-Space Signals

The angular location of scatterers is obtained by measuring the delay of reflected plane waves along

a phased array of antenna elements. The rate of the delay along the elements can be mapped to

the DOA of the wave. An element-space signal is formed from the collection of antenna elements.

Each element corresponds to a new element-space sample. The time delay of a plane wave across

the array corresponds to a linear phase progression and spatial frequency. Spatial frequency is

mapped to the azimuth and elevation of scatterers within the scene.

Consider a linear array of N elements. The nth element has the Cartesian coordinate position

pn = [ pxn pyn pzn
]T . (1.76)

A linear array with equally spaced elements in one-dimension is called a uniform linear array

(ULA) [17, 27]. A ULA with elements along the y-axis, an interelement spacing of d meters

for each element, and the nth antenna position is pn = [ 0 nd 0 ]T . A depiction of the array

is presented in Figure 1.9. The length of the array is Nd and the phase center of the array is

Nd/2. Only azimuth is obtainable for a ULA orientation depicted. The elevation can be obtained

if the ULA is along the z-axis. Planar arrays provide an extra layer of fidelity in determining
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Fig. 1.9: Uniform linear array

both azimuth and elevation angles of illuminated scatterers [27]. For planar arrays, elements are

positioned on the YZ-plane and can have different lattice structures [27].

Reflections from illuminated scatterers in the far-field impinge on a linear array as a plane

wave. Define the unit vector of a plane wave as

a(ϑ ,ϕ) = [ sinϑ cosϕ sinϑ sinϕ cosϑ ]T (1.77)

where ϑ is elevation and φ is azimuth of the plane wave relative to the array. The unit vector

can likewise be written in UV-space using the following mappings: u = sinϑ sinϕ and v = cosϑ

such that ϑ(u,v) = cos−1(ϑ) and φ(u,v) = sin−1(u/
√

1− v) [27]. By definition, −1 ≤ u ≤ 1,

−1≤ v≤ 1, and u2 + v2 ≤ 1.

The time delay of the wave as it impinges on each element is

τn (ϑ(u,v),ϕ(u,v)) =
−aH (ϑ(u,v),ϕ(u,v))pn

c

=−nd
c

sinϑ sinϕ

=−nd
c

u

(1.78)
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[27]. Signals propagating away from the array are considered to be traveling in a positive direction

[27]. The minus sign on a(ϑ(u,v),ϕ(u,v)) in (1.78) is due to reflections propagating toward the

array [27]. A plane wave in a homogeneous medium has a wavenumber

k(ϑ(u,v),ϕ(u,v)) =
2π fRF

c
a(ϑ(u,v),ϕ(u,v)) (1.79)

[27]. Leveraging these definitions, the phase of the plane wave on the nth element in the ULA is

φn = kH (ϑ(u,v),ϕ(u,v))pn

= 2π fRFτn (ϑ(u,v),ϕ(u,v))

= 2πnθ

(1.80)

where the spatial frequency of the plane wave is

θ(ϑ(u,v),ϕ(u,v)) =
d

λRF
sinϑ sinϕ =

d
λRF

u (1.81)

noting that wavelength is λRF = c
/

fRF [27]. The spectrum contains visible and virtual regions

[27]. The beampattern of the array is only defined over the visible region. To prevent grating

lobes from the virtual region being present in the visible space simultaneously, the interelement

spacing for a ULA is set to d = λRF
/

2 and is called a standard linear array [27]. Substituting the

standard array element spacing and considering the extent of u = ±1 into (1.81), the maximum

spatial frequency is

θmax =

(
λRF

2

)(
1

λRF

)
=

1
2

(1.82)

where the spatial spectrum spans−θmax≤ θ ≤ θmax. A standard array is considered going forward.

The spatial frequency θ(ϑ(u,v),ϕ(u,v)) will become denoted as θ thereby subsuming azimuth,

elevation, u, and v.
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A general diagram of a linear array and plane wave is presented in Figure 1.10. A reflecting

Fig. 1.10: Plane wave impinging on a uniform linear array

plane wave at boresight has a zero spatial frequency. Plane waves with a positive spatial frequency

are to the right of radar boresight and vice versa. Plane waves from multiple illuminated scatterers

are collected along the array. The plane perpendicular to boresight is called endfire. Considering

a transmission of a waveform and the illumination of multiple scatterers for a single PRI, the

element-space receive signal model at the nth antenna element is

y (n, t) = ∑
θ∈Θ

[s (t)∗ x (θ , t)]e j2πnθ + i (n, t)+ v (n, t) . (1.83)

where Θ is a set of spatial frequencies for mover and clutter scatterers, i (n, t) is interference and

v (n, t) is thermal noise for time duration 0 ≤ t ≤ Tr. The number of spatial frequencies from

scatterers in the set Θ is unknown. Following pulse compression and ADC, the receive spatial

signal model becomes

z [n, `] = ∑
θ∈Θ

x̄ [θ , `]e j2πnθ + ī [n, `]+ v̄ [n, `] (1.84)

where range sidelobes are subsumed into x̄[θ , `], ī[θ , `], and v̄[θ , `]. Considering the collection of
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illuminated scatterers at the phased array, the N×1 spatial data vector is

zs (`) = ∑
θ∈Θ

x̄ [θ , `]cs (θ)+ is (`)+vs (`)

= CsxA (`)+ is (`)+vs (`)

(1.85)

where the spatial steering vector is

cs (θ) = [ 1 e j2πθ · · · e j2π(N−1)θ ]T , (1.86)

Cs is a N × c{Θ} bank of spatial steering vectors, and xA is a c{Θ}× 1 vector containing the

illuminated scatterers in angle [22].

Model mismatch likewise occurs for spatial signals due to element location uncertainty,

calibration tolerance, and mutual coupling effects between elements [23]. The effects can be

modeled within the spatial steering vector by incorporating a nth element error offset derr,n

c(θ ;ηs) = [ e j2πθεacc,0ηs,0 e j2πθεacc,1ηs,1 e j2πθεacc,M−1ηs,M−1 ]T

= c(θ)�hs

(1.87)

where the spatial error vector is hs = [ e j2πηs,0 e j2πηs,1 · · · e j2πηs,M−1 ]T which captures the

mismatch error effects

ηt,n =
derr,n

λRF
sinϑ sinϕ, (1.88)

and collected into a N×1 vector ηs = [ηs,0 ηs,1 ... ηs,N−1]
T . The model mismatch interference is

assumed to be a stationary and zero-mean [23]. The element-space signal model is modified to

account for the modeling error

zs (`) = (CsxA (`))�hs + is (`)+vs (`)

= CsxA (`)+ es (`)+ is (`)+vs (`)

(1.89)
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where es(`) = (CsxA(`))� (hs−1N×1) = [ξ (0, `) ξ (1, `) ... ξ (N−1, `)]T [23].

The spatial spectrum is obtained by performing spatial filtering called receive beamforming.

The beamformer is a spatial filter applied to element-space samples to estimate the DOA of

reflected waves. Beamforming can be performed in analog or digital. The beam can be steered in

two ways: electrical and mechanically. Mechanically steering is a physical direction change of

the array. Electrical steering of the array beam is performed by implementing phase delays to

each array element. Electrical steered digital beamforming from a fully digital array is

considered. The spectral estimate of beamspace is

x̂ [θ , `] =
1
N

N−1

∑
n=0

z [n, `]e− j2πnθ = uH
BF (θ)zs (`) (1.90)

where the N×1 maximum SNR beamformer is

uBF (θ) =
cs (θ)

cH
s (θ)cs (θ)

. (1.91)

The energy across array elements is cH
s (θ)cs (θ) = ‖cs (θ)‖2 = N. The beamformer is a

band-pass FIR beamformer steered to θ . Unlike Doppler processing, receive beamforming

typically considers one beam direction at a time. Often in the same direction of the transmit

beam. Reflections by clutter scatterers in MTI span the spatial spectrum. When observing the

spatial spectrum alone, movers are masked by the clutter. In MTI, Doppler and spatial signals are

examined simultaneously since a mover is distinguishable in Doppler. The Rayleigh resolution

beamwidth of a ULA array is

δθ =
asλRF

Nd
(1.92)

where as is the beam-boarding factor [22]. An estimation of the spatial spectrum is presented in

Figure 1.11. The maximum SNR beamformer produces a sinc-like response as well.

SINR is likewise a metric of performance in beamspace. The signal structure for temporal and

spatial signals are similar in that they are complex sinusoids. Although, slow-time and element-
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Fig. 1.11: Beampattern of receive beamformer electronically steered to boresight

space signals are obtained by different physical means. Beamspace SINR is straightforward to

obtain using the estimate in (1.90) and a similar procedure from (1.67 - 1.75) from the previous

section

SINR(θ , `) =
Pr (θ , `)

Pi (θ , `)+Pv (θ , `)
=

ρ [θ , `]
∣∣uH

BF (θ)cs (θ)
∣∣2

uH
BF (θ)Rs,opt (`)uBF (θ)

. (1.93)

where the signal power is ρ[θ , `] = E{|x̄[θ , `]|2} [22]. The optimal spatial interference covariance

matrix is

Rs,opt (`) = Rs,int (`)+Rs,err (`)+Rs,v (`) . (1.94)

where the spatial interference covariance matrix is Rs,int(`) = E{is(`)iHs (`)}. The spatial error

covariance matrix is

Rs,err (`) = σ
2
s,errIN×N� ∑

θ∈Θ

σ
2 [θ , `]cs (θ)cH

s (θ) (1.95)
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where σ2
s,err = (1/N)E{(hs−1N×1)

H(hs−1N×1)} [23]. Lastly, the noise covariance matrix is

Rs,v (`) = E
{

vs (`)vH
s (`)

}
= σ

2
v IN×N . (1.96)

The noise covariance assume array elements are IID and mutually uncorrelated such that the noise

correlation element to element is E{v(i, `)v∗( j, `)}= σ2
v δi j [4].

1.6 Windowing

Recall that the match filter is synonymous with the maximum SNR filter for pulse compression

in fast-time signals. The Doppler filter and beamformer presented in the previous sections are

likewise matched filters since they maximize SNR in their respective dimensions. Estimation of the

Doppler and spatial spectrums result in a sinc response like in range delay with a LFM waveform.

Accordingly, the primary drawback of matched processing in general is high power sidelobes

relative to the peak power of the mainlobe.

Mismatch signal estimation is a class of receive processing techniques to reduce the sidelobe

response and improve radar sensitivity. Mismatch filtering explores amplitude and/or phase

modulation to the filters to modify the mainlobe and sidelobe response. One of the early and most

common forms to mitigate sidelobes is windowing [8]. Windowing is an amplitude-only

weighting of the filter taps which taper the transition regions of the filter. Windowing can be

leveraged in fast-time, slow-time, and/or element-space to deviate from a sinc sidelobe response.

Windowing is a popular technique due to its low computation and simplicity to implement.

There are a couple of drawbacks to windowing. First, there is an increase in the mainlobe

resolution due to weighting inherently increases the spectral bandwidth. Second, a loss in SNR

occurs due to processing mismatch. Caveats of windowing are acceptable since they come at the

significant benefit of lower sidelobes. Examples of window functions include a Hamming, Taylor,

or Chebyshev [8].

Windowing will be applied to slow-time signals to show the efficacy of the approach.
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Translating windowing to other dimensions is straight forward using different steering vectors. A

weighting is performed on the temporal steering vector

uWDP (ω) =
ct (ω)�bt

(ct (ω)�bt)
Hct (ω)

(1.97)

where bt denotes a M × 1 temporal window. Although mismatch loss from the weighting is

unavoidable, the form presented in (1.97) ensures uWDP (ω)H ct (ω) = 1 to maintain signal

strength. The filter is applied to the receive data

x̂ [ω, `] = uH
WDP (ω)zt (`) . (1.98)

Figure 1.12 presents an example of a Taylor window with five nearly constant sidelobe levels

and a -40 dB peak sidelobe level being applied to a zero-Doppler slow-time signal. The benefit

windowing has on sidelobes is apparent. However, Taylor weighting parameters exhibit widening

of the mainlobe subsequently decreasing Doppler resolution. In subsequent chapters, optimal and

Doppler Processing
Windowed Doppler Processing

Fig. 1.12: Estimate of Doppler spectrum using Doppler filter (blue) and Taylor window (green)
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adaptive mismatch processing methods, such as least-squares (LS) and re-iterative minimum-mean

square error (RMMSE), are presented that can suppress sidelobes at a reduced mismatch loss and

without sacrificing mainlobe width. These techniques leverage phase in addition to amplitude for

their filter weights.

1.7 Space-Time Signals

The radar datacube presented in Figure 1.13 comprises of measurements from fast-time, slow-time,

and element-space signals [28, 29]. Pulse compression is a 1-D convolution in fast-time to obtain

range. Doppler processing is a 1-D spectral estimation of slow-time signals to obtain velocity.

Receive beamforming is a 1-D spatial filtering across antenna elements to obtain angular location.

Coupling dimensions provides improved fidelity in processing. A prime example is space-time

adaptive processing (STAP) which is an angle-Doppler sequential clutter cancellation and spectral

estimation technique for space-time signals. A space-time signal is a coupling of slow-time and

element-space signals. The space-time signal model is presented as a precursor to the overview of

STAP in the succeeding section.

Consider the reflections from a PD radar being collected on multiple antenna elements. Define

M pulses in a CPI and N elements in a ULA. The receive signal for the mth PRI and nth element is

y (m,n, t) = ∑
ω∈Ω

∑
θ∈Θ

[s (t)∗ x (ω,θ , t)]e j2π(εacc,mω+nθ)+ i (m,n, t)+ v (m,n, t) (1.99)

where x (ω,θ , t) is the illuminated complex scatterers with a Doppler frequency ω and spatial

frequency θ , i[m,n, `] is the interference contribution, and v[m,n, `] is the thermal noise

contribution. The sets Ω and Θ contains the Doppler and spatial frequencies of all scatterers

captured by the receiver. The cardinality of the sets are equal but their quantities are unknown.

The receive space-time signal model after ADC and pulse compression as well as incorporating
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model mismatch error is

z [m,n, `] = ∑
ω∈Ω

∑
θ∈Θ

x̄ [ω,θ , `]e j2π(εacc,mω+nθ)+ξ [m,n, `]+ ī [m,n, `]+ v̄ [m,n, `] (1.100)

where x̄[ω,θ , `] is the complex amplitude with range sidelobes subsumed, ξ[m,n, `] is the model

mismatch error, ī[m,n, `] is the interference post pulse compression, and v̄[m,n, `] is the thermal

noise post pulse compression. For space-time signals, interference is substituted for clutter going

forward in this chapter. A range sample of the radar datacube is a M×N space-time matrix

Zst (`) =


z (0,0, `) · · · z (0,N−1, `)

... . . . ...

z (M−1,0, `) · · · z (M−1,N−1, `)

 (1.101)

The matrix is oriented into a MN×1 space-time data vector via vectorization

zst (`) = vec{Zst (`)} (1.102)

 

Fig. 1.13: Radar datacube
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where vec{•} is the vectorization operation of a matrix [4]. Within the space-time data vector

contains the familiar components of movers, clutter, model mismatch, and thermal noise

zst (`) = ∑
ωmov∈Ωmov

∑
θmov∈Θmov

x [ωmov,θmov, `]cst (ωmov,θmov)

+ ∑
ωclu∈Ωclu

∑
θclu∈Θclu

x [ωclu,θclu, `]cst (ωclu,θclu)+ est (`)+vst (`) .

(1.103)

where the MN×1 space-time steering vector

cst (ω,θ) = ct (ω)⊗ cs (θ) (1.104)

is a coupling of the temporal and spatial steering vectors with ⊗ denoting the Kronecker product,

the MN×1 space-time error vector is est (`) = et (`)⊗ es (`), and the MN×1 thermal noise vector

is vst (`) = vt (`)⊗vs (`). The space-time data vector is alternatively expressed as

zst (`) = Cst,movxAD,mov (`)+Cst,cluxAD,clu (`)+ est (`)+vst (`)

= zst,mov (`)+ zst,clu (`)+ est (`)+vst (`) .

(1.105)

where Cst,mov represents a MN× c{Ωmov} bank of space-time steering vectors corresponding to

movers and Cst,clu represents the MN× c{Ωclu} bank of space-time steering vectors corresponding

to clutter. Sets Ω and Θ are interchangeable here since they contain the same number of elements.

Receive processing of a space-time signal is performed via angle-Doppler filtering by coupling

Doppler processing and receive beamforming

x̂ [ω,θ , `] =
1

MN

M−1

∑
m=0

N−1

∑
n=0

z [m,n, `]e− j2π(εacc,mω+nθ) = uH
AD (ω,θ)zst (`) (1.106)

where the the MN×1 angle-Doppler filter is

uAD (ω,θ) = uDP (ω)⊗uBF (θ) =
cst (ω,θ)

cH
st (ω,θ)cst (ω,θ)

(1.107)
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Recall the Doppler spectrum is oversampled using a M × LD bank of Doppler filters. Spatial

signals consider a single N×1 spatial steering vector a time. Coupling the bank of Doppler filters

and beamformer forms a MN×LD bank of angle-Doppler filters for each spatial frequency

UD (θ) = UDP⊗uBF (θ) . (1.108)

The LD×1 Doppler spectrum estimate for each spatial frequency is

x̂D (θ , `) = UH
D (θ)zst (`) . (1.109)

The response is a Doppler spectrum for a single spatial frequency and range sample.

A SLAR observes clutter "moving" relative to the velocity of the platform. The platform

motion induces a spectral spread in the clutter Doppler bandwidth and a clutter Doppler offset

[6, 24]. Illuminated clutter scatterers are observed at all spatial frequencies. The relationship

between Doppler frequency and spatial frequency for a radar on a moving platform is

ωclu =
2vpTr

d
θclu = βθclu (1.110)

where vp is the radar platform velocity and β = 2vpTr,avg
/

d is the interelement-spacing transversed

in a single PRI [4]. The relaxation to a stationary platform is done by setting vp = 0 m/s. A radar

mounted tangentially pointing left of the flight path (think right-handed coordinate system) senses

clutter to be moving toward the radar and have a positive spatial frequency. Clutter moving away

has a negative spatial frequency. In Figure 1.14, an example of 3-element array moving at β = 1 for

3 pulses is presented [4]. The figure considers a uniform PRI transmission and ULA. In Fig 1.15,

a 2-D power spectral density of clutter for multiple β values is presented [4, 29]. When β = 1,

the Doppler and spatial frequencies are unambiguous. When 0 < β < 1, the data is spatially

ambiguous. When β > 1, the data is Doppler ambiguous [4]. Longer ranges correspond to smaller

cone angles leading to wider clutter bandwidths and vice versa [7]. Airborne affects, such as crab
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Fig. 1.14: A 3-element ULA traveling for 3 pulses in a CPI on moving platform for β = 1
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Fig. 1.15: Clutter ridges for β = 0 stationary platform, β = 0.5 moving platform (spatial
ambiguity), β = 1 moving platform (no ambiguity), and β = 2 moving platform (Doppler

ambiguity) [4, 29]
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angle, play a role in the coupling as well [4].

Clutter scatterers being illuminated by a SLAR can be divided into range and angle clutter

patches. A clutter patch is an aggregate of complex, coherent reflections from smaller scatterers

[22]. Figure 1.16 depicts clutter patches in a scene [22, 29]. The scattering in the scene at the `th

range bin is

zst,clu (`) =
Ncp−1

∑
i=0

Na−1

∑
j=0

ai j (`)� cst
(
ωi j,θi j

)
(1.111)

where Ncp is statistically independent clutter patches and Na is the number of ambiguous ranges

[22]. The clutter covariance matrix is

Rst,clu (`) =
Ncp−1

∑
i=0

Na−1

∑
j=0

Ai j (`)� cst
(
ωi j,θi j

)
cH

st
(
ωi j,θi j

)
(1.112)

[22]. If the amplitudes are correlated from pulse-to-pulse and channel-to-channel, then

Ai j (`) = σ2
clu,i j (`)1MN×MN [22]. The rank of the clutter covariance matrix can be characterized

by Brennan’s Rule rst,clu = rank{Rst,clu(`)} ≈ bN +(M−1)βc [4, 30] where rank{•} denotes the

rank of a matrix and b•c is a rounding operation to the next integer closet to −∞.

The angle-Doppler SINR is determined using a similar process that was performed to determine

Fig. 1.16: Clutter patch in a radar scene
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the Doppler SINR in (1.67 - 1.75)

SINR(ω,θ , `) =
ρ [ω,θ , `]

∣∣uH
AD (ω,θ)cst (ω,θ)

∣∣2
uH

AD (ω,θ)Rst,opt (`)uAD (ω,θ)
(1.113)

[4, 22]. The optimal space-time interference covariance matrix is

Rst,opt (`) = Rst,clu (`)+Rst,err (`)+Rst,v (`) . (1.114)

The space-time error covariance matrix is

Rst,err (`) = Rt,err (`)⊗Rs,err (`) (1.115)

using the temporal and spatial error covariance matrices from (1.69) and (1.95) respectively. Lastly,

the noise covariance matrix is

Rst,v (`) = Rt,v (`)⊗Rs,v (`) = σ
2
v IMN×MN . (1.116)

1.8 Clutter Cancellation and Space-Time Adaptive Processing

Prior to this subsection, the maximization of signal strength has been explored. Maximum SNR

filters in fast-time (match filter), slow-time (Doppler filter), and space (receive beamformer) are

best for noise-limited environments and do not account for open-air interference. When

performing GMTI, degradation to SINR by clutter is unavoidable. Clutter attenuation is a

necessary step to unmask slower movers and increase SINR. Clutter has a center frequency at

zero-Doppler and some Doppler bandwidth due to ICM. A high-pass Doppler filter known as a

MTI filter is implemented to remove the clutter reflections since clutter is localized at zero

Doppler frequency. For airborne radar, a Doppler frequency shifted band-stop filter is needed to

account for the motion of the airborne platform. Typically, MTI filtering is performed prior to

angle-Doppler processing for a sequential cancellation-then-estimation filtering procedure. There
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are two methods to generate a MTI filter: data-independent and data-dependent. The dependence

is based on the filter taps formation.

One fundamental data-independent method is a pulse canceller [24]. Pulse cancellers are kept

at a low-order (around 3) [24]. The low-order FIR filter is computationally pleasing. Interestingly,

the coefficients of the N-pulse canceler (N−1 filter order) [24] follows the Nth row of a Cholesky

factorized Pascal’s Triangle [31] normalized by N. A method for SLAR to compensate for the

Doppler shift of clutter away from zero-Doppler is displaced phase center antenna (DPCA)

processing [4]. In DPCA, delay between elements caused by platform motion is compensated for.

A disadvantage to DPCA is that it requires β = 1, known as the DPCA condition, to be satisfied

for operation [4].

Adaptive MTI filters are data-dependent approaches which use clutter statistics extracted from

receive data to modify the MTI filter stopband frequencies. One method is a clutter projection that

uses a singular value decomposition on the receive (i.e. a slow-time, fast-time data matrix). The

highest singular value will correspond to the clutter due to its abundance. The corresponding slow-

time singular vector is used to form a projection matrix to project away from the clutter subspace.

For airborne radars, clutter spreads over multiple singular values due to the increased rank. Thus,

a clutter projection on airborne data is difficult to implement without an estimation of the model

order.

Space-time adaptive processing is a method to adaptively cancel clutter reflections for a SLAR.

STAP attenuates clutter signals using a maximum SINR angle-Doppler filter. Below is a brief

synopsis of the maximum SINR filter widely used for space-time signals [4, 7, 22, 32, 33]. Here,

the error mismatch vector is incorporated into the maximum SINR filter since it resides in the

optimal covariance matrix. Consider the following binary detection problem

Target Absent−H0 : zH0 (`) = zst,clu (`)+ est (`)+vst (`)

Target Present−H1 : zH1 (`) = zst,mov (`)+ zst,clu (`)+ est (`)+vst (`) .
(1.117)

The target absent hypothesis characterizes the interfering sources. The optimal covariance matrix
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leverages the target absent hypothesis

Rst,opt (`) = E
{

zH0 (`)zH
H0

(`)
}

(1.118)

[4, 22]. When expanded, the matrix in (1.118) becomes optimal covariance matrix in (1.114). The

optimal covariance matrix fully characterizes the second order statistics of interference sources in

the recieved signal. It can be shown that the optimal filter to maximize SINR is

wAD (ω,θ , `) = ψR−1
st,opt (`)cst (ω,θ) (1.119)

where ψ is a scalar term for normalization [4, 22]. Readers should review Appendix A for a

detailed derivation of the maximum SNR and SINR filters.

A cancellation matrix is formed by scaling the optimal covariance matrix by the noise power

Rst,canc (`) =
1

σ2
v

Rst,opt (`) (1.120)

[34]. The cancellation matrix projects the signal component onto the orthogonal complement of the

clutter subspace while preserving the full-rank noise [34]. Considering cancellation transform and

matched filter normalizing terms together such that ψ = 1/(‖cst(ω,θ)‖2σ2
v ), the filter in (1.119)

is modified to

wAD (ω,θ , `) = R−1
st,canc (`)uAD (ω,θ) . (1.121)

The form of (1.121) facilitates the replacement of the matched angle-Doppler filter by other

mismatch processing techniques. The optimal filter contains the cancellation matrix to perform

clutter cancellation and the angle-Doppler filtering for estimation. The
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cancellation-then-estimation procedure is apparent in the application of the filter

x̂(ω,θ , `) = wH
AD (ω,θ , `)zst (`)

= uH
AD (ω,θ)R−1

st,canc (`)zst (`)

= uH
AD (ω,θ)

_zst (`) .

(1.122)

where the application of the cancellation transform matrix to the space-time receive data produces

_zst (`) = R−1
st,canc (`)zst (`) = zst,mov (`)+ est,mov (`)+vst (`) . (1.123)

Substituting the optimal filter from (1.121) into (1.113) results in the maximum SINR response

SINRopt (ω,θ , `) = uH
AD (ω,θ)R−1

st,canc (`)cst (ω,θ)

=
cH

st (ω,θ)R−1
st,canc (`)cst (ω,θ)

cH
st (ω,θ)cst (ω,θ)

(1.124)

Knowledge of the cancellation covariance matrix is not possible since clutter is unknown a

priori. Since the clutter is unknown, the cancellation matrix is estimated in receive processing.

A common method to estimate the covariance matrix is using a maximum likelihood estimate

method called the sample covariance matrix (SaCM) [4]. For a given data matrix (in this case

space-time and range samples), a single range CUT is examined for its clutter characteristics. The

target absent hypothesis is the primary response observed in the range cells. Therefore, multiple

adjacent range cells to the CUT are used to train the SaCM. Using the CUT within the calculation

leads to self-cancellation of the mover. Adjacent cells nearest to the CUT called guard cells will

contain sidelobes of the mover. As a result, guard cells are also removed to avoid self-cancellation

[4, 29, 35]. Taking self-cancellation into consideration, estimation of the clutter covariance matrix

is

R̂st,canc (`) =
1

c
{

Lp
}

σ2
v

∑
ι 6=`
ι∈Lp

zst (ι)zH
st (ι)+σ

2
v IMN×MN (1.125)
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where Lp is the set of range samples remaining after the CUT and guard cells are removed [4, 35].

The Reed, Mallett, and Brennan (RMB) rule defined in [36] states that c{Lp} = 2MN− 3

homogeneous samples are necessary to be within 3 dB of the optimal covariance matrix. In general,

the homogeneous assumption implies the covariance matrix is the same for every range sample

Ropt = Ropt (`) ∀` (1.126)

[35]. As mentioned earlier, the clutter environment is often heterogeneous. Furthermore, due to a

finite time interval being collected and processed, only a limited numbers of samples are available

for training the covariance matrix. For this reason, achieving the IID assumption is difficult. The

estimation stage will contain some unavoidable residual error due to its imperfection. Nevertheless,

the assumption is useful to provide a baseline for performance.

The covariance matrix would need to be estimated and inverted for every range CUT for

maximum performance. Performing these matrix operation multiple times can be

computationally expensive. Estimation of the optimal covariance matrix requires a computation

of O
{
c
{

Lp
}

M2N2} [37]. The computation becomes approximately O
{

2M3N3} assuming

sample support is available to satisfy RMB rule. The computation cost for matrix inversion is

O
{

M3N3} [37]. For a space-time signal, the number of pulses is the primary culprit to increase

computation since more energy-on-target and higher Doppler resolution is desirable. To mitigate

computation complexity, reduced-rank techniques are utilized [4, 32, 33].

Reduced-rank techniques employ a linear transformation to obtain a solution in a lower rank

subspace. Assuming the optimal covariance matrix is available, reduced-rank processing

performance can be no better than full-rank processing [38]. Reduce-rank techniques are useful

for practical application of high dimension covariance matrices in adaptive processing. When

using an estimated covariance matrix, reduce rank processing outperforms full-rank processing by

suppressing estimation errors [38]. Reduce-rank processing reduces the amount of samples

needed to satisfy the RMB rule for a covariance matrix from c{Lp} ≈ 2MN to c{Lp} ≈ 2rst,clu
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covariance matrix [38]. The clutter covariance matrix is known to be low rank [4, 7]. The

diagonal loading term seen in the cancellation matrix ensures the noise subspace is at the

measured noise floor. The loading term also improves the condition number and ensures the

matrix is full rank.

Denote Dt as the desired rank of the slow-time dimension, which is also the number of pulses

in a sub-CPI, and a M×Dt Doppler transformation matrix Tt. Likewise denote Ds as the desired

rank of the element-space dimension, which is number of elements in a sub-array, and a N×Ds

spatial transformation matrix Ts. A MN×DtDs space-time transformation matrix is formed by

coupling the matrices

Tst = Tt⊗Ts (1.127)

[4]. Figure 1.17 presents the multiple reduction configurations [4, 29]. The reduction of the slow-

time samples can be performed pre- or post-Doppler processing. There is an equivalent duel for

reduction of element-space samples in element- and beamspace. There are data-dependent and

fixed methods of forming the transformation matrix [38–44]. One common fixed transformation

method is based on the steering vectors of the signals is used. For angle and Doppler processing,

steering vectors is equivalent to using a DFT matrix. The advantage of a fixed transformation

is the computational efficiency needed to employ reduce dimension techniques is less than the

Fig. 1.17: Reduced dimension configurations
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data-dependent methods [38]. The formation of the transformation matrix depends on the type of

processing to be performed.

The transformation matrix is applied to the receive space-time data vector to form a DtDs×1

reduce dimension data vector

z̃st (`) = TH
st zst (`) (1.128)

where •̃ denotes a reduced rank quantity, [4]. Leveraging the application of the transformation

matrix in (1.128) into the binary detection problem in (1.117), a DtDs × DtDs cancellation

covariance matrix can be formed

R̃st,canc(`) = TH
st Rst,canc(`)Tst (1.129)

[4]. Utilizing a maximum SINR filter formulation, it can be shown that the partially adaptive

maximum SINR filter is

w̃AD (ω,θ , `) = R̃−1
st,canc (`) ũAD (ω,θ) (1.130)

where the reduced rank space-time steering vector is

c̃st (ω,θ) = TH
st cst (ω,θ) (1.131)

leading to the reduce rank filter ũAD (ω,θ). The lower rank filter is mapped to the full-rank filter.

Thus, the equivalent maximum SINR filter utilizing a rank-reduction is

wAD (ω,θ , `) = Tstw̃AD (`,ω,θ)

= Tst
(
TH

st Rst,cancTst
)−1TH

st uAD (ω,θ) .

(1.132)

Reduced dimension processing reduces the computation complexity of matrix inversion via

rank-reduction is O
(
LDLSD3

t D3
s
)
. Estimation of the optimal covariance matrix requires a

computation of O
(
c
{

Lp
}

LDLSD3
t D3

s
)

such that c
{

Lp
}

= 2DtDs. Subsumed into the

transformation is a normalization that ensures the main diagonal of TstTH
st are ones and the
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off-diagonal terms are scaled appropriately. For an oversampled spectrum, the off-diagonal terms

deviate from the ideal case of zeros. The deviation leads to a mismatch error within the

transformation. Post-Doppler processing (in element-space and beamspace) simultaneously

reduces the rank and performs Doppler processing within the same matrix. In [4], multi-window

post-Doppler STAP applies different Doppler filters to each reflection received on each antenna

element.

This work considers a element-space post-Doppler formulation only due to the small amount of

array elements used within simulation and experimental results. The element-space post-Doppler

STAP processing utilizes the match filter bank for rank reduction. The number of the slow-time

samples are reduced from M to Dt such that Dt << M. In [45], a form called adjacent-bin was

introduced for the multi-window post-Doppler transformation matrix. Leveraging the bank of

temporal steering vectors, the adjacent-bin temporal transformation matrix is

Tt (ω) =
1√
LD

[ ct (ω−At∆ω) · · · ct (ω−∆ω) ct (ω) ct (ω +∆ω) · · · ct (ω +At∆ω) ]

(1.133)

where At = (Dt− 1)/2 is the surrounding temporal steering vectors on each side of the Doppler

frequency of interest [4, 45]. The post-Doppler implementation is a reduction of the oversampling

from LD to Dt and not M to Dt. There is nothing withstanding Dt ≥ M. For a computationally

benefit, its intuitive to make Dt << M. Element-space reduction will not be performed. Since

reduction is not being performed, no manipulation of the beamformer occurs. Therefore, the spatial

transformation matrix is simply

Ts (θ) = IN×N (1.134)

meaning Ds = N [4]. Coupling the two dimensions using (1.127) produces the space-time

transformation matrix

Tst (ω,θ) = Tt (ω)⊗ IN×N (1.135)

making the transformation of function of Doppler frequency and independent of spatial frequency
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[4]. The benefit of the smaller covariance matrix for inversion comes at the price of having to

perform the inverse multiple times.
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Chapter 2

Adaptive Mismatch Doppler Processing for Uniform and

Staggered Pulse Repetition Interval Radar

Illumination of a radar scene at a uniform pulse repetition interval (PRI) generates a uniform

sampling in slow-time. Uniform sampling is favorable when using a Fourier transform (FT) to

obtain the Doppler spectrum. Uniform PRI transmission also introduces a well-known

trade-space between unambiguous range and unambiguous velocity/Doppler that is dictated by

the PRI and pulse repetition frequency (PRF), respectively. In the Doppler spectrum, frequencies

above the PRF, which is also the slow-time sampling frequency, alias into the interval

[−PRF/2,PRF/2]. The aliasing in the spectrum makes Doppler frequencies above and below the

PRF indistinguishable in integer multiples of the PRF. Furthermore, implementation of a moving

target indication (MTI) filter for clutter cancellation causes blind speeds in the Doppler spectrum

at intervals of the PRF [6, 24, 25]. MTI filtering is designed as a high-pass filter which becomes a

comb filter due to aliasing. Lastly, performing a oversampled discrete FT (DFT) to obtain the

Doppler spectrum incurs a undesirable sinc roll-off in the Doppler spectrum due to the temporal

limitation of the receive slow-time signal. Clutter sidelobe responses from the sinc roll-off may

mask other low-power, slow traveling movers. Typically, windowing the slow-time data provides

adequate sidelobe suppression at the penalty of a widen mainlobe and mismatch loss.

PRI staggering is a pulse diversity scheme to increase unambiguous velocity, eliminate aliasing,

and remove blind speeds in a pulse-Doppler radar [24, 25]. Staggering varies the PRI pulse-to-

pulse resulting in a non-uniform slow-time sampling (see Figure 1.7 in Chapter 1 on slow-time

signals for an example). PRI staggering uniquely samples a complex sinusoid corresponding to
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a Doppler shift to diminish aliasing and expand the Doppler spectrum. The Doppler spectrum is

obtained by compensating for non-uniform sampling in the temporal component of the FT (see

(1.60)). Staggering is known to be effective in increasing the maximum detectable velocity. In

junction with MTI filtering, staggering provides greater clutter suppression and has a smaller effect

on mover energy being attenuated [46].

Staggering by a random selection of PRIs comes at the penalty of degraded sidelobe roll-off

[47]. Figure 2.1 illustrates an example of Doppler processing for uniform and staggered PRI

transmissions with and without windowing. The example uses a Taylor window [48] with a

-40 dB peak sidelobe and five nearly constant sidelobes. For the selection of staggers utilized in

the example, the non-uniform PRI peak sidelobe is higher than uniform PRI. The sidelobe

benefits of windowing is lost once staggering is implemented. As mentioned, staggering does

provide a unambiguous response of the true target. However, having an unambiguous Doppler

response with low sidelobes relative to the peak of the mover mainlobe is ideal.

Aliased 
Target

True
Target

Fig. 2.1: Normalized Doppler response for a noise-free signal at +0.8 when applying Doppler
processing and windowed Doppler processing (to reduce sidelobes) to a uniform PRI and a

randomly staggered PRI
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Non-uniform sampling arises in a variety of applications. Astronomers encounter

non-uniform observations of space signals due to many environmental factors such as time of day

and weather (e.g. [49, 50]), prompting the development of least-squares (LS) approaches for the

generation of a periodogram [51–53]. Spectral analysis of non-uniform sampling has also

received broader interest in the signal processing community. A myriad of publications addresses

non-uniform sampling using Capon method, multiple-signal characterization method (MUSIC),

root-MUSIC, and estimation of signal parameters via rotational invariance technique (ESPRIT)

[54–59]. One major drawback of these algorithms is that they require the number of signal

sources in the data to be known. In [60], the authors introduced a non-parametric iterative

weighted LS approach called real-valued iterative adaptive approach (RIAA). The algorithm was

shown to provide a performance benefit over previous proposed LS periodogram approaches.

RIAA method was likewise leveraged for missing samples in uniform data (another form a

non-uniform sampling) and shown to provide separation of targets [61–63].

In the radar community, the effects of non-uniform slow-time sampling via PRI staggering

were first examined for Doppler processing and MTI filtering in [46, 64, 65]. Later, [66]

specifically examined the effects of random staggers on MTI filtering showing that blind speeds

can be mitigated via random staggering. LS approaches have been proposed for a uniform PRI

system implementing Doppler processing in [67, 68]. A super resolution approach for

pulse-to-pulse staggering was introduced in [69] using an all-pole/autoregressive spectral

analysis. Additionally, the authors provided a method for real-time application using an iterative

search algorithm. In [70], clutter suppression for phase-coded waveforms for fixed PRI,

non-uniform PRI, and coherent-on-receive radar was presented. The filters were generated based

on second-order cone programming and minimum variance distortion-less response (MVDR)

optimization approaches. The latter includes implementing an iterative approach akin to

re-iterative minimum mean-squared error (RMMSE) for coherent-on-receive processing. A

drawback, highlighted in [70], is the high computation cost to generate the adaptive filters.

Implementing the RMMSE filter on-line is difficult because of the computational liability.
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To address the deleterious sidelobe effects of PRI staggering, a form of RMMSE called

adaptive mismatch Doppler processing (AMMDP) is proposed. Adaptive Doppler processing

using RMMSE was first proposed in [19] for time-range adaptive processing (TRAP) as a joint

2-D range-Doppler adaptive filter with adaptive pulse compression (APC), a RMMSE approach

for fast-time signals [71, 72], to mitigate range sidelobe modulation and interference in

pulse-agile systems. A joint range-angle filter called space-range adaptive processing (SRAP)

was similarly proposed in [20] for pulse-agile systems. AMMDP is a slow-time dual to

re-iterative super-resolution (RISR), a spectral estimation technique originally proposed for

adaptive direction-of-arrival (DOA) estimation for element-space signals [23]. More recently,

practical implementation of RISR for DOA estimation were presented in [73, 74]. RISR was also

examined for DOA estimation of non-uniform spatial samples in sparse co-prime arrays [75, 76].

The authors leveraged RISR for estimation of a virtual array manifold then subsequently perform

MUSIC for spatial smoothing. A RMMSE transform to a DFT implementation was presented for

stretch processing in [77]. Since stretch processing likewise uses a DFT matrix, the transform can

also be leveraged in Doppler processing. More recently, forms of RISR for Doppler processing in

unison with MTI filtering called baseline supplementary loading (BaSL) and baselines

supplementary cancellation (BaSC) were proposed in [34] for joint and sequential clutter

cancellation with spectral estimation, respectively. When AMMDP is combined with adaptive

cancellation, it becomes a subset of the BaSC formulation. RMMSE has shown to be effective in

addressing fast-time Doppler [78–80], mutual coupling calibration [81], and brain imaging [82] as

well.

The computation complexity of implementing RISR is a result of inverting a high dimensional

covariance matrix for every adaptive iteration and range sample. Rank reduction techniques have

been proposed to address the computational complexity of RMMSE. One proposed

computationally efficient method considered a rank-3 update that leverages the matrix inversion

lemma [72]. In [83–85], fast APC (FAPC) reduced computation by performing a decomposition

method (effectively a pre-pulse compression rank reduction) of the mean-square error (MSE) cost
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function prior to filter generation. However, FAPC occasionally suppressed small targets in dense

scattering. To mitigate these effects, a gain constrained version of APC, based on a MVDR

framework, was used to minimize the mismatch loss and preserve the gain on lower power

scatterers [86]. FAPC was later expanded to TRAP to show its viability on Doppler processing

[87]. In [88], a gradient descent approach was proposed for RMMSE as an alternative to the

matrix inverse for APC to mitigate computation for waveforms with large time-bandwidth

products. In [89], match filter RMMSE (MF-RMMSE) exploits match filter outputs within the

MSE framework. The technique minimized the MSE cost function post-pulse compression

allowing for a smaller processing window while reducing sidelobe power. Overall, the

computation of RMMSE has shown to be problematic to processing and research has been

conducted to significantly reduce its effects.

A reduce rank form of RISR, known as reduced dimension RISR (RD-RISR), was presented

in [90] for DOA estimation in multiple-input multiple-output (MIMO) radar. The authors present

a data transformation approach to reduce the dimension of the data vector. However, the reduction

in computation was a byproduct of an assumption of the MIMO transmission scheme and not

a modification to the RISR cost function. Relaxing the transmission scheme to a single-input

multiple-output (SIMO) scenario i.e., a single antenna transmission being collected at multiple

receivers, the rank of the receive data vector would remain the same. The proposed RD-RISR

algorithm then becomes the RISR algorithm and consequently cannot be utilized. Likewise, if the

MIMO assumption made to reduce the rank of the algorithm is not satisfied, the proposed technique

is not viable.

Within the space-time adaptive processing (STAP) radar community rank reduction using

linear transformations of space-time signals is prevalent due to a similar problem of estimating

and inverting a high dimensional covariance matrix and lack of sample support to train a

covariance matrix. To facilitate real-time application, a computationally efficient approach called

partial adaptive mismatch Doppler processing (PAMMDP) is introduced that leverages similar

transformations. To summarize, RMMSE is proposed to address sidelobe degradation caused by
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random PRI staggering. The proposed adaptive Doppler filter solution is combined with an

adaptive MTI filter for a sequential cancellation-then-estimation procedure. Lastly, rank reduction

techniques are explored to address the computationally complexity of the RMMSE procedure.

The proposed techniques are examined via a Monte Carlo simulation and open-air

experimentation captured at the University of Kansas Radar Systems and Remote Sensing

Laboratory. Conclusions and future work are presented in Chapter 5. Portions of this work were

presented in [91].

2.1 Slow-Time Signal Model and Clutter Cancellation

Brief synopses of the slow-time signal model and clutter cancellation utilized within this chapter

are presented. Readers should refer to Sections 1.4 and 1.8, respectively, for detailed overviews.

Consider a pulse-Doppler radar on a stationary platform transmitting radar waveform s (t) for

M PRIs. Denote Tr,m as the mth PRI and Tr,avg = E{Tr,m} = (1/M)
M−1
∑

m=0
Tr,m as the average PRI

such that the mth normalized PRI is their ratio εr,m = Tr,m/Tr,avg for m = 0,1, ...,M − 1. The

mth normalized accumulation time is a cumulative sum of normalized PRIs εacc,m =
m−1
∑

i=0
εr,i. The

illuminated scatterers captured on receive for the mth PRI is described in the following signal

model

y (m, t) = ∑
ω

[s (t)∗ x (ω, t)]e j2πωεacc,m + v (m, t) (2.1)

where ω is the normalized Doppler frequency. The receive signal is discretized in fast-time and

pulse compressed to form range delay, slow-time samples

z [m, `] = ∑
ω

x̄ [ω, `]e j2πωεacc,m + v̄ [m, `]+ξ [m, `] (2.2)

where, for the `th range sample, x̄ [ω, `] is the complex scattering recieved in the range-Doppler

bin (including range sidelobe contributions from nearby scattering), v̄ [m, `] is filtered thermal noise

from pulse compression, and ξ[m, `] is the model mismatch error.
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A slow-time receive signal model is formed from the collection of illuminated scatterers for M

pulses in a coherent processing interval (CPI) to form a M×1 slow-time data vector

zt (`) = ∑
ω

x̄ [ω, `]ct (ω)+ et (`)+vt (`) = CtxD (`)+ et (`)+vt (`) (2.3)

where ct (ω) = [ 1 e j2πωεacc,1 · · · e j2πωεacc,M−1 ]T is a M× 1 temporal steering vector, vt (`) is

a M× 1 noise vector in slow-time, et(`) = (CtxD(`))� (ht− 1M×1) is a M× 1 model mismatch

error vector, ht = [e j2πηt,0 e j2πηt,1 ... e j2πηt,M−]T is a M × 1 slow-time error vector the mth

mismatch error ηt,m = fD,errTerr,m, Ct is a M × LD bank of temporal steering vectors, and

xD(`) = [ x̄(−ωmax, `) · · · x̄(0, `) · · · x̄(ωmax, `) ]T is a LD× 1 of Doppler frequency points

in the Doppler spectrum at the `th range sample. The number of points in the Doppler spectrum is

LD = KDM where KD is an oversampling factor. The signal component of the data vector can be

decomposed into clutter and non-clutter components

zt (`) = Ct,cluxD,clu (`)+Ct,remxD,rem (`)+ et,clu (`)+ et,rem (`)+vt (`) . (2.4)

The remaining components consist of movers and other target-absent portions of the spectrum. See

Figure 2.2 for an example of information contained within radar scene.

Clutter reflections are attenuated using a high-pass Doppler filter. The high-pass filter can be

characterized from clutter and noise covariance matrices. Combining the covariance matrices and

normalizing by the noise power forms a M×M cancellation transform matrix

Rt,canc (`) =
1

σ2
v

(
Rt,clu (`)+Rt,v

)
(2.5)

where Rt,clu(`) is the clutter covariance matrix and Rt,v = E{vt (`)vH
t (`)}= σ2

v IM×M is the noise

covariance matrix with noise power σ2
v [34]. When cancellation is not used, the cancellation

transform is set to an identity matrix Rt,canc(`) = IM×M. The clutter covariance matrix is estimated

61



Fig. 2.2: Information contained within radar receive data

on receive using a sample covariance matrix (SaCM)

R̂t,clu (`) =
1

c
{

Lp
} ∑

κ 6=`
κ∈Lp

zt (κ)zH
t (κ) (2.6)

where Lp is the set of range samples remaining after the range cell-under-test (CUT) and guard

cells are removed to avoid self-cancellation [4]. The estimation of the clutter covariance matrix

using receive data makes the high-pass Doppler filter adaptive. The adaptive filter is trained over

range samples. The estimated clutter and noise covariance matrices are inserted into (2.5) to form

an estimate of the cancellation matrix.

The optimal cancellation filter would be a brick wall high-pass filter that ensures clutter is

fully suppressed while preserving signal strength in other Doppler frequencies. In the transition

regions lies a minimum detectable velocity which is typically set to 3 dB loss from the filter peak.

Additionally, mismatch and estimation loss from the cancellation transform is inevitable. Range

sample support constraints and heterogeneous range samples tend to hinder the SaCM from

satisfying Reed, Mallett, and Brennan (RMB) rule and the adaptive MTI filter frequency response

from being within 3 dB of the optimal MTI filter frequency response. Overall, the adaptive filter

inherently incurs loss and a frequency response away from the ideal filter. However, leveraging
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the clutter statistics for cancellation has shown to provide the best "match" to the signal model of

the clutter.

Utilizing the cancellation matrix on the signal vector results in the removal of the clutter

components

_z t (`) = R−1
t,canc (`)zt (`) = Ct,remxD,rem (`)+ et,rem (`)+vt (`) . (2.7)

The maximum SNR Doppler filter uDP(ω) = ct(ω)/M is applied to (2.7) obtain the maximum

SINR estimate of at each Doppler frequency

x̂DP [ω, `] = uH
DP (ω)

_z t (`) = uH
DP (ω)R−1

t,canc(`)zt (`) = wH
DP(ω, `)zt (`) (2.8)

where the maximum SINR Doppler filter is wDP(ω, `) = R−1
t,canc(`)uDP(ω). Windowing is

incorporated into the formulation by replacing uDP(ω) with

uWDP (ω) =
ct (ω)�bt

(ct (ω)�bt)
Hct (ω)

(2.9)

where bt is a M×1 slow-time taper. The windowed filter with cancellation is expressed as

wWDP (ω, `) = R−1
st,canc (`)uWDP (ω) . (2.10)

The estimate after windowing is obtained similar to (2.8).
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2.2 Adaptive Mismatch Doppler Processing

The estimate of the Doppler response at ω can be decomposed into the desired response and error

sources corrupting the desired response

x̂DP [ω, `] = g[ω,ω, `]x̄[ω, `]+ ∑
γ 6=ω

g[ω,γ, `]x̄[γ, `]+ v̂[ω, `] (2.11)

where the coefficient

g
[
ωi,ω j, `

]
=

cH
t (ωi)R−1

t,canc(`)ct(ω j)

M
(2.12)

corresponds to the frequency response of the clutter cancellation filter. The desired range-Doppler

response is dopt = g [ω,ω, `] x̄ [ω, `]. The error deviating the estimate from the desired response

is derr = ∑γ 6=ωg[ω,γ, `]x̄[γ, `] + v̂[ω, `]. The ideal filter would ensure that g
[
ωi,ω j, `

] ∆
= 0 for

clutter frequencies when ωi = ωclu or ω j = ωclu and g
[
ωi,ω j, `

] ∆
= 1 otherwise in the spectrum.

When MTI filtering is not employed, the frequency response is g [ω,ω, `]
∆
= 1 for all ω . A general

estimate of the desired response is obtained by applying a weight vector to the post-cancellation

receive data dest = x̂ [ω, `] = uH (ω, `)
_z t (`) similar to (2.8). The desired and estimated responses

are related by dest = dopt +derr. A MSE cost function is formed using derr

JMSE (ω, `) = E
{
|derr|2

}
= E

{
|dopt−dest|2

}
= E

{
|g [ω,ω, `] x̄ [ω, `]−uH (ω, `)

_z t (`)|
2
}
.

(2.13)

The cost function is parabolic with absolute minimum located at derr = 0. When the error is

minimized, |dopt|2 = |dest|2. An optimization is performed on the cost function to obtain the optimal

filter. The MSE cost function in (2.13) is similar to the MSE cost function presented in [23, 71, 72].

Using the post-cancellation data vector modifies the MSE cost function to include the impact of

the MTI filter on the estimated and desired responses. The cost function from [23, 71, 72] and

(2.13) are equivalent when cancellation is not used. Therefore, the MSE cost function in (2.13) is

a general form that includes a linear transformation which in this case is adaptive cancellation.

The minimum of the cost function is obtained by determining its slope at zero. The slope
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is determined by taking the first order derivative using a complex gradient operation with real

and imaginary partial derivatives. Consider an arbitrary M×1 vector a = [ a0 a1 · · · aM−1 ]T

where the real and imaginary components of mth element is am = pm + jqm. The mth partial

derivatives with respect to am using Wirtinger derivatives are

∂

∂am
=

1
2

(
∂

∂ pm
− j

∂

∂qm

)
∂

∂a∗m
=

1
2

(
∂

∂ pm
+ j

∂

∂qm

)
.

(2.14)

The corresponding M × 1 gradient vector operations with respect to a and a∗ are

∇a = [ ∂

∂a0

∂

∂a1
· · · ∂

∂aM−1
]T and ∇a∗ = [ ∂

∂a∗0
∂

∂a∗1
· · · ∂

∂a∗M−1
]T , respectively [92].

Applying the operator to the MSE cost function with respect to u∗(ω, `) results in

∇u∗JMSE(ω, `) =−E{g∗ [ω,ω, `]x̄∗ [ω, `]
_z(`)}+E{_z(`)_zH

(`)}u(ω, `). (2.15)

The dependence on ω and ` is subsumed on the gradient for notational convenience. Setting

∇u∗JMSE (`)
∆
= 0 and solving for u(ω, `) produces the minimum mean-square error (MMSE)

Doppler filter

uMMSE (ω, `) = (E{_z t (`)
_zH

t (`)})−1E{g∗ [ω,ω, `]x̄∗ [ω, `]
_z(`)} (2.16)

where E{_z t (`)
_zH

t (`)} is a M × M auto-covariance matrix of the received data and

E{g∗[ω,ω, `]x̄∗ (ω, `)
_z t (`)} is a M × 1 cross-correlation vector between the receive data and

desired Doppler spectrum.

The signal model from (2.7) is substituted into the data covariance matrix assuming all signal

components and noise are uncorrelated to noise

E{_z t (`)
_zH

t (`)}= Ct,remPD,rem (`)CH
t,rem +Rt,err,rem (`)+Rt,v (2.17)
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where PD,rem (`) = E{xD,rem (`)xH
D,rem (`)} is the LD×LD Doppler power distribution matrix and

Rt,err,rem (`) = E{et,rem (`)eH
t,rem (`)} is the M×M error covariance matrix. The remaining steering

vectors are unknown for an adaptive cancellation filter. The steering vectors can be approximated

using the cancellation transform

R−1
t,canc (`)Ct = R−1

t,canc (`) [Ct,clu Ct,rem]
∆
= [0M×LD,clu Ct,rem] (2.18)

where LD,clu = c{Ωclu} is the number of steering vectors corresponding to clutter which is equal to

the cardinality of the set Ωclu. Note, LD = LD,clu +LD,rem where LD,rem = c{Ωrem} corresponds to

the number of remaining steering vectors. The result is approximate since the cancellation matrix

is estimated in practice.

The Doppler power distribution matrix is a covariance matrix of the Doppler spectrum. The

diagonal is the power spectral density and the off-diagonals are the cross-correlation between

frequencies. Define the elements of the distribution matrix as
_
ρ
[
ωi,ω j, `

]
where ωi corresponds

to rows and ω j corresponds to columns. The complex scattering is assumed to be statistically

independent in the Doppler spectrum [23]. Thus, terms in the power distribution matrix becomes

_
ρ
[
ωi,ω j, `

]
=

 E
{
|x̄ [ωi, `]|2

}
|g [ωi,ωi, `]|2 i = j

0 i 6= j
(2.19)

forming a diagonal matrix. The frequencies terms for the diagonal components are subsumed

such that
_
ρ [ωi,ωi, `] is written as

_
ρ [ωi, `]. The power distribution matrix after incorporating the

statistically independence becomes

PD,rem (`)≈
_

PD (`) = E
{

xD (`)xH
D (`)

}
�gD (`)gH

D (`)� ILD×LD (2.20)

where the frequency response of the MTI filter is

gD(`) = [ g(−ωmax,−ωmax, `) · · · g(0,0, `) · · · g(ωmax,ωmax, `) ]T corresponding to the
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diagonal terms of the distribution matrix. The error covariance matrix is

Rt,err,rem(`) = σ
2
errIM×M�Ct,remPD,rem (`)CH

t,rem

≈ Rt,err(`)

= σ
2
errIM×M�R−1

t,canc (`)Ct
_

PD (`)CH
t R−1

t,canc (`)

(2.21)

after including assumptions made for the power distribution matrix and remaining steering vectors.

The noise covariance matrix is the same as presented in (2.5). Substituting the data vector in (2.7)

into the cross-correlation vector from (2.16) forms

E{g∗ [ω,ω, `] x̄∗ [ω, `]
_z(`)}= ρ [ωrem, `]ct(ωrem)≈

_
ρ [ω, `]R−1

t,canc(`)ct(ω) (2.22)

where ρrem [ω, `]≈ _
ρ [ω, `] using (2.19). The modifications to the data covariance matrix and cross-

correlation vector are incorporated into the MMSE filter in (2.16) to produce a structured based

MMSE Doppler filter

uMMSE (ω, `) =
_
ρ [ω, `]Q−1

t (`)R−1
t,canc(`)ct(ω) (2.23)

where the structure covariance matrix (StCM) is

Qt (`) = R−1
t,canc (`)Ct

_

PD (`)CH
t R−1

t,canc (`)+σ
2
errIM×M�R−1

t,canc (`)Ct
_

PD (`)CH
t R−1

t,canc (`)+σ
2
v IM×M

= R−1
t,canc (`)Ct

_

PD (`)CH
t R−1

t,canc (`)�
(
σ

2
errIM×M +1M×M

)
+σ

2
v IM×M

(2.24)

and 1M×M is a M×M matrix of all ones.

The multiple loading terms in StCM offer different benefits to the solution. The model error

covariance matrix is a signal-dependent loading term which establishes a dynamic range of the

estimates [23]. The term prevents the presence of spurious signals in the Doppler spectrum that

would otherwise arise from modeling mismatch. The error power σ2
err is determined through
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empirical analysis of the timing jitter imperfections. High fidelity components will allow for the

error noise power to be much less than the noise floor. The noise covariance matrix is an inherent

regularization that ensures the eigenvalues are no less than the noise power. The result lowers the

condition number of the matrix which avoids inaccuracies in the final solution after implementing

a matrix inversion.

The MMSE Doppler filter is applied to the receive data to obtain a MMSE estimate

x̂MMSE [ω, `] = uH
MMSE (ω, `)

_z t (`)

= wH
MMSE(ω, `)zt (`)

=
_
ρ[ω, `]cH

t (ω)R−1
t,canc(`)Q

−1(`)R−1
t,canc(`)z(`)

(2.25)

where the combination of the MTI filter for cancellation and MMSE Doppler filter for spectral

estimation is

wMMSE(ω, `) = R−1
t,canc(`)uMMSE (ω, `) =

_
ρ [ω, `]R−1

t,canc(`)Q
−1(`)R−1

t,cancct(ω). (2.26)

A M×LD bank of MMSE Doppler filters is formed by expanding the filter to multiple Doppler

frequencies

UMMSE (`) = Q−1(`)R−1
t,cancCt

_

PD (`)

= [ uMMSE (−ωmax, `) · · · uMMSE (0, `) · · · uMMSE (ωmax, `) ].
(2.27)

Note that the StCM is independent of Doppler frequency. Application of the filter bank results in

the MMSE estimate of the Doppler spectrum

x̂MMSE (`) = UH
MMSE (`)

_z t (`) . (2.28)

Consider the MMSE filter structure obtained in (2.26) and the original MMSE solution in [23].

Aside from the obvious distinction between the different dimensions in which they are applied
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(slow-time and element-space, respectively), the difference in the solutions lie in the modification

of the power distribution matrix to explicitly include filtering beforehand. The power distribution

matrix presented here incorporates the frequency response of the cancellation into the cost function.

For slow-time signals, it is appropriate to high-pass filter the signal for clutter cancellation. In

this chapter specifically an adaptive high-pass filter is implemented. Although pulse cancellers is

sufficient for stationary platforms, the approach is ineffective for random PRI staggering. Since the

MSE cost function is generalized, the filter can also be a band-pass, low-pass, or band-stop filter.

Other filters would be appropriate for interference cancellation. Chapter 3, for example, explores

a 2-D band-stop filter with MMSE for space-time signals in airborne ground MTI radar.

The power distribution matrix requires the known desired Doppler spectrum to form the MMSE

filter. The spectrum is of course unknown a priori. If the spectrum was known, the procedure to

estimate it would be unnecessary. This "chicken or the egg" dilemma for MMSE is resolved by

forming an estimate of the spectrum and using the response to form the MMSE filter. The RMMSE

algorithm, presented in [23, 71, 72], took the substitution stage a step further by updating the

power distribution matrix from a previous estimate using a iterative procedure. Each iteration gets

closer to the desired response by minimizing the residual error. RMMSE is efficient in suppressing

sidelobes and resolving signals. AMMDP implements RMMSE for slow-time signals.

The algorithm can suppress sidelobes beyond the noise floor. Additionally, a super resolution

effect beyond the nominal resolution results in a mismatch loss. To maintain stability, a linear

constraint is incorporated for RMMSE. The constrained version of RMMSE was introduced for

fast-time signals [86]. The constraint was translated to RISR in [93] which also contained the

introduction of a partial constrained version of RMMSE for low SNR spatial signals.

A linearly constrained minimum-variance (LCMV) framework [92] is considered for AMMDP.

LCMV minimizes the average output power of the linear filter while the response is constrained

to a complex amplitude. The complex amplitude constraint for AMMDP when considering clutter

cancellation is Doppler frequency dependent because the cancellation response incurs distortion at

clutter frequencies and is distortionless at remaining frequencies. The noise normalization being
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applied to the cancellation matrix allows for the frequency response in (2.12) to be used as the

gain constraint uH (ω, `)R−1
t,canc(`)ct (ω) = g[ω,ω, `] to maintain the distortion at a given Doppler

frequency. The gain constraint is adaptive since it is a function of the adaptive cancellation.

Figure 2.3 presents an example of the adaptive constraints using the frequency response and

ideal constraints considering a known location of clutter. In portions of the spectrum where clutter

is present, the adaptive constraint approaches a null constraint. In portions of the spectrum where

clutter is not present, the constraint approaches a MVDR solution. When cancellation is not being

employed i.e., R−1
t,canc(`) = IM×M, the constraint becomes a MVDR solution uH (ω, `)ct (ω) = 1

since g[ω,ω, `] = 1 for all ω . A MVDR constraint was considered for RMMSE in [86, 93]. A

similar procedure is presented here.

The constrained MSE cost function using a Lagrange multiplier λL is

JMSE (ω, `) = E{|g [ω,ω, `] x̄ [ω, `]−uH (ω, `)
_z t (`)|

2}

+Re{λ ∗L
(
uH (ω, `)R−1

t,canc(`)ct (ω)−g[ω,ω, `]
)
}.

(2.29)

The adaptive filter is obtained by minimizing the cost function and incorporating the expanded

Fig. 2.3: Example of LCMV constraints for RMMSE with ideal and adaptive cancellation
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expectations

uMMSE,con (ω, `) =
(

E{_z t(`)
_zH

t (`)}
)−1

(
E{g∗[ω,ω, `]x̄∗[ω, `]

_z t(`)}−
λL
2

R−1
t,canc(`)ct(ω)

)
=

(
_
ρ[ω, `]−

λL
2

)
Q−1

t (`)R−1
t,canc(`)ct(ω).

(2.30)

The constraint is evaluated using the inner product between the steering vector and filter

uH
MMSE,con (ω, `)R−1

t,canc(`)ct(ω) =

(
ρ[ω, `]−

λL
2

)
cH

t (ω)R−1
t,canc(`)Q

−1
t (`)R−1

t,canc(`)ct(ω)

= g[ω,ω, `].

(2.31)

The inner product is then solved for the Lagrange multiplier

λL
2

= ρ[ω, `]− g[ω,ω, `]

cH
t (ω)R−1

t,canc(`)Q
−1
t (`)R−1

t,canc(`)ct(ω)
. (2.32)

Substituting the Lagrange multiplier into (2.30) produces the constrained MMSE filter

uMMSE,con (ω, `) =
g[ω,ω, `]Q−1

t (`)R−1
t,canc(`)ct(ω)

cH
t (ω)R−1

t,canc(`)Q
−1
t (`)R−1

t,canc(`)ct(ω)
. (2.33)

The MMSE filter presented in (2.16) and (2.23) is redefined as a unconstrained MMSE filter. The

application of the constrained filter to the receive data is

x̂MMSE,con [ω, `] = uH
MMSE,con (ω, `)

_z t (`)

=
g∗[ω,ω, `]cH

t (ω)R−1
t,canc(`)Q

−1
t (`)R−1

t,canc(`)zt (`)

cH
t (ω)R−1

t,canc(`)Q
−1
t (`)R−1

t,canc(`)ct(ω)
.

(2.34)

The constrained solution suppresses sidelobes to the post coherent gain noise floor (which is set

when filtering noise using standard Doppler processing). Therefore, for sidelobe energy to be

suppressed, the sidelobe energy must be above the noise floor. the gain constrained RMMSE is
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great for unmasking mover reflections obscured by sidelobes not noise

Oversampling beyond the nominal resolution to account for straddling makes RMMSE

susceptible to mismatch loss. Beamspoiling was proposed for RMMSE in [94] for continuous

waveforms to maintain the nominal resolution and overcome performance degradation from

straddling. The waveforms in [94] were oversampled beyond the 3 dB range resolution. The

spectrum can similarly be oversampled beyond the 3 dB Doppler resolution for Doppler

processing to addresses straddling in the domain.

Beamspoiling was initially incorporated into the MSE cost function by modifying the bank of

steering vectors in fast-time prior to the gain constraint [94]. Similar processing for slow-time is

ineffective since the basis functions within signal matrix differ. The basis functions for fast-time

signals are time-shifted versions of the waveform represented as a convolution matrix. Slow-time

signals on the other hand use a bank of complex sinusoids represented by a oversampled DFT

matrix. Accordingly, a new form of beamspoiling for Doppler processing is proposed. The MMSE

Doppler with beamspoiling is

uMMSE,beam (ω, `) =

√
KD

KD
∑

kD=−KD

uMMSE,con (ω + kD∆ω, `)cH
t (ω + kD∆ω)ct (ω)

KD
∑

kD=−KD

cH
t (ω + kD∆ω)ct (ω)

. (2.35)

The beamspoiling formulation incorporates the adjacent filters to the extent of the mainlobe

response in turn widening the mainlobe.

The AMMDP initializes by applying the maximum SINR Doppler filter to the receive data

x̂AMMDP,0 (`) = UH
DPR̂−1

t,canc (`)zt (`) . (2.36)

The first stage of the procedure estimates the ith power distribution matrix using the previous

Doppler estimate

P̂AMMDP,i (`) = x̂AMMDP,i−1 (`) x̂H
AMMDP,i−1 (`)� ILD×LD . (2.37)
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Note the term gD(`) as seen in (2.20) is subsumed into (2.37) due to the cancellation in the previous

estimate (shown in (2.36) and (2.41)). Next, the StCM is formed using the power distribution

matrix, noise power, and error power

Q̂AMMDP,i (`) = R̂−1
t,canc (`)CtP̂AMMDP,i (`)CH

t R̂−1
t,canc (`)�

(
1M×M +σ

2
errIM×M

)
+σ

2
v IM×M.

(2.38)

The constrained filter is then formed using the StCM

ûAMMDP,con,i (ω, `) =
ĝ[ω,ω, `]Q̂−1

AMMDP,i (`) R̂−1
t,canc (`)ct (ω)

cH
t (ω) R̂−1

t,canc (`)Q̂−1
AMMDP,i (`) R̂−1

t,canc (`)ct (ω)
(2.39)

where ĝ[ω,ω, `] is formed using (2.12) and the estimated cancellation matrix. Beamspoiling is

then conducted for each range-Doppler bin,

ûAMMDP,beam,i (ω, `) =

√
KD

KD
∑

kD=−KD

ûAMMDP,con (ω + kD∆ω, `)cH
t (ω + kD∆ω)ct (ω)

KD
∑

kD=−KD

cH
t (ω + kD∆ω)ct (ω)

. (2.40)

A bank of beamspoiled filters is generated similar to (2.27) and subsequently applied to the receive

data to obtain the updated estimate of the spectrum

x̂AMMDP,i (`) = ÛH
AMMDP,beam,i (`) R̂−1

t,canc (`)zt (`) . (2.41)

The procedure returns to (2.37) and concludes after a user-defined number of iterations.

A comparison of Doppler processing, unconstrained AMMDP, constrained AMMDP, and

beamspoiled AMMDP after five iterations is illustrated in Figure 2.4. A mover is placed at a

normalized Doppler frequency of 0.3. The constrained solution sets a noise floor for the sidelobes

to reach. Beamspoiling reverts to nominal resolution but does have a single sidelobe on each side

of the mainlobe. The peak sidelobe power is approximately down to -33 dB from -13 dB and the

sidelobe width spans a small subset of Doppler frequencies. Each AMMDP solution is effective
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Fig. 2.4: Normalized Doppler response for Doppler processing (black), unconstrained AMMDP
(green), constrained AMMDP (red), and beamspoiled & constrained AMMDP (blue) without

cancellation (top) and with cancellation (bottom)
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in sidelobe suppression without and with cancellation. Cancellation notch depth is affected by

beamspoiling. The benefits of the gain constraint and beamspoiling is well investigated for

RMMSE. The combined constrained and beamspoiled version will be the standard solution going

forward.

2.3 Partial Adaptive Mismatch Doppler Processing

The reduce rank MSE cost function leverages the adjacent-bin multi-window post-Doppler

framework utilized for reduced dimension STAP [4, 45]. The rank reduction of RMMSE is for

computational complexity reduction only unlike STAP which uses the transformation matrix to

lower sample support requirements and reduce computational complexity. Denote Dt as the

number of pulses in a sub-CPI. The denotation likewise refers to the desired reduce rank and size

of the StCM being inverted. The transformation enables LD number of Dt×Dt matrix inversions

for a bank of filters. The computational complexity reduces from O{M3} to O{LDD3
t } per range

bin. The implementation of a transformation matrix allows the matrix inverse size to be controlled

and parallelized in the receive processor. One option to exploit the computation reduction is

increasing the number of slow-time samples while maintaining the matrix inverse size. To have a

computation benefit with the proposed approach, without parallelization, the rank must be

reduced such that Dt < M/ 3
√

LD and, when considering oversampling, Dt < 3
√

M2/KD.

Effectively for a fixed number of pulses, the computational benefit of reduced dimension

processing decreases as the oversampling factor increases.

Consider a M × Dt Doppler transformation matrix formed in the adjacent-bin format

Tt (ω) = (1/
√

LD)[ ct (ω−At∆ω) · · · ct (ω) · · · ct (ω +At∆ω) ] where At = (Dt − 1)/2.

The adjacent-bin form requires Dt to be an greater than three. The transformation maps slow-time

samples (full dimension) to a subset of the Doppler spectrum (reduced dimension). The

relationship between the M×1 fully dimension filter u (ω, `) and Dt×1 reduced dimension filter

ũ(ω, `) is

u (ω, `) = Tt (ω) ũ (ω, `) (2.42)
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[4]. As a result of the transformation, the implementation of the MMSE performs the optimization

in the Doppler spectrum. The RMMSE approach then can be viewed as a direct update to the

estimate. Substituting (2.42) into the MSE cost function from (2.13) results in

J̃MSE (ω, `) = E
{
|g [ω,ω, `] x̄ [ω, `]− (Tt (ω) ũ (ω, `))H_z t (`)|

2
}

= E
{
|g [ω,ω, `] x̄ [ω, `]− ũH (ω, `) z̃t (ω, `)|2

}
.

(2.43)

where the estimate of the desired response becomes dest = ũH (ω, `) z̃t (`). The desired response

does not change. The data vector is transformed twice, first by clutter cancellation then by Doppler

transformation matrix

z̃t (ω, `) = TH
t (ω)

_z t (`) = TH
t (ω)R−1

t,canc(`)zt (`) . (2.44)

Applying the Dt× 1 gradient vector with respect to the reduced rank filter, minimizing the

cost function such that ∇ũ∗ J̃MSE (ω, `) = 0, and solving for ũ(ω, `) yields the reduced dimension

MMSE (RD-MMSE) Doppler filter formulation

ũRD-MMSE (ω, `) =
(
E
{

z̃t (ω, `) z̃H
t (ω, `)

})−1
E{g∗[ω,ω, `]x̄∗ [ω, `] z̃t (ω, `)}. (2.45)

Using the signal model from (2.7) within the auto-covariance matrix and cross-correlation vector

in 2.45, similar to (2.16-2.24), results in the unconstrained filter

ũRD-MMSE (ω, `) =
_
ρ [ω, `]Q̃−1

t (ω, `)TH
t (ω)R−1

t,canc (`)ct (ω) (2.46)

where reduce rank StCM is

Q̃t (ω, `) = TH
t (ω)R−1

t,canc (`)Ct
_

PD (`)CH
t R−1

t,canc (`)Tt (ω)�
(
σ

2
errIDt×Dt +1Dt×Dt

)
+σ

2
v IDt×Dt.

(2.47)
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Mapping the reduced dimension filter to the full dimension space using (2.42) results in

uRD-MMSE (ω, `) = Tt (ω) ũRD-MMSE (ω, `)

=
_
ρ [ω, `]Tt (ω)Q̃−1

t (ω, `)TH
t (ω)R−1

t,canc (`)ct (ω) .

(2.48)

Application of the RD-MMSE filter to the receive data is

x̂RD-MMSE (ω, `) = uH
RD-MMSE (ω, `)

_z t (`)

= wH
RD-MMSE (ω, `)zt (`)

=
_
ρ[ω, `]cH

t (ω)Tt (ω)Q̃−1
t (ω, `)TH

t (ω)R−1
t,canc (`)z(`)

(2.49)

where the combination of the MTI filter for cancellation and RD-MMSE Doppler filter for spectral

estimation is

wRD-MMSE (ω, `) = R−1
t,canc (`)uRD-MMSE (ω, `)

=
_
ρ [ω, `]R−1

t,canc (`)Tt (ω)Q̃−1
t (ω, `)TH

t (ω)R−1
t,canc (`)ct (ω) .

(2.50)

The M×LD bank of RD-MMSE Doppler filters is

URD-MMSE (`) = [ uRD-MMSE (−ωmax, `) · · · uRD-MMSE (0, `) · · · uRD-MMSE (ωmax, `) ].

(2.51)

Applying the filter bank forms the RD-MMSE Doppler estimate of the spectrum

x̂RD-MMSE (`) = UH
RD-MMSE (`)

_z t (`) . (2.52)

The incorporation of the gain constraint is similar to the previous section. The gain constrained
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MSE cost function incorporates the reduced dimension filter

JMSE (ω, `) = E{|g [ω,ω, `] x̄ [ω, `]− ũH (ω, `) z̃t (`)|
2}

+Re{λ ∗L
(
ũH (ω, `)TH

t (ω)R−1
t,canc(`)ct (ω)−g[ω,ω, `]

)
}.

(2.53)

Optimizing the cost function for the reduce dimension filter and mapping back to full rank yields

uRD-MMSE,con (ω, `) =
g[ω,ω, `]Tt (ω)Q̃−1

t (ω, `)TH
t (ω)R−1

t,canc(`)ct(ω)

cH
t (ω)R−1

t,canc(`)Tt (ω)Q̃−1
t (ω, `)TH

t (ω)R−1
t,canc(`)ct(ω)

(2.54)

which is straightforward to obtained using a similar procedure in the previous section.

Beamspoiling is performed using the same formulation as (2.35)

uRD-MMSE,beam (ω, `) =

√
KD

KD
∑

kD=−KD

uRD-MMSE,con (ω + kD∆ω, `)cH
t (ω + kD∆ω)ct (ω)

KD
∑

kD=−KD

cH
t (ω + kD∆ω)ct (ω)

. (2.55)

The iterative procedure of PAMMDP closely follows the AMMDP procedure. The procedure

initializes similarly with the maximum SNR Doppler filter response after clutter cancellation

x̂PAMMDP,0 (`) = UH
DPR̂−1

t,canc (`)zt (`) . (2.56)

The first stage of the procedure estimates the ith power distribution matrix using the previous

Doppler estimate

P̂PAMMDP,i (`) = x̂PAMMDP,i−1 (`) x̂H
PAMMDP,i−1 (`)� ILD×LD. (2.57)
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Next, the StCM is formed using the power distribution matrix, noise power, and error power

Q̂PAMMDP,i (ω, `) = TH
t (ω) R̂−1

t,canc (`)CtP̂PAMMDP,i (`)CH
t R̂−1

t,canc (`)Tt (ω)�
(
1Dt×Dt + σ

2
errIDt×Dt

)
+σ

2
v IDt×Dt .

(2.58)

The StCM is mapped to each Doppler frequency. The constrained filter is then formed using the

StCM

ûPAMMDP,con,i (ω, `) =
ĝ[ω,ω, `]Tt (ω)Q̂−1

PAMMDP,i (ω, `)TH
t (ω) R̂−1

t,canc (`)ct (ω)

cH
t (ω) R̂−1

t,canc (`)Tt (ω)Q̂−1
PAMMDP,i (ω, `)TH

t (ω) R̂−1
t,canc (`)ct (ω)

(2.59)

where ĝ[ω,ω, `] is formed using (2.12) and the estimated StCM. Beamspoiling is then conducted

for each range-Doppler bin,

ûPAMMDP,beam,i (ω, `) =

√
KD

KD
∑

kD=−KD

ûPAMMDP,con (ω + kD∆ω, `)cH
t (ω + kD∆ω)ct (ω)

KD
∑

kD=−KD

cH
t (ω + kD∆ω)ct (ω)

(2.60)

A bank of beamspoiled filters is generated and subsequently applied to the receive data to obtain

the updated estimate of the spectrum

x̂PAMMDP,i (`) = ÛH
PAMMDP,beam,i (`) R̂−1

t,canc (`)zt (`) . (2.61)

The procedure returns to (2.57) to update the power distribution matrix and concludes after a user-

defined number of iterations.

In [38], the authors showed that reduced-rank adaptive processing performance is less than or

equal to full-rank performance for fixed transformations. The trade space between performance

and computation for PAMMDP is based on this premise. The StCM used in the RMMSE

formulation is a full-rank matrix and sufficiently trained due to the oversampling of the spectrum.
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Even for a critically sampled spectrum (which is equivalent to a DFT matrix) the rank of StCM is

full. The performance of implementing a Doppler transformation matrix for the proposed

PAMMDP is less than or equal to the full-rank AMMDP formulation. The simulation and

experimental results will show a trade-off exists between sidelobe suppression and computation

for practical application of RMMSE in random PRI staggering radar.

2.4 Simulation Results

The proposed Doppler processing formulations were examined over Monte Carlo simulations for

1000 trials. A chirp waveform is generated with Bτ = 150 for M = 48 pulses. The mth PRI is

formed by multiplying a desired average PRI by a normalized PRI such that Tm = εmTr,avg. The

normalized PRI is a random variable with a uniform distribution. See Table 2.1 for more details

about the distribution. The mean is set to E[εm] = 1 such that E[Tm] = Tr,avg. Next, an interval

length of εm, denoted as W, is set to limit the temporal extent of the random PRI staggers. The

interval length is varied from 0 to 1 by values of 0.1. When W = 0, the PRIs are uniform. The

lower and upper bounds of εm, denoted as a and b respectively, were calculated thereafter. The

average PRI for the analyses is set to Tr,avg = 20 µs which corresponds to a PRF of 50 kHz for a

sampling rate of 200 MHz.

The randomness of the average PRI changes the slow-time sampling of the temporal steering

vector. The standard deviation of the normalized PRI is denoted σε . The temporal steering

vectors denotation are change from ct (ω) to ct (ω;σε) to include the dependence on the

randomness. Doppler filters have a similar modification. Table 2.2 presents the numerical values

for the distribution for varying interval lengths. Each standard deviation in Table 2.2 is examined

for Doppler processing, window Doppler processing, AMMDP, and PAMMDP with and without

clutter cancellation. Throughout the various analyses, a Taylor window with -50 dB peak sidelobe

and five nearly constant sidelobes is employed. Also, five iterations of AMMDP and PAMMDP is

performed. PAMMDP is examined at the minimum reduction of Dt = 3 (best-case

computationally) to a maximum reduction (relative to the number of pulses) of Dt = 47
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(worst-case computationally). The spectrum is examined with an oversampling factor of KD = 5.

The efficacies of the formulations are examined under the following metrics: average sidelobe

response, average loss factor, and total residual sidelobe response.

Table 2.1: Distribution parameters of PRI staggering

Parameter εm Tm = εmTr,avg

Distribution εm ∼U (a,b) Tm ∼U (aT ,bT )
Mean

(User Defined) µε = E [εm] =
a+b

2 = 1 µT = E [Tm]= Tr,avg

Interval Length
(User Defined) W = b−a WT = (b−a)Tr,avg

Upper Bound
(Calculated) a = µε − W

2 aT =
(
µε − W

2

)
Tr,avg

Lower Bound
(Calculated) b = µε +

W
2 bT =

(
µε +

W
2

)
Tr,avg

Variance
(Calculated) σ2

ε = (b−a)2

12 = W 2

12 σ2
T = (b−a)2

12 T 2
r,avg =

W 2

12 T 2
r,avg

Standard Deviation
(Calculated) σε =

b−a√
12

= W√
12

σT = b−a√
12

Tr,avg =
W√
12

Tr,avg

Table 2.2: Numerical values of distribution parameters for Tr,avg = 20µs

εm Tm

µε W a b σ2
ε σε µT (µs) WT (µs) aT (µs) bT (µs) σ2

T (µs) σT (µs)
1.00 0.00 1.00 1.00 0.0000 0.0000 20.00 0.00 20.00 20.00 0.0000 0.0000
1.00 0.10 0.95 1.05 0.0008 0.0289 20.00 2.00 19.00 21.00 0.3333 0.5774
1.00 0.20 0.90 1.10 0.0033 0.0577 20.00 4.00 18.00 22.00 1.3333 1.1547
1.00 0.30 0.85 1.15 0.0075 0.0866 20.00 6.00 17.00 23.00 3.0000 1.7321
1.00 0.40 0.80 1.20 0.0133 0.1155 20.00 8.00 16.00 24.00 5.3333 2.3094
1.00 0.50 0.75 1.25 0.0208 0.1444 20.00 10.00 15.00 25.00 8.3333 2.8868
1.00 0.60 0.70 1.30 0.0300 0.1732 20.00 12.00 14.00 26.00 12.0000 3.4641
1.00 0.70 0.65 1.35 0.0408 0.2021 20.00 14.00 13.00 27.00 16.3333 4.0415
1.00 0.80 0.60 1.40 0.0533 0.2310 20.00 16.00 12.00 28.00 21.3333 4.61880
1.00 0.90 0.55 1.45 0.0675 0.2598 20.00 18.00 11.00 29.00 27.0000 5.1962
1.00 1.00 0.50 1.50 0.0834 0.2887 20.00 20.00 10.00 30.00 33.3333 5.7735
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2.4.1 Average sidelobe response

Average sidelobe response (ASR) considers the average power spectral density of the Doppler

spectrum. The analysis examines the suppression capabilities of the Doppler processing

techniques. Consider the following signal vector after pulse compression

zt (`;σε) = x̄ [ωmov, `]ct (ωmov;σε)+vt (`) , (2.62)

which contains a single point scatterer at zero-Doppler with unit amplitude i.e., |x̄[ωmov, `]|2 = 1

and ωmov = 0. The noise floor is approximately -85 dB after pulse compression gain. The high

SNR will show the sidelobe suppression capabilities relative to the noise floor. The ASR is the

expectation of the estimate of the power spectrum over Monte Carlo trials

ASRp (ω, `;σε) = E
{∣∣uH

p (ω;σε)zt (`;σε)
∣∣2} (2.63)

where p ∈ [DP, WDP, AMMDP, PAMMDP] for Doppler processing, windowed Doppler

processing, AMMDP, and PAMMDP, respectively. Each Monte Carlo trial generates a different

noise instantiation. The final responses are peak-normalized for a one-to-one comparison.

Mismatch loss is examined in the succeeding section.

In Figure 2.5, ASR is presented for uniform PRI. Included in Fig 2.5 is a zoomed-in version of

the spectrum on the mainlobe response to distinguish between techniques. Doppler processing

results in a typical sinc response. Windowing provides the well-known benefit of sidelobe

suppression. For a single point target, the AMMDP and PAMMDP formulations are robust in the

suppression of sidelobes. A low rank implementation of PAMMDP affirms a robust response can

be obtained for uniform PRI with minimal computation. The results are a baseline for the

staggered PRI cases.

Figure 2.6 presents ASR with minor staggering for σε = 0.0289. Sidelobes and aliasing are

unchanged for Doppler processing. Sidelobes for windowing have increased above -50 dB. For
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DP
WDP
AMMDP,M=48
PAMMDP,D t=3 
PAMMDP,D t=7
PAMMDP,D t=15
PAMMDP,D t=23
PAMMDP,D t=35 
PAMMDP,D t=47

Fig. 2.5: Average sidelobe response for uniform PRI with σε = 0 (top) and zoomed in between
ω =−0.2 and ω = 0.2 (bottom)
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both, aliasing is still prevalent. AMMDP can leverage the minor dithering of the PRI to suppress

the aliased response at ω = 1 by 60 dB. The differences between Figs. 2.5 and 2.6 are profound for

PAMMDP. The trade-space between performance and computation begins to show with the slight

dithering of the PRI. At Dt = 3, PAMMDP sidelobes are below Doppler processing but above

windowing closer toward the true target velocity. Also, PAMMDP is unable to suppress the aliased

response. As Dt increases, the sidelobes are suppressed and the ability to suppress the aliased

response improves. The suppression comes to a head at Dt = 47, where performance is similar

to AMMDP. Even performing better in some instances. Therefore, if, for example, M̃ out of M

PRIs are varied within a CPI, M̃ number of adaptive degrees-of-freedom are required to suppress

the deleterious sidelobes caused by staggering. This is observed throughout the PAMMDP results

where Dt adaptive degrees-of-freedom are available while all M PRIs within the CPI are staggered.

As Dt increases toward M, PAMMDP sidelobe cancellation performance also improves. This

implies that for a uniform PRI, the adaptive degrees-of-freedom required is one which is shown by

the robustness of PAMMDP Dt = 3 in Fig. 2.5.

When performing AMMDP and PAMMDP an "edge effect" of the Doppler response occurs

(seen at ω = 1.5). The effect is a byproduct of the region of the spectrum that is examined. The

spectrum is examined for a normalized Doppler frequencies between ω = −0.5 to ω = 1.5. One

solution would be overlapping the regions to overcome the edge effect. A second option, presented

here where the performance is presented for normalized Doppler frequencies between -0.3 to 1.5,

is examining beyond the intended region.

In Figures 2.7-15, the different processing techniques are presented with each figure having a

different standard deviation. The sidelobe performance of Doppler processing, windowing,

AMMDP, and PAMMDP are similar within these figures. Overall, as standard deviation increases,

aliasing diminishes and the sidelobes begin to "flatten" to a "sidelobe floor." The response is a

result of a spread of the energy from the alias response into the rest of the spectrum. In some

instances throughout these results, PAMMDP at Dt = 47 performs better than AMMDP. Since

PAMMDP is post-Doppler approach, the Doppler transformation matrix makes the formulation
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PAMMDP,D t=3
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WDP

Fig. 2.6: Average sidelobe response for staggered PRI with σε = 0.0289
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WDP
AMMDP,M=48
PAMMDP,D t=3 
PAMMDP,D t=7
PAMMDP,D t=15
PAMMDP,D t=23
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PAMMDP,D t=7

PAMMDP,D t=35

PAMMDP,D t=23

AMMDP

PAMMDP,D t=47

Fig. 2.7: Average sidelobe response for staggered PRI with σε = 0.0577
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structurally different. PAMMDP accounts for sidelobes post-processing thereby leveraging the

coherence that was performed beforehand. The response is observed in Fig. 2.7. For the aliased

target at Doppler frequency of 1, AMMDP has of a "square" response of while PAMMDP is

"rounded." Also, looking at the sidelobes from normalized Doppler of 0.1 to 0.8, AMMDP

displays a slight sinc lobing structure while PAMMDP is fairly flat although higher in power.

To accompany the figures, tables of the ASR values from the results are presented. Table 2.3

presents the ASR at ω = 1 where aliasing would occur for uniform PRI. Lower power responses are

desirable. As staggering is introduced, the suppression of the aliasing begins. The aliased response

reduces with an increase in the standard deviation of the staggering. In these trials, the results had

a benefit of -16.40 dB at W = 1. PAMMDP can reach a similar reduction at W = 0.70 with -16.80

dB at a low rank of 3. As the rank increases for PAMMDP, the less requirement for staggering is

necessary. Table 2.4 presents the ASR from the 0.3 to 1.3 band of normalized Doppler frequencies

omitting the edge effect. Highlighted in yellow is differences from Table 2.3. As staggering is

introduced, the suppression of the aliasing begins. These tables show that AMMDP significantly

benefits from the small dithering of the PRI. AMMDP is more consistent in the spread of the

energy from the alias response into the rest of the spectrum.

The results presented consider a single point target with high SNR. Practically, multiple movers

may be present and SNR can be lower. The open-air experiments presented in Section 2.5 are

indicative of a radar scene. Readers should take into consideration the simulation results show the

possibilities of AMMDP. Overall, AMMDP and PAMMDP provides a robust solution to sidelobe

suppression of staggered PRI transmission. PAMMDP is viable method between performance and

computation.
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Fig. 2.8: Average sidelobe response for staggered PRI with σε = 0.0866

DP
WDP
AMMDP,M=48
PAMMDP,D t=3 
PAMMDP,D t=7
PAMMDP,D t=15
PAMMDP,D t=23
PAMMDP,D t=35 
PAMMDP,D t=47PAMMDP, Dt=7

AMMDP

PA-RISR, Dt=3
WDP

DP

PAMMDP,D t=15

PAMMDP,D t=35
PAMMDP,D t=47

PAMMDP,D t=23

Fig. 2.9: Average sidelobe response for staggered PRI with σε = 0.1155
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Fig. 2.10: Average sidelobe response for staggered PRI with σε = 0.1444
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Fig. 2.11: Average sidelobe response for staggered PRI with σε = 0.1732
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Fig. 2.12: Average sidelobe response for staggered PRI with σε = 0.2021
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Fig. 2.13: Average sidelobe response for staggered PRI with σε = 0.2310
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Fig. 2.14: Average sidelobe response for staggered PRI with σε = 0.2598
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Fig. 2.15: Average sidelobe response for staggered PRI with σε = 0.2887
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Table 2.3: Average sidelobe response of aliased response at ω = 1

W σε σT (µs) DP (dB) WDP (dB) AMMDP (dB) PAMMDP (dB)
Dt = 3 Dt = 7 Dt = 15 Dt = 23 Dt = 35 Dt = 47

0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 0.0289 0.5774 -0.57 -0.49 -62.79 -2.49 -12.23 -25.60 -38.80 -52.67 -61.97
0.20 0.0577 1.1547 -2.17 -1.88 -68.82 -5.29 -21.95 -37.26 -46.60 -60.91 -69.31
0.30 0.0866 1.7321 -4.39 -3.80 -72.12 -8.12 - 26.40 -41.00 -51.63 -65.57 -73.59
0.40 0.1155 2.3094 -6.98 -6.02 -74.68 -11.23 -31.37 -44.76 -55.01 -68.83 -76.40
0.50 0.1444 2.8868 -9.38 -8.15 -76.86 -13.87 -37.22 -46.82 -57.77 -71.07 -78.18
0.60 0.1732 3.4641 -11.35 -9.76 -78.55 -15.64 -38.56 -49.09 -60.67 -72.35 -79.72
0.70 0.2021 4.0415 -13.38 -11.71 -80.05 -16.85 -41.91 -50.26 -61.71 -73.51 -80.64
0.80 0.2310 4.61880 -14.55 -13.05 -81.00 -17.58 -41.16 -51.32 -62.09 -73.49 -80.62
0.90 0.2598 5.1962 -15.70 -14.17 -81.92 -17.97 -40.46 -51.56 -62.22 -73.89 -81.02
1.00 0.2887 5.7735 -16.40 -14.93 -82.85 -18.28 -38.97 -51.94 -62.14 -74.35 -80.99

Table 2.4: Maximum average sidelobe response over normalized Doppler bandwidth 0.3 to 1.3

W σε σT (µs) DP (dB) WDP (dB) AMMDP (dB) PAMMDP (dB)
Dt = 3 Dt = 7 Dt = 15 Dt = 23 Dt = 35 Dt = 47

0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 0.0289 0.5774 -0.57 -0.49 -62.05 -2.49 -12.23 -25.60 -38.80 -52.67 -61.97
0.20 0.0577 1.1547 -2.17 -1.88 -68.24 -5.29 -21.95 -37.26 -46.60 -60.91 -69.31
0.30 0.0866 1.7321 -4.39 -3.80 -71.72 -8.12 - 26.40 -41.00 -51.63 -65.57 -73.59
0.40 0.1155 2.3094 -6.98 -6.02 -74.38 -11.23 -31.37 -44.76 -55.01 -68.83 -76.39
0.50 0.1444 2.8868 -9.38 -8.15 -76.74 -13.87 -37.22 -46.82 -57.77 -71.07 -78.14
0.60 0.1732 3.4641 -11.35 -9.74 -78.45 -15.61 -38.43 -48.96 -60.67 -72.35 -79.51
0.70 0.2021 4.0415 -13.11 -11.56 -79.96 -16.84 -40.13 -49.86 -61.63 -73.16 -80.14
0.80 0.2310 4.61880 -14.16 -12.70 -80.95 -17.24 -39.34 -50.78 -61.71 -73.27 -80.36
0.90 0.2598 5.1962 -15.15 -13.57 -81.56 -17.71 -39.35 -51.18 -61.47 -73.49 -80.63
1.00 0.2887 5.7735 -15.79 -14.25 -82.16 -17.60 -38.42 -51.33 -61.36 -73.51 -80.62

2.4.2 Average Loss Factor

The SNR-normalized SINR metric from [32] examines the detriment caused by interference

independent of the signal. The metric is a loss factor with the interference being the driving factor

to the loss. The receive signal model considers homogeneous clutter. To mimic clutter, multiple

point scatterers are generated. One hundred clutter scatterers are uniformly distributed over a

normalized bandwidth of 0.01 centered at zero-Doppler with an average clutter-to-noise (CNR)
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set to 80 dB. The signal vector used for the metric is

zt (`;σε) = ∑
ωclu

x̄(ωclu, `)ct (ωclu;σε)+vt (`) . (2.64)

To have a high-fidelity representation of the clutter, the samples used to generate the clutter in a

given bin is preserved for formation of the optimal cancellation matrix. Ultimately, the analysis

details how the sidelobe suppression affects the clutter cancellation.

When considering variations in staggering, the cancellation matrix becomes

Rt,canc (`;σε) = (1/σ2
v )E

{
zt (`;σε)zH

t (`;σε)
}

. SINR of the estimate is

SINRp (ω, `;σε) =

_
ρ [ω, `]

∣∣wH
p (ω, `;σε)ct (ω;σε)

∣∣2
wH

p (ω, `;σε)Rt,canc (`;σε)wp (ω, `;σε)
(2.65)

where wp (ω, `;σε) = R−1
t,canc (`;σε)up (ω, `;σε) denotes the multiple formulations p ∈ [DP, WDP,

AMMDP, PAMMDP] with cancellation. SNR is expressed as

SNRp (ω, `;σε) =

_
ρ [ω, `]

∣∣wH
p (ω, `;σε)ct (ω;σε)

∣∣2
wH

p (ω, `;σε)Rt,vwp (ω, `;σε)

=

_
ρ [ω, `]

∣∣wH
p (ω, `;σε)ct (ω;σε)

∣∣2
σ2

v
∥∥wp (ω, `;σε)

∥∥2 .

(2.66)

The loss factor is the ratio between SINR and SNR

ηp (ω, `;σε) =
SINRp (ω, `;σε)

SNRp (ω, `;σε)

=
σ2

v
∥∥wp (ω, `;σε)

∥∥2

wH
p (ω, `;σε)Rt,canc (`;σε)wp (ω, `;σε)

=
σ2

v
∥∥R−1

t,canc (`;σε)up (ω, `;σε)
∥∥2

uH
p (ω, `;σε)R−1

t,canc (`;σε)up (ω, `;σε)
.

(2.67)

The average loss factor (ALF) is the expectation over Monte Carlo trials

ALFp (ω, `;σε) = E
{

ηp (ω, `;σε)
}
. (2.68)
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Mismatch loss is shown outside the clutter notch when ALF is less than 0 dB. Within the clutter

notch, the ALF presents expected MDD. The metric describes the closest Doppler frequency to

zero that can be attained before a predetermined SINR loss γMDD in the clutter notch. Define ΩL

as a set of normalized Doppler frequencies from -0.5 to 0 and ΩU as a set of frequencies from 0 to

0.5. The MDD leveraging ALF is

MDDp(`;σε) =
1
2

(
argmin

ωU

{|ALFp (ωU , `;σε)− γMDD|2}− argmin
ωL

{|ALFp (ωL, `;σε)− γMDD|2}
)

(2.69)

where the operation argmin
x
{ f (x)} is the value of x where f (x) is minimized, ωU ∈ ΩU , and

ωL ∈ ΩL. An example of MDD at 10log10(γMDD) = −3 dB for an arbitrary optimal SINR is

presented in Figure 2.16. The metric is typically set to -3 dB since that is where half the power is

lost.

Optimal SINR
MDD

Fig. 2.16: Example of minimum detectable Doppler frequency for an SINR/SNR response

Figure 2.17 presents the loss factor for a uniform PRI. The ALF figures presented in this

subsection contain two plots. The left plot presents the notch depth of the high-pass filter and the

aliased notch. The right plot presents ALF above -6 dB to depict the mismatch loss. The left plot
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Fig. 2.17: Average loss factor for uniform PRI; Zoomed out (left) and zoomed in above -6 dB
(right)

includes a dotted line at -6 dB. The undesirable comb filter from uniform transmission, which

leads to blind speeds, is seen with an aliased null at normalized Doppler frequency of 1. Each

formulation exhibits the same aliasing effect. AMMDP has the least amount of mismatch loss

since it is the closet response to the optimal SINR. In the previous analysis, AMMDP was shown

provide best sidelobe suppression (see Fig. 2.5). Thus, AMMDP provides minimal loss with

maximal sidelobe suppression. For PAMMDP, the different reductions mainly have minor loss of

roughly 0.8 dB. At Dt = 3, the loss is closest to AMMDP because the Dt is less than the

oversampling rate of 5 being used in these results. Consequently, beamspoiling causes PAMMDP

to have a fractional loss for the benefit of nominal resolution. The MDD increases proportionally

with Dt. Windowing provides the worst-case loss in comparison to adaptive formulations.

Figures 2.18-27 present ALF for with increasing standard deviation. These figures show as

the standard deviation increases, staggering decreases the depth of the loss at ω = 1 and MDD of

each approach decreases. Also, throughout the results AMMDP performs efficiently by having a

minor mismatch loss of a fraction of a dB. In Fig. 2.18 staggering for σε = 0.0289 is presented.

AMMDP and PAMMDP at Dt = 3 remain the next two closest responses to the optimal SINR. As

the reduced-rank decreases, the mismatch loss and MDD improves. In some instances, such as

Dt = 35 and Dt = 47, the mismatch loss falls below windowing. These reductions would be high

for a computational benefit.
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Fig. 2.18: Average loss factor for staggered PRI with σε = 0.0289; Zoomed out (left) and zoomed
in above -6 dB (right)

The performance of windowing, AMMDP, and PAMMDP observed in Figure 2.18 remains

fairly consistent for Figs 2.18-27. Fig. 2.27 demonstrates the overall trade-space for PAMMDP

performance. At higher rank reductions, PAMMDP is more susceptible to mismatch loss.

Considering the results from the previous section, a lower rank has the lowest computation,

worst-case sidelobes, and best-case mismatch loss. For a high deviation in the pulse-to-pulse

staggering, a higher rank reduction has the highest computation, best-case sidelobes, and

worst-case loss. Therefore, a lower reduced rank suffers less mismatch loss and have better MDD

at the penalty of degraded sidelobe suppression performance. Also, the edge effect from

performing AMMDP and PAMMDP likewise affects the loss. Solution presented in the previous

section should be implemented to maximize the adaptive filters performance. It is worth

mentioning that AMMDP and PAMMDP maintain a great notch at zero-Doppler and do not

hinder performance.

Tables 2.5 and 2.6 are presented to accompany the responses show in the figures. Table 2.5

presents the average loss factor at the aliased target response of ω = 1. Table 2.6 presents the

ALF at over the 0.3 to 1.3 band of normalized Doppler frequencies omitting the edge effect.

Highlighted in yellow is differences from Table 2.5. For uniform PRI in the first row presents the

depth of the clutter notch. Since aliasing is undesirable, a lower power in the alias notch is

undesirable. The table better represents the PAMMDP trade space showing that as rank increases,
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performance decreases. In some cases, PAMMDP ability to compensate for aliasing is less than

windowing. It should be emphasized that most of the performance benefit seen in Tables 2.5 and

2.6 is a result of staggering. The results show how performance is varied for each staggering

scenario. The performance differences are a fraction of a dB so overall the performance

difference results are small. However, the stability of the algorithms as a function of staggering is

seen. Doppler processing, windowing, and AMMDP remain stable. PAMMDP stability across

staggering decreases with increasing Dt.
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Fig. 2.19: Average loss factor for staggered PRI with σε = 0.0577; Zoomed out (left) and zoomed
in above -6 dB (right)
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Fig. 2.20: Average loss factor for staggered PRI with σε = 0.0866; Zoomed out (left) and zoomed
in above -6 dB (right)
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Fig. 2.21: Average loss factor for staggered PRI with σε = 0.1155; Zoomed out (left) and zoomed
in above -6 dB (right)
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Fig. 2.22: Average loss factor for staggered PRI with σε = 0.1444; Zoomed out (left) and zoomed
in above -6 dB (right)
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Fig. 2.23: Average loss factor for staggered PRI with σε = 0.1732; Zoomed out (left) and zoomed
in above -6 dB (right)
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Fig. 2.24: Average loss factor for staggered PRI with σε = 0.2021; Zoomed out (left) and zoomed
in above -6 dB (right)
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Fig. 2.25: Average loss factor for staggered PRI with σε = 0.2310; Zoomed out (left) and zoomed
in above -6 dB (right)
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Fig. 2.26: Average loss factor for staggered PRI with σε = 0.2598; Zoomed out (left) and zoomed
in above -6 dB (right)
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Fig. 2.27: Average loss factor for staggered PRI with σε = 0.2887; Zoomed out (left) and zoomed
in above -6 dB (right)

Table 2.5: Average loss factor at ω = 1

W σε σT (µs) DP (dB) WDP (dB) AMMDP (dB) PAMMDP (dB)
Dt = 3 Dt = 7 Dt = 15 Dt = 23 Dt = 35 Dt = 47

0.00 0.0000 0.0000 -69.31 -82.9 -84.54 -90.71 -79.51 -83.21 -81.10 -78.06 -79.08
0.10 0.0289 0.5774 -13.13 -15.16 -14.98 -13.73 -15.01 -16.37 -16.91 -17.93 -18.79
0.20 0.0577 1.1547 -7.33 -8.75 -8.85 -7.83 -8.73 -10.14 -10.96 -12.20 -13.09
0.30 0.0866 1.7321 -4.40 -5.71 -5.65 -4.76 -5.40 -6.76 -7.67 -9.05 -9.93
0.40 0.1155 2.3094 -2.70 -3.98 -3.73 -3.02 -3.51 -4.74 -5.55 -6.97 -7.82
0.50 0.1444 2.8868 -1.74 -3.06 -2.56 -2.01 -2.39 -3.38 -4.05 -5.41 -6.19
0.60 0.1732 3.4641 -1.21 -2.55 -1.82 -1.44 -1.74 -2.61 -3.16 -4.32 -4.99
0.70 0.2021 4.0415 -0.86 -2.23 -1.34 -1.07 -1.33 -2.08 -2.52 -3.52 -4.08
0.80 0.2310 4.61880 -0.64 -2.05 -1.02 -0.85 -1.07 -1.72 -2.13 -3.02 -3.47
0.90 0.2598 5.1962 -0.50 -1.92 -0.82 -0.69 -0.89 -1.47 -1.85 -2.72 -3.10
1.00 0.2887 5.7735 -0.39 -1.83 -0.67 -0.57 -0.75 -1.32 -1.67 -2.46 -2.79
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Table 2.6: Average loss factor over normalized Doppler bandwidth 0.3 to 1.3

W σε σT (µs) DP (dB) WDP (dB) AMMDP (dB) PAMMDP (dB)
Dt = 3 Dt = 7 Dt = 15 Dt = 23 Dt = 35 Dt = 47

0.00 0.0000 0.0000 -69.31 -95.18 -90.84 -90.71 -79.51 -83.21 -81.10 -78.06 -79.08
0.10 0.0289 0.5774 -13.13 -15.21 -14.98 -13.73 -15.01 -16.37 -16.91 -17.93 -18.82
0.20 0.0577 1.1547 -7.33 -8.75 -8.85 -7.83 -8.73 -10.14 -10.96 -12.28 -13.55
0.30 0.0866 1.7321 -4.40 -5.71 -5.65 -4.76 -5.41 -6.76 -7.67 -9.05 -9.99
0.40 0.1155 2.3094 -2.72 -3.98 -3.74 -3.03 -3.52 -4.74 -5.55 -6.97 -7.82
0.50 0.1444 2.8868 -1.80 -3.09 -2.59 -2.06 -2.44 -3.39 -4.06 -5.41 -6.19
0.60 0.1732 3.4641 -1.24 -2.56 -1.84 -1.46 -1.76 -2.61 -3.16 -4.34 -5.00
0.70 0.2021 4.0415 -0.88 -2.25 -1.37 -1.11 -1.37 -2.15 -2.60 -3.58 -4.10
0.80 0.2310 4.61880 -0.67 -2.06 -1.06 -0.88 -1.11 -1.80 -2.22 -3.12 -3.53
0.90 0.2598 5.1962 -0.55 -1.97 -0.90 -0.75 -0.96 -1.55 -1.94 -2.80 -3.17
1.00 0.2887 5.7735 -0.48 -1.91 -0.79 -0.68 -0.88 -1.45 -1.82 -2.62 -2.92

2.4.3 Total Residual Sidelobe Response

Total residual sidelobe response (TRSR) examines the aggregate sidelobe energy after processing.

The metric examines the sidelobe suppression performance of the various Doppler processing

algorithms. The analysis considers the following receive signal

zt (`;σε) =


x̄ [ωmov, `mov]ct (ωmov;σε)+ ∑

ωclu∈Ωclu

x̄ [ωclu, `clu]ct (ωclu;σε)+vt (`;σε) for `mov = `

∑
ωclu∈Ωclu

x̄ [ωclu, `clu]ct (ωclu;σε)+vt (`;σε) otherwise,

(2.70)

with a single target at ωmov = 0.8 placed in the center range bin of the data with SNR = 50 dB

and 100 clutter scatterers containing normalized Doppler frequencies uniformly distribution over

a normalized Doppler bandwidth of 0.01 centered at zero Doppler and an average CNR = 50 dB.

Clutter is generated separately for each range bin and Monte Carlo run. The TRSR metric without

cancellation is

TRSRp (`;σε) =

∑
ω∈Ω

∣∣uH
p (ω;σε)zt (`;σε)

∣∣2
max

ω

{∣∣uH
DP (ω;σε)zt (`;σε)

∣∣2} (2.71)

100



where p ∈ [DP, WDP, AMMDP, PAMMDP] to denote the different processing techniques. When

cancellation is performed, zt (`;σε) is replaced by _z t (`;σε). The set Ω contains the oversampled

normalized Doppler spectrum from ω = −1 to ω = 1 but omits frequencies corresponding to

the nominal mainlobe resolution of the mover mainlobe and clutter bandwidth. Hence, only the

sidelobes are examined. The normalization term in each TRSR is approximately one. In some

instances, it may be slightly above one due to the clutter. When clutter cancellation is performed,

the normalization is always below one. The formation of the SaCM satisfies the RMB rule with

guard cells removed to avoid self-cancellation.

In Figure 2.28, TRSR is presented without clutter cancellation as a function of standard

deviation. Without staggering, the AMMDP formulation outperforms Doppler processing and

window Doppler processing. When modest staggering is incorporated at σε = 0.0289, AMMDP

ability to suppress sidelobes significantly improves by roughly 20 dB. PAMMDP follows suit for

higher values of Dt. Performance diminishes as Dt decreases. Even at Dt = 3 for σε = 0.0289,

PAMMDP performs better than typical processing techniques. For the PAMMDP results, as

standard deviation increases, it presents a valley then a monotonic increase. The loss in

performance as a function of standard deviation shows that the lower reduced-rank filters do not

have the degrees-of-freedoms necessary to combat the rising sidelobes. AMMDP can maintain its

performance as standard deviation increases. Overall, staggering is an asset to AMMDP to

improve the formulation sidelobe performance. In Figure 2.29, TRSR is presented with clutter

cancellation. Without staggering, the Doppler processing, windowing, and adaptive mismatch

processing techniques improve by approximately 3 dB in comparison to Figure 2.27. The gains in

PAMMDP for lower ranks are higher with some improvements greater than 6 dB (see Dt = 7 and

Dt = 15). As Dt increases, the effect of MTI filtering to boost performance decreases. Utilizing

MTI filtering with AMMDP and PAMMDP provide a performance improvement to Doppler

processing. Combining clutter cancellation and PAMMDP is a necessity to maximize the

performance of the sidelobe suppression. Sidelobe suppression performance significantly

improves for AMMDP and PAMMDP (at medium to high rank reductions) when PRI staggering
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is incorporated. Lastly, an interesting result is the valley at σε = 0.0577 for the PAMMDP results

which shows the responses having a maximum staggering performance at this variance.

AMMDP

WDP

DP

PAMMDP D
t
=7

PAMMDP D
t
=3

PAMMDP D
t
=35
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t
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t
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Fig. 2.28: Total residual sidelobe response for uniform and random staggered PRI without clutter
cancellation
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Fig. 2.29: Total residual sidelobe response for uniform and random staggered PRI with clutter
cancellation
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2.5 Ground-Based Open-Air Experimental Results

Open-air experimental testing was performed at the University of Kansas to further examine the

proposed techniques. A monostatic, ground based, pulse-Doppler radar operating at S-band carrier

frequency of 3.55 GHz with simultaneous transmit and receive capabilities was utilized. Figure

2.30 presents the experimentation set-up and scene field of view. The transmit and receive antennas

are steered towards a nearby busy intersection. The radar scene included forestry and buildings in

addition to moving vehicles. A transmit LFM waveform with a time bandwidth of Bτ = 150 was

generated via an arbitrary waveform generator. The receive data was IQ sampled using a real-time

spectrum analyzer. The IQ data was later processed off-line. The receiver sampling rate is fs = 200

MHz. The noise floor is estimated to be -65 dBm. The noise floor decreases to approximately -104

dBm following coherent gains from pulse compression and Doppler processing. The error power

is determined empirically and was set to 10 dB below the noise floor.

The uniform and staggered PRI datasets were collected in different runs. Consequently, the

radar scenes in each collection differ. For continuity between the runs, a synthetic target is place

at ω = 0.8 in range cuts of interest that contain a target. The PRIs were staggered CPI-to-CPI for

48 CPIs. Each CPI contained a uniform PRI of 50 pulses. In total, 2400 pulses were transmitted.

The random staggered PRI is selected over a PRF range of 30 kHz and 100 kHz. The selected

staggers had an average PRF of 50 kHz. The random selection of PRI significantly increased the

unambiguous Doppler frequency. Based on the PRI parameters, movers within the radar scene fell

within the first PRI regime. However, the deleterious sidelobe effects of staggering still will be

present in receive processing.

Presumming is performed on each CPI, improving the SNR by approximately 16 dB.

Accordingly, the pulse-Doppler system transitioned to a pulse-to-pulse stagger with single CPI of

M = 48 pulses. The averaging likewise changes the system PRF range to 600 Hz and 2 kHz with

average PRF of 1 kHz for staggering. A second collection is obtained without PRI staggering

where 2400 pulses were transmitted with a PRF of 50 kHz. After pre-summing, the uniform PRI

collection contained M = 48 pulses and had a PRF of 1 kHz.
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After discrete pulse compression, the range profile is 2000 range samples. The intersection

being examined is contained within Lf = 400 range samples. The Doppler spectrum is examined

over a normalized Doppler region of -0.5 and 1. The spectrum was oversampled by a factor of

KD = 5 for a total of LD = 375 Doppler frequencies. Windowing was performed using a Taylor

window with a -50 dBm peak sidelobe and five nearly constant sidelobes. The iterative procedure

of AMMDP and PAMMDP concluded after 5 iterations. PAMMDP was set to Dt = 17.

2.5.1 Uniform PRI

In Figure 2.31, the Doppler spectrum at a range of 1035 m for a uniform PRI with and without MTI

filtering for the different processing techniques. The first PRF regime is from ω =−0.5 to ω = 0.5.

Any responses beyond ω = 0.5 are aliased. By observation, movers are present at ω = −0.2

Fig. 2.30: Hardware instrumentation setup (left) and annotated field of view (right, courtesy of
Google Maps) for measured results. The radar and intersection are depicted with a yellow star

and yellow ellipse, respectively
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and approximately ω = −0.05. The sidelobe suppression benefits of windowing, AMMDP, and

PAMMDP over Doppler processing are shown. For AMMDP and PAMMDP, the reduction of

power from the peak on movers and clutter is not fully a mismatch or signal loss. Rather the

contributions from adjacent sidelobes are being suppressed thereby reducing the response to its

"true" power. PAMMDP robustness from simulation results is observed here. In Fig. 2.31b, which

has MTI filtering, each technique can efficiently suppress the clutter response at zero-Doppler

while maintaining their estimation performance.

Range-Doppler maps of the collected data is presented for each processed technique with

Doppler processing in Figure 2.32, windowing in Fig. 2.33, AMMDP in Fig. 2.34, and PAMMDP

in Fig. 2.35. Aliased regions are highlighted by the pink dotted lines. Comparing maps containing

clutter, the Doppler sidelobes for Doppler processing is only prevalent. Other techniques have the

Doppler sidelobes suppressed. Windowing in Fig 2.33 presents the wider Doppler footprint of the

targets due to the mainlobe width widening. The AMMDP and PAMMDP maps are almost

identical and provides the mainlobe width of Doppler processing and sidelobe suppression of

windowing. Each map presented can leverage MTI filtering to suppress the clutter.
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Fig. 2.31: Doppler spectrum at range CUT 1150 m for a staggered PRI (top) with clutter and
(bottom) MTI filtering
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Fig. 2.32: Range-Doppler map of Doppler processing for a uniform PRI (top) with clutter and
(bottom) MTI filtering
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Fig. 2.33: Range-Doppler map of window Doppler processing for a uniform PRI (top) with
clutter and (bottom) MTI filtering
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Fig. 2.34: Range-Doppler map of AMMDP for a uniform PRI (top) with clutter and (bottom)
MTI filtering
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Fig. 2.35: Range-Doppler map of PAMMDP for a uniform PRI (top) with clutter and (bottom)
MTI filtering
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2.5.2 Staggered PRI

The following dataset was captured from a separate collection during the same test. Figure 2.36

presents the Doppler spectrum at range sample 1150 m. By observation, movers exist at ω =−0.3,

ω = 0.15, and ω = 0.8. Without MTI filtering in Fig. 2.36a, the sidelobe structure of Doppler

processing and windowing masks the mover at 0.8. As expected, windowing sidelobe benefits

diminish. AMMDP and PAMMDP can unmask this mover. Unlike for uniform PRI in the previous

section, AMMDP and PAMMDP have differing sidelobe structures. AMMDP provides better

nulls in some velocities (see normalized Doppler of ω = −0.32 and ω = −0.11). Incorporating

MTI filtering as shown in Fig. 2.36b benefits each formulation. However, Doppler processing

and windowing sidelobe floor is higher than AMMDP and PAMMDP. At zero-Doppler, Doppler

processing presents a distinct null. Windowing likewise places a null yet not as deep. The AMMDP

and PAMMDP formulation instead shows energy located in the Doppler bin.

The analysis continues to examine the range-Doppler maps of Doppler processing in Figure

2.37, windowing in Fig. 2.38, AMMDP in Fig. 2.39, and PAMMDP in Fig. 2.40. In Figs. 2.37a

and 2.38a for Doppler processing and windowing, respectively, the spectral spread in Doppler

due to staggering observed. Performing MTI filtering, shown in Figs. 2.36b and 2.37b, helps

tremendously. However, in range bins where movers are located, there is a spread of energy in

Doppler. AMMDP and PAMMDP, shown in Fig 2.38a and Fig. 2.39a, are able to efficiently

suppress the sidelobes and unmask scattering independent of MTI filtering. With MTI filtering,

each formulation leverages clutter cancellation to unmask slower movers closer to zero-Doppler.

The adaptive mismatch techniques perform better to resolve movers in comparison to traditional

techniques. Overall, PAMMDP at Dt = 17 provided a computational improvement by a factor

of approximately 3 and performs on par with AMMDP. Accordingly, the method can provide

performance and computation benefit simultaneous.
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Fig. 2.36: Doppler spectrum at range CUT 1150 m for a staggered PRI (top) with clutter and
(bottom) MTI filtering
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Fig. 2.37: Range-Doppler map of Doppler processing for a staggered PRI (top) with clutter and
(bottom) MTI filtering
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Fig. 2.38: Range-Doppler map of window Doppler processing for a staggered PRI (top) with
clutter and (bottom) MTI filtering
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Fig. 2.39: Range-Doppler map of AMMDP for a staggered PRI (top) with clutter and (bottom)
MTI filtering
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Fig. 2.40: Range-Doppler map of PAMMDP for a staggered PRI (top) with clutter and (bottom)
MTI filtering
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Chapter 3

Optimal and Adaptive Mismatch Angle-Doppler Processing

for Airborne Radar

A side-looking airborne radar (SLAR) performing ground moving target indication (GMTI) uses

a pulse-Doppler radar and a receive phase array to estimate the Doppler and angular location of

movers from space-time measurements. Due to the platform motion of the radar, a coupling occurs

between spatial angle and Doppler frequency. The coupling causes an angle induced Doppler shift

of clutter in the Doppler spectrum. The receive response from clutter is high due to the abundance

of clutter within a radar scene. Clutter sidelobes in angle and Doppler can mask slow-movers and

hinder detection performance. Therefore, clutter cancellation is a staple in moving target indication

(MTI) radar for improvement in mover estimation and detection. Instead of a high-pass Doppler

filter, which is typical for clutter cancellation in the Doppler spectrum, airborne GMTI uses a

band-stop Doppler filter that is Doppler frequency shifted based on the angle-Doppler coupling.

Implementing such a filter is difficult since parameters of the aircraft, such as velocity and rotation

about its principal axes, must be compensated for in the filter.

Space-time adaptive processing (STAP) is a novel technique to cancel clutter for airborne

GMTI. STAP is an adaptive angle-Doppler filter that performs clutter cancellation by using

receive data to adaptively account for angle-Doppler coupling. STAP is inherently a cascading of

cancellation and estimation angle-Doppler filters and can be viewed as a sequential

cancellation-then-estimation procedure. The cancellation stage is a data-dependent band-stop

filter formed from assessing the clutter statistics of the radar scene and generating a filter with the

stopband located at the clutter angle-Doppler frequency. The estimation stage subsequently
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maximizes signal-to-noise (SNR) on the residual response using a bank of data-independent

band-pass filters with each filter steered to a different angle-Doppler frequency.

A common method to perform the cancellation stage is sample matrix inversion [4]. The

technique is computationally expensive since it requires an estimation and inversion of a sample

covariance matrix (SaCM) every range sample. The dimension of the matrix scales with the

number of pulses in a coherent processing interval (CPI) and number of elements in a phased

array. Advancements have been made to overcome computational challenges of this first stage for

practical application [4, 7, 33]. The well-known method of rank reduction of a covariance matrix

will be explored in this work [4, 7, 33]. Reduced-rank processing decreases the matrix dimension

and reduces the number of training samples needed to satisfy Reed, Mallett, and Brennan (RMB)

[38]. The estimation of the covariance matrix containing clutter is expected to be low-rank [4].

STAP research focuses on modifications to the first stage to maximize cancellation performance

which in turn improves detection performance.

The estimation stage contains sidelobes due to a 2-D sinc response from using matched

angle-Doppler filters that maximum SNR. Variants of the estimation stage include a space-time

autoregressive model [95], adaptive displaced phase center antenna (DPCA) [96], multi-stage

Wiener filtering [97–101], and data-driven least-squares approaches [7, 102, 103]. Each of these

methods propose modifications to both stages simultaneously. In this chapter, optimal and

adaptive mismatch processing is proposed to replace the estimation stage in STAP. The mismatch

processing approaches seek to maximum signal-to-interference-plus-noise ratio (SINR) by

considering sidelobes as interference and mitigating them.

Optimal mismatch processing is a model-based least-squares (LS) approach. LS was

introduced to suppress pulse compression range sidelobes for phase codes [104]. The formulation

accounted for constant phase changes over chip intervals. The formulation was later modified for

frequency modulation waveforms [94, 105]. The subsequent success of the LS formulation led to

its implementation in stretch processing where the Fourier transform (FT) stage is replaced by a

LS transform [77]. Since Doppler processing is a FT based approach, the LS transform was
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explored for slow-time signals and included the incorporation of a covariance matrix to perform

clutter cancellation [68]. The LS transform can maintain nominal resolution, incurs little

mismatch loss, and provides adequate sidelobe suppression in comparison to traditional

processing using a FT and windowing [68]. There is a natural progression to the implementation

of LS on airborne GMTI radar since the difference from [68] is the implementation on 2-D

space-time signals instead of 1-D slow-time signals.

Adaptive mismatch processing is a re-iterative minimum mean square error (RMMSE)

approach introduced for adaptive beamforming and direction-of-arrival estimation for spatial

signals as re-iterative super resolution (RISR) [23]. Practical implementation of RMMSE

optimally reduces sidelobes with little mismatch loss by constraining the optimization and

maintaining nominal resolution. RMMSE for spectral estimation has been explored further in

adaptive beamforming [73–76, 93], multidimensional processing with pulse agile waveforms

[19, 20], stretch processing [77], Doppler processing (which incorporated a covariance matrix to

perform clutter cancellation) [34], fast-time Doppler [78–80], mutual coupling [81], and brain

imaging [82]. Since the RMMSE formulation has shown to be applicable with Doppler

processing and beamforming, implementing the technique for angle-Doppler processing is also a

natural progression.

The downside to the proposed mismatch estimation techniques is the requirement to estimate

and invert a structure covariance matrix (StCM) within the mismatch angle-Doppler filter.

Incorporating the estimation StCM with the cancellation SaCM requires a matrix inversion at

each stage in the cancellation-then-estimation procedure. To enable the use of mismatch

processing in the estimation stage, reduce-rank LS and partial adaptive MMSE (introduced in the

previous chapter) are proposed for computationally efficiency. Both approaches are optimized in

a reduce rank subspace by leveraging reduce rank approaches.

The chapter begins with an overview of the space-time signal model and clutter cancellation

for SLAR. After, a derivation of the cancellation-then-estimation filtering considering sidelobe

interference is presented. Subsequent sections detail the proposed optimal and adaptive mismatch

119



processing algorithms and their reduce rank approaches. An analysis follows that explores the

angle-Doppler response, cancellation preservation, sidelobe suppression of the various algorithms.

Lastly, the efficacy of the algorithms are explored on open-air experimental data using the Air

Force Research Laboratory (AFRL) GOTCHA dataset. Conclusions and future work are located

in Chapter 5.

3.1 Space-Time Signal Model and Clutter Cancellation

Denote M as the number of pulses in a CPI, N as the number of elements in a uniform linear

array (ULA), and L as the number of range samples. Consider a pulse-Doppler radar uniformly

transmitting waveform s (t) on M PRIs and receiving illuminated reflections on N antenna elements

in a ULA. The receive response from illuminated scatterers for the mth pulse and nth antenna

element is

y (m,n, t) = ∑
ω

∑
θ

[s (t)∗ x (ω,θ , t)]e j2π(εacc,mω+nθ)+ v (m,n, t) (3.1)

over the duration 0 ≤ t ≤ Tr where Tr is the PRI, ω is normalized Doppler frequency, θ is spatial

frequency, εacc,m is the mth accumulation time, x (ω,θ , t) is a reflected illuminated scatterer, and

v (m,n, t) is thermal noise. For a uniform PRI transmission, the accumulation time is εacc,m = m.

The receive signal after pulse compression and digitization is

z [m,n, `] = ∑
ω∈Ω

∑
θ∈Θ

x̄ [ω,θ , `]e j2π(mω+nθ)+ξ [m,n, `]+ v̄ [m,n, `] (3.2)

where x̄(ω,θ , `) contains contributions from adjacent range sidelobes and v̄(m,n, `) is filtered

noise. Both are a result of the application of a pulse compression filter. Model mismatch from

underlining hardware effects and calibration errors is accounted for in ξ [m,n, `]. The platform

motion of the SLAR results in a coupling of spatial and Doppler frequencies

ω = βθ (3.3)
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where β = 2vpTr/d is the interelement spacing transvered in a single PRI for a platform velocity

of vp and interelement spacing d.

A M× 1 temporal steering vector ct (ω) = [ 1 e j2πω · · · e j2π(M−1)ω ]T and N× 1 spatial

steering vector cs (θ) = [ 1 e j2πθ · · · e j2π(N−1)θ ]T are coupled to form a MN×1 space-time

steering vector cst (ω,θ) = ct (ω)⊗ cs (θ). A M×LD bank of temporal steering vectors

Ct = [ ct (−ωmax) · · · ct (−∆ω) ct (0) ct (∆ω) · · · ct (ωmax) ] (3.4)

with a granularity of ∆ω = 1/LD, maximum normalized Doppler frequency ωmax = 1/2 (because

the transmission is uniform), and LD = MKD Doppler frequency points oversampled by KD.

Typically, a single beam direction is examined at a time for spectrum of Doppler frequencies. The

mismatch filtering being presented takes advantage of beams outside the transmit look direction.

To span the spatial spectrum, denote θmax as the maximum spatial frequency, LA = NKA as the

number of beams in the spatial spectrum for an oversampling factor KA, and ∆θ = 1/LA as the

granularity of spatial spectrum. The N×LA bank of spatial steering vectors is

Cs = [ cs (−θmax) · · · cs (−∆θ) cs (0) cs (∆θ) · · · cs (θmax) ]. (3.5)

The coupling of the bank of temporal steering vectors and bank of spatial steering vectors form the

following MN×LALD matrix

Cst = Ct⊗Cs. (3.6)

A radar datacube is formed via the collection of M pulses, N elements, and L ranges samples

using (3.2). The `th range sample of the datacube is a M×N space-time data matrix Zst(`).

Vectorizing the data matrix forms a MN×1 space-time receive signal model

zst (`) = ∑
ω

∑
θ

x̄ [ω,θ , `]cst (ω,θ)+ est (`)+vst (`)

= CstxAD (`)+ est (`)+vst (`)

(3.7)
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where vst(`) and est(`) are MN × 1 noise and mismatch error vectors, respectively. The term

xAD (`) is a LALD×1 vector corresponding to the frequency points in the angle-Doppler spectrum.

A cancellation transform is used to implement clutter cancellation in space-time signals.

Consider the decomposition of the space-time signal model into clutter and remaining

components

zst (`) = Cst,cluxAD,clu (`)+Cst,remxAD,rem (`)+ est,clu (`)+ est,rem (`)+vst (`) . (3.8)

The MN×MM space-time cancellation matrix is

Rst,canc(`) =
1

σ2
v

(
Rst,clu(`)+Rst,v

)
(3.9)

where Rst,clu(`) is the space-time clutter covariance matrix and Rst,v =σ2
v IMN×MN is the space-time

noise covariance matrix [34]. The noise assumes the space-time elements are uncorrelated pulse-

to-pulse and element-to-element. Additionally, each space-time element is a Gaussian distributed

random variable with zero mean and noise power σ2
v . Residual errors will be present due to the

statistical mismatch between the estimation and optimal cancellation matrix. The cancellation

matrix is applied to the data to remove the clutter components

_zst (`) = R−1
st,canc (`)zst (`) = Cst,remxAD,rem (`)+ est,rem (`)+vst (`) . (3.10)

The clutter covariance matrix is estimated as a SaCM

R̂st,clu (`) =
1

c
{

Lp
} ∑

κ 6=`
κ∈Lp

zst (κ)zH
st (κ) (3.11)

where Lp is the set of range samples remaining after the range CUT and guard cells are removed

to avoid self-cancellation [4]. The summation effectively estimates the clutter on receive.

According to the RMB rule [36], to be within 3 dB of the optimal clutter covariance matrix the
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number of range samples needs to be approximately double the number of space-time samples.

The RMB rules assumes the samples are homogeneous. Homogeneous samples implies they are

independent and identically distributed (IID). Heterogeneous clutter, clutter discretes in the

cell-under-test (CUT), and/or movers in the training samples diminish the ability to achieve the

amount of homogeneous training samples needed satisfy the RMB rule. The lack of

homogeneous training samples leads to an inaccurate estimation of the SaCM [35, 106].

Techniques to address heterogeneity in clutter has been widely explored [35, 106–130].

The MN×1 angle-Doppler filter that maximizes SNR is

uAD (ω,θ) =
cst (ω,θ)

cH
st (ω,θ)cst (ω,θ)

. (3.12)

noting that cH
st (ω,θ)cst (ω,θ) = MN. The MN× 1 maximum SINR filter, which is equivalently

the STAP filter, uses the cancellation matrix and angle-Doppler filter

wAD (ω,θ , `) = R−1
st,canc (`)uAD (ω,θ) . (3.13)

Applying the filter to the receive data yields

x̂AD [ω,θ , `] = uH
AD (ω,θ)

_zst (`) = uH
AD (ω, `)R−1

st,canc (`)zst (`) = wH
AD (ω,θ , `)zst (`) . (3.14)

Windowing is incorporated by replacing uAD(ω,θ) with

uWAD (ω,θ) =
cst (ω,θ)�bst

(cst (ω,θ)�bst)
Hcst (ω,θ)

(3.15)

where bst = bt⊗bs is a coupling between a M×1 slow-time taper bt and a N×1 spatial taper bs.

The tapered filtering with cancellation is equivalently expressed as

wWAD (ω,θ , `) = R−1
st,canc (`)uWAD (ω,θ) . (3.16)
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The windowed estimate is obtained similar to (3.14). The application of the tapered angle-Doppler

filter is

x̂WAD (ω,θ , `) = uH
WAD (ω,θ)

_zst (`) = wH
WAD (ω,θ , `)zst (`) . (3.17)

Reduced-rank techniques are employed with STAP to reduce the computational complexity of

the matrix inversion [4]. A element-space post-Doppler transformation is considered (see Figure

1.17 in Chapter 1 for more information) [4]. The approach reduces the rank for slow-time in the

Doppler spectrum and maintains the full rank in element-space. The approach is considered since

the biggest factor to the size of the covariance within this work is the number of pulses. A low

number of array elements is being used such that element-space reduction is not needed. Though,

the algorithms are generalized to consider any temporal or spatial transformation matrix.

Denote Dt as the desired rank in slow-time corresponding to the number of pulses in a sub-CPI.

Next, denote Ds as the desired rank in element-space corresponding to the number of elements in

a sub-array. A MN×DtDs space-time transformation matrix

Tst (ω,θ) = Tt (ω)⊗Ts (θ) (3.18)

is constructed from a M × Dt temporal transformation matrix Tt (ω) and a N × Ds spatial

transformation matrix Ts (θ) [4]. The temporal transformation matrix uses an adjacent-bin

formulation which considers adjacent steering vectors to the steering vector under test [4, 45].

The matrix is a subset of the bank of slow-time steering vectors. Upon application, the form

leverages coherence in slow-time. The temporal transformation matrix is

Tt (ω) =
1√
LD

[ ct (ω−At∆ω) · · · ct (ω) · · · ct (ω +At∆ω) ] (3.19)

where At = (Dt− 1)/2 is the surrounding temporal steering vectors on each side of the Doppler

frequency of interest [4]. Since reduction in element-space or beamspace is not being performed,
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Ds = N and the spatial transformation matrix is an N×N identity matrix Ts (θ) = IN×N .

The space-time transformation matrix applied to the estimated cancellation matrix produces

R̃st,canc (ω,θ , `) = TH
st (ω,θ)Rst,canc (`)Tst (ω,θ) (3.20)

thus reducing the matrix to DtDs×DtDs. The downside is that the matrix multiplication needs

to be performed for each angle-Doppler bin which has its own computational implications. The

matrix is inverted in the lower dimension and mapped back to the full dimension in the following

manner

Rrd-st,canc (ω,θ , `) = Tst (ω,θ) R̃−1
st,canc (ω,θ , `)TH

st (ω,θ)

= Tst (ω,θ)(TH
st (ω,θ)Rst,canc (`)Tst (ω,θ))−1TH

st (ω,θ)

(3.21)

which is MN ×MN. The cancellation matrix is then applied to the receive data in a similar to

(3.11)

_zrd-st (ω,θ , `) = Rrd-st,canc (ω,θ , `)zst (`) .

= Tst (ω,θ)(TH
st (ω,θ)Rst,canc (`)Tst (ω,θ))−1TH

st (ω,θ)zst (`) .

(3.22)

The application of the matrix transforms the data vector and cancellation matrix into the lower

dimension. After the matrix multiple between the reduced vector and matrix, the result is mapped

back to the full dimension. An estimate of the angle-Doppler frequency is obtained by applying

the angle-Doppler filter shown in (3.12) to the receive data in (3.22)

x̂RD-AD [ω,θ , `] = uH
AD (ω,θ)

_zrd-st (ω,θ , `) = wH
RD-AD (ω,θ , `)zst (`) (3.23)

where the reduced dimension STAP filter mapped to the full dimension is equivalently expressed

125



as

wRD-AD (ω,θ , `) = Rrd-st,canc (ω,θ , `)uAD (ω,θ) . (3.24)

The transformation matrices effectively reduces the cancellation matrix, inverts it in the lower

dimension, then maps it back to the full dimension. Comparing (3.24) to the filter in (3.13),

the estimation stage remains unchanged. A replacement of the matched estimation stage with a

mismatch filter, as shown in Chapter 2 for slow-time signals and cancellation, is a viable option

for implementation with reduced-rank techniques for STAP. An great example of incorporating

a mismatch filter is windowing. The windowed adaptive filter with cancellation is formed using

(3.15)

wRD-WAD (ω,θ , `) = Rrd-st,canc (ω,θ , `)uWAD (ω,θ) . (3.25)

The application of the filter produces the windowed estimate

x̂RD-WAD [ω,θ , `] = wH
RD-WAD (ω,θ , `)zst (`) . (3.26)

3.2 Cancellation-Then-Estimation Filtering

STAP maximizes SINR for open-air interference sources. Errors from signal processing such as

sidelobes from a matched filter and model mismatch are not consider within the filter derivation.

A sequential cancellation-then-estimation filter is derived that maximizes SINR after application

of clutter cancellation. Readers are encouraged to review the maximum SNR and SINR filter

derivations in Appendix B.

Consider the expanded receive space-time data vector from (3.8). Next, consider an application

of arbitrary MN× 1 space-time weight vector u(ω,θ , `) applied to the space-time data vector to
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obtain an estimate of the angle-Doppler frequency similar to (3.14)

x̂ [ω,θ, `] = uH (ω,θ, `)zst (`)

= xT [ω,θ, `]+ xside [ω,θ, `]+ xclu [ω,θ, `]+ξ [ω,θ, `]+ v [ω,θ, `]

(3.27)

where the desired response is xT[ω,θ, `], the remaining components is xside[ω,θ, `] which consist

of the sidelobe response from movers, the clutter response is xclu[ω,θ, `], the error response is

ξ [ω,θ, `], and noise response v[ω,θ , `]. The terms that contribute to the estimate are expanded

further.

The desired response component consists of the amplitude and space-time steering vector

corresponding to the angle-Doppler bin under test

xT[ω,θ , `] = x [ω,θ, `]uH (ω,θ, `)cst (ω,θ) . (3.28)

The ideal weight vector would result in uH (ω,θ, `)cst (ω,θ) = 1 to ensure xT[ω,θ , `] = x [ω,θ, `].

The resulting desired signal power is

Pr (ω,θ, `) = E{
∣∣x [ω,θ, `]uH (ω,θ, `)cst (ω,θ)

∣∣2}= ρ [ω,θ, `]
∣∣uH (ω,θ, `)cst (ω,θ)

∣∣2 (3.29)

where ρ [ω,θ , `] =E{|x[ω,θ , `]|}2 is the power from the complex scattering in the CUT. Sidelobes

from scattering outside the angle-Doppler bin under test will have the response

xside[ω,θ , `] = ∑
ωmov∈Ωmov
ωmov 6=ω

∑
θmov∈Θmov
θmov 6=θ

x [ωmov,θmov, `]uH (ω,θ, `)cst (ωmov,θmov) (3.30)

where subscript "mov" denotes movers. Recall that the space-time signal produces a multivariate

sinc response in the angle-Doppler spectrum due to the time-limitation on the slow-time and

element-space signals. From a filter perspective, the sidelobes are a result of phase mismatch

between weight vector and steering vector when ω 6= ωmov and θ 6= θmov. The subsequent power
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of the sidelobe interfering with the signal is

Pside (ω,θ, `) = ∑
ωmov∈Ωmov
ωmov 6=ω

∑
θmov∈Θmov
θmov 6=θ

E{
∣∣x [ωmov,θmov, `]uH (ω,θ, `)cst (ωmov,θmov)

∣∣2}
= uH (ω,θ, `)Rst,side (`)u (ω,θ, `)

(3.31)

where the covariance matrix of the contributions from mover sidelobes is

Rst,side (`) = ∑
ωmov∈Ωmov
ωmov 6=ω

∑
θmov∈Θmov
θmov 6=θ

ρ [ωmov,θmov, `]cst (ωmov,θmov)cH
st (ωmov,θmov). (3.32)

Contributions from clutter has a similar form of the mover sidelobes

xclu[ω,θ , `] = ∑
ωclu∈Ωclu
ωclu 6=ω

∑
θclu∈Θclu
θclu 6=θ

x [ωclu,θclu, `]uH (ω,θ, `)cst (ωclu,θclu). (3.33)

The associated power of the recieved clutter response is

Pclu (ω,θ, `) = ∑
ωclu∈Ωclu
ωclu 6=ω

∑
θclu∈Θclu
θclu 6=θ

E{|x [ωclu,θclu, `]uH (ω,θ, `)cst (ωclu,θclu)|
2}

= uH (ω,θ, `)Rst,clu (`)u (ω,θ, `)

(3.34)

where the clutter covariance matrix is

Rst,clu (`) = ∑
ωclu∈Ωclu
ωclu 6=ω

∑
θclu∈Θclu
θclu 6=θ

ρ [ωclu,θclu, `]cst (ωclu,θclu)cH
st (ωclu,θclu). (3.35)

The model error term is characterized as

ξ [ω,θ , `] = uH (ω,θ, `)est (`) (3.36)
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where the associated power is

Pe (ω,θ, `) = E{|uH (ω,θ, `)est (`) |2}= uH (ω,θ , `)Rst,err(`)u (ω,θ , `) (3.37)

and the subsequent error covariance matrix is

Rst,err (`) = σ
2
st,errIMN×MN� ∑

ω∈Ω

∑
θ∈Θ

σ
2 [ω,θ , `]cst (ω,θ)cH

st (ω,θ). (3.38)

Lastly, the noise term is

v[ω,θ , `] = uH (ω,θ, `)vst (`) (3.39)

with a noise power of

Pv (ω,θ, `) = E{
∣∣uH (ω,θ, `)vst (`)

∣∣2}= uH (ω,θ , `)Rst,vu (ω,θ , `) . (3.40)

Using power terms from each response, the resulting SINR is

SINR(ω,θ, `) =
Pr (ω,θ, `)

Pside (ω,θ, `)+Pclu (ω,θ, `)+Pe (ω,θ, `)+Pv (ω,θ, `)
. (3.41)

Applying a cancellation covariance matrix to the receive removes clutter signals and their

corresponding sidelobe responses. Cancellation of clutter results in an increase in SINR

SINR(ω,θ, `) =
Pr (ω,θ, `)

Pside (ω,θ, `)+Pclu (ω,θ, `)+Pe (ω,θ, `)+Pv (ω,θ, `)

≤ Pr (ω,θ, `)

Pside (ω,θ, `)+Pe (ω,θ, `)+Pv (ω,θ, `)
.

(3.42)

Optimal clutter cancellation would result in Pclu (ω,θ, `) = 0 making (3.42) equality. Under this

assumption, the weight vector is applied to the cancellation transformed receive data _zst (`) from
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(3.11) which contains the remaining interference components

x̂ [ω,θ, `] = uH (ω,θ, `)
_zst (`) = x [ω,θ, `]+ xside [ω,θ, `]+ξ [ω,θ, `]+ v [ω,θ, `] (3.43)

Substituting the signal power, adjacent mover sidelobe powers, and noise power in (3.42) (now

having equality) results in

SINR(ω,θ, `) =
Pr (ω,θ)

Pside (ω,θ)+Pe (ω,θ, `)+Pv (ω,θ)
=

ρ (ω,θ, `)
∣∣uH (ω,θ, `)cst (ω,θ)

∣∣2
uH (ω,θ, `)Rst,sup (`)u (ω,θ, `)

(3.44)

where the supplementary covariance matrix is

Rst,sup (`) = Rst,ms (`)+Rst,err (`)+Rst,v. (3.45)

The maximum SINR is obtained using a procedure similar to obtaining maximum SINR to

formulate STAP (presented in [22])

SINR(ω,θ, `) =
ρ (ω,θ, `)

∣∣uH (ω,θ, `)cst (ω,θ)
∣∣2

uH (ω,θ, `)Rst,sup (`)u (ω,θ, `)

=
ρ (ω,θ, `)

∣∣∣uH (ω,θ, `)R1/2
st,sup (`)R−1/2

st,sup (`)cst (ω,θ)
∣∣∣2

uH (ω,θ, `)Rst,sup (`)u (ω,θ, `)

≤
ρ (ω,θ, `)

∥∥∥R1/2
st,sup (`)u (ω,θ, `)

∥∥∥2∥∥∥R−1/2
st,sup (`)cst (ω,θ)

∥∥∥2

uH (ω,θ, `)Rst,sup (`)u (ω,θ, `)
(3.46)

=
ρ (ω,θ, `)uH (ω,θ, `)Rst,sup (`)u (ω,θ, `)cH

st (ω,θ)R−1
st,sup (`)cst (ω,θ)

uH (ω,θ, `)Rst,sup (`)u (ω,θ, `)

= ρ (ω,θ, `)cH
st (ω,θ)R−1

st,sup (`)cst (ω,θ)

= uH
st,sup (ω,θ)cst (ω,θ) .
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The resulting optimal filter to maximize the signal after cancellation is

ust,opt (ω,θ, `) = ψR−1
st,sup (`)cst (ω,θ) . (3.47)

where ψ is a scalar to normalize the response. Applying the optimal filter to the cancellation

transformed data yields

x̂ (ω,θ, `) = uH
st,opt (ω,θ)

_zst (`)

= ψcH
st (ω,θ)R−1

st,supR−1
st,canczst (`)

= wH
st,opt (ω,θ)zst (`) .

(3.48)

where the optimal filter combining clutter cancellation and sidelobe suppression is

wst,opt (ω,θ, `) = R−1
st,canc (`)ust,sup (ω,θ)

= ψR−1
st,canc (`)R−1

st,sup (`)cst (ω,θ) .

(3.49)

The space-time clutter covariance matrix is estimated from surrounding range bins. The

sidelobes from movers are not captured in this estimation. Actually, steps are taken to avoid the

estimation of mover sidelobes via the removal of guard cells and the range cell-under-test to

self-cancellation of the desired response. The mismatch estimation approaches in the subsequent

sections develop supplementary matrices that account for the sidelobes of scattering in the scene.

In a sense, the approaches add sidelobe cancellation to accompany the clutter cancellation in the

cancellation-then-estimation procedure. Note that the derivation was void of other unavoidable

error including mismatch loss from mismatch filter, covariance estimation loss from the

supplementary matrix, covariance estimation loss of the clutter covariance matrix (or the

cancellation matrix in general). The SINR is more of an approximation when considering losses.

For maximum performance, these errors should be minimized individually prior.
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3.3 Least-Squares Space-Time Adaptive Processing

Optimal least-squares approach being considered takes the squared sum of residual error between

between the signal model and desired response. The desired response is the mainlobe of a

multivariate sinc response. The model is the relationship between the bank of steering vectors and

the angle-Doppler filters being applied to the data. The space-time LS cost function is

JLS =
∥∥UHCst−DAD

∥∥2
F (3.50)

where ‖•‖F is the Frobenius matrix norm operation, U is a MN×LDLA matrix of optimal angle-

Doppler mismatch filters with each column corresponding to a different angle-Doppler frequency.

Define a LDLA×LDLA angle-Doppler desired response matrix as

DAD =
1

MN

(
CH

st Cst
)
�EAD

=
1

MN

((
Ct

HCt
)
�ED

)
⊗
((

Cs
HCs

)
�EA

)
=

1
MN

DD⊗DA

(3.51)

where EAD is a LDLA× LDLA angle-Doppler banded Toeplitz matrix, ED is a LD× LD Doppler

banded Toeplitz matrix, EA is a LA×LA spatial banded Toeplitz matrix, DD is the LD×LD Doppler

desired response matrix, and DA is the LA× LA spatial desired response matrix. The temporal

desired matrix has ones on the KD− 1 diagonals above and below the main diagonal. Similarly,

the spatial desired matrix has ones on the KA− 1 diagonals above and below the main diagonal.

The off-diagonal terms being zero in the desired response matrix assumes that the steering vectors

are orthogonal. The assumption is relevant for a oversampled Doppler and spatial spectrums.

Accounting for the oversampling in the banded Toeplitz maintains the nominal resolution of the

response. An example of column in DD is presented in Figure 3.1 [68]. The columns in DA have a

similar structure.

A complex gradient vector operator with partial derivatives corresponding to the real and
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Fig. 3.1: Magnitude and phase of a center column of DD used in the least-squares formulation
[68]. Columns of DA have a similar structure.

imaginary components of the weight vector is applied to minimize the cost function and obtain

the optimal solution [92]. The gradient operation was defined in Chapter 2 in (2.14). Application

of the MN×1 gradient vector to the cost function produces

∇u∗JLS = CstCH
st ULS−CstDH

AD. (3.52)

Minimizing the cost function ∇u∗JLS = 0 produces the MN × LDLA bank of optimal mismatch

angle-Doppler filters

ULS =
(
CstCH

st
)−1CstDH

AD. (3.53)

Notice the LS bank of filters examines the entire 2-D angle-Doppler spectrum. A single spatial

frequency and entire Doppler spectrum could be examined using Cst (θ) = Ct⊗ cs (θ) in the LS

cost function. However, using the matrix Cst (θ) in the cost function would result in the rank-

deficient StCM since Cst (θ)CH
st (θ) of dimension MN ×MN is rank M. Recall, Ct is M× LD

with rank M and cs (θ) is N × LA and rank 1. Accordingly, Cst (θ) is low-rank compared to
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its size of MN × LD (alternatively written as MN ×MKD) thereby making Cst (θ)CH
st (θ) non-

invertible. Regularizing the matrix outer product enforces the matrix to be full-rank. Even with

regularization, accuracy errors, and spurious responses would still be present when inverting the

matrix. The expansion of the spatial spectrum using Cst has a dimension of MN×LDLA and rank

MN. The resulting StCM CstCH
st seen in (3.53) has a size MN×MN, is full rank, and invertible.

Regularization is still leveraged to improve the condition number.

A single spatial frequency can still be examined. The estimation stage can be decomposed to

uLS (ω,θ) =
(
CstCH

st +δ IMN×MN
)−1

(ċt(ω)⊗ cs(θ)) (3.54)

where the following modification to the steering vector,

ċt (ω) =
KD

∑
kD=−KD

ct (ω + kD∆ω) (3.55)

accounts for LS beamspoiling being perform in the desired response matrix and δ is a positive

scalar for regularization. An estimate of the angle-Doppler spectrum is obtained by applying the

filter to the space-time data vector

x̂LS (ω,θ , `) = uH
LS,con (ω,θ)

_zst (`) = wH
LS,con (ω,θ , `)zst (`) (3.56)

where the filter incorporating the cancellation transform is

wLS,con (ω,θ , `) = Rrd-st,canc (`)uLS,con (ω,θ) . (3.57)

Optimal mismatch processing can be performed off-line since it does not require receive data to

form the filter. Alternatively, cancellation is performed on-line since the cancellation matrix is

estimated adaptively.
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3.4 Reduced-Rank Least-Squares Space-Time Adaptive Processing

Rank reduction of LS mismatch processing optimizes the LS cost function in the reduced

dimension by using transformed steering vectors. The filter formation can also be performed

off-line. The approach leverages existing rank reduction techniques by transforming the StCM to

a reduced rank prior to inversion. The reduced-rank least-squares (RRLS) approach considers a

coupling of transformed space-time steering vectors to produce a DtDs×LDLA bank of reduced

dimension space-time steering vectors

C̃st (ω,θ) = TH
t (ω)Ct⊗TH

s (θ)Cs = C̃t (ω)⊗ C̃s (θ) (3.58)

where C̃t (ω) = TH
t (ω)Ct is a Dt × LD bank of transformed temporal steering vectors and

C̃s (θ) = TH
s (θ)Cs is a Ds × LA bank of spatial steering vectors. The transformed bank of

space-time steering vectors are inserted into the LS cost function

J̃LS (ω,θ) =
∥∥ŨH (ω,θ) C̃st (ω,θ)− D̃AD (ω,θ)

∥∥2
F (3.59)

where the LDLA × LDLA space-time desired response matrix is

D̃AD (ω,θ) = (C̃H
st (ω,θ) C̃st (ω,θ))� EAD. Minimizing the cost function using a DtDs × 1

gradient vector results in a DtDs×LDLA bank of RRLS filters

ŨRRLS (ω,θ) =
(
C̃st (ω,θ) C̃H

st (ω,θ)
)−1C̃st (ω,θ) D̃AD (ω,θ)

=
[(

C̃t (ω,θ) C̃H
t (ω,θ)

)
⊗
(
C̃s (ω,θ) C̃H

s (ω,θ)
)]−1

×
(
C̃t (ω,θ) D̃H

D (ω,θ)⊗ C̃s (ω,θ) D̃H
A (ω,θ)

) (3.60)

corresponding to single Doppler frequency and spatial.

Examining a single angle-Doppler frequency generates LDLA number of filters. Obviously, this

is far more filters necessary and is also inefficient to generate since only a single angle-Doppler

frequency in the bank provides the maximum response. The terms to right of the inverse in (3.60)
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are modified to examine RRLS for a single angle-Doppler frequency similar to (3.54). First, Cs

outside of the inverse is replaced by cs(θ). Next, since the oversampling factor of the Doppler

spectrum is unchanged, a single column vector in C̃t(ω,θ)D̃H
D(ω,θ) is equivalently expressed as

c̈t (ω) =
KD

∑
kD=−KD

c̃t (ω + kD∆ω) =
KD

∑
kD=−KD

TH
t (ω)ct (ω + kD∆ω). (3.61)

Including these modifications and considering regularization, a DtDs×1 RRLS filter is formed

ũRRLS (ω,θ)=
(
C̃st (ω,θ) C̃H

st (ω,θ)+δ IDtDs×DtDs

)−1
(

c̈t (ω)⊗
KD

∑
kD=−KD

TH
t (ω)ct (ω + kD∆ω)

)
.

(3.62)

To ensure unity gain when applied to the data vector the RRLS filter is normalized

ũRRLS,con (ω,θ) =
ũRRLS (ω,θ)

ũH
RRLS (ω,θ) c̃st (ω,θ)

. (3.63)

The RRLS filter combined with cancellation creates the filter

w̃RRLS,con (ω,θ , `) = R̃−1
st,canc (`) ũRRLS,con (ω,θ) . (3.64)

The RRLS spectral estimate is obtained by applying the bank of filters to the receive data

x̂RRLS (ω,θ , `) = ũH
RRLS,con (ω,θ) żst (`) = w̃H

RRLS (ω,θ) z̃st (`) . (3.65)

3.5 Adaptive Mismatch Angle-Doppler Estimation

In Chapter 2, the implementation of RMMSE in Doppler processing with clutter cancellation was

expanded for pulse repetition interval (PRI) staggering with the introduction of a rank reduced

formulation for computational improvement. A general form of the mean-square error (MSE) cost

function was introduced in (2.15) that incorporated clutter cancellation. The cost function and

adaptive filter in Chapter 2 is similar to the form presented in this chapter. The chapters differ in
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the steering vectors used. Chapter 2 uses slow-time steering vectors on a stationary platform and

this chapter space-time steering vectors on moving platform are considered.

Consider the decomposition of the angle-Doppler estimate at ω and θ from (3.14) into desired

estimate and error responses

x̂AD [ω,θ , `] = g[ω,ω,θ ,θ , `]x̄[ω,θ , `]+ ∑
γ 6=ω

∑
κ 6=θ

g[ω,γ,θ ,κ, `]x̄[γ,κ, `]+ v̂[ω,θ , `] (3.66)

where the 2-D frequency response corresponding to the clutter cancellation filter is

g
[
ωi,ω j,θk,θl, `

]
=

cH
st (ωi,θk)R−1

st,canc(`)cst(ω j,θl)

MN
. (3.67)

The ideal cancellation filter would make the coefficient zero for clutter frequencies and one in other

portions of the spectrum. The coefficient is also one when cancellation is not being employed. The

cost function considers the residual error between a desired response and its estimate. The desired

angle-Doppler response is the illuminated returns of scatterers at a given range, angle, and Doppler

after clutter cancellation dopt = x̄ [ω,θ , `]g [ω,ω,θ ,θ , `]. Using an arbitrary MN×1 angle-Doppler

weight vector, the estimate of the desired response is dest = x̂ [ω,θ , `] = uH (ω,θ , `)
_zst (`). The

MSE cost function considering the difference between optimal and estimated responses is

JMSE (ω,θ , `) = E
{
|g[ω,ω,θ ,θ , `]x̄ [ω,θ , `]−uH (ω,θ , `)

_zst (`)|
2
}
. (3.68)

Applying a gradient operator to the cost function with respect to u∗(ω,θ , `) yields

∇u∗JMSE(ω,θ , `) =−E{_zst(`)
_x
∗
[ω,θ , `]}+E{_zst(`)

_zH
st (`)}u(ω,θ , `). (3.69)

Note the dependence on angle, Doppler, and range on the gradient is subsumed for convenience.

Finding the minimum of the cost function located at ∇u∗JMSE (`)
∆
= 0 and solving (3.69) for
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u(ω,θ , `) produces a MN×1 minimum mean-square error (MMSE) angle-Doppler filter

uMMSE (ω,θ , `) = (E{_zst (`)
_zH

st (`)})−1E{g∗ [ω,ω,θ ,θ , `]x̄∗ [ω,θ , `]
_z(`)}. (3.70)

The optimal filter contains a MN × MN covariance matrix of the space-time data vector

E{_zst (`)
_zH

st (`)} and a MN × 1 cross-correlation vector between the data vector and

angle-Doppler spectrum is E{g∗ [ω,ω,θ ,θ , `]x̄∗ [ω,θ , `]
_z(`)}.

Define the StCM as

E{_zst (`)
_zH

st (`)}= Cst,remPAD,rem (`)CH
st,rem +Rst,err,rem (`)+Rst,v (3.71)

where PAD,rem (`) is the LDLA×LDLA angle-Doppler power distribution matrix and Rst,err,rem (`)

is the MN ×MN space-time error covariance matrix. The model error covariance matrix is a

signal-dependent loading term which establishes a dynamic range of the estimates [23]. The noise

covariance matrix is a diagonal loading term that reduces the condition number of the matrix to

ensure a stable inversion. The StCM inverse is independent of the angle-Doppler frequency and

only needs to be performed once per range sample. Practically, the true locations of the clutter

are unknown. Recall, that test angle-Doppler frequencies are used to estimate the spectrum. The

remaining steering vectors are unknown for an adaptive cancellation filter. The remaining steering

vectors Cst,rem can be approximated and replaced using

R−1
st,canc (`)Cst = R−1

st,canc (`) [Cst,clu Cst,rem]
∆
= [0M×LD,clu Cst,rem] (3.72)

since the optimal cancellation matrix is unavailable.

The StCM can incur ill-conditioning errors when inverted if the spatial steering vectors

corresponding to the entire spatial spectrum are not considered. Consequently, accounting for

multiple spatial steering vectors results in the estimation of multiple beam positions. Processing

beams outside of the main beam can be a waste of computational resources. Excluding additional
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spatial steering vectors results in the eigenvalues corresponding to the signal-to-noise subspace in

the StCM to be less than MN leading to the errors. Including the additional spatial steering

vectors makes the signal-to-noise subspace equal to MN thereby maintaining stability.

Oversampling in space is not necessary. At a minimum, N evenly spaced beam are required.

Explicitly defined the power distribution matrix to be

PAD,rem (`)≈
_

PAD (`) = E
{

xAD (`)xH
AD (`)

}
�gAD (`)gH

AD (`)� ILDLA×LDLA (3.73)

where the vectorization of the 2-D angle-Doppler power spectrum density of the cancellation is

the LDLA× 1 vector gAD(`). The ith element of the vector is [gAD(`)]i = g(ωιD,ωιD,θιA,θιA , `)

for element index i = ιD + ιALD, Doppler frequency index ιD = 0,1, ...,LD− 1, spatial frequency

index ιA = 0,1, ...,LA− 1, ιDth Doppler frequency ωιD = ιD∆ω , Doppler spectrum granularity

∆ω = 1/LD, ιAth spatial frequency θιA = ιA∆θ , and spatial spectrum granularity ∆θ = 1/LA. The

expectation in (3.73) is evaluated under the assumption that the illuminated scatters are statistically

IID in Doppler frequency and spatial frequency. Under the assumption diagonal terms within the

power distribution matrix would cohere and off-diagonals would de-cohere. Therefore, the power

distribution matrix becomes a diagonal matrix with the following terms

_
ρ
[
ωi,ω j,θk,θl, `

]
=

 E
{
|x̄ [ωi,θk, `]|2

}
|g [ωi,ωi,θk,θk`]|2 i = j,k = l

0 i 6= j,k 6= l
(3.74)

Going forward, the frequencies are subsumed such that
_
ρ [ωi,ωi,θk,θk, `] is expressed

_
ρ [ωi,θk, `].

Define the error covariance matrix to be

Rst,err,rem(`) = σ
2
errIMN×MN�Cst,remPAD,rem (`)CH

st,rem

≈ Rst,err(`)

= σ
2
errIMN×MN�R−1

st,canc (`)Cst
_

PAD (`)CH
st R
−1
st,canc (`)

(3.75)

after incorporating the modifications from (3.72) and (3.73). Substituting the data vector in (3.10)

139



into the cross-correlation vector in (3.70) forms

E{g∗ [ω,ω,θ ,θ , `] x̄∗ [ω,θ , `]
_zst(`)}= ρ [ωrem,θrem, `]cst(ωrem,θrem)≈

_
ρ [ω,θ , `]R−1

st,canc(`)cst(ω,θ)

(3.76)

where ρ [ωrem,θrem, `] ≈
_
ρ [ω,θ , `] using (3.75). The MMSE angle-Doppler filter in (3.70) is

modified by incorporating (3.72) - (3.76) in the filter to produce a structured based MMSE

angle-Doppler filter

uMMSE (ω,θ , `) =
_
ρ [ω,θ , `]Q−1

st (`)R−1
st,canc(`)cst(ω,θ) (3.77)

where the StCM is

Qst (`) = E{_zst (`)
_zH

st (`)}

= R−1
st,canc (`)Cst

_

PAD (`)CH
st R
−1
st,canc (`)�

(
σ

2
errIM×M +1MN×MN

)
+σ

2
v IMN×MN .

(3.78)

A linearly constrained minimum-variance (LCMV) framework [92] is incorporated with MSE

cost function to preserve signal loss of low SNR signals and to produce a meaningful noise floor.

The formulation is similar to the LCMV MMSE filter presented in the previous chapter. The noise

normalization being applied to the cancellation matrix allows for the frequency response to be

used as the gain constraint to maintain the distortion at a given angle-Doppler frequency. The

constraint is uH (ω,θ , `)R−1
st,canc(`)cst (ω,θ) = g[ω,ω,θ ,θ , `]. The constraint is angle-Doppler

frequency and range dependent and would ideally place a null at clutter frequencies and unity gain

at remaining frequencies. The transition regions and inherent estimation loss from the adaptive

cancellation place the actual constraint between null and unity gain constraints. An example of the

constraint is presented in Figure 3.2 for β = 0 and β = 1. Note when cancellation is not being

employed, the constraint is a unity gain constraint becomes a is a special case of LCMV known as

the minimum variance distortionless response (MVDR). The initial constrained MSE cost function

presented in [86, 93] explore the MVDR solution.
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Fig. 3.2: Example of adaptive LCMV constraints using adaptive cancellation for β = 0 (top) and
β = 1 (bottom)
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The constrained MSE cost function is

JMSE (ω,θ , `) = E{|g [ω,ω,θ ,θ , `] x̄ [ω,θ , `]−uH (ω,θ , `)
_zst (`)|

2}

+Re{λ ∗L
(
uH (ω,θ , `)R−1

st,canc(`)cst (ω,θ)−g[ω,ω,θ ,θ , `]
)
}.

(3.79)

Minimizing the cost function with respect to the filter and incorporating assumptions for the

expectations yields the gain constrained MMSE filter

uMMSE,con (ω,θ , `) =
(

E{_zst(`)
_z

H
st (`)}

)−1
(

E{g∗[ω,ω,θ ,θ , `]x̄∗[ω,θ , `]
_zst(`)}−

λL
2

R−1
st,canc(`)cst(ω,θ)

)
=

(
_
ρ[ω,θ , `]− λL

2

)
Q−1

st (`)R−1
st,canc(`)cst(ω,θ).

(3.80)

Following a similar procedure from the previous chapter (using (2.33) - (2.35)), the constrained

MMSE filter can be show to be

uMMSE,con (ω,θ , `) =
g[ω,ω,θ ,θ , `]Q−1

st (`)R−1
st,canc(`)cst(ω,θ)

cH
st (ω,θ)R−1

st,canc(`)Q
−1
st (`)R−1

st,canc(`)cst(ω,θ)
. (3.81)

The application of the filter produces the following angle-Doppler response

x̂MMSE,con [ω,θ , `] = uH
MMSE,con (ω,θ , `)

_zst (`)

=
g∗[ω,ω,θ ,θ , `]cH

st (ω,θ)R−1
st,canc(`)Q

−1
st (`)R−1

st,canc(`)zst (`)

cH
st (ω,θ)R−1

st,canc(`)Q
−1
st (`)R−1

st,canc(`)cst(ω,θ)
.

(3.82)

Oversampling in the Doppler is often implemented to overcome Doppler straddling that may

diminish RMMSE performance by inducing a mismatch loss. RMMSE generates a super

resolution effect that makes the algorithm susceptible to mismatch loss from angle-Doppler

straddling of scatterers. Oversampling the signal beyond the nominal resolution has long been a

method to address straddling in range, Doppler, and space. RMMSE has been shown to benefit

from beamspoiling which is a method to maintain the nominal resolution [94]. Beamspoling for
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angle-Doppler signals with RMMSE is

uMMSE,beam (ω,θ , `) =

√
KDKA

ΩK
∑

ωk=−ΩK

ΘK
∑

θk=−ΘK

uMMSE,con (ω +ωk,θ +θk, `)cH
st (ω +ωk,θ +θk)cst (ω,θ)

ΩK
∑

ωk=−Ωk

ΘK
∑

kA=−ΘK

cH
st (ω +ωk,θ +θk)cst (ω,θ)

(3.83)

where ωk = kD∆ω , ΩK = KD∆ω , θk = kA∆θ , and ΘK = KA∆θ . The beamspoiling form in (3.83)

accounts for oversampling after filter formation and was first introduced in the previous chapter

for Doppler signals. The first inclusion of beamspoiling for MMSE was in [94]. The beamspoiling

method presented in [94] differs in its implementation since it operates on fast-time signals. The

application of the filter produces the following angle-Doppler response

x̂MMSE,beam [ω,θ , `] = uH
MMSE,beam (ω,θ , `)

_zst (`) . (3.84)

Setting KA to one would minimize the number of beams necessary. Increasing KA beyond one

would be favorable to RMMSE performance since it would take into account straddling in space.

That would mean more beams would need to be estimated. Which would also lead to an increase

in the number of angle-Doppler filters that need to be examined. There is a trade-off there that

must be taken into consideration. If straddling in space is not a concern, then KA should be kept at

one.

Adaptive mismatch angle-Doppler estimation (AMADE) is an iterative procedure that

leverages RMMSE for angle-Doppler signals. When combined with adaptive clutter cancellation,

AMADE becomes a subset of the baseline supplementary cancellation (BaSC) filter presented in

[34]. BaSC performs a "hard" cancellation by performing linear transformation on the receive

data prior to adaptive estimation. AMADE procedure initializes by applying the STAP filter to the

receive data to form the initial angle-Doppler estimate

x̂AMADE,0 (`) = UH
ADR̂−1

st,canc (`)zst (`) (3.85)
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using an estimate of the cancellation matrix. The first iteration begins by forming the ith angle-

Doppler power distribution matrix using a previous angle-Doppler estimate

P̂AMADE,i (`) = x̂AMADE,i−1 (`) x̂H
AMADE,i−1 (`)� ILDLA×LDLA. (3.86)

The vectorized angle-Doppler spectrum of the cancellation, gAD(`), presented in (3.73) is

subsumed into (3.86) due to the cancellation in the previous estimate (shown in (3.85) and later in

(3.90)). After, the StCM is formed

Q̂AMADE,i (`) = R̂−1
st,canc (`)CstP̂AMADE,i (`)CH

st R̂
−1
st,canc (`)�

(
1MN×MN +σ

2
errIMN×MN

)
+σ

2
v IMN×MN .

(3.87)

The StCM estimate is leveraged to form the ith constrained AMADE filter

ûAMADE,con,i (ω,θ , `) =
ĝ[ω,ω,θ ,θ , `]Q̂−1

AMADE,i (`) R̂−1
st,canc (`)cst (ω,θ)

cH
st (ω,θ) R̂−1

st,canc (`)Q̂−1
AMADE,i (`) R̂−1

st,canc (`)ct (ω,θ)
(3.88)

where ĝ[ω,ω,θ ,θ , `] is formed using (3.67) and the estimated cancellation matrix. After all the

filters have been formed, beamspoiling is performed

ûAMADE,beam (ω,θ , `) =

√
KDKA

ΩK
∑

ωk=−ΩK

ΘK
∑

θk=−ΘK

ûAMADE,con (ω +ωk,θ +θk, `)cH
st (ω +ωk,θ +θk)cst (ω,θ)

ΩK
∑

ωk=−Ωk

ΘK
∑

kA=−ΘK

cH
st (ω +ωk,θ +θk)cst (ω,θ)

(3.89)

A MN × LDLA bank of beamspoiled filters is generated using filters formed from (3.89) and

subsequently applied to the space-time receive data to obtain the updated estimate of the spectrum

x̂AMADE,i (`) = ÛH
AMADE,beam,i (`) R̂−1

st,canc (`)zst (`) . (3.90)

The procedure returns to (3.86) and concludes after a user-defined number of iterations.

Examples of AMADE using the gain constraint and beamspoiling is presented in Figures 3.3
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to 3.6 for a single mover in clutter for 20 pulses and 5 elements after 10 iterations. In Figure 3.3,

presents the approach without cancellation. A mover is placed at boresight spatially with a

normalized Doppler of 0.3 for β = 1. AMADE is shown to resolve scattering and suppress

sidelobes. The unconstrained and constrained solutions generates a super resolution response

with the latter providing a more robust solution. Beamspoiling deviates from the super resolution

and generates a response to the nominal resolution. However, doing beamspoiling adds a single

sidelobe on each side of the scattering mainlobe. In Fig. 3.4, similar responses are shown with

clutter cancellation. AMADE with cancellation displays the moving scatterer only.

For analysis purposes, the Doppler and spatial spectrum were oversampled by a factor of five

each in Figures 3.3 and 3.4. Examples of these same scenarios are presented for a Doppler

oversampling of five and spatial spectrum not being oversampled without and with cancellation in

Figs 3.5 and 3.6, respectively. Comparing Fig. 3.3 to Fig. 3.5 shows AMADE sidelobe

suppression benefits from spatial oversampling without cancellation. Comparing Fig. 3.5 to Fig.

3.6 shows AMADE is much better in mover resolution when incorporated with clutter

cancellation. The results are on par with the oversampling seen in Fig. 3.4.
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Fig. 3.3: Normalized angle-Doppler response without cancellation for standard angle-Doppler
processing (top left), unconstrained AMADE (top right), constrained AMADE (bottom left), and

beamspoiled & constrained AMADE (bottom right)
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Fig. 3.4: Normalized angle-Doppler response with cancellation for STAP (top left), unconstrained
AMADE (top right), constrained AMADE (bottom left), and beamspoiled & constrained

AMADE (bottom right)
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Fig. 3.5: Normalized angle-Doppler response without cancellation for standard angle-Doppler
processing (top left), unconstrained AMADE (top right), constrained AMADE (bottom left), and

beamspoiled & constrained AMADE (bottom right)
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Fig. 3.6: Normalized angle-Doppler response with cancellation for STAP (top left), unconstrained
AMADE (top right), constrained AMADE (bottom left), and beamspoiled & constrained

AMADE (bottom right)
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3.6 Partial Adaptive Mismatch Angle-Doppler Estimation

Incorporating an adaptive angle-Doppler estimation using AMADE, which has its own matrix

inversion, adds to the computational complexity of STAP. A reduce-rank version of AMADE

known as partial adaptive mismatch angle-Doppler estimation (PAMADE) is considered to reduce

the computational complexity of the adaptive estimator. PAMADE will use the same

transformation matrices used to reduce the clutter cancellation covariance matrix in STAP.

PAMADE leverages the reduced-rank formulation for RMMSE introduced in the previous chapter

for Doppler processing and expends the formulation for angle-Doppler processing. The previous

chapter explored full-rank and reduced-rank adaptive estimation while maintaining full-rank

cancellation. PAMADE introduces the combination of adaptive estimation and adaptive

cancellation in their reduce-rank forms to reduce computation, suppress clutter, and suppress

sidelobes.

Consider the MN×DtDs space-time transformation matrix Tst(ω,θ) presented in (3.18). The

relationship between the MN × 1 full rank weight vector u (ω,θ , `) and DtDs× 1 reduced-rank

weight vector ũ(ω,θ , `) is

u (ω,θ , `) = Tst (ω,θ) ũ (ω,θ , `) (3.91)

[4]. The estimate of the desired response considers the MN × 1 post cancellation receive data

vector from (3.22) and the reduced-rank weight vector

dest = x̂ [ω,θ , `] = ũH (ω,θ , `)TH (ω,ω,θ)
_zrd-st (ω,θ , `). The desired response remains the

same from the previous section. The space-time reduced-rank MSE cost function is

J̃MSE (ω,θ , `) = E
{
|g [ω,ω,θ ,θ , `] x̄ [ω,θ , `]− (Tst (ω,θ) ũ (ω,θ , `))H_zrd-st (ω,θ , `)|2

}
= E

{
|g [ω,ω,θ ,θ , `] x̄ [ω,θ , `]− ũH (ω,θ , `) z̃rd-st (ω,θ , `)|2

}
.

(3.92)

The DtDs× 1 space-time data vector is transformed twice, once for clutter cancellation and once
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for rank reduction

z̃rd-st (ω,θ , `) = TH
st (ω,θ)

_zrd-st (ω,θ , `) = TH
st (ω,θ)Rrd-st,canc(ω,θ , `)zst (`) (3.93)

where Rrd-st,canc(ω,θ , `) is formed using (3.23). Recall, Rrd-st,canc(ω,θ , `) is a MN×MN matrix

that contains matrix inversion of a DtDs×DtDs cancellation matrix mapped back to the full

dimension. The DtDs×1 reduced dimension MMSE (RD-MMSE) angle-Doppler filter

ũRD-MMSE (ω,θ , `) =
(
E
{

z̃rd-st (ω,θ , `) z̃H
rd-st (ω,θ , `)

})−1
E{g∗[ω,ω,θ ,θ , `]x̄∗ [ω,θ , `] z̃rd-st (ω,θ , `)}

(3.94)

is formed from applying the gradient operation with respect to the reduced rank filter, minimizing

the cost function such that ∇ũ∗ J̃MSE (ω,θ , `) = 0, and solving for ũ(ω,θ , `). When the filter is

mapped back to full dimension using (3.91), the filter is compactly expressed as

uRD-MMSE (ω,θ , `) = Tst (ω,θ) ũRD-MMSE (ω,θ , `)

=
_
ρ [ω,θ , `]Qrd-st (ω,θ , `)Rrd-st,canc(ω,θ , `)cst(ω,θ)

(3.95)

where the MN×MN StCM inverted in a lower dimension then mapped to full dimension is

Qrd-st (ω,θ , `) = Tst (ω,θ)Q̃−1
st (ω,θ , `)TH

st (ω,θ) (3.96)

and the DtDs×DtDs auto-covariance matrix of the recieved data matrix

Q̃st (ω,θ , `) = E{z̃rd-st (ω,θ , `) z̃H
rd-st (ω,θ , `)}

= TH
st (ω,θ)Rrd-st,canc (ω,θ , `)Cst

_

PAD (`)CH
st Rrd-st,canc (ω,θ , `)Tst (ω,θ)

�
(
σ

2
errIDtDs×DtDs +1DtDs×DtDs

)
+σ

2
v IDtDs×DtDs.

(3.97)

Similar assumptions from the previous section regarding statistically independence are made for
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the expectation to obtain the matrix. The cross-correlation vector in (3.94) is

E{g∗ [ω,ω,θ ,θ , `] x̄∗ [ω,θ , `]
_zrd-st(ω,θ , `)}= ρ [ωrem,θrem, `]cst(ωrem,θrem)

≈ _
ρ [ω,θ , `]Rrd-st,canc(ω,θ , `)cst(ω,θ)

(3.98)

and obtained using similar assumptions from the previous section. An estimate is obtained by

applying the filter to the post cancellation receive data

x̂RD-MMSE (ω,θ , `) = uH
RD-MMSE (ω,θ , `)

_zst (`)

= wH
RD-MMSE (ω,θ , `)zst (`)

=
_
ρ[ω,θ , `]cH

st (ω,θ)Qrd-st (ω,θ , `)Rrd-st,canc (ω,θ , `)z(`)

(3.99)

where the RD-MMSE filter in space-time is

wRD-MMSE (ω,θ , `) = Rrd-st,canc (ω,θ , `)uRD-MMSE (ω,θ , `)

=
_
ρ [ω,θ , `]Rrd-st,canc (ω,θ , `)Qrd-st (ω,θ , `)Rrd-st,canc (ω,θ , `)cst (ω,θ) .

(3.100)

The RD-MMSE filter overall structure is similar to MMSE filter.

RD-MMSE filter in (3.100) reduces and inverts the covariance matrices corresponding to

cancellation and estimation individually then maps the matrices back to the full dimension prior

to their matrix multiplication. Since the matrices corresponding to estimation and cancellation are

reduced, inverted, and mapped individually, they do not necessary have to use the same

transformation. In Chapter 1, and as Ward pointed out in [4], options for reduction of STAP can

be in element-space or beamspace for spatial spectrum and pre-Doppler or post-Doppler for

Doppler spectrum. The combination leads to four possibilities to reduce cancellation covariance

matrix (See Fig 1.17 for a depiction of the four possibilities). Each possibility has its own

computational and performance benefits [4]. Reduction of the StCM in the RD-MMSE filter has

the same four possibilities. Accordingly, there is a multiplicative increase to 16 possibilities when
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combining adaptive cancellation and estimation. More research is needed that explores each

reduction.

Element-space post-Doppler is used for both estimation and cancellation matrix reduction in

this chapter. Based on the structure of the element-space post-Doppler transformation matrix

selected for this chapter, the transformation maps full dimension space-time samples to a reduced

dimension space-frequency bins (which is subset of the Doppler spectrum over all elements). The

basis vectors for the approach maintains the sampled complex sinusoid of different spatial

frequencies and changes the slow-time samples to Doppler frequency-shifted sinc functions

localized about the mainlobe width. The portion of the sinc response mainlobe and potential

sidelobes captured is Dt.

RD-MMSE approach has a similar constrained and beamspoling solutions to the MMSE

proposed in the previous chapter. The constrained reduced-rank MSE cost function is

J̃MSE (ω,θ , `) = E
{
|g [ω,ω,θ ,θ , `] x̄ [ω,θ , `]− ũH (ω,θ , `) z̃rd-st (ω,θ , `)|2

}
+Re{λ ∗L(ũH (ω,θ , `)TH

st (ω,θ)Rrd-st,canc(ω,θ , `)cst (ω,θ)−g[ω,ω,θ ,θ , `])}

(3.101)

using the data vector from (3.93). The constrained filter is straightforward to obtained by solving

the Lagrange multiplier using a similar approach shown in (2.31) - (2.35) from the previous chapter.

Performing the procedure and mapping to full dimension produces the filter

uRD-MMSE,con (ω,θ , `) =
g[ω,ω,θ ,θ , `]Qrd-st(ω,θ , `)Rrd-st,canc(ω,θ , `)cst(ω,θ)

cH
st (ω,θ)Rrd-st,canc(ω,θ , `)Qrd-st(ω,θ , `)Rrd-st,canc(`)cst(ω,θ)

. (3.102)

Beamspoiling is obtained using (3.84)

uRD-MMSE,beam (ω,θ , `)=

√
KDKA

ΩK
∑

ωk=−ΩK

ΘK
∑

θk=−ΘK

uRD-MMSE,con (ω +ωk,θ +θk, `)cH
st (ω +ωk,θ +θk)cst (ω,θ)

ΩK
∑

ωk=−Ωk

ΘK
∑

kA=−ΘK

cH
st (ω +ωk,θ +θk)cst (ω,θ)

.

(3.103)
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The application of the filter produces the following angle-Doppler response

x̂RD-MMSE,beam [ω,θ , `] = uH
RD-MMSE,beam (ω,θ , `)

_zrd-st (ω,θ , `) . (3.104)

The PAMADE procedure follows closely to the AMADE. PAMADE procedure initializes by

applying the partial adaptive STAP filter to the receive data to form the initial LDLA× 1 angle-

Doppler estimate corresponding to ω and θ under test

r̂PAMADE,0 (ω,θ , `) = UH
ADR̂rd-st,canc (ω,θ , `)zst (`) (3.105)

where clutter cancellation uses an estimation of the cancellation matrix within (3.20). The first

iteration begins by forming the ith angle-Doppler power distribution matrix using a previous angle-

Doppler estimate

P̂PAMADE,i (ω,θ , `) = r̂PAMADE,i−1 (ω,θ , `) r̂H
PAMADE,i−1 (ω,θ , `)� ILDLA×LDLA. (3.106)

Next, the reduced-rank StCM is formed using the current estimate of the power distribution matrix

Q̃PAMADE,i (ω,θ , `) = TH
st (ω,θ) R̂rd-st,canc (ω,θ , `)CstP̂PAMADE,i (ω,θ , `)CH

st R̂rd-st,canc (ω,θ , `)Tst (ω,θ)

�
(
σ

2
errIDtDs×DtDs +1DtDs×DtDs

)
+σ

2
v IDtDs×DtDs .

(3.107)

The matrix is then mapped to the full dimension for filter formation

Q̂PAMADE,i (ω,θ , `) = Tst (ω,θ)Q̃−1
PAMADE,i (ω,θ , `)TH

st (ω,θ) . (3.108)
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The estimated PAMADE filter is formed

ûPAMADE,con,i (ω,θ , `) =
ĝ[ω,ω,θ ,θ , `]Q̂PAMADE,i(ω,θ , `)R̂rd-st,canc(ω,θ , `)cst(ω,θ)

cH
st (ω,θ)R̂rd-st,canc(ω,θ , `)Q̂PAMADE,i(ω,θ , `)R̂rd-st,canc(`)cst(ω,θ)

(3.109)

where ĝ[ω,ω,θ ,θ , `] is formed using (3.67) and the estimated cancellation matrix. Filters are then

formed for the extent of the oversampling beyond the current angle-Doppler under test. After all

the filters have been formed, beamspoiling is performed

ûPAMADE,beam (ω,θ , `) =

√
KDKA

ΩK
∑

ωk=−ΩK

ΘK
∑

θk=−ΘK

ûPAMADE,con (ω +ωk,θ +θk, `)cH
st (ω +ωk,θ +θk)cst (ω,θ)

ΩK
∑

ωk=−Ωk

ΘK
∑

kA=−ΘK

cH
st (ω +ωk,θ +θk)cst (ω,θ)

.

(3.110)

The MN × 1 filter is subsequently applied to the space-time receive data to obtain the updated

estimate of the angle-Doppler frequency

x̂PAMADE,i (ω,θ , `) = ûH
PAMADE,beam,i (ω,θ , `) R̂rd-st,canc (ω,θ , `)zst (`) . (3.111)

The procedure is performed for each angle-Doppler frequency to produce a filter that is populated

into a MN×LDLA filter bank. Once each filter in the bank has been formed, the updated angle-

Doppler estimate is formed

r̂PAMADE,i (ω,θ , `) = UH
ADR̂rd-st,canc (ω,θ , `)zst (`) . (3.112)

The procedure returns to (3.106) and concludes after a user-defined number of iterations. The

estimation portion of the angle-Doppler techniques operate per range gate and, therefore, the

number of range gates is not a leading factor in estimation performance. However, the number of

range gates do drive computation time. Cancellation is driven by number of range gates for

adequate training of the estimation of the cancellation covariance matrix.
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3.7 Simulation Results

The proposed approaches are examined using the average sidelobe response (ASR), average loss

factor (ALF), and total residual sidelobe response (TRSR) metrics. ASR examines the sidelobe

structure of the responses following estimation. ALF examines the inherent mismatch loss and

minimum detectable Doppler (MDD) when sequential estimation- then-cancellation is performed.

Lastly, TRSR examines the aggregate suppression of the sidelobes. The metrics are examined

using Monte Carlo simulations for 1000 trials. Details about movers and clutter parameters are

specified under each analysis. Movers are fixed for each trial. New instantiations of clutter and

noise are generated each trial.

For each metric, a LFM waveform with a Bτ = 150 is implemented. The radar datacube consist

of M = 32 pulses in a CPI, N = 5 antenna elements in a ULA, and L = 300 range samples. The

platform motion, which is characterized by the interelement spacing transvered in a PRI, is set to

β = 1. The Doppler and spatial spectrums are oversampled by KD = 5 and KA = 5, respectively.

Tapering is performed in slow-time only using a Taylor window with -50 dB peak sidelobe and five

nearly constant sidelobes. AMADE and PAMADE perform 10 adaptive iterations. Rank reduction

will vary from the maximum reduction of Dt = 3 to the minimum reduction of Dt = 31. A high

SNR of 70 dB after pulse compression gain is set to show the sidelobe suppression limitations

relative to the noise floor. Practical implementation of the approaches are presented in Section 3.8

within the experimental results.

3.7.1 Average sidelobe response

Average sidelobe response considers the average power spectral density of the angle-Doppler

spectrum. The signal vector consist of a single point scatterer at zero-Doppler ωmov = 0 and

boresight θmov = 0 with unit amplitude x̄[ωmov,θmov, `] = 1 following pulse compression

zst (`) = x̄ [ωmov,θmov, `]cst (ωmov,θmov)+vst (`) . (3.113)
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The ASR is the expectation of the estimate of the power spectrum over Monte Carlo trials

ASRp (ω,θ , `) = E
{∣∣uH

p (ω,θ)zt (`)
∣∣2} (3.114)

where p ∈ [ADP, WADP, LS, RRLS, AMADE, PAMADE] denote standard angle-Doppler

processing, windowed angle-Doppler processing, RRLS, AMADE, and PAMADE, respectively.

The responses are peak-normalized for a one-to-one comparison. The mismatch loss that occurs

with the response is presented in the next subsection.

The analysis begins with the spatial CUT of ASR at boresight for the full dimension techniques

in Figure 3.7 and their respective angle-Doppler responses in Fig. 3.8. The standard angle-Doppler

response produces the well-known sinc-like response in Doppler with a known peak sidelobe of

approximately -13 dB. Tapering is able to suppress the sidelobes below the -50 dB (set for the

windowing function) while having the well-known unfavorable widening of the mainlobe. Note

there exist other windowing functions (such as Tukey, Blackmon, Hamming, or Hanning) that

provide different sidelobe responses. Each have some form of mainlobe widening. LS provides a

middle ground between windowing and standard angle-Doppler processing. LS provides a modest

improvement with a peak sidelobe of -19.75 dB while maintaining the nominal resolution. LS

would be a favorable approach if maintaining the nominal resolution with a non-adaptive filter is

desired. AMADE suppresses the sidelobes to the noise floor while maintaining resolution. The

approaches angle-Doppler response are consistent with the Doppler CUT. Tapering is performed in

Doppler only so the mainlobe and sidelobe structure are unaffected spatially. Although, windowing

is applicable spatially. The AMADE shows a less suppression performance in the spatial sidelobes

which is caused by the incorporation of beamspoiling. Overall, The full dimension results show

that optimal and adaptive mismatch approaches are applicable with space-time signals.

Figure 3.9 shows a spatial CUT of ASR at boresight comparing LS and different reductions of

RRLS. The angle-Doppler responses are presented in Fig. 3.10. Minimizing the LS cost function

in the reduce dimension subspace provides a robust response comparable to the full dimension LS
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Fig. 3.7: Average sidelobe response at boresight for full dimension angle-Doppler processing
techniques

Fig. 3.8: Angle-Doppler responses for angle-Doppler processing (top left), windowed
angle-Doppler processing (top right), least-squares (bottom left), and AMADE (bottom right)
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approach. At the lowest rank reduction for Dt = 3, the peak sidelobe is -15 dB. At amounts

Dt = 7 and Dt = 11, the reduce dimension approaches effectively match the full dimension

performance. The performance loss as the reduction increases is effectively negligible. Lastly,

Fig. 3.11 presents the full and partial adaptive mismatch estimation for various reduction

amounts. The angle-Doppler responses for full and partial adaptive adaptation are shown in Fig.

3.12. The response provides a robust sidelobe suppression in compassion to the full rank

approach. At Dt = 3, the performance begins to degrade compared to AMADE. Compared to

standard angle-Doppler processing, PAMADE at Dt = 3 provides a significant improvement in

the sidelobe albeit not as good as when Dt ≥ 7.

The robust performance of RRLS and PAMADE at low rank reduction reinforces the notion

that a small number of degrees-of-freedom are necessary to obtain robust solution due to the

sinc-like structure in angle-Doppler. The reduce rank approaches are optimized in the Doppler

spectrum and element-space. Unlike the full rank approaches which are optimized in slow-time

and element-space. When the reduction is below the oversampling factor, the performance of the

reduce rank approaches diminish since only a fraction of the Doppler mainlobe is captured for

processing. Note this approach was tested in the element-space post-Doppler rank reduction

approach and should be taken into consideration for other reduction approaches. Additionally, the

partial adaptive approaches are robust in their suppression capabilities in comparison to the full

rank counterparts.
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Fig. 3.9: Average sidelobe response at boresight for full and reduce rank LS techniques

Fig. 3.10: Average sidelobe response at boresight for full rank LS (top left) and reduce rank LS
techniques at Dt = 3 (top right), Dt = 7 (bottom left), Dt = 11 (bottom left)
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Fig. 3.11: Average sidelobe response at boresight for AMADE and PAMADE techniques

Fig. 3.12: Average sidelobe response at boresight for AMADE (top left) and PAMADE at Dt = 3
(top right), Dt = 7 (bottom left), Dt = 11 (bottom left)
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3.7.2 Average Loss Factor

The SNR-normalized SINR metric from [32] and used within the previous chapter is implemented

for ALF. The loss factor for angle-Doppler processing considers the following signal model

zst (`) = ∑
ωclu

∑
θclu

x̄(ωclu,θclu, `)cst (ωclu,θclu)+vst (`) . (3.115)

Homogeneous clutter is generated using multiple point scatterers based on statistically

independent clutter patches (see 1.11). One hundred clutter scatterers are uniformly distributed

over a normalized Doppler and shifted spatially based on relationship ω = βθ . The average

clutter-to-noise (CNR) set to 70 dB. For clutter cancellation, the space-time data vectors samples

used to generate the clutter in the range sample bin is preserved for formation of the optimal

cancellation matrix. The optimal cancellation matrix provides a bound on performance since full

knowledge of the clutter in the range CUT is known. Standard, windowed, optimal, and adaptive

angle-Doppler processing are examined under optimal clutter cancellation.

The loss factor is the ratio of SINR to SNR

ηp (ω,θ , `) =
SINRp (ω,θ , `)

SNRp (ω,θ , `)
=

σ2
v
∥∥R−1

st,canc (`)up (ω,θ , `)
∥∥2

uH
p (ω,θ , `)R−1

t,canc (`)up (ω,θ , `)
. (3.116)

The ALF is the expectation over Monte Carlo trials

ALFp (ω,θ , `) = E
{

ηp (ω,θ , `)
}
. (3.117)

Outside the clutter notch, a ALF response less than 0 dB shows the mismatch loss incurred by

the estimation approach. Inside the clutter notch, the ALF presents the MDD. MDD describes the

closet Doppler frequency to zero that can be attained before a predetermined SINR loss γMDD in
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the clutter notch. The MDD using ALF is

MDDp(θ , `) =
1
2

(
argmin

ωU

{|ALFp (ωU ,θ , `)− γMDD|2}− argmin
ωL

{|ALFp (ωL,θ , `)− γMDD|2}
)
.

(3.118)

where defines ωL ∈ ΩL for the set of normalized Doppler frequencies from -0.5 to 0, ωL ∈ ΩU

for a set of frequencies from 0 to 0.5, and γMDD is a predetermined SINR loss attributed to clutter

cancellation. For the following results, the spatial frequency is set to boresight. For visual depiction

of MDD see Figure 2.16 from the previous chapter.

In Figure 3.13, the loss factor is presented for the full dimension approaches. AMADE incurs

minor mismatch loss from the optimal SINR presented in the blue trace. LS incurs an

approximately 1 dB loss from the optimal SINR. AMADE and LS each incur a dip in the

spectrum at ±0.5. This is due to the examination region being from ±0.5. To avoid this response,

examining the response beyond ±0.5 such that the filter wraps around the aliased regions.

AMADE and LS maintain the MDD at -3 dB.

Figures 3.14 and 3.15 present ALF for RRLS and PAMADE, respectively. At the highest rank

reduction amounts, the approaches incur minor loss from the the full rank approaches. As the

reduces decreases, more mismatch loss is incurred. For RRLS, the results hit a limit of

approximately -1.5 dB (excluding the edge effect). The reduce rank of the optimal and adaptive

Fig. 3.13: Average loss factor at boresight for full dimension angle-Doppler processing
techniques; Zoomed out (left) and zoomed in above -6 dB (right)
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approaches are able to maintain the MDD. Overall, the optimal and adaptive approaches have a

minor effect on the performance of cancellation.

Fig. 3.14: Average loss factor at boresight for full and reduce rank LS techniques; Zoomed out
(left) and zoomed in above -6 dB (right)

Fig. 3.15: Average loss factor at boresight for AMADE and PAMADE techniques; Zoomed out
(left) and zoomed in above -6 dB (right)
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3.7.3 Total Residual Sidelobe Response

The last analysis examines the aggregate sidelobe power after angle-Doppler processing. The

analysis considers a receive signal model containing a single mover in clutter

zst (`)=


x̄ [ωmov,θmov, `mov]cst (ωmov,θmov)+ ∑

ωclu∈Ωclu

x̄ [ωclu,θclut, `clu]cst (ωclu,θclu)+vst (`) for `mov = `

∑
ωclu∈Ωclu

x̄ [ωclu,θclu, `clu]cst (ωclu,θclut)+vst (`) otherwise,

(3.119)

The target is place in the center range bin in the radar datacube with a ωmov = 0.8 at boresight

with SNR = 70 dB. The clutter is generated similar to the previous section by using homogeneous

clutter patches uniformly distribution over a normalized Doppler bandwidth of 0.0001 centered at

zero Doppler and an average CNR of 50 dB. Clutter cancellation considers optimal cancellation.

The TRSR metric without cancellation is

TRSRp (`) =

∑
ω∈Ω

∑
θ∈Θ

∣∣uH
p (ω,θ)zst (`)

∣∣2
max

θ

{
max

ω

{∣∣uH
DP (ω,θ)zst (`)

∣∣2}} (3.120)

where p ∈ [ADP, WADP, LS, RRLS, AMADE, PAMADE] to denote the different processing

techniques. When cancellation is performed, zst (`) is replaced by _zst (`). The set Ω and Θ omits

frequencies corresponding to the nominal angle-Doppler mainlobe resolution of the mover and

clutter angle-Doppler bandwidth. Tables 3.1 presents the TRSR for the full and reduced

dimension approaches without clutter cancellation. The results differ from the previous chapter

since aliased portions of the Doppler spectrum were examined. The RRLS have a fractional

difference from full rank LS as the reduction amount differs. For PAMADE, the suppression

performance decreases by a little under 4 dB as the rank decreases. When cancellation is

introduced, as shown in Table 3.2, the approaches improve in their suppression benefits.
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Table 3.1: Total Residual Sidelobe Response for various angle-Doppler processing approaches
without clutter cancellation in dB

Approach Full rank
Reduced Rank

Dt = 3 Dt = 7 Dt = 11 Dt = 15 Dt = 19 Dt = 23 Dt = 27 Dt = 31
Standard -13.50
Window -12.16

Optimal (LS / RRLS) -13.54 -13.22 -13.19 -13.18 -13.18 -13.18 -13.18 -13.18 -13.18
Adaptive (AMADE / PAMADE) -32.47 -26.35 -29.98 -30.65 -31.06 -31.46 -31.72 -31.92 -32.02

Table 3.2: Total Residual Sidelobe Response for various angle-Doppler processing approaches
with clutter cancellation in dB

Approach Full rank
Reduced Rank

Dt = 3 Dt = 7 Dt = 11 Dt = 15 Dt = 19 Dt = 23 Dt = 27 Dt = 31
Standard -26.15
Window -24.62

Optimal (LS / RRLS) -30.07 -26.68 -29.85 -30.01 -29.97 -29.97 -29.94 -29.94 -29.90
Adaptive (AMADE / PAMADE) -61.54 -55.64 -59.66 -59.32 -59.37 -59.40 -59.31 -59.21 -59.22

3.8 Airborne Open-Air Experimental Results

The matched and mismatch processing algorithms are examined using the GOTCHA airborne

radar dataset from the Synthetic Aperture Radar (SAR) Based GMTI in Urban Environment

Challenge by Air Force Research Laboratory Layered Sensing Exploitation Division

(AFRL/RYA) [5]. SAR uses the motion of a radar to generate high resolution images. Each pulse

transmission is at a different spatial location. By accounting for time delays in the flight path,

each pulse can be considered as propagating from a different "antenna element" thereby creating

the synthetic aperture [131]. Incorporating multiple receive antennas for SAR enables the

simultaneous implementation of SAR and GMTI. The latter of which is most pertinent to the

proposed algorithms. The authors in [5] outlined five potential research areas related to detection,

geolocation, and tracking for the challenge. The first four research areas address SAR related

challenges. The final challenge was to "go out and do great things with the data...". With that in

mind, the dataset is leveraged as a proof-of-concept for sequential cancellation-then-estimation

using mismatch estimation in GMTI radars.

The airborne radar operated at X-band with a PRF of 2.1 kHz. Mounted on the platform were
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three phase centers (used as array elements) which collected radar reflections over hundreds of

thousands of pulses. SAR uses thousands of pulses to obtain the high-quality images. Only a

fraction of the pulses is needed for GMTI. The number of range gates available for processing is

384 range gates. The range gates were segmented to focused on scatterers. The final radar datacube

used for analysis is L = 200 range samples, M = 32 pulses in a CPI, and N = 3 phase centers in an

array.

The processing techniques are presented using range-Doppler maps at multiple receive beam

positions. The number of degree-of-freedom for angle-Doppler processing is MN = 96. The

Doppler spectrum is oversampled by a factor of KD = 5 for a total of LD = 161 Doppler

frequencies in the spectrum. The spatial spectrum is not oversampled making KA = 1. Three

beam positions are examined: θ = −1/3,0,1/3. The spatial steering vectors are formed

assuming equidistant phase centers since the distance between the phase centers were unavailable.

Figure 3.16 presents the beampatterns for the receive beamformers used. The different beams

were selected such that each receive beam mainlobe is the spatial null of the others. The noise

power after pulse compression was measured to approximately -95 dB. The noise power was

determined by examining a region of the range-Doppler map from the STAP results shown later

where targets were not localized. AMADE and PAMADE used an error power equal to the noise

power and concluded their procedures after 10 iterations. The diagonal loading for the LS and

RRLS approaches were set to the noise power. RRLS and PAMADE were reduced the processing

by 84% to Dt = 5 such that the number of degree-of-freedom for angle-Doppler processing

became DtN = 15. A taper is implemented in slow-time only using a Taylor window with -50 dB

peak sidelobe and five nearly constant sidelobes.

The SaCM for adaptive cancellation omitted the range CUT and 5 guard cells on each side of

the CUT prior to collecting training samples. The first 12 range samples after guard cells are used

for covariance estimation for a total of Lp = .25MN = 24 training samples which is low sample

support. When less than 12 samples are available on any side of a CUT, an asymmetric number of

samples are used on each side of the CUT such that the number of training samples is maintained.
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Fig. 3.16: Beampattern of the three receive beams at θ =−1/3 (blue), θ = 0 (red), and θ = 1/3
(black)

The analysis begins with the range-Doppler map of angle-Doppler processing in Figure 3.17.

There are characteristics within the data that each receive beam presents. At θ = −1/3, a mover

is present at approximately the 20th range bin and ω = −0.35 that subsides in the other beams.

Similarly, at θ = 0, multiple movers are present between range bins 140 to 180 at ω = 0.3 that

subsides in the other beams. Each beam has a clutter ridge shifted from zero-Doppler to

approximately ω = 0.1 with the final beam at θ = 1/3 having the strongest clutter response. The

Doppler sidelobes from clutter and movers is present throughout the dataset. In some cases, such

as range bin 180, the sidelobe spread is high for all the Doppler frequencies. Implementing STAP

on the data, as shown in Fig. 3.18, the clutter ridge within each beam is removed. What remains

within the dataset is Doppler sidelobes from movers within the scene and residue including the

high sidelobe responses matched processing cannot diminish.

The mismatch approaches will be presented after clutter cancellation only. STAP using a Taylor

window is presented in Fig. 3.19. As expected, tapering does well with reducing Doppler sidelobes
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in comparison to matched processing at the expense of a widening mainlobe. The dynamic range

of the dataset does allow for tapering to suppress the Doppler sidelobes to the noise floor. Figure

3.20 presents the results for combined cancellation and LS. Optimal mismatch processing provides

a middle ground between windowing and tapering for sidelobe suppression while maintaining

resolution. Although the sidelobes have not been reduced to the noise floor completely, some

reduction in the sidelobes provides a finer range-Doppler which would be benefit for detection

processing. Maintaining the resolution while providing modest sidelobes suppression is a key

attribute of optimal mismatch processing. Optimal mismatch processing sidelobe suppression is

limited by the unity gain normalization in the filter. Varying the oversampling factor or the diagonal

loading did not provide an increase in performance suppression.

In Figure 3.21, AMADE applied to the measured data. The resolution benefits of AMADE for

the movers is prevalent. Additionally, AMADE provides significant visibility improvement by

reducing the sidelobe response to the noise floor. There is an inherent signal loss when

implementing AMADE that is attributed to two causes. First, since sidelobes are optimally

removed from a given range bin, the energy being contributed there reduces leading a reduction in

the perceived signal strength. Overall, this signal reduction peaks at the truth target signal power.

Second, the beamspoiling approach causes a signal loss due to the combining of filters. This

Fig. 3.17: Angle-Doppler processing at θ =−1/3 (left), θ = 0 (middle), and θ = 1/3 (right)
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Fig. 3.18: Space-time adaptive processing at θ =−1/3 (left), θ = 0 (middle), and θ = 1/3 (right)

Fig. 3.19: Windowed space-time adaptive processing at θ =−1/3 (left), θ = 0 (middle), and
θ = 1/3 (right)

affect can be detrimental to high SNR signals. Implementing a partial constraint from [93] with

the adaptive constraints with the approach can alleviate some of the loss observed. The potential

detection benefit in the sensitivity gain from sidelobe suppression and maintaining nominal

resolution can justify the use of beamspoiling.

The analysis continues to the reduced dimension results. In Figure 3.22, STAP using a reduce

dimension cancellation matrix is presented. Comparing the result to the full rank approach in
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Fig. 3.20: Least-squares optimal mismatch angle-Doppler estimation with adaptive cancellation at
θ =−1/3 (left), θ = 0 (middle), and θ = 1/3 (right)

Fig. 3.20, the cancellation performance is fairly consistent. Figs 3.24 and 3.25 showing RRLS

and PAMADE, respectively, are also consistent with the full rank counterparts in Figures 3.20 and

3.21. The response is expected as simulation results showed that RRLS and PAMADE can provide

robust sidelobe suppression with significant covariance reduction. Therefore, the consideration

of implementing RRLS and PAMADE becomes dependent on the processor used to implement

estimation and inversion of the StCM and SaCM. The practical implementation of the reduced

dimension filters shows their applicability to be significantly reduced while maintaining sidelobe

suppression performance.
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Fig. 3.21: Adaptive mismatch angle-Doppler estimation with adaptive cancellation at θ =−1/3
(left), θ = 0 (middle), and θ = 1/3 (right)

Fig. 3.22: Reduce dimension space-time adaptive processing at θ =−1/3 (left), θ = 0 (middle),
and θ = 1/3 (right)
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Fig. 3.23: Reduce rank least-squares optimal mismatch angle-Doppler estimation with adaptive
cancellation at θ =−1/3 (left), θ = 0 (middle), and θ = 1/3 (right)

Fig. 3.24: Reduce adaptive mismatch angle-Doppler estimation with adaptive cancellation with
adaptive cancellation at θ =−1/3 (left), θ = 0 (middle), and θ = 1/3 (right)
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Chapter 4

Adaptive Pulse Compression for Radar and Wireless

Communication Coexistence

The dawn of the third millennium saw a boom in wireless communication technologies. The

proliferation of communications generated an exponential demand in products such as

smartphones, smart watches, tablets, and laptops. Recent technological advancements, such as the

introduction of the internet-of-things where almost every device in modern homes have a wireless

connection to the internet, have only accelerated consumer demand in wireless technologies. As

the use of wireless devices rapidly increases, additional radio frequencies (RFs) must be made

available on the electromagnetic (EM) spectrum. However, the EM spectrum is a finite, limited

resource. Radar systems risk frequency reallocation on the EM spectrum to accommodate the

growing commercial demand. Radar transmit and receive hardware are designed to operate

efficiently within a finite RF bandwidth. Reallocation would require hardware modifications

which can be potentially costly financially. An emerging solution to spectral congestion is

spectrum sharing between radar and communications.

Wireless communications and radars fundamentally have different functions. Wireless

communication systems exchange information between users over a wireless channel. Radars

illuminates the environment, collects the illuminated reflections, and subsequently extracts

physical information from the radar scene. When these services overlap in RF, mutual

interference occurs which reduces their performance. Figure 4.1 diagrams the radar and

communication mutual interference model. Reports of mutual interference between radar and

communication systems date back to the middle 1950s when radar systems overpowered a
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Fig. 4.1: Radar and communication mutual interference diagram

communication system designed by Bell Telephone Laboratories [132]. In early 2022, the Federal

Aviation Administration (FAA) addressed serious concerns to aviation safety due in part to the

deployment of Fifth Generation (5G) mobile communications interfering with air traffic control

radars [133]. The Federal Communications Commission (FCC) and National

Telecommunications and Information Administration (NTIA) regulate commercial and federal

usage of radio spectrum, respectively, to ensure services have the spectral resources to perform

their functions [134]. Mutual interference has always been addressed by designating RF bands for

services to minimize frequency overlap. However, RF mutual interference remains an ongoing

concern.

Through the years, multiple presidential memorandums have been enacted to dedicate

resources, develop initiatives, and direct government agencies to address spectrum congestion and

technological advancement within the US [135–137]. Initiatives were introduced by the FCC in

the 2010 National Broadband Plan [138] to better allocate and manage the spectrum. A

recommendation made within the report suggested 300 MHz be made available between 225

MHz and 3.7 GHz for mobile use over the course of 10 years. In that time span, a November 2015
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spectrum auction for 1.7 GHz and 2.1 GHz spectra generated a record-breaking $45 billion in

bids, which was set for advance wireless architectures like Fourth Generation (4G) technology

[139]. In July 2019, FCC chairman released a report informing of an auction to open up the 2.5

GHz band for 5G technologies [140]. President’s Council of Advisors on Science and Technology

(PCAST) proposed that 1 GHz of federally held spectrum be made available for shared spectrum

for use by private and public users [141]. Within the same report, PCAST suggested new

technologies should enable multiple users to "share spectrum without mutual interference." Policy

changes to accommodate the emerging technology to perform radar cognition and facilitate

spectrum sharing were investigated in [142, 143].

Spectrum sharing can be addressed in fast-time delay, RF, spatial angle, slow-time Doppler,

and polarization to name of few [144]. An overview of challenges facing spectrum sharing were

examined within [145–147]. Spectrum sharing can be divided into three categories: co-design,

cooperation, and coexistence [141, 143, 148]. Co-design is the development of new RF systems

that consider radar and communication systems jointly in the hardware and software design stages

[149]. Others propose the development of systems level architecture to incorporate multi-systems

[150]. Cooperation considers multiple RF systems are able to share properties about their signal

transmission such that a impacted RF receiver can mitigate the interference [141, 143].

Coexistence considers radar and communication systems operate in the same RF band without

knowledge of the communication signal [141, 143]. The proposed approach in this chapter will

address spectrum sharing via coexistence.

Coexistence is addressed under three architectures: coexistence via cognition, functional

coexistence, and coexistence in spectral overlap [151]. In a seminal paper on radar cognition

[152], one of three characteristics necessary to fulfill cognition is "intelligent signal processing

which builds on learning through interaction of the radar with the surrounding environment." A

recent paper on cognition highlighted practical limitations of implementation radar cognition

[153]. Coexistence via cognition has been proposed under techniques that sense the environment

and occupied frequencies and either avoid the interference or nullifies the interference in receive
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processing [154–163]. Functional coexistence consist of dual-function radar communication

which include radar waveforms containing embedded communications [151, 164–170]. In [171],

a modification to communication symbols was proposed to facilitate operation of radar and

communications overlapping in spectrum. Performance bounds of radar and communication

coexistence were explored in [172].

In this chapter, spectrum sharing is addressed for coexistence in spectral overlap using digital

receive beamforming and mismatch pulse compression. Digital beamforming exploits the spatial

separability between radar and communication signal by determining the direction-of-arrival

(DOA) of the signals onto a receive phased array. Pulse compression is a fundamental filtering

operation to determine the range of the scattering. A standard beamformer for receive

beamforming and match filter for pulse compression maximize signal-to-noise ratio (SNR) in

their domain. These maximum SNR filters are ineffective in regaining sensitivity lost from the

presence of wireless communications in the receive measurement. An adaptive pulse compression

(APC) procedure after beamforming is proposed to regain sensitivity.

Adaptive pulse compression is a re-iterative minimum mean-square error (RMMSE)

procedure in fast-time. The formulation mitigates range sidelobes for an enhanced pulse

compression response prior to detection processing. APC was initially proposed for phase-coded

waveforms [71, 72] and later for practical implementation of frequency modulation (FM)

waveforms [94]. Multi-static APC (MAPC) addresses shared spectrum of multiple radars by

performing mutual interference and sidelobe suppression together [173–175]. MAPC considered

the implementation of a beamformer to maximize coherent gain in the spatial direction of its

transmission prior to adaptive filtering for each radar. The beamforming stage also provides

separability from mutual interference. A key consideration of MAPC is that the transmit

waveform of the radars are known. The APC formulation being proposed for radar and

communication coexistence considers any knowledge of the communication signal unavailable.

Adaptive pulse compression belongs to a family of RMMSE algorithms that not only have

been implemented in fast-time but also in element-space [23, 93], slow-time [34, 176], space-time
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(presented in the Chapter 3), time-range [19], and space-range [20]. RMMSE has been

implemented for applications such as pulse agile waveforms [19, 20], stretch processing [77],

fast-time Doppler [78–80], mutual coupling [81], brain imaging [82], and PRI-staggered radar

(presented in the Chapter 2). RMMSE was also expanded to be combine with adaptive

cancellation for optimal removal of clutter (a typical interference source in slow-time) in

techniques known as baseline supplementary cancellation (BaSC) and baseline supplementary

loading (BaSL) [34]. BaSC is a sequential estimation-then-cancellation procedure and BaSL is a

joint cancellation and estimation procedure. Each approach incorporated an adaptive cancellation

matrix that characterize the interference in the measurement.

The proposed approach facilitates coexistence by combining RMMSE with beamforming and

adaptive cancellation. The approach considers the collection of radar and communication signals

simultaneously on a phased array to obtain an element-space fast-time measurement. In receive

processing, multiple receive beamformers are applied to the single element-space fast-time

measurement to form multiple beamspace fast-time estimates. Beams are formed in the DOA of

radar and each communication signal impinging onto receive array. Next, an adaptive

cancellation matrix is formed from the beamspace fast-time estimates of the communication

signals. The cancellation matrix is then used within the APC filter and applied to the beamspace

fast-time estimate of the radar for simultaneous estimation the radar returns, mitigation range

sidelobes, and cancellation the communication signal.

APC is designed to perform a matrix inversion per range sample which can be computationally

expensive. Multiple methods have been proposed to address the computational complexity of APC

[83–85, 88, 89]. Each seek to reduce the covariance matrix dimensional but not the number of

matrices that need to be performed for a group of range samples. Block APC (BAPC) is introduced

to reduce the processing to a single matrix inverse for multiple range samples.

The chapter begins with an overview of the wireless communication architecture. After, a joint

radar and communication signal model is presented. The model is followed by the presentation

of APC and BAPC procedures. The approaches are examined via a synthetic dataset formed from
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free-space measurements of radar and communication signals. A long-term evolution (LTE) signal

is examined as the mutual interference signal to the radar. LTE will provide a benchmark for

performance since 5G systems leverage 4G architectures [141]. Conclusions and future work are

presented in Chapter 5.

4.1 Wireless Communication Systems

Wireless communication systems transfer data between two points over an open-air medium. The

information in the data can be voice, audio, video, data files, etc. [177]. For wireless

communications, generational technology standards are defined to maximize the exchange of

information and to ensure multiple companies are operating under the same criterion. LTE is the

4G standard developed by the 3rd-Generation Partnership Project (3GPP). LTE is designed to

provide higher date rates, lower latency, and packet-optimized radio-access technology over

previous generations [178]. The system attributes of LTE are presented in Table 4.1 [178–180].

Table 4.1: LTE system attributes

Parameter Attribute

Bandwidth 1.25-20 MHz
Channel Spacing 15 kHz

OFDM Symbol Period 66.7 µs
Resource Block 12 Subcarriers

Radio Frame 10ms
Modulation QPSK, 16-QAM, 64-QAM

Multiple Access
Downlink: OFDMA

Uplink: SC-FDMA
Duplexing FDD, TDD, half-duplex FDD

MIMO
Downlink: 2×2, 4×2, 4×4

Uplink: 1×2, 1×4

A general flow diagram of a wireless communication system is presented in Figure 4.3. First,

a serial bit data stream is formed. The data stream encounters a data source encoder to increase

the amount of information per bit and reduce the amount of data needed to be transmitted. The

result is a reduction in transmission time and/or bandwidth requirements [181]. Encryption of the
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Fig. 4.2: Communication transmit/receive flow diagram

data stream will likewise occur at this stage. The data will next flow through a channel encoder to

add redundancy combat against errors in open-air transmission along the channel [181]. Next, the

data stream undergoes modulation such that the digital information can be made into an analog

waveform [177]. LTE uses quadrature phase-shift keying (QPSK) and quadrature amplitude

modulation (QAM) modulation schemes. Examples of the modulation schemes are depcited in

Figure 4.4. QPSK and 4-QAM constellations are equivalent. The difference is the coordinate

system the modulation procedure occurs [177]. QPSK uses a polar coordinate system that

maintains a constant amplitude for all modulation symbols. A phase shift is then performed to

obtained to modulation symbol. QAM on the other hand operates in a Cartesian coordinate

system and is performed by varying the in-phase and quadrature (IQ) components. 4-QAM,

16-QAM, and 64-QAM constellations have symbol rates of 2, 4 and 6 bits per symbol,

respectively. The symbol modulation selection changes in LTE depending on channel

characteristics.

Continuing through the transmit chain, multiple access allows for multiple users to access the

base station simultaneously [179, 181]. LTE leverages orthogonal frequency division multiple

access (OFDMA) for downlink (base station to cellular device) and single-carrier frequency

division multiple access (SC-FDMA) for uplink (cellular device to base station). SC-FDMA
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Fig. 4.3: Examples of PSK and QAM Constellations

incorporates a form of time-division multiple access (TDMA). Duplexing also occurs at this stage

which allows for simultaneous uplink and downlink to the base station [181]. Frequency-division

duplexing (FDD) separates uplink and downlink in frequency. Time-division duplexing (TDD)

separates them in time. Wideband communication systems must also combat frequency-selective

fading in which the transfer function of the channel varies with time. In flat-fading, the channel

properties are constant across frequency [181].

A signal communication waveform generated from the multiple access scheme into the

channel. One-way propagation occurs from the transmitter to the receiver. Several different types

of fading can affect the channel. Small-scale fading occurs due to multipath reflections of the

signal. The different arrival times of the signal causes inter-symbol interference (ISI). ISI is

addressed using a cyclic prefix that creates redundancy [179]. Large-scale fading occurs due to a

mobile device traveling into a shadowed area. The signal varies over the course of a longer time

period in comparison to small-scale fading [181].

Similar phenomena in radar and wireless communication systems are described using

different nomenclature. From a pulse-Doppler radar perspective, the communication signal is a

pulse agile random continuous-wave (CW) noise waveform. Depending on the modulation, such

as phase-shift keying (PSK), the signal can be a frequency modulated CW (FMCW) waveform.
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Otherwise, amplitude modulation in communication makes the signal CW. The communication

signal is expected to be transmitting for the full duration of a radar PRI. The "communication

signal pulse" duration and PRI are thereby the same length (meaning the duty cycle is 100%) with

each PRI containing a different segment of the "CW communication waveform." A pulse agile

transmission has a different waveform pulse-to-pulse which, in this case, the communication

waveform has.

From a communication perspective, a pulse-Doppler radar transmission can be viewed as a

broadcast communication signal from a base-station with PSK modulation and TDMA transmit

schemes. Wireless communication is inherently a broadcast system in its transmission. However,

the voice and data transfer on the broadcast is point-to-point or multi-cast. Typical pulse-Doppler

radar does not provide data to individual users. Although, a budding topic in radar is co-operation

and co-design of radar waveforms that contain data to send to a user. The "radar broadcast signal"

strives for constant modulus amplitude and frequency modulation. Also, the constant toggling of

the radar transmission to create a pulse train separates the transmission in time similar to TDMA.

Another interesting connection between radar and communication systems is channel sounding

in wireless communications. Wireless communication sounds the channel to determine the impulse

response of the channel which describes the multipath components [181]. Channel sounding is

performed by transmitting a known signal into the environment, compressing the reflected signal

on receive, and examining the compressed response response. This may sound familiar since it is

exactly what a radar does.

4.2 Radar and Communications Signal Model

Consider a wireless communication signal transmitting waveform sc(t) into an open-air

environment

sc (t) = Ac (t)e jΦc(t) (4.1)
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where Ac(t) is a time varying amplitude and Φc(t) is a time-varying phase. For example, a OFDM

waveform with a duration Tc, channel spacing fc = 1/Tc, and RF bandwidth Bc = Nc fc for Nc

subcarriers has an initial waveform (prior to adding the cyclic prefix) of

ṡc (t) =
Nc−1

∑
nc=0

a [nc]e j2π fcnct (4.2)

where a[nc] is a complex modulation symbol transmitted on each subcarrier [179]. Based on the

constellation, the amplitude and phase of a transmission will vary. Adding the cyclic prefix with

duration Tpre to the beginning of the signal produces the following waveform

sc(t) =

 ṡc(t +Tc−Tpre) 0≤ t ≤ Tpre

ṡc(t−Tpre) Tpre < t ≤ Tc +Tpre.
(4.3)

The waveform travels along a wireless channel to RF receivers in the environment. Denote the

wireless channel from the communication transmitter to the radar receiver as xc (t). The channel

can be direct from line-of-sight and indirect from multipath reflections. The communication signal

interaction with the channel at the radar receive antenna is

yc (t) = sc (t)∗ xc (t) . (4.4)

Next, consider a radar transmitting a pulse waveform

sr (t) = Ar (t)e jΦr(t) (4.5)

also with time-varying amplitude and phase. Recall from Chapter 1 that the baseband

representation of an chirp waveform has an constant modulus amplitude of Ar(t) = 1 and phase

Φr(t) = π(Br/τr)t2 for a 3 dB bandwidth Br and pulse duration τr. The radar receive fast-time
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signal is obtained from the illumination of scatterers in the radar scene is

yr (t) = sr (t)∗ xr (t) (4.6)

where xr (t) is the range profile defined over 0≤ t ≤ Tr for PRI Tr.

Consider the receive aperture being a N-element uniform linear array (ULA) with elements

spaced λRF/2. A monostatic radar transmission is considered such that the receive array is co-

located with the radar transmit array. Collecting radar reflections and the communication signals

at the nth element for a single PRI produces the following element-space fast-time collection

y (n, t) = yr (t)e jnθr,look +
Q−1

∑
q=0

yc,q (t)e jnθc,q,look + v(n, t) (4.7)

where θr,look is the spatial frequency corresponding to the look direction of the radar transmitter,

θc,q,look is the spatial frequency corresponding to the DOA of the qth communication

transmission, Q is the total number of communication signals impinging onto the radar receiver,

and v(n, t) represents thermal noise. The collected signal is amplified, down-converted to

baseband, and discretized for receive processing. Following discretization, the element-space

fast-time measurement is

y [n, `] = yr [`]e jnθr,look +
Q−1

∑
q=0

yc,q [`]e jnθc,q,look +ξ [n, `]+ v[n, `] (4.8)

where ξ [n, `] accounts for model mismatch.

Mutual interference depends on a various parameters such as transmit powers, frequency

overlap, temporal overlap, spatial location, direction-of-arrival of signals to name a few. Other

factors include the antennas, transmission lines, propagation phenomena, receivers, and filters

[182]. The radar and communication transmissions in this work share two properties that result in

mutual interference: RF bandwidth and temporal duration. The carrier frequencies of the

transmissions may differ. However, the radar 3 dB bandwidth is assumed to be fully or partially
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overlapped with the communication occupied bandwidth. There are two possible temporal

relationships between the radar and communication transmission that must be accounted for: full

collection of a single symbol and partial collection of multiple symbols [144]. When the PRI is

greater than the symbol duration, the communication symbol is fully captured. However, a

portion of the next symbol would be collected. In the opposite case of the symbol duration being

greater then the PRI, only a portion of the signal symbol is captured. Lastly, if the communication

transmission is powered off during a PRI, a portion of the symbol is captured.

To facilitate radar coexistence with communications, some form of diversity is necessary to

provide a sense of orthogonality for separation of the systems. No two signals are truly orthogonal.

Rather, the signals can have low correlation between each other. Digital beamforming is used

to provide that separability by exploiting the DOA of the signals impinging on the radar array.

Consider the orientation of the element-space fast-time measurement in (4.8) into a N×1 element-

space measurement vector as a function of fast-time

ys (`) = yr [`]cs(θr,look)+
Q−1

∑
q=0

yc,q [`]cs(θc,q,look)+ es(`)+vs(`) (4.9)

where cs (θ) = [ 1 e jθ · · · e j(N−1)θ ]T is the N × 1 spatial steering vector for a spatial

frequency θ , es(`) is a N × 1 model error vector, and vs(`) is a N × 1 noise vector. Receive

beamforming is employed on the vector using the maximum SNR beamformer which is

uBF (θ) =
cs (θ)

N
. (4.10)

A beamformer is generated for the radar returns and each communication signal for a total of

Q+1 beamformers. Each beamformer is electronically steered in the DOA of its respective signal

to maximize coherent gain in that direction. Applying the beamformer corresponding to the radar

returns to the receive data vector produces the following beamspace fast-time response of the radar
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transmission

_y
[
`, θ̂r

]
= uH

BF
(
θ̂r
)

ys (`) = y [`]+
Q−1

∑
q=0

yc,q [`]α(θ̂r,θc,q,look)+ v[`, θ̂r]+ξ[`, θ̂r] (4.11)

where α(θi,θk) = uH
BF (θi)cs (θk) denotes the complex amplitude resulting from the inner product

between a beamformer and a steering vector, v[`, θ̂r] = uH
BF (θr)vs(`) is filtered noise, and

ξ[`, θ̂r] = uH
BF (θr)es(`) is filtered error. Similarly applying the beamformer corresponding to the

qth communication signal produces the following beamspace fast-time response

_y
[
`, θ̂c,q

]
= uH

BF
(
θ̂c,q
)

ys (`) = yc,q [`]+ yr [`]α(θ̂c,q,θr,look)+ ∑
q 6=k

yk [`]α(θ̂c,q,θk,look)+ v[`, θ̂c,q]

+ξ[`, θ̂c,q]

(4.12)

where the filtered noise and error have similar forms as (4.11).

Effectively, the beamformer for one signal imposes a complex amplitude, or in other words a

destructive coherence, on the other signals providing the necessary separation. The receive

beamformer beampattern dictates the complex amplitude that is applied. The DOA of the

communication signals in the null of the beamformer beampattern is best for radar estimation.

The worst case is the communication signal is in a main or peak sidelobe of the beamformer

beampattern. When a communication transmit beam lies in the radar recieve beamformer

mainbeam, the complex amplitude approaches one thereby reducing the spatial separability.

Physically, this implies that the radar transmit and receive beams are pointing in the vicinity of the

communication receive beam. Knowledge of the signal DOAs are required. Since the transmit

look direction of the radar is known, its corresponding beamformer is steered in that direction

θ̂r = θr,look. The DOA of the qth communication signal, θ̂c,q, is unknown but assumed to be

readily attainable via traditional receive beamforming and a detector or the application of a

direction finding algorithm [23, 54–59]. The number of communication signals and the number of

array elements can not be ignored in their role in receive beamforming. The spatial
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degrees-of-freedom are limited by the number of array elements. The radiation and array patterns

are dictated by the antenna type and element spacing [183].

Following beamforming, pulse compression is employed to obtain the range delay of scatterers

in the scene. Define the total number of fast-time samples in the PRI as Lr = fsTr. The receiver

sampling frequency is oversampled relative to the 3 dB bandwidth fs = KrBr where Kr denotes

the oversampling factor. The range profile can be examined over a segment of the PRI. Define

Lstart as the first sample and Lstop as the last sample in the interval that is to be examined in a

observation window. The number of fast-time samples after segmentation is L = Lstop−Lstart. The

L×1 fast-time measurement vector after segmentation is

_yf (`,θ) = [ _y [`,θ] _y [`+1,θ] · · · _y [`+L−1,θ] ]T (4.13)

where the interval begins at ` = Lstart. The beamspace fast-time estimate from (4.11) and (4.12)

from can be structurally represented as

_yf
(
`, θ̂r

)
= Srxr (`)+

Q−1

∑
q=0

α(θ̂r,θc,q,look)yc,q (`)+vr (`)+ er (`)

_yf
(
`, θ̂c,q

)
= yc,q (`)+α(θ̂c,q,θr,look)yr (`)+ ∑

q6=k
α(θ̂c,q,θk,look)yk (`)+vc,q (`)+ ec,q (`)

(4.14)

where Sr is a L × K waveform convolution matrix of the radar waveform,

xr(`) = [ x[`] · · · x[`+1] · · · x[`+K−1] ]T is a K×1 range delay vector for K = L+Ls−1

range delay samples, vr(`) = [ vr[`] · · · v[`+1] · · · vr[`+L−1] ]T is a L× 1 noise vector

after beamforming, er(`) = [ ξr[`] · · · ξ[`+1] · · · ξr[`+L−1] ]T is a L×1 error vector after

beamforming, vc,q(`) is the noise vector from the qth communication signal beamformer

(structured similar to vr(`)), and ec,q(`) is the error vector from the qth communication signal

beamformer (structured similar to er(`)). Each column in the waveform matrix is a time-delayed
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shift of the discretized radar waveform

sr = [ sr [0] sr [1] · · · sr [Ls−1] ]T (4.15)

where Ls = fsτr = KrBrτr is the number of samples in the waveform. For notation convenience,

denote the columns of the convolution matrix as

Sr = [ sr,0 sr,1 · · · sr,K−1 ] (4.16)

where the kth column is

sr,k =


[ sr[Ls− k] · · · sr[Ls] 01×(L−k+1) ]T 0≤ k ≤ Ls

[ 01×(Ls−k) sr 01×(L−k+)) ]T Ls < k ≤ L−K

[ 01×k sr[0] · · · sr[k− (L−K)] ]
T L−K < k ≤ K.

(4.17)

Discrete pulse compression is employed using a match filter

uMF,k =
1
Ls

sr,k. (4.18)

The pulse compression response from the application of the match filter to beamspace fast-time

receive data produces the beamspace range response

x̂
[
`+ k, θ̂r

]
= uH

MF,k
_yf
(
`, θ̂r

)
(4.19)

for k = 0,1, · · · ,K−1. A L×K match filter bank can form from the convolution matrix,

UMF =
1
Ls

Sr = [ uMF,0 uMF,1 · · · uMF,K−1 ]. (4.20)
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Application of the match filter bank to the radar beamspace fast-time data vector is

x̂MF
(
`, θ̂r

)
= UH

MF
_yf
(
`, θ̂r

)
. (4.21)

to form a K × 1 estimate of the range profile. Pulse compression produces convolution tails.

Scatterer responses may occur in these eclipsed regions [184]. The aggregate cross-correlation

between the radar and communication signals sets the new "noise floor". A robust estimate of the

range profile relies on the radar match filter to have a low cross-correlation to communication

signal. To achieve this, the pulse compression filters must estimate of the radar range profile and

suppress the communication signals simultaneously. In the case of radar and communication, a

high correlation exists that prevents the match filters producing a robust estimate. Additionally

when using a LFM, which has a sinc response after pulse compression, range sidelobes must be

accounted for to unmask scattering obscured by the sidelobes.

4.3 Adaptive Pulse Compression

The estimate of a beamspace range sample can be decomposed into the following

x̂r
[
`+ k, θ̂r

]
= xr [`+ k]+∑

i6=k
xr [`+ i]uH

MF,ksr,i +
Q−1

∑
q=0

α(θ̂r,θc,q,look)uH
MF,kyc,q (`)+uH

MF,kvr (`)

+uH
MF,ker (`)

(4.22)

where the desired response is dopt = xr [`+ k] and the remaining error responses consist of range

sidelobes, mutual interference, thermal noise, and model mismatch error for i,k = 0,1, · · · ,K−1.

An estimate of the desired response is obtained for each range sample by applying a weight vector

to the beamspace fast-time snapshot starting at ` i.e., dest = x̂r
[
`+ k, θ̂r

]
= uH(`+ k)_yf

(
`+ k, θ̂r

)
.

Since the filter and data vector each shift with k, the variable is subsumed for the rest of the section.

Using the relationship between the desired and estimated responses dest = dopt + derr and solving
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for error derr, a MSE cost function for the `th sample is obtained [71, 72]

JMSE = E
{∣∣∣xr [`]−uH(`)

_yf
(
`, θ̂r

)∣∣∣2} . (4.23)

A complex gradient vector operator with partial derivatives corresponding to the real and

imaginary components of the weight vector is applied to minimize the cost function and obtain

the optimal solution [92]. Consider an arbitrary K× 1 vector a = [ a0 a1 · · · aK−1 ]T where

the real and imaginary components of ith element is ai = pi + jqi. The partial derivatives with

respect to ai using Wirtinger derivatives is ∂

∂a∗i
= 1

2

(
∂

∂ pi
+ j ∂

∂qi

)
. The corresponding K × 1

gradient vector operations with respect to a∗ is ∇a∗ = [ ∂

∂a∗0
∂

∂a∗1
· · · ∂

∂a∗K−1
]T [92].

Applying the gradient with respect to the conjugate of the weight vector, setting to

∇u∗JMSE = 0, and solving for u(`) yields the K×1 MMSE pulse compression filter

uMMSE(`) =
(

E
{

_yf(`, θ̂r)
_yH

f (`, θ̂r)
})−1

E
{

x∗r [`]
_yf(`, θ̂r)

}
(4.24)

following a similar procedure presented in [86]. The autocovariance matrix denoted as

Qr(`) = E{_yf(`, θ̂r)
_yH

f (`, θ̂r)} is expanded by substituting the fast-time data from (4.14) into the

matrix. The result of the expansion is

Qr(`) = SrPr(`)SH
r +

Q−1

∑
q=0

Rc,q(`)+Rr,err(`)+Rr,v

= SrPr(`)SH
r �

(
σ2

err
N

IL×L +1L×L

)
+

Q−1

∑
q=0
|α(θ̂r,θc,q,look)|2E{yc,q(`)yH

c,q(`)}+
σ2

v
N

IL×L

(4.25)

where Pr(`)=E{xr(`)xH
r (`)}= xr(`)xH

r (`)�IK×K is a K×K power distribution matrix from radar

reflections, Rc,q(`) = |α(θ̂r,θc,q,look)|2E{yc,q(`)yH
c,q(`)} is the L×L interference covariance matrix

for the qth communication signal, Rr,err(`) = (σ2
err/N)IL×L�SrPr (`)SH

r is a L×L error covariance

matrix with error power σ2
err, and Rr,v = (σ2

v/N)IL×L is a L×L noise covariance matrix with noise
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power σ2
v . The noise and error powers are scaled by N due to the coherent gain beamforming

provides. As seen from previous chapters, the elements in xr(`) are assumed to be statistically

independent of each other [72] making the distribution matrix a diagonal matrix with the power of

the filter response along the diagonal. For fast-time signals, this is the pulse compression response.

Substituting (4.14) into the cross-correlation vector in (4.23) expands to

E
{

x∗r [`]
_yf(`, θ̂r)

}
= ρr[`]sr (4.26)

where ρr[`] = E{|xr[`]|2}. Using (4.25) and (4.26), the MMSE filter is

uMMSE(`) = ρr[`]Q−1
r (`)sr. (4.27)

The autocovariance matrix contains a structure covariance matrix (StCM) of the radar

collection since the transmit waveform is known. The Q interference matrices are unknown but

can be adaptively estimated using a sample covariance matrix (SaCM). The presence of the

interference covariance matrix provides the cancellation of the communication signals. Therefore,

the aggregate of the interference covariance matrices is akin to a cancellation matrix

Rcanc(`) =
Q−1

∑
q=0

Rc,q(`). (4.28)

APC is an re-iterative procedure using the MMSE pulse compression filter. Each successive

iteration updates the pulse compression response. The MMSE pulse compression filter requires

knowledge of the radar transmit waveform, range profile, communication signals, error power, and

noise power. The radar transmit waveform is known. The noise power is obtained via analysis of

the radar receiver noise figure. The error power is determined via an empirical analysis following

receive processing. The radar range profile and communication signals are unknown a priori.

Beamspace fast-time estimates of the communication signals are used in its place. The range

profile is adaptively estimated using APC. Utilizing the StCM from APC with a cancellation matrix
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makes the formulation a subset of baseline supplementary loading (BaSL) [34]. BaSL performs a

"soft" cancellation by jointly performing the estimation and cancellation stages.

The L × L cancellation matrix is estimated using beamspace fast-time estimates of the

communication signals

R̂canc(`) =
Q−1

∑
q=0

_yf
(
`, θ̂c,q

)_yH
f
(
`, θ̂c,q

)
(4.29)

which contains errors from the radar and other sources. In order satisfy the Reed, Mallett, and

Brennan rule [36], approximately 2L homogeneous beamspace snapshots of the communication

signal would be necessary in order to be within 3 dB of the optimal matrix. Reaching that number

of snapshots is dependent on the number of receive beams used. The rank will most often be Q

but only occurs if each communication signal is separated spatially. The rank can be at most N

which is also the number of spatial degrees-of-freedom. The matrix has low sample support since

Q≤ L. The benefit of APC is that only a single snapshot of each communication signal is required

to remove each.

Considerations have been taken for practical implementation of APC. APC can suppress

sidelobes to an impractical floor response that is ineffective for detection processing [86] . A gain

constraint is employed with APC to suppress the sidelobes to the original noise floor [86].

Consider the MSE cost function such that the filter has unity gain uH(`)sr = 1

JMSE = E
{∣∣∣xr [`]−uH(`)

_yf
(
`, θ̂r

)∣∣∣2}+Re{λ ∗L(uH(`)sr−1)} (4.30)

where λL is a Lagrange multiplier. Minimizing the cost function and determining the unity gain

constraint produces the constrained MMSE pulse compression filter

uMMSE,con(`) =
Q−1

r (`)sr

sH
r Q−1

r (`)sr
(4.31)

[86]. The constrained solution has shown to suffer a performance loss against low SNR signals.

The unity gain constraint can be modified to a partial gain constraint which provides a trade-space
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between a noise floor and practical performance of low SNR signals [93]. For the purposes of

testing APC for coexistence, the gain constrained solution is implemented. Superresolution results

in a mismatch loss when range straddling is present [94]. Beamspoiling for APC is performed by

setting Kr columns, corresponding to the oversampling factor, on each side of the center column in

Sr to zeros.

sr,K/2+kr = 0L×1 (4.32)

for |kr| = 1,2, · · · ,Kr. The result is the null-to-null range resolution remains nominal. APC can

also collapse the range window in the eclipsed regions in successive adaptive iterations [184]. A

pulse compression repair is employed to preserve the response in the eclipsed regions [94, 184].

Pulse eclipsing repair [184] is not addressed within this work although the approach is applicable

due to the structure of the APC formulation.

The presentation of APC in fast-time follows [94]. The major difference in the procedure

is the incorporation of the cancellation matrix. The procedure begins with the estimation of the

beamspace fast-time data using (4.14). Next, the procedure is initialized by the using the match

filter estimate of the range profile from (4.21)

x̂APC,0(`, θ̂r) = x̂MF(`, θ̂r). (4.33)

The ith iteration of the procedure begins by forming the power distribution matrix using the

previous estimate of the range profile

PAPC,i(`, θ̂r) = xAPC,i−1(`, θ̂r)xH
APC,i−1(`, θ̂r)� IK×K. (4.34)

The fast-time covariance matrix is formed using the updated power distribution matrix and Q

beamformed fast-time estimates of the communication signals

QAPC,i(`, θ̂r) = SrPAPC,i(`, θ̂r)SH
r �

(
σ2

err
N

IL×L +1L×L

)
+ R̂canc(`)+

σ2
v

N
IL×L. (4.35)
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The kth APC filter for the ith iteration is formed using updated fast-time covariance matrix

uAPC,con,i(`, θ̂r) =
Q−1

APC,i(`, θ̂r)sr

sH
r Q−1

APC,i(`, θ̂r)sr
(4.36)

and applied to the receive data to form its corresponding range estimate

x̂APC,i(`, θ̂r) = uH
APC,con,i(`, θ̂r)

_yf
(
`, θ̂r

)
. (4.37)

Steps (4.33) - (4.37) are then repeated for each `th range sample. Next, a K×1 vector of the range

estimates is formed

xAPC,i(`, θ̂r) = [ xAPC,i(`, θ̂r) xAPC(`+1, θ̂r) · · · xAPC,i(`+K−1, θ̂r) ]T . (4.38)

and used in the replacement of (4.33) and iterated through. The APC approach presented only

requires prior knowledge of the communication signal DOA of instead its frequency or temporal

structure.

4.4 Block Adaptive Pulse Compression

The downside of APC is the requirement of a covariance matrix to be formed and inverted per

range sample. APC implements of L×L matrix inversions per sample per iteration. The amount

of matrix inverses can be computationally costly. There exist other APC approaches such as fast

APC [83–85], match filter APC [89], gradient descent APC [88] that focus on reducing

covariance size. A approach is presented that reduces the filter to a single StCM for a block of

data. BAPC uses a single L× L matrix per iteration for L snapshots. The block approach is

structured similarly to RMMSE for spectral estimation called re-iterative superresolution (RISR)

[23]. The RISR approach takes a single StCM for a bank of filters. The RISR has been

extensively examined in previous chapters. Although the processing is in a different domain, the

same principles and performance characteristics of the RISR carry over into BAPC algorithm.
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Consider the estimate of the range sample from (4.22). An alternate estimate from APC

considers a weight vector corresponding to the the time-shifted delays with the discrete

convolution matrix dest = x̂r [`+ k] = uH
r,k

_yf
(
`, θ̂r

)
for k = 0,1, · · · ,K − 1 samples. The

corresponding MSE cost function for the kth sample in the data vector is

JMSE = E
{∣∣∣xr [`+ k]−uH

r,k
_yf
(
`, θ̂r

)∣∣∣2} . (4.39)

In this context, ` is the starting point. Applying the gradient with respect to the conjugate of

the weight vector, setting to ∇u∗r,kJMSE = 0, and solving for ur,k yields the K × 1 MMSE pulse

compression filter

uMMSE,k =
(

E
{

_yf(`, θ̂r)
_yH

f (`, θ̂r)
})−1

E
{

x∗r (`+ k)_yf(`, θ̂r)
}
. (4.40)

In this case, multiple estimates are formed from a single data vector. Using (4.14), the expectations

can be expanded. The autocovariance matrix Q = E{_yr(`)
_yH

r (`)} is equivalent to (4.25). Note,

that in the case the matrix is independent of k. Therefore, each kth MMSE pulse compression filter

has the same autocovariance matrix. The expectation of the cross-covariance vector in (4.40) is

E
{

x∗r (`+ k)yf(`, θ̂r)
}
= ρ[`+ k]sr,k. (4.41)

when substituting (4.14) into the vector. Substituting the expectations from (4.25) and (4.41) into

the MMSE pulse compression filter from (4.40) produces the following MMSE filter

uMMSE,k = ρr[`+ k]Q−1
r (`)sr,k. (4.42)

The MMSE filter in (4.42) and the previous MMSE filter in (4.27) differ in vectors and matrices

change with k. In (4.27) the power distribution matrix P(`), subsumed in Q(`), changes each

snapshot. Every delay shift in the snapshot performs a delay shift along the diagonal of P(`). The
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result is a new covariance is estimated and inverted each range sample. In (4.42), Q(`) is the same

while sr,k(`) its corresponding power are shifted. Therefore, a similar covariance is used for block

of range samples.

A filter bank is formed for K filters using (4.42)

UMMSE = Q−1
r (`)Pr(`)Sr. (4.43)

Application of the filter bank to the receive data produces the MMSE estimate of the range profile

x̂MMSE
(
`, θ̂r

)
= UH

MMSE
_yf
(
`, θ̂r

)
. (4.44)

The basis vector in the convolution matrix being discrete time-shifted sinc functions which make

the approach suboptimal. Portions of convolution are zero-filled due to the time shift. The zero-

filled vectors causes a loss in fidelity since a portion of the waveform is used. Although the adaptive

degree-of-freedom remains the same, the vector norm decreases. This leads to a lost in robustness.

Techniques for the unity gain constraint and beamspoiling are considered here for practical

implementation of BAPC. The gain constrained solution is similar to APC. The constrained MSE

cost function is

JMSE = E
{∣∣∣xr [`+ k]−uH

r,k
_yf
(
`, θ̂r

)∣∣∣2}+Re{λ ∗(uH
r,ksr,k−1)}. (4.45)

where uH
r,ksr,k = 1 is the unity gain constraint. The resulting filter solution is

uMMSE,con,k =
Q−1

r (`)sr,k

sH
r,kQ−1

r (`)sr,k
(4.46)

The beamspoiling approaches considers the adjacent bin approaches presented in the previous
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chapters

uMMSE,beam,k =

√
Kr

Kr
∑

kr=−Kr

uMMSE,con,k+KrsH
r,k+Kr

sr,k

Kr
∑

kr=−Kr

sH
r,k+Kr

sr,k

. (4.47)

A L×K filter bank is formed from the beamspoiled filters

UMMSE = [ uMMSE,0 uMMSE,1 · · · uMMSE,K−1. ]. (4.48)

Pulse eclipsing needs to be investigated more for BAPC. The approaches presented in [94, 184]

are not applicable due to the StCM remaining consistent for a block of pulses. Additionally, the

eclipse regions need to be discarded such that the consecutive blocks can be combined to form a

single range profile. Approaches must consider the overlapping of these blocks. For now, only the

observation region of the filter response is examined.

The BAPC produces follows APC closely. For operation within BAPC the number of samples

must be L ≥ fsτr The beamformer is obtained and applied to the receive data. The BAPC is

initialized by the using the match filter estimate of the range profile

x̂BAPC,0(`, θ̂r) = x̂MF(`, θ̂r). (4.49)

The ith iteration of the procedure begins by forming the power distribution matrix using the

previous estimate of the range profile

PBAPC,i(`, θ̂r) = xBAPC,i−1(`, θ̂r)xH
BAPC,i−1(`, θ̂r)� IK×K. (4.50)

The fast-time covariance matrix is formed using the updated power distribution matrix and Q

beamformed fast-time estimates of the communication signals obtained

QBAPC,i(`, θ̂r) = SrPBAPC,i(`, θ̂r)SH
r �

(
σ2

err
N

IL×L +1L×L

)
+ R̂canc(`)+

σ2
v

N
IL×L. (4.51)
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The kth BAPC filter is formed using updated fast-time covariance matrix

uBAPC,con,k,i =
Q−1

BAPC,i(`)sr,k

sH
r,kQ−1

BAPC,i(`)sr,k
(4.52)

then is beamspoiled to maintain nominal resolution

uBAPC,beam,k =

Kr
∑

kr=−Kr

uBAPC,con,k+KrsH
r,k+Kr

sr,k

Kr
∑

kr=−Kr

sH
r,k+Kr

sr,k

. (4.53)

Next, a L×K filter bank is formed from the filters

UBAPC,beam,i = [ uBAPC,beam,0,i uBAPC,beam,1,i · · · uBAPC,beam,K−1,i ] (4.54)

and applied to the measurement vector for an updated estimate of the range profile.

x̂BAPC,i
(
`, θ̂r

)
= UH

BAPC,beam,i
_yf
(
`, θ̂r

)
. (4.55)

The procedure returns to (4.50) for a set number of iterations. If the same covariance size and

number of iterations are performed for APC and BAPC, the latter would reduce the computation

by the number of range bins being examined.

4.5 Synthetic Results using Ground-Based Open-Air Measurements

Open-air experimental testing was performed at the University of Kansas to examine APC and

BAPC for radar and communication coexistence. The experiment consisted of two open-air

collections are performed: one for the radar and another for the wireless communication. A

synthetic beamspace fast-time dataset is generated off-line by synthetically imposing a linear

array onto the collections then combining thereafter. The synthetic dataset allows for control of

the receive powers and DOAs while maintaining open-air and hardware effects. The subsections
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Fig. 4.4: Radar hardware instrumentation setup (left) and annotated field of view (right, courtesy
of Google Maps) for measured results. The radar and intersection are depicted with a yellow star

and yellow ellipse, respectively

below include details of the data formation and the performance analyses.

4.5.1 Data formation

The radar collection is the same uniform PRI collection from Chapter 2. There are more details

on the fast-time aspects since this chapter focuses on fast-time signals in contrast to Chapter 2

which focused on slow-time signals. The radar is a monostatic, ground based, pulse-Doppler

radar operating at a carrier frequency of 3.55 GHz. For reference, Figure 4.4 presents the

experimentation set-up and scene field of view for the radar system (and is the same as Fig. 2.30).

A LFM waveform with a 3 dB bandwidth of Br = 50 MHz and pulse duration of

τr = 3 µs is generated using an arbitrary waveform generator. The PRI was set to 20 µs for a

longer unambiguous range. The transmit and receive antennas are mechanically steered towards a

busy intersection approximately 1100 m from the radar. The radar has simultaneous transmit and

receive capabilities. Therefore, the direct path is captured in the receive antenna. The radar scene

included forestry and buildings in addition to moving vehicles. On receive, the collected signal is

sent through a bandpass filter, passed through a low-noise amplifier, and passed through a

real-time spectrum analyzer where the collected signal is downconverted to baseband then
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undergoes IQ sampling and quantization for later off-line processing. The receiver sampling rate

is fs = 200 MHz. The receiver noise power was measured to be approximately -65 dBm.

In a separate experiment, a 4G LTE signal was transmitted from a nearby location in the

direction of the radar receive antenna. Figure 4.5 depicts the experimentation set-up and scene

field of view for the wireless communication system. The communication signal was generated

using a Agilent/Keysight vector signal generator. To mimic a deployed LTE signal, a built-in LTE

software package by Keysight was implemented that consisted of different physical broadcast

channels, synchronization channels, and constellations. The LTE signal had a bandwidth of 20

MHz is upconverted to a center frequency of 3.55 GHz. The communication transmit antenna was

mechanically steered to have a direct line-of-sight to the radar receiver. The receiver then collects

the communication transmission and obtains the baseband signal the same way as the radar. Note

the communication transmitter and the radar receiver did not have phase synchronization.

Decoding the communication bit stream was not of interest.

Denote the following subscripts: "open" denotes a phenomenon occurring during open-air

propagation, "col" denotes a collection obtained at radar receiver, and "syn" denotes a synthetic

parameter added off-line. The collection of the radar and communication signals at the radar

receiver can be modeled as

yr,col [`] = yr,open [`]+ vr,col[`]

yc,col [`] = yc,open [`]+ vc,col[`]

(4.56)

where yr,open [`] represents the radar waveform interaction with the open air environment (see (4.6)),

yc,open [`] represents the communication signal interaction with the open air environment (see (4.4)),

and vr,col[`] and vc,col[`] represent the thermal noise at the receiver for each collection. Figure 4.6

and 4.7 present the radar and communication open-air collections in fast-time and frequency for

one PRI.

The communication transmission operates for the duration of the PRI. The communication

bandwidth partially overlaps 40% of the radar bandwidth. A synthetic signal amplification and
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Fig. 4.5: Wireless communications hardware instrumentation setup (top) and annotated field of
view (bottom) for measured results
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Fig. 4.6: Fast-time signal of the radar (black) and communication (blue) open-air collections for
one PRI

Fig. 4.7: Baseband spectrum of the radar (black) and communication (blue) open-air collections
for one PRI
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synthetic ULA (assumed to have λRF/2 element spacing) with a corresponding synthetic look

direction is added to each collection. The combination of the separate synthetic data collection is

ysyn [n, `] =
√

Pr,synyr,col [`]e jnθr,look,syn +
√

Pc,synyc,col [`]e jnθc,look,syn +
√

Pv,synvsyn[n, `]

=
√

Pr,synyr,open [`]e jnθr,look,syn +
√

Pc,synyc,open [`]e jnθc,look,syn

+
√

Pr,synvr,col [`]e jnθr,look,syn +
√

Pc,synvc,col [`]e jnθc,look,syn

(4.57)

At this stage, the data is now in the form of an element-space fast-time samples.

Processing from element-space fast-time to beamspace fast-time is performed using (4.8) -

(4.14). First, the data is formed into an element-space data vector

ys,syn (`) =
√

Pr,synyr,open [`]cs(θr,look,syn)+
√

Pc,synyc,open [`]cs(θc,look,syn)

+
√

Pr,synvr,col [`]cs(θr,look,syn)+
√

Pc,synvc,col [`]cs(θc,look,syn).

(4.58)

Next, beamformers are applied to the synthetic data to obtain the beamspace radar and

communication estimates

_ysyn
[
`, θ̂r

]
= uH

BF
(
θ̂r
)

ys,syn (`)

=
√

Pr,synyr,open [`]+
√

Pc,synyc,open [`]α(θ̂r,θc,look,syn)

+
√

Pr,synvr,col [`]+
√

Pc,synvc,col [`]α(θ̂r,θc,look,syn)

_ysyn
[
`, θ̂c

]
= uH

BF
(
θ̂c
)

ys,syn (`)

=
√

Pc,synyc,open [`]+
√

Pr,synyr,open [`]α(θ̂c,θr,look,syn)

+
√

Pc,synvc,col [`]+
√

Pr,synvr,col [`]α(θ̂c,θr,look,syn).

(4.59)

The synthetic powers are set to 10log10(Pc,syn) = NBτ and 10log10(Pr,syn) = 0. The

communication power is set to counteract any gains from beamforming and pulse compression

which ensures the radar response stays below the communication signal after coherent

processing. This also ensures the improvement observed is accredited to adaptive algorithms
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instead of coherent gain. Taking these parameters into consideration, the fast-time signal becomes

_yf,syn
(
`, θ̂r

)
= yr,open (`)+

√
Pc,synα(θ̂r,θc,look,syn)yc,open (`)

+vr,col (`)+
√

Pc,synα(θ̂r,θc,look,syn)vc,col (`)

_yf,syn
(
`, θ̂c

)
=
√

Pc,synyc,open (`)+α(θ̂c,θr,look,syn)yr,open (`)

+
√

Pc,synvc,col (`)+α(θ̂c,θr,look,syn)vr,col (`) ,

(4.60)

which is used to determine the efficacy of the adaptive algorithms.. The cancellation matrix used

within APC and BAPC is

R̂canc(`, θ̂c) =
_yf,syn

(
`, θ̂c

)_yH
f,syn

(
`, θ̂c

)
. (4.61)

Within the radar synthetic estimation, the radar portion is unaffected while the communication

signal and its corresponding noise are synthetically amplified and scaled by a complex amplitude.

Within the radar synthetic estimation, the communication portion is again synthetically amplified

while the radar portion is synthetically scaled by a complex amplitude. Some analyses consider

the case where communication is not present using the top equation in (4.56)

yf,col(`) = yr,open (`)+vr,col (`) (4.62)

which is similar the top equation in (4.60) without the communication contribution.

4.5.2 Range Performance

The pulse compression responses for the synthetic data is presented. A single PRI and a single

collection of the communication of the same duration are combined. The size of the fast-time

interval being examined is set to the minimum value of L = fsτr = 600 samples. For block size

to be consistent within BAPC, the first 1800 samples of the PRI are processed which corresponds

to the first 1350 m. Therefore, 3 blocks are processed for BAPC at starting sample marks of
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points 0, 600, and 1200. The phased array had N = 10 elements. The spatial frequencies were

set to θ̂r = θr,look,syn = 0 and θ̂c = θc,look,syn = 3/2N such that the parameters have errorless DOA

estimation and the communication signal is in the peak sidelobe of the radar receive beampattern.

APC and BAPC procedures conclude after 10 iterations.

Figure 4.8 presents a comparison between match filtering and adaptive approaches with and

without interference. The top figure shows the range to 1100 m and the bottom presents a zoomed

in version up to 200 m. The high-power pulse compression response seen for APC and BAPC is

due to the direct path between the transmit and receive antennas. The horizontal axis is shifted

based on the direct path range. The match filter response, denoted as MF in the figures throughout

the analyses, succumbs to the interference from the communication signal. APC and BAPC are

both able to remove the interference and get an estimation of the range profile. APC provides

the most robust solution of the lower SNR results. BAPC fidelity diminishes in its estimation

for the lower SNR signals as seen between 200-400 m. Otherwise, APC and BAPC interference

suppression overlap. They differ in their estimation resolution performance. For example, APC is

able to have a better notch depth at approximately 45m and can also discern two closely spaced

scatterers at 70 m. BAPC detection performance diminishes due to the resolution loss. However,

BAPC does provide the computation improvement and similar interference suppression.

APC and match filter response without interference is presented in Figure 4.9. The match filter

response without interference presents a familiar aggregate of range-delayed sinc responses from

using a LFM. APC is able to obtain the same response with or without the interference present.

BAPC and match filter response comparison is presented in Fig. 4.10. BAPC has similar results

to APC. Each are able to unmask targets that were previously obscured by the direct path range

sidelobes seen at 70 m, 80 m, and 90 m. Lastly, Figure 4.11 presents a comparison of APC with

and without the inclusion of the SaCM within the filter. The inclusion of the communication SaCM

is required for APC to obtain a robust solution. Without an estimate of the communication signal,

APC returns to the match filter response. The response for BAPC without the SaCM is omitted

since it is similar to APC without the SaCM. The results shows that the SaCM implemented with
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Fig. 4.8: Pulse compression response using a match filter (blue), APC (red), and BAPC (green)
adaptive filter with and without interference at zero-Doppler; Zoomed in depiction at the bottom
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Fig. 4.9: Match filter and APC response with and without interference at zero-Doppler

Fig. 4.10: Match filter and BAPC response with and without interference at zero-Doppler
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Fig. 4.11: APC response with and without SaCM

the solution for cancellation is critical to mitigate the interference.

4.5.3 Angle Estimation Error

A Monte Carlo analysis is conducted to address the ramifications from beamforming and inaccurate

DOA estimation. The communication signal is segmented into 1000 segments with each having

1800 samples. A different communication segment is used each trial. The radar PRI examined

remains the same for all the trials. The results are presented for BAPC only since APC presents

similar performance behavior.

The first analysis addresses the loss of BAPC suffers as angle separation between radar DOA

and communication DOA varies. The analysis assumes errorless DOA estimation of the

communication signal θ̂c = θc,look,syn and varies θ̂c to determine how performance degrades with

spatial frequency separation from θ̂r. The transmit and receive beams for the radar were steered to

boresight θ̂r = θr,look,syn = 0. An initial analysis of the loss factor presented that BAPC suffers

from self-cancellation loss when the communication is in the mainbeam of the radar beampattern.
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A loss factor based on the cancellation loss was developed that considers the ratio of BAPC with

and without interference present

LF1
[
`, θ̂c

]
=

∣∣∣∣∣uH
BAPC,syn(`, θ̂c)

_yf,syn
(
`, θ̂r;θr,look,syn

)
uH

BAPC,col(`)yf,col (`)

∣∣∣∣∣
2

(4.63)

where uBAPC,syn(`, θ̂c) is the filter generated for synthetic data and uBAPC,col(`) is the filter

generated for collected data. The dependence of θ̂c on the BAPC filter is due to the dependence

on R̂canc(`, θ̂c) subsumed into the filter. The loss factor effectively would take the power ratio

between the red and green trace in Figure 4.9 as θ̂c varies. The loss factor is examined at the

direct path response.

Figure 4.12 presents the performance loss for BAPC for different array sizes. BAPC is most

effective against communication signals within its sidelobes. As the radar begins to transit and

receive in the direction of the communication signal, BAPC effectiveness diminishes. This is

N=2
N=10

N=20

Fig. 4.12: BAPC performance loss by spatial frequency separation of radar and communication
signal

209



due to the radar and communication beamspace fast-time estimate becoming less separated. This

means that _yf,syn
(
`, θ̂c

)
is approaching equality with _yf,syn

(
`, θ̂r

)
. When equality is reached, self-

cancellation on the radar estimate begins to occur. As the number of array elements increase, the

effective of the mainlobe deceases. This is to be expected since the 3 dB beamwidth decreases with

increasing N. The ripple that is seen is due to the sidelobe peaks. APC and BAPC performs best

when the communication signal outside the mainbeam. If communication signal is in the receive

beamformer mainbeam of the radar, self-cancellation loss can occur.

A second analysis examines the communication DOA estimation error tolerance. Consider an

estimation error θerr such that

θ̂c = θc,look,syn +θerr. (4.64)

The radar DOA look direction and radar DOA estimate are fix in the direction of boresight. The

communication DOA look direction is fixed in the first peak sidelobe of the radar beamformer

beampattern at θc,look,syn = 3/2N. The error is examined for ±1/N at N = 20. The error is θerr

which varies θ̂c as a well. An preliminary examined of the error tolerance showed that an

estimation loss from the match filter response occurs. A loss factor based on the estimation loss is

considered that takes the ratio of the match filter and BAPC response with interference present

LF2
[
`, θ̂c

]
=

∣∣∣∣∣ uH
MF,`

_yf,syn
(
`, θ̂r

)
uH

BAPC,syn(`, θ̂c)yf,syn
(
`, θ̂r

)∣∣∣∣∣
2

. (4.65)

The loss factor would take the power ratio between the blue and green trace in Figure 4.11 as θ̂c

varies.

Figure 4.13 present the error tolerance for BAPC. The estimation loss is examined over the

beamwidth of the communication beamformer beampattern. As the error increases towards the first

null on each side of the beampattern, the cancellation matrix R̂canc(`) approaches 0K×K effectively

making the cancellation ineffective. Therefore, APC and BAPC performs similar to the green trace

in Fig. 4.11 where the cancellation matrix. The response from DOA estimation error is consistent

over N meaning the error tolerance increases with decreasing number of array elements. APC
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and BAPC performs best when the communication DOA estimate is within half the null-to-null

beamwidth. If the estimated DOA of the communication is greater than the null-to-null beamwidth

of the beamformer, a estimation loss occurs making the adaptive approaches ineffective.

Fig. 4.13: BAPC performance loss by communication DOA estimation error
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Chapter 5

Conclusions and Future Work

Conclusions and future work to the topics are highlighted below. Throughout this work, mismatch

processing is combined with interference cancellation for enhanced signal estimation in the

presence of interference. Additionally, computing challenges that come with the proposed

mismatch approaches are addressed via sub-optimal approaches. Sections 5.1, 5.2, and 5.3

address Chapters 2, 3, and 4 respectively.

5.1 Adaptive Mismatch Doppler Processing for Uniform and Staggered

Pulse Repetition Interval Radar

Adaptive mismatch Doppler processing (AMMDP), a form of re-iterative minimum mean-square

error (RMMSE), is proposed for spectral estimation for uniform and random staggered pulse

repetition interval (PRI) staggering. To address the computationally pitfalls of adaptive filter

generation, partial adaptive mismatch Doppler processing (PAMMDP) was introduced.

Non-uniform sampling increases the correlation of frequencies in the Doppler spectrum thereby

increasing the sidelobe response and decreasing aliasing. By accounting for the non-uniform

sampling within the temporal steering vector, AMMDP was shown to be provide robustness to

uniform and staggered PRI transmissions. PAMMDP was robust to uniform PRI transmissions

and provided a trade-space between performance and computation as function of the

reduced-rank of the filter for random staggered PRI transmissions. AMMDP and PAMMDP were

shown to improve in estimation performance when integrated with adaptive clutter cancellation.

The techniques were experimentally demonstrated on open-air experimental data. A major caveat
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of AMADE and PAMADE is beamspoiling which increases the computation. The results

presented focus on stationary radar in slow-time and were a baseline to the use of RMMSE in

space-time (spatial/slow-time) for airborne sidelooking radar in Chapter 3.

Future work includes exploring different transformation matrices for rank reduction. The

transformation matrices leveraged are well known to be useful. Proven matrices were necessary

to show the efficacy of the proposed PAMMDP formulation. Modifying the form of the Doppler

transformation matrix may improve estimation and cancellation abilities. Another path for future

work is exploring different cancellation matrices. Using adaptive cancellation for clutter

cancellation of stationary radar is not necessary but rather a more robust approach to explore over

non-adaptive techniques. The exploration of adaptive filter is a precursor to using MMSE for

airborne GMTI where adaptive filtering is essentially required for adequate clutter cancellation.

5.2 Optimal and Adaptive Mismatch Angle-Doppler Processing for

Airborne Radar

Optimal and adaptive forms of mismatch processing for angle-Doppler estimation was combined

with adaptive clutter cancellation using traditional space-time adaptive processing (STAP)

approaches for side-looking airborne radar. Optimal mismatch processing uses a least-squares

(LS) cost function. Adaptive mismatch processing, named adaptive mismatch angle-Doppler

estimation (AMADE), uses RMMSE. The computational cost of the estimation approaches were

addressed via the introduction of reduced-rank approaches for each algorithm. The reduced-rank

mismatch processing approaches named reduced-rank least-squares (RRLS) and partially

adaptive mismatch angle-Doppler estimation (PAMADE), respectively, were combined with

well-known reduced-rank STAP approaches. LS shown a lack of robustness and provided

minimal sidelobe suppression. RRLS benefited from rank-reduction but overall had a similar

response to LS. AMADE and PAMADE provide robust angle-Doppler sidelobe suppress.

PAMADE had minimal performance loss as the covariance matrix reduction increased. AMADE
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and PAMADE performance significantly improves when combined with adaptive cancellation. A

major caveat of AMADE and PAMADE is beamspoiling which increases the computation. The

approaches were experimentally demonstrated using open-air synthetic aperture radar (SAR)

ground moving target indication (GMTI) experimental dataset from the Air Force Research

Laboratory called GOTCHA. The experimental demonstration confirmed their applicability to

data.

Future work includes explore different configurations and structures of transformation

matrices to reduce rank and different. Also consider that the work from this chapter align close

with the previous chapter. They differ in the steering vectors being used (slow-time and

space-time respectively). The future work from the previous chapter effectively relates to this

chapter as well.

5.3 Adaptive Mismatch Processing for Radar and Communication

Coexistence

Radar and communication cohabitation in the radio spectrum is addressed via the application of

receive digital beamforming of element-space signals and adaptive filtering of fast-time signals.

Adaptive pulse compression (APC) using RMMSE is proposed for simultaneous estimation of the

radar range profile and removal of the interfering communication. Additionally, a suboptimal

computationally efficient version of APC called block APC (BAPC) is also proposed. Each

approach was applied to synthetically combined radar and communication data separately capture

from open-air experiments. Beamforming was leveraged to separate the signals by their

direction-of-arrival onto receive phased array. Doing so provide separate estimates of the radar

and communication signals. The radar estimate assisted with the estimation while the

communication signal assisted with the cancellation. APC and BAPC were shown to be effective

in mitigating a 4G long-term evolution (LTE) wireless communication signal and estimating the

range profile. Each estimate was leveraged within the APC and BAPC. APC provides a robust
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response while BAPC suffers a performance loss for low SNR signals. However, BAPC is able to

reduce computation by the number of range bins being examined. Both approaches can suffer a

estimation loss if the direction-to-arrival estimate of the communication has a error beyond a

half-beamwidth and a self-cancellation loss if the communication transmit signal is in in the

mainbeam of the radar.

Future work should entail implementing the proposed techniques on collected data instead of

synthetic data. A natural progression for future work is incorporating adaptive digital

beamformers prior to performing adaptive pulse compression. A sidelobe canceller in the

direction of the competing signal will provide better estimates of the radar and communication

collections. Any residual interference within the radar signal from the communication signal may

be mitigated by APC or BAPC.
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Appendix A

Derivation of Maximum Signal-to-Noise Ratio and

Signal-to-Interference-Plus-Noise Ratio Filters

Radars, and radio frequency (RF) devices, operate in a noise-limited environment due to active

components within the RF receiver (primarily during signal amplification) producing and

subsequently contributing a noisy signal to the recieved RF signal. The ratio of the relative

powers of the signal and noise known as the signal-to-noise ratio (SNR) is a key metric to

analyzing radar signal processing performance. As such, a higher SNR provides better radar

detection performance due to higher dynamic range and sensitivity. However, there are limitations

to SNR performance since signal power is driven by amplification from the RF transmitter and

losses from open-air propagation and lossy RF hardware components. In radar receive

processing, passing the receive signal through a maximum signal-to-noise (SNR) filter provides

the maximum likelihood estimate (MLE) of the signal in a noise-limited environment. The filter

maximizes the signal strength by exploiting the coherence from a known transmitted signal.

Radars often operate in scenes that are interference-limited due to signals captured during the

open-air propagation of the transmit signal. One example is clutter reflections. The interference

dominates the noise. The interference raises the "noise floor" and causing a loss in radar

sensitivity and dynamic range. The power of the noise floor becomes an a aggregate of the noise

and interference powers. The ratio of signal and aggregate of interfering sources known as the

signal-to-interference-plus-noise ratio (SINR) becomes the driving factor for radar performance.

The metric likewise has practical limitations. Passing the receive signal through a maximum

signal-to-interference-plus-noise ratio (SINR) filter maximizes the signal strength via signal
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coherence and performs interference cancellation in a sequential manner.

Throughout this work, noise- and interference-limited environments are explored in various

radar signal domains (fast-time, slow-time, and element-space signals). As such, the reader should

have awareness of the maximum SNR and SINR filters. Below are generalized versions of the

maximum SNR and SINR filter as derived in [22]. A maximum SNR and SINR filter can be

developed with proper manipulation of the signal model to fit the RF signal domain of interest

under similar statistical assumptions.

Consider a discretized signal oriented into a K×1 data snapshot z(t) containing a signal s(t),

interference i(t), and noise n(t)

z(t) = x(t)s(t)+ i(t)+n(t). (A.1)

where the vector z(t) = [ z(t) · · · z(t +1) · · · z(t +K−1) ]T is formed using samples of the

signal and x(t) is a complex amplitude. Note, s(t), i(t), and n(t) are formed similarly to z(t).

In context to radar signals, the transmitted signal is deterministic and known at the receiver. The

complex amplitude, interference, and noise are unknown stochastic processes. Therefore, their

statistics are examined.

The first and second order moments of the signals are of the most interest. The first moment

is captured in the mean of the signal. The second moment is captured in the autocovariance (or

covariance for short) of the signal. The formal definition of covariance matrix is

R(t) = E
{

a(t)aH(t)
}
−E {a(t)}(E {a(t)})H (A.2)

where (•)H denotes conjugate transposition, E{•} is the expectation operator, and a(t) is an

arbitrary K×1 vector [22]. The vector outer product consists of the variance/auto-correlation of a

single element on the main diagonal and co-variance/cross-correlation of different elements on

the off-diagonal terms [22]. The covariance matrix is symmetric, positive definite Hermitian

matrix. Having the covariance matrix be full rank is ideal but not always the case.
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The stochastic processes are considered to be wide-sense stationary and ergodic. The signal

is stationary in the wide sense when the mean is constant, E{a(t)} = µa(t), and the covariance

matrix depends on delay E{a(t)aH(t + τ)} = R(τ) [11]. Ergodicity stems from the signal mean

and variance maintaining a constant as a function of time. Therefore, limt→∞ E{µa(t)} = µa and

limt→∞ var{µa(t)}= 0 for signal mean and likewise limt→∞ E{R(t)}= R and limt→∞ var{R(t)}=

0 for signal variance where var{•} is the variance operation [11]. All in all, the signal mean and

covariance are fixed over time. In radar, the signals are considered to have zero-mean making (B.2)

R(t) = E
{

a(t)aH(t)
}
. (A.3)

Consider a filter w(t) is formed for estimation of x(t) via application to the receive data z(t)

x̂(t) = wH(t)z(t) = x(t)wH(t)s(t)+wH(t)i(t)+wH(t)n(t) (A.4)

where accent •̂ represents an estimate. The power of each component after filter application is

determined for later use in SNR and SINR. The signal power is

Ps(t) = E
{∣∣x(t)wH(t)s(t)

∣∣2}= E
{
|x(t)|2

}∣∣wH(t)s(t)
∣∣2 = σ

2
s (t)

∣∣wH(t)s(t)
∣∣2. (A.5)

The interference power is

Pi(t) = E
{∣∣wH(t)i(t)

∣∣2}= wH(t)E
{

i(t)iH(t)
}

w(t) = wH(t)Ri(t)w(t). (A.6)

The distribution of the interference component may or may not be independent or identically

distributed. With that being said, Ri(t) = E
{

i(t)iH(t)
}

is maintained for generality. The noise

power is

Pn(t) = E
{∣∣wH(t)n(t)

∣∣2}= wH(t)E
{

n(t)nH(t)
}

w(t) = wH(t)Rn(t)w(t). (A.7)
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The elements in the noise are considered statistically independent and have the same Gaussian

distribution. The noise has a mean vector 0K×1 and covariance matrix Rn(t) = σ2
n IK×K with

variance/noise power σ2
n .

SNR is the ratio of (A.5) and (A.7)

SNR(t) =
Ps(t)
Pn(t)

=
σ2

s (t)
∣∣wH(t)s(t)

∣∣2
σ2

n wH(t)Rn(t)w(t)
. (A.8)

Expanding (A.8) using the Cauchy-Schwarz inequality |aHb|2 ≤ ‖a‖2‖b‖2, where ‖ • ‖ denotes

the norm operator, SNR is maximized such that

σ2
s (t)

∣∣wH(t)s(t)
∣∣2

wH(t)Rn(t)w(t)
≤ σ2

s (t)‖w(t)‖2‖s(t)‖2

wH(t)(σ2
n IK×K)w(t)

=
σ2

s (t)wH(t)w(t)sH(t)s(t)
σ2

n wH(t)w(t)

=
σ2

s (t)sH(t)s(t)
σ2

n

=
σ2

s (t)wH(t)s(t)
σ2

n

(A.9)

Therefore, optimal maximum SNR filter is obtained by setting the filter to

wSNR(t) =
1

sH(t)s(t)
s(t). (A.10)

such that (A.9) equates to maximum SNR value of

SNRmax(t) = σ
2
s (t)/σ

2
n (A.11)

The maximum SNR filter is a bandpass finite impulse response (FIR) filter that matches the

frequency extent of the signal.

SINR is define as the ratio between the signal power and summation of the interference and
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noise powers. The powers definitions from (A.4-A.6) are leveraged within this ratio such that

SINR(t) =
Ps(t)

Pi(t)+Pn(t)

=
σ2

s (t)
∣∣wH(t)s(t)

∣∣2
wH(t)Ri(t)w(t)+wH(t)Rn(t)w(t)

=
σ2

s (t)
∣∣wH(t)s(t)

∣∣2
wH(t)(Ri(t)+Rn(t))w(t)

=
σ2

s (t)
∣∣wH(t)s(t)

∣∣2
wH(t)Ropt(t)w(t)

(A.12)

where Ropt(t) optimal interference covariance matrix defined as

Ropt(t) = Ri(t)+Rn(t) = Ri(t)+σ
2
n IK×K (A.13)

Before going forward, by definition of a matrix inverse, the relationship R1/2
opt(t)R

−1/2
opt (t) = IK×K

is true. Utilizing the Cauchy-Schwarz inequality, SINR becomes

σ2
s (t)

∣∣wH(t)s(t)
∣∣2

wH(t)Roptw(t)
=

σ2
s (t)

∣∣∣wH(t)R1/2
opt(t)R

−1/2
opt (t)s(t)

∣∣∣2
wH(t)Ropt(t)w(t)

≤
σ2

s (t)
∥∥∥R1/2

opt(t)w(t)
∥∥∥2∥∥∥R−1/2

opt (t)s(t)
∥∥∥2

wH(t)Ropt(t)w(t)

=
σ2

s (t)wH(t)Ropt(t)w(t)sH(t)R−1
opts(t)

wH(t)Ropt(t)w(t)

= σ
2
s (t)s

H(t)R−1
opt(t)s(t)

= ψσ
2
s (t)

(A.14)

[22] such that ψ = ‖R−1/2
opt (t)s(t)‖2 which is residual mismatch. The optimal maximum SINR filter

is

wSINR(t) =
1
ψ

R−1
opt(t)s(t) (A.15)

which sequentially attenuates the interference sources and estimates x. The maximum SINR filter
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is sequential bandstop (notch) FIR filter that matches the frequency extent of the interference and

a bandpass FIR filter that matches the frequency extent of the signal. The obvious difference

between SNR and SINR filters is the inclusion of the optimal covariance matrix which performs

the bandstop filtering operation. Where the SNR filter is simply a estimation procedure, the SINR

filter is a sequential cancellation-then-estimation procedure.
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Appendix B

List of Acronyms, Mathematical Notations, and Operators

B.1 Acronyms

Acronym Description

3GPP 3rd-Generation Partnership Project

4G Fourth generation

5G Fifth generation

ADC Analog-to-digital conversion

ALF Average loss factor

AMADE Adaptive mismatch angle-Doppler estimation

AMMDP Adaptive mismatch Doppler processing

APC Adaptive pulse compression

ASR Average sidelobe response

AWGN Additive white Gaussian noise

BAPC Block adaptive pulse compression

BaSC Baseline supplementary cancellation

BaSL Baseline supplementary loading

CFAR Constant false alarm rate

CNR Clutter-to-noise ratio

CPI Coherent processing interval

CUT Cell-under-test
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Acronym Description

CW Continuous wave

DFT Discrete Fourier transform

DOA Direction-of-arrival

DPCA Displace phase center antenna

EM Electromagnetic

EMI Electromagnetic interference

ESPRIT Estimation of signal parameters via rotational invariance technique

FAA Federal Aviation Administration

FAPC Fast adaptive pulse compression

FCC Federal Communications Commission

FDD Frequency-division duplexing

FIR Finite impulse response

FM Frequency modulation

FMCW Frequency modulation continuous wave

FT Fourier transform

GMTI Ground moving target indication

HPA High power amplifier

ICM Internal clutter motion

IID Independent and identically distributed

IIR infinite impulse response

IQ in-phase and quadrature

ISI inter-symbol interference

LCM Least common multiple

LCMV Linear constrained minimum variance

LFM Linear frequency modulation
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Acronym Description

LNA Low-noise amplifier

LS Least-squares

LTE Long term evolution

MAPC Multi-static adaptive pulse compression

MDD Minimum detectable Doppler

MF-RMMSE Match filter re-iterative minimum mean-square error

MIMO Multi-input multiple-output

MLE Maximum likelihood estimate

MMSE Minimum mean-square error

MSE Mean-square error

MTI Moving target indication

MUSIC Multiple-signal characterization method

MVDR Minimum variance distortionless response

NTIA National Telecommunications and Information Administration

OFDM Orthogonal frequency division multiplexing

OFDMA Orthogonal frequency division multiple access

PAMADE Partial adaptive mismatch angle-Doppler estimation

PAMMDP Partial Adaptive mismatch Doppler processing

PCAST President’s Council of Advisors on Science and Technology

PD Pulse-Doppler

PRF Pulse repetition frequency

PRI Pulse repetition interval

PSK Phase-shift keying

QAM Quadrature amplitude modulation

QPSK Quadrature phase-shift keying
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Acronym Description

RCS Radar cross section

RD-RMMSE Reduced dimension re-iterative minimum mean-square error

RD-RISR Reduced dimension re-iterative superresolution

RF Radio frequency

RIAA Real-valued iterative adaptive approach

RISR Re-iterative superresolution

RMB Reed, Mallett, and Brennan

RMMSE Re-iterative minimum mean-square error

RRLS Reduced rank least-squares

SaCM Sample covariance matrix

SAR Synthetic aperture radar

SC-FDMA Single-carrier frequency division multiple access

SIMO Single-input multiple-output

SINR Signal-to-interference-plus-noise ratio

SIR Signal-to-interference ratio

SLAR Side-looking airborne radar

SNR Signal-to-noise ratio

SRAP Space-range adaptive processing

STAP Space-time adaptive processing

StCM Structure covariance matrix

TDD Time-division duplexing

TDMA Time-division multiple access

TRAP Time-range adaptive processing

TRSR Total residual sidelobe response

ULA Uniform linear array
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B.2 Mathematical Notations and Operations

Notation Description

a Scalar quantity

A Scalar quantity or set (when explicitly defined)

a Column vector quantity

A Matrix quantity

a(x)
Continuous function dependent on variable t. In the case where it is a

combination of continuous and discrete, this notation supersedes.

a [`] Discrete scalar dependent on variable `

a(x,y)
Continuous function dependent on discrete scalar variable x and continuous

variable y

a(`) Discrete vector dependent variable `

A(`) Discrete matrix dependent on variable `

•∗ Complex conjugation operation of a quantity (superscript)

•T Transposition operation of a quantity (superscript)

•H Conjugate (Hermitian) transposition operation of a quantity (superscript)

Re{•} Real component of a complex-valued quantity

Im{•} Imaginary component of a complex-valued quantity

E{•} Expected value operation of a quantity

var{•} variance of a quantity

|a| Absolute value operation of a scalar

〈a(x) ,b(x)〉 Continuous-time inner product of functions a(x) and b(x)

a(x)∗b(x) Convolution operation of functions a(x) and b(x)

argmin
x
{a(x)} Argument minimum operation of a(x) with respect to x

∇ba(x) Gradient operation of function a(x) with respect to b

‖a‖ Euclidean norm operation of a vector
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Notation Description

‖A‖ Euclidean norm operation of a matrix

‖A‖F Frobenius norm operation of a matrix

Tr{A} Trace operation of a matrix

rank{A} Rank of a matrix

A�B Element-wise (Hadamard) product operation of matrices A and B

A⊗B Kronecker product operation of matrices A and B

0N×1

A vector containing only the number of dimension N×1 (in this example

only 0)

IN×N Identity matrix of dimension N×N

c{•} Cardinality of a set

LCM{•} Least common multiple of scalar quantities

vec{•} Vectorization of a matrix quantity

b•c Rounding real scalar to the next integer closet to −∞

O{•} Computational cost of a algorithm
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