
Type Dependent Policy Language

©2021

Anna Rose Fritz
B.S. Chemical Engineering, University of Kansas, 2019

Submitted to the graduate degree program in Department of Computer Science and the Graduate
Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of

Masters of Science.

Committee members

Perry Alexander, Chairperson

Alexandru Bardas

Andy Gill

Date defended: May 6th, 2021

The Thesis Committee for Anna Rose Fritz certifies
that this is the approved version of the following thesis :

Type Dependent Policy Language

Perry Alexander, Chairperson

Date approved: May 6th, 2021

ii

Abstract

Remote attestation is the act of making trust decisions about a communicating party. During this

process, an appraiser asks a target to execute an attestation protocol that generates and returns ev-

idence. The appraiser can then make claims about the target by evaluating the evidence. Copland

is a formally specified, executable language for representing attestation protocols. We introduce

Copland centered negotiation as prerequisite to attestation to find a protocol that meets the target’s

needs for constrained disclosure and the appraiser’s desire for comprehensive information. Ne-

gotiation begins when the appraiser sends a request, a Copland phrase, to the target. The target

gathers all protocols that satisfy the request and then, using their privacy policy, can filter out the

phrases that expose sensitive information. The target sends these phrases to the appraiser as a pro-

posal. The appraiser then chooses the best phrase for attestation, based on situational requirements

embodied in a selection function. Our focus is statically ensuring the target does not share sensi-

tive information though terms in the proposal, meeting their need for constrained disclosure. To

accomplish this, we realize two independent implementation of the privacy and selection policies

using indexed types and subset types. In using indexed types, the policy check is accomplishes

by indexing the term grammar with the type of evidence the term produces. The statically ensures

that terms written in the language will satisfy the privacy policy criteria. In using the subset type,

we statically limit the collection of terms to those that satisfy the privacy policy. This type abides

by the rules of set comprehension to build a set such that all elements of the set satisfy the privacy

policy. Combining our ideas for a dependently typed privacy policy and negotiation, we give the

target the chance to suggest a term or terms for attestation that fits the appraiser’s needs while not

disclosing sensitive information.

iii

Acknowledgements

First and foremost, I would like to thank Dr. Perry Alexander for encouraging me to go to graduate

school and study computer science. I was first introduced to the charm of computer science when

we began discussions about coding and proving late in my undergraduate career. Once I expressed

further interested, he encouraged me to seek hard problems and to have fun while solving them.

And with that, my graduate studies began. I am so grateful for the time and dedication he put into

completing this work and to teaching me the things I know. It would not have been possible to do

this without his efforts.

Next, I would like to thank everyone in the research lab who answered my many questions.

When I first started research, it seemed like every day I would need help downloading an appli-

cation or understanding a topic and they were always there smiling, ready to help. Through slack

messages, zoom meetings, and the summer reading groups, I have learned so much from this group

and would not be successful today without them.

I would also like to thank my teachers who taught me about things I never dreamed existed.

I remember learning compilers and understanding how the pieces fit and my mind exploding. It

seemed that every class was always something new and exciting. I know it takes a lot of dedication

to make a course entertaining and I am lucky to have had professors that care.

Last but not least, I would like to thank my family and friends who have believed in me and

encouraged me to continue believing in myself. Specifically, I want to thank my mom and dad

who have provided constant love and support even when I was frustrated and didn’t think I would

succeed. They are two of the best people I know and I can only hope I am half as kind and

considerate as they are.

They say it takes a village to raise a child. Well, I say it takes a village to help someone

graduate. This truly could not be possible without so many people whose time shaped me and this

work. I am so thankful to have them all.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Background 5

2.1 Remote Attestation . 5

2.2 ISAKMP . 8

2.3 Dependent Types . 10

2.3.1 Indexed Types . 11

2.3.2 Subset Types . 12

3 Negotiation 16

3.1 Motivation . 16

3.2 Protocol Negotiation . 17

3.3 Policy . 20

4 Dependent Types for Policy 22

4.1 Subset Type . 25

4.2 Indexed Type . 30

5 Example 34

6 Conclusion and Future Work 43

6.1 Conclusion . 43

v

6.2 Future Work . 44

vi

List of Figures

1.1 Negotiation process . 3

2.1 Attestation architecture . 5

2.2 Copland Phrase Grammar . 7

2.3 Possible phrases, written in Copland, for virus checking example. 8

2.4 Indexed Type Example . 13

2.5 Subset Type Example . 15

3.1 Negotiation process . 17

3.2 Verification Figure . 20

4.1 Common structures for negotiation . 23

4.2 Subset type evidence definition. 26

4.3 Subset type term structure. 26

4.4 Subset type privacy policy definition. 27

4.5 Subset type selection function. 28

4.6 Subset type selection function example. 28

4.7 Indexed type evidence grammar. 30

4.8 Indexed privacy policy definition. 31

4.9 Indexed type term grammar. 32

4.10 Indexed Types example . 33

5.1 Measurements in the request. 34

5.2 Common structures for this example. 35

5.3 An example privacy policy written for the subset type definition. 36

vii

5.4 An example of measuring the virus checker with the indexed type. 37

5.5 An example of measurements 2,3, and 4, written in the subset type, which evaluate

to terms once the proof is completed. 40

5.6 Privacy policy example written for the indexed type. 41

5.7 An example of measurements 2,3, and 4, written in the indexed type, which evalu-

ate to terms once the proof is completed. 42

viii

Chapter 1

Introduction

As the internet grows, cyber attacks are becoming increasingly common and exceptionally clever.

Even more formidable than the attacks themselves is the fact that users have little to no idea that

they are under attack as many do not have an infrastructure for protection. Keeping user’s safety at

the forefront, Coker et al. (2011) set out to understand common characteristics of attacks to develop

a verification scheme to protect users. They discovered most attacks were executed remotely, with

standard computers, and were used to gain access to individual entities as opposed to a network

of systems. They also discovered that the attacks are often able to obtain user’s confidential infor-

mation, such as bank passwords, by inserting malicious code. One way hinder these attacks and

protect users would be to ensure a communicating peer’s operating system is secure before making

a trust decision (Loscocco et al., 2000). To do that, there would need to be an infrastructure that

could attest to the state of the software executing on a remote machine so as to allow the user to

make an informed trust decision before engaging with the remote party. With that, the concept of

remote attestation was born as a way to ensure a communicating party should be trusted.

With the goal of making an informed trust decision about a communicating party over the

network, we consider the formal definition of trust and the principles that guide development of

attestation architectures, as laid by Coker et al. (2011). First, we define trust as having strong

identity and observed good behavior. That is, trust is a relationship dependent on the situation and

the identity of the communicating parties (Xiu & Liu, 2005). Taking into consideration the variety

of situations and identities, the attestation architecture must be flexible because the same structure

will be used to determine the trustworthiness of an enterprise of machines as well as an at home

user’s personal computer. Furthermore, the attestation architecture must operate with information

1

that reflects the system’s running state to obtain an accurate, authentic measurement. Finally, the

attestation architecture must allow the communicating parties to maintain confidentiality and pro-

tect sensitive information that may compromise their system. Implementing a flexible framework,

that reflects the running state of software, and considers communicating parties privacy standards,

is not an inherently obvious task. Yet, these goals are formalized with the principles of remote

attestation and are achieved with the attestation architecture. If following these principles, the

remote attestation architecture could be critical to prohibiting cyber attacks in the future.

Currently, the steps to preform remote attestation begin with an appraiser asking a target to take

a measurement which produces evidence. The appraiser then collects the evidence and evaluates it

to make a trust decision. While implementing a correct, formally verified attestation architecture

is critical, we must also consider a framework to obtain a sensible measurement. Before this

work, a measurement was statically selected as a result of the context of communication between

known systems. While this is useful to gain an understanding of the behavior of the attestation

architecture and provide basic measurement operations, the framework neglects parties that must

choose a measurement at runtime as they may not understand the system with which they are

communicating. It also does not consider measurement operations that a communicating party

does not want to perform because it could force them to expose sensitive information which may

leave them vulnerable to attacks.

We introduce a framework, on top of the existing attestation work, that allows communicating

parties to negotiate to determine an acceptable measurement for attestation. That is, we introduce

the concept of negotiation as a back and forth communication routine resulting in a situationally

dependent measurement that both parties find acceptable for attestation. To situate the work in the

context of attestation, we reveal the negotiation framework in Figure 1.1. The routine begins when

the appraiser sends a request causing the target to gather phrases that satisfy the request while

ensuring the phrases selected do not expose sensitive information. These phrases are sent back to

the appraiser where the appraiser can then select a best term for attestation. Following negotiation,

the attestation framework runs as intended to verify the target is in a trusted state.

2

•

•

•

•

•

• •

•

•

•

•

•

Appraiser Target
q : Q

s : SA

r : R

q : 〈P〉

p : P

e : E

ISAKMP ISAKMP

Request

Selection

Selection

Attestation

Figure 1.1: Negotiation process.

Within the negotiation framework, we realize the communicating parties privacy requirements

in a type dependent fashion. That is, in order to protect a place’s interests, we introduce the idea of

a type dependent privacy policy that statically guarantees the target does not share a measurement

that may expose sensitive information. We are not concerned with understanding what information

should be remain confidential but rather developing a framework to represent the policy that is

sound and logically correct. To motivate the use of dependent types, we would like to apply a

more expressive type that ingrates programs and their specifications in one grammar. That is, by

writing the structure in a type dependent manner, we can statically ensure evidence for attestation

will only be shared if it satisfies a target’s privacy requirements.

Taking this discussion into consideration, the objective of this thesis is to describe a negotiation

framework that allows the target and appraiser to agree upon a term for attestation where the chosen

measurement does not violate the target’s privacy standards. To statically enforce the privacy

standards within the negotiation framework, this thesis explores ways to use dependent typing to

realize a situationally dependent privacy policy.

We begin this thesis by discussing the important background information in Section 2. In Sec-

tion 3, we discuss the work surrounding the development of negotiation which lays a framework

3

for determining the measurement that can be used to make a trust decision. We also introduce the

ideas of the privacy policy and selection policy as a means to capture the context of the communi-

cation routine. We realize the privacy and selection policies in a type dependent fashion in Section

4. In Section 5, we provide an example to help the reader to better understand the integration and

implementation of this framework. We conclude with Section 6 where we also discuss the future

work surrounding negotiation and the type dependent policies.

4

Chapter 2

Background

2.1 Remote Attestation

As we established in the introduction, remote attestation is one way to make a trust decision about

a communicating party over a network (Coker et al., 2011). The attestation process involves two

parties: the target and the appraiser. The appraiser is the party requesting the attestation while the

target or attester is the responding party. To begin the attestation sequence, the target receives a

request for a specific piece of evidence in the form of an attestation protocol. The target executes

the protocol to generate the requested evidence and then sends the result back to the appraiser.

Upon receiving the evidence, the appraiser completes the appraisal to make a trust decisions about

the target where appraisal is the target’s decision making process. An overview of the process can

be visualized in Figure 2.1 below.

Appraiser Target
Request

Evidence

Figure 2.1: Remote attestation architecture showing
an appraiser making an attestation request of a target.

To guide the design of attestation systems, Coker et al. (2011) defined the principles of attes-

tation. These principles, described below, influence the design considerations when developing

attestation systems.

5

1.Fresh Information

2.Comprehensive Information

3.Constrained Disclosure

4.Semantic Explicitness

5.Trustworthy Mechanism

The first principles state the desire for attestation systems to provide fresh information and

comprehensive information. The former assures evidence reflects the running state while the lat-

ter assures the evidence generated by the target provides the appraiser with a complete and total

understanding of the target’s state. The principle of constrained disclosure protects the target and

appraiser from sharing sensitive information by distinguishing what information should remain

private. Evidence that is deemed sensitive may change situationally and is perhaps best imple-

mented with an access control policy. Next, semantic explicitness guarantees attestation operates

with uniform semantics. This means the language has logical inferences and target’s identity is

easily discernible. The last principle is to ensure that the mechanism used to determine trust is, in

itself, trustworthy. This criteria ensures that the measurement tools will provide accurate results.

Taking into consideration the guiding principles, a language for remote attestation, Copland,

was born (Ramsdell et al., 2019). Copland provides the syntax to write attestation protocols as well

as an environment to execute those protocols. The protocols define measurements, where the act of

an appraiser measuring a target is the idea of making claims about the target’s current state (Pen-

dergrass et al., 2017). The language also defines dispatching, sequencing, and evidence bundling

operations where dispatching operations request evidence from specific places and sequencing

operations are used to order measurements (Petz, 2020). Maintaining the correct measurement

ordering and the correct evidence bundling are fundamentally important to ensuring attestation

results are correct (Coker et al., 2008). As such, we emphasize that order is persevered through

6

the Copland semantics. Additionally, Copland introduces metaevidence as a means to represent

evidence properties and provide additional information regarding the situation. This means the

measurement generated by the appraiser may ask for evidence, metaevidence, or a combination of

both. In any case, the measurement must be complete and describe properties that are useful to

make a trust decision.

The Copland grammar, as seen in Figure 2.2, is taken from Petz (2020) and Ramsdell et al.

(2019) to describe attestation protocols. In this grammar, A describes the basic actions such as

copy, signing, and hashing. A measurement preformed by an attestation service provider (ASP)

would be represented with the syntax (ASP m ā p r) where m is a number to identify the mea-

surement, ā is the measurement arguments, p is the place where the measurement is taken, and r

is the measurement target. The nonterminal t is necessary to combine terms in the language. The

@p t is an at operation to request a measurement of a different place p. Term may be executed

in sequence, (t1→ t2), parallel, (t
π

≺ t), or any any order, (t π∼ t). After describing terms and the

ordering operations, the evidence structure, E, is the final nonterminal in the Copland grammar.

The E or evidence structure is the result of executing a Copland phrase or term. The evidence

returned my be empty, ξ . It may also be a user space measurement of place p, UP(E), or a kernel

integrity measurement of place p from place p, KP
P(E) . Evidence gathered in sequence is denoted

(E ;; E) while evidence gathered in parallel is denoted (E ‖ E).

t ← A |@p t | (t→ t) | (t
π

≺ t) | (t π∼ t)
A ← ASP m ā p r | CPY | SIG | HSH | · · ·
E ← ξ | UP(E) | KP

P(E) | [[E]]P | #P E | NP(E) | (E ;; E) | (E ‖ E) | · · ·

Figure 2.2: Copland Phrase Grammar

To motivate this work, we consider an example where an appraiser wishes to gain a better un-

derstanding of the target’s state with a measurement of its virus checker. There are many possible

Copland phrases the appraiser could request. The simplest would be to ask for a candid mea-

surement of the virus checker, as seen in Figure 2.3 number 1. This measurement would reveal

state of the target’s virus checker, vc. To enhance the measurement, as observed with number 2,

7

1.@p [(ASP vc ā p t)]
2.@p {n}[(ASP vc ā p t)→ SIG]

3.@p {n}[@ma {n}[(ASP h b̄ p v)→ SIG]→ (ASP vc ā p t)→ SIG]

4.@p {n}[@q {n}[(ASP m c̄ q ss)→ SIG]→ (ASP vc ā p t)→ SIG]

Figure 2.3: Possible phrases, written in Copland, for virus checking example.

the appraiser could ask for a nonce and the same measurement of the virus checker, but signed.

Both the signature and the nonce would be considered metaevidence and exist to support the tar-

get’s trustworthiness. Another option to provide a more comprehensive measurement, is for the

appraiser to ask for measurement of the virus checker’s operational environment before the virus

checker measurement. This syntax can be visualized with number three in 2.3 where ma is a place

that has access to p′s environment and h is the measurement of p’s operating system. In another

situation, the appraiser may want a measurement of signature server instead of the operational en-

vironment. This is seen with number four in 2.3 where q is the signature file server. The benefit of

having multiple phrases that may include the same measurement is the varied application of these

measurements for different circumstances. That is, if the appraiser wanted the attestation routine

to be quick, they may choose the first measurement. If they wanted attestation to provide the most

detailed evidence, they may choose the third or fourth measurements. By providing many options,

that all include the virus checker measurement, we allow for the context and situation to determine

which one would be most beneficial.

2.2 ISAKMP

Network security is a broad, general phrase that can be summarized with the goals of maintain-

ing confidentiality, integrity, and authenticity. Confidentiality states that malicious user should

not be able to eavesdrop on the contents of messages while integrity means that an attacker can-

not change the contents of messages. Authenticity ensures the sender is communicating with the

intended receiver. In an attempt to meet all three networking goals and enhance network secu-

rity, the networking concept of the Internet Security Association and Key Management Protocol

8

(ISAKMP) was born (Hajjeh et al., 2003).

When created in Request for Comments (RFC) 2408, ISAKMP was designed to establish a

secure channel that protects subsequent communications through the negotiation, creation, mod-

ification, and deletion of security associations (SA) (Hecker, 2002). A security association is an

agreement between the communicating parties that protects subsequent network traffic. It is akin to

a tunnel and defines components such as the situation and domain of interpretation. That is, the sit-

uation describes the context of communication. Understanding the context is critical as it includes

all security relevant information and allows for the peers to decide on the security requirements

for the current session (Maughan et al., 1998). An example of something that may be defined in

the situation is a hash algorithm used during communication (Maughan et al., 1998). Additionally,

the domain of interpretation (DOI) is established as a result of ISAKMP to define the negotiated

parameters. These parameters include the situation, security policies, syntax, naming schemes,

payload formats, and additional exchange types (Maughan et al., 1998). It is important to em-

phasize, the DOI ensures a consistent naming scheme in order for the two parties to communicate

effectively.

To offer flexibility, ISAKMP implements different exchange types and payload types as moti-

vated by different contexts for communication. Exchange types define the ordering of messages in

the communication routine, with five possible options (Qing & Adams, 2006). Choosing an option

is a function of the situation where different options include difference exchanges that allow parties

to share more or less information. Payloads are dependent on the situation and the exchange type

but all have the same fixed header. The body of the payload changes situationally and can contain

various pieces of information, thus providing flexibility.

The process of ISAKMP occurs in two phases where the first phase establishes protection for

the second phase (Qing & Adams, 2006). The basic security association (SA) is established in the

first phase which includes a label to identify the communication (Hajjeh et al., 2003). The first

phase incurs a high operating cost and is therefore preformed intermittently. The second phase

is preformed regularly and is designed to exchange key material and other security protocols to

9

ensure greater security between the communicating parties (Ramalingam, 2017). As a result of the

second phase, the two parties are authenticated.

At its core, ISAKMP outlines a negotiation mechanism between two parties that enables the

parties to set up a tunnel for secure communication. Upon completion of the framework, the ini-

tiating party and responding party obtain a security association which situates the communication

and provides a domain of interpretation. In looking at the process, the flexibility of ISAKMP al-

lows the responder and initiator to agree on what is to be shared and the order in which it will be

shared. This establishes a framework for our work.

2.3 Dependent Types

According to Cardelli (1996), type soundness is defined as the absence of type errors that are a

result of ambiguous program implementation. Without type soundness, the program can be vul-

nerable to attacks designed to take advantage of these errors. For example, tasks like taking the

front of an empty list or the predecessor of zero are undefined an often result in an error or in-

correctly defined computation. In the predecessor of zero example, it may be defined such that

the predecssor of zero is zero which avoids throwing an error but may result in future, unfore-

seen issues. However, with dependent types, we can constrain the domain to prove typing errors

cannot occur. In essence, dependent types combat undefined operations to statically prohibit their

computations.

In a dependently typed system, McBride (2002) states that types are first class objects. They

can be used as an input to a function or can result from a function call. In reasoning about depen-

dent types this way, they become programs with an added systematic constructs. McBride (2002)

formalizes this discussion by stating that a key idea of dependent types is understanding a type

family. The function F:: T→ Type where F is a collection of types indexed in T. The application

F t generates a type in the family. We can define families of types inductively which leads us to

the idea that the behavior of one computation will effect subsequent computations.

There are many ways to implement dependent types to statically capture program properties.

10

To better understand this idea, we reason about an example using lists. Lists are common structures

used in traditional programming that involve predefined operations over the list. Typically, a front

function exists to capture and operate on the first element of a list. As long as a list is not empty,

this is an acceptable thing to do. But, in the case that the list is empty, this would be an invalid

operation and could leave the program vulnerable. One way to ensure this front function is never

called on an empty list is to statically enforce that the list’s size must be greater than zero before the

front function can operate. To accomplish this, we implement a dependently typed front function

using indexed types and subset types in the subsequent sections.

2.3.1 Indexed Types

Indexing is a common operation to help characterize and label objects, providing object with a

context to ensure they are useful (Zenger, 1997). For example, phone numbers are simply numbers

indexed with area codes. When looking to call businesses in a certain area, it is helpful to use the

area code to exclusively seek objects that satisfy the location criteria. In essence, a filter is applied

based on location. The same idea can apply to an indexed type system where the types can be

written to capture properties about the system (Xi & Pfenning, 1999).

The goal of an index typed language is to eliminate the chance a program can reach defective

edge cases. It is favorable because a program’s properties can be enforced statically by avoiding

the overhead that type checking induces (Zenger, 1997). The overhead is avoided because each

object created in the indexed type system has an accompanying proof that it satisfies the necessary

criteria. Proofs are computed statically and therefore do not incur any runtime cost (Fogarty et al.,

2007).

We aim to showcase the practicality of indexed types with the example presented in Figure

4.10 which ultimately prohibits the front function from being called on an empty list. First we

implement the list structure which has the type signature nat -> Type where the nat argument

is the length of the list. It has two constructors, a nil and a cons constructor, where the Inil

constructor has type ilist 0, meaning the nil list has length 0. The Icons constructor takes an

11

element of type X and an existing list of length n, adds X to the list, and adds one to the length of

the list. In this way, we build lists that are tagged with their lengths. In line 5, we write my_list

to build a list using the ilist syntax. This list, having one element, will be of type ilist 1 thus

accomplishing the goal of embedding the length. With the structure for lists, we can now write

a front function that takes into consideration the length of the list before preforming the front

operation. This front function is implemented in lines 11 through 15. It works by accepting a list

of length n and completing a proof that n is greater than zero, before returning the first element of

the list. For the Inil case, the proof that must be completed is zero_gtz. The precondition of the

proof 0 > 0 which is not true. Because the precondition is false, the proof can be completed. In the

ICons case, the proof is trivial and can be replaced by an underscore and Coq can infer the proof

satisfaction.

The definition of front produces a dependent pair. The first element of the dependent pair

would be the value while the second element would be a proof that the length of the list is not equal

to zero. If attempting to provide the front function with a nil list, the user will need to provide a

proof that 0 > 0 which is impossible so the function does not evaluate. A correct instance of the

function is visible in line 20 where we want to compute the front of my_list. In doing so, we

must provide the front function with value and proof. The value is the list, my_list and the

proof, one_gtz, concludes that the length of the list is greater than zero. The result of computing

this function is 3.

2.3.2 Subset Types

Subset types allow for a more mathematical reasoning about types (Sozeau, 2007). They provide

terms in the language with more information by constraining the type’s arguments. The subset

can be envisioned, in a mathematical sense, as a predefined set with some filter applied over the

elements of the set. Formally, a subset type has the form {x ∈ S | P } where S is a set and P is an

operation that can be used over the set. The subset includes all x for which the property P holds.

If attempting to reason further about x, one should have confidence in x abiding by the rule of P

12

1 Inductive ilist {X:Type} : nat -> Type :=
2 | Inil : ilist O
3 | Icons : forall n, X-> ilist n -> ilist (S n).
4

5 Definition my_list := (Icons 3 Inil).
6

7 Lemma zero_gtz : 0 > 0 -> False.
8 intros; inversion H.
9 Qed.

10

11 Definition front {X:Type} n (l:ilist n) : n>0 -> X :=
12 match l with
13 | Inil => fun pf:0>0 => match zero_gtz pf with end
14 | Icons _ x _ => fun _ => x
15 end.
16

17 Lemma one_gtz : 1 > 0.
18 Proof. auto. Qed.
19

20 Compute front (my_list) one_gtz.
21 (* = 3
22 : nat*)

Figure 2.4: Indexed Type Example

13

and need not worry about P moving forward. In Coq (Coq development team, 2016), a subset type

can be thought of as a dependent pair. That is, each instance of a subset type includes a value and

a proof that the value satisfies the predicate (Chlipala, 2013). The proof and the value must be

provided simultaneously (Sozeau, 2007).

To emphasize the similarities and difference in indexed types and subset types, we attempt a

subset typed version of the front function in Figure 2.5. First, the inductive structure for a list is

written in lines 1-3. Here, we define Snil to represent the empty list and Scons to expand the list.

Next, we attempt to write a definition, front', to return the front of a list while making it statically

impossible to take the front of an empty list. In order to write this definition, a proof of the False

case must be provided. So, in lines 5-7, the proof nil_not_nil is completed. While both the

subset type and indexed type need a proof of the False case, the proof for the former is with the

constructors while the latter is with the size of the list. Moving forward, in lines 9-13, front'

is defined to accept a subset type as input where l is a list and the predicate is that the list is not

empty. If successful, the function returns the first element of the list. If this function is called on

Snil, then Coq will give an error and computation will cease. An example of calling the front'

function is done in line 19 with a list of length one that houses the value three. When creating the

list, because the subset type is used, the exist constructor is needed to create an instance of the

type. A proof that the list does not equal Snil is also needed. Combining the list instance and the

proof, the computation, seen in line 19, evaluates to return 3.

14

1 Inductive list (X:Type) : Type :=
2 | Snil
3 | Scons (x : X) (l : list X).
4

5 Lemma nil_not_nil {X:Type} : Snil X <> Snil X -> False.
6 intros H; destruct H; reflexivity.
7 Qed.
8

9 Definition front' {X:Type} (s: {l: list X | l <> Snil _}) : X :=
10 match s with
11 | exist (Snil) pf => match nil_not_nil pf with end
12 | exist (Scons n _) _ => n
13 end.
14

15 Lemma three : (Scons 3 (Snil _)) <> Snil _.
16 unfold not. intros H. inversion H.
17 Qed.
18

19 Eval compute in front' (exist _ (Scons 3 (Snil _)) three).
20 (* = 3
21 : nat*)

Figure 2.5: Subset Type Example

15

Chapter 3

Negotiation

3.1 Motivation

The five guiding principles, as presented previously in Section 2.1, guide the development of re-

mote attestation systems and must be enforced for optimal design. Principles like semantic ex-

plicitness and trustworthy mechanism are independent of the situation and hold because of sound

implementation. Yet, other principles such as constrained disclosure and comprehensive informa-

tion are situationally dependent and rely on the determination of relevant measurement parameters

and additional constraints that arise from the context before they can be realized. The natural ap-

proach to capturing the situational demands is to develop a communication routine that gives the

target and appraiser a chance to mutually conclude a measurement that protects the target and is

adequate for the trust decision. This is subjective as the target’s level of privacy may change with

different appraisers.

The idea of gathering comprehensive information and maintaining constrained disclosure may

be contradictory. When selecting a term for attestation, the target would like to keep as much

information private as possible. They attempt to find the minimal evidence that is acceptable for

the situation to preserve confidentiality. On the other hand, the appraiser would like the target to

provide the most detailed and comprehensive evidence. The two parties must come to an agreement

on the piece of evidence that would be sufficient for attestation. We aim to meet the needs of both

the target and appraiser through negotiation.

16

3.2 Protocol Negotiation

Guided by the principles of remote attestation laid out by Coker et al. (2011), we introduce the idea

of negotiation as a prerequisite to the existing attestation framework. The goal of negotiation is to

generate a phrase for attestation that satisfies the appraiser’s desire for comprehensive information

and the target’s need for constrained disclosure. This back-and-forth communication routine that

would result in one term, agreed upon by the target and appraiser, to be employed for attestation.

We formally define the the negotiation process below in Figure 3.1. We define A as the apprais-

ers and T as the targets. Q is the type of the initiating message of the security association and SA

is the type of the instantiated security association. R is the type of attestation requests that defines

the needs of the appraiser. P is the type of protocols represented as Copland phrases. E is the type

of evidence generated by protocol execution.

•

•

•

•

•

• •

•

•

•

•

•

Appraiser Target
q : Q

s : SA

r : R

q : 〈P〉

p : P

e : E

ISAKMP ISAKMP

Request

Selection

Selection

Attestation

Figure 3.1: Negotiation process.

Negotiation begins with the establishment of a security association. This process is taken from

ISAKMP and integrated to fit the needs of the situation to arrive at a controlled agreement. In

essence, the appraiser initiates communication with q : Q where ultimately the target responds with

s : SA to establish the security association. Intermediate steps of ISAKMP are omitted for clarity,

as they are not a focus of this work, but it is assumed that ISAKMP runs correctly and generates the

17

SA. With it, the target and appraiser have a secure channel for subsequent communication, an idea

of who they are communicating with, and an understanding of the security relevant parameters.

Following the establishment of the security association, the appraiser sends a request to the

target. The request, r : R, illustrates the possible Copland phrase or phrases that the appraiser finds

acceptable for attestation. The importance of the request is apparent when thinking about a target

and appraiser’s first encounter. In this case, the appraiser may be unaware of the target’s mea-

surement capabilities so they may include a variety of phrases in the request that entail measuring

diverse aspects of the target’s system. The negotiation framework then allows the target to decide

what information they are willing to share. Inversely, the appraiser and target may have a well es-

tablished relationship and the appriser could hold a cache of the negotiated phrase. In this case, the

system could bypass negotiation and attestation would continue normally with the cached Copland

phrase.

Once the target receives the request, selection is performed as seen with the downward arrow

on the right in Figure 3.1. Selection entails the application of the privacy policy and selection

policy to meet the principle of constrained disclosure. These policies are situationally dependent

and realized upon establishment of the security association. To apply them, the appraiser evaluates

the terms in the request to evidence. The policies are applied over the evidence to ensure the

evidence does not expose sensitive information. With that, the target generates a list of acceptable

terms for appraisal. This list of terms, q : 〈P〉, can be referred to as the proposal whose protocols

fully or partially satisfy the request. The target chooses and orders q : 〈P〉 by examining evidence

produced by executing protocols through Copland’s evidence semantics. They then send q : 〈P〉

back to the appraiser for subsequent evaluations.

The appraiser receives the request, q, and must apply its own selection policy to achieve an

ordering over terms. Although they share the same name, the realization of appraiser’s selection

policy is independent of the target’s selection policy. The akin name is a result of selection’s

uniform structure but should not confuse the reader as the appraiser’s selection process has different

semantics. In the appraiser’s context, selection implies and ordering over terms to arrive at the

18

“best” term for attestation. A natural approach to quantifying the idea of “best” is to arrange the

terms into a lattice where the “best” term is at the top of the lattice. The ordering operation would

need to be situationally dependent and consider identity and timing requirements. While we have

thought about how appraiser’s selection policy would operate, we have yet to discern an ordering

relationship between terms, leaving that to future work. Therefore, we have done minimal work

implementing appraiser’s selection policy.

Upon completion of the appraiser’s selection policy, the communication routine resumes where

attestation originally began. It is beyond the focus of this work to describe the steps of attesta-

tion but we do note, as seen in Figure 3.1, that one protocol is selected through the negotiation

framework. This protocol is sent to the target where the target generates evidence, e : E, through

attestation. The evidence is then returned to the appraiser as the final step in the diagram. This

resulting evidence can be evaluated to make a trust decision.

It is important, when making trust decisions, that the mechanisms for gathering and evaluating

measurements are trustworthy. In other words, we must verify that the semantics are correct. Be-

fore negotiation was introduced, a verification stack was developed to ensure a protocol evaluated

to the correct evidence. It follows that the negotiation framework must be added to the verifica-

tion stack to ensure the implementation aligns with the attestation framework and also produces a

sound result. The verification stack can be seen in Figure 3.2 with the portion of negotiation added

to the top as it occurs before attestation. The dotted arrows are mathematical relations while the

solid arrows represent an evaluation rule. The portions of the stack that are in gray are beyond the

scope of this work.

At the top of Figure 3.2, a Request becomes R which is mapped to an evidence lattice (E,�

,>,⊥) that produces the Result. The direct mathematical relation between requests and evidence

lattices may be important to understand but left to future work. For now, we note that � is a

partial order on evidence defining the selection policy, > defines the maxima, and ⊥ defines the

minima. Moving down from R, the request is evaluated, through negotiation, to obtain a proposal,

〈P〉 that produces corresponding elements of 〈E〉. 〈E〉 is the evidence allowed by the privacy and

19

R

〈P〉

Protocol

CVM

CakeML/seL4

Binary Evidence

Evidence

Evidence

Evidence Shape

〈E〉

(E,�,>,⊥)Request Result
Negotiation

Selection

copland_compile

Synthesis

CakeML Compile

run_cvm

Abstraction

Appraisal

Figure 3.2: Verification stack.

selection policies and a sublattice of (E,�,>,⊥). Moving down from 〈P〉, the appraiser applies

their selection policy to obtain a single protocol for attestation. The selection policy is the same

as the appraiser’s selection policy discussed previously whereby the greatest element of 〈P〉 is

Protocol. The protocol produces some known evidence shape where the evidence shape arises

from the mapping of protocol to evidence. Abstracting the evidence shape results in one element

in the evidence vector where other elements of the evidence vector are mapped from 〈P〉. The

subsequent gray steps below the protocol are certified execution steps that are verified with respect

to the Copland event semantics.

3.3 Policy

Two policies influence the production of a protocol, p, for attestation. The privacy policy is a

collection of abstract goals enforced to protect a place’s interest. It exists between either the target

or appraiser and evidence. In some cases, the privacy policy implies the target has permission to

send a protocol which can be evaluated to evidence. The privacy policy relation can be represented

as πT : T ×ET . The appraiser may also employ a privacy policy πA : A×EA to prohibit sharing

sensitive information in the request. The selection policy is a relation that maps concrete actions to

20

abstract goals and can be represented with ψ . The privacy policy and selection policy are unique

for each attestation system and can be conflated to a single policy.

In looking at the selection policy for the target and appraiser, they exhibit a similar structure

as, in both cases, it is the realization of some property over terms. We know the appraiser’s goal

of negotiation is to find the “best” protocol for attestation. The realization of the ordering of

protocols is their selection policy. In this case, ψ is a is a relation that maps the appraiser’s desire

for “best” to the concrete implementation of choosing the “best” protocol. It is left to future work to

syntactically represent this relation. In the target’s case, they must be cautious about what protocols

they share in the proposal. Here, the selection policy maps the abstract goal of not violating the

target’s privacy standards to the concrete goals of not sharing certain protocols. This form of the

selection policy can be observed as the relation {e : ET |(t,e) ∈ πT} where evidence is filtered by

the target’s privacy policy.

We imagine many different attestation scenarios when constructing the privacy policy to ensure

its flexibility for varying circumstances. First, we consider mutual attestation when an appraiser

attempts to verify a target and then the communicating parties swap roles so that the appraiser

becomes the target and the target becomes the appraiser. This situation forces both the target and

the appriser to have privacy and selection policies that are dependent on their role and identity. This

further emphasizes the need for a situationally dependent, flexible policy. Layered attestation is

also a possibility where an appraiser requests evidence from a target and the target is an enterprise

representing multiple machines. Here, only the target and appraiser would perform the steps of

ISAKMP but the target would need to communicate with each machine in the enterprise to ensure

no privacy policy is violated. It is also possible to have a cached negotiation whereby the appraiser

would send the request and the target could quickly respond with the cached result. In this case,

the privacy policy is only called during the initial communication routine before the results were

cached. The target must ensure that its privacy policy has not changed between negotiations. If

the privacy policy does change, the cache should be discarded. Observing these three negotiation

scenarios emphasizes the importance of having a flexible, situationally dependent, privacy policy.

21

Chapter 4

Dependent Types for Policy

We aim to satisfy the target’s goal of maintaining constrained disclosure by employing a depen-

dently typed policy language to statically check if a term meets the requirements of the policy.

We are not concerned with defining a correct policy, but rather capturing the policy behavior in a

type dependent manner. Through the body of this section, the privacy and selection policies will

be implemented in two flavors of dependent types: a subset type and indexed type. To reiterate,

the target applies it’s privacy policy to ensure the terms do not expose sensitive information and

it’s selection policy to realize terms for the proposal. Both the indexed type and the subset type

accomplish the target’s negotiation goals by statically selecting terms that satisfy the policies. By

providing both implementations, we aim to disclose advantages and disadvantages of each way to

decide which is favorable for negotiation.

The following structures, presented in Figure 4.1, are useful in both the subset type and indexed

type implementations and discussed in this section for conciseness. First, the structure for place

is presented to abstract measurement details such as identities and measurement locations. In

traditional Copland, the idea of place is represented with a natural number that specifies a place

where the measurement should occur. Yet, here it is an enumerated type to provide a greater level of

abstraction for reasoning about policies. That is, there must be some way to capture measurement

places, keys, and the identities as the policies are dependent on this information. We use the place

grammar to abstract and reason about these situationally dependent parameters.

Also in Figure 4.1, the class grammar is presented as a means to realize the idea of constrained

disclosure. That is, in implementation, each measurement will be given a label to classify informa-

tion. The grammar has two options for labeling information: red and green. The red constructor

22

1 Inductive place : Type :=
2 | AA : place
3 | BB : place
4 | CC : place.
5

6 Inductive class : Type :=
7 | red : class
8 | green : class.
9

10 Definition eq_place_dec: forall x y:place, {x=y}+{x<>y}.
11 Proof. repeat decide equality. Defined.
12

13 Definition eq_class_dec: forall x y:class, {x=y}+{x<>y}.
14 Proof. repeat decide equality. Defined.
15

16 Definition good_encrypt := AA :: BB :: nil.

Figure 4.1: Common structures for negotiation

is used to state that the information is sensitive and should not be shared. The green constructor

means that the term does not violate the privacy policy and its information can be shared without

compromising the system. In practice, deciding if a blob is red or green will be a function of

the situation and identities. Yet, an example of something that is always red is the private key

because it should never leave its owner’s machine. Inversely, the public key is exposed to everyone

and would therefore be vacuously labeled green. However, asking the target for a measurement

of arbitrary memory may be labeled red or green, depending on the context. In some cases, the

target may want that portion of memory to remain private and so it would be labeled red. In other

cases, the target may be willing to share that portion of memory so it changes the label to green.

A proof of decidability for places and classes is necessary for the privacy policy implementa-

tion. These proofs are completed in lines 10-14 of Figure 4.1. To prove two places or classes are

equal or not equal, we say they are either a member of the set {x=y} or {x<>y}; they cannot be

a member of both. We use the Coq proof tactic decide equality to solve these goals and guar-

antee set membership. The structure returns a proof of the places or classes equality or inequality

that can be applied in the policy structure later.

23

The negotiation framework aligns closely with the Copland syntax shown in Figure 2.2 but

it does not align exactly. First, the negotiation grammar support signing, sequence, and parallel

operators for generating and ordering protocols in accordance with the Copland language. The at

functionality is also supported to ask for measurements from specific places. The Copland syntax

is embellished by defining a new constructor, called Blob, taken from the traditional computer

science syntax meaning Binary Large OBject. The notion of a Blob is necessary to specify what

component of the system should be measured where the blob is labeled red or green to distinguish

sensitive information. The grammar is further embellished with an encryption operation. This

allows the requestor to ask for some place to take a measurement and encrypt it with a specified

key. In adding this operation, we must consider the case where a piece of information would

be considered sensitive if it was decayable by a malicious intercepting party. We use a list to

distinguish the places which the target finds acceptable to decrypt an encrypted measurement, that

may be labeled red, with good_encrypt.

In the following sections, we use these structures to implement an indexed type and a subset

type version of the target’s privacy policy and selection function. We choose to utilize dependent

types as we aim to statically meet the target’s privacy requirements and cultivate a list of terms that

are satisfactory for attestation. Both versions prove the same outcome but employ different means

to generate the proposal making them interesting for compare and contrast.

24

4.1 Subset Type

The goal of representing the target’s selection operation with subset types is to use sets and subsets

to statically produce a subset of terms that meet the privacy policy criteria. In using subsets in

Coq, each element of the set is a dependent pair where the first value is the term and the second is

a proof that the term satisfies the privacy policy predicate. Starting with the set of all terms in the

language, it is possible to define a subset where all terms in the subset satisfy the privacy policy

predicate. Then, after the subset is created, if the user wants to use an element of the set for some

other function, they must prove the predicate holds for the desired element. This solution bridges

the gap between the mathematical version of subsets and type theory.

The subset type implementation of the target’s selection operation begins by defining the

evidence grammar. In Figure 4.2, the evidence structure is presented as type with seven con-

structors as there are seven operations in this language. The first constructor is EBlob, short for

evidence blob, which tags the evidence type with its classification level. Again, the red label

exposes sensitive information and green does not, thus accomplishing the goal of constrained dis-

closure. The next constructor is EHash which is short for evidence hash. This constructor does

not have a class associated with it as any information that is hashed is safe to share and would

be vacuously labeled green. ECrypt represents encryption and includes the evidence to encrypt

as well as the place, or key, necessary for this operation. For encryption, keys are abstracted to

place to simplify the syntax. ESig signs of a piece of evidence so it accepts a key for signing and

evidence. Again, keys may be extracted to the place grammar. The ESeq and EPar constructors

take in two pieces of evidence as a result of evaluating terms in sequence or parallel, respectively.

Finally, the EAt constructor requests a measurement to be taken from a specific place. It requires

the place where the measurement is collected as well as the evidence that was collected.

Given the evidence grammar, the term grammar is written in Figure 4.3 to map evidence to

Type. This instantiates the relationship between terms and evidence. While the appraiser expects

terms for attestation, privacy policy must operate over evidence to ensure no sensitive information

is exposed. With this grammar, the relation between terms and evidence becomes apparent as each

25

1 Inductive evidence : Type :=
2 | EBlob : class -> evidence
3 | EHash : evidence
4 | ECrypt : evidence -> place -> evidence
5 | ESig : evidence -> place -> evidence
6 | ESeq : evidence -> evidence -> evidence
7 | EPar : evidence -> evidence -> evidence
8 | EAt : place -> evidence -> evidence.

Figure 4.2: Subset type evidence definition.

term is tagged with the evidence it produces. A constructor of interest is THash as it takes in a

piece of evidence and returns the value term EHash. It disposes of the original evidence and is

reduced to only the hash value. This is because hashing will never expose sensitive information so

there is no concern the evidence will be visible to a malicious party. All other constructors expose

the given evidence.

1 Inductive term : evidence -> Type :=
2 | TMeas : forall e, term e
3 | THash : forall e, term e -> term EHash
4 | TSig : forall e p, term e -> term (ESig e p)
5 | TCrypt : forall e p, term e -> term (ECrypt e p)
6 | TSeq : forall e f, term e -> term f -> term (ESeq e f)
7 | TPar : forall e f, term e -> term f -> term (EPar e f)
8 | TAt : forall e p, term e -> term (EAt p e).

Figure 4.3: Subset type term structure.

Using the grammars for term and evidence, the first minimal privacy policy is written, as seen

in Figure 4.4, to meet the target’s need for constrained disclosure. This privacy policy considers

evidence as input and produces a proposition or a True/False claim to distinguish if the evidence

exposes sensitive information. The prohibited cases, those that violate the privacy standards, eval-

uate to the proposition False making it impossible to provide a proof of their satisfaction for the

subset type. In this first instantiation of a privacy policy, only the cases that violate the target’s pri-

vacy policy, in all circumstances, are imposed. This forbids a measurement of any red blob and in

some cases, the encryption operation, as we should refrain from sharing sensitive information the

26

appraiser could decrypt. To ensure sensitive information is not decryptable by a malicious party,

we hold the list of places that can receive decrypted information in the list good_encrypt. In im-

plementation, as seen with line 8, the constructor for ECrypt states that if ep, the encryption key,

is in good_encrypt then it is acceptable to share red information. If not, recurse on the evidence

to ensure sensitive information is not exposed. The subsequent cases, ESig, ESeq, EPar, and

EAt must recurse on the evidence to prevent exposing sensitive information.

1 Definition good_encrypt := AA :: BB :: nil.
2

3 Fixpoint privPolicy (e:evidence): Prop :=
4 match e with
5 | EHash => True
6 | EBlob red => False
7 | EBlob green => True
8 | ECrypt e' ep => if (in_dec (eq_place_dec) ep good_encrypt)
9 then (match e' with

10 | EBlob red => True
11 | _ => privPolicy e'
12 end)
13 else privPolicy e'
14 | ESig e' _ => privPolicy e'
15 | ESeq l r => and (privPolicy l) (privPolicy r)
16 | EPar l r => and (privPolicy l) (privPolicy r)
17 | EAt p e' => privPolicy e'
18 end.

Figure 4.4: Subset type privacy policy definition.

Once the privacy policy is written, the selection function is implemented using the subset op-

erations. The subset type is advantageous for two reasons. The first is that it is a static check

which means it does not consume runtime resources. Secondly, each term in the subset type is a

dependent pair which means the first element of the pair is the value and the second element is the

proof that the value satisfies the privacy policy. This guarantees satisfaction of the privacy policy

for terms in the proposal. In defining the selection function this way, as seen in Figure 4.5, we do

not need to be concerned with providing a proof of a term’s satisfaction until the selection function

is applied.

27

1 Definition selectDep e (_:term e) := {t:term e | privPolicy e}.

Figure 4.5: Subset type selection function.

An example is presented in Figure 4.6 where measurement of a green blob is taken. We prove

this term satisfies the privacy policy in the example selectDep1 with a trivial proof. The Coq

function, proj1_sig, is then used to retrieve the first element of the dependent pair, the value. If

we wanted to return the proof, we could use the Coq function proj2_sig. After evaluating the

phrase in line 6 of Figure 4.6 we obtain the result term (EBlob green) as expected. Lines 7 and

8 are comments in the code but are written to observe the return syntax that Coq produces after

evaluating line 6. In practice, the program would statically observe that selectDep1 satisfies the

privacy policy and would dismiss the proof for subsequent computations.

1 Example selectDep1 : selectDep (TMeas (EBlob green)).
2 Proof.
3 unfold selectDep. exists (TMeas (EBlob green)). reflexivity.
4 Qed.
5

6 Check proj1_sig (selectDep1).
7 (* proj1_sig selectDep1
8 : term (EBlob green)*)

Figure 4.6: Subset type selection function example.

Ultimately, this type is a static way to ensure terms sent in the proposal satisfy the privacy

policy. Even though it is successful, the implementation has its advantages and disadvantages.

One can see that, when generating terms for the proposal in this type, one must have a proof for

every term and remember the specific proj1_sig function in order to have access to only the

term, not the accompanying proof. To make this easier, we could automate the proof by writing a

generalized version that uses an existential variable for exists and then auto to solve the proof.

This would be desirable as the proofs would not have to be altered even if the evidence or term

grammar changes. This implementation may also be unfavorable as it requires a separate structure

for selection, as is evident with selectDep. At the same time, the separation from the term syntax

28

and the privacy policy makes it easier to write terms in the language. Overall, we remain optimistic

about the subset type as we are able to accomplish the goal of statically enforcing the relationship

between evidence and the privacy policy.

29

4.2 Indexed Type

Indexed types, like the subset types, are highly expressive forms of dependent types that can be

used to provably ensure a program behaves in a certain way. In using indexed types, it is important

to remember that the language design should not affect the standard programming operations or

add additional constrains on the programmer (Fogarty et al., 2007). If used correctly, indexed

types can be integrated seamlessly into the language and serve as a powerful way to statically

enforce program properties. In the case of negotiation, an opportune place to apply indexed types is

regarding the application of the privacy policy. That is, the term type can be constrained to include

an index that calls the privacy policy to ensure the term does not expose sensitive information

before the terms can be written.

The indexed type definition begins by writing an evidence structure that maps a place to

a Type. The place input, as written in Figure 4.1, represents the place where the measurement

occurs. This type differs from the subset type implementation of evidence, as seen in Figure 4.2,

noting the absent EAt constructor. In the subset type case, evidence was a Type, without place

as input, so in order to specify a place for measurement, the EAt constructor was needed. Here,

because place is encoded in the type and each measurement couples the measurement’s place

and evidence, the EAt constructor can be omitted. We therefore have six constructors for the

six operations in this language. Sans the EAt constructor, all constructors in the indexed type

implementation accomplish the same measurements as they did in the subset type implementation.

1 Inductive evidence : place -> Type :=
2 | EBlob : forall p, class -> evidence p
3 | EHash : forall p, evidence p
4 | ECrypt : forall p q, evidence q -> place -> evidence p
5 | ESig : forall p q, evidence q -> place -> evidence p
6 | ESeq : forall p q r, evidence p -> evidence q -> evidence r
7 | EPar : forall p q r, evidence p -> evidence q -> evidence r

Figure 4.7: Indexed type evidence grammar.

The privacy policy operates over all cases in the evidence grammar. It accepts e where e is

30

gathered from the target’s place, tp, and returns the proposition True if the measurement does not

expose sensitive information. As seen in the subset type implementation, a hash and a measurement

of a green blob are always acceptable and do not expose sensitive information. A measurement of

a red blob, where the information is accessible, is always prohibited and thus evaluates to False.

The ECrypt constructor must take into consideration if ep, the encryption place, is in the list of

acceptable place to encrypt with, good_encrypt. We use ep to abstractly represent the keys that

can be used for encryption. It is possible appraiser’s public key is not in the list good_encrypt. In

that case, the target does not wish to share any information the appraiser could decrypt it with their

private key. A check to ensure if ep is in the list of acceptable encryption keys, or places, must be

completed before the function returns. If ep is not in the list good_encrypt, then the privacy policy

recurses to ensure sensitive information is not encrypted. In the cases of ESig, ESeq, EPar we

recurse on the arguments to ensure not sensitive information is exposed by sharing a red blob.

1 Definition good_encrypt := AA :: BB :: nil.
2

3 Fixpoint privPolicy tp (e:evidence tp): Prop :=
4 match e with
5 | EHash _ => True
6 | EBlob _ red => False
7 | EBlob _ green => True
8 | ESig _ e' _ => privPolicy e'
9 | ECrypt _ e' ep => if (in_dec (eq_place_dec) ep good_encrypt)

10 then (match e' with
11 | EBlob _ red => True
12 | _ => privPolicy e'
13 end)
14 else privPolicy e'
15 | ESeq _ l r => (privPolicy l) /\ (privPolicy r)
16 | EPar _ l r => (privPolicy l) /\ (privPolicy r)
17 end.

Figure 4.8: Indexed privacy policy definition.

The use of indexed types is realized in the term type. That is, in order to statically ensure that

terms in the language are safe to share in the proposal, the privacy policy check can be encoded

within the term grammar. This would imply that any time a term is written in the language, it must

31

pass the privacy policy check before it is useful. This makes the outcome of the type dependent on

the input and thus a dependent type. The encoding of the privacy policy in the term type can be

observed in Figure 4.9 where the type accepts evidence as input and creates a Type. When writing

a term, if the user only provides a piece of evidence, then the return value will include a lambda

that requires a proof that the evidence satisfies the privacy policy. To return only the term, the term

and proof must be simultaneously provided. Because this proof is impossible for the False cases,

it will be impossible to write a useful term that does not satisfy the privacy policy. In examining the

term constructors, all induce a privacy policy check sans the THash constructor. This is because

a term that is hashed discloses no information so the hashing operation does not need a privacy

policy check. However, all other operations may expose sensitive information prompting a privacy

policy check for proof of satisfaction.

1 Inductive term p:(evidence p) -> Type :=
2 | TMeas : forall c, privPolicy (EBlob p c) -> term (EBlob p c)
3 | THash : term (EHash p)
4 | TSig : forall ap e q,
5 term e -> privPolicy ap (ESig p e q) -> term (ESig p e q)
6 | TCrypt : forall ap e q,
7 term e -> privPolicy ap (ECrypt p e q) -> term (ECrypt p e q)
8 | TSeq : forall ap e f,
9 term e -> privPolicy ap e -> term f -> privPolicy ap f -> term (ESeq p e f)

10 | TPar : forall ap e f,
11 term e -> privPolicy ap e -> term f -> privPolicy ap f -> term (EPar p e f).

Figure 4.9: Indexed type term grammar.

To better understand the power of the indexed type, we present an example where the target

measures a green blob, as seen in Figure 4.10. This mundane example is useful to understand the

structure of this implementation as well as for comparison with the subset typed example presented

in Figure 4.6. To begin, in line 1, the measurement for a green blob is written. This term states

"measure a green blob at place AA." The return value of simply the measurement, without the

proof, is a lambda that request a proof term to be instantiated before the term type can be written

(lines 2 and 3). The proof is completed with greenblob. It is a short, simple proof that calls unfold

32

and auto. This differs from the subset type proof which required a witness to the type within the

proof. The complete measurement of the green blob is written in line 10 where the evidence and

proof that the evidence satisfies the privacy policy are provided.

1 Compute TMeas AA green.
2 (* = fun x : privPolicy (EBlob AA green) => TMeas AA green x
3 : privPolicy (EBlob AA green) -> term (EBlob AA green)*)
4

5 Lemma greenblob : forall p, privPolicy (EBlob p green).
6 Proof.
7 unfold privPolicy. auto.
8 Qed.
9

10 Compute TMeas AA green (greenblob AA).
11 (* term (EBlob AA green)*)

Figure 4.10: Indexed types example with measurement of a green blob.

In using the indexed type, we are able to ensure the privacy goals are met statically by con-

straining the type. Some believe that adding constraints to a type is favorable while other believe

that the added systematic constructs confuse programmers and hinder the programs functionality.

That is, in using the subset type where there are no systematic constraints to the term type, allows

for separation between proofs and terms which may make it easier to reason about terms in the fu-

ture. Yet, using the indexed type adds clarity and conciseness that may be missing from the subset

type implementation. Specifically, there is no selectDep function that must be called to ensure

a piece of evidence satisfies the privacy policy; it is called automatically when writing the term.

This is favorable because we generate the same result, in both cases, but with fewer steps in the

indexed type implementation. Furthermore, the proofs of privacy policy satisfaction are simpler in

the indexed type making them easier to reuse and reason about. These benefits of the indexed type

may be cause to use its implementation going forward, but the decision has yet to be ultimately

made.

33

Chapter 5

Example

In traditional Copland, an attestation protocol is selected by the appraiser, and the target is asked to

evaluate the protocol to evidence. Without the negotiation infrastructure, the target has no language

in which they can provide useful feedback to communicate what phrase or phrases they would

find acceptable for attestation. In this section, a complete example is presented to reenforce the

necessity of the negotiation framework to meet the target’s goal of constrained disclosure. In their

paper, Petz (2020) present examples of Copland phrases that are useful to establish trust in remote

machines. They begin with a simple example where a measurement of a virus checker is executed

to gain an understanding of a target’s state and then embellish the measurement to provide addition

details. The four possible measurements we mentioned in Figure 2.3 are summarized with the list

below. Each useful for proving a different level of information, we assume that these measurements

are joined together and sent in the request.

1. Take a measurement of the virus checker.

2. Take a measurement of the virus checker and sign it.

3. Take a measurement of the signature server, sign it, and take a measurement of the virus
checker and sign it.

4. Take a measurement of the target’s operational environment, sign it, and take a measurement
of the virus checker and sign it.

Figure 5.1: Measurements in the request.

Before dissecting and responding to the request, it is assumed that ISAKMP has run to comple-

tion, allowing the target and appraiser to develop a security association (SA) that provides a secure

34

channel for subsequent communications while defining identities and a common vocabulary. The

common vocabulary is established as result of the domain of interpretation which allows objects

to be named similarly in both the target and appraiser’s contexts. Futhermore, the SA defines a

situation that may communicate the urgency of the response. For the purposes of this example,

it is assumed that the target forbids sharing a measurement of its operational environment as this

may reveal what version of the operating system the target is running, which could leave their sys-

tem vulnerable to attacks. This privacy goal is realized after the establishment of the SA as it is a

function of this specific negotiation routine between target and appraiser.

In order to adequately represent negotiation, we must remove a level of abstraction from the

class type. Previously, a class type was implemented to label measurement objects as red or

green where the former suggests the measurement violates the privacy policy and the latter sug-

gests it does not. In the context of a functioning negotiation routine, the red/green labeling will be

predetermined by the SA. Therefore, it is redundant to allow an object to be labeled as red/green

as it is either shareable or private in the context of a specific situation and the measurement object

is realized as such. It follows that the red/green labeling should be replaced with the specific

measurement objects to be reasoned about in the privacy policy.

1 Inductive class : Type :=
2 | VC : class
3 | SS : class
4 | OP : class.
5

6 Inductive place : Type :=
7 | target : place
8 | appraiser : place
9 | t_pub_key : place

10 | t_priv_key : place
11 | a_pub_key : place.

Figure 5.2: Common structures for this example.

As seen in Figure 5.2, the class grammar includes VC, SS, and OP which represents the abstrac-

tion of the virus checker, signature server, and operational environments, respectively. For signing

35

and encryption, keys are abstracted to the place grammar and are represented with t_pub_key,

t_priv_key, and a_pub_key to denote the target’s public key, the target’s private key, and the

appraiser’s public key respectively. The target and the appraiser’s places are represented abstractly

with target and appraiser in the place grammar.

1 Definition good_encrypt := t_pub_key :: nil.
2

3 Fixpoint privPolicy (e:evidence): Prop :=
4 match e with
5 | EHash => True
6 | EBlob OP => False
7 | EBlob _ => True
8 | ECrypt e' ep => if (in_dec (eq_place_dec) ep good_encrypt)
9 then (match e' with

10 | EBlob red => True
11 | _ => privPolicy e'
12 end)
13 else privPolicy e'
14 | ESig e' p => privPolicy e'
15 | ESeq l r => and (privPolicy l) (privPolicy r)
16 | EPar l r => and (privPolicy l) (privPolicy r)
17 | EAt p e' => privPolicy e'
18 end.
19

20 Definition selectDep e (_ :term e) := {t:term e | privPolicy e}.

Figure 5.3: An example privacy policy written for the subset type definition.

The grammars for terms and evidence are the same as written in Chapter 4, but the privacy

policy cannot be realized until the establishment of the SA as it is parameterized over the situa-

tion. The realization of the privacy policy for the subset type implementation can be visualized

in Figure 5.3. The list good_encrypt recognizes the keys the target is willing to use for encryp-

tion with t_priv_key and a_pub_key omitted to ensure the target does not encrypt any sensitive

information that could be decryptable. As we assumed previously, the target refuses to send a mea-

surement of their operational environment so a measurement requested of the blob OP will return

False. With the privacy policy defined, the selection function is written to be a subset of all terms

that satisfy the privacy policy, as seen in line 20.

36

The first measurement for this example is written in Figure 5.4, specifically in line 2. Recall this

is a measurement of the virus checker explicitly where the request is that place target measures

the blob vc. With the Compute function in line 4, we can observe and understand the effect

of calling the selection function on the term. Explicitly stated in line 5, the Compute returns a

dependent pair where the first element is a term in the language and the second requires a proof

that it satisfies the predicate. While this is expected for the type, this subset holds no value for

subsequent computations because the term has not been proven True. The proof of the True case

is implemented in vc_okay using the exists proof tactic to provide a witness to the claim where

the witness must be the term we are trying to prove True. To complete the proof, the unfold,

exists, and auto tactics are called. With both the term and the proof, the example vc_okay uses

these to create a dependent pair with both values now accessible. In order to generate only the

term, the proj1_sig function is called in line 15, returning the first element of the dependent pair.

1 (* Measure the VC *)
2 Definition vc := TMeas (EAt target (EBlob VC)).
3

4 Compute selectDep _ vc.
5 (*= {_ : term (EAt target (EBlob VC)) | True}
6 : Set *)
7

8 Example vc_okay : selectDep _ vc.
9 Proof.

10 unfold selectDep.
11 exists (TMeas (EAt target (EBlob VC))).
12 unfold privPolicy. auto.
13 Qed.
14

15 Check proj1_sig (vc_okay).
16 (* : term (EAt target (EBlob VC)) *)

Figure 5.4: An example of measuring the virus checker with the indexed type.

Presented in Figure 5.5, the pattern above is continued for the subsequent terms in the request.

These terms, terms 2, 3, and 4 in Figure 5.1 are encoded with vc_sign, vc_ss, and vc_op

respectively. It is evident that all proofs of the True cases follow the same structure. That is,

37

call unfold, find a witness, and use auto to prove True. While it is possible to write these three

examples, it is not possible to prove them all. The first two, vc_sign and vc_ss, are written and

proved with vc_sign_okay and vc_ss_okay, respectively. However, vc_op violates the privacy

policy as it evaluates to False, yet it is still possible to write vc_op as it is properly typed. In

this way, it is possible to reason about terms without the added privacy policy constraint. With

only the term, an attempt to do the proof is presented with vc_op_okay which must be Aborted

because there is no possible way to prove the False case. The proposal can then be formed to

include the first value in the dependent pair, or the term, taken from vc_okay, vc_sign_okay,

and vc_ss_okay.

In the subset typed language, the function selectDep is the realization of the selection policy.

The only way to generate a term is to call selectDep and then prove the term satisfies the privacy

policy. Yet, in the indexed typed language, a term cannot be written unless it satisfies the privacy

policy. There is no separation between terms and the privacy policy so there need not be a selection

function as the selection policy is captured in the term definition. This will impact the term’s

verbiage but does not affect the success of privacy policy’s installment to meet the target’s need

for constrained disclosure. As seen below with Figure 5.6 the privacy policy for the indexed type

example looks almost the same as the subset type’s implementation barring the inclusion of place

in the input to the indexed type. The constructor EBlob p OP still evaluates to False realizing

that a measurement of the operational environment exposes sensitive information.

The differences between the indexed type and subset type are easier to visualize with the fol-

lowing examples. Using the indexed language, the first task is to write a term that represents the

minimal measurement of the virus checker. This is written in the example vc in Figure 5.7. Be-

cause of the nature of the term type, vc has the precondition that it satisfies the privacy policy.

So, in order to generate only the term, a proof must be provided to validate the term’s satisfaction

of the privacy policy. The proof of satisfaction, vc_proof, is accomplished using the unfold and

auto techniques. Unlike the subset type cases, this proof does not need a witness to be complete.

Producing only the term is achieved in the definition vc_okay.

38

The other terms requested, vc_sig and ss_sig, are proven satisfactory with the lemmas

vc_sig_proof and ss_sig_proof. Noting that they are all provable with the same structure,

the proof is succeeds by first unfolding the definition of the privacy policy and then calling auto.

By the indexed typed definition, when composing the terms in sequence, the structure requires

that each of terms in the sequence statement have its own accompanying proof. There is no new

proof strategy necessary, as is evident with the definition of vc_ss_par. We remember this fact

when attempting to prove the sequence measurement of the virus checker and the operational

environment. That is, we know the strucutre of the proof but it is impossible to complete because

the term evaluates to False. Because we cannot write the proof that the operational environment

satisfies the privacy policy, it is impossible to write the term that generates the OP measurement. An

attempt is failed, as expected, with the lemma op_proof as we cannot provide a complete proof.

Therefore, the goal of encoding the privacy policy and meeting the target’s need for constrained

disclosure has been accomplished during typechecking.

Through these examples, we have shown that the privacy policy can be realized in both the

subset type and indexed type definitions by prohibiting the measurement of the operational envi-

ronment to be written or executed. When attempting to generate a term for the proposal, in both

types, the term must be proven True. While the realization of this is generated differently, the

proofs of the True cases are similar. Perhaps the indexed type is more desireable as the proofs

do not require a witness and it may be more concise to write a term. Futhermore, the absence of

the selectDep function in the indexed type makes the overall structure tellingly breviloquent. Yet

the subset type should not be dismissed as it separates terms in the language from their filtering

requirements. This may be useful if a target and appraiser are preforming attestation for the first

time and the appraiser does not understand the target’s structure. In this case, they may be will-

ing to accept any term and the target would only need ensure satisfaction of their privacy policy.

Each implementation is beneficial in unique ways and we leave it to future work to elect a type for

negotiation.

39

1 Definition vc_sign := TMeas (ESig (EAt target (EBlob VC)) t_priv_key).
2

3 Definition vc_ss := TMeas (ESeq (ESig (EAt target (EBlob SS)) t_priv_key)
4 (ESig (EAt target (EBlob VC)) t_priv_key)).
5

6

7 Definition vc_op := TMeas (ESeq (ESig (EAt target (EBlob OP)) t_priv_key)
8 (ESig (EAt target (EBlob VC)) t_priv_key)).
9

10 Example vc_sign_okay : selectDep _ vc_sign.
11 Proof.
12 unfold selectDep.
13 exists (TMeas (ESig (EAt target (EBlob VC)) t_priv_key)).
14 unfold privPolicy. auto.
15 Qed.
16

17 Example vc_ss_okay : selectDep _ vc_ss.
18 Proof.
19 unfold selectDep.
20 exists (TMeas (ESeq (ESig (EAt target (EBlob SS)) t_priv_key)
21 (ESig (EAt target (EBlob VC)) t_priv_key))).
22 unfold privPolicy. split. auto. auto.
23 Qed.
24

25 Example vc_op_okay : selectDep _ vc_op.
26 Proof.
27 unfold selectDep.
28 exists (TMeas (ESeq (ESig (EAt target (EBlob OP)) t_priv_key)
29 (ESig (EAt target (EBlob VC)) t_priv_key))).
30 unfold privPolicy. split. auto.
31 Abort.

Figure 5.5: An example of measurements 2,3, and 4, written in the subset type, which evaluate
to terms once the proof is completed.

40

1 Fixpoint privPolicy tp (e:evidence tp): Prop :=
2 match e with
3 | EHash _ => True
4 | EBlob p OP => False
5 | EBlob p _ => True
6 | ESig _ e' _ => privPolicy e'
7 | ECrypt rp e' tp => if (in_dec (eq_place_dec) tp good_encrypt)
8 then (match e' with
9 | EBlob t_priv_key red => False

10 | EBlob _ red => True
11 | _ => privPolicy e'
12 end)
13 else privPolicy e'
14 | ESeq _ l r => (privPolicy l) /\ (privPolicy r)
15 | EPar _ l r => (privPolicy l) /\ (privPolicy r)
16 end.

Figure 5.6: Privacy policy example written for the indexed type.

41

1 Lemma vc_proof : privPolicy (EBlob target VC).
2 Proof. unfold privPolicy. auto. Qed.
3

4 (*measure the virus checker*)
5 Definition vc := TMeas target VC.
6 (*: privPolicy (EBlob VC green) -> term (EBlob VC green) *)
7 Definition vc_okay := TMeas target VC vc_proof.
8

9 Lemma vc_sig_proof : privPolicy (ESig target (EBlob target VC) t_priv_key).
10 Proof. unfold privPolicy. auto. Qed.
11

12 (*sign the virus checker measurement*)
13 Definition vc_sig := ESig target (EBlob target VC) t_priv_key.
14 Definition vc_sig_okay := TSig t_priv_key (TMeas target VC vc_proof) vc_sig_proof.
15

16 Lemma ss_sig_proof : privPolicy (ESig target (EBlob target SS) t_priv_key).
17 Proof. unfold privPolicy. auto. Qed.
18

19 Definition ss_sig := ESig target (EBlob target SS) t_priv_key.
20 Definition ss_sig_okay := TSig t_priv_key (TMeas target SS vc_proof) ss_sig_proof.
21

22 (*measure and sign the virus checker and the signature server in parallel *)
23 Definition vc_ss := TSeq (ss_sig_okay) (ss_sig_proof)
24 (vc_sig_okay) (vc_sig_proof).
25

26 Lemma op_proof : privPolicy (EBlob target OP).
27 Proof. unfold privPolicy. Abort.

Figure 5.7: An example of measurements 2,3, and 4, written in the indexed type, which evaluate
to terms once the proof is completed.

42

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Remote attestation is a framework used to instill trust in communicating parties across a network.

To make a trust decision, the appraiser first sends a protocol to the target where the target evaluates

the protocol to evidence and returns the generated evidence to the appraiser. Then, once the ap-

praiser receives the evidence, they can evaluate it to make an informed trust decision. Previously,

the measurement sent to the target was chosen statically, giving the target no choice to suggest a

protocol and possibly forcing them to expose sensitive information. To address this problem, we

developed a negotiation framework, situated before the attestation routine, that allows the target

and appraiser to decide on a protocol or protocols for attestation. Through the framework, the

target a is given a chance to enforce their privacy standards thus meeting the goal of constrained

disclosure. After the protocol is selected and negotiation is complete, attestation runs as intended

to produce a trust decision.

We introduced the privacy policy and selection policy as part of the target’s selection process.

The target’s privacy policy is a mathematical relation that maps evidence to a binary value stating

that either the evidence exposes sensitive information or it does not. The selection policy is a

means of mapping abstract goals to concrete actions. In the target’s case, the selection policy is

used to meet the goal of not sharing sensitive information. The focus of this work is not to write

sound policies, but rather to understand the shape and structure of the polices to best capture them

within the negotiation framework.

In implementing these policies, we use dependent types, specifically the subset type and in-

43

dexed type, to statically ensure that terms shared with the appraiser satisfy the privacy requirements

and do not expose sensitive information. The expressive nature of dependent types is essential to

integrating the negotiation procedure with the specification that the target does not share sensitive

information. In using a subset type, we are able to apply a predicate to terms in the language such

that the terms must satisfy the privacy policy to be an element of the subset type. For the indexed

type implementation, the privacy policy constraint is added to the term grammar ensuring every

term written in the language passes the privacy policy check. In both cases, a proof of satisfaction

of the policy is necessary before the term can be used in subsequent computations. We empha-

size that both forms of dependent types provide a static check so as not to consume any runtime

resources.

Selecting the correct term for attestation is an important facet of the attestation problem that we

aim to understand. The bigger problem, however, is determining trust in remote machines across

a network to ensure everyday users are not vulnerable to attacks. While there are portions of the

negotiation framework that must be developed before it can be integrated to help make the trust

decision, we have made progress in setting up and understanding the problem and attempting to

capture the privacy standards of the communicating parties. With that, the hope is the future of

computing will include the attestation work, that utilizes negotiation, to indisputably determine

trust in remote machines.

6.2 Future Work

While we have made significant progress in understanding the framework of negotiation, we must

continue to work on understanding all the mathematical relations surrounding the negotiation struc-

ture. First, the shape of the request must be formalized with a proper representation. We expect

that it is a list of protocols the appraiser finds acceptable for attestation. Yet, if the appraiser is

unaware of the target’s structure, we are unsure how they would know what terms to use in the

request. Next, there is more work to be done to realize an ordering over protocols. Ideally, the

shape of the protocol would suggest the arrangement of the lattice whereby the appraiser is able to

44

select the best term for attestation from the top of the lattice. Currently, we lack an understanding

of the shape of protocols and have yet to realize and instantiate an ordering. Once the mathemat-

ical relations are brought to fruition, we must represent ISAKMP within its own grammar to be

useful within the negotiation structure. After this, a complete structure for negotiation would arise.

It would then be possible to generate a protocol for attestation based on the request in one fluid

exercise.

45

References

Cardelli, L. (1996). Type systems. ACM Comput. Surv., 28(1), 263–264.

Chlipala (2013). Certified Programming with Dependent Types: A Pragmatic Introduction to the

Coq Proof Assistant. The MIT Press. MIT Press.

Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen, J., O’Hanlon, B., Ramsdell, J., Segall,

A., Sheehy, J., & Sniffen, B. (2011). Principles of remote attestation. Int. J. Inf. Secur., 10(2),

63–81.

Coker, G., Guttman, J., Loscocco, P., Sheehy, J., & Sniffen, B. (2008). Attestation: Evidence and

trust. In L. Chen, M. D. Ryan, & G. Wang (Eds.), Information and Communications Security

(pp. 1–18). Berlin, Heidelberg: Springer Berlin Heidelberg.

Coq development team (2016). Coq Reference Manual. INRIA. Version 8.5pl1.

Fogarty, S., Pasalic, E., Siek, J., & Taha, W. (2007). Concoqtion: Indexed types now!

Hajjeh, I., Serhrouchni, A., & Tastet, F. (2003). Isakmp handshake for ssl/tls. In GLOBECOM

’03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489), volume 3 (pp.

1481–1485 vol.3).

Hecker, A. (2002). Internet Security Association and Key Management Protocol. Technical report,

ENST Paris.

Loscocco, P., Smalley, S. D., Muckelbauer, P. A., Taylor, R., Turner, S., & Farrell, J. (2000). The

inevitability of failure: The flawed assumption of security in modern computing environments.

Maughan, D., Schertler, M., & Turner, J. (1998). Internet Security Association and Key Manage-

ment Protocol (ISAKMP). RFC 2408, RFC Editor.

46

McBride, C. (2002). Faking it: Simulating dependent types in haskell. J. Funct. Program., 12,

375–392.

Pendergrass, J., Helble, S., Clemens, J., & Loscocco, P. (2017). Maat: A platform service for

measurement and attestation.

Petz, A. (2020). An infrastructure for faithful execution of remote attestation protocols. In Pro-

ceedings of the 7th Symposium on Hot Topics in the Science of Security, HotSoS ’20 New York,

NY, USA: Association for Computing Machinery.

Qing, X. & Adams, C. (2006). Keaml - key exchange and authentication markup language. In

2006 Canadian Conference on Electrical and Computer Engineering (pp. 634–638).

Ramalingam, R. (2017). Internet security association and key management protocol (isakmp).

Ramsdell, J., Rowe, P., Alexander, P., Helble, S., Loscocco, P., Pendergrass, J., & Petz, A. (2019).

Orchestrating layered attestations. (pp. 197–221).

Sozeau, M. (2007). Subset coercions in coq. In T. Altenkirch & C. McBride (Eds.), Types for

Proofs and Programs (pp. 237–252). Berlin, Heidelberg: Springer Berlin Heidelberg.

Xi, H. & Pfenning, F. (1999). Dependent types in practical programming. In Proceedings of the

26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’99

(pp. 214–227). New York, NY, USA: Association for Computing Machinery.

Xiu, D. & Liu, Z. (2005). A formal definition for trust in distributed systems. In J. Zhou, J. Lopez,

R. H. Deng, & F. Bao (Eds.), Information Security (pp. 482–489). Berlin, Heidelberg: Springer

Berlin Heidelberg.

Zenger, C. (1997). Indexed types. Theor. Comput. Sci., 187(1–2), 147–165.

47

	Abstract
	Acknowledgements
	Introduction
	Background
	Remote Attestation
	ISAKMP
	Dependent Types
	Indexed Types
	Subset Types

	Negotiation
	Motivation
	Protocol Negotiation
	Policy

	Dependent Types for Policy
	Subset Type
	Indexed Type

	Example
	Conclusion and Future Work
	Conclusion
	Future Work

