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Abstract: A central tenet of network science states that the structure of the network influences
processing. In this study of a phonological network of English words we asked: how does damage
alter the network structure (Study 1)? How does the damaged structure influence lexical processing
(Study 2)? How does the structure of the intact network “protect” processing with a less efficient
algorithm (Study 3)? In Study 1, connections in the network were randomly removed to increasingly
damage the network. Various measures showed the network remained well-connected (i.e., it is
resilient to damage) until ~90% of the connections were removed. In Study 2, computer simulations
examined the retrieval of a set of words. The performance of the model was positively correlated
with naming accuracy by people with aphasia (PWA) on the Philadelphia Naming Test (PNT)
across four types of aphasia. In Study 3, we demonstrated another way to model developmental
or acquired disorders by manipulating how efficiently activation spread through the network. We
found that the structure of the network “protects” word retrieval despite decreases in processing
efficiency; words that are relatively easy to retrieve with efficient transmission of priming remain
relatively easy to retrieve with less efficient transmission of priming. Cognitive network science
and computer simulations may provide insight to a wide range of speech, language, hearing, and
cognitive disorders.

Keywords: network science; phonological network; resilience; aphasia; computer simulation

1. Introduction

Network science is being used increasingly in a wide range of disciplines, including
the cognitive and language sciences [1–5]. In this approach, nodes represent some entity in
a system, such as words in the mental lexicon, and connections are placed between nodes
that are related in some way, such as words that are phonologically [3] or semantically
related [6]. In a system with many nodes and connections, a web-like network emerges,
like the network in Figure 1 for the word speech and other words that are phonologically
similar to it.
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Figure 1. Nodes represent words, and connections are placed between words that sound similar to
each other. In this example, phonological similarity is defined by a simple computational metric (add,
delete, or substitute a phoneme in a word to form another word), but phonological similarity can be
defined in other ways [7,8].

In [3], the structure of a network of English words was examined with connections
placed between similar sounding words (as in Figure 1). It was found in [3] that the network
had a number of features that were not observed in networks of social or technological
systems, nor in networks of words where connections were placed between semantically
related words. To examine whether the constellation of network features observed in [3]
was unique to English or might be found in other languages as well, the phonological
networks of words in Spanish, Mandarin, Hawaiian, and Basque, which were selected to
be representative examples of different language families, were examined [9]. Although
English and Spanish are both from the Indo-European family of languages, English is a
Germanic language, whereas Spanish is a Romance language. Mandarin is a Sino-Tibetan
language, Hawaiian is an Austronesian language, and Basque (or Euskara) is a linguistic
isolate, meaning that it has not (yet) been identified as a member of a given language family.
Despite these five languages differing from each other in their morphology, phonemic
inventories, typical word-length, canonical syllable shape, use of tone, etc., it was found
by [9] that all five languages had network structures that were similar to the phonological
network of English first observed in [3].

A central tenet of network science is that the structure of the network influences
processing in that system [10]. For example, networks with a small-world structure have
a comparatively short average path length between nodes in the system, and the nodes
are highly interconnected, which makes searches through such networks more efficient
than searches using the same search-algorithm in a network organized in a different
way [11,12]. The unique constellation of features in the phonological network motivated
subsequent research using methods from psycholinguistics and cognitive psychology (for
a review see [5]) to examine how a number of network measures might influence the
cognitive processes involved in spoken word recognition [13], speech production [14],
word-learning [15], long- and short-term memory [16], and the perception of the speech to
song illusion [17]. Influences of certain network measures on processing have not only been
observed in typically developing language users, but have also been observed in people
who stutter [18] and in people with aphasia [19].
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For a period of time, this constellation of network features was thought to be unique
to phonological networks (see also [20]). However, an analysis of the DarkNet [21]—sort of
a secret version of the Internet where anonymous users often engage in illegal activities—
discovered that the DarkNet, like the phonological network, also lacked a large core of
highly connected nodes. Given that the structure of a network influences processing in that
system [10]—regardless of what system the network represents—the discovery of another
system with network structures similar to the phonological network provided a unique
opportunity to learn more about and to corroborate findings in the phonological network.
The lack of a large core of highly connected nodes in the phonological networks and in the
DarkNet has some interesting implications. For example, when [21] simulated targeted
attacks and random failures on the network structure of the DarkNet they found that the
DarkNet was much more resilient to failure than the different network structure found
in the Internet [22]. Similarly, it was found that phonological networks were also more
resilient to targeted attacks and random failures, suggesting that this network structure
may not only contribute to the difficulty in dismantling the DarkNet (which would interfere
with the illegal activities engaged upon it), but also in the resilience of various language
processes despite the damage caused by aging, stroke, disease, or disorder [9].

Given the clear influence that the structure of the phonological network has on various
language processes we wondered how damage to the phonological network might affect
processing. Previous studies have examined a similar question regarding the resilience
of semantic networks (this concept is referred to as percolation theory in the network
science literature) looking at semantic networks that change due to typical aging [23,24],
Alzheimer’s disease [25], aphasia [26], and other clinical conditions [27]. Percolation
analysis has also been used to examine the semantic networks of people varying in their
level of creativity [28], and in languages other than English (e.g., Hebrew [29]).

In the present study, we focused on the phonological network of English words, and
asked: how does the continued and random removal of connections alter the overall
structure of the phonological network (Study 1)? How might that damaged structure of
the phonological network influence processing (Study 2)? Finally, how might the structure
of the intact network “protect” processing even when a less efficient algorithm is used
(Study 3)? The last research question was motivated by the work of [11,12], who examined
how the same search algorithm performed on networks with different structures. Instead,
we examined how different algorithms might perform on the same network to determine if
certain network features conferred some protection to phonological processing.

2. Study 1: Damaging the Phonological Network

The structure of the phonological networks of English, Spanish, Mandarin, Hawaiian,
and Basque were examined in [9] and it was found that all five languages had similar
phonological network structures. Given the unique structure of the phonological networks
observed in [9], which differed from the structure typically seen in networks of social or
technological systems, the researchers decided to evaluate the resilience of the networks.
That is, how well do these unique networks stay connected despite being damaged?

Networks can be damaged by removing nodes (and their associated connections),
or by removing just the connections. The results produced by these two approaches are
similar. Further, the removal of the nodes/connections can be carried out at random or
by targeting nodes with many connections (i.e., in order of degree). One way to assess
resilience in a network is by looking for changes in the average shortest path length, which
measures how many connections must be traversed on average to get from one node to
another in the network and quantifies how easy it is to transmit information between any
two nodes in the network [9]. In networks with the scale-free structure typically seen in
social or technological systems, the network tends to remain well connected as indicated by
the average shortest path length remaining constant when nodes are randomly removed.
However, when nodes are removed in order of degree, the average shortest path length
increases dramatically [30], indicating that part of the network has fractured, making it
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more difficult to reach certain nodes (i.e., a longer path must now be taken to get from
A to B).

In the phonological networks examined in [9], up to 5% of the nodes in the network
(about 1000 nodes) were removed, and across that range of damage the networks remained
well connected (i.e., the average shortest path length remained constant). This was true
whether node removal was conducted at random or by targeting highly connected nodes,
which contrasts with the pattern typically observed in social and technological systems
with scale-free network structures. Recall that in social and technological systems, such
systems remain well connected when damaged at random, but “fall apart” when nodes are
removed in the order of degree (i.e., targeting highly connected nodes). The researchers
suggested that the resilience of the phonological networks may contribute to the resilience
of language processing despite injury to or degradation of the language-related areas of
the brain.

In the present study, we wished to examine further the resilience of the phonological
network by analyzing the phonological network over a wider range of damage than had
been examined in [9]. Recall that in [9] up to 5% of the nodes in the network were removed
in their analysis. In the present study, we damaged the network more extensively by
randomly removing up to 90% of the connections in the network.

In further contrast to the work by [9], we removed connections instead of nodes from
the network. Although the results are typically similar regardless of whether nodes or
connections are removed, we reasoned that removing connections was a closer analogue to
the difficulties sometimes faced in lexical retrieval in typical speakers and in individuals
with developmental or acquired language disorders [31]. For example, in the tip of the
tongue state the speaker might be able to retrieve some information from the lexicon related
to the meaning, gender, or syntactic class of a word [32], but they are not able to completely
access the phonological word-form, perhaps retrieving the number of syllables the word
has, or the sound with which it starts [33]. Note that the word is not unlearned or forgotten
forever. Indeed, the tip of the tongue state might be resolved spontaneously later in the day,
or by consulting a dictionary or other resource. By damaging the network in this way, the
words/nodes are still in the lexicon, but the damage to the network structure may make
lexical retrieval more difficult by creating a longer path that must be traversed in order to
retrieve the word/node.

Finally, we used only the random removal of connections to damage the network. We
did not target connections in some way as one might when removing nodes (i.e., in the
order of degree, k-core, etc.).

2.1. Methods

We started with the phonological network examined by [3], which contains 19,340 nodes
(representing words) in the network. A connection was placed between two words/nodes if
the addition, deletion, or substitution of a single phoneme changed one word into the other.
A subset of this network is represented in Figure 1. The “intact” network contained 31,267
connections. We then randomly removed 10% of those connections to form a new network.

From the network with 10% damage, we randomly removed another 20% of the
connections resulting in a network that (compared to the intact network) had 30% of the
connections removed. We continued to randomly remove connections using the previous
network as the starting point to produce networks that had 50%, 70%, and 90% of the
connections (compared to the intact network) removed to produce networks with varying
amounts of damage. We used this method of damaging the network so that we could
examine a word in its “intact” state and then follow the processing of that word (and its
connections) longitudinally (see Study 2 below). Other methods of damaging the network,
such as randomly removing a percentage of the intact network and then resetting the
network to remove a different percentage of the intact network would not allow us to
examine specific words longitudinally.
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Further, Ref. [34] compared strategies to attack networks such that nodes/connections
were targeted based on their “importance” (i.e., measures of degree and betweenness
centrality) in the initial network or based on measures of their “importance” that were
recalculated in the damaged network. They found that continuing to recalculate “impor-
tance” on the damaged network led to greater damage in subsequent attacks compared
to when “importance” continued to be based on the initial network structure. The results
of [34] therefore suggest that the changes that occur in the network as a result of attack
are important to take into account for subsequent attacks. Although we are not making
targeted attacks on the phonological network, we considered the impact that the current
(damaged) network structure might have on forming the subsequent network structure
(with increased damage) when deciding how to damage the phonological network in the
present study.

We used Gephi (version 0.9.2) to measure various structural features of the resulting
networks. Giant component size refers to the largest group of connected nodes in a network.
In addition to reporting the number of nodes in the giant component, we also report
the percentage of nodes in the network found in the giant component. Lexical islands
(typically called just components in the network science literature) are groups of words
that are connected to each other, but not connected to the giant component. The number
of isolates (sometimes referred to as “lexical hermits”) refers to the number of nodes with
degree = 0; that is, the number of words that are not connected to any other word. In
addition to reporting the number of isolates, we also report the percentage of nodes in the
network that are isolates.

The number of communities (also referred to as modules) refers to the number of sub-
groups of nodes within the giant component that are more connected to each other than
they are to nodes outside of the community [35,36]. The modularity value (Q), measures the
extent to which clear, well-defined communities are found in a network (Ref. [37] see [35]
for a formal definition). Positive values of Q close to the maximum of +1.0 indicate the
presence of clear, well-defined communities in the network.

Average degree is the mean number of connections per node. We report this value for
the entire network (which would also include nodes in the lexical islands and the lexical
hermits in that calculation), and just for nodes in the giant component.

Average clustering coefficient is the mean clustering coefficient, which measures the
proportion of phonological neighbors of a word that are also neighbors of each other
(see [13] and others for a more formal definition of clustering coefficient). We report this
value only for nodes in the giant component.

Average shortest path length (ASPL) is the mean distance (measured as the number of
connections) between any two nodes in the network (restricted to the giant component).
ASPL will serve as an indication of how resilient the phonological network is with increas-
ing amounts of damage. A resilient network will have a constant ASPL across increasing
amounts of damage, whereas a network that “falls apart” will show an increase in ASPL
with increasing amounts of damage.

2.2. Results

Table 1 shows the number of connections in the intact and damaged networks. Further
summarized in the table are the giant component size (% of the network in GC), the number
of communities and modularity value, average degree for the entire network and just for
the nodes in the giant component, average clustering coefficient, and average shortest path
length (ASPL) for each of the networks. Note that the values reported in Table 1 are “points”
not mean values with distributions. There is no way to test for the statistical difference
between point values, because there are not enough degrees of freedom for any statistic to
use. Given the importance of ASPL in assessing the resilience of the network we therefore
used the informal heuristic that the ASPL must be greater than or approximately equal to
1.5 times the value of the intact network to be considered “significantly” different (ASPL in
intact network = 6.05 × 1.5 = 9.075). A similar heuristic was used in [10] when assessing
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differences in path length. Using this heuristic, only the ASPL for the network with 90%
damage differed significantly from the ASPL of the intact network. Visualizations of the
intact and five damaged networks can be found in Figure 2.

Table 1. Network measures of the intact and damaged networks.

Intact 10% Damage 30% Damage 50% Damage 70% Damage 90% Damage

# of connections 31,267 28,140 21,886 15,632 9378 3124

Giant component size
(% of network)

6508
(34%)

6290
(33%)

5870
(30%)

5277
(27%)

4237
(22%)

1767
(9%)

# of isolates
(% of network)

10,265
(53%)

10,544
(55%)

11,223
(58%)

12,079
(62%)

13,354
(69%)

15,820
(82%)

# of communities in GC 24 24 27 27 31 38

Modularity value (Q) 0.69 0.69 0.69 0.69 0.71 0.86

Ave. Degree 3.23 2.91 2.26 1.62 0.97 0.32

Ave. Degree in GC 9.11 8.44 6.98 5.46 3.94 2.30

Ave. clustering coefficient
in GC 0.32 0.29 0.22 0.16 0.09 0.03

Ave. shortest path length
(ASPL) in GC 6.05 6.12 6.29 6.63 7.34 11.93

Note: GC = giant component; Ave. = average (specifically the mean).
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Figure 2. Panel (A) shows the intact network. Panels (B–F) show the damaged phonological networks.
Each network contained the same 19,340 words (i.e., nodes), but increasing percentages of connections
between words were randomly removed. The giant component is shown in the center of each network.
The inner ring contains the smaller components (sometimes called “lexical islands”), and the outer
ring contains the isolates (sometimes called “lexical hermits”).
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2.3. Discussion of Study 1

In the present study, an increasing number of connections were removed from an
intact network in order to investigate the resilience of the phonological network. That
is, how much damage can the network sustain before it is no longer well-connected and
effectively “falls apart”? In contrast to a similar analysis in [9] where up to 5% of the nodes
were removed (at random and in a targeted fashion) from the network to assess resilience,
in the present study we instead randomly removed connections between nodes, and did so
over a wider range of “damage” to the system (up to 90% of the connections were randomly
removed). Because words are not unlearned or forgotten, we reasoned that removing
connections rather than removing nodes was a closer analogue to certain types of retrieval
problems (e.g., the tip of the tongue state, developmental or acquired language disorders).
Recall that [9] observed that over the range of damage they inflicted on the phonological
network, the system was quite resilient. That is, the network remained relatively intact
as indicated by the average shortest path length remaining relatively constant for both
random and targeted removal of nodes.

In the case of the phonological network in the present study, we also see the average
shortest path length (ASPL) in the giant component remain fairly constant (at a value
~6 connections) until 90% of the connections in the network were removed resulting in the
average shortest path length nearly doubling (from ~6 to ~12 connections). The marked
increase in the average shortest path length is indicative that the significantly damaged
networks are less interconnected than the intact and less-damaged networks, and are
effectively being “pulled apart”. With less interconnectivity, there are fewer “short-cuts”
through the network to aid in the rapid traversal of the system, forcing one to take the
“long way” from node A to node B. It is remarkable that the network remained resilient (i.e.,
well connected) until more than half of the connections were removed from the system.

A number of other network measures support the conclusion that the significantly
damaged networks are less interconnected than the intact and less-damaged networks,
and have been effectively “pulled apart”. Consider the decrease in the size of the giant
component and the increase in the number of isolates (i.e., “lexical hermits”) as an increasing
number of connections are removed from the phonological network. The only place that still
has many connections is the giant component, making it likely that a randomly removed
connection will be removed from a node in the giant component. With increasing amounts
of damage those nodes end up being stripped of all connections to the giant component,
and are cut off to become an isolate (or part of a very small lexical island/component).

The increase in the number of communities in the giant component also suggests that
the highly interconnected giant component is getting stretched and pulled apart, forming
increasingly smaller communities that are only weakly connected to each other in the
giant component. Figure 3 shows the giant component of the network with 90% damage,
which resembles pearls on a string more than the highly interconnected web-like structure
typically evoked by the word network. Indeed, the decrease in the average degree and
average clustering coefficient of nodes in the giant component further attests to nodes in
the giant component being “strung out” and less interconnected by the increasing amounts
of damage inflicted on the network. See the work in [38] on theoretical networks for
the influence of targeting for removal nodes that connect communities/modules on the
resilience of the network.

Recall that a central tenet of network science is that the structure of the system influ-
ences processing in that system [10]. Given the changes in the structure of the network that
we observed when connections between nodes were randomly removed, we used in Study
2 computer simulations on the damaged networks to examine how the (damage to the)
structure of the phonological network might influence processing.
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3. Study 2: Simulated Language Processing on the Damaged Phonological Networks

Because it is unethical to harm human participants in order to mimic the damage
that might occur in certain types of developmental or acquired language disorders, we
turned to computer simulations to explore how language processing might be affected
by the changes we observed in Study 1 in the structure of the phonological network as
a function of increasing removal of connections (e.g., [39]). Although the phonological
networks in Study 1 only capture the structural relationship among words in the mental
lexicon, processing in these structural models can be modeled by either a random walk
(e.g., [40]) or the diffusion of activation—akin to spreading activation—across the net-
work (e.g., [41]). Similar computer simulations were used in [13,41–43] to explore typical
language processing in the phonological network.

In [43], an R package called spreadr is described that can diffuse activation across a
network provided by the user over a range of time-steps, initial activation levels, etc. We
used spreadr (version 0.1.0) in the present study to diffuse activation across the damaged
phonological networks from Study 1, allowing us to examine how damage to the structure
of the network might influence processing. We examined in two ways how damage to the
structure of the network might influence processing: (1) by examining how the spread of
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activation from a word changed with increasing amounts of damage; and (2) by comparing
the performance of the network to the performance of humans in a language processing
task for a subset of words in the network.

The subset of words we used in the simulation came from the Philadelphia Naming
Test (PNT; [44]); more details about these words are provided in the Methods section.
We compared the performance of the damaged network for the words in the PNT to
performance on the PNT of adults who acquired certain types of aphasia. The decision to
use performance data from people with aphasia (PWA) was made in part out of convenient
access to the data. In part, we also used these performance data because damage to a
phonological network seemed like the most direct analogue to the described access deficit
we modeled in Study 1 [31]. Note, however, that we believe our findings apply to other
types of developmental and acquired language disorders regardless of the underlying
factor that causes damage to the network (see also Study 3).

As background, aphasia is an acquired language disorder that often occurs after a
stroke and results in impaired comprehension and/or production of language. According
to [45], approximately 1/3 of strokes result in aphasia (approximately 225,000 people)
and there are currently at least 2,000,000 people in the USA living with aphasia [46]. The
classic typology of aphasia has resulted in broad diagnostic categories including: Broca’s
Aphasia (hallmarked by impaired fluency and repetition), Wernicke’s Aphasia (hallmarked
by impaired comprehension and repetition), Conduction Aphasia (hallmarked by impaired
repetition), and Anomic Aphasia (hallmarked by impairment in naming).

Impaired word retrieval is a ubiquitous symptom of aphasia, leading to a primary
focus on word retrieval in many aphasia treatments. Across aphasia types, word retrieval
impairments can stem from impaired phonological knowledge caused by left perisylvian
damage [47], impaired semantic knowledge caused by damage to association cortices in
dominant and nondominant hemispheres [48], or impairment in connecting semantics and
phonology caused by damage to white matter connections between perisylvian regions
and association cortices [49]. Since the predominant types of aphasia (e.g., Broca’s, Wer-
nicke’s, and Conduction) tend to result from left perisylvian damage or connections to left
perisylvian regions, some degree of phonological impairment is found in most people with
aphasia, justifying our use of a phonological (but not a semantic) network in the present
work (cf., [26]).

To examine how increasing amounts of damage to the network influences processing
we compared the activation levels of each word across different levels of damage in the
phonological network. We made the intuitive prediction that activation levels of the words
will decrease with increasing amounts of damage to the network. This change in activation
levels with damage reflects the increased difficulty of accessing the words from the lexicon
due to increasing amounts of damage to the network.

We also predicted that stimulus words with larger activation values would correlate
with higher accuracy and fewer errors by PWA. To test our prediction, we conducted
Pearson correlations for each aphasia type between the activation value of stimulus words
after 5 timesteps from the network with 90% of the connections removed and the average
accuracy of PWA for the stimulus words. We focused on the activation values from the
network with 90% damage because, as shown in Table 1, that was the network that exhibited
a significant increase in the average shortest path length, suggesting that the connectivity
of the network had been significantly disrupted.

3.1. Methods

The lexicon in the present simulation consisted of the 19,340 English words in the
phonological network examined in [3], and also used in Study 1. The stimulus words that
were presented to the network to “retrieve from the lexicon” consisted of 165 words from
the 175 stimulus words in the Philadelphia Naming Test [44] that were found in the lexicon
used in the simulation (see Appendix A).
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3.1.1. Spreadr

We used the following parameter settings in spreadr (version 0.1.0) for the simulation
reported here. With this combination of parameters, we conducted a simulation of spread-
ing activation on each of the damaged phonological networks reported in Study 1 (10%,
30%, 50%, 70%, and 90% damaged networks).

An initial activation value of 20 units was used for each stimulus word in the present
simulation. Although activation = 100 units in the simulations reported in [41], this value is
arbitrary. A smaller value was selected in the present simulations to reduce computational
burden, thereby accelerating data collection.

Decay (d) refers to the proportion of activation lost at each time step. This parameter
ranges from 0 to 1, and was set to 0 in the simulations reported here to be consistent with
the parameter settings used in [41,42].

Retention (r) refers to the proportion of activation retained in a given node after it
diffused activation to other nodes connected to it. This value ranges from 0 to 1, and was set
to 0.5 in the simulations reported here. In [41] values ranged from 0.1 to 0.9 in increments
of 0.1. Because the various retention values in [41] produced comparable results across
retention values, we selected in the present simulations a single, mid-range value (0.5) for
the retention parameter in order to reduce the computational burden, thereby accelerating
data collection.

The suppress (s) parameter in spreadr will force nodes with activation values lower than
the selected value to activation = 0. It was suggested in [43] that when this parameter is
used a very small value (e.g., s < 0.001) should be used. In the present simulations suppress
= 0 in order to be consistent with the parameter settings used in [41,42].

Time (t) refers to the number of time steps that activation diffuses or spreads across the
network. In Vitevitch et al. (2011) t = 10, however in the present simulations t = 5. A smaller
value was selected in the present case because as shown in Figure 3 of [43], activation values
reach asymptote at approximately five time-steps. Furthermore, as shown in the hop-plot
in Figure 2 of [50] approximately 50% of the network has been reached by traversing on
average five connections (i.e., hops) in every direction from a given node, suggesting that
the network has been sufficiently saturated. We selected in the present simulations a smaller
value (t = 5) for the time parameter in order to reduce the computational burden, thereby
accelerating data collection.

At the end of five timesteps, we documented the activation level of each of the
165 PNT stimulus words in each of the damaged networks. Larger activation values in the
simulation are hypothesized to correspond to better performance in behavioral tasks (e.g.,
faster reaction times, more accurate responses, etc., Ref. [41]). Although some computer
simulations may use relative activation of the target word compared to competing words
(note that another model of language processing, Node Structure Theory, uses absolute
activation of a node, Ref. [33]), in the case of spreadr, the dynamics of the model are such
that initial activation of the target word results in the target word always being relatively
more active than competing words even after activation has dispersed through the network,
making the absolute activation of the target word the appropriate metric to use in the
present simulations.

Further, previous simulations [13,41–43] typically compared two (or more) categories
of target words (e.g., words that were high vs. low in clustering coefficient), which again
made the absolute activation of the target word the appropriate metric to use. In the
present study, we will track absolute activation in the same word across different levels of
damage, and compare absolute activation in words to performance by PWA in a common
psycholinguistic task, which again, makes absolute activation the appropriate metric to use.
The performance data for PWA were obtained from the Moss Aphasia Psycholinguistics
Project Database (MAPPD).
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3.1.2. MAPPD Database

We obtained PWA performance, specifically the average percentage of correct produc-
tions, on the 165 PNT words from the Moss Aphasia Psycholinguistics Project Database
(https://www.mappd.org/ accessed on 8 February 2021) [51]. We further grouped the data
by type of aphasia, focusing on Anomic (n = 181), Broca’s (n = 85), Conduction (n = 95), and
Wernicke’s (n = 82) aphasia given their likelihood of phonological impairment and because
these types of aphasia had larger sample sizes (all other ns < 15).

3.2. Results
3.2.1. Analysis of Words

Figure 4 shows the activation level after five time-steps for each word from the PNT
at each level of damage to the phonological network. Although the image is visually
dense, we observed several patterns in the figure related to how damage to the network
influenced the amount of activation remaining in the node after five time-steps: (1) a
subset of nodes (25 nodes) started out as “lexical hermits” (i.e., a final activation level of
0.625) and remained lexical hermits (because connections, not nodes were removed); (2) a
subset of nodes started out with higher levels of activation remaining in the node after five
time-steps, but at some point the removal of connections turned the node into a “lexical
hermit” (i.e., a final activation level of 0.625; 53 nodes) or a lexical island of size 2 (i.e., a
final activation level of 10; 18 nodes); and(3) a subset of nodes (69 nodes) started out with
lower levels of activation remaining in the node after five time-steps (at 0.1 damage), but
increasing amounts of damage resulted in higher amounts of activation remaining in the
node after five time-steps (at 0.9 damage). See Figure 5 for an example of the word comb,
which started out with lower levels of activation remaining in the node after five time-steps,
but increasing amounts of damage resulted in higher amounts of activation remaining in
the node after five time-steps.

3.2.2. Correlation of Activation Levels to PWA

The Pearson correlations between the activation value of stimulus words after five
timesteps in the network with 90% damage and the average accuracy of PWA for the
stimulus words showed significant positive correlations (see Table 2). Across aphasia types,
the positive r values, ranging from 0.169 to 0.202, indicate that stimulus words with greater
activation values in the simulation also tended to be more accurately produced by people
with aphasia (all ps < 0.05). Importantly, the Pearson correlations between the activation
value of stimulus words after five timesteps in the intact network and the average accuracy
of PWA for the stimulus words showed no correlation (see Table 2), suggesting that the
damaged network captures behavior related to developmental and acquired disorders.

Table 2. Pearson correlations between simulation activation level in the network with 90% damage
and naming accuracy across types of aphasia, and between simulation activation level in the intact
network and naming accuracy across types of aphasia.

Aphasia Type 90% Damage Intact Network

Anomic Aphasia (n = 181) r = 0.177 (p = 0.022) r = 0.037 (p = 0.634)

Broca’s Aphasia (n = 85) r = 0.182 (p = 0.019) r = −0.020 (p = 0.798)

Conduction Aphasia (n = 95) r = 0.202 (p = 0.009) r = 0.051 (p = 0.518)

Wernicke’s Aphasia (n = 82) r = 0.169 (p = 0.029) r = 0.014 (p = 0.854)

https://www.mappd.org/
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Figure 5. The phonological neighborhood for the word comb in the intact network, and in the networks
with varying amounts of damage. The word comb is an example of a word on the PNT that started out
with lower levels of activation remaining in the node after five time-steps, but increasing amounts of
damage resulted in higher amounts of activation remaining in the node after five time-steps.

3.3. Discussion of Study 2

In the present study we simulated lexical retrieval using spreadr on the damaged
networks from Study 1. To assess how the damaged structure of the network might
influence processing (as measured by the final activation level of the words), we compared
the final activation levels of the words across networks with increased amounts of damage.
We also compared the simulation results from the network with 90% of the connections
removed to behavioral data (i.e., PNT naming accuracy) from persons with aphasia (PWA).
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3.3.1. Analysis of Words

The analysis of the final activation levels of the words across networks with increased
amounts of damage revealed that our initial prediction was too simplistic. We intuitively
predicted that activation levels of the words would decrease with increasing amounts of
damage to the network, because damage to the network would make it more difficult to
access the words. The results were more complicated than our initial prediction. Instead,
we found several subsets of words with different patterns of activation across the networks.

One subset of words started out with higher levels of activation remaining in the node
after five time-steps, but at some point, the removal of connections turned the node into a
“lexical hermit” or a lexical island of size 2. This resulted in the word nodes having less
activation as the network became more and more damaged. This subset of words was
indeed in line with our initial prediction.

What we had not initially considered was that some words would start out as lex-
ical hermits. As reported in [3], the phonological network of 19,340 words contained
10,265 lexical hermits, 2567 words occupying lexical island of various sizes, and the remain-
ing 6508 words were found in the giant component. Given the large percentage of words
in the phonological network that are lexical hermits (53%), we should have anticipated
that some of the words on the PNT would be lexical hermits. We indeed found a subset
of words that were lexical hermits, and whose final activation levels remained the same
with increasing amounts of damage to the network. Recall that we used the approach of
removing connections in the present study in order to examine changes in processing with
increasing amount of damage. Had we used the approach of removing nodes instead of
connections from the network, some of these word nodes may have been removed from
the network at some point.

The last subset of nodes that we observed (and had not expected) consisted of words
that started out with lower levels of activation remaining in the node in the network with
small amounts of damage (10% of the connections removed), but higher amounts of activa-
tion when the network was significantly damaged (90% of the connections removed). An
inspection of this subset of nodes revealed that these words initially had “dense phono-
logical neighborhoods”. That is, these words were connected to many similar sounding
words (or in network science terms, these nodes had high degree). Being connected to
many other nodes results in the target node having a small amount of activation remaining
after five time-steps.

Damage to the network essentially “pruned” some of neighbors in the phonological
neighborhood of this subset of words, turning the previously dense neighborhood into
a sparse neighborhood. With fewer nodes being connected to the target word, more
activation remains with the target word after five time-steps. Higher levels of activation
indicate that the word should be retrieved more quickly and more accurately. Indeed, many
behavioral studies (for reviews see [7,52]) show that words with sparse neighborhoods (i.e.,
low degree, or few competitors) are responded to more quickly and accurately than words
with dense neighborhoods (i.e., high degree, or many competitors). Computer simulations
on phonological network models also show this [41]. Similarly, one theory for why older
adults experience memory declines compared to younger adults is that older adults have
richer/more cluttered representations in memory than younger adults [53]. This finding
counterintuitively suggests that selected damage to the system could be beneficial.

The paradoxical benefit of improving performance by damaging the system, or prun-
ing specific connections is not without precedent. In [25] a semantic network with weighted
connections between concepts was examined and damaged to simulate how processing
changed as Alzheimer’s disease progressed. They found that removing weak connections
(i.e., with low weights) resulted in other connections being strengthened as the weight from
the pruned connection was redistributed to the remaining connections. The strengthening
through pruning that was observed in [25] in a weighted semantic network is similar to the
pruning of (unweighted) connections in the phonological network increasing activation



Brain Sci. 2023, 13, 188 15 of 26

levels of target words by turning their initially dense phonological neighborhoods into
sparse phonological neighborhoods.

3.3.2. Correlation of Activation Levels to PWA

Using Pearson correlations, we found that the accuracy of correct picture naming by
PWA correlated with activation values of stimulus words in the 90% damaged network. As
predicted, stimulus words with more activation after five timesteps were also more likely
to be produced correctly by PWA, aligning with models of spreading activation and word
retrieval (e.g., [54,55]).

The results of the correlation analyses in the present study complement the regression
analysis reported in [19], where network measures of words in the intact phonological net-
work were used to predict the naming accuracy of items in the Philadelphia Naming Test for
age-matched controls, individuals with Broca’s Aphasia, and individuals with Wernicke’s
aphasia. Focusing just on the network measures that [19] reported, they found that degree
(known as phonological neighborhood density in the psycholinguistic literature) influenced
naming accuracy such that words with high degree/many phonological neighbors were
named more accurately than words with low degree/few phonological neighbors, replicat-
ing previous findings in studies of speech production in healthy adults (e.g., [56–60]). It
was also found by [19] that the location of a word in the network—in or outside of the giant
component (either in an island or an isolate)—influenced naming accuracy. They observed
that words found outside the giant component were named more accurately than words in
the giant component (see also [61]).

Given the findings of the correlation analysis in the present study, and the previous
findings of [19] demonstrating that the structure of the phonological network influences
naming performance in the PNT, we conducted a post hoc analysis to further examine the
phonological errors in the MAPPD database for additional evidence that the structure of the
(damaged) phonological network influences processing. In this analysis, we considered the
target words that were erroneously produced as either formal errors (F) or nonwords (N)
(but not Semantic (S) errors, Visual errors, etc.) in the MAPPD database that were made by
those individuals classified (based on the score on the PNT) as having mild (mean = 85.62;
sd = 5.25; n = 1569 errors) or very severe anomia (mean = 25.2; sd = 0.0; n = 43 errors). To be
clear, we are not analyzing the formal errors, nor the nonwords that were produced, but
instead looked at the characteristics of the intended (target) word. Indeed, nonwords do
not exist in the network we used in the present simulation, making it difficult in the present
study to analyze the actual nonword productions. Note, however, that [62] examined other
network architectures that would be able to produce nonwords.

For each formal/nonword error we examined the location in the network (in or outside
the giant component) for the target word. Recall that [19] found that words outside of the
giant component were named more accurately than words in the giant component. This
may seem counterintuitive because words in the giant component tend to be short in length,
monosyllabic, acquired early in life, and occur frequently in the language, etc., which are
all characteristics that typically result in faster and more accurate language processing [61].
Furthermore, if one randomly selected a word from the lexicon to make an error on, it is
more likely to be a word that is outside of the giant component, where most of the words
in the phonological network are located. Thus, if the location of the word in the (damaged)
phonological network influences processing, then, based on [19], we should see more errors
made on target words found in the giant component than on target words found outside of
the giant component.

We used the location of the word in the network with 10% of the connections removed
for the 1438 formal/nonword errors made by people with mild anomia that were found in
the phonological network. As shown in Table 1, the network with 10% of the connections
removed has 33% of the words in the giant component, and 67% of the words outside
of the giant component (in smaller components or as isolates). The people with mild
anomia made 56% of the formal/nonword errors on target words that are located in the
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giant component, and 44% of the formal/nonword errors on target words that are located
outside of the giant component. A chi-square test to compare the actual error rates to
the expected error rates (based on random selection from where words are located in the
damaged network) shows that there is a significant difference (χ2 = 10.71, p < 0.01). More
errors were made on words in the giant component (and fewer errors for words outside of
the giant component) than one would expect if you randomly selected a word from the
network, as we predicted based on the findings of [19].

We used the location of the word in the network with 90% of the connections removed
for the 42 formal/nonword errors made by people with very severe anomia (n.b., all of
these words were found in the phonological network). As shown in Table 1, the network
with 90% of the connections removed has 9% of the words in the giant component, and
91% of the words outside of the giant component (in smaller components or as isolates).
The people with very severe anomia made 35% of the formal/nonword errors on target
words that are located in the giant component, and 64% of the formal/nonword errors
on target words that are located outside of the giant component. A chi-square test to
compare the actual error rates to the expected error rates (based on random selection
from where words are located in the damaged network) shows that there is a significant
difference (χ2 = 20.90, p < 0.00001). Again, more errors were made on words in the giant
component (and fewer errors for words outside of the giant component) than one would
expect if you randomly selected a word from the damaged network, as we predicted
based on the findings of [19]. Therefore, evidence from the naming accuracy rates and
words that were produced erroneously both suggest that the structure of the (damaged)
network may influence lexical processing (as measured by the activation levels in the
network simulation).

4. Study 3: Simulated Language Processing with an Algorithm Varying in Efficiency

In Study 1 we examined how damage to the phonological network affected the overall
structure and resilience of the network. In Study 2 we used computer simulation and
analyses of performance on a naming task by PWA to examine how the structure of the
damaged phonological network influenced processing. In the present study we again used
computer simulation, but this time instead of damaging the phonological network we
“damaged” the processing mechanism to examine if the structure of the network might
confer some protection to cognitive processes when the processing algorithm becomes less
efficient. This investigation can be viewed as the inverse of work by [11,12], who examined
how the efficiency of the same search algorithm changed when implemented on networks
with different structures. In the present study, we examined how different algorithms
might perform on the same network to determine if certain network features conferred
some protection to phonological processing.

In addition to being motivated by network science work from [11,12], the present study
was also motivated by psycholinguistic work from [33], among others. The researchers
in [33] examined in younger and older adults the speech error known as the tip of the
tongue. As described above (to motivate the removal of connections instead of nodes
in Study 1), in the tip of the tongue state the speaker might be able to retrieve some
information from the lexicon related to the meaning, gender, or syntactic class of a word,
but they are not able to completely access the phonological word-form, perhaps retrieving
the number of syllables the word has, or the sound with which it starts. It was found that
older adults tended to experience more tip of the tongue states than younger adults [33].
They accounted for that difference with the transmission deficit hypothesis in a model
known as Node Structure Theory [63].

In Node Structure Theory (NST)—an interactive model of speech production that
is a different type of network model than the ones employed in the present studies—
priming energy spreads among connected nodes (akin to the way activation spreads in the
present network models). Once sufficient priming energy has accumulated in a node, the
node is said to be activated, which makes the information associated with that node (e.g.,
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semantic or phonological information) available to awareness. Once sufficient priming has
accumulated in the semantic nodes to activate the meaning of a word, priming energy then
begins to spread from the semantic node to the phonological nodes associated with that
word. Under normal circumstances, sufficient priming accumulates in the phonological
nodes associated with that word, thus activating the word-form, and making it available
for production.

In the tip of the tongue state, priming spreads from the activated semantic node to the
phonological nodes associated with that word. However, not enough priming accumulates
to fully activate the phonological nodes, giving the speaker the feeling that they know the
word (i.e., semantic information is available), but they can only produce the first sound or
syllable of the word, not the whole thing [33].

According to the transmission deficit hypothesis in NST, the connections between
nodes weaken with normal aging, resulting in priming being spread less efficiently across
the connections between nodes. With priming being transmitted less efficiently with age, it
is likely in older adults that the amount of priming that will accumulate will be insufficient
to fully activate some nodes, resulting in older adults experiencing the tip of the tongue
state (where semantic, but not phonological nodes are activated) more than younger adults,
as observed by [33].

In the present study we again used spreadr to simulate lexical retrieval for the words
from the PNT as we did in Study 2. In the present study, however, we did not use
damaged networks as we did in Study 2. Rather, we used the “intact” network from [3],
and manipulated the decay parameter (which controls the proportion of activation lost at
each time step) to simulate something akin to the transmission deficit hypothesis in NST.
For other examples of the decay parameter being manipulated in spreadr see [42,43]. By
using the decay parameter to manipulate the efficiency with which activation spreads in
the intact network we could examine how the structure of the network might “protect”
certain nodes despite less efficient processing in the network (perhaps due to normal
aging). For other examples of algorithms changing over time in a complex network model
see [64–66]. Manipulating a parameter in the model related to the efficiency with which
activation spreads in the network can also be viewed as another way to model certain types
of developmental or acquired disorders in the network approach (as opposed to damaging
the structure as in Studies 1 and 2). Although certain age-related changes are normal
and typically occur (i.e., they are not related to a developmental or acquired disorder),
manipulating the decay parameter in spreadr allowed us to model certain (typical) aging
effects [33] in the network science approach.

4.1. Methods

The lexicon in the present simulation consisted of the 19,340 English words in the
phonological network examined in [3]. The stimulus words that were presented to the
network to “retrieve from the lexicon” consisted of 165 words from the 175 stimulus words
in the Philadelphia Naming Test [44] that were found in the lexicon used in the simulation
(see Appendix A).

Spreadr

We used the following parameter settings in spreadr for the simulation reported here:
initial activation value of 20 units was used for each stimulus word, retention (r) = 0.5,
suppress (s) = 0, time (t) = 5. The settings for these parameters are the same settings as was
used in Study 2 (see also [42]).

The present simulation differed from Study 2 in that we manipulated the decay (d)
parameter. Decay (d) refers to the proportion of activation lost at each time step. This param-
eter ranges from 0 to 1, and was set to 0.1, 0.3, 0.5, 0.7, and 0.9 in the present simulation.

At the end of five timesteps we documented the activation level of each of the 165 PNT
stimulus words in each of the damaged networks. Larger activation values in the simulation
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correspond to better performance in behavioral tasks (e.g., faster reaction times, more
accurate responses, etc., Ref. [41]).

4.2. Results

In the present simulation we examined how the activation level after five time-steps
for each word from the PNT changed at each of the settings for the decay parameter in the
intact phonological network. Similar to Study 2, we show in Figure 6 the activation value
for each word at each setting of the decay (d) parameter. In comparison to Figure 4, Figure 6
is not as visually dense. Visual inspection of the figure shows that the activation values
decrease systematically, and do not intersect at any of the settings for the decay parameter.
Indeed, Pearson correlations of the activation values for all possible pairs of decay settings
reveals r = +1.0, p < 0.001 for all pairings, further indicating that the activation values
decrease systematically at each setting of d, and do not intersect at any of the settings for
the decay parameter.

4.3. Discussion of Study 3

The present simulation was motivated by findings from network science and psycholin-
guistics. Previous network science simulations [11,12] showed that the same algorithm can
increase or decrease in efficiency when executed on different networks varying in their
structure. In the present case, we examined the “inverse” of those findings; namely, does
the structure of the (same) network protect processing when the efficiency of the algorithm
is varied?

Varying the efficiency of the algorithm was motivated in part by psycholinguistic
work by [33], who found that older adults experienced the tip of the tongue phenomenon
more than younger adults. The researchers in [33] accounted for this finding by proposing
the transmission deficit hypothesis in the context of the language processing model, Node
Structure Theory. With age, priming is transmitted less efficiently between nodes. The
less efficient transmission of priming makes it more likely that phonological nodes will
not receive sufficient amounts of priming to be activated. If a node is not activated, the
information associated with that node will not be available to conscious awareness. The
partial priming but not full activation of a node results in the common experience in the
tip of the tongue state where one feels that they know a word (i.e., semantic nodes are
activated), but the speaker is not able to produce more than the first sound of the word (i.e.,
phonological nodes do not receive sufficient amounts of priming to activate).

In the present simulation, we manipulated the decay (d) parameter in spreadr to simulate
various levels of transmission deficit, as hypothesized by [33] in the psycholinguistic model,
Node Structure Theory. The activation level after five time-steps for each word from the
PNT at each of the settings for the decay parameter in the intact phonological network were
then examined. Visual inspection of Figure 6 as well as a statistical analysis of the activation
values for each word at each level of decay show that the activation values remain parallel
at each level of decay. That is, the structure of the network “protects” word retrieval despite
decreases in processing efficiency; words that are relatively easy to retrieve with efficient
transmission of priming remain relatively easy to retrieve with less efficient transmission
of priming.

This finding from the present simulation is consistent with the results of a diary study
and a laboratory-based experiment of the tip of the tongue phenomenon reported by [33].
They found that the tip of the tongue state tended to occur more for infrequently used
words in the language (which are more difficult to retrieve) than commonly used words
in the language (which are easier to retrieve), and that this occurred more often for older
adults than for younger adults (due to differences in processing efficiency). Thus, the
structure of the phonological network can “protect” the retrieval of certain words despite
variations in the efficiency with which activation spreads through the network.
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5. General Discussion

The present studies examined a phonological network that contained nodes repre-
senting English words in the mental lexicon, and connections linking words that were
phonologically similar [3]. In Study 1 we examined how the continued and random removal
of connections altered the overall structure of the phonological network. In Study 2 we
examined how the damaged structure of the phonological network influenced processing.
Finally, in Study 3, we examined how the structure of the intact network might “protect”
lexical retrieval even when a less efficient processing algorithm is used.

The results of Study 1 demonstrated the resilience of the phonological network de-
spite an increasing number of connections being randomly removed from the network.
As measured by changes in the average shortest path-length, the phonological network
remained relatively well connected until ~90% of the connections were removed, when the
average shortest path-length nearly doubled compared to the average shortest path-length
in the intact network. The catastrophic shift from “connected” to “disconnected” despite
gradually increasing the amount of damage to the system is referred to as a phase transition
in the statistical mechanics literature [26].

A central tenet of network science is that the structure of the system influences pro-
cessing in that system [10]. Given the changes in the structure of the phonological network
that we observed in Study 1, we used in Study 2 the spreadr program [43] to simulate how
the damage to the phonological network might influence lexical processing by comparing
the performance of the network model on a set of words to the performance of people with
aphasia in a language processing task for the same set of words.

We initially predicted that the damaged phonological networks from Study 1 would
result in processing becoming more difficult for the words from the Philadelphia Naming
Task (as measured by decreasing amounts of activation remaining in the word nodes after
five time-steps). As predicted, we observed a set of words that started out with higher
levels of activation remaining in the node after five time-steps, but at some point during
the removal of connections, the node became a “lexical hermit” or was stranded on a
lexical island of size 2, resulting in lower levels of activation remaining in the node after
five time-steps.

Further analysis of the words revealed some additional and unexpected results. Most
unexpectedly, we observed a set of words that started out with lower levels of activation
remaining in the node after five time-steps, but increasing amounts of damage resulted in
higher amounts of activation remaining in the node after five time-steps, indicating that the
words had become easier to retrieve with increasing amounts of damage to the network.
For these words, damage to the network paradoxically improved lexical processing.

An examination of the network of words immediately connected to these words
(referred to as the ego-network) revealed that these words initially had many phonological
neighbors, which is a situation that typically leads to slower and less accurate spoken
word recognition in humans [52] and in computer simulations [41]. Increasing amounts of
damage to the network by randomly removing connections resulted in the initially dense
phonological neighborhood being “pruned” into a sparse phonological neighborhood
(i.e., the words now have fewer competitors), which is a situation that typically leads
to faster and more accurate spoken word recognition in humans [52] and in computer
simulations [41]. Thus, damage to the phonological network paradoxically improved the
processing of some words (i.e., those words that initially had very dense phonological
neighborhoods) via the pruning of the phonological neighborhood.

The various ways that damage to the phonological network influences processing (i.e.,
decrease, increase, or no change in the ease of retrieval) may contribute to the variability in
the severity of symptoms often seen among people with aphasia and in other developmental
and acquired language disorders. As the results from Studies 1 and 2 suggest, it may not
be simply the amount of damage to the system that determines the severity of the disorder,
but what gets damaged as well. For example, damage to words with an initially dense
phonological neighborhood may improve lexical retrieval of those words, which could
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mask an increased difficulty in retrieving other words, resulting in overall behavior being
categorized as “mild” in nature despite there being a significant amount of damage to
the system.

An important contribution of network analysis is that many conventional measures
used in contemporary scientific disciplines are blunt instruments that cannot reveal patterns
that are observed with the techniques from network science (as demonstrated by the ego-
network analysis in Study 2). Another example of how network analyses reveal patterns
that conventional measures cannot used the network approach to represent the syllables
of newly learned nonwords, with directed connections linking the first syllable of the
nonword to the second syllable of the nonword [67]. Analyses of these syllable networks
revealed that children with developmental language disorder (DLD; aka specific language
impairment) showed a larger inventory of syllable forms, more connections between the
forms, and less consistent production patterns compared to typically developing children.
These observations would not have been seen had only standard measures of phonetic
accuracy been used to analyze the data.

The results of Study 2 also showed that performance on the PNT words in the phono-
logical network with 90% damage correlated with the performance of people with various
types of aphasia, demonstrating how damage to the phonological network might influ-
ence an acquired language disorder. Recall that we examined aphasia in part because of
the availability of data from PWA to use for comparison. We believe, however, that the
cognitive network approach coupled with computer simulation can be a powerful way
to examine language processing in other developmental or acquired language disorders
(e.g., [68]).

Further in Study 2, the post hoc analysis of difficult to retrieve words replicated the
findings from [19] regarding the influence of the location of words in the network on lexical
retrieval. In the present case, the location of the word in the network influenced naming
performance of people with both mild and severe aphasia. Importantly, this factor would
not have been revealed had only conventional measures been used, further highlighting the
benefit of using network science in the speech, language, and hearing sciences to examine
developmental and acquired language disorders.

Furthermore, the results of the post hoc analysis in Study 2 speak to the importance
of stimulus selection in anomia interventions for PWA. Treating anomia by focusing on
words within the giant component of the network may be of critical importance given
their higher-than-expected elicitation of phonologically-related errors. Re-establishing
phonological connections of giant component words, using an intact network as the baseline
for word location, may result in a more effective anomia treatment. Indeed, there are
several phonological anomia treatments that show evidence of improved naming post-
intervention, with evidence of generalization to untreated words, Refs. [69–72]. Continued
work focused on anomia treatment stimulus selection, informed by network science and
computer simulations, will add to the growing use of cognitive modelling approaches to
inform speech, language, and cognitive interventions [73].

Finally, Study 3 examined the resilience of the phonological network in a different
way. Rather than damage the network as in Studies 1 and 2, we left the network intact
and manipulated the efficiency with which activation could spread through the network.
The simulation in Study 3 was partially motivated by previous findings from network
science [11,12], as well as by psycholinguistic work on the tip of the tongue phenomenon in
younger and older adults by [33]. By manipulating the decay parameter in spreadr we were
able to simulate variations in the efficiency with which activation could spread through
the network as proposed in the transmission deficit hypotheses [33]. Manipulating a
parameter related to the efficiency with which activation spreads through the network
may also be a useful way for modelling other developmental or acquired disorders in the
network approach. Despite the variation in the efficiency with which activation could
spread through the network, the structure of the network conferred a certain amount of
protection on the words. Specifically, words that were relatively easy to retrieve with an
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efficient transmission of activation through the network remained relatively easy to retrieve
when the transmission of activation through the network became less efficient.

Together, the results of Studies 1–3 highlight the value of using network science to
study the resilience of the phonological network, and how the resilience of the phonological
network might influence various aspects of lexical processing. We recognize that the use of
the phonological network limits our ability to capture the effect of semantic information on
lexical processing. However, researchers do not need to limit themselves to using networks
with only one type of information (e.g., see [74] for an analysis of the semantic network of
adolescents with intellectual disability). Future research might be able to overcome that
limitation by using multiplex networks, which have words in one level connected to each
other via their phonological relationship, but connected to each other in another level via
their semantic relationship. An additional connection would link, for example, cat at the
phonological level to cat at the semantic level to enable activation at one level to traverse to
and influence the other level (e.g., [75]).

Work with multiplex networks containing phonological and semantic levels have
already been used to provide insight into word learning [76] and acquired language
disorders [26,77]. If one were to include orthographic information about words in a
multiplex network (e.g., [78]), then researchers could examine the influence of phonology
on reading in typically developing readers as well as in readers with dyslexia or other
reading disorders, for example.

Another way in which network analysis has been used is by building “symptom
networks” of various pathologies in which nodes represent individual symptoms (as
measured by questions on a survey), and connections are placed between symptoms that
tend to co-occur. Although this approach is being used increasingly to examine various
psychopathologies (e.g., [79]), it can also be used to examine various speech, language, and
hearing pathologies to better understand the experience of stuttering [80], and to examine
the relationship between a variety of language assessments commonly administered for
aphasia diagnosis [81] (for another relevant use of network science see [82]).

Important for the field of neurolinguistics is the application of network analysis to
examine the functional and structural connectivity of the brain (for a review see [83,84]).
With the neurosciences and the cognitive sciences both using network approaches, perhaps
network science can be the lingua franca that will connect the mind and brain via a network
of networks [85]. In short, network analysis holds much promise for use by clinicians
(perhaps to make individualized networks for treatments unique to each person) and by
researchers in the speech, language, hearing, cognitive, and neurosciences.
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Appendix A

The 165 words from the 175 stimulus words in the Philadelphia Naming Test (Roach et al.,
1996 [44]) that were found in the lexicon used to construct the phonological network used
in the simulations in Studies 2 and 3.

Words Not Found in the Network

cheerleaders, eye, fireplace, flashlight, football, microscope, mustache, strawberries,
typewriter, waterfall

Words found in the network

ambulance, anchor, apple, baby, ball, balloon, banana, basket, bat, beard, bed, bell, belt, bench,
binocular (the PNT has binoculars), bone, book, boot, bottle, bowl, bread, bride, bridge, broom,
bus, butterfly, cake, calendar, camel, camera, can, candle, cane, cannon, carrot, cat, celery, chair,
chimney, church, clock, closet, clown, comb, corn, cow, cowboy, cross, crown, crutch (the PNT has
crutches), desk, dice, dinosaur, dog, door, dragon, drum, duck, ear, elephant, Eskimo, fan, fireman,
fish, flower, foot, fork, frog, garage, ghost, glass, glove, goat, grape (the PNT has grapes), hair,
hammer, hand, harp, hat, heart, helicopter, horse, hose, house, iron, key, king, kitchen, kite, knife,
lamp, leaf, letter, lion, man, map, monkey, mountain, nail, necklace, nose, nurse, octopus, owl,
pear, pen, pencil, piano, pie, pig, pillow, pineapple, pipe, pirate, plant, pumpkin, pyramid, queen,
rake, ring, rope, ruler, saddle, sailor, sandwich, saw, scale, scarf, scissors, seal, shoe, ski (the PNT
has skis), skull, slipper (the PNT has slippers), snail, snake, sock, spider, spoon, squirrel, star,
stethoscope, suit, sun, table, tent, thermometer, toilet, top, towel, tractor, train, tree, turkey, van,
vase, vest, volcano, wagon, well, whistle, wig, window, zebra, zipper
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