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Abstract

State of charge (SOC) estimation plays a foundational role in advanced battery man-

agement systems, having attracted much attention in the past decade. It is widely

acknowledged that the accuracy of SOC estimation largely depends on the accuracy

of the selected model. In this thesis, SOC estimation methods are developed based on

the nonlinear double-capacitor (NDC) model, a novel equivalent circuit model that is

distinctly capable of simulating the charge diffusion inside an electrode of a battery

and capturing the battery’s nonlinear voltage behavior simultaneously. With improved

predictive accuracy, the NDC model provides a new opportunity for enabling more

accurate SOC estimation. With this motivation, the well-known extended Kalman fil-

ter (EKF) and unscented Kalman filter (UKF) are utilized to perform SOC estimation

based on the NDC model. The EKF is desirable here as it leads to efficient computa-

tion, straightforward implementation, and good convergence in its application to the

NDC model, which is low-dimensional and governed by linear dynamics along with

nonlinear output. The UKF is another popular version of the Kalman filter that belongs

to the sigma-point filter family, and provably offers second-order accuracy under cer-

tain conditions, contrasting with the first-order accuracy of the EKF. The proposed

SOC estimation methods are validated through simulations and experimental data un-

der various conditions, showing significant accuracy as well as robustness to different

levels of initialization error and noise.
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Chapter 1

Introduction

1.1 Background

As the world tends toward electrification, rechargeable batteries have received ever-growing atten-

tion as a primary energy storage device. Batteries have a plethora of uses, ranging from consumer

electronics such as laptops and cell phones to larger scale systems, such as electric vehicles and

grid energy storage. The increasing use of rechargeable batteries has motivated strong research

effort in battery management. Effective models are foundational to battery management system

(BMS) design. There are different kinds of models: electrochemical models, equivalent circuit

models (ECMs), and data-driven models. ECMs are appealing and useful for their distinct advan-

tages, including computational efficiency owing to parsimonious structures and sufficient accuracy

in common operating conditions. They can thus find increasing use in future battery management.

Because of this, we will consider ECMs in this thesis. Specifically, we will address the problem

of state-of-charge (SOC) estimation by using a novel equivalent circuit model (ECM) proposed in

[1] along with extended and unscented Kalman filtering.

A literature review of SOC will be given first to aid in understanding the aim of this work, and

to provide context about where this work lies in the research community. The SOC of a battery

cell is defined as the ratio of available capacity to the total capacity of the cell at present time, and

is commonly shown as a percentage value on devices such as cell phones and laptops. To most

everyday users, the battery status of their electronic device is taken for granted, but behind this

value on the user’s screen is an algorithm which is necessary to infer the SOC from current, volt-

age, and temperature measurements. An accurate SOC knowledge is required in advanced battery
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management systems (BMSs), such as those in electric vehicles, for several purposes. In order to

avoid overcharge and overdischarge of the batteries [2], which can result in fire or explosion [3],

the user or BMS must accurately know the cell charge level. The SOC also acts as a reference to

cell balancing strategies, power calculations, and energy calculations [4], such as state-of-power

and state-of-health estimates. Poor charging and discharging strategies can reduce the lifetime of

a battery; therefore, knowing the SOC can help avoid these problems — it has been shown that

a battery cell has significantly longer cycle life when a lower depth-of-discharge (DOD) is used

during its operation, within limited SOC bounds, i.e. SOCmin = 20% and SOCmax = 80%.

SOC estimation methods can be separated into two groups: traditional model-free methods and

more recent but increasingly popular model-based and data-based methods. Traditional methods

do not make use of battery models and instead rely on measurements or straightforward calcula-

tions. One such ubiquitous method is coulomb counting, where the SOC of a cell is tracked by the

integration of current over time. This method is highly reliant on an accurate initial current reading

and is subject to drift errors, making it inadequate for advanced battery applications [5]. Another

traditional technique is voltage translation, in which an open-circuit-voltage (OCV) measurement

is taken and the SOC is found from an SOC-OCV lookup table or curve that was determined of-

fline. This method is cumbersome and impractical due to the rest period needed to accurately

measure OCV [6].

Recent methods to estimate SOC make use of either advanced data-driven or physics-based

models. Most recently, machine learning methods such as artificial neural networks [7] and sup-

port vector machines [8] have been proposed for estimating SOC, where a data-driven predictive

model is built by training the battery data sets. One drawback to this method is that extensive of-

fline training is necessary and takes time. In the literature, there are two predominant model-based

SOC estimation methods for batteries — electrochemical models or equivalent circuit models.

Electrochemical models are capable of characterizing the reaction kinetics, ion transport, and ther-

modynamics within the battery [9; 10]. Unfortunately, in order to accurately describe the phenom-

ena occurring in the battery, these models use partial differential equations which require complex
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computational operations. Generally, electrochemical models are too computationally expensive

to be useful in real-time BMS SOC monitoring, which is often implemented on an embedded pro-

cessing chip [11]. The conversion of these algorithms to embedded code can be quite cumbersome

and tedious.

ECMs, however, offer much higher computational efficiency than electrochemical models.

ECMs are able to simulate the current-voltage (input-output) behavior of a battery by modeling

the battery as an electric circuit with components such as voltage sources, resistors, and capacitors.

Using Kirchhoff’s Circuit Laws, one can describe the given circuit with a relatively small parame-

ter set and only a few equations. Even with such simplification, ECMs can achieve high accuracy

in describing the behavior of batteries. The simplicity and efficacy of ECMs make them great

candidates for use in advanced BMSs that require real-time estimation of various battery states,

especially SOC [6; 12].

Within the model-based SOC estimation field, there exist nonlinear observers and stochastic

estimators. Among the nonlinear SOC observers are Luenberger observers [9], and sliding-mode,

adaptive and robust observers [13; 14], which view the battery model as a deterministic system.

On the other hand, stochastic estimators possess the ability to suppress the noise that naturally

occurs within and affects a dynamic system [6]. The Kalman filter, a recursive and probabilistic

estimation technique, is the most notable of this type, which has been used to address a broad range

of stochastic estimation problems including robotics, guidance, navigation, control, and signal

processing [15]. The extended Kalman filter (EKF) and unscented Kalman filter (UKF) [16] are

extensions of the standard Kalman filter for nonlinear systems, which make them attractive suitors

for SOC estimation.

1.2 State of the Art

At the moment of the writing of this thesis, there exists a multitude of studies on estimating the

SOC of batteries, as referenced in the previous section. A reader may wonder where this work

stands in relation to the state-of-the-art and what advantages it possesses. The answer lies in the
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modeling approach, and how we can glean more information about the cell operation through the

model. In the literature, as stated before, SOC estimation is typically done using electrochemical

models or ECMs, which allow the BMS to track either the ionic diffusion between electrodes or

follow the current-voltage behavior to infer the charge status of the battery. This thesis, while

briefly covering the electrochemical phenomena that occurs within a battery, mainly focuses on

using Kalman filtering based on a newly developed ECM to do SOC estimation. Tian, Fang, Chen,

and Wang proposed this novel ECM named the Nonlinear Double-Capacitor model in [1]. This

work proposes, develops, and verifies a new ECM that is more accurate than previous ECMs.

Using this model, we can achieve greater accuracy of SOC and SOH estimation using well-known

techniques, such as EKF and UKF.

1.3 Thesis Objective and Contributions

There is an increasing demand for battery systems which require advanced and high-fidelity BMS

implementations. The objective of this thesis is to present improved SOC estimation results ob-

tained from using well-known stochastic techniques along with a novel ECM, the NDC model.

This work presents the following contributions:

• Accurate SOC estimation using the novel NDC model based on EKF and UKF algorithms;

• Experimental results to validate the NDC model-based SOC estimation methods.

1.4 Thesis Organization

The rest of the thesis will be arranged as follows. Chapter 2 provides context on battery modeling

and introduces the NDC model. Chapter 3 discusses battery state estimation in depth. Chapter 4

describes the experimental setup and presents experimental results. Finally, Chapter 5 concludes

the work.
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Chapter 2

Battery Modeling

2.1 Preliminaries

In this section, an introduction to batteries is given. The discussion will begin by reviewing the

basics of battery operation and use, followed by a brief overview on different types of batteries.

Then, the components within batteries are analyzed in detail to gain a deeper understanding of

the electrochemistry within a cell. Finally, important parameters, characteristics, and phenomena

of batteries are defined, leading into the rest of the chapter which provides a thorough review of

various equivalent circuit models.

Batteries are devices that convert stored chemical energy, harnessed from internal electrochem-

ical reactions, to electrical energy. Technically speaking, a cell is the smallest electrochemical

component capable of supplying a voltage, while a battery consists of multiple cells connected in

series, parallel, or some combination thereof [12]. Most automotive starting, lighting, and ignition

batteries, for example, are actually several smaller cells, approximately 2 V each, connected in se-

ries to form an approximately 12 V battery. There are also different types of cells, namely primary

cells and secondary cells. Primary cells are not rechargeable and can only be used once before the

reagent within has run out, and secondary cells are capable of reversible reactions thereby allowing

numerous charging and discharging cycles. The focus of this work will be on secondary cells.

Cell categorization is not just limited to rechargeability — they are also grouped based on

their shape. Cells are manufactured in various shapes, the most popular being cylindrical cells,

prismatic cells, and pouch cells. Cylindrical cells, first introduced in the late 1800s, are one of the

most commonly used packaging shapes due to the ease of manufacturing and their durability. The
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cylindrical shape allows them to withstand high internal pressure levels [17]. Of the cylindrical

cell variety, 18650 is the most popular form factor. The form factor is simply the shape, and 18650

refers to the dimensions of the battery: the diameter is 18mm, the height is 65mm, and the 0 means

the shape is cylindrical. Common applications for cylindrical cells include portable electronics,

power tools, medical instruments, and sometimes vehicles — Tesla use cylindrical cells for its

EVs. Some advantages of cylindrical cells include long lifetime and inexpensive production, while

some disadvantages are their high weight and poor packing density (cylinders stacked together

will have space cavities, and sometimes these spaces are taken advantage of for cooling purposes).

Prismatic cells were first introduced in the 1990s. These cells are manufactured using a layered

approach, which allows for optimal spacing in devices and applications [17]. Prismatic cells come

in various sizes and can be used in consumer electronics, such as laptops and cell phones, as

well as in hybrid vehicles, electric vehicles, and electric powertrains. While prismatic cells are

advantageous for spacing purposes, they are more expensive and typically have shorter cycle life

than their cylindrical counterparts. Continuing in the thinner direction, we arrive at pouch cells.

These were introduced in the 1990s as a lightweight and modular alternative to existing cell shapes.

Pouch cells have the highest packing efficiency, around 90% [17], and are often used in military and

automotive applications where there is a need for lightweight design. Pouch cells commonly utilize

lithium-polymer chemistries, which can provide high energy density. One downfall of pouch cells

are their tendency to swell when the electrolyte degrades, or when the cell is overcharged. This can

cause dangerous conditions in the battery compartment, because the gases that accumulate in the

pouch cell, including carbon dioxide and carbon monoxide, are flammable and poisonous. While

the shape of the battery is a very important consideration for applications, the cell chemistry will

ultimately dictate the effectiveness of the battery system, namely the energy density and cycle life.

Many types of batteries exist for a plethora of use cases. Among the most common rechargeable

battery systems are Nickel Cadmium (NiCd), Nickel-Metal Hydride (NiMH), lead-acid, lithium

polymer (LiPo), and lithium ion (Li-ion). NiCd are cheap but have low energy density (typically

expressed in watt-hours per kilogram). NiMH have higher energy densities than NiCd with lower
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cycle life, and are more environmentally friendly than NiCd. Lead-acid batteries can be used in

large power applications, such as deep cycling batteries for grid energy storage [18] and backup

power supplies for data server centers. LiPo batteries offer similar performance, which are subse-

quently discussed, to Li-ion in slim geometries. Finally, we arrive at Li-ion batteries. The Li-ion

battery technology enables our omnipresent portable electronics to achieve extremely light weight

and slim design, expands the capabilities of electric tools, and powers hybrid and electric vehicles

toward more widespread adoption in the automotive industry. These advances are possible due

to the high energy density, high cycle life, and low self-discharge rate of Li-ion batteries. Li-ion

batteries, while advantageous performance-wise, can be dangerous if used improperly or if the bat-

tery management circuitry is faulty — this includes overcharging or overdischarging, which can

cause short circuits and even thermal runaway, damaging the battery by crushing, overheating, etc.,

which can pressurize the flammable electrolyte leading to fire or explosion, or operating outside the

voltage range specified by the manufacturer. Although the battery model and estimation algorithms

are applicable to numerous chemistries, this work focuses on Li-ion battery applications.

Within a Li-ion cell, there are four main components: the negative electrode, positive elec-

trode, electrolyte, and separator. Additionally, current collectors are attached to each electrode.

A schematic of these components is shown in Figure 2.1. Li-ion cells are a special type of cell

known as an intercalation cell. This refers to an intercalation mechanism in which the lithium ions

(Li+) migrate between electrodes, and are inserted into crystal lattice or layered structures. This

process allows much higher cycle lifetime than other rechargeable cells where reversible reactions

take place, because the intercalation mechanism is much less damaging to the active materials

in the electrodes than electrochemical reactions. During charging, Li+ migrate from the positive

electrode through the electrolyte and separator to the negative electrode. When the Li+ reaches the

negative electrode, they are inserted into the crystalline lattice structure of the electrode without re-

acting with the material. While these Li+ are migrating from the positive electrode to the negative

electrode during charging, the electrons, e-, are traveling through an external connection to reach

the negative electrode, as the separator prevents them from freely moving between the electrodes.
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This ensures that the Li+ bond with the free e- in the electrode, so that Li+ exists in the electrolyte

and lithium composites exist in the electrodes. When it is time to discharge, the lithium composite

gives up an electron and travels as Li+ through the electrolyte from the negative electrode to the

positive electrode to be inserted into the lattice of the positive electrode [12].

Figure 2.1: Lithium-Ion Battery Schematic. Image courtesy of Argonne National Laboratory

The negative electrode is typically a form of graphite (C6). This is due to the layered nature of

graphite, which contains graphene layers into which lithium can intercalate. Graphite is selected

for the active material in the negative electrode because it can withstand thousands of cycles of the

reversible electrochemical processes that occur within a battery.

The positive electrode in a Li-ion battery is usually composed of one of three active materials:

LCO, LMO, or olivine style phosphates [12]. The first type, LCO, has the molecular formula

LixCoO2. LCO compounds have a layered structure, and are used in small electronics. Cobalt is

expensive, however, and can be toxic, so sometimes Nickel is substituted in place of Cobalt. Other

alternative blends have been used, including Nickel, Cobalt, and Manganese (NCM) and Nickel,
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Cobalt, and Aluminum (NCA), each offering different properties. For example, the use of Nickel

can increase the energy density of the cell. LCO allows for 2D diffusion of Li+. The second type of

active material, LMO, has the molecular formula LixMn2O4. This category of positive electrodes

are cheaper than LCO, but have shorter lifetimes. Lastly, olivine phosphate compounds can also

be used for the active material in positive electrodes. The most common compound of this type is

LixFePO4 (LFP) due to its safety and low cost, but LFP does not have as much energy density as

LMO or LCO. These olivine style phosphates only allow for 1D diffusion of Li+.

The electrolyte is the ionically conductive solution that enables ion transport between elec-

trodes. This solution consists of a solvent and a solute, consisting of a salt, base, or acid, dissolved

in the solvent. Because lithium has a violent reaction with H2O, Li-ion cells utilize a non-aqueous

solvent combined with a lithium salt. The solvents are typically some kind of carbonate, such

as ethylene carbonate, diethyl carbonate, or propylene carbonate, while the lithium salt is either

LiPF6, LiBF4, or LiClO4.

The separator exists in order to prevent short-circuits, which occur if the negative and positive

electrode particles were to come into contact with each other. The separator is permeable and

allows Li+ to pass through, while preventing the two electrode materials to penetrate. The separator

is electronically insulated so that the electrons do not pass through, and instead flow through the

outer circuit during charging or discharging.

The following list contains a brief description of important concepts, defining characteristics,

and phenomena of electrochemical cells [12]. This will aid in understanding the following discus-

sion regarding ECMs.

Ohmic resistance: The voltage of a cell drops when connected to a load, and the ohmic resistance

refers to the opposition of current flow in a circuit. This is the resistance that naturally occurs when

a current flows through the metal circuitry in the battery.

Ionic resistance: Ionic resistance represents the opposition of current by chemical processes within

the battery, such as the surface area of the electrode and the conductivity of the electrolyte.

Polarization: Polarization is a broad term, but can be understood in this context as any difference
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in the cell’s terminal voltage relative to the OCV when a current is passed through the circuit.

Rate capacity effect: When discharging a battery with high current, the voltage drops faster which

indicates a reduction in effective capacity. This is named the rate capacity effect, because the dis-

charge rate affects the capacity of the cell.

Recovery effect: If the current is cut off intermittently during discharge, it can be seen that the

voltage increases, or recovers, during the unloaded condition.

SOC-OCV relationship: The relationship between the charge state and the OCV of the battery de-

pends on the chemistry used in the positive and negative electrodes. This relationship is nonlinear

and is a defining characteristic of batteries. Accurately modeling the SOC-OCV relation is crucial

for BMSs.

Hysteresis: A cell’s voltage will be different during charging and discharging, i.e., at the same

SOC value the voltage is higher during charging than during discharging. It is important to note

the difference between hysteresis and diffusion voltages — hysteresis is a function of the recent

charging and discharging history, along with the SOC, while diffusion voltage is a function of time

and will decay to OCV [12].

Battery modeling is generally separated into two categories: electrochemical models and equiv-

alent circuit modeling. Electrochemical models characterize the phenomena occurring inside the

battery cell, such as ion migration and diffusion processes, while ECMs focus on capturing the

input-output behavior of batteries using circuits. The focus of this thesis will be on the latter due

to the low dimensionality, modeling accuracy, and computational efficiency offered by ECMs, and

thus we omit in-depth discussion of electrochemical models.

2.2 Equivalent Circuit Modeling

Rather than attempt to model the complex physical phenomena occurring within a battery like

electrochemical models, ECMs seek to reconstruct the input-output, i.e., current-voltage, behavior

of the battery using electrical circuits consisting of voltage sources, resistors and capacitors in

varying configurations. ECMs generally contain fewer states and parameters than other modeling
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approaches which make them good candidates for online estimation tasks. In this section, the

discussion of ECMs will be built up from the 1940s, when Randles proposed the first known ECM

[19], to present day, where a variety of ECMs have been developed and are continually being

improved upon.

2.2.1 Randles’ Model

The Randles’ model was the first ECM and was originally used to model lead-acid batteries [20].

The applications have been extended to various battery types, including Li-ion batteries. The Ran-

dles’ model, shown in Figure 2.2, makes use of two capacitors, Cb and Cs, to model the OCV and

the diffusion processes within the battery, respectively. More specifically, Cb is used to represent

the bulk charge storage of a cell and the voltage across this capacitor, Vb, represents the OCV.

The Cs capacitor is used to represent the double-layer effect of the electrode-electrolyte boundary.

Several resistors are used to capture the various resistances encountered within a cell: Rs repre-

sents the series resistance, Rd represents the cell’s self-discharge, and Rt models the charge-transfer

resistance. V̇b(t)

V̇s(t)

=

 −1
CbRd

0

0 −1
CsRt


Vb(t)

Vs(t)

+
 1

Cb

1
Cs

 I(t) (2.1a)

V (t) =Vb +Vs + I(t)Rs (2.1b)

Note that the sign of the current, I, is positive (+) for charge and negative (−) for discharge.

This will be the convention used throughout the following discussion, unless otherwise noted.

2.2.2 Rint Model

The next ECM to review is the Rint model, also known as the internal resistance model. The Rint

model, as shown in Figure 2.3, consists of an ideal voltage source VOC and a resistor connected in

series, Rs. The ideal voltage source represents the cell’s OCV and the serial resistor represents the
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Figure 2.2: Randles’ circuit model.

internal resistance of the cell. The terminal voltage can be described by the following equation:

V (t) =VOC + I(t)Rs (2.2)

Figure 2.3: Rint circuit model.

2.2.3 Thevenin’s Model

The Thevenin model is a modified version of the Rint model, with a parallel R-C branch added

in series with the voltage source and resistor. Multiple R-C branches may be added to increase
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modeling accuracy, at the cost of higher computational complexity. In the Thevenin model, the

voltage source represents the OCV of the cell, the resistor Ro represents the polarization resistance,

and the parallel R-C branch is used to model the transients caused by the diffusion of ions into the

electrolyte. The voltage across the R-C branch is VT h. The model is characterized by:

Figure 2.4: Thevenin circuit model.

V̇T h(t) =−
VT h(t)
RT hCT h

+
I(t)
CT h

(2.3a)

V (t) =VOC +VT h(t)+ I(t)Ro (2.3b)

One can further expand the model by adding SOC as another state variable and letting VOC be

SOC-dependent. This modification accounts for the SOC-OCV relationship, thus leading to higher

modeling accuracy.

2.2.4 Double-Capacitor Model

Next, the double-capacitor model makes use of parallel capacitors, allowing the model to charac-

terize lithium-ion diffusion within the electrode of the battery [21; 22]. Each R-C branch represents

a region of the electrode. Based on the single particle model (SPM), the Rb-Cb circuit represents
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the bulk central portion of the electrode with slower diffusion dynamics, and the Rs-Cs circuit

represents the surface region of the electrode which is in contact with the electrolyte, where faster

ionic diffusion occurs [23; 24]. The double-capacitor model is able to characterize the rate capacity

effect, capacity recovery effect, and voltage recovery effect.

Typically, the voltages across the two capacitors are taken as the states of the model, but one

may wish to write the model equations in terms of the charge stored in each capacitor if the ap-

plication calls for it. In this thesis, we will look at the more common scenario where the voltages

across the Cb and Cs capacitors, Vb and Vs respectively, are the states of interest.

Figure 2.5: Double-capacitor model.

V̇b(t)

V̇s(t)

=

 −1
Cb(Rb+Rs)

1
Cb(Rb+Rs)

1
Cs(Rb+Rs)

−1
Cs(Rb+Rs)


Vb(t)

Vs(t)

+
 Rs

Cb(Rb+Rs)

Rb
Cs(Rb+Rs)

 I(t) (2.4a)

V (t) =
[

Rs
Rb+Rs

Rb
Rb+Rs

]Vb(t)

Vs(t)

+[Ro +
RbRs

Rb +Rs

]
I(t) (2.4b)
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2.3 Nonlinear Double-Capacitor Model

In this section, the NDC model is introduced, and an overview of the motivation for its development

and the mathematical equations characterizing its behavior are presented.

The NDC model is an extension of the double-capacitor model, as in [21; 22]. The motivation

for extending the double-capacitor model stems from the linear nature of the model. Because a

battery’s behavior is nonlinear, namely the SOC-OCV relationship, the double-capacitor model is

unable to account for the nonlinearities of the OCV at low and high SOC values. The double-

capacitor model, therefore, is limited to confined SOC ranges for which a linear approximation of

the OCV dependency on SOC is suitable. The NDC model was proposed to address this limitation,

and was initially presented in a conference paper [25], and complete results are shown in [1]. The

two modifications to the double-capacitor model are as follows:

• A voltage source U was introduced as a nonlinear mapping of Vs, U = h(Vs), because the

OCV depends heavily on the concentration of lithium ions in the surface region in the SPM

model, which allows the NDC model to account for the nonlinear SOC-OCV relationship.

• An RC circuit, R1-C1, was added in series to the new voltage source and the ohmic resistance

R0 to characterize the voltage transients at the electrode-electrolyte interface.

The NDC circuit model is shown in Figure 2.6.

The dynamics of the NDC model, in state-space form, are shown as follows.


V̇b(t)

V̇s(t)

V̇1(t)

= A


Vb(t)

Vs(t)

V1(t)

+BI(t) (2.5a)

V (t) = h(Vs(t))−V1(t)+R0I(t) (2.5b)
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Figure 2.6: The nonlinear double-capacitor model.

where

A =


−1

Cb(Rb+Rs)
1

Cb(Rb+Rs)
0

1
Cs(Rb+Rs)

−1
Cs(Rb+Rs)

0

0 0 −1
R1C1

 , B =


Rs

Cb(Rb+Rs)

Rb
Cs(Rb+Rs)

−1
C1


The NDC formulation assumes that the voltages across the two capacitors, Vb across Cb and Vs

across Cs, are bounded by [0, 1] V. The implication of this assumption is that at a full charge of

100% SOC, Vb = Vs = 1 V, and at 0% SOC, Vb = Vs = 0 V. The SOC is then defined by the following

equation:

SOC =
Qa

Qt
=

CbVb +CsVs

Cb +Cs
×100% (2.6)

In Equation (2.6), Qa is the available capacity of the cell and Qt is the total capacity of the cell.

In the nonlinear measurement equation shown in Equation (2.5), the h(Vs) term can be parameter-

ized as a fifth-order polynomial and is written as

h(Vs) = α0 +α1Vs +α2V 2
s +α3V 3

s +α4V 4
s +α5V 5

s (2.7)
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and the internal resistance, R0, is SOC dependent and is described by the following equation:

R0 = γ1 + γ2e−γ3SOC + γ4e−γ5(1−SOC) (2.8)

In order to use the NDC model for battery modeling and estimation, we need an explicit form.

To achieve this, it is important to note that

OCV = h(SOC) (2.9)

and this SOC-OCV relationship described by h(·) must be determined, as well as the impedance

and capacitance parameters. The following section presents the methods and results regarding

parameter identification of the NDC model.

2.4 Parameter Identification

Now that we have a model structure with unknown parameters, we can begin the parameter identifi-

cation procedure which will allow us to obtain an explicit model for use. The identification method

shown here follows that of [1]. The NDC model contains two sets of parameters, α and β . First,

the parameter set α describing the SOC-OCV relation via the h(·) function will be determined

where α is defined as

α =

[
α0 α1 α2 α3 α4 α5

]T

(2.10)

As is common in the literature, we use a trickle current discharge of 1/30 C so that the terminal

voltage of the battery, V, can be approximated as the OCV. Using the input and output data obtained

from the aforementioned discharge, we can solve the following linear least squares problem:

V = Zα (2.11)
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where

Z =

[
1 SOC SOC2 SOC3 SOC4 SOC5

]
(2.12)

to determine the parameter set α which describes the SOC-OCV relationship. The solution is the

well-known ordinary least squares (OLS) estimator

α̂ = (ZT Z)−1ZTV (2.13)

where the SOC values are obtained via coulomb counting

SOC(t) = SOC(t−1)+
I(t)
Qt

∆t (2.14)

with Qt as the total capacity of the battery determined by the amount of charge supplied from

full to empty, i.e., a discharge from SOC = 1 to SOC = 0. Using MATLAB, we can import the

discharging data, namely the measured terminal voltage, to find the parameter set by fitting a fifth

order polynomial to the SOC-OCV curve.

Now that the SOC-OCV relation has been determined, we can identify the impedance and

capacitance parameters. Rather than a trickle discharge current, we now wish to discharge the

cell using a 1C discharge rate. This larger magnitude input stimulus will trigger a response from

the cell, enabling the impedance and capacitance parameters to be identified. Also, because a 1C

discharge rate is in the middle of the operating range of the cell, identifying the model using this

current rate will give us an accurate depiction of the cell dynamics.

The parameter identification approach here is to derive an explicit form of the terminal voltage

equation in terms of a parameter set, β , containing the impedance and capacitance parameters, and

to minimize the difference between the voltage predicted by this derived equation and the measured

voltage of the 1C discharge test. If we look at the terminal voltage measurement equation, V (t) =

h(Vs(t))−V1(t) +R0I(t), we can see it contains Vs and V1 from the state, along with R0. The

solution to a state space equation, given by Chen in [26], will be used to find expressions for Vs
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and V1, and R0 is given in terms of the parameter set γ and SOC, as derived in [1].

First, Vs will be explicitly determined. According to [26], the solution to a linear time-invariant

(LTI) state space equation can be explicitly shown. Consider the general LTI state-space state

equation

ẋ(t) = Ax(t)+Bu(t) (2.15)

where A and B are constant matrices, invariant in time. In system theory, the response of the system

to excitation is analyzed in two parts: initial conditions and input. It is apparent in the solution

below that x(0) and u(t) play a role in the system response. The solution to Equation (2.15) is

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Bu(τ)dτ (2.16)

where eAt can be solved using the Cayley-Hamilton theorem.

The next steps are to substitue the matrix exponential term eAt into Equation (2.16) and solve

the integral representing the response of the system to the input. The following explicit represen-

tations of Vs and V1 are given as follows:

Vs(t) =Vs(0)+
It

Cb +Cs
+

Cb(RbCb−RsCs)I
(Cb +Cs)2 ·

[
1− exp(− Cb +Cs

CbCs(Rb +Rs)
t)
]

(2.17)

V1(t) = e
−t

R1C1 V1(0)− IR1(1− e
−t

R1C1 ) (2.18)

It is important to keep in mind that these are needed because they are the states that appear in the

NDC model’s measurement equation. We wish to minimize the difference between the measured

terminal voltage of a cell and the model’s prediction of the terminal voltage — we can infer the

parameters if the model’s predicted terminal voltage is written in terms of the parameter set. It

should be noted that the term 1/(Cb +Cs) can be determined prior by using coulomb counting.

With this goal in mind, the explicit forms of Vs and V1 are given in terms of the parameter set

below:

Vs(t,β ) =Vs(0)+
It

Cb +Cs
+ψ1I(1− e−ψ2t) (2.19)
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V1(t,β ) = e−ψ4tV1(0)− Iψ3(1− e−ψ4t) (2.20)

where the parameter set β is defined as follows:

β =

[
ψ1 ψ2 ψ3 ψ4 γ1 γ2 γ3 γ4 γ5

]T

(2.21)

where ψ1 =
RbC2

b
(Cb+Cs)2 , ψ2 =

Cb+Cs
CbCsRb

, ψ3 = R1, ψ4 = (R1C1)
−1, and γ1, γ2, ... , γ5 are the parameters

describing the SOC dependent R0 relationship shown in Equation (2.8).

Now, we can write the model’s predicted terminal voltage as a function of these state expres-

sions

V (t,β ) =
5

∑
i=0

αiV i
s (t,β )+ Iβ5 + Iβ6e−β7SOC + Iβ8e−β9(1−SOC)+ Iβ3(1− e−β4t) (2.22)

The minimization problem below is formulated to solve for the parameter set β by minimizing

the difference between the measured terminal voltage vector set y and the voltage values predicted

by the model, V (β )

β̂ = argmin
β

1
2
[y−V (β )]T R−1 [y−V (β )] (2.23)

s.t. β ≤ β ≤ β .

In this formulation, β̂ is the estimated parameter set, y is the set of measured terminal voltages of

length N, in vector form, V (β ) is the set of model predicted terminal voltages shown in Equation

(2.22), and R is an N×N measurement noise covariance matrix.

Since we know the parameter sets α and β describing the SOC-OCV relationship and the RC

parameters, the NDC model is explicitly available and ready for use.
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2.5 Chapter Summary

This chapter builds from the basic phenomena occurring within batteries, and the components

therein, to an explicit model of a battery. There exists a plethora of electrochemistries able to

supply a voltage, and each type has unique internal processes and input-output behavior. Modeling

these battery dynamics, as discussed before, can be done using electrochemical models or ECMs.

This work focuses on the latter, ECMs, specifically the NDC model. The following chapters will

include using this model as a basis for estimating SOC, under various cases, with the EKF and

UKF, along with simulated and experimental validation.
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Chapter 3

Battery State Estimation

3.1 Introduction

Once we have a model that is able to accurately characterize the dynamics of a cell, we can apply

a plethora of different techniques in order to achieve estimation tasks, and because the primary

task of a BMS is to provide real-time SOC information of the cell, we are interested in model-

based SOC estimation. Nonlinear observers and stochastic estimators are popular choices for SOC

estimation, and in this work we will utilize stochastic estimators. The noise that naturally occurs

within a system, affecting its dynamics, can be suppressed by these stochastic techniques, which

make them an appealing choice for SOC estimation. A notable stochastic estimation method is the

Kalman filter, which is a recursive algorithm that is used in a wide range of estimation problems and

applications [15]. The Kalman filter was proposed in 1960 by Rudolf Kalman, and in its base form

is the optimal estimator for linear systems. There are several nonlinear extensions which achieve

great and competitive performance for nonlinear systems, though they may be theoretically sub-

optimal. Of the nonlinear extensions, two will be considered in this thesis: the EKF and UKF. This

chapter is based, in part, on the work presented in [27].

3.2 Extended Kalman Filter

The EKF linearizes the nonlinear system around the most recent state estimate at each time instant,

and then applies the Kalman filter to the linearized model to generate the current state estimate. The

filter propagates this new state estimate through the EKF recursion to be used for state estimation at
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the next time step. This process continues recursively through time, generating new state estimates

at each time instant. For linearization, the Taylor series expansion is considered, and the model

is linearized about the most recent state estimate. This state estimate is the conditional mean of

the random variable considered to be the state variable given the measurement data. The EKF

algorithm will provide first-order accuracy for the state estimate. There will be truncation error

becuase the EKF uses a truncated form of the Taylor series, which means the estimates will be sub-

optimal [16]. Despite this fact, the EKF remains one of the most used nonlinear estimation methods

due to its ease of implementation and practical success. The EKF has been used extensively in the

literature for SOC estimation. The EKF was shown to estimate the SOC in electric drive vehicles

in [28] with better accuracy than coulomb counting. An adaptive form of the EKF, known as an

adaptive extended Kalman filter (AEKF), was implemented in [29]. In [30; 31], another EKF-based

SOC estimation method was developed to estimate the SOC when the parameters of the battery

model are unknown. An AEKF was used in [32] that employed a covariance matching approach

to estimate SOC. In [33], an EKF was implemented to estimate the SOC of lead-acid batteries in

hybrid-electric vehicles. A dual EKF was applied in [20] to the most common lumped-parameter

ECMs in lithium-ion battery energy storage applications. The EKF is very amenable to design

and has become a very popular choice for SOC estimation. Its ability to work for various systems

and its relatively low computational complexity have been driving factors for the EKF’s ascent in

popularity, especially for low-dimensional systems such as an ECM for batteries.

The EKF is performed in three steps: initialization, state prediction (time update), and state

update (measurement update).

Consider the general discrete-time nonlinear system:

 xk+1 = f (xk,uk)+wk

yk = g(xk,uk)+ vk

(3.1)

where wk is added to represent the process noise and assumed to be a white Gaussian noise se-

quence with the distribution wk ∼ N (0,Q), and vk is added to capture the measurement noise
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which is also considered a white Gaussian noise sequence, where vk ∼ N (0,R). We begin by

initializing the state estimate mean and state estimate covariance:

x̂0 = E[x0]

Px
0 = E[(x0− x̂0)(x0− x̂0)

T ]

The state is represented as a random vector whose conditional probability distribution is approx-

imated by xk|Yk−1 ∼N (x̂k|k−1,Px
k|k−1), where Yk−1 is the set of measurements up to time k− 1,

x̂k|k−1 is the estimate of xk given Yk−1, and Px
k|k−1 is the covariance of the state estimate at time k

given Yk−1. These statistics, i.e., the mean and covariance of the distribution, are then propagated

through the time update and measurement update steps as shown below.

State Prediction (Time Update)

x̂k|k−1 = f (x̂k−1,uk−1)

Px
k|k−1 = FPx

k−1|k−1FT +Q

where F is the Jacobian matrix of the nonlinear state function f (·) with respect to the state vector

x. When the new measurement yk is made available, the filter can update its knowledge of the state

xk at time k by approximating the distribution xk|Yk ∼N (x̂k|k,Px
k|k), which is accomplished in the

next procedure.

State Update (Measurement Update)

x̂k|k = x̂k|k−1 +Px
k|k−1ḠT

k (ḠkPx
k|k−1ḠT

k +R)−1[yk− ḡ(x̂k|k−1)] (3.2)

Px
k|k = Px

k|k−1−Px
k|k−1ḠT

k (ḠkPx
k|k−1ḠT

k +R)−1ḠkPx
k|k−1 (3.3)

The time update and measurement update steps are repeated for the length of the time series. In

the above equations, Ḡk is the Jacobian matrix of ḡ around x̂k|k−1, defined as the partial derivative

of the measurement equation with respect to the latest state estimate, x̂k|k−1.
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Now that a general framework for the EKF has been shown, consider the NDC discrete-time

system, originally shown in Equation (2.5):

 xk+1 = Axk +Buk +wk

yk = g(xk,uk)+ vk

(3.4)

where uk is the input current I at time k. Because the state dynamics of the NDC model are linear,

we can use the discretized form of the state and input matrices, A and B, respectively, in the time

update and state update steps. For the measurement update step, we must compute the Jacobian

matrix Ḡk:

Ḡk =
∂ ḡ
∂x

∣∣∣∣
x̂k|k−1

=


(−γ2γ3e−γ3SÔC + γ4γ5e−γ5(1−SÔC))I(k)Cb

Qt

∂h(V̂s)
∂x +(−γ2γ3e−γ3SÔC + γ4γ5e−γ5(1−SÔC))I(k)Cs

Qt

−1


T

(3.5)

where

SÔC =
CbV̂b +CsV̂s

Cb +Cs

∂h(V̂s)

∂x
= α1 +2α2V̂s +3α3V̂ 2

s +4α4V̂ 3
s +5α5V̂ 4

s

Using these equations in an iterative process, we may proceed to do SOC estimation.

The EKF provides an appealing choice for SOC estimation based on the NDC model. First,

whichever filter we use will be implemented in an embedded system with limited computational

resources. The EKF is a good choice for this application to the NDC model, as the model is

three-dimensional and the EKF is competitive in computational complexity and convergence for

low-dimensional systems [16]. In particular, the EKF has computational complexity of O(n3
x),

where nx is the dimensionality of the considered system. Equivalent circuit models for batteries

tend to be low-dimensional. For example the NDC model has nx = 3, making the EKF well-suited

for the task of SOC estimation using this model. Another reason for choosing the EKF is that it
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Table 3.1: NDC model parameters.

Cb Cs Rb Rs R1 C1

10037 973 0.019 0 0.02 3250
[F] [F] [Ω] [Ω] [Ω] [F]

allows for easy tuning for most low-dimensional systems. With the EKF, we only have to tune the

Q and R matrices. The measurement noise, represented in R, can be found from the root-mean-

squared (RMS) noise values specified by the measurement device, so we are mostly concerned with

the selection of Q, which characterizes our confidence in the process model and does not represent

any real physical process. For the NDC model, only the measurement equation is nonlinear and

the computation of the Jacobian is straightforward.

3.2.1 EKF Simulation Results

In this section, simulation results are presented to validate the effectiveness of applying the EKF to

the NDC battery model to estimate SOC (NDC-EKF-SOC). To evaluate the robustness of the EKF

against varying initialization errors and noise levels, various simulation conditions were designed

and performed based on combinations of three factors: initialization error, the process noise covari-

ance matrix Q and the measurement noise covariance matrix R. Each factor can assume one of two

modes. The SOC initialization error is either low at 5% or high at 20%, the process noise covari-

ance matrix is either Q = 10−8I3 or Q = 10−5I3 (where I3 denotes the identity matrix of dimension

three), and the measurement noise covariance matrix R is either R = 2.5× 10−6 or R = 0.052.

Table 3.2 outlines the eight cases considered in the simulation setting. For this method to be appli-

cable in general practice, it needs to be robust to SOC initialization error because the BMS may not

always know the initial SOC of the cell in question, and it needs to be able to adequately track the

SOC in the case of large process and measurement noise levels. This simulation design addresses

these concerns in each possible combination. The parameter set used for the simulations is given

in Table 4.1.
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Furthermore, to show the NDC-EKF-SOC algorithm’s robustness, the Urban Dynamometer

Drive Schedule (UDDS) profile [34] is used as the input current and can be seen in Figure 3.1. The

UDDS profile is used by the EPA to evaluate emissions standards in vehicles, and is commonly

used in the battery field to verify estimation algorithms due to its rapidly fluctuating design. The

rapidly fluctuating profile originates from the velocity measurements of a car in an urban envi-

ronment, undergoing frequent stops and starts in traffic. For battery testing, these velocity values,

given in miles per hour, are transformed to current values in amperes. In these simulations, the

profile is scaled to +/- 3 A and begins in a discharge mode for 25 minutes and then switches to a

charging mode for the remaining 25 minutes. The sharp change in sign of current (negative during

discharge to positive during charge) may cause divergence in estimation algorithms in real-world

applications, so it is an important consideration when designing and verifying an SOC estimation

algorithm — after all, a secondary battery must be able to both discharge its energy and recharge

during its lifetime.

In order to quantify the ability of the proposed algorithm to track the SOC, error metrics must

first be defined. The error metrics used to determine the estimation accuracy are defined as follows:

• Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1
N

N

∑
k=1

(zk− ẑk)2 (3.6)

• Mean Absolute Error (MAE):

MAE =
1
N

N

∑
k=1
|zk− ẑk| (3.7)

• Maximum Error (ME):

ME = max |zk− ẑk| (3.8)

where N is the number of samples, zk is the kth SOC observation and ẑk is the ”kth” SOC estimate.
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The RMS error is typically the error metric of choice for estimation schemes, and it computes

the standard deviation of the residuals, which are the estimation errors at each time instant. The

mean absolute error (MAE) is a widely used metric of forecast error in time series analysis, and

is included here for completeness. The maximum error (ME) reports the largest prediction error

throughout the entire test. This metric will show the worst case, where the estimated SOC is the

furthest from the truth.

Based on the EKF simulation results, we find that the proposed method has considerable ro-

bustness to different levels of initialization errors and noise levels. This robustness will make the

method advantageous in real-world applications. The EKF is able to accurately track the SOC of

the battery and converge quickly, even under large noise and initialization error conditions. The

results of the EKF simulations are summarized in Table 3.3, and four cases are plotted in Figures

3.2, 3.4, 3.6, and 3.8, along with their respective estimation error plots. These figures show the

benchmark SOC, determined by coulomb counting and referred to as true SOC in sequel, and the

estimated SOC along with a 2-σ shaded error region (bound). Note that the so-called 2-σ bound

is an approximate quantification of the estimation error covariance in the EKF case. The shaded

error region approximately represents two standard deviations away from the mean value (the SOC

estimate) — this means that approximately 95.45% of the values should lie within this region. As

shown in the figures, this region becomes smaller over time, which represents the decreasing mag-

nitude of the estimation covariance matrix, which in turn represents the increased confidence in the

SOC estimate. Most of the true SOC values lie within the shaded error region, and it is apparent in

the zoomed-in portion of the figures (from 0 to 150 seconds) that the estimation converges quickly,

typically within one to two minutes.

The cases with low process noise are shown, which indicates a high level of confidence in the

NDC model’s process equation to describe the dynamics of the cell. Both modes, high and low,

are shown for initialization error and measurement noise. This is done to emulate a real-world

setting, where 1) the BMS may not have accurate state information when the estimation method

is initialized and 2) the system may be inherently noisy, such as a battery or cell operating in
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Table 3.2: Simulation test design.

Test Initialization Process Noise Measurement
# Error Level Noise Level

1 5% 10−5I3 0.052

2 5% 10−5I3 2.5×10−6

3 5% 10−8I3 0.052

4 5% 10−8I3 2.5×10−6

5 20% 10−5I3 0.052

6 20% 10−5I3 2.5×10−6

7 20% 10−8I3 0.052

8 20% 10−8I3 2.5×10−6

a marine vessel next to high power converters and other equipment, and the sensors on the cell

would return noisy voltage measurements. In Figure 3.2, the NDC-EKF-SOC method is shown to

converge around 100 seconds into the simulation, as can be seen in the zoomed-in snapshot at the

top of the figure. The true SOC value is within the 2-σ bound of the estimated SOC throughout

the duration of the simulation, meaning we can proceed with confidence in our SOC estimation in

this setting. The NDC-EKF-SOC method is shown to converge even faster in Figure 3.4, and does

so around 25 seconds into the simulation. This follows, because there is less measurement noise in

this test setting. As in test setting #3, the true SOC value is within the 2-σ region of the estimated

SOC throughout the duration of the simulation, meaning we can proceed with confidence in our

SOC estimation. Even with an initialization error of 20%, the NDC-EKF-SOC method converges

around 120 seconds into the simulation, shown in Figure 3.6. The true SOC value is within the

2-σ region of the estimated SOC throughout the duration of the simulation. In Figure 3.8, the

NDC-EKF-SOC method is shown to converge 30 seconds into the simulation, after compensating

for the 20% initialization error. The true SOC value is within the 2-σ region of the estimated SOC

throughout the duration of the simulation for this test setting as well.

The SOC estimation error for the EKF simulations is shown in Table 3.3. Three error metrics

are reported: RMSE, MAE, and ME. The RMSE values are low in most cases indicating good

performance, except for test #2 and #6 which show the largest errors. Throughout all EKF simu-
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Figure 3.1: Modified UDDS Current Profile.

Table 3.3: SOC estimation error: EKF Simulation.

Test # 1 2 3 4 5 6 7 8

Root Mean Squared Error 0.096 0.66 0.12 0.037 0.16 0.87 0.09 0.403

Mean Absolute Error 4.8 12.3 0.23 0.062 4.51 13.6 0.30 0.427

Maximum Error 51.5 150 79.4 63.1 50.9 150 79.7 63.1

lations, the MAE does not exceed 14, and is typically below 5, with the exception of test settings

#2 and #6. These two test settings have large process noise levels and low measurement noise

levels. The ME for each simulation occurs within the first few time steps, as the EKF attempts

to compensate for the initialization errors. The gain matrix, K, is high initially, which causes the

estimated value to jump around at the beginning. The innovation, which is the difference between

the estimated output and the measured output, also plays a role. At the beginning of the simulation,

the initialization error is large, so the innovation is relatively large, and a large gain matrix K is

obtained to correct the error. So fundamentally, the root cause of these large estimation errors can

30



0 500 1000 1500 2000 2500 3000

Time (s)

0

10

20

30

40

50

60

70

80

90

100

SO
C

 (
%

)

0 50 100 150
60

80

100

Figure 3.2: EKF-SOC estimation for simulation #3 in Table 3.2: Low initialization error with low
process noise and high measurement noise.
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Figure 3.3: SOC Estimation Error for simulation #3 in Table 3.2
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Figure 3.4: EKF-SOC estimation for simulation #4 in Table 3.2: Low initialization error with low
process noise and low measurement noise.
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Figure 3.5: SOC Estimation Error for simulation #4 in Table 3.2
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Figure 3.6: EKF-SOC estimation for simulation #7 in Table 3.2: High initialization error with low
process noise and high measurement noise.
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Figure 3.7: SOC Estimation Error for simulation #7 in Table 3.2
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Figure 3.8: EKF-SOC estimation for simulation #8 in Table 3.2: High initialization error with low
process noise and low measurement noise.
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Figure 3.9: SOC Estimation Error for simulation #8 in Table 3.2
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be traced back to the initialization error.
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3.3 Unscented Kalman Filter

Instead of approximating a nonlinear function, as is the case with the EKF, the UKF approximates

the probability distribution of the system state. The state of the system is considered to be a

Gaussian random variable. It is important to note that this probability distribution is assumed

Gaussian, as it is analytically convenient for tracking the statistics of the Gaussian random variable.

The UKF uses deterministic samples, known as sigma points, to track the statistics of the system

state vector. These sigma points are able to characterize the first two moments of the state, the mean

and the covariance. The UKF propagates the set of sigma points through the nonlinear system f (x)

and g(x) given in Equation (3.1). According to [35], the UKF achieves second-order accuracy of

the posterior mean and covariance estimates. Specifically, consider a nonlinear function h(x),

where x is a random variable — the unscented transform (UT), which is at the heart of the UKF,

would compute the mean and covariance of h(x) with second-order accuracy. In general, the UKF

has been shown to perform better than the EKF, due to the approximation issues encountered in

the EKF formulation. This is especially true for highly nonlinear systems, where the linearization

employed by the EKF cannot accurately approximate the system at the estimate point.

To understand the UKF, one must first understand the UT. This method describes the process of

calculating statistics of a nonlinearly transformed random variable. The idea is that a set of sample

points, deterministically selected, can represent a random variable’s distribution statistics, i.e., the

mean and covariance. When the random variable is propagated through a nonlinear transformation,

we can describe it by propagating the sample points through the nonlinear function to acquire a

new set of sample points. These new sample points can describe the statistics of the nonlinearly

transformed random variable.

The UT, in a general sense, is described here. Consider the random vector x ∈Rn being passed

through the nonlinear function z = g(x), where the mean and covariance of random variable x are x̄

and Px, respectively. There will be 2n+1 sigma points selected {xi, i = 0,1, ...,2n}; the symmetry

will be apparent in the equations below. Now that we have these preliminary definitions, we can
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select the sigma points to represent the distribution as follows:

x0 = x̄ (3.9)

xi = x̄+
√

n+λ [
√

Px]i, i = 1,2, ...,n (3.10)

xi+n = x̄−
√

n+λ [
√

Px]i, i = 1,2, ...,n (3.11)

In these equations, λ is a scaling parameter described by the equation λ = α2(n+κ)− n where

α is usually a small positive number on the order of magnitude of 10−3 and κ is either 0 or 3−n.

The notation []i is used to represent the ith column of the matrix. The square root is defined in the

Cholesky decomposition sense,
√

Px
√

PxT
= Px. The sigma points are symmetrically spread about

the mean, x̄. When the sigma points are projected through the nonlinear function g(·), we obtain a

new set of sigma points. The random variable z is transformed

zi = g(xi), i = 0,1,2, ...2n (3.12)

We can then estimate the statistics of this transformed random variable as follows:

z̄ = E[g(x)]≈
2n

∑
i=0

W m
i zi (3.13)

Pz = E[(g(x)− z̄)(g(x)− z̄)T ]≈
2n

∑
i=0

W c
i (z

i− z̄)(zi− z̄)T (3.14)

The weights are calculated using the following equations:

W m
0 =

λ

n+λ
(3.15)

W c
0 =

λ

n+λ
+(1−α

2 +β ) (3.16)

W m
i =W c

i =
1

2(n+λ )
, i = 1,2, ...,2n (3.17)
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where β is equal to 2 if the distribution of x is Gaussian, which is the optimal setting. Now that

the UT process has been laid out, we can proceed and apply these ideas to the KF problem. In the

UKF, the UT will be used during the prediction and update steps.

Consider the general discrete-time nonlinear system given in Equation (3.1). Assume the mean

and covariance of xk−1, the state at time k−1, are given as x̂k−1|k−1 and Px
k−1|k−1, respectively. The

filter begins at the prediction step, where the algorithm seeks to generate sigma points for xk−1.

State Prediction

x̂0
k−1|k−1 = x̂k−1|k−1 (3.18)

x̂i
k−1|k−1 = x̂k−1|k−1 +

√
n+λ

[√
Px

k−1|k−1

]
i
, i = 1,2, ....n (3.19)

x̂i+n
k−1|k−1 = x̂k−1|k−1−

√
n+λ

[√
Px

k−1|k−1

]
i
, i = 1,2, ....n (3.20)

Once the sigma points, {xi
k, i = 0,1, ...,2n}, have been determined, they are passed through the

nonlinear function of the process, f (·).

x̂−,ik|k−1 = f (x̂i
k−1|k−1), i = 0,1, ....,2n. (3.21)

These nonlinearly transformed sigma points, x̂−,ik|k−1, are used to characterize the mean and covari-

ance of f (xk−1), enabling the estimation of the priori xk.

x̂k|k−1 = E[ f (xk−1)|Yk−1] =
2n

∑
i=0

W m
i x̂−,ik|k−1 (3.22)

Px
k|k−1 = E[( f (xk−1)− x̂k|k−1)( f (xk−1)− x̂k|k−1)

T |Yk−1]+Q

=
2n

∑
i=0

W c
i (x̂
−,i
k|k−1− x̂k|k−1)(x̂

−,i
k|k−1− x̂k|k−1)

T +Q (3.23)

where Yk−1 is the set of observations up to time k−1 and Q is the covariance of the additive process

noise, w.
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To proceed to the update step, the sigma points for the estimated state x̂k|k−1 at time k given

information up to time k−1 must be computed.

State Update

x̂+,0
k|k−1 = x̂k|k−1 (3.24)

x̂+,i
k|k−1 = x̂k|k−1 +

√
n+λ [

√
Px

k|k−1]i i = 1,2, ....n (3.25)

x̂+,i+n
k|k−1 = x̂k|k−1−

√
n+λ [

√
Px

k|k−1]i i = 1,2, ....n (3.26)

After the sigma points for xk|k−1 are computed, they are propagated through h(·) to find the sigma

points for h(xk). These sigma points describe the predicted observation function:

ŷi
k|k−1 = h(x̂+,i

k|k−1), i = 0,1, ....,2n. (3.27)

ŷk|k−1 = E[yk|Yk−1] =
2n

∑
i=0

W m
i ŷi

k|k−1 (3.28)

Py
k|k−1 = E[(h(xk)− ŷk|k−1)(h(xk)− ŷk|k−1)

T |Yk−1]+R

=
2n

∑
i=0

W c
i (ŷ

i
k|k−1− ŷk|k−1)(ŷ

i
k|k−1− ŷk|k−1)

T +R (3.29)

Pxy
k|k−1 = E[(xk− x̂k|k−1)(h(xk)− ŷk|k−1)

T |Yk−1] =
2n

∑
i=0

W c
i (x̂

i
k|k−1− x̂k|k−1)(ŷ

i
k|k−1− ŷk|k−1)

T (3.30)

Using these statistics and parameters, the updated state estimate x̂k|k and its covariance Px
k|k can

be computed:

x̂k|k = x̂k|k−1 +Pxy
k|k−1(P

y
k|k−1)

−1(yk− ŷk|k−1) (3.31)

Px
k|k = Px

k|k−1−Pxy
k|k−1(P

y
k|k−1)

−1(Pxy
k|k−1)

T (3.32)
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3.3.1 UKF Simulation Results

In this section, simulation results are presented to validate the efficacy of the UKF applied to

the NDC model to estimate the SOC of a battery, which is referred to as the NDC-UKF-SOC

method. The NDC-UKF-SOC method was subjected to the same test settings as the NDC-EKF-

SOC method, defined in Table 3.2, and the same transformed UDDS input current profile shown

in Figure 3.1.

The UKF simulation results show that the NDC-UKF-SOC method has considerable robustness to

different levels of initialization errors and noise. This robustness will make the method advanta-

geous in real-world applications, along with the low computational complexity of the algorithm.

The UKF simulation errors are summarized in Table 3.4, and four cases are plotted in Figures 3.10,

3.12, 3.14, and 3.16, along with their respective estimation error plots.

The same cases are shown for the UKF as with the EKF: low process noise and both modes,

high and low, of initialization error and measurement noise. In Figure 3.10, the NDC-UKF-SOC

method is shown to converge roughly 75 seconds into the simulation, as can be seen in the zoomed-

in snapshot at the top of the figure. The true SOC value is within the shaded (2-σ ) region of the

estimated SOC throughout the majority of the simulation. The true SOC is outside of this confi-

dence region around 2,100 seconds, but regains entry around 2,200 seconds. The confidence region

grows smaller over time, which is a reflection of the estimation covariance matrix — theoretically,

this matrix should decrease in magnitude as the filter progresses and receives new measurements.

The shaded confidence region shrinks relatively quickly, around 30 seconds into the simulation, in

Figure 3.12. This test setting has low measurement noise, which may play a role in the faster rate of

decrease of the estimation covariance matrix. The true SOC falls outside of the confidence region a

few times during this simulation, but never strays too far and overall shows a low estimation error.

With an initialization error of 20%, the NDC-UKF-SOC method converges around 250 seconds,

about 4 minutes, into the simulation, shown in Figure 3.14. After the estimation converges, the

true SOC value remains within the 2-σ region of the estimated SOC for most of the simulation,

and a consistently low error is reported in Figure 3.15. In Figure 3.16, the NDC-UKF-SOC method

40



Table 3.4: SOC estimation error: UKF Simulation.

Test # 1 2 3 4 5 6 7 8

Root Mean Squared Error 1.89 3.06 0.16 0.52 0.22 5.6 0.19 0.39

Mean Absolute Error 5.27 7.19 0.47 0.69 5.68 10.5 0.67 0.67

Maximum Error 39.9 159 80.3 66.6 80.5 54.8 80.8 64.4

shows a similar convergence time as in test setting #7, after compensating for the 20% initialization

error. The true SOC value dips below the 2-σ region of the estimated SOC around 1,500 seconds

and regains confidence around the inflection point at 1,700 seconds, then dips below again around

2,200 seconds and once again enters the confidence region around 2,500 seconds.
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Figure 3.10: UKF-SOC estimation for simulation #3 in Table 3.2: High initialization error with
low process noise and low measurement noise.

The SOC estimation error for the UKF simulations is shown in Table 3.4. Three error metrics

are reported: RMSE, MAE, and ME. The RMSE values are low in all cases, except for test #2 and

#6. These cases, with high process noise levels and low measurement noise levels, show the largest
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Figure 3.11: UKF-SOC estimation error for simulation #3 in Table 3.2.
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Figure 3.12: UKF-SOC estimation for simulation #4 in Table 3.2: High initialization error with
low process noise and low measurement noise.
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Figure 3.13: UKF-SOC estimation error for simulation #4 in Table 3.2.
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Figure 3.14: UKF-SOC estimation for simulation #7 in Table 3.2: High initialization error with
low process noise and high measurement noise.
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Figure 3.15: UKF-SOC estimation error for simulation #7 in Table 3.2.
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Figure 3.16: UKF-SOC estimation for simulation #8 in Table 3.2: High initialization error with
low process noise and low measurement noise.
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Figure 3.17: UKF-SOC estimation error for simulation #8 in Table 3.2.

errors. However, the MAE reported for these tests are 7.19 and 10.5 respectively, which are lower

than that of the EKF for these test cases. This seems to suggest that a low measurement noise may

not always be beneficial — in this case it performs worse than test settings #1 and #5 which have

high process noise levels as well as high measurement noise. Throughout all UKF simulations, the

MAE is typically around or below 5%, with the exception of test settings #2 and #6. The ME for

each simulation occurs within the first few time steps, as the UKF attempts to compensate for the

initialization errors. The large ME values may be attributed to the large initialization error, as the

largest errors usually occur at the beginning of the simulation.

3.4 Chapter Summary

In this chapter, extensive simulation was carried out for the NDC model, using both an EKF and

UKF in a variety of test cases. This chapter introduced the EKF and UKF approaches for state es-

timation, investigated their application to SOC estimation based on the NDC model, and presented

extensive simulation results in a variety of test cases. Typically, the EKF showed similar conver-
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gence times to the UKF. For both estimation methods, NDC-EKF-SOC and NDC-UKF-SOC, the

SOC estimation was very accurate and the error shading showed that as time progressed, the al-

gorithms became more accurate and precise. For the most part, the true SOC lied within the 2-σ

(95.45%) confidence bound. In the next chapter, these methods will be verified via experimental

data.
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Chapter 4

Experimental Validation

4.1 Test Design and Setup

The battery testing presented in this work was conducted on a PEC R© SBT4050 battery tester,

shown in Figure 4.1. The battery tester is capable of up to 40 V and 50 A charging and discharg-

ing, and can be programmed for specific test regimes and profiles. These testing profiles, also

called scripts, can be formulated offline, and are stored and called on the server. The software used

to write the test scripts is called LifeTest R©. The scripts, organized in step format, can be time-

or event-driven. The software can perform basic, pre-programmed charging and discharging pro-

cedures, such as constant-current constant-voltage, as well as user-defined tests, such as a UDDS

profile. The data was collected using the LifeTest R© software, and included delta time, current,

and cell voltage. The sampling rate of the battery tester is 1000 Hz and it collects the data us-

ing 4-point measurement and differential input. The experiments were performed on a Panasonic

NCR18650B lithium-ion battery cell, which has a nominal voltage of 3.7 V and a capacity of 3.07

Ah. The discharging current was scaled to a maximum of 3 A, which is a 1 C-rate discharge — this

means the battery will fully discharge from a full charge in 1 hour at 3 A. The cell is considered

fully discharged at 3.2 V, and fully charged at 4.2 V.

The RC parameter set used in these experiments, which is unique to the Panasonic NCR18650B

LiB and obtained in [1], is shown in Table 4.1 and the SOC-OCV parameters are shown in Equation

(4.1).

α =

[
3.16 2.72 −8.33 15.12 −12.17 3.61

]
(4.1)
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Table 4.1: NDC model parameters.

Cb Cs Rb Rs R1 C1

10037 973 0.019 0 0.02 3250
[F] [F] [Ω] [Ω] [Ω] [F]

The function h(·) is now defined, and we have an explicit relationship between SOC and OCV:

OCV = h(SOC) = 3.16+2.72 ·SOC−8.33 ·SOC2 +15.12 ·SOC3−12.17 ·SOC4 +3.61 ·SOC5

(4.2)

Figure 4.1: PEC R© SBT4050 battery cycler test bench set-up from [1].

For the experimental validation, the estimation accuracy is analyzed under different initializa-

tion errors. Unlike in the simulation setting, we cannot change the measurement noise levels — the

sensors in the PEC tester will experience a certain noise level depending on the signal noise from

the ambient environment, the wires connecting the sensors to the data acquisition board, and the

circuitry in the sensors themselves. Even though this noise level is unknown at first, one can tune

the Q and R matrices in the EKF and UKF accordingly to capture the presence of measurement
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Table 4.2: Experiment test design.

Test # 1 2 3 4

Initialization Error (%) 5 20 50 75

noises and improve the estimation performance. It is common in practice to use ad hoc method-

ologies, such as trial and error, to discover the optimal value of the system noise. The input current

amperage and measured terminal voltage, shown in Figures 4.2 and 4.3, were used to verify the

proposed SOC estimation algorithms — NDC-EKF-SOC and NDC-UKF-SOC. The input current

is normalized from the UDDS profile [34] and scaled to a discharging range of 0–3 A. Similar to

the simulation testing design, the experimental test cases can be seen in Table 4.2. In the experi-

mental setting, SOC obtained by coulomb counting is used as a reference to evaluate the estimation

by the NDC-EKF-SOC and NDC-UKF-SOC algorithms [36].
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Figure 4.2: UDDS-based current profile.
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Figure 4.3: measured terminal voltage.

4.2 EKF Results

Using the experimental data, the EKF was able to track the SOC of the battery very well, with an

average RMSE of 1.58 across all four experimental settings, as reported in Table 4.3. The MAE

was also quite low, with an average of 1.81 across all experimental settings. The ME for the EKF

was capped by the initialization error in test settings #2, #3, and #4. In test setting #1, the ME

slightly surpassed the initial error of 5% to reach 6.16.

The EKF experimental results are shown in the following figures. The SOC estimation for

test setting #1 is shown in Figure 4.4 and the corresponding error is plotted in Figure 4.5. Each

experimental case is plotted thereafter. Overall, the EKF method shows accurate SOC tracking

under high initialization error, even up to 75%.

Table 4.3: SOC estimation error EKF: Experimental data.

Test # 1 2 3 4

Root Mean Squared Error (% SOC) 1.19 2.41 1.51 1.19

Mean Absolute Error (% SOC) 1.53 2.43 1.77 1.51

Maximum Error (% SOC) 6.16 20 50 75
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Figure 4.4: EKF-SOC estimation based on the experimental data using the test setting #1 in
Table 4.2.
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Figure 4.5: EKF-SOC estimation error for experimental setting #1 in Table 4.2.
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Figure 4.6: EKF-SOC estimation based on the experimental data using the test setting #2 in
Table 4.2.
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Figure 4.7: EKF-SOC estimation error for experimental setting #2 in Table 4.2.
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Figure 4.8: EKF-SOC estimation based on the experimental data using the test setting #3 in
Table 4.2.
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Figure 4.9: EKF-SOC estimation error for experimental setting #3 in Table 4.2.
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Figure 4.10: EKF-SOC estimation based on the experimental data using the test setting #4 in
Table 4.2.
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Figure 4.11: EKF-SOC estimation error for experimental setting #4 in Table 4.2.
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4.3 UKF Results

In this section, the UKF method is shown to be verified by experimental results. The UKF al-

gorithm was verified using the same input-output data, i.e., input UDDS current and measured

terminal voltage, as previously mentioned in the EKF experimental results section. The UKF was

able to track the SOC of the battery to a higher accuracy than that of the EKF method, with an

average RMSE of 0.077 across all four experimental settings, as reported in Table 4.3. The MAE

was also lower than that of the EKF method, with an average of 0.81 across all experimental set-

tings. The ME for the UKF was capped by the initialization error in test settings #2, #3, and #4. In

test setting #1, the ME slightly surpassed the initial error of 5% to reach 7.3.

The UKF experimental results are shown in the following figures. The SOC estimation for test

setting #1 is shown in Figure 4.12 and the corresponding error is plotted in 4.13. Each experimental

case is plotted thereafter. Overall, the UKF method shows very accurate and convergent SOC

tracking under high initialization error, even up to 75%, and is the better option when compared

with the EKF in the experimental setting.
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Figure 4.12: UKF-SOC estimation based on the experimental data using the test setting #1 in
Table 4.2.
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Figure 4.13: UKF-SOC estimation error for experimental setting #1 in Table 4.2.
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Figure 4.14: UKF-SOC estimation based on the experimental data using the test setting #2 in
Table 4.2.
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Figure 4.15: UKF-SOC estimation error for experimental setting #2 in Table 4.2.
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Figure 4.16: UKF-SOC estimation based on the experimental data using the test setting #3 in
Table 4.2.
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Figure 4.17: UKF-SOC estimation error for experimental setting #3 in Table 4.2.
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Figure 4.18: UKF-SOC estimation based on the experimental data using the test setting #4 in
Table 4.2.
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Figure 4.19: UKF-SOC estimation error for experimental setting #4 in Table 4.2.

Table 4.4: SOC estimation error UKF: Experimental data.

Test # 1 2 3 4

Root Mean Squared Error (% SOC) 0.03 0.0006 0.096 0.18

Mean Absolute Error (% SOC) 0.18 0.22 0.31 0.39

Maximum Error (% SOC) 7.3 18.6 46.8 71
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4.4 Chapter Summary

In this section, the NDC model was tested using data obtained through experiments done on a

Panasonic NCR18650B LiB cell. The NDC-UKF-SOC algorithm was able to track the reference

SOC with higher accuracy than the NDC-EKF-SOC algorithm. This is to be expected as the

UKF has a higher order of accuracy, theoretically speaking, than the EKF. Even though the NDC-

UKF-SOC outperformed the NDC-EKF-SOC, the NDC-EKF-SOC still exhibited very accurate

SOC estimation — the RMSE for all experimental cases was well within 5%, which meets many

standards bodies’ guidelines.
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Chapter 5

Conclusion

5.1 Summary of Contributions

SOC estimation is of crucial importance for the management of Li-ion batteries to ensure their

safety, performance, and life. Based on the recently developed NDC model, this thesis exploits the

EKF and UKF to develop new SOC estimation approaches, which are called NDC-EKF-SOC and

NDC-UKF-SOC, respectively. Extensive simulations showed that the NDC-EKF-SOC and NDC-

UKF-SOC algorithms achieved comparable performance. Both of these algorithms demonstrated

accurate SOC tracking while maintaining low computational complexity. Lastly, the NDC-EKF-

SOC and NDC-UKF-SOC methodologies were validated through experiments done on a Panasonic

lithium-ion cell.

5.2 Future Work

The future is promising for further innovation in the renewable energy industry and, by conse-

quence, the battery industry as well. In particular, future work to be done on the NDC-based SOC

estimation algorithms can incorporate adaptive noise estimation, temperature and C-rate aware-

ness, explore machine learning methods, and address the problem of extending the SOC estima-

tion to entire battery modules and packs. First, the SOC estimation can be improved via adaptive

noise estimation. The ability to characterize the noise affecting a system, in real-time, would be

beneficial for state estimation in real-world systems where the process noise is unknown and typ-

ically an educated guess is made regarding its value. Secondly, the NDC model can be extended
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to be temperature-aware. The parameters in the model can be made temperature-dependent. This

is especially important for the resistance parameters, because the internal resistance and temper-

ature relationship is nonlinear, and the estimation may diverge at high or low temperatures if the

resistance parameters do not reflect this relationship. Temperature awareness is an important con-

sideration for real-world systems, as it is desirable for battery systems to work in low temperature

environments such as batteries in large vessels in the Atlantic Ocean, or conversely in hot weather

conditions such as electric vehicles or grid energy storage in regions with warmer climates. Also,

as computing power continues to grow, machine learning algorithms and big data are becoming

more practical. As such, a continuation of this work would involve applying machine learning to

learn the effects of temperature and C-rate on the model and filter parameters. Finally, another

future investigation would be to extend the analysis from a singular cell to a whole battery pack.

This is a much more realistic and complex problem — most battery systems consist of multiple

cells in series, parallel, or some combination. Understanding the interaction between cells, mod-

ules, packs, etc., will be of great importance in the application of these estimation algorithms in an

embedded BMS.
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