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Abstract

Profile-guided optimizations (PGO) are a class of sophisticated compiler transformations

that employ information regarding the profile or execution-time behavior of a program to

improve program performance, typically speed. PGOs for popular language platforms,

like C, C++ and Java, are generally regarded as a mature and mainstream technology and

are supported by most standard compilers. Consequently, properties and characteristics

of PGOs are assumed to be established and known, but have rarely been systematically

studied with multiple mainstream compilers.

The goal of this work is to explore and report some important properties of PGOs in main-

stream compilers, specifically GCC and LLVM in this work. We study the performance

delivered by PGOs at the program and function-level, impact of different execution profiles

on PGO performance, and compare relative PGO benefit delivered by different mainstream

compilers. We also describe the experimental framework that we built to conduct this re-

search. We expect that our research will help focus future developmental work and research

in PGOs and assist in building frameworks to field PGOs in actual systems.
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Chapter 1

Overview, Research Motivation and Research objective

1.1 Introduction

Computing is constantly shaped by technology, applications, and market trends. Cloud

computing, IoT, and mobile computing have been major drivers of innovation recently and

are expected to thrive in the upcoming decade. A plethora of newly developed technologies,

such as machine learning, and blockchain, present a new set of challenges that necessitate

increased performance from modern processors.

To adequately support these modern application trends, the processor hardware has evolved

to integrate multiple core processors, changes to on-chip interconnect, caches, a variety of

hardware accelerators, and a memory controller on a single chip. Modern processors em-

ploy pipelined and superscalar architectures that incorporate out-of-order execution. Per-

formance improvement on such systems depends on the program ability to fully utilize the

characteristics of the underlying architecture.

On the other hand, modern high-level languages are constantly evolving, and are becoming

more abstract and complex. These trends are helping to reduce both software development

time and bugs in the system and at the same time, are also boosting sustainability [14].
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Unfortunately, high levels of abstraction are known to increase program run times. With

high-level languages, the burden of optimization falls on the compiler.

Modern compilers are complex software that translate programs written in a high-level

language into binaries that execute on the underlying hardware. This conversion includes

pre-processing, lexical analysis, parsing, semantic analysis, code optimization, and finally

creation of executable files. Compilers are not only responsible for constructing small

executables but also for achieving the best possible execution-time performance.

Compilers can provide bad optimization decisions that do not actually improve the perfor-

mance of the code or, even worse, degrade it. For instance, one important optimization

a compiler performs is function inlining. The C/C++ compilers, such as GCC [10] and

Clang[21], can inline a function if the caller size does not increase too much. Many func-

tion calls are expanded. However, this optimization is only beneficial when the calls happen

frequently. As a side-effect, this optimization also: (a) increases the code size, (b) wastes

space from instruction and unified caches, and (c) increases the app’s working set size in

memory. These side effects can also degrade program performance in many cases [22].

Often, optimizations lack reliable heuristics needed to make wise selections. Even with the

degradation from some optimizations, compiler typically achieve on overall performance

improvement for most programs. Adopting compiler heuristics to eliminate even the occa-

sional degradation from individual optimizations may result in a further benefit to program

performance.

The code might be optimized more effectively if we could guide the compiler on how the

code would behave at run-time. Profiling is the process of acquiring program information

during execution. A profile is a name given to the generated information. The compiler

can process multiple profiles for each program with different inputs. Its optimizations can

be guided by these profiles. Compiler transformations that employ profile information to

benefit program performance are called profile-guided optimizations (PGO) [18].
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Profile-guided optimizations is a promising technique to improve the performance of vari-

ous programs. One example of profile information obtained by the compiler may be about

the most frequently executed sections of an application. Compiler optimization can then be

more selective and precise when optimizing code for an application by being aware of the

most frequently run sections.

Profiling data can be collected through offline and online processes. Offline profiling uses

additional prior runs of the program to generate profile information. Once the profile data

is generated, the compiler can use this information to guide code optimization decisions.

Static compilers such as GNU gcc/g++ and Clang, mainly use offline profiling techniques.

Online profiling or dynamic profiling gathers profile information during the same program

run, and is frequently used by more advanced language runtimes like the Java virtual ma-

chine. Many researchers have also developed static analysis techniques to estimate some

run-time information for PGOs. In our experiments, we are using offline profiling to get

the profile data and study the performance of PGOs in different mainstream open-source

compilers.

PGO consists of three steps or phases [6] as shown in Figure 1.1.

1. The first phase is to instrument the program. In this step, the compiler creates and

links an instrumented program from the source code and a special code from the

compiler.

2. The second phase is to run the instrumented executable. Each time the instrumented

code executes, the instrumented program generates a dynamic information file that

is used in the final compilation.

3. The third phase is the compilation. The dynamic information files are merged into a

summary file if the software is built for a second time. The profile information con-
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Figure 1.1: Three phases of Profile Guided Optimizations (PGO)

tained in this file is used by the compiler to customize the executable to the provided

program profile.

PGO has a number of benefits over traditional optimization techniques. For instance, with

PGO, the compiler can optimize the program to specific processor architecture features, and

maximize cache memory efficiency and branch prediction benefits. Likewise, the position

of the spill code is optimized using profile data for register allocation. Selecting the most

probable targets also offers superior branch prediction for indirect function calls.

PGO can also help the compiler decide on function inlining more wisely. PGO is the

best for dealing with many commonly executed branches that are difficult to predict at

compilation time. For instance, the codes with intensive error-checking ensure that the error

conditions are false most of the time. The cold area is the part of code where infrequently

executed code can be relocated. So, the branch is rarely predicted incorrectly. Minimizing
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cold code and incorporating it into the frequently executed (hot) code improves instruction

cache behavior.

In this work, we thoroughly and methodically investigate the properties of PGOs for stan-

dard C/C++ compiler benchmark programs. We developed a detailed experimental frame-

work and many techniques to answer the following questions:

1. What is the typical execution-time benefit from PGO with mainstream compilers?

2. How do different profiles affect performance of PGOs?

3. Do standard compilers deliver similar performance gains with PGOs?

4. What is the performance effect of PGOs at the finer-grained function level?

We also study auxiliary issues regarding program behavior and compiler comparison, in-

cluding

(a) the fraction of execution time spent in the top 10 functions in the SPEC 2017 bench-

marks,

(b) comparison of GCC and LLVM compile time, and performance characteristics such as

executable size and run-time performance.

We believe that our experiments and observations shed further light on the functionality,

traits, and efficacy of PGOs with mainstream compilers.

The rest of the paper is organized as follows. In Section 3, we provide a brief description

of the background and some related works. In Section 4, we give a description of the

experimental setup. In Section 5, we describe the standard compilers and tools used in the

experiment. In Section 6, we describe our framework implementation with the GCC and

LLVM compilers. In Section 7, we describe the results of our experiments. In Section 8,

we conclude the paper.
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Chapter 2

Background and Related Works

In this chapter, we describe some applications of profiling and a brief background on SPEC

CPU2017. We also present prior work on the properties of profiling and PGOs, as well as

a comparison of our current research goals with those of related previous studies.

In our current work, we study offline schemes to collect the program’s execution time

profiling data. This profile data is used by static compilers gcc/g++ and llvm. The selection

of the compiler mainly depends on parameters like accessibility, support for hardware, and

efficiency of compilers. Some of the most widely used compilers for C/C++ include the

GNU Compiler Collection(GCC) and the LLVM Compiler Infrastructure(LLVM). As part

of this study, we have assessed the efficacy of profiling and PGOs for these two compilers.

Profile data has traditionally been employed to find the hot or frequently executed blocks or

functions in a program. The hot program regions can be used to focus on compilation and

optimization efforts. For illustration purposes, many online compilers only compile and

apply PGOs to the hot region of a program to reduce overhead at run-time. This technique

is called selective compilation [3]. Profile information is also used to perform some other

optimization tasks. In this work, our goal is to analyze the effect of PGOs with the GCC

and LLVM compilers for SPEC CPU2017 programs and also to study the performance in

the hotspot regions of the programs.
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Standardized Performance Evaluation Corporation (SPEC) is one of the most successful

efforts in standardizing benchmark suites. SPEC CPU2017 is the most recent incarnation

of a standard benchmark suite designed to stress a system’s processor, memory subsystem,

and compiler [1]. SPEC CPU2017 distributes as an ISO image that contains the following:

a) source code for each benchmark,

b) benchmark inputs,

c) a toolset for compiling, running, validating, and reporting on the benchmarks,

d) pre-compiled tools for a variety of operating systems,

e) source code for SPEC CPU2017 tools, for systems not covered by the pre-compiled

tools, documentation, and configuration scripts that govern benchmark compilation pro-

cess.

SPEC CPU2017 consists of 43 benchmarks that are divided into the following four cate-

gories :

(a) SPECspeed2017 floating-point (fp speed),

(b) SPECspeed2017 integer (int speed),

(c) SPECrate2017 floating-point(fp rate),

(d) SPECrate2017 integer (int rate).

The benchmark programs are written in C, C++, and Fortran programming languages that

are derived from a wide variety of application domains. The fp speed and fp rate suites

consist of benchmarks that work with floating-point data types, whereas the int speed and

int rate suites contain benchmarks that perform computation on integer data types as shown

in Figure 2.1.

Characterization studies performed on the previous SPEC CPU2000 and SPEC CPU2006

showed that these benchmarks match the evolution of real-life workloads [13]. We have
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Figure 2.1: Rate and Speed Benchmarks in SPECCPU2017

used speed suits for our experiments. Speed suits are used to evaluate how fast the tested

computer can execute a benchmark and evaluate the performance of the executions.

There are several works that study the effectiveness of PGOs on various compilers. Dif-

ferent studies have shown the effectiveness of compiler optimizations on multi-cores and

found that -O3 level optimization provides the best performance across applications [2].

Thus, we have compared performance parameters with PGO for each benchmark over -O3

level optimization.

The usefulness and impacts of sampling-based profilers on adaptive tasks have been com-

pared in several prior research projects. If a known profile is provided, it may be used to

compare the correctness of any supplied profile data directly [4, 9]. Researchers have

tested whether their profile is capable of appropriately guiding the dependent adaptive

task using causality analysis when the right profile itself cannot be developed or is un-

known [15, 17, 23]. Part of this study examines how profiles created from various plausible

program inputs might describe the program execution for the current run rather than judg-

ing the profiler’s accuracy.

In our experiments, we have evaluated the performance of SPEC CPU2017 benchmarks

with two open-source compilers GCC and LLVM. We have considered four leading areas

in the evaluation of compilers in PGO technique :

(a) Understanding the impact of profile data on the effectiveness of PGOs.
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(b) The effect of cross-input profile information that is available using offline profiling tech-

niques.

(c) Effectiveness of PGOs in self/standard inputs on standard compilers such as GCC/g++

and LLVM.

(d) Performance analysis of top ten hot functions for each benchmark.
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Chapter 3

Experimental Setup, Experiments and Data Collection

In this chapter, we provide a brief background on the properties of the compilers gcc/g++

and llvm/Clang. We also describe the installation of benchmarks that are relevant to this

work and provide details of our experimental setup. Our initial experiments are performed

on a desktop machine with intel(R) Xeon(R) CPU E3-1240 v3 @3.40GHz. It is based

on the x86 64 architecture and is manufactured using Intel’s 22nm technology node and

architecture Haswell S. Its base clock speed is 3.40 GHz. However, a single core turbo

boost frequency can reach up to 3.80. Properties of the processor used to gather evaluation

results as obtained by Linux are presented in Figure 3.1.

3.1 Compilers

In this section we introduce the compilers used in this experiment. The choice of compilers

is made with respect to the usage of SPEC benchmarks, availability, and known perfor-

mance.
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Figure 3.1: Specification of Intel processor using in experiment

3.1.1 Clang/LLVM Compilers

“The LLVM Compiler Infrastructure Project is a “collection of modular and reusable com-

piler and toolchain technologies” [11]. LLVM can be used to develop a front end for any

programming language and back end for any instruction set architecture. LLVM is mainly

designed around a language-independent Intermediate Representation(IR) that serves as a

high-level, portable assembly language and can be optimized with a variety of transforma-

tions over multiple passes. LLVM is written in C++ and it is designed for compile-time,

link-time, run-time, and idle-time optimization of target programs written in arbitrary pro-

gramming languages. Clang is a compiler front end for the C and C++ programming lan-

guages and uses the LLVM compiler infrastructure as its backend. Clang inherits many

features, such as link-time optimization, pluggable optimizer, and Just-in-Time compila-

tion from LLVM. Several companies are using LLVM in their customized software devel-

opment tools, including AMD, NVIDIA, Apple, and Sony [11, 5, 19]. In our research, we

create binary executables for benchmarks using the LLVM compiler, and then we analyze
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the performance of those executables. For our tests, we are utilizing the most recent version

15.0.0 of LLVM and clang as shown in Figure 3.2.

Figure 3.2: LLVM/Clang version used in our experiments

3.1.2 GCC Compilers

The GNU compiler collection is an open-source and optimizing compiler produced by

the GNU Project supporting various programming languages, hardware architecture, and

operating systems. The GCC compiler was originally written to be a compiler for the GNU

operating system [10]. It is widely used across various target architectures and is distributed

along with the Linux operating systems. GNU compiler collection includes front ends for

many programming languages and libraries from these languages. Unlike LLVM, GNU

compilers are monolithic, where each language has a specific program to read the source

code and produce machine code. High-level optimizations in GNU are limited. GCC is

the primary component of the GNU toolchain and the standard compiler for most projects

related to GNU and Linux kernel. GCC is the one of the biggest free programs [16, 20]. It

plays an important role in the growth of free software as a tool. For our study, we are using

the GCC version gcc (GCC) 11.3.1 10220421 (Red Hat 11.3.1-2) as shown in Figure 3.3.

Figure 3.3: GCC version used in our experiments
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3.2 Hardware Cluster

We utilized the ITTC research cluster at the Advanced Computing Facility (ACF) for our

investigation. Only 2GB of RAM was allotted to our local workstation, which was in-

adequate to execute the benchmarks. Additionally, we ran nine benchmarks in parallel.

Therefore, nine nodes were made accessible throughout a concurrent benchmark run. As

a result, we made use of the ITTC research cluster’s High-Performance Computing (HPC)

facilities. The cluster uses the open-source, fault-tolerant, and highly scalable Slurm work-

load manager in addition to a job scheduling system for Linux clusters[12]. It also includes

a range of hardware types with core counts ranging from 8 to 20, and offers a huge memory

system with up to 512 GB of RAM. We utilized the hardware listed in the Figure 3.4 to run

our experiments.

Figure 3.4: Specification of Cluster hardware

3.3 Benchmark Setup

We executed our experiments with C and C++ programs from the SPEC cpu2017 bench-

mark suite. We have worked with nine-speed benchmarks that consist of SPECspeed2017

floating-point (fp speed) and SPECspeed2017 integer (int speed). System requirements

needed to install SPEC CPU2017 [1] are as follows

System requirements

(1) 16 GB main memory to run SPECspeed(per copy).

(2) 250 GB disk space is recommended to run a few benchmarks. However, a minimal

13



installation needs 10 GB

(3) C, and C++ compilers to be installed in the workstation as our target is to execute C/C++

benchmarks only.

3.3.1 Steps for Installation

SPEC CPU2017 is distributed as an ISO image, which needs to be mounted for installation.

To install an ISO image, we need root privilege of the system. Here are the steps:

(1) Firstly, we set up the directory to mount ISO image and map it with the SPEC directory.

(2) ISO-mounted image contains the installation file. We mention the path where we install

the benchmark. Then we run the installation file named install.sh which is provided by

SPEC CPU2017.

(3) The SPEC directory contains the files’ structure as follows:

1. benchspec: Some suite-wide files.

2. CPU: Benchmarks.

3. bin: Provides tools to run and report on the suit.

4. config: Config files to run each benchmark.

5. Docs: Some HTML documents and plain text documents.

6. Results: Contains a result that provides some log files and reports.

7. temp: Some temporary folders and files.

8. tools : Sources for the CPU 2017 tools.

14



3.3.2 Benchmark Setup

This section describes how to compile a benchmark using tools provided by SPEC. Here

are the steps:

(1) Each benchmark has a build folder where all the binaries are created.

(2) Data files include three different forms of input data:

1. ref: The timed datasets.

2. test: Information for a straightforward test of an executable’s functionality.

3. train: Information for Feedback-Directed Optimization(FDO).

(3) docs: Folder for documentations of benchmarks

(4) exe: Compiled version of benchmarks

(5) run: Benchmarks are run here and all the logs files and error files are created

(6) spec: Metadata for the benchmarks’ SPEC information

(7) src: It offers the benchmarks’ sources

We opened the configuration files for each benchmark. Each benchmark includes a few

sample configuration files. Based on our operating system, we selected a configuration file.

We used the configuration file my-gcc-linux-x86.cfg as an example. To build a benchmark,

we next transferred the configuration file to our own configuration file. We utilized the

runcpu tool, which is a feature of the SPEC CPU2017. With a fake command, we ran the

configuration file using runcpu tool to generate all the configuration instructions required.

Then, emulated the SPEC-provided environment to run all build instructions produced by

runcpu tool. A certain number of configuration and environmental variables were set for

each benchmark in this simulation. We first set up the SPEC environment to build a bench-

mark using source shrc. Following that, we employed produced instructions using fake

15



command for each benchmarks, copying the commands generated into our configuration

file. To automate the benchmark build procedure, we built scripts. To create the bench-

mark, we modified several options and used the runcpu command to run the configuration

file. The steps are as shown in Figure 3.5.

Figure 3.5: Steps for building a benchmarks

Using the aforementioned processes as a guide, we created nine C/C++ benchmarks and

ran our experiments with the GCC and Clang/LLVM compilers to gauge performance. The

nine benchmarks are listed in Table 3.1.

Nine SPEC Benchmark List
Benchmark Name Type Area
600.perlbench s Integer Perl interpreter.
602.gcc s Integer GNU C Compiler.
605.mcf s Integer Route Planning.
623.xalancbmk s Integer XML to HTML conversion via XSLT.
631.deepsjeng s Integer Artificial Intelligence: alpha-beta tree search(chess).
641.leela s Integer Artificial Intelligence: Monte Carlo tree search(Go).
657.xz s Integer General data compression.
644.nab s Float Molecular dynamics.
619.lbm s Float Fluid dynamics.

Table 3.1: SPEC cpu2017 benchmarks used in this used.

3.4 Tools

In this section we describe the other important tools that we used for this work.
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3.4.1 runcpu

The primary tool for SPEC CPU2017 is runcpu. Each benchmark is built and executed

using a Unix shell[1]. The benchmark configuration files are used for its operation. The

configuration files for the two compilers are nearly identical to the ones used in the SPEC

examples. For all benchmarks, we utilized the best and most conservative optimization

level, -O3, with no aggressive optimization. runcpu is used repeatedly to construct the

benchmark. As base matrix may be utilized to customize the optimization for each bench-

mark independently, we employ them rather than a peak model.

3.4.2 perf Tool

Perf is a strong Linux-based program that can measure CPU performance counters, trace-

points, and kprobed and uprobes (dynamic tracing)[8, 7]. A simple command-line tool,

the Linux perf tool is used to profile and track CPU performance on Linux computers. Al-

though it is a relatively straightforward tool, it can analyze performance in depth. The perf

tool has a few subcommands for gathering, tracking, and analyzing CPU event data.

Performance counters are CPU hardware registers that count hardware events such as

instructions executed, cache-misses suffered, or branches mispredicted. They form the

basis for profiling applications to trace dynamic control flow and identifying hotspots. perf

tool provides rich, generalized abstractions over hardware-specific capabilities. Among

others, it provides counters per task, per CPU, and per-workload, sampling, and source

code event annotation.

Tracepoints are instrumentation points placed at logical locations in code, for system calls,

TCP/IP events, file system operations, etc. These have negligible overhead when not in

use, and can be enabled by the perf command to collect information including timestamps
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and stack traces. The userspace perf command presents a simple-to-use interface with

commands like:

1. perf stat: It collects event totals.

2. perf record: It documents occurrences for reporting in the future.

3. perf report: It segments events by function, process, etc.

4. perf annotate: It includes event counts in annotations of the source code or assembly.

5. perf top: It shows live event count.

6. perf bench: It executes several microbenchmarks for the kernel.

3.4.3 VTune Profiler

VTune Profiler(formerly VTune Amplifier) is a performance analysis tool for x86 based

machines running Linux or Microsoft Windows operating systems[24]. Many features

work on both Intel and AMD hardware, but advanced hardware-based sampling requires

an Intel-manufactured CPU. VTune Profiler is available for free as a stand-alone tool or as

part of the Intel oneAPI Base Toolkit. It supports several languages such as C, C++, Data

Parallel C++ (DPC++), C, Fortran, Java, Python, Go, OpenCL, assembly and any mix. It

also supports other native languages that follow standards and can also be profiled. VTune

supports local and remote performance profiling. It can be run as an application with a

graphical interface, as a command line, or as a server accessible by multiple users using a

web browser.

On 32-bit and 64-bit x86 processors, the Intel VTune profiler is a performance analysis

tool that depends on the underlying hardware counters to get the run-time characteristics

of the program under evaluation. The profiler provides thorough details on the amount of
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time spent in each function and the amount of time the hardware spends executing code,

stalls, etc. Hotspots in the program (the time-consuming routines), hardware-related prob-

lems with the code (such as data sharing, cache misses, branch misprediction, and others),

thread activity, and system transitions (such as migrations and context shifts) may all be

found or determined using this information. The summary of the tool’s analysis is shown

in Figure 3.6.

Figure 3.6: Intel Vtune Amplifier

3.5 Implementation and Experiment

The experimentation was concentrated on nine benchmarks. The configuration files for

the two compilers, GCC and LLVM, resemble those in the SPEC examples. Shell scripts

were used to develop the configuration files to compile each benchmark. We utilized the
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runcpu command together with the fake keyword to generate all the necessary instructions

that helped to build the benchmark. We added each generated command to shell scripts

to create complete configuration files. The preset shell scripts were first run without any

optimization, and the resultant binary was then collected. Then, we compiled the same file

repeatedly while utilizing the default and top optimization setting, -O3. Additionally, this

run generated a binary file with the -O3-level optimization setting. We carried out the same

procedure for every benchmark and created them all with the appropriate folder structures

for two distinct compilers, such as GCC and LLVM. The three inputs (test, train, and ref)

are distinct for each benchmark. The purpose of these three inputs are:

(a) Test : Utilizing the test workload, we built up and executed each benchmark. We verified

that they provided the correct answers. The test workloads are only executed as an extra

layer of assurance that the resulting executables are functioning correctly. Their times are

not reported and do not contribute to the overall metrics. Therefore, multiple benchmarks

can be run simultaneously.

(b) Train : Performed similar steps for the train workload, for the same reasons, with the

same verification, non-reporting, and parallelism.

(c) Ref : We have taken the base files for each benchmark and set up the directories for all

the benchmarks. We ran refspeed (6xx) workload for our experiment.

3.5.1 Automated framework to run benchmark

To conduct our experiments correctly and objectively for this study, we implemented an

automated framework to build and run the benchmarks. In this section, we describe these

engineered frameworks.

We developed an automated framework that can build and run the benchmark. Shell scripts

were used in the development of this automated framework. We deployed the automated
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framework on the ITTC cluster computer. The ITTC cluster machine is a gateway to ac-

cess several nodes with huge memory and high-performance processing units. A batch

job is used to carry out the automated process on the cluster machine. To execute nine

benchmarks concurrently, we requested nine parallel nodes with the necessary setup. The

framework retrieves all executable binaries for each benchmark from the build folder and

executes each benchmark with both self-input and cross-inputs. With cross-inputs, it cre-

ates performance measurements for each benchmark. Running this task manually was quite

time-consuming and highly mundane. This automated system made the experiment more

fast and efficient. A few benchmarks required running for extended periods of time, such

as 15 to 16 hours or even a whole day. Therefore, using this program to build and run the

nine benchmarks minimized experimental time and human effort. Using a batch job, which

is a special feature of the cluster computer, we ran this automated framework on the ITTC

cluster system. This batch job generated results for nine benchmarks on the cluster. We

deployed this process with both the GCC and LLVM compilers.

3.5.2 Experiments with the GCC Compiler

The folder structure was established, with the typical inputs from SPEC benchmarks. Each

benchmark typically uses three standard inputs, such as test, train, and ref inputs. Our

investigation was to determine if employing profile-guided optimization(PGO) in source

code results in any performance gains over -O3 optimization. We used the build configu-

ration file with -O3 level optimization to accomplish our objective. Initially, the original

source program was optimized using the traditional O3 level optimization technique. PGO

uses optimization flags to direct its operations. It does not rebuild the program completely,

but it enables the compiler to identify sections of code that require optimization based on

how well the program performs.
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The instrumented compilation was the initial stage of profile-guided optimization(PGO).

The main output of this instrumented compilation was an executable binary file containing

instrumented code. We created the instrumented profile using the flag -fprofile-generate

with the GCC compiler. This run then created profile data with the suffix *.gcda in the

build folder of the benchmark. Then, in order to create an executable binary, we used the

generated profile data and then ran the same build configuration file with the flag -fprofile-

use. To create three distinct executables using the three standard inputs offered by SPEC,

we executed the final executable binary with standard inputs such as test, train, and ref.

The Table 3.2 shows lists of PGO flags used with the GCC compiler.

Profile Guided Optimization flags for GCC
Flags Action Generated files
-fprofile-generate This flag adds instrumented

code in the source code
*.gcda.

-fprofile-use This flag uses the instru-
mented code(* .gcda) and
generate profile

Binary executable.

Table 3.2: List of PGO flags with GCC compiler.

The automated framework we created received the executable binaries and inputs after

all the executable binaries such as test, train, ref, and O3, were generated. With cross-

input, this automated system conducted twelve runs for each binary and produced outputs

to a file.This framework internally employs the perf stat command offered by the Linux

operating system which generates several performance metrics including task-clock(msec),

page faults, cycles, instructions per cycle, and branches. Another script that we created

exports data to a file that retrieves only task-clock(msec) for each cycle of twelve runs

from a previously generated file. Then we computed the standard deviation as well as
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average CPU consumption with PGO over O3-level optimization.This staistics helped us

to analyze the performance of each benchmark on two compilers.

An identical procedure was then carried out for cumulative binary. To create the cumula-

tive binaries, we integrated all of the test, train, and ref binaries. We executed cumulative

binaries with ref inputs since we thought they would perform better. We used the same

procedure to get the data and export them to a file.The statistics for each benchmark were

then shown as bar graphs, along with an error bar that displayed the standard deviation.

3.5.3 Experiment with the Clang/LLVM Compiler

Our primary objective was to analyze the behavior of SPEC CPU benchmark programs with

the GCC and LLVM with both traditional optimization and profile-guided optimization. In

the case of the LLVM/Clang compiler, we followed a similar process to that of the GCC.

We compiled the build configuration files of the benchmark with the LLVM compiler. All

configuration files were similar to those of the GCC compiler. We modified the configura-

tion file to be compatible with the Clang/LLVM compiler. Then, we ran the build file using

O3-level optimization, created the executable binary with standard O3-level optimization,

and stored it in the build folder of the benchmark. Then, we again compiled the same

configuration file utilizing PGO flags to generate the executable binary file with profile in-

strumented code. We used the -fprofile-instr-generate flag provided by LLVM to generate

the instrumented code. During program execution, it captures the profile information of a

program and saves it as an executable binary in the benchmark’s build folder.

We ran the instrumented binary with train input to ensure that the resulting executable

functions correctly. Then, we compiled the instrumented binary file with the reference input

of the benchmark. During the execution of the binary, it collected all the profile information
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of programs and created a default.profraw file in the run folder of the benchmark. This

execution can created multiple *.profraw files. These files contained all raw profile data.

We combined all the raw instrumented *.profraw files and converted them to code.profdata

files using the merge command of the LLVM-profdata tool, which is provided by the LLVM

compiler.

We built the merged instrumented code, code.profdata, using the flag -fprofile-instr-use to

specify the collected profile data. This run created an executable binary file with profile

data and stored it in the benchmark’s build folder. Then, we ran the executable binary with

the test, train, and ref inputs. For each benchmark, we followed the same steps and created

executable binaries with profile information. The PGO flags used with the LLVM/Clang

compiler are shown in the below Table 3.3.

Profile Guided Optimization flags for LLVM
Flags Action Generated files
-fprofile-instr-
generate

This flag adds instrumented
code in the source code

default.profraw and
code.profdata.

-fprofile-instr-use This flag uses the instru-
mented code(code.profdata)
and generate profile

Binary executable.

Table 3.3: List of PGO flags with LLVM compiler.

Once all the executable binaries were created for each benchmark, we ran each binary with

all inputs. As an illustration, we executed the test binary with the test input along with the

train and ref inputs. We developed an automated framework using shell scripts that submits

a batch job to the cluster machine to execute the benchmark. This framework uses the perf

stat command provided by the Linux perf tool to measure performance metrics such as

task-clock(msec), page faults, cycles, instructions per cycle, and branches. In our test, we

ran all created executable binaries with the test, train, and ref inputs on the automated
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framework. This framework helped in the execution of each benchmark twelve times and

stored data in a file. We developed another script using python that fetches the performance

parameter, task-clock(msec), from the stored data and provides the standard deviation and

the ratio between average CPU utilization using PGO and O3-level optimization.

We combined all PGO-test, PGO-train, and PGO-ref binaries to generate a cumulative bi-

nary, which we then executed using ref input. The same process was used to get data for the

cumulative binary. We also gathered data for each benchmark using identical LLVM/Clang

compilation procedures.

3.5.4 Experiment using Intel vTune Profiler

One important contribution of this work was an analysis of hotspots using the Intel vTune

Profiler[19]. It provides predefined analysis configurations to address performance met-

rics. We used the hotspots configuration that investigates call paths and finds which part of

the code takes up the maximum amount of time. This functionality of the vTune profiler

provides CPU utilization data for each hotspot and identifies opportunities to tune the al-

gorithm of a program.

Our studies employ a mechanism that we built to quantify the percentage improvement or

degradation of the top ten functions for each benchmark using PGO over O3-level optimiza-

tion. We provide executable binaries like PGO-test, PGO-train, PGO-ref, and O3 binaries

and ref input to the Intel vTune profiler to analyze the hotspots for each benchmark. Our

technique for measuring the performance metrics collects data on CPU utilization time for

the top 10 most-used functions using PGO over No-PGO. The resulting ratio gives us a

percentage measure of the improvement or degradation of the top 10 hotspots and provides

the overall performance measure for each benchmark. When calculating the performance

measure, we collect five recorded data values for each of the top 10 functions. To create a
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measure of percentage CPU utilization, we compute an average of the total time spent in

every method during the compilation of each benchmark using Intel Vtune Profiler. Then,

we calculate the ratio of data using PGO over No-PGO O3-level optimization. The Intel

vTune Profiler and the organization of the analysis are shown in Figure 3.7.

Figure 3.7: Performance of gcc benchmark using Intel vTune Profiler
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Chapter 4

Results and Discussion

In this chapter, we describe the results of our experiments that investigate the characteris-

tics of profile-guided optimizations with the GCC and LLVM. We conduct experiments to

explore the questions in Section 2 and provide our findings.

4.1 Overall Observations

We run our experiment with two standard compilers, GCC and LLVM. Our first set of

experiments is designed to evaluate how PGO with the GCC and LLVM/Clang compilers

can utilize profile data to improve performance. We prepare configurations to compare the

behavior and performance of each benchmark using PGO over No-PGO O3-level optimiza-

tion. In all cases, we run each configuration 12 times and report their average and standard

deviation. Figures 4.1 and 4.2 present the execution time with GCC and LLVM compilers

with PGO over No-PGO for each benchmark. These two figures help us answer the first

question of our experiments.

We anticipate that these two compilers will provide similar results in all benchmarks. In

practice, however, this is not always the case. Figure 4.1 shows that a few benchmarks

perform better with GCC compared to the LLVM compiler. For instance, the GCC compiler
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Figure 4.1: PGO vs NonPGO in GCC

outperforms LLVM for a few benchmarks such as 623.xalanbmk s, 657.xz s, 644.nab s and

619.lbm s.

Figure 4.2: PGO vs NonPGO in CLANG

On the other hand, Figure 4.2 shows the execution-time benefit from PGO with the LLVM/Clang

compiler. We assume that both compilers will use similar PGO techniques to improve the

performance of a program, as both compilers are similar C/C++ compilers. They do not,

however, show comparable outcomes. Figure 4.2 depicts that LLVM outperforms the

GCC compiler in a few benchmarks. For example, the LLVM compiler performs better

than GCC on benchmarks such as 600.perlbench s, 602.gcc s, and 605.mcf s.

Figures 4.3 and 4.4 represent the program performance using profile-guided optimiza-

tion(PGO) over No-PGO standard -O3 level optimization with the GCC and LLVM com-

pilers. The first bar for each benchmark in Figures represent the ratio of the program

run-times with the PGO-test binary and O3 binary with the standard ref input. The second

bar compares the ratio of the program runtime with the PGO-train binary and O3 binary

with ref input, The third bar represents the ratio of the program runtime with the PGO-
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ref binary and O3 binary with ref input, while the last bar compares the program runtime

PGO-cumulative binary and O3 binary with ref input. Every comparison gives an estima-

tion of the performance gain/loss due to profiling the benchmark program with the GCC

and LLVM compilers.

Figure 4.3: PGO vs NonPGO with ref inputs in gcc compiler

In this study, we evaluated the effectiveness of profiling the program behavior with standard

ref input and then using that profile data to guide PGOs during an offline evaluation run with

the ref input. One training run and one evaluation run are performed for each benchmark-

input pair. The training run uses one benchmark-input pair and collects profile data and

method compilation orders. The evaluation run executes the benchmark using the ref input

and profile data. We use the automated framework, which is discussed in Section 6.1. The

program run-time is recorded for 12 runs.

Theoretically, we expect the PGO-generated binary that is customized with the same input

as used in the evaluation run to deliver the best run-time performance results. In prac-

tice, however, we found this to not always be the case. That is why, we obtain the best
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Figure 4.4: PGO vs NonPGO with ref inputs on CLANG compiler

performance metrics by utilizing cross-binaries, such as PGO-test, PGO-train, and PGO-

cumulative binaries with the ref input. In this study, we identify how different profiles

affect the performance of PGOs.

For each benchmark with the GCC compiler, Figure 4.3 compares the run-time reported

by the offline profiling to the run-time using O3-level optimization. We observe that few

benchmarks provide the performance we expect. For instance, 631.deepsjeng s, 657.xz s,

and 644.nab s produce experimental findings that are consistent with the theory. These

benchmarks show better performance with the refbinary-refinput pair. We also discover that

using profiling data from PGO-cumulative binary with ref input provides performance that

is within 4-9% of that obtained using profile data from O3-level binary. A number of bench-

marks, for example, 600.perlbench s (9%), 623.xalanbmk s (8%), and 605.mcf s(4%) pro-

vide a significant performance improvement over the No-PGO binary. In one instance, such

as 641.leela s, we detect significant performance degradation, whereas employing PGO has

no performance impact on 631.deepsjeng s.
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For each benchmark, Figure 4.4 depicts the performance with the Clang /LLVM compiler

using PGO over No-PGO. A few benchmarks,like 602.gcc s, 623.xalabmk s, 641.leela s,

and 619.lbm s generate experimental results that confirm the profile-guided-optimization(PGO)

hypothesis. These benchmarks perform better in refbinary-refinput pairs. We also ob-

serve from the results that a few benchmarks,like 600.perlbench s and 605.mcf s show

significant performance improvement using PGO. In fact, the benchmark 600.perlbench s

shows a 12% improvement, and 605.mcf s has an 11% improvement in performance us-

ing offline profiling. Figure 4.4 also exhibits that a few benchmarks, such as 641.leela s,

644.nab s, and 619.lbm s have considerable performance degradation during the execution

of the benchmark programs using PGO. There might be several causes for performance

deterioration, but finding causes is outside the scope of this work. We also discover that a

few benchmarks,such as 631.deepsjeng s and 657.xz s, have a negligible impact on PGO

performance when compared to No-PGO.

Profile-Guided-Optimization(PGO) is a very well-known technique for improving the exe-

cution time of programs. It employs a few well-known techniques to improve performance.

For instance, function inlining is the most common and popular PGO technique employed

by standard compilers. As we have already stated before, GCC and LLVM both being sim-

ilar C/C++ compilers, our assumption is similar PGO techniques are applied to improve the

performance of the program, resulting in similar output when using PGO. In practice, how-

ever, they do not provide similar results. Therefore, they might not apply similar PGO tech-

niques to improve the performance of the benchmark program. Compilers do not adhere

to any typical trends to demonstrate performance increases by utilizing PGO. We observe

that both compilers, GCC and LLVM, have different performance impacts on individual

benchmarks. When GCC and LLVM performance is compared, there are few benchmarks

that perform better in GCC, and not necessarily the same benchmarks perform better in

LLVM. For instance, a few benchmarks, such as 600.perlbench s, 602.gcc s, 605.mcf s,
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623.xalanbmk s, 657.xz s, and 644.nab s, have better performance with the GCC compiler

using PGO. On the other hand, the 600.perlbench s, 602.gcc s, and 605.mcf s benchmarks

do better with the LLVM.

When comparing GCC and LLVM performance, we also observe that there is a difference

in the size of the source code of each benchmark in terms of Kilo Lines of Code(KLOC) and

executable size generated by each of the compilers. Figure 4.5 represents the comparison

of executable sizes produced by the GCC and LLVM compilers. We can better understand

the third research question by using these comparisons.

Figure 4.5: Executable Sizes of each benchmark with the GCC and LLVM

In experiments, the size of the code ranges from 1KLOC to 1304 KLOC[1]. The size of

benchmark executables varies widely for the two compilers. We find that LLVM consis-

tently creates smaller executables for all benchmarks compared to GCC. The GCC compiler

produces the largest executables for 623.xalanbmk s and 602.gcc s. Overall, the executa-

bles generated by GCC are about 1.8x larger than LLVM executables. GNU being a cross-

platform compiler focuses on probability, and this may be why the code generated by GCC

is significantly larger.

The second set of experiments focuses on the performance effect of PGOs at the fine-

grained function level. Using the Intel vTune profiler, we analyze performance at the func-

tion level for individual benchmark with binaries built using GCC and LLVM compilers.
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(a) Performance of PGO (b) Performance of top hotspots

Figure 4.6: Performance of 600.perlbench benchmark by Intel vTune Profiler

Figures 4.6 to 4.14 represent the results of the second set of experiments with the binaries

produced by the GCC compiler. The Intel vTune Profiler analyze the previously profiled

data with ref input. Results show the total execution time for each benchmark with both

options - PGO is on and PGO off and evaluate the benefits of optimizations for the top ten

hot functions.

(a) Performance of PGO (b) Performance of top hotspots

Figure 4.7: Performance of 602.gcc benchmark by Intel vTune Profiler

Figures 4.8 and 4.11 provide a detailed performance analysis of benchmarks, 605.mcf s

and 641.leela s, that are executed with binaries built using GCC compiler and standard

ref input provided by the SPEC. The total execution time of benchmarks using PGO and

No-PGO are depicted in Figures 4.8(a) and 4.11(a). For both benchmarks, the program

outperforms No-PGO, indicating that PGO has a considerable negative impact on perfor-

mance. To analyze the reason for the performance drop, Figures 4.8(b) and 4.11(b) repre-
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(a) Performance of PGO (b) Performance of top hotspots

Figure 4.8: Performance of 605.mcf benchmark by Intel vTune Profiler

(a) Performance of PGO (b) Performance of top hotspots

Figure 4.9: Performance of 623.xalancbmk benchmark by Intel vTune Profiler

sent the finer-grained performance analysis of the top ten hot functions during the program

execution. We observe that the third and fourth functions of 605.mcf s and the first three

consecutive functions of 641.leela s take longer execution time with PGO than the No-PGO

traditional approach.

On the other hand, Figures 4.15 to 4.23 demonstrate the outcomes of the tests with binaries

generated by the Clang/LLVM compiler. The Intel vTune Profiler examines earlier profiled

data with standard ref input. Results reflect the performance impact of PGOs on the top ten

hot functions and display the overall execution time for each benchmark with and without

PGO.

We notice that a few benchmarks, such as 641.leela s, 644.nab s, and 619.lbm s, have

performance degradation with binaries produced by the Clang/LLVM compiler. Figures
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(a) Performance of PGO (b) Performance of top hotspots

Figure 4.10: Performance of 631.deepsjeng benchmark by Intel vTune Profiler

(a) Performance of PGO (b) Performance of top hotspots

Figure 4.11: Performance of 641.leela benchmark by Intel vTune Profiler

4.20, 4.22, and 4.23 display the total execution time and the top ten most used functions

of the benchmarks. We observe that three functions in 641.leela s and two functions in

644.nab s take more execution time than No-PGO. In case of the benchmark, 619.lbm s,

the first function takes the maximum time of execution of the benchmark, whereas the

other functions are barely noticeable. However, the fraction of execution time devoted to

remaining functions has a significant impact on total execution time. In this instance, every

subsequent function requires a little longer than the first one. Consequently, the overall

performance declines.

Additionally, we also collect data to compare the GCC and LLVM performance in terms of

executable sizes of each benchmark and build-time with two compilers. Executable size of

O3 level binary and build times of benchmark are shown in Figure 4.24.
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(a) Performance of PGO (b) Performance of top hotspots

Figure 4.12: Performance of 657.xz benchmark by Intel vTune Profiler

(a) Performance of PGO (b) Performance of top hotspots

Figure 4.13: Performance of 644.nab benchmark by Intel vTune Profiler

We observe that LLVM has a smaller executable size, but it has significantly longer built

times in comparison with the GCC compiler. Though the GCC compiler produces executa-

bles that are considerably large in size, the build times are shorter than the build times of

LLVM.
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(a) Performance of PGO (b) Performance of top hotspots

Figure 4.14: Performance of 619.lbm benchmark by Intel vTune Profiler

(a) Performance of PGO (b) Performance of top hotspots

Figure 4.15: Performance of 600.perlbench benchmark by Intel vTune Profiler

(a) Performance of PGO (b) Performance of top hotspots

Figure 4.16: Performance of 602.gcc benchmark by Intel vTune Profiler
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(a) Performance of PGO (b) Performance of top hotspots

Figure 4.17: Performance of 605.mcf benchmark by Intel vTune Profiler

(a) Performance of PGO (b) Performance of top hotspots

Figure 4.18: Performance of 623.xalancbmk benchmark by Intel vTune Profiler

(a) Performance of PGO (b) Performance of top hotspots

Figure 4.19: Performance of 631.deepsjeng benchmark by Intel vTune Profiler
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(a) Performance of PGO (b) Performance of top hotspots

Figure 4.20: Performance of 641.leela benchmark by Intel vTune Profiler

(a) Performance of PGO (b) Performance of top hotspots

Figure 4.21: Performance of 657.xz benchmark by Intel vTune Profiler

(a) Performance of PGO (b) Performance of top hotspots

Figure 4.22: Performance of 644.nab benchmark by Intel vTune Profiler
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(a) Performance of PGO (b) Performance of top hotspots

Figure 4.23: Performance of 619.lbm benchmark by Intel vTune Profiler

Figure 4.24: Executable Size and build time of each benchmark
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

We study the properties and evaluate the performance of PGOs in mainstream C/C++ com-

pilers (GCC and LLVM) and standard benchmark programs (SPECcpu 2017). We explore

four primary research questions: (a) What is the performance gain from PGO with main-

stream compilers? (b) How do different program behavior profiles, corresponding to dis-

tinct program inputs, affect the efficacy of PGOs? (c) Based on the premise that most com-

piler optimizations (for C/C++) are mature and well-known, do different compilers deliver

similar performance gains with PGOs?, and (d) What fraction of hot program functions see

a significant benefit from PGOs? Additionally, we also compare the size and speed of the

program binaries generated by the highest (-O3) optimization level in GCC and LLVM.

We make several notable, and some counter-intuitive, observations in this work. (a) The

performance benefit delivered by binaries generated using PGOs (employed by the com-

pilers used in this study) is often small. (b) While using a different profile/input during the

training and evaluation runs can be expected to produce performance losses, we found that

even using the same input can result in a performance loss in some cases. (c) Surprisingly,

the same program profile does not always produce the best performance. (d) Surprisingly,

41



we find that programs deliver widely different performance results when compiled using

PGOs with GCC and LLVM. This observation suggests that different mainstream compil-

ers seem to employ substantially different PGO optimizations and/or heuristics. (e) We

explored the program-level performance trends in more detail by using the Intel vTune

Profiler to measure the finer-grained function-level performance characteristics for PGOs.

Again, we find the different functions are affected differently by PGOs with no overwhelm-

ing trend. (f) We also observe that binaries generated by LLVM are typically both signif-

icantly smaller and realize higher performance compared to corresponding binaries gener-

ated by GCC.

Finally, we believe that the frameworks we designed and constructed in this work, and

our experimental results and observations can prove useful to other researchers and practi-

tioners that wish to understand or use PGOs for their workloads.

5.2 Future Work

In the future, we plan to expand the scope of this work by studying other compilers and

benchmarks. We will next use a white-box approach by studying the compiler code to

better understand the causes of the performance results we observed in benchmarks with

PGOs.
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