
Deploying Android Security Updates: an Extensive Study
Involving Manufacturers, Carriers, and End Users

c©2021

Kailani R. Jones

Submitted to the graduate degree program in Department of Electric Engineering and Computer
Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the

requirements for the degree of Masters of Computer Science.

Committee members

Alexandru G. Bardas, Chair

Fengjun Li

Bo Luo

Date defended: March 8, 2021

The Thesis Committee for Kailani R. Jones certifies
that this is the approved version of the following thesis :

Deploying Android Security Updates: an Extensive Study Involving Manufacturers, Carriers, and
End Users

Alexandru G. Bardas, Chair

Date approved: March 9, 2021

ii

Abstract

Android’s fragmented ecosystem makes the delivery of security updates and OS upgrades cum-

bersome and complex. While Google initiated various projects such as Android One, Project Tre-

ble, and Project Mainline to address this problem, and other involved entities (e.g., chipset vendors,

manufacturers, carriers) continuously strive to improve their processes, it is still unclear how ef-

fective these efforts are on the delivery of updates to supported end-user devices. In this paper, we

perform an extensive quantitative study (August 2015 to December 2019) to measure the Android

security updates and OS upgrades rollout process. Our study leverages multiple data sources:

the Android Open Source Project (AOSP), device manufacturers, and the top four U.S. carriers

(AT&T, Verizon, T-Mobile, and Sprint). Furthermore, we analyze an end-user dataset captured

in 2019 (152M anonymized HTTP requests associated with 9.1M unique user identifiers) from a

U.S.-based social network. Our findings include unique measurements that, due to the fragmented

and inconsistent ecosystem, were previously challenging to perform. For example, manufacturers

and carriers introduce a median latency of 24 days before rolling out security updates, with an

additional median delay of 11 days before end devices update. We show that these values alter per

carrier-manufacturer relationship, yet do not alter greatly based on a model’s age. Our results also

delve into the effectiveness of current Android projects. For instance, security updates for Treble

devices are available on average 7 days faster than for non-Treble devices. While this constitutes

an improvement, the security update delay for Treble devices still averages 19 days.

iii

Acknowledgements

I would like to thank all my family and friends who supported and motivated me with thought-

ful and loving discussions. Thank you for always being there for me.

I would also like to thank my advisor, Alexandru Bardas, who helped guide me through this

research process. His assistance helped me grow not only as a researcher but also as an individual.

Furthermore, I would like to thank my collaborators Ting-Fang Yen and Sathya Chandran

Sundaramurthy. Both colleagues acted as mentors and helped sharpen my analytical and critical

thinking skills.

Without all of your support, I wouldn’t be where I am today. Thank you again.

iv

Contents

1 Introduction 1

2 Background and Related Work 4

2.1 Android Security Updates and Operating System Upgrades 4

2.2 Challenges with Fragmentation . 5

2.3 Related Work . 6

3 Data 8

3.1 Android Security Bulletins . 8

3.2 Mobile Carriers . 9

3.2.1 Collection and Normalization Process . 10

3.3 End user . 15

3.4 Mobile Manufacturers . 18

3.4.1 Security Updates on Locked and Unlocked Samsung Devices 20

3.5 Ethical Considerations . 20

4 Manufacturers and Carriers’ Effects 22

4.1 Rollout Frequency . 22

4.2 Rollout Latency . 25

4.3 Summary of Carrier and Manufacturer Measurements 31

5 End-User Update Behavior 33

5.1 Security Updates Frequency and Latency on End-User Devices 33

5.2 OS Upgrades on End-User Devices . 37

v

5.3 Effectiveness of Android Initiatives . 40

6 Limitations and Discussion 45

7 Conclusions 48

vi

List of Figures

2.1 Android security update and OS upgrade chains – Updates follow a chain of com-

mand with multiple involved entities. The amount of work on the manufacturers’

side depends on whether a model runs a customized (manufacturer-specific) or a

non-customized (“stock”) OS version, and on the interactions with the carrier (red

arrows). 5

3.1 The distribution of the number of active months per device in the end-user dataset. 16

3.2 The distribution of the number of active weeks per device in the end-user dataset. . 17

3.3 The distribution of the time (in days) between consecutive accesses to the app from

the same end-user device. 18

3.4 The distribution of number of accesses per month for each device. For a device,

this is the number of total accesses over the year divided by the number of months

in which the device is active. 19

4.1 Cumulative distribution of the normalized update frequency per model, for each

carrier – The average update frequency is 0.35 across all models, indicating that a

carrier-supported device receives slightly more than one-third of updates issued in

the monthly Android Security Bulletins. 23

4.2 Cumulative distribution of the normalized security update frequency for Samsung

(right) and LG (left) models, for each carrier – Samsung models on AT&T appear

to receive updates more frequently than those on other carriers. LG models on

T-Mobile appear to generally receive updates more frequently than those on other

carriers. 25

vii

4.3 Age distribution of carrier-supported models at the release time of security updates–

The age of the model plays a big part in both its update frequency as well as update

support duration. The number of security updates rolled out to models older than

36 months drops sharply. 26

4.4 Update latency for each Android Security Bulletin from August 2015 to December

2019 – Each data point represents a security update announcement from the carri-

ers. The rollout latency remains largely unchanged over four years with a median

of 24 days. 27

4.5 Distribution of update latency per carrier – Each data point corresponds to an An-

droid Security Bulletin, where we calculate the average latency across carrier se-

curity update announcements for that bulletin. 28

4.6 Update latency for models supported by all four carriers – 21 models from 4 man-

ufacturers (Samsung, LG, Motorola, HTC). With different testing mechanisms be-

tween manufacturer and carrier [6], a model may experience inconsistent update

latency depending on the carrier. 29

4.7 Update latency of Samsung locked, unlocked, and unbranded devices – Locked

models, on average, receive updates four days faster than their unlocked counterparts. 30

5.1 End-user unique build number distribution – Per device, the top 15 manufacturers

with the most devices. 34

5.2 Device update latency – Cumulative distribution of the days between carrier posted

date and the build change observed on the device. 36

5.3 Device access behavior versus latency – Cumulative distribution of the days be-

tween carrier announcement and device build change, for Pixel 2 XL devices asso-

ciated with Verizon updating to build “QP1A.191005.007.A1”. 38

5.4 Android 10 adoption per manufacturer – time delta between Android 10 release

(September 3, 2019) and the date that Android 10 was first observed on a device. . 39

viii

5.5 Treble vs. all Active Devices - Distribution of unique build numbers per device in

2019, comparing Treble devices with all active devices. 42

5.6 Android 10 release date on Treble end-user devices – The time difference between

Android 10 release (September 3, 2019) and the date that Android 10 was first

observed on a Treble device, per device manufacturer. 43

5.7 Distribution of update rollout latency for Treble and non-Treble devices – From

the carrier dataset, Treble’s average latency is 19 days versus 26 days for non-Treble. 44

ix

List of Tables

3.1 Carrier dataset – Carrier security update announcements made between August

2015 and December 2019. 9

3.2 Processing security updates data from carriers – Each (normalization) step removes

non-conforming data from each carrier. We process all Android updates from car-

riers and continue to remove updates at each step based on the stated criteria. It’s

important to note the need for transparency and consistency across these update

announcements as quite a few updates are dropped in our analysis due to incom-

plete information (e.g., from missing release dates to what is addressed within an

update). ∗Increased due to Verizon posting one update but indicating multiple

models. 13

3.3 Manufacturer security updates from Samsung – Overview of the collected update

announcements rolled out July 2017 to December 2019 for 15 Samsung Galaxy

models. 20

5.1 OS distributions for Treble, Android One, and all active devices – applies to active

user devices that accessed the mobile app at least once a month, for at least 10

months in 2019. There are a total of 1,273,571 active devices, including 427,291

Treble devices and 1,048 Android One devices. 40

x

Chapter 1

Introduction

Android’s highly fragmented and inconsistent ecosystem makes the updating and operating system

(OS) upgrading processes cumbersome and complex, [19, 23, 17, 51]. With a Linux kernel, mul-

tiple parties partake within this scheme: operating system developers (e.g., Linux, Android Open

Source Project), system-on-a-chip manufacturers (e.g., Qualcomm, NVIDIA), device model man-

ufacturers (e.g., Samsung, LG), mobile carriers (e.g., AT&T, Verizon), carrier partners, third-party

testing labs, and end users, [6, 49, 38, 13, 9].

Over the years, Google initiated multiple projects that seek to increase the number of Android

devices receiving security updates. For instance, in their Security & Privacy report released in

2019, [17], Android reported an 84% increase of devices receiving a security update in contrast

to the last quarter in the previous year. However, this does not imply that these devices are re-

ceiving updates covering the latest Android Security Bulletins – they could actually be behind by

months [6, 39]. As Android focuses on improving the availability of security patches, it is also

important to assess the impact of other involved entities in their delivery and rollout to devices.

Providing a comprehensive study on Android security updates is a challenging task due to the

fragmentation and inconsistencies across the involved parties [23, 51]. Various past efforts focused

on different aspects of the Android update process. For instance, some works examined the patch

latency in the Android Open Source Project (AOSP) and how it is affected by the vulnerabilities’

content classifications [11, 26, 49]. Other efforts analyzed the manufacturers’ involvement in this

process [49, 38, 6, 12] or multifarious elements on the end-user side [2, 49, 17, 8]. In general, these

efforts focused on important but limited facets of security updates. Recently, the U.S. Federal Trade

Commission (FTC) released a report on the issues in mobile security updates [6]. While their goal

1

was to provide a comprehensive perspective, this report covered a limited dataset (i.e., only eight

manufacturers). Despite the important insights from these previous efforts, we did not encounter a

study of the Android security update rollout process that takes into account all of the major players

including AOSP, manufacturers, carriers, and end users.

In this work, our goal is just that. Specifically, once a security update is available from AOSP,

we examine its journey from the manufacturers and carriers to the end user devices. At each step,

we measure how the frequency and latency of security updates (arguably, among the most im-

portant metrics of the update process) are affected by these players and other factors influencing

this process. Moreover, we also track a recent OS upgrade. Similar to security updates, an OS

upgrade also increases a device’s security posture [41]. The findings from our study may benefit

security-conscious consumers in making informed decisions regarding their mobile devices, and

also provide policy makers and software vendors with a deeper understanding of the current An-

droid security landscape. More generally, our study sheds light on the actual rollout process of

Android security updates.

Our study is made possible by leveraging multiple data sources. We gathered information from

the monthly Android Security Bulletins [40], as well as 1,953 public security update announce-

ments available from the top four U.S. carriers (AT&T, Verizon, T-Mobile, and Sprint1) covering

274 unique device models across 25 manufacturers for the same time period. Both of these datasets

span from August 2015 (when the Android Security Bulletins started) to December 2019, allow-

ing us to analyze longitudinal update behavior over a period of four years. We complemented

these datasets with 684 security update announcements specific to locked and unlocked models

from Samsung. Additionally, we analyzed 152,156,934 HTTP requests associated with 9,163,277

unique user identifiers and 4,800,228 unique user-agent strings from a U.S.-based social network,

which allows us to empirically observe update behavior by end users and correlate with the car-

rier/manufacturer announcements. The collection, storage, and processing of all datasets follow

strict ethical and privacy considerations as detailed in Section 3.5.

1The data was gathered when T-Mobile and Sprint were still separate entities/carriers

2

To the best of our knowledge, given the fragmented nature of the Android landscape, this is the

first study to adopt a comprehensive approach that results in unique quantitative insights into the

Android security update ecosystem. Our findings confirm assessments, such that manufacturers

and carriers tend to update older phones with lesser frequency, and complement these assessments

with novel insights. For example, the latency of security update rollouts introduced by the de-

vice manufacturers and mobile carriers stays relatively unchanged over the past four years – at an

additional 24 days (longer than the two weeks it takes to publish the majority of exploits [21]).

These latency results vary significantly per manufacturer and carrier; as their relationship is vital.

Moreover, when analyzing the carrier’s role within this relationship (e.g., locked vs. unlocked

devices), we notice that locked models may receive security updates faster and more frequently

than their unlocked (and sometimes even “unbranded” – never used a carrier) counterparts; thus,

emphasizing again, the important role carriers play in the rollout of security updates. Contrary to

our expectations, the CVE severity, type of vulnerabilities, or the number of CVEs included in a

security update do not generally impact the rollout latency.

By analyzing the end-user dataset, we empirically evaluate the delay for when end devices

applied the update. Our results show that it takes a median value of 11 days from the carrier’s

security update announcement to when the update was observed on the device. If we consider

that users in the end-user dataset login (on average) every 6.12 days and the effect of updates being

rolled out in batches or stages, the user-incurred delay can be much lower. Examining the effects of

Android’s initiatives to improve the updating ecosystem, we find that carriers and manufacturers

roll out security updates an average of 7 days faster for Treble [52] models compared to non-

Treble models. We also observe Android One [1] and Treble devices receiving a higher number

of security updates as well as being more up-to-date. However, these initiatives do not necessarily

demonstrate faster OS upgrades or solve the delayed security updates as the manufacturers and

carriers still influence the release process. Project Mainline [5], announced in May 2019, is in its

early stages of adoption. Since it does not support OS versions prior to Android 10, its adoption

rate is also directly impacted by manufacturers and carriers OS upgrade decisions.

3

Chapter 2

Background and Related Work

Android security updates and OS upgrades are impacted by various entities [6]. This section

overviews this fragmented structure and the interactions between the involved entities. These con-

tinuous interactions lead to complex dependency relationships and workflows with manufacturers

and carriers serving as prime examples.

2.1 Android Security Updates and Operating System Upgrades

In this work, an update refers to a security update (applying an Android Security Bulletin) while an

upgrade indicates an OS upgrade (increasing the OS version). As pictured in Figure 2.1, updating

and upgrading an Android device follows a chain of command involving multiple entities. Security

updates start with Android patching vulnerabilities within the AOSP followed by chipset vendors

as needed. Next, manufacturers, based on whether a model has a customized OS version or not,

integrate and test the changes as well as the alterations requested by mobile carriers. Finally,

manufacturers, with (usually) approval from the carrier, release the update to the end-users [38, 6].

OS upgrades follow a similar process. First, Google releases the Platform Developer’s Kit

(PDK) to manufacturers and chipset vendors. The PDK contains both the AOSP and close-sourced

components [4]. Next, device manufacturers continue development by ensuring compatibility with

the chipset, meeting WiFi and Bluetooth standards, adding device components (phone calling,

messaging, etc.), designing their own manufacturer branding (user-interface, graphics, and other

features), and testing all features. During this process, manufacturers work with the mobile opera-

tors/carriers and third-party testing labs to test or add additional features per request [13, 47, 9].

4

Operating System (OS) Upgrades

Users
Receive

Sec. Update*

Security Updates

Carriers Test

Non-Customized

Customized

Manufacturers
Apply and Test

Chipset Vendors
Releases Updates

Google
Releases

Updated AOSP
Manufacturers

Determine
Affected Devices

and Variants

Manufacturers
Develop,

Apply, and Test
Update

Manufacturers
Test

Compatibility

Carriers Test

Google
Releases

Android OS (PDK)

Chipset Vendors
Release

Appropriate Drivers

Manufacturers
Customize OS

for Device

Manufacturers
Ensure Standards

are Met (e.g., WiFi)

Third-Party Labs Test

Carriers Customize and Test
Users

Receive
OS Upgrade*

 Optional

Required

*Affected by
release method

(A/B testing,
batch updating)

Figure 2.1: Android security update and OS upgrade chains – Updates follow a chain of com-
mand with multiple involved entities. The amount of work on the manufacturers’ side depends
on whether a model runs a customized (manufacturer-specific) or a non-customized (“stock”) OS
version, and on the interactions with the carrier (red arrows).

In this process, the manufacturers and carriers play a vital role. They are not only responsible

for integrating and testing security updates and upgrades (often for tens of different models at a

time) but also for their delivery to the end devices. In this work, we explicitly attempt to mea-

sure the overhead incurred by these entities during the security update and OS upgrade rollout

processes.

2.2 Challenges with Fragmentation

The interdependence between manufacturers and carriers (with the involvement of chipset vendors

and testing labs) manifests itself in a plethora of back-and-forth interactions. For instance, one

manufacturer supporting multiple device models may need to perform individual customizations

with various mobile carriers. This can result in as many as 1,500 variations of the same update or

upgrade for the manufacturer [18].

The update process is further complicated by the presence of locked and unlocked devices.

Locked models are tied to a specific carrier (i.e., carrier-supported) whereas unlocked models

are not. Thus, a locked device cannot use other carrier networks, unless the “owning” carrier

5

unlocks that device. By using Samsung (which has the highest market share among Android

device manufacturers 1) as the base case, we observe all models (both locked and unlocked) receive

updates from the manufacturer. However, if these devices are connected (e.g., via SIM cards) to a

carrier network, then the carrier determines when updates are released [16, 10].

Unlike the structured format present in Android Security Bulletins, each manufacturer and car-

rier posts announcements for software updates rolled out to supported models in varying formats,

if at all. Generally, these update announcements are inconsistent from a content perspective and

provided (at times) in changing formats [6]. The large number of carriers and Android device

manufacturers, accompanied by a lack of standard reporting mechanisms, make it challenging to

perform independent, systematic measurements on the delivery process of security updates.

2.3 Related Work

Before updates are released to manufacturers, Google must patch AOSP. Farhang et al. [11] mea-

sured patch latency from Qualcomm and Linux repositories to code alterations in AOSP and also

studied the lifetime of a vulnerability from discovery time to AOSP patch. Linares-Vasquez et

al. [26] performed an in-depth analysis of Android vulnerabilities. They studied which system

components are commonly affected and also when the vulnerabilities were introduced to when

its code was fixed in AOSP. These research efforts showed that severity does not affect the patch

latency (e.g., the lifetimes of critical CVEs are similar to that of moderate CVEs).

Another line of work studies Android devices’ patch behavior using detailed data collected

directly on participating devices. Thomas et al. [49] inspected the Android source code tree to

identify when fixes in upstream open-source projects are included in an Android update, and cor-

relate that with device information collected from their Device Analyzer app (on approx. 24,000

user devices) to calculate a metric for the security posture of phone models.

Researchers from SRLabs [38, 24] analyzed the presence of security patches on end devices

1Market share as of May 1, 2020: https://www.appbrain.com/stats/top-manufacturers

6

https://www.appbrain.com/stats/top-manufacturers

through a mobile app, SnoopSnitch2. Their approach searches for pre-compiled signatures of

security patches within binary firmware files, such that source code access is not required. They

showed that Android manufacturers differ widely in patch completeness. Samsung and Huawei

appear to make patches available faster over time, but it is unclear how the delay is calculated in

this work. Duo Labs measured the percentage of devices running the current Android Security

Bulletin through the DUO app [2]. They appear to study the adoption of only one bulletin, while

our analysis includes 53 bulletins.

More similar to this work are studies that consider the role of manufacturers in the security

update rollout process. The FTC released a report in 2018 on mobile manufacturers’ Android se-

curity update support [6]. They measured the lifetime support of models, the frequency of updates,

and the time from when vulnerabilities were reported to when they were patched by the manufac-

turer. This report only covered models released in 2013 to 2014. Farhang et al. [12] compared the

CVEs addressed in each Android Security Bulletin with those included in vendor-specific security

bulletins released by manufacturers to calculate the CVE patch delay (i.e., the number of security

bulletins (months) until the CVE is included).

Other efforts, not specific to Android, study open-source and third-party patching [25, 48, 31, 7]

as well as user studies on users’ updating behavior [14, 22, 27, 32, 29, 28, 37].

Compared to previous studies, our work takes a more holistic view on the Android security

update rollout process. We consider the role of AOSP (the Android Security Bulletins), manu-

facturers, carriers, and end users/devices in this process. Analyzing four years of security update

announcements from top U.S. carriers, Android manufacturers, and a corpus of HTTP requests

from Android devices observed by a social network, our study sheds light on how the frequency

and latency of updates are affected by these players and other influential factors. Our research ef-

fort extends and complements existing works by confirming some of their findings, contradicting

others, and providing novel measurements.

2SnoopSnitch app for Android: https://play.google.com/store/apps/details?id=de.srlabs.snoops
nitch&hl=en_US

7

 https://play.google.com/store/apps/details?id=de.srlabs.snoopsnitch&hl=en_US
 https://play.google.com/store/apps/details?id=de.srlabs.snoopsnitch&hl=en_US

Chapter 3

Data

We collected data from multiple data sources to study the Android security updates and OS up-

grades rollout process. In this section, we describe the main datasets and review the ethical and

privacy considerations. To collect information listed on publicly available websites, including An-

droid Security Bulletins and the security update announcements, we leverage tools such as PyQt51,

BeautifulSoup2, and Selenium3 for the retrieval and parsing of the webpages. For the end-user data,

the collection process was closed-source and the sensitive data fields were anonymized.

3.1 Android Security Bulletins

Since August 2015, AOSP posts Android Security Bulletins on a monthly basis [40]. Each bulletin

contains information about the security update released in that month, including the patched CVEs,

the type and severity of the CVEs, the affected Android OS versions and components, and the patch

level(s) which is in the form of a date. A device with a specific patch level implies that it is up-to-

date with all security updates released up to that level.

In studying the security updates rollout process, we use the patch level announcement date in

the Android Security Bulletins as the baseline for calculating the additional latency imposed by

the device manufacturers and mobile carriers. We also examine other factors such as the type and

severity of CVEs, affected AOSP components, and number of skipped bulletins.

We collected information from 53 Android Security Bulletins spanning August 2015 to De-

1PyQt5: https://riverbankcomputing.com/software/pyqt/intro
2BeautifulSoup: https://www.crummy.com/software/BeautifulSoup/bs4/doc/
3Selenium: https://www.selenium.dev/

8

https://riverbankcomputing.com/software/pyqt/intro
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.selenium.dev/

Carrier AT&T Sprint T-Mobile Verizon
Unique manufacturers 13 13 13 17
Unique models 74 93 111 149
Total number of security update announcements 394 364 658 537
Unique Android Security Bulletins addressed 49 49 53 45
Earliest security update announcement 2015-10-19 2015-10-31 2015-08-05 2015-10-08
Latest security update announcement 2019-12-17 2019-12-26 2019-12-15 2019-12-11

Table 3.1: Carrier dataset – Carrier security update announcements made between August 2015
and December 2019.

cember 2019. There can be a variable number of patch levels in each monthly security bulletin

(e.g., “2019-10-01”, “2019-10-05”). For consistency purposes, we focus on the first patch level in

each bulletin, since that one is always available.

3.2 Mobile Carriers

Similar to the Android Security Bulletins, mobile carriers also announce security updates they

release to supported mobile devices, i.e., phones and tablets with cellular service. We collected

security update announcements made publicly available by the top four U.S. carriers, i.e., AT&T,

Verizon, T-Mobile, and Sprint, from August 2015 to December 2019. Due to inconsistent format-

ting of the announcements, we developed custom parsing logic for each carrier website (further

detailed in Section 3.2.1), specifically:

• AT&T does not announce security updates on a centralized page, but instead on separate

pages for each supported device model [3]. We manually collected all URLs for each device

model by traversing from the support page to each indicated model.

• Similar to AT&T, T-Mobile also lists the security update announcements separately for each

device model [46]. We programmatically collected each device model URL.

• Verizon’s website only displays the three most recent software updates per model, preventing

users from gathering longitudinal data over time. We collected Verizon’s security update

announcements three times in 2019 (in May, October, and December) [50]. 4

4Verizon only displays the latest three software updates per model, hence (while our data collection took place in

9

• Sprint posts security update announcements in a blog format. We searched Sprint’s entire

Android Community Boards [43].

Each of the security update announcements made by the carriers are specific to a device model.

Thus, for each announcement, we collected the device model, the corresponding Android Security

Bulletin (if available), and the date of the announcement (which we use to infer the corresponding

Android Security Bulletin in cases where this information is not explicit). For example, if an

announcement with an unspecified Android Security Bulletin was posted on January 15, 2019, we

make a conservative assumption that the corresponding Android Security Bulletin is the one from

January 2019. This may result in a lower bound on the security update rollout latency, since the

latency could be higher if the update was actually for previous Android Security Bulletin(s). If no

release date is available in the announcement, we do not include it in our dataset. Out of 3,493

total collected Android carrier updates, 1,540 were not security updates or did not contain enough

information (i.e., the addressed Android bulletin, release date).

3.2.1 Collection and Normalization Process

Each carrier’s announcement style for Android updates presented its own unique challenges during

the collection process. In this section, we detail our methodology for collecting data from the top

four U.S. carriers (AT&T, Sprint, T-Mobile, Sprint).

Accessing and saving update announcements: AT&T, T-Mobile, and Verizon provided one page

with separate links to each models (similar to a table of index). These individual links contained

additional links to the update announcements for each of those models. For T-Mobile and Verizon,

we programmatically traversed through these URLs and locally downloaded the HTML code using

PyQt5 5. On the other hand, AT&T employed a different set of features (e.g., Javascript, wait

conditions, cookies, pop-ups). Thus, for AT&T, we manually recorded each device announcement

2019) the earliest security update observed is much older as shown in Table 3.1, e.g., models whose last update was in
2015.

5PyQt5: https://pypi.org/project/PyQt5/

10

https://pypi.org/project/PyQt5/

page that indicated updates for Android Security Bulletins and leveraged Selenium6 to download

these announcements.

Sprint posts update announcements in a blog-like style, meaning each individual blog post con-

tained an announced update. We programmatically identified update announcements by traversing

through each post preview (prevented us from accessing each individual post) and by checking

if the post contained one of the following: “Software Version:",“software update - version", or

“Software Update". Similar to T-Mobile and Verizon, we locally saved each update post with

PyQt5. At all times, we employed various measures to minimize access upon collecting the data

(as mentioned in Section 3.5).

Extracting specific data fields: Each carrier required a slightly different method to best capture

each data field. Overall, we used regular expressions (regex) to match the fields, relied on HTML

tags to traverse through each update, or combined the two. Aside from the model’s name, which is

always captured via traversal of HTML tags, collecting other data features varied across carriers.

AT&T. Each model announcement page contains the current update and a table of all the ear-

lier/previous updates. To handle this discrepancy, we leveraged both regex and HTML tags to

collect each update. The current update was located upon matching, “Here is the current update".

We then used additional regex strings to match other fields such as OS version, software version,

file size, baseband version, build number, security level, and extra details. In the previous/histori-

cal updates, these tend to vary and contain less information, but we could still use the same regex

strings as the current update. These previous updates are captured by traversing the HTML table

row tags and then the fields are identified via regex.

Sprint. Each post typically provides the software version (an extended version of the build num-

ber), the release date, the release method (typically Over-The-Air, OTA), and what was fixed in the

announcement. Each of these fields are captured with the respective string match where newlines

are not matched: “Software Version:(.*)", “Release Date:(.*)", “Method:(.*)", and “Fixes:(.*)".

Occasionally, for older posts, these strings slightly alter and tend to be more verbose (e.g., “the

6Selenium: https://www.selenium.dev/

11

https://www.selenium.dev/

update starts on ([0-9/]+)").

T-Mobile. The announcements, provided in a table format, commonly contain the version (build

number), release date, enhancements and status. Because the updates are displayed in a table, we

collected them by traversing each row indicated by the HTML code.

Verizon. With announced updates separated into sections, we relied on regular expressions. We

collected the release date, patch level (if provided), software version, the date when the announce-

ment was last updated, and the details (if provided).

We also manually validated our programmatically collected data fields for all update announce-

ments. If a field was not captured or not formatted correctly (e.g., release date, security level), we

manually collected the data for that field.

We collected a total of 3,493 raw Android updates (OS upgrades, security updates, and miscel-

laneous updates) across the four mobile carriers. We describe and discuss how our normalization

and filtering methods directly impact the data summarized in Table 3.2. Overall, we excluded

1,627 updates due to various reasons such as non-security nature of updates, incomplete data in

update announcements, etc. This resulted in a total number of 1,867 “valid” updates that we used

in our analysis. Below we discuss our data normalization process.

As shown in Table 3.2, our carrier data normalization can be summarized as a series of subse-

quent steps (each “removal” step inherits the remaining number of updates from the prior ones):

1. Gather all Android raw updates from carriers’ public websites

2. Remove updates without an identifiable release date

3. Remove updates without Android Bulletin indicators (e.g., “Android update")

4. Remove updates released prior to August 2015 (before the start of Android bulletins) and

after December 2019.

5. Remove duplicate prepaid and contract models.

6. Remove duplicate and non-security updates.

12

Normalization Criteria AT&T Sprint T-Mobile Verizon
Running

Total
Raw Android Updates 1022 483 1021 967 3,493
Contains Release Date 1018 479 823 921 3,241
Contains Android Bulletin Indicator 533 380 815 893 2,621
Released within analysis window (8/15 - 12/19) 504 382 709 891 2,486
“Non-duplicate” Prepaid&Contract Models 504 382 709 860 2,455
Reducing Duplicates and Noise 440 369 664 612 2,085
Located Market Release Year for Models 408 368 678∗ 570 2,024
Level 1 Bulletins 394 364 658 537 1,953
Removal of outliers 381 363 654 469 1,867
Total number of “valid” security updates after normalization 1,867

Table 3.2: Processing security updates data from carriers – Each (normalization) step removes
non-conforming data from each carrier. We process all Android updates from carriers and con-
tinue to remove updates at each step based on the stated criteria. It’s important to note the need
for transparency and consistency across these update announcements as quite a few updates are
dropped in our analysis due to incomplete information (e.g., from missing release dates to what is
addressed within an update).
∗Increased due to Verizon posting one update but indicating multiple models.

7. Remove updates from models without a market release year.

8. Remove updates applied to higher Android bulletin levels if level 1 of the same bulletin was

addressed (as higher levels include level 1).

9. Remove outliers (updates with a delay less than -10 and greater than 170 days as we cannot

verify the accuracy of these updates, e.g., possible typos.)

To calculate the carrier and manufacturer incurred delay, we use the time from when Android

posted their bulletin to when the manufacturer and carrier released the corresponding update for

that bulletin. Thus, we can only leverage updates containing both the release date and the Android

bulletin (or an indication if not explicitly stated). If an update contains “Android updates” or

“Google updates”, we consider the update applies to the closest, prior bulletin based on the release

date. For Verizon, in cases where the release date of the software update is not explicitly provided,

we infer this information from the “Updated:” field, which is the date the post was posted or

revised. We also filter out updates with a rollout latency higher than 150 days as this could be due

to the estimation error. Thus, this resulted in 2,621 updates (see Table 3.2).

13

We also removed updates released prior to August 2015 and after December 2019. Google

started releasing Android Security Bulletins in August 2015 while our end-user data ends on De-

cember 31, 2019. Next we observed that carriers (specifically, Verizon) listed updates for some

prepaid models separate from contract models. Thus, we removed 41 overlapping updates where

prepaid models had corresponding contract device models.

Due to our collection method, a few updates for the same model and carrier indicated the same

Android Security Bulletin. This means models received miscellaneous updates whilst on the same

bulletin. We removed the updates that were not specifically security updates which is labelled as

noise as labeled in Table 3.2. Furthermore, because we collected data from Verizon three times,

certain updates overlapped. We also removed these duplicates.

To calculate the update frequency of each model, we use the model’s marketplace release date.

Since carriers do not always release this information, we leveraged other data sources (such as

GSMArena 7 and PhoneArena 8) to manually collect 431 device release dates. We could not locate

the device release date for 32 models thus excluding 61 updates, as shown in Table 3.2.

Some models received multiple updates covering different levels in the same Android bulletin.

Because we focus on the first level bulletins, we drop updates to higher levels if their corresponding

first level was also addressed. In the event only a “higher level” was addressed, we keep the update

as higher levels must also address all lower levels. We dropped 87 updates based on this criteria.

Lastly, we remove any outliers within our corpus based on the delay. When manually validating

our programmatic collection and normalization methods, we noticed a update’s release date almost

a year prior to the release of a bulletin. We cannot validate the accuracy of this, thus we removed an

update if the delay was less than -10 days9 or greater than 170 days. This resulted in the exclusion

of 86 updates.

It is important to note that there were instances where carriers “packaged" update announce-

ments such that one post contained multiple model names, thus meaning multiple updates were

7GSMArena: https://www.gsmarena.com/
8PhoneArena: https://www.phonearena.com/
9The negative refers to days prior to the release of the Android bulletin

14

https://www.gsmarena.com/
https://www.phonearena.com/

released. In our normalization method, we did not break this update apart until we located models’

marketplace release dates, thus the total number of updates slightly increase during this step. In

total, 12 announced updates applied to two different models. This increases the total number of

updates from 12 to 24. Notice in Table 3.2, T-Mobile’s count increased due to this issue as 10 of

the 12 updates were from this carrier. The remaining 2 were from AT&T.

In the following sections, we analyze 1,867 security update announcements for 274 unique

models across 25 device manufactures as detailed in Table 3.1.

3.3 End user

End users also play a role in adopting security updates. Depending on the system settings, the user

may be prompted for approval before the security update is applied on the device [14, 29, 37].

We obtained anonymized HTTP access logs from Android devices from a U.S.-based social

network with over 50 million downloads on the Google Play Store. Registered users can create

and share posts related to items of interest, chat in group forums, and friend each other. Users

access the social network either through its website or through the mobile app. Since our study

focuses on mobile systems, we only used the data collected through the latter and analyzed requests

from registered users.

The data is anonymized and exposes four fields to the researchers: the request date, a hashed

value of the user account identifier, the user-agent string, and the country code based on the IP

address. Only unique records are stored. The user-agent strings are generated by the social net-

work’s mobile app, and include the app version number, OS version, phone model, build number,

and device carrier.

We only consider HTTP POST requests, as GET requests do not contain the user account

identifier and are mostly from unregistered “guest” users for which we cannot observe their update

behavior over time. To identify Android traffic, we filtered the requests by searching for keywords

“Android” and “Build” in the user-agent string. The build number allows us to analyze when

devices receive security updates and which updates are applied.

15

Figure 3.1: The distribution of the number of active months per device in the end-user dataset.

From January 1 to December 31, 2019 10, a total of 152,156,934 HTTP POST requests were

collected from Android devices with build number information as described above, corresponding

to 9,163,277 unique user account identifiers and 4,800,228 unique user-agent strings. We further

identified 7,247 unique models across 454 device manufacturers by parsing the user-agent strings.

The end-user dataset only included Android traffic containing build number information, as

determined by the presence of “Android” and “Build” in the user-agent strings. This excludes

traffic from Android devices without these keywords. Minus more intrusive data collection from

the devices, our methodology is guided by available information, i.e., build and OS version in

user-agent strings, that would allow us to observe security update behavior.

In Section 5, we focus our analysis on “active” devices that exhibit continued activities through-

out the duration of the data. Figure 3.1 and 3.2 show the distribution of the number of active months

and weeks per device, respectively. We define an “active” device as one that is active for at least 10

months out of the year, which results in 1,273,571 devices considered for the analysis in Section 5.

We select 10 months due to the presence of a 1.5 months gap in our HTTP requests data collec-

10Due to a bug in the data collection process, we were not able to collect data from June 11 to July 23, 2019.

16

Figure 3.2: The distribution of the number of active weeks per device in the end-user dataset.

tion, and also consider using month as a unit (rather than week) since Android Security Bulletins

are issued on a monthly basis. As an additional data point, Figure 3.4 shows the distribution of

monthly accesses per device, calculated by taking the number of total accesses over the year from

that device divided by the number of months in which the device is active.

In measuring update latency in the end-user dataset, our observations may be affected by when

devices access the mobile app. Figure 3.3 shows the number of days between consecutive accesses

from the same device. On average, each device accesses the app once every 6.12 days, with a

median value of six days. 21.4% of the accesses occurred within one day after the immediately

preceding access, and overall 92.9% of the accesses occurred within two weeks after the immedi-

ately preceding access.

We also acknowledge that the log timestamps in the end-user dataset are entirely driven by

the users of the mobile app. The user-incurred latency measurements is hence affected by user

behavior, and the activities we observe may not be consistent across all devices.

Additionally, the end-user dataset has a gap from June 11 to July 23, 2019. To assess the gap’s

impact when measuring latency, we repeated the measurements in Section 5.1 but removed device

17

Figure 3.3: The distribution of the time (in days) between consecutive accesses to the app from the
same end-user device.

build changes observed after the data gap that correspond to carrier released updates before the gap

(0.3% of devices are affected). This analysis yielded a median delay of 11 days, consistent with

our earlier results. In addition, we split the dataset by examining only the first 5 months (prior to

the gap) and the last 5 month (after the gap), remove the criteria to only consider “active” devices,

and repeat our measurements. Our findings are still consistent - the median is 11 days, though the

average value from the last 5 months is 12.10 days, slightly shorter than the 15.12 observed across

the entire dataset.

3.4 Mobile Manufacturers

We also collected security update announcements from Samsung, a top Android manufacturer. We

could not locate announcements from other manufacturers due to lack of data (e.g., release date

missing, updates not posted). Specifically, we wanted to investigate the manufacturer’s effect on

the rollout process. Intuitively, unlocked models should not experience carrier-related delays, thus

18

Figure 3.4: The distribution of number of accesses per month for each device. For a device, this is
the number of total accesses over the year divided by the number of months in which the device is
active.

we analyze the update process between locked and unlocked models.

Since 2017, Samsung provides security update announcements for individual models on their

website 11. To access these updates, we constructed the URLs (https://doc.samsungmobile.com/model

variant/carrier code/doc.html) for 15 models within the flagship Galaxy series (S7 to S10, S8+ to

S10+, S7 edge, Note 8 to Note 10, A10e, A20, A50) associated with T-Mobile or Sprint. We do

not include other carriers as Samsung doesn’t post updates for the corresponding locked models.

In certain instances, the model variant (e.g., SM-G960U) can indicate an unlocked model as indi-

cated on Samsung’s website [36]. Table 3.3 lists the statistics of this dataset. More details about

the update process for locked, unlocked, and unbranded devices can be found in Section 3.4.1.

11For example, the announcement page for Galaxy S9 (SM-G960U) on T-Mobile is https://doc.samsungmob
ile.com/SM-G960U/TMB/doc.html

19

https://doc.samsungmobile.com/SM-G960U/TMB/doc.html
https://doc.samsungmobile.com/SM-G960U/TMB/doc.html

Locked Unlocked
Carrier Sprint T-Mobile Sprint T-Mobile Unbranded
Unique models 13 13 13 13 13
Total number of update announcements 136 127 150 120 151
Unique Android Security Bulletins 18 18 18 18 18
Earliest security update announcement 2018-08-06 2018-08-13 2018-07-25 2018-07-25 2018-07-25
Latest security update announcement 2020-01-02 2019-12-30 2020-01-14 2020-01-31 2020-01-14

Table 3.3: Manufacturer security updates from Samsung – Overview of the collected update an-
nouncements rolled out July 2017 to December 2019 for 15 Samsung Galaxy models.

3.4.1 Security Updates on Locked and Unlocked Samsung Devices

When analyzing locked and unlocked Samsung models, we observed slight variations occurring

with models tied to carriers. Updates still flow from Android Security Bulletins to manufacturers;

however, when the carrier intervenes in the process, three possibilities can occur. First, locked

models purchased from a carrier still receive updates from Samsung; however, the carrier deter-

mines when those updates are released. Furthermore, if these models are unlocked by that carrier

and remain on the same network, the model continues to receive updates from Samsung but can be

delayed by request of the mobile carrier [16]. Second, models purchased directly from Samsung

without carrier branding are labelled as unbranded if and only if these have yet to be connected

to a mobile network. These models receive updates from Samsung without the carrier’s involve-

ment [10]. Lastly, models purchased unlocked then placed onto the carrier’s network receive up-

dates from the Samsung, yet the carrier can still choose to delay updates 12.

It is worth pointing out that devices can transfer from one carrier to another. However, many

issues can arise which makes determining the update process dependent on the specific carrier and

manufacturer [45, 44, 35].

3.5 Ethical Considerations

While collecting public data from the Android Security Bulletins, the major U.S. carriers’ and man-

ufacturers’ websites, we prioritized protecting (not overloading) these public resources. Specifi-

12Samsung community updates: https://us.community.samsung.com/t5/Galaxy-S9/Once-a-phone-is-
unlocked-who-does-the-software-updates/m-p/563811#M17572

20

https://us.community.samsung.com/t5/Galaxy-S9/Once-a-phone-is-unlocked-who-does-the-software-updates/m-p/563811#M17572
https://us.community.samsung.com/t5/Galaxy-S9/Once-a-phone-is-unlocked-who-does-the-software-updates/m-p/563811#M17572

cally, we rate-limited the number of connections, controlled how quickly we connected (every 2-8

seconds), and locally saved the HTML code to minimize redundant access upon testing.

With T-Mobile, Sprint, and Verizon posting updates individually or per device model, we col-

lected URLs covering all available models and updates specified in Section 3.2, then connected to

those links to download the necessary code. For AT&T, their website leans more on JavaScript,

wait conditions, and auto-generated tag labels which affects the traversal of HTML code. To limit

our impact, we manually recorded URLs for all the models reporting a security level and saved the

security update content locally. Lastly, we never obfuscated our user agents or IP addresses.

The HTTP access logs were collected according to end-user agreements pertaining to the usage

of the online social network. No personally-identifiable information was collected. The researchers

were granted access to the anonymized data only on corporate-approved devices and networks,

leveraging only the four data fields described in Section 3.3. Our IRB Office determined that the

user data is de-identified and therefore not a human subject.

21

Chapter 4

Manufacturers and Carriers’ Effects

Manufacturers and carriers play a key role in distributing mobile OS and software updates as

previously shown in Figure 2.1 and also detailed in past research efforts [38, 49]. In this section, we

study the carriers’ and manufacturers’ role in the rollout process of security updates to supported

devices.

AOSP issues security patches on a monthly basis. This means that a device model, if updated

regularly by the carrier-manufacturer, should receive (at least) one update every month. Using the

carrier dataset described in Section 3.2, we measure the number of security updates rolled out to

each model as well as when those rollouts were announced by the carriers and manufacturers. We

find that update patterns are not consistent across device models, e.g., some receive updates for

every Android Security Bulletin, while others only receive one update per year. By leveraging

Spearman correlation [30], we investigate factors affecting those difference.

4.1 Rollout Frequency

Across the carrier dataset, which spans 53 months between 2015 to 2019, the average number

of security update announcements issued per device model is 4.54 (±4.67). This is a far cry

from the monthly updates issued in the Android Security Bulletins. However, the carrier dataset

includes models of varying “ages” with the oldest released in January 2013 (Blackberry Z10) and

the newest released in October 2019 (Pixel 4, LG Stylo 5+, LG Prime 2). Naturally, the age of the

model affected how many updates it could receive.

For a more fair comparison across models, we define the normalized update frequency as fol-

22

Figure 4.1: Cumulative distribution of the normalized update frequency per model, for each carrier
– The average update frequency is 0.35 across all models, indicating that a carrier-supported device
receives slightly more than one-third of updates issued in the monthly Android Security Bulletins.

lows. Let a phone model’s release date be Trel . The number of security updates the model could

potentially receive during a period ending at Tend can be calculated as the number of months be-

tween the two timestamps, denoted Npot , while we can observe the actual number of updates the

model received during this time, Nact . The normalized update frequency is then calculated as the

ratio between these two values, Nact
Npot

.

In practice, we apply the later of Trel and the start of our data collection in 2015 to compute

Npot , and use the time of the last security update rolled out to the device as Tend . We rely on

GSMArena 1 and PhoneArena 2 for each model’s release date 3.

Figure 4.1 shows the cumulative distribution of the normalized update frequency per model for

each carrier. The average update frequency across all models is 0.35, indicating that a carrier-

1Release dates from GSMArena: https://www.gsmarena.com/
2Release dates from PhoneArena: https://www.phonearena.com/
3When only the month and year of a model’s release date is available, we use the first day of the month and year.

23

https://www.gsmarena.com/
https://www.phonearena.com/

supported device only receives slightly more than one-third of updates issued in the monthly

Android Security Bulletins. This observation is consistent across the four major carriers, with

T-Mobile having the highest average update frequency at 0.40.

The FTC [6] reported that manufacturers and carriers allocate support towards newer devices,

such that newer devices receive security update faster and for a longer period of time. Correlating

the age of the model (i.e., as of December 1, 2019) with its normalized update frequency, we

observed that the two variables exhibit a moderate negative correlation of −0.3265 with a p-value

of 3.3541−8. With high confidence, this result shows carriers do have a preference for newer

models. This effect is even more obvious when we examine each carrier separately. For example,

T-Mobile shows a strong negative correlation between model age and normalized update frequency

of −0.5054 with a p-value of 8.0681−7.

The age of a model appears to play a big part in its update support duration, as well. For

each security update announcement issued by a carrier, we examine the age of the model at that

time, shown in Figure 4.3. While the number of updates rolled out to models released within 24

months remain relatively consistent, this value drops sharply at around 36 months. Considering

that models older than three years (i.e., released prior to 2017) make up 43.59% of all models in

the carrier dataset, the drop is disproportionately large and confirms empirical observations that

devices are typically supported by the carriers for 2-3 years.

In addition to the age of the models, we observe that relationships between certain carriers and

manufacturers also affect the update process – sometimes in a positive way. In our data, LG models

have a median update frequency of 0.42 when associated with T-Mobile, much higher than with

other carriers (which range from 0.12 to 0.33). Interestingly, the update frequency for LG models

seem to be capped at 0.75, while this does not appear to be the case for other brands.

To better highlight how manufacturers and carriers’ relationships impact frequency, we com-

pare Samsung and LG. Figure 4.2 show the normalized update frequency across carriers for models

from Samsung and LG. Samsung models have a median update frequency of 0.54 when associated

with AT&T, much higher than the 0.28 to 0.32 range with other carriers. A similar trend can be

24

Figure 4.2: Cumulative distribution of the normalized security update frequency for Samsung
(right) and LG (left) models, for each carrier – Samsung models on AT&T appear to receive updates
more frequently than those on other carriers. LG models on T-Mobile appear to generally receive
updates more frequently than those on other carriers.

observed for LG models with T-Mobile (0.42) where other carriers range 0.12 to 0.33. Interest-

ingly, the update frequency for LG models across all carriers seem to be capped at 0.75, while this

does not appear to be the case for Samsung.

This suggests that manufacturers are also responsible for introducing overhead in the update

rollout process.

Previous work also reported on interdependent relationships between carrier and manufactur-

ers [38, 6]. Specifically, that carrier involvement in the security update rollout process can influ-

ence manufacturers to speed up patching for popular models or maintain a routine update schedule.

The influence can come from other sources as well, as shown in the initiatives pushed forward by

Google encouraging manufacturers to support security updates for designated models and versions.

We discuss Google-led initiatives in the update rollout process in Section 5.3.

4.2 Rollout Latency

An equally important metric to the security update frequency is when updates are rolled out. We

define rollout (patching) latency as the number of days after the publication of the Android Security

Bulletin (usually the 1st of the month) until the update is rolled out by the carrier/manufacturer.

25

Figure 4.3: Age distribution of carrier-supported models at the release time of security updates–
The age of the model plays a big part in both its update frequency as well as update support
duration. The number of security updates rolled out to models older than 36 months drops sharply.

This quantifies the additional delay introduced by these actors before the updates could reach end

devices. The higher the rollout latency, the higher the risk as devices are exposed to potential

vulnerabilities during the unpatched time.

Figure 4.4 shows the update latency for each Android Security Bulletin during our study period,

August 2015 to December 2019. The boxplots represent the distribution of the latency across

security update announcements issued by the carriers for that bulletin (the carriers have separate

update announcements for each model, such that the latency can vary by model even for the same

bulletin). Across all Android Security Bulletins, a median delay of 24 days is introduced before

carrier rollout – longer than than the two weeks it takes to publish the majority of exploits [21].

Looking at each carrier separately, we can see in Figure 4.5 that all of them introduce delays

on the order of weeks to months, with large differences across carriers. AT&T appears to have the

26

08/2015 08/2016 08/2017 08/2018 08/2019

0

20

40

60

80

100

120

Android Security Bulletin

D
ay
s

Figure 4.4: Update latency for each Android Security Bulletin from August 2015 to December
2019 – Each data point represents a security update announcement from the carriers. The rollout
latency remains largely unchanged over four years with a median of 24 days.

highest median delay at 29.5 days, compared to 19 days for T-Mobile.

While the age of the model greatly affected its security update frequency, as shown in Sec-

tion 4.1, it does not appear to be a strong factor for update latency. No significant correlation exists

between the update latency and the age of the model (a correlation of 0.0502 with p-value 0.0321).

Thus even though carriers and manufacturers update models with less frequency over time, they

do not discriminate against older devices when an update is available for rollout.

Carrier and manufacturer relationship, on the other hand, remains an important factor. We

examine models supported by all four carriers, and compare their update latency across carriers.

There are 21 models from Samsung, LG, Motorola, and HTC that match this criteria. If the man-

ufacturer is the main factor, we would expect the latency to be consistent across carriers for the

same model. Figure 4.6 shows that this is not the case. The same model can experience varying

amounts of latency depending on the carrier. In particular, the median latency for Motorola models

range widely from 10 days (if with T-Mobile) to 37 days (if with AT&T).

27

AT&T Sprint TMobile Verizon

0

10

20

30

40

50

60
D
ay
s

Figure 4.5: Distribution of update latency per carrier – Each data point corresponds to an Android
Security Bulletin, where we calculate the average latency across carrier security update announce-
ments for that bulletin.

Perhaps a more obvious explanation for the update latency is related to the carriers themselves.

When rolling out security updates, manufacturers not only customize the updates for the models

they support but also commonly require carrier-specific modifications and tests. Using the man-

ufacturer dataset collected from Samsung, as described in Section 3.4, we examine a total of 684

security update announcements for 13 Samsung models across locked, unlocked, and unbranded

variants. Locked models receive updates faster than their unlocked counterparts, as shown in Fig-

ure 4.7. On average, a locked model receives updates four days earlier.

Our findings on locked models is contradictory to the result reported in FTC’s report [6], which

found that unlocked devices tend to be patched quicker than locked versions. However, the report

also noted that while they observed unlocked models with shorter overall latency, particular locked

models may still receive faster updates. We conjecture that since our data from Samsung focuses

on their flagship Galaxy models (and hence are popular models), they may be prioritized in the

update rollout process.

When analyzing locked and unlocked Samsung models, we observed slight variations occur-

28

HTC LG Motorola Samsung

0

20

40

60

80

100
AT&T TMobile Sprint Verizon

D
ay
s

Figure 4.6: Update latency for models supported by all four carriers – 21 models from 4 manufac-
turers (Samsung, LG, Motorola, HTC). With different testing mechanisms between manufacturer
and carrier [6], a model may experience inconsistent update latency depending on the carrier.

ring with models tied to carriers. Updates still flow from Android Security Bulletins to manufac-

turers; however, when the carrier intervenes in the process, three possibilities can occur. First,

locked models purchased from a carrier still receive updates from Samsung; however, the carrier

determines when those updates are released. Furthermore, if these models are unlocked by that

carrier and remain on the same network, the model continues to receive updates from Samsung

but can be delayed by request of the mobile carrier [16]. Second, models purchased directly from

Samsung without carrier branding are labelled as unbranded if and only if these have yet to be

connected to a mobile network. These models receive updates from Samsung without the car-

rier’s involvement [10]. Lastly, models purchased unlocked then placed onto the carrier’s network

receive updates from the Samsung, yet the carrier can still choose to delay updates 4.

It is worth pointing out that devices can transfer from one carrier to another. However, many

issues can arise which makes determining the update process dependent on the specific carrier and

4Samsung community updates: https://us.community.samsung.com/t5/Galaxy-S9/Once-a-phone-is-
unlocked-who-does-the-software-updates/m-p/563811#M17572

29

https://us.community.samsung.com/t5/Galaxy-S9/Once-a-phone-is-unlocked-who-does-the-software-updates/m-p/563811#M17572
https://us.community.samsung.com/t5/Galaxy-S9/Once-a-phone-is-unlocked-who-does-the-software-updates/m-p/563811#M17572

TMobile TMobile Unlocked Sprint Sprint Unlocked Unbranded

0

10

20

30

40

50

60
D
ay
s

Figure 4.7: Update latency of Samsung locked, unlocked, and unbranded devices – Locked models,
on average, receive updates four days faster than their unlocked counterparts.

manufacturer [45, 44, 35].

Lastly, we also examine other information contained in the Android Security Bulletins that

could impact update latency. For each security update announcement for a given model, we ana-

lyzed the number of “skipped” Android Security Bulletins since its last security update, as well as

the number of days since its last security update. Each Android security update patches all CVEs

in prior patch levels, hence we expect a larger value for either should correspond to a longer rollout

latency. An Android Security Bulletin also includes a list of CVEs patched in that security update,

i.e., the CVE ID, severity, vulnerability type, and the Android components affected (the category).

We expect updates that address more severe vulnerabilities or that affect core components to be

prioritized.

Calculating the Spearman correlation coefficient between the update latency and these variables

show that, surprisingly, most of them have no effect (no significant correlation). However, a weak

positive correlation is observed for the number of days since last security update (i.e., the more

time passed since the device received its last update, the longer it took the carrier/manufacturer

to roll out its current security update), as well as the number of CVEs addressed in the “System”

category. The latter has a correlation between 0.45 to 0.61 in three out of four carriers.

30

4.3 Summary of Carrier and Manufacturer Measurements

We find that carriers and manufacturers roll out slightly over one-third of all monthly Android

Security Bulletins to supported devices, and introduce a median delay of 24 days from the date

of the Android Security Bulletin to update rollout. This provides time for adversaries to leverage

these known CVEs and develop exploits, e.g., the majority of exploits are published within two

weeks from vulnerabilities’ public release [21]. The median 24 day latency is for the current

Android Security Bulletin (released that month). When some bulletins are skipped for a model,

those patches are packaged into subsequent updates [40], such that the delay before a patch reaches

the end device could be much longer in practice.

The age of a model is the most significant factor affecting its update frequency. Most models

are supported by the carrier for less than 36 months, with the update frequency decreasing as the

model ages. By contrast, update latency does not appear to be biased toward model age. This

shows that carriers and manufacturers do not discriminate against older devices once an update for

a model has been made available and tested (indicating that the development of an update constitute

the main overhead in the update rollout process). Prioritizing newer phone models can impact a

large population of consumers. Studies have shown that a significant fraction of users keep their

mobile devices for three years or more 5.

Partnerships between carriers and manufacturers have a strong impact on both the frequency

and latency of updates. Carrier involvement can influence manufacturers to speed up patching for

popular models or maintain a routine update schedule, as well as pressure from software vendors

such as Google. Partnerships and business decisions can (in this case) trump technical challenges.

Contrary to our expectations, the time since last update, number of skipped Android Security

Bulletins, and the addressed CVE severity, type, and category do not exhibit a high correlation with

the update latency. Previous work has also reported the lack of relationship between CVE severity

and patch speed at the code level [38, 24, 11, 26]. Our study independently validates results from

5According to a 2019 poll from PhoneArena, one-third of users switch phones every three years or longer https:
//www.phonearena.com/news/How-often-do-you-upgrade-to-a-new-phone_id119501.

31

https://www.phonearena.com/news/How-often-do-you-upgrade-to-a-new-phone_id119501
https://www.phonearena.com/news/How-often-do-you-upgrade-to-a-new-phone_id119501

previous work, and also brings to light new findings that were previously challenging to quantify

due to fragmentation.

32

Chapter 5

End-User Update Behavior

In this section, we analyze the security update behavior of end devices using the dataset described

in Section 3.3. Specifically, we are interested in observing the update frequency and latency on

end-user devices, such that we can put them in perspective with our measurements from Section 4.2

and provide a more complete picture of the Android security update rollout process.

We start by analyzing the number of security updates received by devices in the end-user dataset

in 2019. Next, we join this dataset with the carrier data to measure (for carrier-supported devices)

the update latency introduced by end users and/or the deployment of updates in addition to the

carrier-manufacturer delay previously calculated. Lastly, we evaluate the rollout of Android 10.

Due to the nature of this data and analysis, we make two major considerations. First, we

consider an end “device” as a unique pair of hashed user account identifier and the model variant 1.

Second, we can only observe the user-agent strings when the users access the mobile app, hence

we focus our analysis on “active” devices that exhibit continued activities throughout the duration

of the data. Our results emerge from 1,273,571 active devices that accessed the app at least once a

month for more than 10 months in 2019. 2

5.1 Security Updates Frequency and Latency on End-User Devices

We parse the user-agent strings from the mobile app to obtain the phone model variant, carrier,

build number, and Android OS version. The model variant is a code name that can be mapped to

1Assuming that a user is not using multiple devices of the same model.
2We picked 10 months as threshold due to a bug that resulted in a 1.5 month gap in the data. We analyze the

potential effects of the gap in Section 6.

33

Figure 5.1: End-user unique build number distribution – Per device, the top 15 manufacturers with
the most devices.

a specific model, e.g., “starlte” for Samsung Galaxy S9 3. The build number specifies the Android

code branch from which the build was derived from, the date when the release is branched from

or synchronized with the development branch, as well as the version numbers and hotfixes 4. For

example, the build number “QQ1A.191205.011” corresponds to the 2019-12-05 security patch

level. Lacking visibility on the devices, we leverage changes to the build numbers as a proxy for

observing security updates.

Over the 12 months in 2019, we observe a device associated with 3.44 build numbers on aver-

age. Considering that there are (at least) 12 monthly security updates per year, this result is consis-

tent with our measurements from Section 4.1 which showed that the average model receives 35%

of all potential Android Security Bulletins. The distribution of build numbers is largely bi-modal,

with 76.99% of devices having two or less unique build numbers and 16.55% having more than

nine unique build numbers. A closer look in Figure 5.1 shows that some manufacturers do not tend

to change build numbers, but instead have manufacturer-specific versions that only change upon

3We use the models supported by Google Play for this mapping https://support.google.com/googleplay/
answer/1727131?hl=en.

4AOSP build numbers: https://source.android.com/setup/start/build-numbers

34

https://support.google.com/googleplay/answer/1727131?hl=en
https://support.google.com/googleplay/answer/1727131?hl=en
https://source.android.com/setup/start/build-numbers

OS upgrades (e.g., “R16NW” for Samsung). On the other hand, devices from Google, Motorola,

Sony and Essential switch build numbers when applying security updates.

For devices with multiple build numbers, we keep track of the earliest date a build number was

observed. On average, a device changes build numbers every 47.72 days, with a median of 33

days. This shows updates take place with a monthly cadence corresponding to the monthly release

of Android Security Bulletins.

To measure the latency between the carrier update announcement and the update arriving on the

device, we match the phone model variant and carrier information in the user-agent strings with

the carrier dataset. This latency could be from the end user, who postpones installing available

updates, and from updates rolled out in batches (such as an A/B-testing-based approach [42]) by

the carrier and manufacturer. The latter is an industry practice to detect issues early in the software

release process, where the update is made available to increasingly more devices over time. A

device only receives updates when its “batch” is addressed, which may be well after the carrier

announcement date.

Out of the active devices, we matched 877,499 (68.90%) with the carrier dataset5. This “joined”

dataset largely includes Samsung (75.90%), Google (15.94%), LG (5.39%), and Motorola (2.41%)

devices. Each time the build number changes on a device, we look up the security update announce-

ments from the corresponding carrier and identify the announcement that most closely occurred

prior to the build change. The time distribution between those two dates is shown in Figure 5.2

with an 11 day median and 15.12 day average.

Lacking information about the batch rollout process, such as the number of batches or release

schedule, it is challenging to attribute this latency to the end user or batch rollout. Nonetheless,

Figure 5.2 shows a noticeable trend: most devices are updated shortly after carrier announcement.

The curve rises sharply at days 3-5 and 10-12 (likely due to the 6 days average access interval in

this dataset), and flattens out soon after. Around when the curve flattens, e.g., day 14, the vast

majority (70%) of devices have already updated.

5The vast majority of active devices that we were not able to join with the carrier dataset have no carrier information
(the value for the carrier field in the user-agent string is “None”) or are associated with carriers outside of this study.

35

Figure 5.2: Device update latency – Cumulative distribution of the days between carrier posted
date and the build change observed on the device.

To investigate the effect of batch rollout further, we examine devices that share the exact same

phone model, carrier, and receive the same security update. Using the 30,545 Pixel 2 XL devices

associated with Verizon that updated to “QP1A.191005.007.A1” as an example, their latency dis-

tribution is shown in Figure 5.3. We can categorize the devices’ update behavior into the following

cases:

1. Update prior to carrier release (0.14% of the devices).

2. Update after carrier release (99.86% of the devices).

(a) The first time the device accesses the app after the carrier announcement is with the

new build number (30.36%).

(b) After the carrier announcement, the device is observed with an older build number,

then subsequently with the new build number (69.50%).

A special scenario in case 2-b (1.58% of devices under case 2-b) is where the device is observed

with an older build and the new build number on the same day, i.e., we can determine the exact

36

day the update occurred on that device (illustrated as case 2-c in Figure 5.3). Update behaviors

correspond to different update latency. For example, 90% of devices in case 2-a were updated by

day 8. They could be in earlier rollout batches compared to devices in case 2-b, who do not have

significant update adoption until day 9. Across the cases, the curves flatten around day 14, similar

to Figure 5.2.

This suggests that batch rollout likely takes place over a period of around two weeks, agreeing

with public reports [33]. While measuring user delay (users intentionally delaying updating) is

challenging, the fact that the vast majority of devices are updated within this period shows the user

delay is significantly smaller than either the delay introduced by the carrier/manufacturer or from

the batch rollout process. Whether it is due to carrier and manufacturer delay, their batch rollout

process, or even due to the user, a device is susceptible to known vulnerabilities prior to receiving

updates.

5.2 OS Upgrades on End-User Devices

The end-user dataset, spanning the duration of 2019, additionally provides us a unique vantage

point to observing the rollout of a major Android operating system upgrade: Android 10. Simi-

lar to security updates, Android’s OS upgrade also increases a device’s security posture [17]. We

measure the latency in Android 10 upgrades similar to our approach for measuring security update

rollouts in the previous section. Specifically, we quantify upgrade latency as the time between

the first observation of Android 10 on a device, and either the official Android OS release date

(September 3, 2019) or the date of the corresponding carrier update announcement, for those de-

vices upgraded to Android 10 in 2019.

We first examine the time between the first observation on the device and the official Android

OS release date. Among devices that were eventually upgraded to Android 10, 19.93% did so

during the first week since its release on September 3, 2019, and 25.09% did so within two weeks.

The median time to first observation on end-user devices is 20 days. Compared to security updates,

OS upgrades appear to take longer to reach end devices.

37

Figure 5.3: Device access behavior versus latency – Cumulative distribution of the days between
carrier announcement and device build change, for Pixel 2 XL devices associated with Verizon
updating to build “QP1A.191005.007.A1”.

OS upgrade behaviors appear to be different depending on the devices’ manufacturer, as shown

in Figure 5.4. The upgrades were either rolled out very quickly after the official Android OS

release (i.e., for Google and Essential devices), or months later (e.g., Samsung, LG, OnePlus,

and Huawei devices). The former is unique in that both manufacturers release software updates

directly, bypassing the carrier. Pixel devices receive software updates directly from Google 6, and

Essential devices run stock Android with limited modifications and are known for quickly releasing

software improvements and updates 7. By contrast, other manufacturers work closely together with

carriers in rolling out updates. According to the update announcements in the carrier dataset, none

of the carriers rolled out Android 10 upgrades until mid-December 2019 — over 100 days after the

6Update schedule for Pixel phones: https://support.google.com/pixelphone/answer/4457705?hl=en
7Essential devices: https://www.theverge.com/2020/2/12/21134995/essential-phone-software-u

pdates-security-android-startup

38

https://support.google.com/pixelphone/answer/4457705?hl=en
https://www.theverge.com/2020/2/12/21134995/essential-phone-software-updates-security-android-startup
https://www.theverge.com/2020/2/12/21134995/essential-phone-software-updates-security-android-startup

Figure 5.4: Android 10 adoption per manufacturer – time delta between Android 10 release
(September 3, 2019) and the date that Android 10 was first observed on a device.

official Android 10 release date. Without carriers and manufacturers batch rollout schedule, using

the same rationale from Section 5.1, we observe that after 20 days roughly 70% Essential and 55%

Google devices performed OS upgrades (Figure 5.4) compared to 85% of users adopting security

updates (Figure 5.2). This could mean that the batch rollout window is longer for OS upgrades

than for security updates and/or end users tend to delay OS upgrades more than updates.

In the carrier dataset, only T-Mobile and AT&T announced upgrades for Android 10, both

applied only to Samsung Galaxy S10, s10+, and S10e models. Inspecting these three Samsung

models associated with either AT&T and T-Mobile in the end-user data, we find the difference

between the carrier release date and the date of the first Android 10 observation on the device to

be 7.67 days on average. Again, considering that each device accesses the mobile app once every

6.12 days on average, this shows most users do upgrade soon after Android 10 was made available

on their devices.

While the nature of our end-user data (i.e., driven by when users choose to login to the app)

39

Android OS version <8 8 (Oreo) 8.1 9 (Pie) 10 (Q)
Treble devices 0% 7.84% 4.07% 35.65% 52.43%
Android One devices 0% 0% 0.29% 75.19% 24.52%
All active devices 11.56% 11.62% 3.46% 54.16% 19.20%

Table 5.1: OS distributions for Treble, Android One, and all active devices – applies to active user
devices that accessed the mobile app at least once a month, for at least 10 months in 2019. There
are a total of 1,273,571 active devices, including 427,291 Treble devices and 1,048 Android One
devices.

prevents us from measuring user-incurred update delays at a more granular level, the results show

that any uptake delay from the end users is negligible compared to that posed by the manufacturers

and carriers.

5.3 Effectiveness of Android Initiatives

To assist the fragmented ecosystem, Google and its collaborators initiated various programs to

increase the availability of security updates to end devices. We discuss each of them and attempt

to empirically analyze their effectiveness using the end-user dataset.

Android One: Android One is a hardware and software standard created to run a near-stock ver-

sion of Android on participating phone models. Participating models are promised at least two

OS upgrades and three years of monthly security updates 8. However, phone models in this pro-

gram are selected by Google on a case-by-case basis. As of December 10, 2019, there are 23

participating model listed on the Android One website [1].

We identified 1,048 user devices participating in Android One. Of those devices, 75.19% are

on Android 9 by the end of 2019, and 24.52% are on Android 10. No devices run versions older

than 8.1. Compared to all active devices in the end-user dataset, where 54.16% are on Android 9

and 19.19% on Android 10, Android One models are indeed much more up-to-date, see Table 5.1.

However, even though Android One devices receive OS upgrades, they do not necessarily re-

ceive them faster than other devices. On average, 105.48 days passed since the official Android 10

8Android One “standard”: https://www.xda-developers.com/best-android-one/

40

https://www.xda-developers.com/best-android-one/

release date until we observe it on an Android One device 9. Additionally, despite that the pro-

gram was initially launched in 2014 and evolved to include mid-range and high-end smartphones

in 2017 [1], its footprint in our end-users dataset is less than 1%.

Project Treble: Project Treble fundamentally alters the software stack by introducing a hard-

ware abstraction layer (HAL), which separates lower-level, device-specific vendor implementa-

tions from the Android OS framework [52]. This helps reduce the overhead for manufacturers and

chipset vendors when updating and upgrading devices. We identified 427,291 devices in the end-

user data where the phone model is part of Project Treble support 10. A first look at the number of

unique build numbers per device (Figure 5.5) shows that Treble devices do appear to be receiving

more frequent security updates. Specifically 16.55% of all active devices have more than nine

unique build numbers over the course of 2019 versus 48.15% of Treble devices.

In addition to a higher frequency of security updates, Treble devices also appear to be much

more up-to-date in terms of OS upgrades compared to the general device population. Among end-

user Treble devices, 35.65% are on Android 9 by the end of 2019, and 52.43% are on Android 10,

as shown in Table 5.1. Considering that Treble includes phones shipped with Android 8 or later,

the 11.91% of Treble devices that are still on Android 8 is an approximate of the end users who

do not upgrade. Figure 5.6 shows the distribution of the latency between the Android 10 official

release date and the date when we first observed Android 10 on the device in the end-user dataset,

for each device manufacturer associated with Treble devices. Devices from Samsung, LG, and

Motorola (18,460, 27,917, and 4,653 devices, respectively) appear to receive their OS upgrades on

the same day, in contrast to the general population of devices where the rollout is staggered over

time, as shown in Figure 5.4.

Compared to the general population, Treble devices do receive a higher number of security

updates (approximated by the number of build changes) as well as access to new OS versions. It

also appears that they are getting those updates faster from carriers and manufacturers. As shown

9A separate article, posted in February 2020, discusses how Android One devices receive OS upgrades at variable
times, and that ultimately the manufacturers still control the release of OS upgrades, https://www.notebookchec
k.net/The-Android-One-program-is-a-shambles-and-here-s-why.454848.0.html.

10Treble models: https://github.com/phhusson/treble_experimentations/wiki

41

https://www.notebookcheck.net/The-Android-One-program-is-a-shambles-and-here-s-why.454848.0.html
https://www.notebookcheck.net/The-Android-One-program-is-a-shambles-and-here-s-why.454848.0.html
https://github.com/phhusson/treble_experimentations/wiki

Figure 5.5: Treble vs. all Active Devices - Distribution of unique build numbers per device in
2019, comparing Treble devices with all active devices.

in Figure 5.7, security updates for Treble devices are rolled out 7 days quicker than non-Treble

devices on average, though there is still a median delay of 19 days.

This delay may be grounded into the current testing procedures. AOSP, manufacturers, and

carriers try to quicken testing for all devices (regardless of Treble or not) by differentiating between

security updates typically needing less than one week versus service updates lasting more than six

weeks [6]. This may explain why Treble models do not experience a significant decrease in the

average security update latency. Overall, Treble is a step in the right direction. However, the 19

day rollout delay is of concern.

Project Mainline: A more recent initiative, Project Mainline, further modularizes Android OS

components. Announced in May 2019 and supported on devices launched with Android 10, it

allows users to update certain system components directly through Google Play [5]. Mainline

delivers those components as APK or APEX files, such that they can be updated like apps. This

42

Figure 5.6: Android 10 release date on Treble end-user devices – The time difference between
Android 10 release (September 3, 2019) and the date that Android 10 was first observed on a
Treble device, per device manufacturer.

effectively removes device manufacturers and carriers in the software rollout process.

Lacking visibility on the end devices, our dataset does not allow us to directly measure the ef-

fect of Project Mainline (build numbers do not change). Nevertheless, we identified 140,720 active

Mainline-supported devices, i.e., whose model is listed as supported [5]. This makes up 11.05%

of the active devices in the end-user dataset, though the majority, 86.58%, of these Mainline-

supported devices are Google Pixel phones. The outcome promised by Mainline could reduce the

24 days update latency incurred by manufacturers and carriers as described in Section 4.1. How-

ever, Mainline’s low adoption among non-Google devices corroborated with the lack of support

for older OS versions may prolong viewing its benefits by a considerable amount of time.

43

Treble NonTreble

0

20

40

60

80

100

120

D
ay
s

Figure 5.7: Distribution of update rollout latency for Treble and non-Treble devices – From the
carrier dataset, Treble’s average latency is 19 days versus 26 days for non-Treble.

44

Chapter 6

Limitations and Discussion

Even though we believe that our work is representative in the current Android landscape, there are

a few considerations and limitations that require additional discussion.

Completeness of the study and data bias: Our study is geared towards carrier-supported devices

and covers only the top U.S. carriers with their associated manufacturers, while the end-user dataset

also consists largely of U.S.-based users. Many smaller carriers exist in the U.S., but the top four

carriers we studied covered over 98% of the subscribers in 2018 [20]. When attempting to include

other countries, we could only locate carriers posting limited information about updates (e.g.,

Vodafone-AU, Telus-CA, Orange-EU 1).

Our work focuses on the update process after a patch is available in the AOSP. We do not

consider delays at the code-commit level nor do we capture the delays caused by chipset vendors

in developing a patch. Due to the fragmentation of the Android ecosystem, such a “boundary-

setting” approach allows us to solely concentrate on entities such as manufacturers, carriers, and

end users.

Accuracy in the measurements: As described in Section 3.2, we found many formatting incon-

sistencies across carriers’ websites. Overall, our assumptions prioritize conservative calculations

of the carrier’s frequency. This means that a model could potentially receive more updates than

our measurements report. Also, sometimes the release date of a security update announcement is

not explicitly provided, thus we infer this information from other fields if possible as discussed in

1International carriers: https://www.vodafone.com.au/support/device/software-
updates, https://forum.telus.com/t5/Mobility/Software-Update-Schedule/ta-p/53566,
https://www.orange.ro/info/gadgets/article/2115813

45

https://www.vodafone.com.au/support/device/software-updates
https://www.vodafone.com.au/support/device/software-updates
https://forum.telus.com/t5/Mobility/Software-Update-Schedule/ta-p/53566
https://www.orange.ro/info/gadgets/article/2115813

Section 3.2.1.

Lacking visibility on the end-user devices, we infer the presence of security updates from user-

agent strings. Our results are based on devices where the build numbers either follow the Android

convention or within the carrier and manufacturer update announcement as previously discussed

in Section 3.3).

The lack of transparency in the reporting mechanism and, as a matter of fact, in the entire

software supply chain as noted in previous work [15, 34] makes it cumbersome and challenging to

track all software changes/updates on devices.

Model vs. device updates: Not all CVEs in a security bulletin apply to the same model across all

carriers [12]. Furthermore, because we do not know whether a bulletin is applicable to each model,

we assume a “skipped” bulletin is packaged into a later security update as bulletins should not be

skipped [40].

Batch updates: Batch rollout by manufacturers-carriers could lengthen the amount of time be-

fore an update reaches the end device. Lacking visibility on the updating schedule, we attempt

to quantify the batch rollout period using our data and discuss it with respect to the carrier and

manufacturer delay in Section 5.1.

The blackbox of carrier-manufacturer relationships: Usually information about vendor rela-

tionships and their business decisions are not made public by the involved entities. Thus, the

findings in our work are made based on empirical observations. Despite these circumstances, lack

of data transparency, and the heavy fragmentation of the Android ecosystem, our work attempts to

provide a grounded and balanced assessment of Android’s security updates.

With these limitation, our results suggest several actions can be taken to improve the current

Android security landscape:

Manufacturer/carrier consistency and transparency: While multiple factors affect the delivery

of security updates, the main bottleneck remains the carrier-manufacturer delay, including delay

from batch rollout. Synchronizing all entities in the Android landscape may not be feasible (e.g.,

business decisions, too many entities, etc.), but what can help is consistency and transparency

46

in update announcements, specifically what and when vulnerabilities are patched. For example,

including the Android Security Bulletin, addressed CVEs, the initial release date and when de-

vices have access to the update would yield more precise measurements. This would also enable

independent auditing, potentially alleviating pressure for carriers and manufacturers to perform

in-house measurements.

Initiatives independent from manufacturers/carriers: Android initiatives such as Treble, An-

droid One, or Mainline are steps in the right direction. However, a reduced footprint, restrictive

support, and the influence of carriers and manufacturers limit their benefits. In the end-user data,

only 1.5% (excluding Google Pixel phones) of devices are Mainline-compatible, and less than 1%

are Android One devices. Furthermore, as discussed in Section 5.3, updates for Treble devices

are directly impacted by manufacturers’ and carriers’ update release processes. Thus, Android-led

initiatives should strive for more independence from manufacturers/carriers.

Continuously tracking progress: Security update latency is relatively stable over 4 years. As

shown in Section 4.2, CVE severity, type of vulnerabilities, or the number of CVEs included in

a security update do not generally impact the rollout latency. To ensure change, it is important

(especially for the research community) to continuously track progress in this complex ecosystem.

47

Chapter 7

Conclusions

This thesis presents an extensive quantitative study on Android’s security updates. Overall, we

provide measurements on the impact of manufacturers, carriers, end users on security updates

and OS upgrades. By analyzing update and OS upgrade releases captured from manufacturers

and mobile carriers combined with end user data traffic, we empirically quantify the scale of the

problem through update rollout latency and frequency and uncover additional insights on locked

vs. unlocked and Treble vs. non-Treble devices from new perspectives. In addition, this thesis

further analyzed the effectiveness of Google-led projects (i.e, Android One, Treble, Mainline) on

these processes.

Some of our findings highlight that the partnerships between carriers and manufacturers have a

strong impact on both the frequency and latency of updates. Ultimately, partnerships and business

decisions can trump technical challenges for security updates. Secondly, although Google-led

projects are improving the rollout delay, they are not completely independent from manufacturers

and carriers whom impose a larger delay in comparison to end-users.

Although we witnessed some minor improvements upon security update latency and OS up-

grades across all participating entities (i.e., manufacturers, carriers, end-users, and Google-led

projects), our results and limitations, as a byproduct of this ecosystem (e.g., fragmented updating

announcements, blackbox between and from carriers and manufacturers, initiatives are not inde-

pendent from high-impact entities), suggest several actions that can be pursued to better improve

the current Android security landscape: (1) manufacturer/carrier consistency and transparency, (2)

initiatives independent from manufacturers/carriers, and (3) continuously tracking progress.

48

References

[1] Android. Android One. https://www.android.com/one/, Accessed: 5/2020.

[2] Olabode Anise. Thirty Percent of Android Devices Susceptible to 24 Critical Vulnerabilities.

https://duo.com/decipher/thirty-percent-of-android-devices-susceptible

-to-24-critical-vulnerabilities, Accessed: 04/2020.

[3] AT&T. Wireless support. https://www.att.com/support/topic/wireless/, Accessed:

02/2020.

[4] Macy Bayern. Xperia owners: Here’s when you’ll get Android Pie. https://www.techre

public.com/article/xperia-owners-heres-when-youll-get-android-pie-and-

why-updates-take-so-long/, Accessed: 04/2020.

[5] Android Developers Blog. Fresher OS with Projects Treble and Mainline. https://androi

d-developers.googleblog.com/2019/05/fresher-os-with-projects-treble-an

d-mainline.html, Accessed: 05/2020.

[6] US Federal Trade Commission. Mobile Security Updates. https://www.ftc.gov/system

/files/documents/reports/mobile-security-updates-understanding-issues/

mobile_security_updates_understanding_the_issues_publication_final.pdf,

Accessed: 03/2020.

[7] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. Keep me updated:

An empirical study of third-party library updatability on android. In Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17, pages

2187–2200, New York, NY, USA, 2017. Association for Computing Machinery.

49

https://www.android.com/one/
https://duo.com/decipher/thirty-percent-of-android-devices-susceptible-to-24-critical-vulnerabilities
https://duo.com/decipher/thirty-percent-of-android-devices-susceptible-to-24-critical-vulnerabilities
https://www.att.com/support/topic/wireless/
https://www.techrepublic.com/article/xperia-owners-heres-when-youll-get-android-pie-and-why-updates-take-so-long/
https://www.techrepublic.com/article/xperia-owners-heres-when-youll-get-android-pie-and-why-updates-take-so-long/
https://www.techrepublic.com/article/xperia-owners-heres-when-youll-get-android-pie-and-why-updates-take-so-long/
https://android-developers.googleblog.com/2019/05/fresher-os-with-projects-treble-and-mainline.html
https://android-developers.googleblog.com/2019/05/fresher-os-with-projects-treble-and-mainline.html
https://android-developers.googleblog.com/2019/05/fresher-os-with-projects-treble-and-mainline.html
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf

[8] Android Developers. Build anything on Android. https://developer.android.com,

Accessed: 2/2020.

[9] Droidlife. Awesome Infographic: HTC Shows Us “The Anatomy of an Android OS Update”

From PDK to OTA. https://www.droid-life.com/2013/12/26/awesome-infograp

hic-htc-shows-us-the-anatomy-of-an-android-os-update-from-pdk-to-ota/,

Accessed: 5/2020.

[10] DroidViews. Change CSC on Samsung Devices – Samsung CSC Codes. https://www.dr

oidviews.com/how-to-change-csc-in-samsung-galaxy-phones/#What8217s_CSC

_on_Samsung, Accessed: 5/2020.

[11] Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka, and Jens Grossklags. Hey google,

what exactly do your security patches tell us? a large-scale empirical study on android

patched vulnerabilities, 2019.

[12] Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka, and Jens Grossklags. An empirical

study of android security bulletins in different vendors. In Proceedings of The Web Con-

ference 2020, WWW 2020, pages 3063–3069, New York, NY, USA, 2020. Association for

Computing Machinery.

[13] Jon Fingas. Sony explains why Android updates take so long. https://www.engadget

.com/2018/08/19/sony-explains-long-wait-for-android-updates/, Accessed:

05/2020.

[14] Alain Forget, Sarah Pearman, Jeremy Thomas, Alessandro Acquisti, Nicolas Christin, Lor-

rie Faith Cranor, Serge Egelman, Marian Harbach, and Rahul Telang. Do or do not, there is

no try: User engagement may not improve security outcomes. In Proceedings of the Twelfth

USENIX Conference on Usable Privacy and Security, SOUPS ’16, pages 97–111, USA, July

2016. USENIX Association.

50

https://developer.android.com
https://www.droid-life.com/2013/12/26/awesome-infographic-htc-shows-us-the-anatomy-of-an-android-os-update-from-pdk-to-ota/
https://www.droid-life.com/2013/12/26/awesome-infographic-htc-shows-us-the-anatomy-of-an-android-os-update-from-pdk-to-ota/
https://www.droidviews.com/how-to-change-csc-in-samsung-galaxy-phones/#What8217s_CSC_on_Samsung
https://www.droidviews.com/how-to-change-csc-in-samsung-galaxy-phones/#What8217s_CSC_on_Samsung
https://www.droidviews.com/how-to-change-csc-in-samsung-galaxy-phones/#What8217s_CSC_on_Samsung
https://www.engadget.com/2018/08/19/sony-explains-long-wait-for-android-updates/
https://www.engadget.com/2018/08/19/sony-explains-long-wait-for-android-updates/

[15] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan Tapiador, and Narseo Vallina-

Rodriguez. An analysis of pre-installed android software, 2019.

[16] Chris Gold. Why Buy an Unlocked Phone: A Primer. https://www.bhphotovideo.com/e

xplora/portable-entertainment/features/unlocked-phones-primer, Accessed:

05/2020.

[17] Google/Android. Android Security & Privacy 2018 Year In Review. https://source.and

roid.com/security/reports/Google_Android_Security_2018_Report_Final.pdf,

Accessed: 05/2020.

[18] Andy Greenberg. Good News: Android’s Huge Security Problem Is Getting Less Huge.

https://www.wired.com/2017/03/good-news-androids-huge-security-problem

-getting-less-huge/, Accessed: 08/2020.

[19] Simon Hill. What is Android fragmentation, and can Google ever fix it? https://www.di

gitaltrends.com/mobile/what-is-android-fragmentation-and-can-google-ev

er-fix-it/, Accessed: 05/2020.

[20] Arne Holst. Number of subscribers to wireless carriers in the U.S. from 1st quarter 2013 to

3rd quarter 2018, by carrier. https://www.statista.com/statistics/283507/subsc

ribers-to-top-wireless-carriers-in-the-us/, Accessed: 05/2020.

[21] Kenna Security & Cyentia Institute. Prioritization To Prediction. https://www.kennasec

urity.com/prioritization-to-prediction-report/images/Prioritization_t

o_Prediction.pdf, Accessed: 05/2020.

[22] Iulia Ion, Rob Reeder, and Sunny Consolvo. “...no one can hack my mind”: Comparing

expert and non-expert security practices. In Eleventh Symposium On Usable Privacy and

Security (SOUPS 2015), pages 327–346, Ottawa, July 2015. USENIX Association.

51

https://www.bhphotovideo.com/explora/portable-entertainment/features/unlocked-phones-primer
https://www.bhphotovideo.com/explora/portable-entertainment/features/unlocked-phones-primer
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://www.wired.com/2017/03/good-news-androids-huge-security-problem-getting-less-huge/
https://www.wired.com/2017/03/good-news-androids-huge-security-problem-getting-less-huge/
https://www.digitaltrends.com/mobile/what-is-android-fragmentation-and-can-google-ever-fix-it/
https://www.digitaltrends.com/mobile/what-is-android-fragmentation-and-can-google-ever-fix-it/
https://www.digitaltrends.com/mobile/what-is-android-fragmentation-and-can-google-ever-fix-it/
https://www.statista.com/statistics/283507/subscribers-to-top-wireless-carriers-in-the-us/
https://www.statista.com/statistics/283507/subscribers-to-top-wireless-carriers-in-the-us/
https://www.kennasecurity.com/prioritization-to-prediction-report/images/Prioritization_to_Prediction.pdf
https://www.kennasecurity.com/prioritization-to-prediction-report/images/Prioritization_to_Prediction.pdf
https://www.kennasecurity.com/prioritization-to-prediction-report/images/Prioritization_to_Prediction.pdf

[23] Azzief Khaliq. Android Fragmentation: The Story So Far. https://www.hongkiat.com/b

log/android-fragmentation/, Accessed: 05/2020.

[24] Jakob Lell and Karsten Nohl. Mind the Gap - Uncovering the Android patch gap through

binary-only patch analysis. https://conference.hitb.org/hitbsecconf2018ams/ses

sions/mind-the-gap-uncovering-the-android-patch-gap-through-binary-onl

y-patch-level-analysis/, Accessed: 05/2020.

[25] Frank Li and Vern Paxson. A large-scale empirical study of security patches. In Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17,

pages 2201–2215, New York, NY, USA, 2017. Association for Computing Machinery.

[26] Mario Linares-Vásquez, Gabriele Bavota, and Camilo Escobar-Velásquez. An empirical

study on android-related vulnerabilities. In 2017 IEEE/ACM 14th International Conference

on Mining Software Repositories (MSR), pages 2–13, New York, NY, USA, 2017. IEEE,

Institute of Electrical and Electronics Engineers.

[27] Arunesh Mathur and Marshini Chetty. Impact of user characteristics on attitudes towards

automatic mobile application updates. In Thirteenth Symposium on Usable Privacy and Se-

curity (SOUPS 2017), pages 175–193, Santa Clara, CA, July 2017. USENIX Association.

[28] Arunesh Mathur, Josefine Engel, Sonam Sobti, Victoria Chang, and Marshini Chetty. “they

keep coming back like zombies”: Improving software updating interfaces, June 2016.

[29] Arunesh Mathur, Nathan Malkin, Marian Harbach, Eyal Péer, and Serge Egelman. Quantify-

ing Users’ Beliefs about Software Updates, 2018.

[30] Jerome L Myers, Arnold Well, and Robert Frederick Lorch. Research design and statistical

analysis. Routledge, Abingdon-on-Thames, England, UK, 2010.

[31] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras. The attack of the clones: A

study of the impact of shared code on vulnerability patching. In 2015 IEEE Symposium on

52

https://www.hongkiat.com/blog/android-fragmentation/
https://www.hongkiat.com/blog/android-fragmentation/
https://conference.hitb.org/hitbsecconf2018ams/sessions/mind-the-gap-uncovering-the-android-patch-gap-through-binary-only-patch-level-analysis/
https://conference.hitb.org/hitbsecconf2018ams/sessions/mind-the-gap-uncovering-the-android-patch-gap-through-binary-only-patch-level-analysis/
https://conference.hitb.org/hitbsecconf2018ams/sessions/mind-the-gap-uncovering-the-android-patch-gap-through-binary-only-patch-level-analysis/

Security and Privacy, pages 692–708, New York, NY, USA, 2015. Institute of Electrical and

Electronics Engineers.

[32] Jema David Ndibwile, Edith Talina Luhanga, Doudou Fall, Daisuke Miyamoto, and Youki

Kadobayashi. Smart4gap: Factors that influence smartphone security decisions in develop-

ing and developed countries. In Proceedings of the 2018 10th International Conference on

Information Management and Engineering, ICIME 2018, pages 5–15, New York, NY, USA,

2018. Association for Computing Machinery.

[33] Bogdan Petrovan. Google engineer explains how Android updates roll out and why you

shouldn’t force them. https://www.androidauthority.com/how-android-updates-r

oll-out-force-clear-gcf-318744/, Accessed: 08/2020.

[34] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-

Rodriguez, and Serge Egelman. 50 ways to leak your data: An exploration of apps’ cir-

cumvention of the android permissions system. In 28th USENIX Security Symposium, pages

603–620, Santa Clara, CA, August 2019. USENIX Association.

[35] Samsung. About Bring Your Own Device (BYOD) for Galaxy Phones. https://www.sams

ung.com/us/support/answer/ANS00078492/, Accessed: 05/2020.

[36] Samsung. Home / Phones / All Phones / Unlocked by Samsung. https://www.samsung.

com/us/mobile/phones/all-phones/?carrier=Unlocked+by+Samsung, Accessed:

05/2020.

[37] Armin Sarabi, Ziyun Zhu, Chaowei Xiao, Mingyan Liu, and Tudor Dumitraş. Patch me if

you can: A study on the effects of individual user behavior on the end-host vulnerability state,

2017.

[38] Ben Schlabs. Mind the Gap. https://www.qualcomm.com/sites/ember/files/uploa

ds/180516.srlabs-mind_the_gap-android_patch_gap-qualcomm_summit.ben_sch

labs.pdf, Accessed: 08/2020.

53

https://www.androidauthority.com/how-android-updates-roll-out-force-clear-gcf-318744/
https://www.androidauthority.com/how-android-updates-roll-out-force-clear-gcf-318744/
https://www.samsung.com/us/support/answer/ANS00078492/
https://www.samsung.com/us/support/answer/ANS00078492/
https://www.samsung.com/us/mobile/phones/all-phones/?carrier=Unlocked+by+Samsung
https://www.samsung.com/us/mobile/phones/all-phones/?carrier=Unlocked+by+Samsung
https://www.qualcomm.com/sites/ember/files/uploads/180516.srlabs-mind_the_gap-android_patch_gap-qualcomm_summit.ben_schlabs.pdf
https://www.qualcomm.com/sites/ember/files/uploads/180516.srlabs-mind_the_gap-android_patch_gap-qualcomm_summit.ben_schlabs.pdf
https://www.qualcomm.com/sites/ember/files/uploads/180516.srlabs-mind_the_gap-android_patch_gap-qualcomm_summit.ben_schlabs.pdf

[39] Michael Simon. Android security: Why Google’s demands for updates don’t go far enough.

https://www.pcworld.com/article/3316717/android-security-requirements-

partners.html, Accessed: 05/2020.

[40] Android Source. Android Security Bulletins. https://source.android.com/security/

bulletin, Accessed: 05/2020.

[41] Android Source. Security & Privacy in Android 10. https://source.android.com/sec

urity/enhancements/enhancements10, Accessed: 05/2020.

[42] Android Source. A/B (Seamless) System Updates. https://source.android.com/devic

es/tech/ota/ab, Accessed: 08/2020.

[43] Sprint. Sprint Community. https://community.sprint.com/t5/My-Phone/ct-p/andr

oid, Accessed: 02/2020.

[44] T-Mobile Support. My Galaxy S7 still says AT&T software and firmware after switch. http

s://support.t-mobile.com/thread/140331, Accessed: 05/2020.

[45] T-Mobile Support. Switched S9 from Verizon to T-Mobile - Phone won’t rebrand. https:

//support.t-mobile.com/thread/146826, Accessed: 05/2020.

[46] T-Mobile. Support Devices. https://www.t-mobile.com/support/phones-tablets-

devices, Accessed: 02/2020.

[47] T-Mobile. Support Devices. https://support.t-mobile.com/community/phones-ta

blets-devices#phone/, Accessed: 12/2019.

[48] Daniel R. Thomas. The lifetime of android api vulnerabilities: Case study on the javascript-

to-java interface (transcript of discussion). In Security Protocols 2015, Lecture Notes in

Computer Science, pages 139–144, Cham, 2015. Springer.

[49] Daniel R. Thomas, Alastair R. Beresford, and Andrew Rice. Security metrics for the android

ecosystem. In Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy

54

https://www.pcworld.com/article/3316717/android-security-requirements-partners.html
https://www.pcworld.com/article/3316717/android-security-requirements-partners.html
https://source.android.com/security/bulletin
https://source.android.com/security/bulletin
https://source.android.com/security/enhancements/enhancements10
https://source.android.com/security/enhancements/enhancements10
https://source.android.com/devices/tech/ota/ab
https://source.android.com/devices/tech/ota/ab
https://community.sprint.com/t5/My-Phone/ct-p/android
https://community.sprint.com/t5/My-Phone/ct-p/android
https://support.t-mobile.com/thread/140331
https://support.t-mobile.com/thread/140331
https://support.t-mobile.com/thread/146826
https://support.t-mobile.com/thread/146826
https://www.t-mobile.com/support/phones-tablets-devices
https://www.t-mobile.com/support/phones-tablets-devices
https://support.t-mobile.com/community/phones-tablets-devices#phone/
https://support.t-mobile.com/community/phones-tablets-devices#phone/

in Smartphones and Mobile Devices, SPSM ’15, pages 87–98, New York, NY, USA, 2015.

Association for Computing Machinery.

[50] Verizon. Software Updates. https://www.verizon.com/support/software-updates/,

Accessed: 02/2020.

[51] Davey Winder. Smartphone Security Surprise As Samsung Shows Google How Android

Updates Can Be Done. https://www.forbes.com/sites/daveywinder/2020/01/06/

smartphone-security-surprise-as-samsung-shows-google-how-android-updat

es-can-be-done-note10-galaxys10-pixel/#6752ce7f1d6e, Accessed: 05/2020.

[52] Keun Soo Yim, Iliyan Malchev, Andrew Hsieh, and Dave Burke. Treble: Fast software

updates by creating an equilibrium in an active software ecosystem of globally distributed

stakeholders. ACM Transactions on Embedded Computing Systems (TECS), 18(5s):1–23,

2019.

55

https://www.verizon.com/support/software-updates/
https://www.forbes.com/sites/daveywinder/2020/01/06/smartphone-security-surprise-as-samsung-shows-google-how-android-updates-can-be-done-note10-galaxys10-pixel/#6752ce7f1d6e
https://www.forbes.com/sites/daveywinder/2020/01/06/smartphone-security-surprise-as-samsung-shows-google-how-android-updates-can-be-done-note10-galaxys10-pixel/#6752ce7f1d6e
https://www.forbes.com/sites/daveywinder/2020/01/06/smartphone-security-surprise-as-samsung-shows-google-how-android-updates-can-be-done-note10-galaxys10-pixel/#6752ce7f1d6e

	Introduction
	Background and Related Work
	Android Security Updates and Operating System Upgrades
	Challenges with Fragmentation
	Related Work

	Data
	Android Security Bulletins
	Mobile Carriers
	Collection and Normalization Process

	End user
	Mobile Manufacturers
	Security Updates on Locked and Unlocked Samsung Devices

	Ethical Considerations

	Manufacturers and Carriers' Effects
	Rollout Frequency
	Rollout Latency
	Summary of Carrier and Manufacturer Measurements

	End-User Update Behavior
	Security Updates Frequency and Latency on End-User Devices
	OS Upgrades on End-User Devices
	Effectiveness of Android Initiatives

	Limitations and Discussion
	Conclusions

