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Abstract

Multi-agent systems (MASs) have been widely recognized as a key way to model, analyze,

and engineer numerous kinds of complex systems composed of distributed agents. The aim of this

dissertation is to study control design for leader-follower MASs such that a group of followers

can track a specified leader via distributed decision making based on distributed information. We

identify and consider several critical problems that have stood in the way of distributed track-

ing control synthesis and analysis. Specifically, they include: 1) limited information access by the

followers to the leader, 2) effects of external disturbances, 3) complicated dynamics of agents,

and 4) energy efficiency. To overcome the first three problems, we take a lead with the design of

distributed-observer-based control, with the insight that distributed observers can enable agents to

recover unknown quantities in a collective manner for the purpose of control. To deal with the

fourth problem, we propose the first study of MAS tracking control conscious of nonlinear bat-

tery dynamics to increase operation time and range. The dissertation will present the following

research contributions. First, we propose the notion of designing distributed observers to make all

the followers aware of the leader’s state and driving input, regardless of the network communica-

tion topology, and perform tracking controller design based on the observers. Second, we further

develop distributed disturbance observers and observer-based robust tracking control to handle the

scenario when all the leader and followers are affected by unknown disturbances only bounded

in rates of change. The third contribution lies in treating a leader-follower MAS with high-order,

nonlinear dynamics. Assuming the availability of very limited measurement data, we substantively

expand the idea of observer-based control to develop a catalog of distributed observers such that

the followers can reconstruct large amounts of information necessary for effective tracking con-

trol. Finally, we propose a distributed predictive optimization method to integrate onboard battery

management with tracking control for long-endurance operation of an electric-powered MAS. The
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proposed dissertation research offers new insights and a set of novel tools to enhance the control

performance of leader-follower MASs. The results also have a promise to find potential applica-

tions in other types of MASs.
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Chapter 1

Introduction

1.1 Background

Multi-agent systems (MASs) have emerged as a crucial technology to advance cooperative auton-

omy for various applications across scientific, industrial, and civilian sectors. An MAS consists of

a team of distributed agents, each equipped with information sensing, communication and com-

puting capabilities. The agents exchange information and make decisions to coordinate with each

other to collectively accomplish a goal [2]. Harnessing the power of cooperation among agents, an

MAS can perform sophisticated tasks beyond the level of individual agents. For instance, a group

of unmanned aerial vehicles can make fast exploration of large geographical areas or complex built

environments, provide rapid surveillance and control of forest fires as well as other types of disas-

ters, or enable efficient search and rescue missions [3, 4]. A key attribute of MASs is the distributed

information interchange and decision making. This attribute allows the breakdown of a complex

task into smaller parts amenable to execution by individual agents. It also yields much flexibility

in the organization and coordination of agents—an MAS can adaptively remove agents from or

add new ones to the team, thus robust to agent failures and scalable to handle large-scale tasks [5].

With these advantages, MAS-based autonomy has found its way into unmanned aerial, marine

and ground vehicle teams [3, 6–11], mobile sensor networks [12–16], connected transportation

systems [17–23], and even diverse power and energy systems [24–32].

The operation of MASs depends on distributed control. As the name suggests, distributed con-

trol enables an agent to make individual control decisions as an integral part of the team while

interacting with its neighboring agents [33, 34]. Due to its importance, it has stimulated consid-
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erable interest from researchers in the past two decades. The study of this subject represents an

extension of feedback control to distributed networked systems. But differing from centralized

control, it focuses on leveraging local information to attain a global goal. Typical problems that

have gained large volumes of research include but are not limited to the following: 1) leader-

follower tracking, where a group of follower agents track the state of a leader agent, 2) dynamic

consensus, where a group of agents mobilize to meet at an agreed location, or average consensus if

the agents meet at the average of their initial locations, 3) formation control, where agents preserve

a spatial pattern while tracking a certain trajectory, 4) coverage control, where a swarm of agents

maneuver to optimally cover or sense a spatio-temporal field, and 5) flocking control, where agents

form lattice-shaped meshes in space while maintaining aligned velocity and avoiding collision and

obstacles.

Despite an ever-growing body of work, distributed control design still faces many open prob-

lems. A significant one among them is how to deal with the distributed information availability.

Because the agents of an MAS can only exchange information with their neighbors due to network-

based communication, information is distributed among the agents. The amount of information

available to an agent is limited, especially if the communication links are sparse as a result of low

communication capacity. The distribution of information necessitates distributed control while also

making it hard for individual agents to make effective control decisions. To date, it remains a fun-

damental bottleneck in many task settings. There will arise even more challenges to further com-

pound distributed control design if an MAS has complex dynamics (nonlinear, high-dimensional,

etc.) or is subject to uncertainty. Another interesting open problem is how to instill an awareness

of practical performance metrics in distributed control. Conventional MAS studies mostly focus

on improving control properties, e.g., convergence guarantees or speed, but real-world autonomy

tasks often require an MAS to meet more performance objectives. Long-endurance operation is an

example in point—it is crucial for MASs to succeed in missions ranging from disaster response

to delivery services. However, today’s electric-powered MASs often struggle to operate for a long

enough time, because currently available lithium-ion batteries, even considered as the best power
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source due to their high energy and power densities, can still sustain only a relatively short amount

of runtime for one charge. This leads to the intriguing question of whether it is possible to achieve

battery-aware distributed control.

1.2 Scope and Contributions of the Dissertation

This dissertation presents a study of distributed leader-follower tracking control. Leader-follower

MASs represent an important class of MASs, in which a group of follower agents coordinate with

each other to track a leader agent. Control design for them has recently attracted increasing research

attention. Here, we aim to investigate several major issues that remain unresolved in the literature,

outlined as below.

• For a leader-follower MAS, only a small subset of the followers can communicate directly

with the leader to access its real-time state or maneuvering input. The fact that the majority of

the followers cannot sense the leader makes it difficult to achieve effective tracking control.

Existing studies often have to introduce some impractical assumptions to formulate tractable

solutions.

• The current literature generally considers leader-follower MASs with linear, low-order dy-

namics and free of disturbances. However, uncertain disturbances and nonlinear, high-order

dynamics are inevitable to appear in realistic settings. Control design in such cases will be

much more challenging but has been poorly studied.

• An MAS in real world is often desired to operate for as long as possible or designed to

perform long-endurance operations as aforementioned. Yet, prior distributed control methods

have disregarded this need.

To address the above issues, the dissertation presents the following contributions.

• We propose a distributed-observer-based approach for leader-follower tracking control. To

treat the issue that most of the followers have no direct exchange with the leader, we design
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distributed observers such that all the followers can use locally shared data to collectively

infer about the leader in real time. The distributed observers can deal with inference of the

leader’s state, maneuvering input, and disturbance. They are then integrated with tracking

control design to enable observer-based controller synthesis.

• We investigate leader-follower tracking under disturbances and high-order agent dynamics.

In the case of disturbances, we consider the challenging situation that all the followers and

leader suffer unknown disturbances. We develop distributed disturbance observers to make

the followers gain an awareness of the disturbances for robust tracking. We then substan-

tively expand the distributed observer approach to attain tracking for agents with high-order,

nonlinear dynamics.

• We study energy-aware leader-follower tracking for electric-powered MASs. The key no-

tion lies in leveraging the lithium-ion batteries’ nonlinear dynamics to extract more energy

to increase operation time and range. We develop a distributed model predictive control ap-

proach to handle tracking control and onboard battery use simultaneously. The approach by

design can strike a balance between tracking performance and battery energy saving. This

study also represents the first attempt to exploit distributed optimization for leader-follower

tracking to our knowledge.

The dissertation is presented in a summary style. Chapters 2-5 are based on the research articles

first-authored by the dissertation author. The first contribution spans and underlies Chapters 2-4;

Chapter 3-4 present the second contribution; Chapter 5 addresses the third contribution. Finally,

Chapter 6 concludes the entire dissertation.
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Chapter 2

Observer-Based Distributed Leader-Follower Tracking

Control: A New Perspective and Results1

2.1 Introduction

In a leader-follower MAS, a swarm of agents referred to as followers interchange information and

apply local control to cooperatively track a leader agent’s behavior. The past decade has witnessed

a growing amount of research on control design to accomplish this objective, e.g., [36–44] and the

references therein. Like other MAS control problems, this problem faces a fundamental challenge

that a follower has limited access to information about the other agents (leader and other followers).

A primary reason is that information exchange across an MAS is distributed and localized. That

is, a follower can only exchange information with its neighbors, and only a subset of the followers

can directly communicate with the leader. Adding to this situation, an agent may be unable to

measure all of its state variables because sensing devices can be unavailable or too expensive.

Consequently, significant research effort has been devoted to observer-based control design, in

which followers run observers to estimate the leader’s and/or their own state for the purpose of

control. The literature includes two main types of approaches in this regard. The first type is about

velocity or position observers designed for MASs based on a first- or second-order model, and the

second type about state observers for MASs characterized by state-space models.

• Velocity/position-observer-based control. For a second-order MAS, the leader’s velocity is

useful for tracking control but inaccessible to followers when agents do not have velocity

1This chapter is based on the dissertation author’s first-authored journal paper [35] and first-authored conference
paper [36].
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sensors. A lead is taken in [37] with the development of a distributed observer that allows a

follower to estimate the leader’s velocity. The notion is extended in [45] to achieve tracking

control in a sampled-data setting and in [38] to enable finite-time leader-follower consensus.

In [43], an observer is proposed for a follower to estimate its relative velocity with respect to

the leader. Observer design can also be leveraged to estimate followers’ velocities. In [46],

a local velocity observer is proposed so that a follower can reconstruct its own velocity. A

similar problem is investigated in [47]. The approach therein includes an observer, which,

though not making explicit velocity estimation, is still meant to make up for the absent ve-

locity information. Position-observer-based tracking control for a first-order MAS is studied

in [48], in which a position observer is designed to allow followers to estimate the leader’s

position. However, it requires the leader’s control law to take a specific linear form and be

known by all the followers to ensure effective position estimation and tracking.

• State-observer-based control. When agents have dynamics modeled in the linear state-space

form, a state observer is often needed to achieve output-feedback control. A Luenberger-like

observer in [49] is proposed for a follower to estimate its local state, which adopts state

correction using the follower’s output estimation error relative to its neighbors’. Akin to this,

state observers are designed and used in [50] for tracking control in the presence of switching

topology and in [51, 52] for leader-follower synchronization with uncertainties.

The studies surveyed above not only provide a wealth of results regarding observer-based track-

ing control but also show the significance and potential of observers for this control problem. It

is noted, however, that the observer design has been almost solely focused on estimating the state

variables (e.g., velocity of a second-order agent or state vector of a state-space agent), either the

leader’s or a follower’s. By comparison, estimation of the leader’s input has received far less at-

tention, even though it is evident that knowledge of a leader’s maneuver input, if available in real

time, can critically help a follower keep tracking the leader. Hence, we consider a new perspective

to investigate leader-follower tracking control by developing distributed input observers that can

enable every follower to estimate the leader’s input. Since the input observers can bring a follower
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an awareness of the leader’s maneuvers, the tracking control can be hopefully enhanced.

This perspective leads us to make a two-fold contribution through this work. First, we propose

a novel input-observer-based tracking control framework. As a distinguishing feature, this frame-

work includes distributed input observers run by followers to estimate the leader’s control input.

Compared to [48], such observers would neither require the leader’s control law to take a special

form nor demand it to be known by every follower. Second, following this framework, we sys-

tematically develop new tracking control approaches for both first- and second-order MASs. This

involves the development of distributed input observers, together with some other observers for

position or velocity estimation, and integrates them into tracking control laws. Theoretical analy-

sis proves the effectiveness of the proposed approaches, which is further validated by simulation

results. The proposed approaches will bring important benefits for tracking control, e.g., loosening

some long-held assumptions and reducing the need for sensing devices, with a detailed discussion

offered in the later sections.

The rest of this chapter is organized as follows. Section 2.2 summarizes graph theory used in

this chapter. Section 2.3 formulates the problem of interest and presents the input-observer-based

framework design for first-order leader-follower tracking. Section 2.4 studies the input-observer-

based tracking for the second-order case. A simulation study is offered in Section 2.5 to illustrate

the proposed approaches. Finally, Section 2.6 gathers our concluding remarks.

2.2 Graph Theory

We use a graph to describe the topological structure for information exchange among the leader

and followers. First, consider a network composed of N independent followers. The interaction

topology is modeled as an undirected graph. The follower graph is expressed as G = (V,E), where

V = {1,2, · · · ,N} is the node set and the edge set E ⊆ V ×V contains unordered pairs of nodes. A

path is a sequence of connected edges in a graph. The neighbor set of agent i is denoted asNi, which

includes all the agents in communication with it. The adjacency matrix of G is A = [ai j] ∈ RN×N ,

which has non-negative elements. The element ai j > 0 if and only if (i, j)∈E , and moreover, aii = 0
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for all i ∈ V . For the Laplacian matrix L = [li j] ∈ RN×N , li j =−ai j if i 6= j and lii = ∑k∈Ni aik. The

leader is numbered as vertex 0, and information can be exchanged between the leader and its

neighbors. Then, we have a graph Ḡ , which consists of graph G, vertex 0 and edges from the

vertex 0 (i.e., the leader) to its neighbors. The leader is globally reachable in Ḡ if there is a path

from node 0 to every node i in G. In order to express the graph Ḡ more precisely, we denote the

leader adjacency matrix associated with Ḡ by B = diag(b1, . . . ,bN), where bi > 0 if the leader is a

neighbor of agent i and bi = 0 otherwise. The following lemmas will be useful.

Lemma 1. [53] The Laplacian matrix L(G) has at least one zero eigenvalue, and all the nonzero

eigenvalues are positive. Furthermore, L(G) has a simple zero eigenvalue and all the nonzero eigen-

values are positive if and only if G is connected.

Lemma 2. [54] The matrix H = lB+L is positive stable (i.e., all the eigenvalues have a positive

real part), where l > 0 is a positive coefficient, if and only if vertex 0 is globally reachable.

2.3 First-order Leader-follower Tracking

In this section, we first formulate the problem of first-order leader-follower tracking to be consid-

ered. Then, we develop an input-observer-based tracking control approach with convergence proof

provided. In the end, the results are extended to a simplified yet meaningful case.

2.3.1 Problem Formulation and Proposed Algorithm

Consider a leader-follower MAS, where the followers are expected to track the leader’s trajectory

to accomplish an assigned mission. During the tracking process, the leader and followers maintain

communication according to a pre-specified network topology to exchange their state information.

Leveraging the information received, the followers can determine their control inputs and then steer

themselves to track the leader. Suppose that the leader is numbered as 0 and that the N followers

8



Figure 2.1: Input-observer-based framework for leader-follower tracking.

are numbered from 1 to N. Their dynamics is given by

ẋi = ui, xi ∈ R, i = 0,1, . . . ,N, (2.1)

where xi is the position and ui the control input.

Given this problem setting, the aim is to design ui for i = 1,2, . . . ,N such that follower i can

asymptotically track the leader, i.e., limt→∞ |xi(t)− x0(t)|= 0.

To achieve the above aim, we develop an input-observer-based tracking control design method-

ology. As a first step, we propose the conceptual design of a linear continuous controller. Because

the leader’s input u0 can only be known by its neighbors, the proposed controller involves a local

estimate of u0. Similarly, it also entails a local estimate of the leader’s position x0. Hence, an input

observer is designed, which can be used by a follower to infer the leader’s input. Building on this

input observer, another observer will be proposed for a follower to locally reconstruct the leader’s

position x0. The design will be complete when the observers are integrated into the proposed con-

troller. This methodology is illustrated in Figure 2.1.

To begin with, we consider the following control law for follower i:

ui =−k1(xi− x̂0,i)+ û0,i, (2.2)

where k1 > 0 is the control gain, and x̂0,i and û0,i are follower i’s estimates of the leader’s position
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and input, respectively. Here, the term xi− x̂0,i is meant to drive the follower approaching and

tracking the leader, and the term û0,i to ensure that the follower applies maneuvers consistent with

the leader’s driving input.

Proceeding further, we propose the following input observer for follower i to estimate the

leader’s input u0:

żi =−bilzi−b2
i l2x0− ∑

j∈Ni

ai j(û0,i− û0, j)

−di · sgn

[
∑

j∈Ni

ai j(û0,i− û0, j)+ lbi(û0,i−u0)

]
,

û0,i =zi +bilx0,

ḋi =τi

∣∣∣∣∣ ∑
j∈Ni

ai j(û0,i− û0, j)+ lbi(û0,i−u0)

∣∣∣∣∣ ,

(2.3a)

(2.3b)

(2.3c)

where zi is the observer’s internal state, l a scalar gain, di an adaptive gain and τi is a positive scalar.

This design is inspired by an unknown disturbance observer developed in [55]. However, we intro-

duce two significant modifications. First, the original design in [55] is a centralized observer for

a single plant, whereas in this case it has been transformed to achieve distributed input estimation

among a group of agents. Second, an adaptive mechanism is developed to enable a dynamic ad-

justment for the gain di, as shown in (2.3c), which helps avoid the cumbersome or inefficient gain

selection procedure that would be necessary otherwise.

Building on the estimation of u0 through (2.3), a position observer is designed as follows:

˙̂x0,i =−c

[
∑

j∈Ni

ai j(x̂0,i− x̂0, j)+bi(x̂0,i− x0)

]
+ û0,i, (2.4)

where c is a scalar gain. Note that the term −∑ j∈Ni ai j(x̂0,i− x̂0, j)− bi(x̂0,i− x0) can help the

observer overcome the error of the initial guess using neighborhood position estimation difference.

The term û0,i is to ensure that the observer’s input is consistent with the leader’s actual input u0.

With such a design, it is anticipated that x̂0,i can converge to x0.
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Combining (2.2)-(2.4), we obtain a complete description of an input-observer-based controller.

Next, we will prove its convergence.

2.3.2 Convergence Analysis

To analyze its convergence properties, the next assumption and lemmas are needed.

Assumption 1. The input u0 ∈ C1, and its first-order derivative is bounded and satisfies |u̇0| ≤ w <

∞, where w is unknown.

This assumption is mild and reasonable, since the leader’s maneuver input u0 should be smooth

and bounded in rate-of-change due to practical control actuation limits. In addition, we assume

that the bound for the rate-of-change does not have to be known. This reduces the amount of

information about the leader that must be available to followers. It may also help avoid potential

conservatism in control design caused by a bound set too large.

Define eu,i = û0,i−u0, which is the input estimation error. According to (2.3), the closed-loop

dynamics of eu,i can be written as

ėu,i = ˙̂u0,i− u̇0 = żi +bilẋ0− u̇0

=−bileu,i− ∑
j∈Ni

ai j(û0,i− û0, j)− u̇0

−di · sgn

[
∑

j∈Ni

ai j(û0,i− û0, j)+ lbi(û0,i−u0)

]
. (2.5)

Let us define eu =

[
eu,1 eu,2 · · · eu,N

]>
. It then follows from (2.5) that

ėu =−H1eu−D · sgn(H1eu)− u̇01, (2.6)

where H1 = lB+L and D = diag(d1, . . . ,dN). The convergence of eu to zero is shown in the fol-

lowing lemma.
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Lemma 3. If Assumption 1 holds, the input estimation û0,i of (2.3) can track the input u0 asymp-

totically with limt→∞ eu = 0.

Proof: By Lemmas 1 and 2, H1 is positive definite. Consider the Lyapunov function V (eu,di) =

1
2e>u H1eu +∑

N
i=1

(di−β )2

2τi
for the input estimation error dynamics in (2.6), where β is a positive

constant. The derivative of V (eu,di) is given by

V̇ =−e>u H2
1 eu− e>u H1D · sgn(H1eu)− e>u H1u̇01+

N

∑
i=1

(di−β )ḋi

τi

≤−
N

∑
i=1

di

(
∑

j∈Ni

ai j(û0,i− û0, j)+ lbi(û0,i−u0)

)>

· sgn

(
∑

j∈Ni

ai j(û0,i− û0, j)+ lbi(û0,i−u0)

)
− e>u H2

1 eu +
N

∑
i=1

(di−β )ḋi

τi
+w‖H1eu‖1

=−
N

∑
i=1

di

∣∣∣∣∣ ∑
j∈Ni

ai j(û0,i− û0, j)+ lbi(û0,i−u0)

∣∣∣∣∣− e>u H2
1 eu +w‖H1eu‖1

+
N

∑
i=1

(di−β )

∣∣∣∣∣ ∑
j∈Ni

ai j(û0,i− û0, j)+bi(û0,i−u0)

∣∣∣∣∣
=−e>u H2

1 eu− (β −w)‖H1eu‖1. (2.7)

It is noted that e>u H2
1 eu ≥ 0. Then, given w, there always exists a β that guarantees β ≥ w. So

we can obtain V̇ ≤ 0 from (2.7), which indicates that V (eu,di) is non-increasing. Therefore, one

can see from the Lyapunov function that eu and di are bounded. By noting that τi > 0, it fol-

lows from (2.3c) that di is monotonically increasing. Thus, the boundedness of di indicates that

each di converges to some finite value. In the meantime, V (eu,di) reaches a finite limit as it is

decreasing and lower-bounded by zero. Let us define s(t) =
´ t

0 e>u (τ)H
2
1 eu(τ)dτ . It is obtained that

s(t)≤V (0)−V (t) by integrating V̇ ≤−e>u H2
1 eu. Thus, limt→∞ s(t) exists and is finite. Due to the

boundedness of eu and ėu, s̈ is also bounded. This shows that ṡ is uniformly continuous. Hence,

limt→∞ ṡ(t) = 0 by Barbalat’s Lemma [56], indicating that limt→∞ eu = 0. It is noted that (2.5) is

globally asymptotically stable. �

Lemma 3 indicates that each follower can successfully estimate the control input u0 with the
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proposed input observer. We will next analyze the asymptotic stability of the position observer.

The input-to-state stability lemma will be used.

Lemma 4. [56] Consider an input-to-state stable (ISS) nonlinear system ẋ = F(x,w). If the input

satisfies limt→∞ w(t) = 0, then the state limt→∞ x(t) = 0.

Define follower i’s position estimation error as ex,i = x̂0,i−x0. The error vector for all followers

is denoted as ex =

[
ex,1 ex,2 · · · ex,N

]>
. It can be derived from (2.4) that

ėx =−cH2ex + eu, (2.8)

where H2 = B+L.

Lemma 5. If Assumption 1 holds, the system in (2.8) is asymptotically stable with limt→∞ ex = 0,

if the observer gain c is chosen such that c > 0.

Proof: According to Lemmas 1 and 2, H2 is positive definite. Then, the system in (2.8) is ISS, and

as a result, limt→∞ ex = 0 holds. �

The above lemma shows the effectiveness of the proposed position observer for a follower to

estimate the leader’s x0. Now, let us prove the convergence of the tracking control. Define follower

i’s tracking error as ei = xi− x0, and put together ei for i = 1,2, . . . ,N to form the vector e =[
e1 e2 · · · eN

]>
. Using (2.1) and (2.2), it can be derived that the dynamics of e is governed by

ė =−k1e+ k1ex + eu. (2.9)

The theorem below shows that e will approach 0 as t→ ∞.

Theorem 1. Suppose that Assumption 1 is satisfied. If the observer gain is chosen such that k1 > 0

holds, the system in (2.9) is asymptotically stable, and limt→∞ |xi(t)−x0(t)|= 0 for i = 1,2, . . . ,N.

Proof: It can be obtained from Lemma 4 that the system in (2.9) is ISS if k1 > 0. Therefore,

limt→∞ e = 0 results from the analysis in Lemmas 3 and 5. This completes the proof. �
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Theorem 1 shows that the proposed tracking control approach would enable each follower

to approach and track the leader as time goes by, with the position tracking error converging to

zero. The following remark further summarizes its difference from some existing methods and

advantages.

Remark 1. The input-observer-based tracking control approach proposed above presents a few

advantages over many existing methods. First, for this approach, a follower only needs to inter-

change information with its neighbors. By comparison, some studies in the literature requires

that the leader’s input must be known by any follower even if it is not a neighbor of the leader,

e.g., [1, 37, 42, 57]. Second, the followers do not have to be given information about the leader’s

controller. This contrasts with [48], which stipulates that every follower knows the leader’s ex-

act control law, and with [58], which requires the upper bound of the leader’s control input to be

known by all followers. Finally, the approach relaxes the assumption about the leader’s control in-

put. Here, a bound is only imposed on its rate-of-change rather than its magnitude as in [59]. This

implies that this approach can apply to the case when the leader applies high-magnitude maneu-

vers. In particular, the bound of rate-of-change does not have to be known for the control design,

further conducive to practical application of the proposed approach. •

2.3.3 Extension to a Simplified Case

A general case is considered above that the leader’s input u0 has a bounded rate-of-change. How-

ever, it is also practically meaningful in reality to consider a special case when the time derivative

of u0 becomes zero as time goes by. In other words, whatever the leader’s movement is like at the

beginning time, it gradually transitions to and maintains constant-speed movement. An example

is a group of aerial vehicles tracking a leader that cruises at a stable speed to achieve high-quality

photographing [60]. This setting is also of considerable interest in the literature, e.g., [61]. Along

this line, let us consider that the rate-of-change of u0 approaches zero, i.e., limt→∞ u̇0(t) = 0. To

deal with this case, we can reduce the input observer in (2.3) to the following form, which is
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structurally more concise:

żi =−bilzi−b2
i l2x0− ∑

j∈Ni

ai j(û0,i− û0, j),

û0,i = zi +bilx0.

(2.10a)

(2.10b)

When this observer is integrated into the controller in (2.2), effective tracking can be guaran-

teed under relaxed conditions. This argument is presented in the following corollary. The proof is

straightforward and thus omitted here.

Corollary 1. Consider the systems in (2.1) and assume that limt→∞ u̇0(t)= 0. Suppose that the con-

troller in (2.2) is applied together with the position observer in (2.4) and input observer in (2.10).

Then, limt→∞ |xi(t)− x0(t)|= 0 for i = 1,2, . . . ,N if the control gain k1 > 0 and the observer gain

c > 0.

Remark 2. In addition to structural conciseness, it is noted that this input observer does not require

the leader’s input information if compared to the one in (2.3). This indicates that the leader does

not even have to send its input to its neighbors in the considered setting, as a further advantage in

practice. •

2.4 Second-order Leader-follower Tracking

This section considers leader-follower tracking for agents with second-order dynamics. Now, the

leader and followers are described as ẋi = vi, xi ∈ R,

v̇i = ui, vi ∈ R, i = 0,1, . . . ,N,
(2.11)

where xi is the position, vi the velocity and ui the input force. Still, agent 0 is the leader, and the

other agents numbered from 1 to N are followers. It is considered here that no velocity sensor is

used by the leader and followers, i.e., vi for i = 0,1, . . . ,N is not measured. Akin to the first-order

15



Figure 2.2: Input-observer-based framework for second-order leader-follower tracking.

case, our aim here is still to design a distributed control approach for each follower to track the

leader, achieving limt→∞ |xi(t)− x0(t)|= 0 and limt→∞ |vi(t)− v0(t)|= 0.

To address this second-order tracking problem, we continue to leverage the design thinking

of input-observer-based control. The specific design can be laid out in two main steps. First, a

linear continuous tracking controller is proposed for a follower, which uses the follower’s position

measurement and a few estimates, including its own velocity and the leader’s position, velocity and

input. Second, a series of observers are progressively developed to obtain the needed estimates. An

input observer is designed such that the follower can reconstruct the leader’s input. This is followed

by the development of two observers that permit it to estimate the leader’s velocity and position,

respectively. Another observer is also proposed to help the follower determine its own velocity.

Combining these observers with the controller then enables tracking control. This framework is

schematically illustrated in Figure 2.2.

Along the above line, we start with proposing a control law for follower i, which is given by

ui =−k1(xi− x̂0,i)− k2(v̂i− v̂0,i)+ û0,i, (2.12)

where k1 > 0 and k2 > 0 are the controller gains. Here, x̂0,i, v̂0,i and û0,i are follower i’s estimates

of the leader’s position x0, velocity v0 and input u0, and v̂i represents agent i’s estimate of its own

velocity vi. Furthermore, the term xi− x̂0,i is used to propel follower i to move toward the leader,

and the term v̂i− v̂0,i to synchronize its velocity with the leader’s. The term û0,i is intended to
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maintain follower’s maneuver at the same level with the leader. Next, we build observers to obtain

û0,i, v̂i, v̂0,i and x̂0,i.

We firstly propose an input observer to estimate u0 as follows:

˙̂u0,i =− ∑
j∈Ni

ai j(û0,i− û0, j)−bi(û0,i−u0)

−di · sgn

[
∑

j∈Ni

ai j(û0,i− û0, j)+bi(û0,i−u0)

]
,

ḋi =τi

∣∣∣∣∣ ∑
j∈Ni

ai j(û0,i− û0, j)+bi(û0,i−u0)

∣∣∣∣∣ .
(2.13a)

(2.13b)

Here, the term −∑ j∈Ni ai j(û0,i− û0, j)− bi(û0,i− u0) is used to drive û0,i toward approaching u0;

the sgn(·) term is employed to maintain synchronization between û0,i and u0 in the presence of

u̇0. It is seen that this observer does not require position x0 measurement, differing from the one

proposed earlier in (2.3). Note that this input observer is also applicable to the first-order case with

provable asymptotic stability. In other words, if it replaces (2.3), the first-order tracking control

can still be achieved under some mild conditions. This implies that one can design different kinds

of observers to achieve estimation of the leader’s input. Then, û0,i can be used to estimate v0 using

the observer

żi =−bilzi−b2
i l2x0− ∑

j∈Ni

ai j(v̂0,i− v̂0, j)+ û0,i,

v̂0,i = zi +bilx0,

(2.14a)

(2.14b)

where zi, l, and v̂0,i are the internal state of the observer, the observer gain, and the estimate of v0,

respectively. This velocity observer, as is seen, allows distributed estimation of the leader’s velocity

among all agents, even though it is not measured by a sensor. On such a basis, a position observer

is designed for follower i to estimate x0:

˙̂x0,i =−c

[
∑

j∈Ni

ai j(x̂0,i− x̂0, j)+bi(x̂0,i− x0)

]
+ v̂0,i. (2.15)
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Finally, follower i uses the following observer to estimate its own velocity as it also has no velocity

sensor:

˙̄zi =−lz̄i− l2xi +ui

v̂i = z̄i + lxi, (2.16)

where z̄i is the internal state of the observer. Putting together the above observers (2.13)-(2.16) with

the controller (2.12), we can obtain a tracking control approach. Its convergence will be analyzed

next. Yet before proceeding to the proof, we remark that Assumption 1 is also needed here and for

simplicity do not restate it. In addition, the following lemmas will be used.

Lemma 6. [62] Let Q =

A B

C D

, where A, B, C, D ∈ Rn×n. Then det(Q) = det(AD−BC), if

matrix A, B, C and D commute pairwise.

Lemma 7. [63] Given a complex coefficient polynomial of order two as follows:

h(s) = s2 +(a1 + ib1)s+a0 + ib0, (2.17)

where i =
√
−1; a1, b1, a0 and b0 are real constraints. Then, h(s) is stable if and only if a1 > 0 and

a1b1b0 +a2
1a0−b2

0 > 0.

The following theorem is the main result regarding the convergence of the proposed tracking

controller.

Theorem 2. Suppose that Assumption 1 holds and apply the proposed control approach (2.12)-

(2.16) to the considered second-order systems in (2.11). If k1 > 0, k2 > 0, l > 0 and c > 0, then

limt→∞ |xi(t)− x0(t)|= 0 and limt→∞ |vi(t)− v0(t)|= 0.

Proof: It can be derived from (2.13) that the dynamics of the input estimation error eu is given by

ėu =−H2eu−D · sgn(H2eu)− u̇01. (2.18)
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Along similar lines to the proof of Lemma 3, the above system is asymptotically stable, i.e.,

limt→∞ eu = 0.

Define the velocity estimation error e0v,i as e0v,i = v̂0,i− v0. According to (2.14), the dynamics

of e0v,i can be written as

ė0v,i = ˙̂v0,i− v̇0 =−bile0v,i− ∑
j∈Ni

ai j(v̂0,i− v̂0, j)+ û0,i−u0. (2.19)

Further, let us define the vector e0v =

[
e0v,1 e0v,2 · · · e0v,N

]>
. The dynamics of e0v then can be

obtained from (2.19), which is

ė0v =−H1e0v + eu. (2.20)

Because of limt→∞ eu = 0 and the ISS result in Lemma 4, it can be concluded that limt→∞ e0v = 0.

By (2.15), the position estimation error vector ex, which shares the same definition as in the

first-order case, is governed by the following dynamics equation:

ėx =−cH2ex + e0v. (2.21)

According to Lemma 4, the system in (2.21) is ISS. Since limt→∞ e0v = 0, we have limt→∞ ex = 0.

Now we consider a follower’s estimation error for its own velocity. Denote ev,i = v̂i− vi and

ev =

[
ev,1 ev,2 · · · ev,N

]>
. We can derive the dynamics of ev from (2.16), which is

ėv =−lev. (2.22)

Obviously, limt→∞ ev = 0 if l > 0.

Consider the leader and followers in (2.11) under the control law (2.12), one can obtain fol-
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lower’s closed-loop dynamics:

ẋi− ẋ0 =vi− v0,

v̇i− v̇0 =− k1(xi− x0)− k2(vi− v0)− k2(v̂i− vi)

+ k2(v̂0,i− v0)+ k1(x̂0,i− x0)+ û0,i−u0,

(2.23a)

(2.23b)

for i = 1,2, . . . ,N. Define e =

[
x1− x0 · · · xN− x0 v1− v0 · · · vN− v0

]>
. Then, combin-

ing (2.18), (2.22) and (2.23), we have the closed-loop tracking error dynamics of the entire leader-

follower system:

ė = F1e+F2, (2.24)

where

F1 =

 0 I

−k1I −k2I

 , F2 =

 0

−k2ev + k2e0v + k1ex + eu

 .
Furthermore, according to Lemma 6, the characteristic polynomial of F1 is given by

det(sI−F1) = det


 sI −I

k1I sI + k2I




= det(s2I + k2sI + k1I)

=
N

∏
i=1

(s2 + k2s+ k1) =
N

∏
i=1

hi(s). (2.25)

Based on Lemma 7, hi(s) is stable when k1 > 0 and k2 > 0. With this result, the system (2.24) is ISS

as limt→∞ F2 = 0 from (2.18)-(2.22). Hence, limt→∞ e = 0, which implies limt→∞ |xi(t)−x0(t)|= 0

and limt→∞ |vi(t)− v0(t)|= 0. This completes the proof. �

Remark 3. This proposed tracking control approach offers some merits when compared with the

literature. First, it does not require a follower to know the leader’s input or velocity if they are

not neighbors, differing from [37, 41, 42, 58]. This is similar to the approach in Section 2.3 and
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attributed to the input and velocity observers giving a follower a crucial “leader-awareness”. Sec-

ond, this approach can enable accurate tracking in the absence of velocity sensors. Recent years

have seen a growing interest in tracking control without velocity measurements due to its practical

benefits. Our proposed approach is different from the present methods in some interesting ways.

Through the velocity observers, it makes an explicit estimation of the leader’s and follower’s veloc-

ities. This differs from [47, 64, 65], which make no velocity estimation and use only neighborhood

position difference to achieve velocity-free tracking control. Velocity observer design is also con-

sidered in [42]. However, the design therein requires the leader’s input force to be known by every

follower. By contrast, our approach obviates this need because the input observer can infer the

leader’s input. •

2.5 Simulation Result

In this section, we provide an illustrative example to verify the effectiveness of the proposed

distributed control algorithm. Consider an MAS consisting of one leader and five followers. The

communication topology among them is shown in Figure 2.3a. Node 0 is the leader, and nodes 1

to 5 are followers. The leader will only send information updates to follower 1, and the followers

maintain undirectional communication with their neighbors.

We consider the second-order tracking. The actual initial positions and velocities of the leader

and followers are set to be x(0) =
[

0 3 0 −2 1 −1

]>
and v(0) =

[
0 1 −2 3 0 −1

]>
.

Figure 2.3 summarizes the simulation results when the tracking algorithm in Section 2.4 is applied.

Looking at the position trajectories of all followers and the leader in Figure 2.3b, one can see that

all followers catch up with the leader after around 25 seconds and then well continue the tracking.

Associated with this position tracking, Figure 2.3c further illustrates the velocity tracking, which

exhibits satisfactory convergence. The leader’s velocity and the followers’ estimation are shown

in Figure 2.3d. It is seen that the velocity estimation by each follower converges to the truth at

around the 12th second. Figure 2.3e demonstrates that each follower begins to get accurate estimate
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of its own velocity at around the tenth second and then keeps an accurate estimation. The time-

based evolution of the leader’s acceleration and its estimation by the followers is further shown in

Figure 2.3f. From this figure, the input observers of all the followers can capture the truth quickly

in about three seconds, showing the effectiveness of estimation. Figure 2.3g illustrates the leader’s

position and the locally estimated profiles, between which there is a good agreement. Finally,

Figure 2.3h shows the leader and followers’ control input profiles, which gradually become the

same. Through the above results and many others simulation runs, we consistently observe that the

proposed input-observer-based tracking control algorithms can provide effective performance.

2.6 Conclusion

Leader-follower tracking represents an important task in diverse MAS mission contexts, which

has been seeing a rapid rise of interest from researchers. In this paper, we proposed a novel

input-observer-based perspective into distributed tracking control design. Advancing the idea of

observer-based tracking control in the literature, we highlighted that observers can be designed for

a follower to directly estimate the leader’s maneuver input and leverage the estimation to enhance

tracking control. To this end, we developed distributed input observers along with some other ob-

servers and on such a basis, formulated a new tracking control framework. We conducted the study

for second-order MASs, with a control approach developed for each case. We also pointed out

that our approaches can help overcome a few limitations presented by some existing methods. We

further validated its effectiveness by numerical simulation.
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Figure 2.3: Tracking control for an MAS: (a) communication topology (b) position tracking; (c)
velocity tracking; (d) followers’ estimation of the leader’s velocity; (e) follower’s estimation of
their own velocities; (f) followers’ estimation of the leader’s input; (g) followers’ estimation of the
leader’s position; (h) followers’ input in comparison with the leader’s.
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Chapter 3

A New Encounter Between Leader-Follower Tracking and

Observer-Based Control: Towards Enhancing Robustness

against Disturbances1

3.1 Introduction

A large body of work has been developed recently to deal with leader-follower tracking control

design under diverse challenging situations, e.g., complex dynamics, communication delays, noisy

measurements, switching topologies, and limited energy budget, see [36, 37, 41, 44, 57, 68–78]

and the references therein. However, a problem that has received inadequate attention to date is the

case when the agents are subjected to disturbances. In a real world, disturbances can result from

unmodeled dynamics, change in ambient conditions, inherent variability of the dynamic process,

and sensor noises. They can cause degradation and even failure of tracking control if not well

addressed.

A lead is taken in [37] with the study of disturbance-robust leader-follower tracking. It presents

a distributed control design that achieves tracking with a bounded error when magnitude-bounded

disturbances affect the followers. This notion is extended in [38] to make the followers affected

by disturbances enter a bounded region centered around the leader in finite time. Another finite-

time tracking control approach is offered in [39], where the sliding mode control technique is used

to suppress the effects of disturbances. It is noted that, while the control designs in these works

1This chapter is based on the dissertation author’s first-authored journal paper [66] and first-authored conference
paper [67].
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yield robustness, they are based on upper bounds of the disturbances. By contrast, a different way

is to capture the disturbances by designing some observers and then adjust the control run based

on the disturbance estimation. Obtaining an explicit knowledge of disturbances, this approach can

advantageously reduce conservatism in control and thus enhance the tracking performance further.

In [40, 79], disturbance observers are developed and integrated into tracking controllers such that a

follower can estimate and offset the local disturbance interfering with its dynamics during tracking.

The results in both studies point to the effectiveness of disturbance observers for improving track-

ing accuracy — for instance, the tracking errors can approach zero despite non-zero disturbances

under certain conditions. However, other than these two, there are no more studies on this subject

to the best of our knowledge. This leaves many problems still open. Meanwhile, the potential of

the disturbance-observer-based approach is still far from being fully explored. It is noteworthy that

observer-based tracking control has been investigated in a few works, e.g., [37, 38, 61, 80, 81],

but observers in these studies are meant to infer various state or input variables rather than distur-

bances.

In this study, we uniquely focus on an open problem: can we enable distributed tracking control

when not only the followers but also the leader are affected by unknown disturbances and when

only the rates of change of the disturbances are bounded? The state of the art, e.g., [37–40, 79],

generally considers that disturbances plague just the followers and that they are bounded in mag-

nitude or approach fixed values as time goes by. The leader’s dynamics, however, can also involve

disturbances from a practical viewpoint. For example, consider an MAS composed of a few mobile

ground robots, the changes in the slope of the road act as disturbances on every robot including

the leader. The same can be said for the wind affecting a group of unmanned aerial vehicles. Such

disturbances are more difficult to be rejected because the leader cannot measure them and share

the information with any of the followers. Therefore, the tracking performance may be damaged

when this occurs. Furthermore, it is usually desirable to relax the assumptions about disturbances

to enhance the practical robustness of the control design. In [38–40, 79], the disturbances are as-

sumed to be bounded in magnitude. However, we wish to require the disturbances to be bounded in
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rates of change. This relaxation will be realistically beneficial for dealing with large disturbances

but also present more complexity to capture and suppress the disturbances. It must be pointed out

that the observer designs in [37–40, 61, 79–81] cannot be extended to deal with the considered

problem, due to the more challenging presence and nature of the disturbances. Hence, a solution is

still absent from the literature.

To address the above problem, we develop a novel observer-based distributed tracking control

framework, which is the main contribution of this paper. Different from the previous studies, this

framework builds on the notion that a follower can gain a real-time awareness of not only its

own but also the leader’s dynamics through distributed estimation. We hence design a set of new

observers and particularly, distributed disturbance observers that, for the first time, can enable

the followers to collectively infer the disturbance affecting the leader. We perform the observer-

based tracking control design for both first- and second-order MASs. We then conduct theoretical

analysis of the proposed approaches. We show that, even though disturbances are imposed on all

the agents, the tracking errors are still upper bounded (bounded-error tracking) as long as the rates

of change of the disturbances are bounded. Further, the tracking errors will approach zero (zero-

error tracking) if the disturbances converge to certain fixed points. We finally present simulations

to validate the proposed approaches.

The rest of this chapter is organized as follows. Section 3.2 introduces some preliminaries.

Section 3.3 considers a leader-follower MAS with first-order dynamics, develops an observer-

based distributed tracking control approach, and analyzes its performance rigorously. Section 3.4

proceeds to study the second-order MASs and develops a more sophisticated tracking control ap-

proach. Numerical simulation is offered in Section 3.5 to illustrate the effectiveness of the proposed

results. Finally, Section 3.6 gathers our concluding remarks.

3.2 Preliminaries

This section introduces notation and an assumption. The notation used throughout this chapter is

standard. We let diag(. . .) and det(·) represent a block-diagonal matrix and the determinant of a
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matrix, respectively. The eigenvalues of an N×N matrix are λi(·) for i = 1,2, . . . ,N. The minimum

and maximum eigenvalues of a real, symmetric matrix are denoted as λ (·) and λ̄ (·). A Ck function

is a function with k continuous derivatives.

Throughout this chapter, we consider a leader-follower MAS with N+1 agents. The agents are

numbered sequentially. The one numbered as 0 serves as the leader, and the other agents are fol-

lowers. Each agent is driven by an input ui and simultaneously affected by an external disturbance

fi for i = 0,1, . . . ,N. Here, we still apply Assumption 1 for leader’s input. In addition, we make the

following assumption.

Assumption 2. The external disturbance fi for i = 0,1, . . . ,N has a bounded first-order derivative,

i.e., ‖ ḟ01N×1‖ ≤ q0 and

∥∥∥∥∥
[

ḟ1 ḟ2 · · · ḟN

]>∥∥∥∥∥≤ q1, where q0,q1 ≥ 0.

3.3 First-Order Leader-Follower Tracking

This section studies first-order leader-follower tracking with disturbances. We develop an observer-

based control approach, pivoting the design on a set of observers to make a follower aware of the

leader’s and its own disturbances. We further analyze the closed-loop stability of the proposed

approach.

3.3.1 Problem Formulation

Consider an MAS with N + 1 agents, in which agent 0 is the leader and the others are followers.

An agent’s dynamics is given by

ẋi = ui + fi, xi,ui, fi ∈ R, i = 0,1, . . . ,N, (3.1)

where xi is the position, ui the control input equivalent to the velocity maneuver, and fi the unknown

disturbance. Suppose that Assumptions 1-2 hold. Here, the objective is to design a distributed

control law for ui such that each follower can control its dynamics to track the leader’s trajectory
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via exchanging information with its neighbors.

Remark 4. Compared with previous studies, the problem setting here is more generic and appli-

cable to a wide range of practical scenarios. Below, we outline a comparison with [37–40, 79],

which are the main references about tracking control with disturbances and henceforth referred

to as the existing literature. First, this work considers an input-driven leader, while the leader is

usually assumed to be input-free in the literature. Assumption 1 only requires the leader’s input

to be bounded in rate of change (with the bound unknown), which can be easily satisfied since

practical actuators only allow limited ramp-ups. Second, Assumption 2 imposes disturbances on

all the leader and follower agents, while the literature assumes only followers to be affected by

disturbances. Note that the case when a disturbance is inflicted on the leader is nontrivial. This is

because the leader’s disturbance is very difficult to be determined by the followers, especially in a

distributed network where many followers cannot directly interchange information with the leader.

Further, the disturbances are assumed to have only bounded rates of change rather than bounded

magnitude as required in the literature. This can be greatly useful for dealing with very large dis-

turbances. From the comparison, we conclude that the considered problem is less restrictive than

the predecessors, which still remains an open challenge. •

3.3.2 Proposed Algorithm and Stability Analysis

Given the above problem setting, we propose an observer-based tracking control approach. The

development begins with the design of a distributed linear continuous controller for a follower

(say, follower i). It crucially incorporates the estimation of three unknown variables, u0, f0 and

fi, enabling follower i to maneuver through simultaneously emulating the input and disturbance

driving the leader and offsetting the local disturbance. We subsequently construct three observers

to achieve the estimation to be integrated with the controller.

28



Considering follower i, we propose to design its controller as follows:

ui =− k

[
∑

j∈Ni

ai j(xi− x j)+bi(xi− x0)

]
+ û0,i + f̂0,i− f̂i, (3.2)

where k > 0 is the control gain, f̂0,i and û0,i are follower i’s respective estimates of the leader’s

disturbance f0 and input u0, and f̂i is follower i’s estimate of its own disturbance fi. Note that

bi > 0 if the leader is agent i’s neighbor and bi = 0 if it is not. In (3.2), the term −∑ j∈Ni ai j(xi−

x j)−bi(xi−x0) is employed to drive follower i approaching the leader; the term û0,i + f̂0,i ensures

that follower i applies maneuvers consistent with the leader’s input and disturbance; the term − f̂i

is used to cancel the local disturbance. For this controller, we build a series of observers as shown

below to estimate u0, f0 and fi, respectively.

To begin with, we leverage observer design in (2.13) to obtain û0,i, and its stability property

also holds at here. Then the following disturbance observer is proposed for follower i to estimate

f0:

ż f 0,i =−bizi−b2
i x0− ∑

j∈Ni

ai j( f̂0,i− f̂0, j)−biu0,

f̂0,i = z f 0,i +bix0,

(3.3a)

(3.3b)

where z f 0,i is the internal state. The design of (3.3) is inspired by [55], in which a centralized

disturbance observer is developed for a single plant. Here, transforming the original design, we

build the distributed observer as above such that follower i can estimate f0 in a distributed manner.

The last observer, designed as follows, enables follower i able to infer the disturbance fi inher-

ent in its own dynamics:

ż f ,i =−lz f ,i− l2xi +ui,

f̂i = z f ,i + lxi.

(3.4a)

(3.4b)

Here, l > 0 is the observer gain, and z f ,i is this observer’s internal state.

Combining (2.13) and (3.2)-(3.4), we obtain a complete description of an observer-based dis-

tributed tracking controller. Next, we will analyze its closed-loop stability.
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Now, consider the distributed observer for f0. Define e0 f ,i = f̂0,i− f0, which is follower i’s

estimation error for f0. Using (3.3), the dynamics of e0 f ,i is given by

ė0 f ,i =−bie0 f ,i− ∑
j∈Ni

ai j( f̂0,i− f̂0, j)− ḟ0.

Then, defining e0 f =

[
e0 f ,1 e0 f ,2 · · · e0 f ,N

]>
, we have

ė0 f =−He0 f − ḟ01. (3.5)

The following lemma reveals the upper boundedness of e0 f under Assumption 2.

Lemma 8. If Assumption 2 holds, then

‖e0 f (t)‖ ≤ ‖e0 f (0)‖+
q0

λ (H)
, t > 0,

lim
t→∞
‖e0 f (t)‖ ≤

q0

λ (H)
.

(3.6a)

(3.6b)

Proof: Consider the Lyapunov function candidate V2(e0 f ) =
1
2e>0 f e0 f for (3.5). According to As-

sumption 2, we have

V̇2(e0 f ) =−e>0 f He0 f − e>0 f ḟ01≤−λ (H)‖e0 f ‖2 +‖e0 f ‖‖ ḟ01‖ ≤ −λ (H)‖e0 f ‖2 +q0‖e0 f ‖.

The above inequality can be rewritten as

V̇2 ≤−2λ (H)V2 +
√

2q0
√

V2.

It then follows that

√
V2(t)≤

√
V2(0)e−λ (H)t +

√
2q0

2λ (H)

(
1− e−λ (H)t

)
≤
√

V2(0)+

√
2q0

2λ (H)
. (3.7)
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Then, (3.6a) can result from (3.7) because
√

V2 =
√

2
2 ‖e0 f ‖. Meanwhile, for the first inequality

in (3.7), taking the limits of both sides as t→ ∞ would yield (3.6b). •

For f̂i, define the error as e f ,i = f̂i− fi and further the vector e f =

[
e f ,1 e f ,2 . . . e f ,N

]>
.

By (3.4), the dynamics of e f is governed by

ė f =−le f − ḟ , (3.8)

where ḟ =
[

ḟ1 ḟ2 · · · ḟN

]>
. The next lemma shows that the error e f is bounded under Assump-

tion 2. Its proof is similar to that of Lemma 8 and thus omitted here.

Lemma 9. If Assumption 2 holds, then

‖e f (t)‖ ≤ ‖e f (0)‖+
q1

l
, t > 0

lim
t→∞
‖e f (t)‖ ≤

q1

l
.

With the above results , we are now in a good position to characterize the properties of the track-

ing error. Define follower i’s tracking error as ei = xi− x0, and put together ei for i = 1,2, . . . ,N to

form the vector e =
[

e1 e2 · · · eN

]>
. Using (3.1) and (3.2), it can be derived that the dynamics

of e can be described as

ė =−kHe+ e0 f + eu− e f . (3.9)

The following theorem provides a key technical result.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then,

‖e(t)‖ ≤ ‖e(0)‖+
‖e0 f (0)‖+‖eu(0)‖+‖e f (0)‖+ q0

λ (H) +
q1
l

kλ (H)
,

lim
t→∞
‖e‖ ≤

q0
λ (H) +

q1
l

kλ (H)
.

(3.10a)

(3.10b)
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Proof: Take the Lyapunov function candidate V3(e) = 1
2e>e for (3.9). Consider its derivative:

V̇3 =−ke>He+ e>e0 f + e>eu− e>e f

≤−kλ (H)‖e‖2 +‖e‖ · ‖e0 f ‖+‖e‖ · ‖eu‖+‖e‖ · ‖e f ‖,

where λ (H)> 0. Equivalently, we have

V̇3 ≤−2kλ (H)V3 +
√

2(‖e0 f ‖+‖eu‖+‖e f ‖)
√

V3.

Then,

√
V3(t)≤

√
V3(0)e−kλ (H)t +

√
2(‖e0 f (t)‖+‖eu(t)‖+‖e f (t)‖)

2kλ (H)
(1− e−kλ (H)t)

≤
√

V3(0)+

√
2(‖e0 f (t)‖+‖eu(t)‖+‖e f (t)‖)

2kλ (H)
,

which, based on Lemmas 3 and 8-9, indicates (3.10a)-(3.10b). •

Theorem 3 shows that the proposed observer-based controller can make each follower track

the leader with bounded position errors despite the disturbances. Therefore, we can say that the

influence of the disturbances is effectively suppressed and that tracking is achieved in a practically

meaningful manner.

Remark 5. For the proposed controller, the tracking performance will be further improved if the

disturbances satisfy some stricter conditions. In particular, it is noteworthy that perfect or zero-

error tracking can be attained if the disturbances see their rates of change gradually settle down to

zero, i.e., ḟi(t)→ 0 as t→∞ for i = 0,1, . . . ,N. The proof can be developed following similar lines

as above and is omitted here. •
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3.4 Second-Order Leader-Follower Tracking

This section considers leader-follower tracking control for a second-order MAS. An agent’s dy-

namics now involves position, velocity, acceleration and disturbance:

 ẋi = vi, xi ∈ R,

v̇i = ui + fi, vi ∈ R,
(3.11)

for i = 0,1, . . . ,N. Here, xi is the position, vi the velocity, ui the acceleration input, and fi the

disturbance. Still, agent 0 is the leader, and the others are followers numbered from 1 to N. We

continue to apply Assumptions 1-2 here and set the objective of making the followers achieve

bounded-error tracking of the leader in the presence of the disturbances.

For a general problem formulation, we further assume that no velocity sensor is deployed

on the leader and followers. Hence, there are no velocity measurements throughout the tracking

process. The absence of the velocity information, together with the unknown disturbances, makes

the tracking control problem more complex than in the first-order case, thus requiring a substantial

sophistication of the observer-based control approach in Section 3.3. Here, we will custom build

an observer-based tracking controller and develop new velocity and disturbance observers.

Consider follower i. We propose the following distributed controller:

ui =− k

[
∑

j∈Ni

ai j(xi− x j)+bi(xi− x0)

]
− (v̂i− v̂0,i)+ û0,i + f̂0,i− f̂i, (3.12)

where k > 0 is the control gain. In addition, û0,i, v̂0,i, f̂0,i, v̂i and f̂i are, respectively, follower i’s

estimates of u0, v0, f0, vi and fi. The terms −∑ j∈Ni ai j(xi− x j)− bi(xi− x0) and −(v̂i− v̂0,i) are

used to enable the follower to track the leader in both position and velocity; the term û0,i + f̂0,i is

used to make the follower steer itself with a maneuvering input close to the combined input and

disturbance driving the leader; the term − f̂i is meant to offset the local disturbance.

With the above controller structure, we need to construct observers that can obtain the needed
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estimates. First, it is noted that the input observer of u0 in (2.13) can be applied here without

any change, and its convergence property as shown in Lemma 3 also holds in this case. Then, we

develop the following observer such that follower i can estimate the leader’s unknown velocity:

żv0,i =−bizv0,i−b2
i x0− ∑

j∈Ni

ai j(v̂0,i− v̂0, j)+ f̂0,i + û0,i,

v̂0,i =zv0,i +bix0,

(3.13a)

(3.13b)

where zv0,i is the internal state of this observer. Follower i’s observer for the leader’s disturbance is

then proposed as

ż f 0,i =−z f 0,i− v̂0,i− û0,i,

f̂0,i = z f 0,i + v̂0,i.

(3.14a)

(3.14b)

The next observer enables follower i to estimate its own velocity:

żv,i =−lzv,i− l2xi + f̂i +ui,

v̂i = zv,i + lxi.

(3.15a)

(3.15b)

Here, l > 0 is the gain for this observer, and zv,i the internal state. The final observer is aimed to

allow follower i to infer its local disturbance. It is designed as

ż f ,i =−z f ,i− v̂i−ui,

f̂i = z f ,i + v̂i,

(3.16a)

(3.16b)

where z f ,i is the internal state.

From above, a complete observer-based distributed tracking controller can be built by putting

together the control law (3.12) and the observers in (2.13) and (3.13)-(3.16). The following theorem

is the main result about the closed-loop stability of the proposed controller.

Theorem 4. Suppose that Assumptions 1-2 hold and apply the proposed distributed tracking con-
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troller given in (2.13) and (3.12)-(3.16) to the MAS in (3.11). Then, there exist δ > 0 and ε > 0

such that ∥∥∥∥∥∥∥
xi(t)− x0(t)

vi(t)− v0(t)


∥∥∥∥∥∥∥≤ δ , t > 0,

lim
t→∞

∥∥∥∥∥∥∥
xi(t)− x0(t)

vi(t)− v0(t)


∥∥∥∥∥∥∥≤ ε,

(3.17a)

(3.17b)

for i = 1,2, . . . ,N.

Proof: The proof is organized into three parts. Part a) proves that the coupled observers in (3.13)-

(3.14) yield bounded-error estimation of v0 and f0; Part b) shows that the observers in (3.15)-

(3.16) lead to bounded errors when estimating vi and fi; finally, based on Parts a) and b), Part c)

demonstrates the upper boundedness of the position and velocity tracking errors when the proposed

controller is applied.

Part a): Define the estimation errors of the observers in (3.13)-(3.14) as e0v,i = v̂0,i− v0 and

e0 f ,i = f̂0,i− f0. According to (3.11) and (3.13)-(3.14), their dynamics can be written as

ė0v,i =−bie0v,i− ∑
j∈Ni

ai j(v̂0,i− v̂0, j)+ û0,i−u0 + f̂0,i− f0,

ė0 f ,i =−bie0v,i− ∑
j∈Ni

ai j(v̂0,i− v̂0, j)− ḟ0.

Defining e0v f =

[
e0v,1 . . . e0v,N e0 f ,1 . . . e0 f ,N

]>
, we have

ė0v f = Q1e0v f + `1, (3.18)

where

Q1 =

−H I

−H 0

 , `1 =

 e0u

− ḟ01

 .
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The characteristic polynomial of Q1 is given by

det(sI−Q1) = det


sI +H −I

H sI


= det(s2I +Hs+H) =

N

∏
i=1

[
s2 +λi(H)s+λi(H)

]
.

As is seen from above, the poles of Q1 is stable since H is positive definite. Then, there must exist

a positive definite matrix P1 such that

P1Q1 +Q>1 P1 =−I.

For (3.18), take a Lyapunov function V4(e0v f ) =
1
2e>0v f P1e0v f . Consider its derivative:

V̇4 =−
1
2

e>0v f (P1Q1 +Q>1 P1)e0v f + e>0v f P1`1

≤−1
2
‖e0v f ‖2 +‖e0v f ‖‖P1‖‖`1‖

≤ −1
2
‖e0v f ‖2 +

√
e2

u(0)+q2
0‖P1‖‖e0v f ‖,

where the fact suggested by Lemma 3 that eu exponentially decreases to zero is used. The above

inequality can be written equivalently as

V̇4 ≤−α1V4 +β1
√

V4,

with α1 = 1/λ̄ (P1) and β1 =
√

2(e2
u(0)+q2

0)‖P1‖/λ (P1). Hence,

√
V4(t)≤

√
V4(0)e−

α1t
2 +

β1

α1
(1− e−

α1t
2 )≤

√
V4(0)+

β1

α1
. (3.19)
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It then follows from (3.19) that

‖e0v f (t)‖ ≤

√
λ̄ (P1)

λ (P1)
‖e0v f (0)‖+

β1

α1
=

√
λ̄ (P1)

λ (P1)
‖e0v f (0)‖+

λ̄ (P1)
√

2(e2
u(0)+q2

0)‖P1‖
λ (P1)

,

lim
t→∞
‖e0v f (t)‖ ≤

√
2λ̄ (P1)q0‖P1‖

λ (P1)
.

Part b): Consider the observers for vi and fi. Define their respective estimation errors as ev,i =

v̂i− vi and e f ,i = f̂i− fi. Their dynamics can be described as

ėv,i =−lev,i + e f ,i,

ė f ,i =−lev,i− ḟi.

Defining ev f =

[
ev,1 . . . ev,N e f ,1 . . . e f ,N

]>
, we have

ėv f = Q2ev f + `2,

where

Q2 =

−lI I

−lI 0

 , `2 =

[
0 − ḟ1 − ḟ2 · · · − ḟN

]>
.

Following similar lines to Part a), we can obtain that ev f is upper bounded:

‖ev f (t)‖ ≤

√
λ̄ (P2)

λ (P2)
‖ev f (0)‖+

β2

α2
=

√
λ̄ (P2)

λ (P2)
‖ev f (0)‖+

√
2λ̄ (P2)q1‖P2‖

λ (P2)
,

lim
t→∞
‖ev f (t)‖ ≤

√
2λ̄ (P2)q1‖P2‖

λ (P2)
,

where P2 is a positive definite matrix satisfying P2Q2 +Q>2 P2 =−I.

Part c): Based on Parts a) and b), now let us move on to analyze the tracking performance
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under the controller in (3.12). Note that the position and velocity tracking errors are governed by

ẋi− ẋ0 =vi− v0,

v̇i− v̇0 =− k1

[
∑

j∈Ni

ai j(xi− x j)+bi(xi− x0)

]
− (vi− v0)− (v̂i− vi)+(v̂0,i− v0)

+ f̂0,i− f0 + fi− f̂i + û0,i−u0,

for i = 1,2, . . . ,N. Define e =
[

x1− x0 · · · xN− x0 v1− v0 · · · vN− v0

]>
. Then,

ė = Q3e+ `3, (3.20)

where

Q3 =

 0 I

−k1H −I

 , `3 =

 0

−ev + e0v + e0 f − e f + eu

 .
The characteristic polynomial of Q3 is

det(sI−Q3) = det


 sI −I

kH sI + I


= det(s2I + sI + kH) =

n

∏
i=1

[
s2 + s+ kλi(H)

]
.

It is seen from above that Q3 is stable because H is positive definite and k > 0. If Q3 is stable, there

exists a positive definite matrix P3 such that

P3Q3 +Q>3 P3 =−I.

Define V5(e) = 1
2e>P3e for (3.20). Then,

V̇5 =−
1
2

e>(P3Q3 +Q>3 P3)e+ e>P3`3

≤−1
2
‖e‖2 +‖e‖ · ‖P3‖ · ‖`3‖

≤ −1
2
‖e‖2 +(

√
2‖ev f ‖+

√
2‖e0v f ‖+‖eu‖) · ‖P3‖ · ‖e‖.
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It can be rewritten as

V̇5 ≤−α3V5 +β3
√

V5,

where α3 = 1/λ̄ (P3) and β3 =
(

2‖ev f ‖+2‖e0v f ‖+
√

2‖eu‖
)
‖P3‖/λ (P3). Therefore, we have

√
V5 ≤

√
V5(0)e−

α3t
2 +

β3

α3
(1− e−

α3t
2 )≤

√
V5(0)+

β3

α3
.

It then follows that e satisfies

‖e(t)‖ ≤

√
λ̄ (P3)

λ (P3)
‖e(0)‖+ β3

α3
≤

√
λ̄ (P3)

λ (P3)
‖e(0)‖+ λ̄ (P3)‖P3‖

λ (P3)

2

√
λ̄ (P2)

λ (P2)
‖ev f (0)‖+

2
√

2λ̄ (P2)q1‖P2‖
λ (P2)

+2

√
λ̄ (P1)

λ (P1)
‖e0v f (0)‖+

2λ̄ (P1)
√

2(e2
u(0)+q2

0)‖P1‖
λ (P1)

+
√

2‖eu(0)‖

 ,

lim
t→∞
‖e(t)‖ ≤ λ̄ (P3)‖P3‖

λ (P3)

(
2
√

2λ̄ (P2)q1‖P2‖
λ (P2)

+
2
√

2λ̄ (P1)q0‖P1‖
λ (P1)

)
.

(3.21)

(3.22)

By (3.21)-(3.22), there exist δ and ε such that (3.17a)-(3.17b) hold. This completes the proof. •

Theorem 4 reveals that, for a second-order MAS, the proposed observer-based controller can

enable a follower to track the leader with bounded position and velocity errors when the distur-

bances are bounded in rates of change. Such an effectiveness is mainly attributed to the proposed

observers, through which a follower can estimate the disturbance and velocity variables for track-

ing control. Further, similar to Remark 5, the tracking error ei(t)→ 0 as t→ ∞ if ḟi(t)→ 0.

3.5 Numerical Study

This section presents an illustrative simulation example to validate the proposed results. We con-

sider a second-order MAS consisting of one leader and five followers, which share a communica-

tion topology shown in Figure 2.3a. For the topology graph, the edge-based weights are set to be
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unit for simplicity. The corresponding Laplacian matrix L is then given as follows:

L =



2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2


.

Based on the communication topology, the leader adjacency matrix is B = diag(1,0,0,0,0). We

choose l = 1 and k = 0.5, respectively. The initial conditions include

x(0) =
[

0 3 0 −2 1 −1

]>
, v(0) =

[
0 1 −2 3 0 −1

]>
.

Further,

u0(t) =−2cos(0.1πt), f0(t) =−cos(0.1πt), f (t) =
[

0.1 0.2 0.3 0.4 0.5

]>
t.

Note that the disturbances enforced on the followers are bounded in rates of change but linearly

diverge through time. This extreme setting is used to illustrate the effectiveness of disturbance re-

jection here. Apply the observer-based control approach in Section 3.4 to the MAS. The observer-

based control approach in Section 3.4 is applied, with the simulation results outlined in Figure 3.1.

Figure 3.1a and 3.1b demonstrate that the followers maintain bounded position and velocity track-

ing errors, which is in agreement with the results in Theorem 4. It is shown in Figure 3.1c that

the observer for u0 can gradually achieve accurate estimation through time. This is because the

leader can send u0 to its neighbor follower i, and with the implicit information propagation, the

other followers can eventually estimate u0 precisely. By comparison, the estimation of v0, f0, vi

and fi is less accurate, as is seen in Figures 3.1d-3.1g, because there is no measurement of them

available. However, the differences or estimation errors are still bounded, matching the expectation

as suggested by the theoretical analysis.
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3.6 Conclusion

MASs have attracted significant research interest in the past decade due to their increasing appli-

cations. In this chapter, we have studied leader-follower tracking for first- and second-order MASs

with unknown disturbances. Departing from the literature, we have considered a much less re-

strictive setting about disturbances. Specifically, disturbances can be applied to all the leader and

followers and assumed to be bounded just in rates of change. This considerably relaxes the usual

setting that only followers are affected by magnitude-bounded disturbances. To solve this prob-

lem, we have developed observer-based tracking control approaches, which particularly included

the design of novel distributed disturbance observers for followers to estimate the leader’s unknown

disturbance. A simulation result further demonstrated the effectiveness of the proposed approach.
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Figure 3.1: Second-order MAS tracking control: (a) leader’s and followers’ position trajectory
profiles; (b) leader’s and followers’ velocity profiles; (c) leader’s acceleration profile and the es-
timation by each follower; (d) leader’s velocity profile and the estimation by each follower; (e)
leader’s disturbance profile and the estimation by each follower; (f) followers’ estimation of their
own velocities; (g) followers’ disturbance profiles and the estimation on their own.
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Chapter 4

High-Order Leader-Follower Tracking Control under Limited

Information Availability1

4.1 Introduction

Cooperative autonomy based on MASs is finding ever-increasing application in a variety of sec-

tors. This has driven a surge of research interest in distributed cooperative control for different

tasks, including consensus, leader-follower tracking, synchronization, rendezvous, flocking, and

coverage control [53, 84–88]. Most of the current literature considers agents governed by first- or

second-order models. Although such low-order models can be useful as well as amenable to con-

trol design, they are often considered as inadequate for characterizing agents with more complex

higher-order dynamics. It is also neither trivial nor easy to extend low-order cooperative control de-

signs to high-order systems. Recent years hence have witnessed a growing amount of work focused

on high-order MAS control synthesis [89].

A lead is taken in [90] with the study of high-order MAS consensus, which presents a dis-

tributed consensus control algorithm along with the corresponding sufficient and necessary con-

ditions for convergence. This subject has since attracted considerable research efforts, with many

studies proposed to deal with various challenges, e.g., directed communication topologies [91, 92],

switching topologies [91, 93], output feedback design [94–97], bipartite consensus [98, 99], exter-

nal disturbances [100, 101], and constrained energy budget [44]. In addition to consensus, high-

order leader-follower tracking is emerging as another problem of great interest. It is in [90] that a

1This chapter is based on the dissertation author’s first-authored journal paper [82] and first-authored conference
paper [83].
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basic form of this problem is introduced, which assumes that the leader agent continuously broad-

casts its state information to all the followers. A consensus-based control algorithm is then de-

veloped therein to make the followers track the leader. The study [102] considers a more general

setting where only a subset of the followers can receive information from the leader. It proposes

a leader-follower tracking control method and proves that followers with small degrees must be

informed by the leader to ensure tracking convergence. High-order nonlinear agents constitute

a stronger challenge for leader-follower tracking control. This problem is investigated in [103],

which proposes to adaptively estimate the nonlinearity inherent in an agent’s dynamics using neu-

ral networks and then offset it in the control run. In [104], a finite-time tracking control approach

is developed for a high-order nonlinear MAS subject to actuator saturation, and the work in [105]

studies the problem of finite-time higher-order tracking with mismatched disturbances.

Despite the importance, the above studies generally assume that a follower can obtain a large

amount of information to make control decisions. For example, it is required in [90, 102–104]

that a follower must know all of its own states, all of the states of its neighbors, and if connected

with the leader, all of the leader’s states. This assumption can be hardly guaranteed in a real world

where relevant sensors can be unavailable [102]. One can also find similar requirements in studies

about high-order consensus control. This motivates us to explore a more realistic setting—when

only the first state of every agent (leader or follower) is measured. It is unsurprising that the low

information availability will complicate the tracking control design. To overcome the challenge, we

propose to exploit the notion of observer-based control and make two major contributions. First,

we design an observer-based tracking control approach for linear high-order MASs. We propose

a set of distributed observers to compensate for the limited information, allowing a follower to

comprehensively estimate the leader’s maneuver input and states along with its own states. These

observers are then combined with a nominal controller to form an observer-embedded tracking

controller. We further characterize the convergence of tracking when the proposed controller is

applied. As the second contribution, the study extends to the case when the agents’ dynamics is

not only high-order but also nonlinear. Extrapolating the design for the linear case, we develop an
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observer-based tracking control approach and rigorously analyze its convergence.

Our work is related with two lines of research. 1) Leader-follower tracking via output feedback,

which generally considers a state-space model and uses local state or parameters observers to es-

timate certain unknown quantities [49, 51, 52, 106–108]. Differing from them, our study designs

distributed observers to help the followers collectively infer the leader’s input and states, removing

the restriction that the leader’s maneuver input must be either zero or partially known by all the fol-

lowers. 2) Observer-based first- and second-order tracking control. The literature includes various

kinds of observers designed to allow a follower to estimate its own velocity [46, 47], the distur-

bances acting on it [105], its velocity relative to the leader [43], or the leader’s velocity [37, 45].

These results nonetheless cannot be readily generalized to the high-order MASs.

4.2 Leader-Follower Tracking with Linear High-Order Dynamics

In this section, we first formulate the leader-follower tracking problem for an MAS with linear

high-order dynamics. We then propose an observer-based tracking control strategy and characterize

its convergence properties.

Consider an MAS composed of N +1 agents, among which agent 0 is the leader and agents 1

to N are followers. Each agent has lth-order dynamics (l ≥ 3) expressed as

ẋi,m = xi,m+1, m = 1,2, . . . , l−1,

ẋi,l = ui,

(4.1a)

(4.1b)

for i = 0,1, . . . ,N, where xi,m ∈R is the mth state of agent i, and ui the maneuver input. The objec-

tive is to design a distributed control law ui such that follower i for i = 1,2, . . . ,N can convergently

track the leader with lim
t→∞
|xi,m(t)− x0,m(t)|= 0 for m = 1,2, . . . , l.

Here, we assume that only xi,1 for i = 0,1, . . . ,N is available. That is, only the first state of an

agent is measured, regardless of whether it is the leader or a follower. This assumption considerably

relaxes the usual requirement in the literature that substantial states of an agent must be measured.
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However, it also implies that the accessible information about the agents is rather limited, which

makes it more challenging to design an effective distributed tracking controller.

4.2.1 Proposed Algorithm

We shall develop an observer-based control algorithm to enable convergent tracking in the above

setting. To begin with, we consider the following controller for follower i:

ui =− k1

[
∑

j∈Ni

ai j(xi,1− x j,1)+bi(xi,1− x0,1)

]

−
l

∑
m=2

km(x̂i,m− x̂0,i,m)+ û0,i, (4.2)

where km for m = 1,2, . . . , l are gain parameters, x̂0,i,m and û0,i are follower i’s estimates of the

leader’s state x0,m and input u0, respectively, and x̂i,m is follower’s estimate of its own state xi,m. The

motivation behind (4.2) is to drive follower i toward its neighbors and the leader simultaneously.

When all the followers do this, they can track the leader in a collective manner. Next, we design

the observers so as to obtain the estimates as needed in (4.2).

It is noted that the input observer (2.13) still can be used here, and its stability property holds

in this case. We further propose the next observer to estimate x0,m for m = 2,3, . . . , l:

ż0,i,2 =−bic0,2z0,i,2−b2
i c2

0,2x0,1

− c0,2 ∑
j∈Ni

ai j(x̂0,i,2− x̂0, j,2)+ x̂0,i,3,

x̂0,i,2 = z0,i,2 +bic0,2x0,1,

ż0,i,m =−c0,mz0,i,m− c2
0,mx̂0,i,m−1 + x̂0,i,m+1,

x̂0,i,m = z0,i,m + c0,mx̂0,i,m−1, m = 3,4, . . . , l−1,

ż0,i,l =−c0,lz0,i,l− c2
0,l x̂0,i,l−1 + û0,i,

x̂0,i,l = z0,i,l + c0,l x̂0,i,l−1,

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

(4.3f)
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where z0,i,m and c0,m for m = 2,3, . . . , l are the observer’s internal states and gain parameters,

respectively. The development of (4.3) is inspired by [55], in which a centralized disturbance ob-

server is designed for a single plant. Significantly transforming the original design, we develop the

above observer, which has a distributed structure that is uniquely suitable for the considered MAS

setting.

Finally, we design the following observer such that follower i can estimate its own states xi,m

for m = 2,3, . . . , l:

żi,2 =−r2zi,2− r2
2xi,1 + x̂i,3,

x̂i,2 = zi,2 + r2xi,1,

żi,m =−rmzi,m− r2
mx̂i,m−1 + x̂i,m+1,

x̂i,m = zi,m + rmx̂i,m−1, m = 3,4, . . . , l−1,

żi,l =−rlzi,l− r2
l x̂i,l−1 +ui,

x̂i,l = zi,l + rl x̂i,l−1,

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

(4.4f)

where zi,m and ri,m for m = 2,3, . . . , l are the internal states and gain parameters, respectively.

Putting together (2.13) and (4.2)-(4.4), we can obtain a distributed observer-based control al-

gorithm for high-order leader-follower tracking. Its convergence is analyzed next.

Remark 6. We here highlight a comparison between the proposed approach and the study of

output-feedback leader-following tracking control in [49, 51, 52, 106–108]. In these references,

different observers are developed to enable a follower to estimate its own states or certain param-

eters. Therefore, they by design are local observers for estimation of local unknown quantities.

Contrasting them, the proposed approach focuses more on distributed observer design—note that

the observers in (2.13) and (4.3) have a distributed structure, where the followers exchange the esti-

mates to collectively infer the leader’s input and states. The new design hence allows the followers

to keep tracking the leader driven by a maneuvering input, setting it apart from the references that

restrictively require the leader to be input-free or the followers to have at least certain knowledge

of the leader’s input. •
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4.2.2 Convergence Analysis

This section characterizes the convergence property for the algorithm proposed above. Before pro-

ceeding further, Assumption 1 is still applied here.

Now, we consider the observer in (4.3). Defining e0x,i,m = x̂0,i,m− x0,m, we have

ė0x,i,2 =−c0,2bie0x,i,2 + e0x,i,3− c0,2 ∑
j∈Ni

ai j(e0x,i,2− e0x, j,2),

ė0x,i,m =−c0,mc0,2bie0x,i,2 + e0x,i,m+1− c0,mc0,2 ∑
j∈Ni

ai j(e0x,i,2− e0x, j,2),

m = 3,4, . . . , l−1,

ė0x,i,l =−c0,lc0,2bie0x,i,2 + eu,i− c0,lc0,2 ∑
j∈Ni

ai j(e0x,i,2− e0x, j,2).

(4.5a)

(4.5b)

(4.5c)

Define e0x,m =

[
e0x,1,m e0x,2,m · · · e0x,N,m

]>
and e0x =

[
e>0x,2 e>0x,3 · · · e>0x,l

]>
. Then, (4.5)

can be written into a compact form as below:

ė0x = F1e0x + `1, (4.6)

where

F1 =



−c0,2H I 0 · · · 0
... 0 . . . . . . ...
...

... . . . . . . 0

−c0,l−1c0,2H 0 · · · 0 I

−c0,lc0,2H 0 · · · · · · 0


, `1 =



0
...

0

eu


.

The next lemma shows the convergence of e0x.

Lemma 10. If there exist c0,2,c0,3, . . . ,c0,l > 0 such that the polynomials

hi(s) = sl−1 + c0,2sl−2
λi(H)+ c0,2λi(H)

l−3

∑
z=0

c0,l−zsz (4.7)
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for i= 1,2, . . . ,N are Hurwitz stable, then the system in (4.6) is asymptotically stable, and lim
t→∞

e0x =

0.

Proof: Using the Schur complement, we can find out that the characteristic polynomial of F1 is

∏
N
i=1 hi(s). Note that limt→∞ `1 = 0 by Lemma 3. Hence, we have limt→∞ e0x = 0 according to the

input-to-state stability (ISS) theory [56]. •

Proceeding further, we define ex,i,m = x̂i,m− xi,m for the observer in (4.4) and have

ėx,i,2 =−r2ex,i,2 + ex,i,3,

ėx,i,m =−rmr2ex,i,2 + ex,i,m+1, m = 3,4, . . . , l−1,

ėx,i,l =−rlr2ex,i,2.

Define ex,m =

[
ex,1,m ex,2,m · · · ex,N,m

]>
for m = 2,3, . . . , l and ex =

[
e>x,2 e>x,3 · · · e>x,l

]>
.

Then,

ėx = F2ex, (4.8)

where

F2 =



−r2I I 0 · · · 0
... 0 . . . . . . ...
...

... . . . . . . 0

−rl−1r2I 0 · · · 0 I

−rlr2I 0 · · · · · · 0


.

We can obtain the next lemma along lines similar to Lemma 10, with the proof skipped.

Lemma 11. If there exist r2,r3, . . . ,rl > 0 such that the polynomials

sl−1 + r2sl−2 + r2

l−3

∑
z=0

rl−zsz (4.9)

are Hurwitz stable, then the system in (4.8) is asymptotically stable, and limt→∞ ex = 0.

With the above results, we are now in a good position to investigate the state tracking errors,
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which are defined as ei,m = xi,m− x0,m. The dynamics of ei,m is

ėi,m = ei,m+1, m = 1,2, . . . , l−1

ėi,l =−k1

[
∑

j∈Ni

ai j(ei,1− e j,1)+biei,1

]
−

l

∑
m=2

km(ex,i,m− e0x,i,m)

−
l

∑
m=2

kmei,m + eu,i.

Define em =

[
e1,m e2,m · · · eN,m

]>
for m = 1,2, . . . , l, and e =

[
e>1 e>2 · · · e>l

]>
. Here, e is

the global tracking error with dynamics expressed as

ė = F3e+ `3, (4.10)

where

F3 =



0 I 0 · · · 0
... 0 . . . . . . ...
...

... . . . . . . 0

0 0 · · · 0 I

−k1H −k2I · · · · · · −klI


, `3 =



0
...

0

−∑
l
m=2 km(ex,m− e0x,m)+ eu


.

The following theorem outlines the convergence property of e. The proof is similar to that of

Lemma 10 and thus omitted.

Theorem 5. If there exist km for m = 1,2, . . . , l such that the polynomials

sl + k1λi(H)+
l

∑
z=2

sz−1kz

for i = 1,2, . . . ,N are Hurwitz stable, then the system in (4.10) is asymptotically stable, and

limt→∞ e = 0.

Remark 7. The proposed controller only requires the neighboring followers to interchange xi,1,
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û0,i and x̂0,i,2, because the observers can locally estimate other quantities necessary for control.

This greatly reduces the amount of data to be exchanged between agents and makes the design

more advantageous in terms of communication costs. •

4.3 High-Order Tracking for Nonlinear Dynamics

This section moves forward to study an MAS with nonlinear high-order dynamics. Extending the

design in Section 4.2, we develop an observer-based tracking control algorithm and analyze its

convergence properties.

4.3.1 Proposed Algorithm and Convergence Analysis

Suppose that agent i’s dynamics is governed by

ẋi,m = xi,m+1 + fm(xi,m), m = 1,2, . . . , l−1,

ẋi,l = ui + fl(xi,l),

(4.11a)

(4.11b)

for i = 0,1, . . . ,N, where fm(xi,m) : Rm→ R for m = 1,2, . . . , l are nonlinear functions with xi,m =

(xi,1,xi,2, . . . ,xi,m). Following Section 4.1, we assume that only xi,1 is measured and continue to

hold Assumption 1. The control design objective here is still to enable convergent tracking, i.e.,

limt→∞ |xi,m(t)− x0,m(t)|= 0 for m = 1,2, . . . , l and i = 1,2, . . . ,N.

To achieve the above objective, we propose the following distributed controller:

ui =−k1(xi,1− x̂0,i,1)−
l

∑
m=2

km(x̂i,m− x̂0,i,m)+ û0,i. (4.12)

This controller must be supplemented by corresponding observers. It is noted first that the observer

in (2.13) can also be applied to obtain û0,i here, so we continue to use it for the distributed estima-

tion of u0. We then construct the following state observer to allow follower i to estimate x0,m for
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m = 1,2, . . . , l:

˙̂x0,i,1 =−c0,1

[
∑

j∈Ni

ai j(x̂0,i,1− x̂0, j,1)+bi(x̂0,i,1− x0,1)

]
+ x̂0,i,2 + f1(x̂0,i,1),

ż0,i,2 =−bic0,2z0,i,2−b2
i c2

0,2x0,1 + x̂0,i,3 + f2(x̂0,i,2)

− c0,2 ∑
j∈Ni

ai j(x̂0,i,2− x̂0, j,2)−bic0,2 f1(x0,1),

x̂0,i,2 = z0,i,2 +bic0,2x0,1,

ż0,i,m =−c0,mz0,i,m− c2
0,mx̂0,i,m−1 + x̂0,i,m+1 + fm(x̂0,i,m)− c0,m fm−1(x̂0,i,m−1),

x̂0,i,m = z0,i,m + c0,mx̂0,i,m−1,m = 3,4, . . . , l−1,

ż0,i,l =−c0,lz0,i,l− c2
0,l x̂0,i,l−1 + û0,i + fl(x̂0,i,l)− c0,l fl−1(x̂0,i,l−1),

x̂0,i,l = z0,i,l + c0,l x̂0,i,l−1,

(4.13a)

(4.13b)

(4.13c)

(4.13d)

(4.13e)

(4.13f)

(4.13g)

where x̂0,i,m = (x̂0,i,1, x̂0,i,2, . . . , x̂0,i,m). To make a follower able to estimate its own states, we de-

velop an observer as follows:

żi,2 =−r2zi,2− r2
2xi,1 + x̂i,3 + f2(xi,1, x̂i,2)− r2 f1(xi,1),

x̂i,2 = zi,2 + r2xi,1,

żi,m =−rmzi,m− r2
mx̂i,m−1 + x̂i,m+1 + fm(xi,1, x̂i,m)− rm fm−1(xi,1, x̂i,m−1),

x̂i,m = zi,m + rmx̂i,m−1,m = 3,4, . . . , l−1,

żi,l =−rlzi,l− r2
l x̂i,l−1 +ui + fl(xi,1, x̂i,l)− rl fl−1(xi,1, x̂i,l−1),

x̂i,l = zi,l + rl x̂i,l−1,

(4.14a)

(4.14b)

(4.14c)

(4.14d)

(4.14e)

(4.14f)

where x̂i,m = (x̂i,2, x̂i,3, . . . , x̂i,m).

Integrating observers in (2.13), (4.13)-(4.14) into the controller in (4.12) will yield a complete

observer-based tracking controller. Before going further to analyze its effectiveness, we make the

following assumption:
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Assumption 3. There exist ρm ≥ 0 such that

| fm(ξ )− fm(ε)| ≤ ρm‖ξ − ε‖, m = 1,2, . . . , l,

where ξ ,ε ∈ Rm.

Assumption 3 implies that the nonlinear functions must be of Lipschitz class. It is commonly

used in the literature on nonlinear MAS control and can be satisfied by many practical systems.

The following theorem shows the main result about convergence of the proposed controller.

Theorem 6. Assume that Assumptions 1 and 3 hold and that the controller proposed above is

applied to (4.11). The state tracking error converges to zero, i.e., limt→∞ |xi,m(t)− x0,m(t)|= 0 for

m = 1,2, . . . , l and i = 1,2, . . . ,N, if there exist c0,m, rn and km for m = 1,2, . . . , l and n = 2, . . . ,N

such that the polynomials (4.7), (4.9) and

(
sl +

l

∑
z=1

sz−1kz

)N

(4.15)

are Hurwitz stable, and if there exist matrices Qi > 0 and ηi > 0 for i = 1,2,3 such that

F>4 Q1 +Q1F4 =−η1I,

F>2 Q2 +Q2F2 =−η2I,

F>6 Q3 +Q3F6 =−η3I,

l

∑
i=1
‖P0x,i‖< min

{
η1

2‖Q1‖
,

η3

2‖Q3‖

}
,

l

∑
i=2
‖Px,i‖<

η2

2‖Q2‖
,

(4.16a)

(4.16b)

(4.16c)

(4.16d)

(4.16e)

where P0x,i = diag{ρ1I,ρ2I, . . . ,ρiI,0I,0I, . . . ,0I}, Px,i = diag{ρ2I,ρ3I, . . . ,ρiI,0I,0I, . . . ,0I} for
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i = 1,2, . . . , l, and

F4 =



−c0,1H I 0 · · · · · · 0

0 −c0,2H I 0 · · · 0
...

... 0 . . . . . . ...
...

...
... . . . . . . 0

... −c0,l−1c0,2H 0 · · · 0 I

0 −c0,lc0,2H 0 · · · · · · 0


, F6 =



0 I 0 · · · 0
... 0 . . . . . . ...
...

... . . . . . . 0

0 0 · · · 0 I

−k1I −k2I · · · · · · −klI


.

Proof: Let us define e0x =

[
e>0x,1 e>0x,2 · · · e>0x,l

]>
, where e0x,m follows the same definition as in

Section 4.2, and define f0x,m =

[
· · · fm(x̂0,i,m)− fm(x0,m) · · ·

]>
for i = 1,2, · · · ,N. By (4.11)

and (4.13), we have

ė0x = F4e0x + `4, (4.17)

where `4 =

[
f>0x,1 · · · f>0x,l−1 f>0x,l + e>u

]>
. We choose a Lyapunov candidate function

V2(e0x) =
1
2

e>0xQ1e0x,

for which there exist α1,α2 > 0 such that

α1‖e0x‖2 ≤V2(e0x)≤ α2‖e0x‖2.

By (4.16a), we have

V̇2 =
1
2

e>0x(Q1F4 +F>4 Q1)e0x + e>0xQ1`4 ≤−
1
2

η1‖e0x‖2 +‖e0x‖‖Q1‖‖`4‖

≤ −1
2

η1‖e0x‖2 +‖e0x‖‖Q1‖
(
‖P0x,1e0x‖+‖P0x,2e0x‖+ · · ·+‖P0x,le0x‖+‖eu‖

)
=−

(
1
2

η1−‖Q1‖
l

∑
i=1
‖P0x,i‖

)
‖e0x‖2 +‖e0x‖‖Q1‖‖eu‖.
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Define

σ1 =
1
2

η1−‖Q1‖
l

∑
i=1
‖P0x,i‖, X (‖eu‖) =

‖Q1‖‖eu‖
σ1θ1

for any 0 < θ1 < 1. By (4.16d), one can see that σ1 > 0. It can be verified that

‖e0x‖ ≥ X (‖eu‖)⇒ V̇2 ≤−σ1(1−θ1)‖e0x‖2.

Hence, V2 is an ISS-Lyapunov function, implying that the system (4.17) is ISS [56]. Then, we have

limt→∞ e0x = 0 since limt→∞ eu = 0 as indicated in Lemma 3.

Define fx,m =

[
· · · fm(xi,1, x̂i,m)− fm(xi,1,xi,m) · · ·

]>
for i= 1,2, . . . ,N. and continue to adopt

ex as defined in (4.8). According to (4.14), its dynamics can be expressed as

ėx = F2ex + `5, (4.18)

where F2 was defined in (4.8), and `5 =

[
f>x,2 · · · f>x,l

]>
. Following similar lines to the above,

we can prove that limt→∞ ex = 0 if (4.16b) and (4.16e) hold.

We proceed to consider the global tracking error when the controller in (4.12) is applied. We

define fm =

[
· · · fm(xi,m)− fm(x0,m) · · ·

]>
for i = 1,2, · · · ,N. The dynamics of the tracking

error ei,m = xi,m− x0,m is

ėi,m = ei,m+1 + fm(xi,m)− fm(x0,m),

ėi,l =−
l

∑
m=1

kmei,m−
l

∑
m=2

kmex,m +
l

∑
m=1

kme0x,m + eu,i + fl(xi,l)− fl(x0,l),

(4.19a)

(4.19b)

for m = 1,2, . . . , l− 1 and i = 1,2, . . . ,N. The notation of e in (4.10) is still adopted here. Now,

combining (4.13), (4.14) and (4.19), the closed-loop system is indicated into a compact structure

as below:

ė = F6e+ `6 + `7, (4.20)
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where `6 =

[
f>1 · · · f>l

]>
and

`7 =



0
...

0

−∑
l
m=2 kmex,m +∑

l
m=1 kme0x,m + eu


.

For (4.20), we can use the ISS theory to prove that it is asymptotically stable if (4.16c)-(4.16d)

hold. Therefore, limt→∞ e(t) = 0 is established as limt→∞ `7(t) = 0 due to (2.13), (4.17) and (4.18).

Finally, we conclude that limt→∞ |xi,m(t)− x0,m(t)|= 0, concluding the proof. •

Remark 8. The above design can be extended to the case when the nonlinear functions fm(·) is

unknown but can be approximated by a known function with bounded error. Specifically, suppose

that there exist gm(·) and ϕm ≥ 0 such that

|gm(φ)− fm(φ)| ≤ ϕm, m = 1,2, . . . , l,

for any φ ∈Rm. We then can replace fm(·) in (4.13)-(4.14) by gm(·) and obtain a tracking controller

based on the approximate nonlinearity. It can be proven that this controller will lead to bounded-

error tracking under certain mild conditions. The analysis is omitted here for the sake of space.

4.4 Numerical Study

This section presents numerical simulation results to show the effectiveness of the proposed design.

For the sake of space, we only illustrate the more sophisticated nonlinear leader-follower tracking.

Consider a third-order MAS including one leader and five followers. The agents interchange in-

formation based on a communication topology shown in Figure 2.3a. The agents’ dynamics is as

described in (4.11), for which fm(xi,m) = cos(xi,m)
>1 = ∑

m
k=1 cos(xi,k). The leader’s maneuver in-

put is set to be u0 = sin(0.2πt). When implementing the proposed observer-based controller, we
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select c0,1 = c0,2 = c0,3 = 5, r2 = r3 = 4 and k1 = k2 = k3 = 3. It is verifiable that such a se-

lection can make the convergence conditions satisfied. The simulation results are summarized in

Figure 4.1. Figures 4.1a-4.1c illustrate followers’ and the leader’s state trajectories, showing that

the followers can manage to catch up with and then keep tracking the leader, despite they differ

in initial states. Figure 4.1d show the estimation of the leader’s input by the followers. For each

follower, the estimation can quickly converge to the actual values. Meanwhile, the followers can

also effectively estimate the leader’s states using the designed observer, with the estimation errors

approaching zero as shown in Figures 4.1e-4.1g. Figures 4.1h and 4.1i further present the follow-

ers’ estimation of their own unmeasured states. These results validate that the proposed design

can ensure convergent tracking even though there is nonlinearity and limited information available

about the agents.

4.5 Conclusion

We studied leader-follower tracking control for high-order MASs in this paper. While this problem

has recently attracted growing attention, we explored the challenging yet realistic case of high-

order MASs where only the first state of an agent is measured, since the measurement information

can be practically limited by the availability of sensors. We designed novel distributed observers,

by which a follower can reconstruct unknown or unmeasured quantities about itself and the leader,

and then performed distributed observer-based controller synthesis. We conducted the design for

both linear and nonlinear MASs and characterized the convergence properties. A simulation result

demonstrated the effectiveness of our design. Our future work will include extension of the results

to directed graphs and completely unknown nonlinearity.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 4.1: Third-order nonlinear MAS profiles: (a) leader’s and followers’ state trajectory profiles
of xi,1 for i= 0,1, . . . ,N; (b) leader’s and followers’ state trajectory profiles of xi,2 for i= 0,1, . . . ,N;
(c) leader’s and followers’ state trajectory profiles of xi,3 for i= 0,1, . . . ,N; (d) leader’s input profile
and the estimation by each follower; (e) leader’s state trajectory profile of x0,1 and the estimation
by each follower; (f) leader’s state trajectory profile of x0,2 and the estimation by each follower; (g)
leader’s state trajectory profile of x0,3 and the estimation by each follower; (h) followers’ estimation
of their own state trajectories of xi,2 for i = 1,2, . . . ,N; (i) followers’ estimation of their own state
trajectories of xi,3 for i = 1,2, . . . ,N.
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Chapter 5

Energy-Aware Leader-Follower Tracking Control for

Electric-Powered Multi-Agent Systems1

5.1 Introduction

Coordinated control design is central to the successful accomplishment of many MAS missions,

having emerged as an active research field in the system and control community. In this vibrant

field, problems of prime interest include group consensus [76, 110–114], swarming and flock-

ing [115, 116], formation control [117–120], synchronization [121, 122], rendezvous [123], cov-

erage control [124, 125], containment control [126, 127], and leader-follower tracking [42, 128].

However, despite these advances, the constrained operation time/range of an MAS often makes it

unable to meet practical needs, which is a continual challenge in this area.

Most of electric-powered MASs depend on batteries for energy storage. The most favored

choice is the lithium-ion batteries (LiBs) because of their high energy density, low self-discharge

and long cycle life. Yet, though considered the best among all, LiBs still do not have the energy-

weight ratio high enough to support long-duration tasks due to the electrochemistry-imposed con-

straints. For instance, many off-the-shelf unmanned aerial vehicles can only fly for 30 minutes

at one charge, and ground robotic vehicles mounted with LiBs of much larger capacity will see

power depletion in two to three hours, according to our survey. This issue is also pointed out in a

few reports, e.g., [129, 130], raising concerns about the competence of MASs for long-endurance

tasks. While the materials science and electrochemistry communities are making aggressive effort

1This chapter is based on the dissertation author’s first-authored journal paper [44] and first-authored conference
paper [109].
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to develop batteries of higher energy and power densities, real-time control of battery use offers

another promising way to improve the battery performance, as demonstrated by the rich litera-

ture in the area of battery management [131]. A question of interest then is: can an MAS have

an extended operation time and range if its system-wide coordinated control is integrated with the

battery control?

With its practical significance, energy awareness is a recurring subject in control design. It is

conventionally handled by formulating a cost function weighing the relative importance of the con-

sidered control objective versus that of the input energy [132, 133] or through enforcing hard con-

straints on control inputs [134, 135]. These studies only emphasize reducing energy consumption

in the control run, regardless of the dynamic features of the power sources. When it comes to MAS

control design, a large body of work likewise rarely takes energy storage into consideration and al-

most unanimously assumes unconstrained power availability to drive an agent, e.g., [1, 136, 137],

which though is not realistic. In reality, a battery not only has limited energy capacity and instanta-

neous power output but also is not an ideal linear power source as often assumed. A crucial factor

contributing to a battery’s nonlinear behavior is the well-known rate capacity effect, which states

that the battery’s total usable capacity goes down with an increase in discharging power [138].

That is, the higher the discharging power, the faster the battery will be drained, or equivalently,

the available capacity will decrease at a slower rate given a lower discharging power. This phe-

nomenon implies the promise of extracting more energy from the battery to support longer-time

and wider-range operation if the discharging process is controlled to be appropriately conserva-

tive yet without much compromise to the mission control objective. Similar to this notion, the

literature contains several studies on communication protocol design for wireless sensor networks

aware of the rate capacity effect to increase operation time, e.g. [139]. However, the methodolo-

gies proposed therein are not suitable here due to the difference in problem contexts and structures.

Meanwhile, the ever-widening use of batteries in electrified transportation, grid and buildings has

motivated a growing interest on advanced battery management algorithms, which mainly focus on

state-of-charge (SoC) and state-of-health (SoH) estimation [140–149], charging protocol optimiza-
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tion [150–152], thermal monitoring [153, 154], etc. Yet, they usually consider a standalone battery,

without integrating the battery control with the system that it powers.

With this motivation, this chapter will investigate battery-aware time/range-extended leader-

follower tracking. In a leader-follower MAS, the follower agents are distributedly controlled to

track the trajectory of the leader agent with real-time information exchange among them according

to a communication topology. Differing from the existing work, each follower in this study will be

conscious of not only the tracking objective but also the rate capacity effect intrinsic to its battery.

The challenge, however, lies in how to design an effective approach to control the joint MAS-

battery dynamics in a distributed manner. To overcome it, this work will consider an MPC-based

design for two reasons. First, the predictive nature of MPC will allow the battery use to be planned

ahead, thus enabling consciousness of battery status. Second, MPC can accommodate state and

input constraints [155, 156], which makes it a fit for handling battery use limits. Along this line,

an MPC strategy based on distributed optimization is thus developed for battery-aware tracking.

The contributions of this work are as follows. 1) Formulation of battery-aware time/range-

extended leader-follower tracking problem. It is presented in the form of receding-horizon op-

timization under constraints relevant to agent and nonlinear battery dynamics embodied by the

battery’s rate capacity effect. 2) Synthesis of a distributed MPC algorithm to address the problem.

With this algorithm, each follower can use exchanged information with its neighbors to decide

its control action in order to balance tracking performance and battery energy saving. The design

builds on a distributed alternating direction method of multipliers (D-ADMM) method proposed

in [157]. This study is the first one that we are aware of that exploits the battery’s nonlinear dy-

namics to increase the operation time/range of an MAS.

The rest of this chapter is organized as follows. Section 5.2 describes the problem of leader-

follower tracking with an awareness of the battery’s rate capacity effect. Section 5.3 derives the

distributed MPC strategy from the perspective of distributed optimization as a solution to the con-

sidered problem. A simulation study is offered in Section 5.4 to illustrate the effectiveness of the

proposed strategy. Finally, Section 5.5 gathers our concluding remarks.

61



The notation throughout this chapter is standard. The set of real numbers is denoted by R. The

Euclidean norm of a vector is denoted as ‖ · ‖, and the Manhattan norm denoted as ‖ · ‖1. Ma-

trices, if their dimensions are not indicated explicitly, are assumed to be compatible in algebraic

operations. Consider an MAS with one leader, which is labeled as 0, and N followers, which are

labeled from 1 to N. The interaction topology among followers is modeled by an undirected graph.

This graph is expressed as G = (V,E), where V = {1,2, · · · ,N} is the node set and the edge set

E ⊆V ×V contains unordered pairs of nodes. A path is a sequence of connected edges in a graph.

The neighbor set of agent i is denoted as Ni, which includes all the agents in communication with

it. Furthermore, combination of G with the leader gives a directed graph Ḡ since the information

exchange is one-way from the leader to the followers directly connected with it. For Ḡ, N̄i repre-

sents the neighbor set of agent i. Note that N̄i =Ni∪{0} if agent i can directly communicate with

the leader and N̄i =Ni otherwise.

5.2 Problem Formulation

This section formulates the problem of MPC-based battery-aware distributed leader-follower track-

ing control.

For a leader-follower MAS, the followers are expected to track the trajectory of the leader.

During the tracking process, the leader and followers will maintain communication according to

a pre-specified network topology to exchange their state information. Leveraging the information

exchange, the followers will adjust control to themselves to achieve tracking. Suppose that a fol-

lower’s dynamics is given by

zi(t +1) = zi(t)+σiui(t), i = 1,2, . . . ,N, (5.1)

where zi ∈ Rn is follower i’s current state, ui ∈ Rn the control input with ‖ui‖1 assumed to be the

instantaneous discharging power drawn from the onboard battery, and σi ∈Rn×n a positive diagonal

matrix of constant coefficient. While the model looks simple, it is capable of describing many types
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of MASs and thus often used in the literature [6]. In addition, it does not limit generalization of the

following results to an MAS with higher-order dynamics. Without loss of generality, the leader’s

dynamics takes on a similar form:

z0(t +1) = z0(t)+σ0u0(t), (5.2)

where z0 ∈Rn and u0 ∈Rn denote the state and input of the leader, respectively, and σ0 ∈Rn×n is a

positive coefficient matrix. Since the leader’s maneuver depends on the mission context, its control

input u0 is supposed to have been determined. Given the practical communication constraints, the

leader is assumed to communicate with only part of the followers during the tracking progress.

A critical yet often neglected factor in MAS tracking control is the batteries mounted on the

followers to provide power. Rather than a linear energy reservoir as widely assumed in the liter-

ature, a battery demonstrates nonlinear dynamics that can affect the amount of power and energy

that it can offer. For a battery, its state is measured by the SoC, which is a percentage ratio between

the available energy capacity and the maximum capacity. Denoting the SoC of follower i’s battery

as xi ∈ R, it is then given by

xi(t) =
Qi(t)
Qi,max

×100%, i = 1,2, . . . ,N,

where Qi in Wh is the present capacity and Qi,max is the nominal maximum capacity. Energy

extraction from a battery and consequently, the change of SoC, is subjected to the rate capacity

effect, which refers to the fact that the battery’s usable capacity will decrease at a faster rate if the

discharging power increases. This effect can be described by the well-known Peukert’s law [158]:

Cp = Iβ t, (5.3)

where Cp in Wh is the battery’s nominal capacity calibrated at a one-ampere discharge rate, I is

the actual discharging current, t is the actual time to discharge the battery, and β is the Peukert
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constant with β > 1. Along this line, the dynamics of SoC during discharging is governed by the

following equation:

xi(t +1) = xi(t)−αi‖ui(t)‖β

1 , (5.4)

where ‖ui‖1 is the discharging power as defined earlier, and αi = tsδi/(3600 ·Qi,max), with ts be-

ing the sampling period in seconds and δi ≥ 1 the discharging efficiency coefficient. It should

be noted that a battery’s operation should be bounded for the consideration of battery safety and

health [131]. Then to avoid overuse, a battery’s SoC needs to be kept within a favorable range

defined by the lower and upper limits xi,min and xi,max, i.e.,

xi,min ≤ xi(t)≤ xi,max. (5.5)

Meanwhile, the discharging power ‖ui‖1 should also be bounded by an upper limit ui,max in order

to prevent life-damaging effects. Hence,

0≤ ‖ui(t)‖1 ≤ ui,max. (5.6)

As aforementioned, the objective of this paper is to develop a distributed control strategy for

battery-aware leader-follower tracking in order to enhance the overall operation time/range. The

battery awareness here mainly builds on an understanding of the rate capacity effect—if the dis-

charging power is constrained, more energy can be extracted from the battery to support longer-

duration tracking. However, a systematic control design must be performed in order to balance

time/range extension and tracking performance, which will require us to answer a key question:

how to jointly control the dynamics of a follower and its battery to enable energy-conscious track-

ing under the constraints relevant to battery operation? To address this challenge, an MPC approach

is considered here. It frames the solution on the idea that the leader can inform its neighbor follow-

ers of its control decisions in an upcoming time window. Given preview of the leader’s behavior,

a follower can then make predictive control to extract power from its battery to track the leader.
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Constrained optimization can then be formulated as a result of its battery’s constraints, to which

MPC can well lend itself. Through appropriate design, the MPC can be distributed among the fol-

lowers such that each follower can apply individual control with cognizance of the global tracking

objective.

To this end, we begin with a centralized MPC for energy-conscious tracking, which is laid out

as follows:

min
t+T

∑
τ=t+1

N

∑
i=1

qi ∑
j∈N̄i

∥∥zi(τ)− z j(τ)
∥∥2

+ ri

(
‖ui(τ−1)‖β

1

)2

 ,
s.t.zi(τ +1) = zi(τ)+σiui(τ),

z0(τ +1) = z0(τ)+σ0u0(τ),

xi(τ +1) = xi(τ)−αi‖ui(τ)‖β

1 ,

xi,min ≤ xi(τ)≤ xi,max,

0≤ ‖ui(τ)‖1 ≤ ui,max,

i = 1,2, . . . ,N, τ = t, t +1, . . . , t +T −1.

(5.7a)

(5.7b)

(5.7c)

(5.7d)

(5.7e)

(5.7f)

Here, the MPC is considered for the time window from t + 1 to t + T , and its cost function is

quadratic and composed of two terms. The first term quantifies the squared sum of distances be-

tween follower i and its neighbors, including the leader or the other followers, and the second

quadratic term expresses follower i’s energy cost. Here, qi and ri are weighting factors to show the

tradeoff between distance and energy consumption costs. The constraint (5.7d) serves as a predic-

tive model able to indicate follower i’s battery behavior within the window; similarly, follower i’s

system dynamics follows the constraint (5.7b). The battery’s operational constraints are summa-

rized in (5.7e)-(5.7f) as duplicates of (5.5)-(5.6). Next, we will distribute the MPC in (5.7) across

the MAS, with the detailed development shown in Section 5.3.

Remark 9. (Novelty of MPC-based leader-follower tracking). While the problem in (5.7) is moti-

vated to enable time/range-extended MAS tracking with planned battery use, it also represents the

first MPC-based formulation for leader-follower tracking control to our knowledge. It is observed
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Figure 5.1: Illustration of a colored MAS communication topology, with the leader numbered as
0 and the followers numbered from 1 to 5. Note that the communication from the leader to a
follower is unidirectional (directed) and that the communication between followers is bidirectional
(undirected). Three colors, blue, green, and red, are used to mark the undirected follower graph
such that no adjacent followers share the same color, and each follower is numbered in a color-
based order. Thus, C1 = {1,2}, C2 = {3,4}, and C3 = {5}.

that this formulation brings two advantages. First, MPC would allow predictive management of

the tracking mission under diverse practical operation constraints. Second, the problem formulated

in (5.7) does not require the availability of u0 at the end of the followers. This is a well-founded im-

provement to the literature, which often assumes that each follower has knowledge of the leader’s

instantaneous driving input u0 even if it does not directly communicate with the leader [42, 128].

Remark 10. (Comparison with saturation-based formulation). Actuators are often subject to ac-

tuation limits, which are often modeled as control input saturation [159]. It is understood that the

saturation can bring energy saving to a certain extent. However, this mechanism is passive and rel-

evant to local control. By contrast, the MPC-based formulation not only includes actuation limits,

i.e., (5.7f), but also introduces active optimization between energy use and tracking performance,

more advantageous from a practical perspective.

5.3 Distributed MPC Design for Energy-Aware Tracking

This section distributes the centralized MPC in (5.7a)-(5.7f) across the followers such that each

follower will perform local control yet achieve tracking as a group. The solution will build on the

D-ADMM algorithm in [157], which decomposes a centralized optimization problem into a set of

distributed separable ones. This algorithm is based on the ideas that the nodes can be marked ac-

cording to a coloring scheme and that local actions follow a color-based order to enable distributed

optimization. To see this, let us consider the follower graph. Suppose that P colors can be used
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to color the followers such that no adjacent ones share the same color. The first C1 nodes have

color 1, numbered as {1,2, . . . ,C1} and denoted as the set C1. Similarly, the Cp nodes have color

p, collected in Cp = {Cp−1 + 1,Cp−1 + 2, . . . ,Cp−1 +Cp}. It then follows that ∑
P
p=1Cp = N. An

example is shown in Figure 5.1. To proceed further, the following assumption is needed.

Assumption 4. The leader-follower graph is connected and time-invariant. Moreover, the follower

graph is capable of implementing a coloring scheme.

In Assumption 4, a network is guaranteed to be connected if a path exists between every pair

of nodes.

In what follows, we will develop the distributed MPC based on the coloring scheme.

5.3.1 Problem Manipulation

Here, we will reformulate the centralized MPC in (5.7a)-(5.7f) into a form suitable for distributed

execution. Among distributed setting, a follower both measures its own variables composed of

SoC, discharging power and position, and senses these variables from its neighbors. Along this

line, let us first consider recasting the initial MPC problem into the consistency constraint form.

For follower i, its SoC variables from t +1 to t +T can be stacked into a vector:

X̂i =

[
· · · xi(τ) · · ·

]>
, (5.8)

for τ = t +1, . . . , t +T . Furthermore, to locally paint a picture of the global network, each follower

has virtual copies of state and control variables of all the other nodes in addition to its own. Hence,

follower i’s state variable, zi, is defined by

z̄i(τ) =

[
· · ·

(
zi

j(τ)
)>

· · ·
]>

,

where j = 1,2, . . . ,N, and zi
j represents the virtual replica of z j in node i. Then, the predicted state
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vector within the window is obtained as

Zi =

[
· · · z̄>i (τ) · · ·

]>
, (5.9)

for τ = t+1, . . . , t+T . Thus, Zi represents node i’s replica of all the states of all the followers in the

network. In order to ensure consistency among all followers, the following constraint is enforced:

Zi = Z j, (5.10)

for j ∈Ni. Similarly, we define

ūi(τ) =

[
· · ·

(
ui

j(τ)
)>

· · · ‖ui
j(τ)‖

β

1 · · ·
]>

,

for j = 1, . . . ,N, where ui
j and ‖ui

j‖
β

1 represent the copy of u j and ‖u j‖β

1 stored at follower i, re-

spectively. Note that we differentiate u j and ‖u j‖β

1 here, because the former is the power needed by

the maneuver and the latter represents the actual power drawn due to the maneuver. The collection,

ūi
j within the window, is then described as

Ui =

[
· · · ū>i (τ) · · ·

]>
, (5.11)

for τ = t, . . . , t +T −1. To guarantee consistency among nodes, the following condition is needed

to ensure all the control copies to be equal in an edge-based way:

Ui =U j, ∀ j ∈Ni. (5.12)

We further define Xi =
[
Z>i X̂>i

]> and rewrite the MPC problem using all the above definitions in
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(5.7a)-(5.7f) into the following:

min
N

∑
i=1

fi(Xi,Ui),

s.t. AiXi +BiUi = ci,

Xi ∈ Xi, Ui ∈ Ui,

Zi = Z j, for j ∈Ni,

Ui =U j, for j ∈Ni,

i = 1,2, . . . ,N.

(5.13a)

(5.13b)

(5.13c)

(5.13d)

(5.13e)

Here, fi is the cost function posed for follower i, which is deduced from (5.7a), (5.13b) is built

on a combination of predictive model in (5.7b) and (5.7d), and (5.13c) summarizes the state and

control constraints in (5.7e)-(5.7f).

With the followers marked in different colors according to the coloring scheme introduced

at the beginning of this section, the next step is to convert the problem in (5.13a)-(5.13e) and

make it ready for distributed optimization. To proceed, the state and control consistency constraints

in (5.13d) and (5.13e) can be rewritten as

(
M>⊗ InNT

)>


Z1

...

ZN

= 0,
(

M>⊗ InNT

)>


U1

...

UN

= 0, (5.14)

where M is the incidence matrix of the graph of followers, InNT ∈RnNT×nNT is the identity matrix,

and ⊗ denotes the Kronecker product. Then, we combine the states and control inputs of the

followers marked in color p into new vectors:

Z̄p =

[
· · · Z>i · · ·

]>
, Ūp =

[
· · · U>i · · ·

]>
,
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for i ∈ Cp. Since the followers are numbered in the order of colors, (5.14) is rewritten as

M̄


Z1

...

ZN

= 0, M̄


U1

...

UN

= 0, (5.15)

where M̄ =
(
M>⊗ InNT

)>. It is noted that M̄ can be decomposed in a color-based manner such

that (5.15) can be expressed equivalently as

P

∑
p=1

K̄pZ̄p = 0,
P

∑
p=1

K̄pŪp = 0,

where K̄p is the p-th row block of M̄. In the meantime, the states of the batteries mounted on the

followers can be aggregated, one color after another:

X̃p =

[
· · · X̂>i · · ·

]>
,

for i ∈ Cp. We define X̄p =
[
Z̄>p X̃>p

]>. Hence, the MPC problem in (5.13) can be presented in a

color-separable way:

min
P

∑
p=1

gp (X̄p,Ūp) ,

s.t. ĀpX̄p + B̄pŪp = c̄p,

X̄p ∈ χ̄p, Ūp ∈ Ūp, p = 1,2, . . . ,P,

P

∑
p=1

K̄pZ̄p = 0,

P

∑
p=1

K̄pŪp = 0,

(5.16a)

(5.16b)

(5.16c)

(5.16d)

(5.16e)

where gp, X̄p, Ūp, Āp, B̄p and c̄p can be derived from the context. Now, the original MPC problem

is changed into a color-based type, which can be broken down further to achieve full distribution

among individual followers.
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5.3.2 Distributed MPC

Here, we develop distributed MPC based on the problem in (5.16), leveraging the D-ADMM algo-

rithm in [157]. To begin with, the augmented Lagrangian function for (5.16) is defined as

L =
P

∑
p=1

[
gp (X̄p,Ūp)+λ

>
p
(
ĀpX̄p + B̄pŪp− c̄p

)
+ϕ

>K̄pZ̄p +η
>K̄pŪp

+
ρ1

2

∥∥ĀpX̄p + B̄pŪp− c̄p
∥∥2
]
+

ρ2

2

∥∥∥∥∥ P

∑
p=1

K̄pZ̄p

∥∥∥∥∥
2

+
ρ3

2

∥∥∥∥∥ P

∑
p=1

K̄pŪp

∥∥∥∥∥
2

, (5.17)

where λp > 0, ϕ and η are dual variables, and ρ1,ρ2 and ρ3 are positive penalty parameters. Using

the alternating direction method of multipliers (ADMM), minimizing X̄p and Ūp can be achieved

through the following iterative procedure:

X̄k+1
p =Ūp∈Ūp

L
(

X̄k+1
1 ,Ūk+1

1 , . . . , X̄p,Ūk
p, . . . , X̄

k
P,Ū

k
P;λ

k
p,ϕ

k,ηk
)
,

Ūk+1
p =X̄p∈X̄p

L
(

X̄k+1
1 ,Ūk+1

1 , . . . , X̄k+1
p ,Ūp, . . . , X̄k

P,Ū
k
P;λ

k
p,ϕ

k,ηk
)
,

λ
k+1
p = λ

k
p +ρ1

(
ĀpX̄k+1

p + B̄pŪk+1
p − c̄p

)
,

ϕ
k+1 = ϕ

k +ρ2

P

∑
p=1

K̄pZ̄k+1
p ,

η
k+1 = η

k +ρ3

P

∑
p=1

K̄pŪk+1
p ,

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

where k is the iteration counter.

It is seen that (5.18) can be explicitly given as

X̄k+1
p =X̄p∈X̄p

gp

(
X̄p,Ūk

p

)
+
(

λ
k
p

)>(
ĀpX̄p + B̄pŪk

p− c̄p

)
+
(

ϕ
k
)>

K̄pZ̄p +
(

η
k
)>

K̄pŪk
p

+
ρ1

2

∥∥∥ĀpX̄p + B̄pŪk
p− c̄p

∥∥∥2
+

ρ2

2

∥∥∥∥∥K̄pZ̄p + ∑
i=1,...,P, i6=p

K̄iZ̄k
i

∥∥∥∥∥
2

+
ρ3

2

∥∥∥∥∥ P

∑
i=1

K̄iŪi

∥∥∥∥∥
2

=X̄p∈X̄p
gp

(
X̄p,Ūk

p

)
+
(

λ
k
p

)>(
ĀpX̄p + B̄pŪk

p− c̄p

)
+
(

ϕ
k
)>

K̄pZ̄p

+
ρ1

2

∥∥∥ĀpX̄p + B̄pŪk
p− c̄p

∥∥∥2
+

ρ2

2

∥∥∥∥∥K̄pZ̄p + ∑
i=1,...,P, i6=p

K̄iZ̄k
i

∥∥∥∥∥
2

. (5.23)
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From above, the first three terms of the right-hand side of (5.23) are each a linear combination

relative to the individual color-p followers. Further, the last term in (5.23) can be expressed as

∥∥∥∥∥K̄pZ̄p + ∑
i=1,...,P, i 6=p

K̄iZ̄k
i

∥∥∥∥∥
2

= Z̄>p K̄>p K̄pZ̄p +2Z̄>p K̄>p ∑
i=1,...,P, i6=p

K̄iZ̄k
i +

∥∥∥∥∥ ∑
i=1,...,P, i 6=p

K̄iZ̄k
i

∥∥∥∥∥
2

.

(5.24)

Since color-p nodes do not connect to each other, the term K̄>p K̄p turns out to be a diagonal matrix

with the diagonal elements being the degree of respective node, i.e.,

Z̄>p K̄>p K̄pZ̄p = ∑
i∈Cp

Di ‖Z̄i‖2
, (5.25)

where Di is the degree of node i. Meanwhile, K̄>p K̄i =−InNT for p 6= i, and we have

Z̄>p K̄>p ∑
i=1,...,P, i 6=p

K̄iZ̄k
i =− ∑

i∈Cp

∑
j∈Ni

Z>i Zk
j . (5.26)

With (5.24)-(5.26), (5.23) can be simplified as

X̄k+1
p =X̄p∈X̄p

gp

(
X̄p,Ūk

p

)
+
(

λ
k
p

)>(
ĀpX̄p + B̄pŪk

p− c̄p

)
+

ρ1

2

∥∥∥ĀpX̄p + B̄pŪk
p− c̄p

∥∥∥2

+

(
µ

k
i −ρ2 ∑

j∈Ni

Zk
j

)>
Zi +

ρ2Di

2
‖Zi‖2, (5.27)

where µk
i = ∑

j∈Ni

sign( j− i)ϕk
i j. We define an auxiliary dual variable φ k

i = µk
i −ρ2 ∑

j∈Ni, j<i
Zk+1

j −

ρ2 ∑
j∈Ni, j>i

Zk
j . The above equation, as a linear combination of Lagrangians of the color-p nodes,

can then be split with respect to Xi for i ∈ Cp, i.e.,

Xk+1
i =Xi∈Xi fi

(
Xi,Uk

i

)
+
(

γ
k
i

)>(
AiXi +BiUk

i − ci

)
+

ρ1

2

∥∥∥AiXi +BiUk
i − ci

∥∥∥2
+
(

φ
k
i

)>
Zi +

ρ2Di

2
‖Zi‖2,
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where i ∈ Cp and γi is the dual variable at the local node i, i.e.,

λp =

[
· · · γ>i · · ·

]>
.

Now we consider the iterative update of Ūp in (5.19), which can be expressed as

Ūk+1
p =Ūp∈Ūp

gp

(
X̄k+1

p ,Ūp

)
+
(

λ
k
p

)>(
ĀpX̄k+1

p + B̄pŪp− c̄p

)
+
(

η
k
)>

K̄pŪp

+
ρ1

2

∥∥∥ĀpX̄k+1
p + B̄pŪp− c̄p

∥∥∥2
+

ρ3

2

∥∥∥∥∥K̄pŪp + ∑
i=1,...,P, i 6=p

K̄iŪk
i

∥∥∥∥∥
2

. (5.28)

Following lines similar to the above, (5.28) is also separable with respect to Ui, which results in

Uk+1
i =Ui∈Ui fi

(
Xk+1

i ,Ui

)
+
(

γ
k
i

)>(
AiXk+1

i +BiUi− ci

)
+

ρ1

2

∥∥∥AiXk+1
i +BiUi− ci

∥∥∥2

+
(

ξ
k
i

)>
Ui +

ρ3Di

2
‖Ui‖2, (5.29)

where ψ = ∑
j∈Ni

sign( j− i) ·ηk
i j and ξ k

i = ψk
i −ρ3 ∑

j∈Ni, j<i
Uk+1

j −ρ3 ∑
j∈Ni, j>i

Uk
j .

After the updates of Xi and Ui at follower i, the dual variable γi can be updated as

γ
k+1
i = ρ1

(
AiXk+1

i +BiUk+1
i − ci

)
.

On the completion of updating Xi, Ui and γi for all the nodes, we can update µi and ψi

µ
k+1
i = µ

k
i +ρ2 ∑

j∈Ni

(
Zk+1

i −Zk+1
j

)
,

ψ
k+1
i = ψ

k
i +ρ3 ∑

j∈Ni

(
Uk+1

i −Uk+1
j

)
,

where i = 1,2, . . . ,N.

Up to this point, we have obtained a distributed MPC algorithm, which is summarized in Ta-

ble 5.1. This algorithm fully distributes the original centralized MPC among the followers. As a

result, a follower can learn about its neighbors’ states and make individual control decision to min-
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Table 5.1: Distributed MPC algorithm for battery-aware leader-follower tracking.

initialize: set X1
i = 0, U1

i = 0, γ1
i , µ1

i = 0, ψ1
i = 0

repeat
k← k+1
for p = 1,2, · · · ,P do

for i ∈ Cp or i =Cp−1 +1, · · · ,Cp−1 +Cp do
do

φ
k
i = µ

k
i −ρ2 ∑

j∈Ni, j<i
Zk+1

j −ρ2 ∑
j∈Ni, j>i

Zk
j

find
Xk+1

i =Xi∈Xi fi

(
Xi,Uk

i

)
+
(

γ
k
i

)>(
AiXi +BiUk

i − ci

)
+

ρ1

2

∥∥∥AiXi +BiUk
i − ci

∥∥∥2
+
(

φ
k
i

)>
Zi +

ρ2Di

2
‖Zi‖2

do
ξ

k
i = ψ

k
i −ρ3 ∑

j∈Ni, j<i
Uk+1

j −ρ3 ∑
j∈Ni, j>i

Uk
j

find
Uk+1

i =Ui∈Ui fi

(
Xk+1

i ,Ui

)
+
(

γ
k
i

)>(
AiXk+1

i +BiUi− ci

)
+

ρ1

2

∥∥∥AiXk+1
i +BiUi− ci

∥∥∥2
+
(

ξ
k
i

)>
Ui +

ρ3Di

2
‖Ui‖2

do
γ

k+1
i = ρ1

(
AiXk+1

i +BiUk+1
i − ci

)
end for

end for
for i = 1,2 · · · ,N do

do
µ

k+1
i = µ

k
i +ρ2 ∑

j∈Ni

(
Zk+1

i −Zk+1
j

)
ψ

k+1
i = ψ

k
i +ρ3 ∑

j∈Ni

(
Uk+1

i −Uk+1
j

)
end for

until certain pre-set stopping criterion is met

imize a global cost function collectively. In this MPC setting, the follower takes into account its

own local power consumption constraints and the global objective that weighs the overall energy

cost against tracking performance. This will bring the advantage of drawing power at a slower
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rate from the battery, which implies that more energy can be drawn due to the rate capacity effect.

Then, the battery runtime and MAS operation range are both extended.

Theorem 7. Suppose that Assumption 4 holds, the proposed MPC approach enables an optimal

discharging power generated in (5.29).

Proof: By [157], it is proven that D-ADMM algorithm will converge to optimal solution if the cost

function is strongly convex and the network is connected. It is also noted that these conditions are

satisfied according to (5.7) and when Assumption 4 holds. This completes the proof.

Remark 11. (Stability, feasibility and convergence). Stability and feasibility analysis have been

studied in the literature for a few classes of MPC problems. The proofs are often based on predic-

tion horizons of an infinite length or well-designed terminal costs [160]. Such conditions are not

appropriate for leader-follower tracking because of the versatile situations in a tracking process.

Remark 12. (Computational complexity). To deal with nonlinear optimization problem in this

paper, we use optimization toolbox of Matlab that admits an active-set algorithm. It divides the

optimization problem into three main stages, which can then be solved step by step. One of these

steps is quadratic programming that is used to optimize the Lagrangian function in this paper. Its

computational complexity runs in time polynomial and is also largest among three steps. Therefore,

it is difficult to calculate computational complexity for the whole nonlinear optimization problem.

However, we may further apply large-scale algorithm in Matlab to reduce computational complex-

ity. This is because it does not have to generate, store or operate full matrices, which thus results

in saving execution time and reduces memory requirements.

Remark 13. (Extension to MASs with complex dynamics). The proposed results in this section can

be readily generalized to an MAS with higher-order and even nonlinear dynamics, due to the wide

applicability of the D-ADMM algorithm by design. The generalization can be performed along

lines similar to the above development. It should also be noted that an increase in the complexity

of dynamics will increase the computational costs of the resultant distributed optimization.
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5.4 Numerical Study

In this section, we provide an illustrative example to verify the effectiveness of the proposed dis-

tributed MPC algorithm. Consider a battery-powered MAS consisting of one leader and five fol-

lowers. The communication topology among them is shown in Figure 5.1. Node 0 is the leader,

and nodes 1, 2, 3, 4 and 5 are followers. The leader will only send state updates to follower 1, and

the followers maintain bidirectional communication with their neighbors.

Suppose that the i-th agent’s dynamics can be described by a model used in [120]. Let (rxi,

ryi), θi, and (vi, ωi) denote its Cartesian position, orientation, and linear and angular velocity,

respectively. The kinematic equations are given by

ṙxi = vicos(θi),

ṙyi = visin(θi),

θ̇i = ωi.

(5.30a)

(5.30b)

(5.30c)

We apply feedback linearization to (5.30) around a fixed point denoted as (xi,yi), where xi =

rxi +dicos(θi) and yi = ryi +disin(θi) with di = 0.15m. Given

vi

ωi

=

 cos(θi) sin(θi)

− 1
di

sin(θi)
1
di

cos(θi)


uxi

uyi

 ,
it follows that ẋi

ẏi

=

uxi

uyi

 .
The initial states of the leader and followers are set to be (4.02,4.02), (3.5,3.45), (2.8,2.85),

(3,3.05), (2.7,2.75) and (3.2,3.25). For each agent, it is assumed that σi = 0.03I2 for i= 0,1, . . . ,N.

The followers’ batteries have different capacities, SoC and instantaneous power constraints, and

initial states, which are summarized in Table 5.2. We assume that the maneuver input profile ap-
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Table 5.2: Followers’ battery parameters and operating bounds.

Follower
Qi,max xi,min xi,max xi(0) ui,max
(Wh) (%) (%) (%) (W)

1 36 20 90 80 10
2 36 25 80 75 20
3 40 24 90 70 15
4 38 24 85 80 13
3 37 25 80 80 17

plied to the leader is given as

u0(t) =



5sin(0.005πt)+5

5cos(0.005πt)+5

(W), 0≤ t ≤ 950 s,

5sin(0.005πt)+10

5cos(0.005πt)+10

(W), 950 s < t ≤ 1,100 s,

5sin(0.005πt)+5

5cos(0.005πt)+5

(W), t > 1,100 s.

The sampling period ts = 5 s, and the window length T = 3, equivalent to fifteen-second or three-

step-ahead prediction. For the batteries, the discharging efficiency coefficients are given as δi = 1

for each follower i for simplicity. The Peukert constant is set as β = 5
3 . For the cost function in

MPC, the weight coefficients are qi = 1 and ri = 1 for each follower i, and the penalty parameters

involved in the distributed algorithm are set as ρ1 = 1, ρ2 = 1 and ρ3 = 1.

The distributed MPC algorithm in Table 5.1 is applied to the above MAS for leader-follower

tracking, with the simulation results shown in Figure 5.2. To make a comparison, a tracking con-

trol strategy proposed in [1] is also applied to the MAS. The results obtained are illustrated in

Figure 5.3.

Figure 5.2a shows the trajectories of the leader and the followers using distributed MPC. It is

seen that all the followers make an effort to track the leader. However, the followers are not rushing

to approach the leader as soon as possible—there is an obvious tracking error maintained before the
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first about 5.8 Km in x-axis direction. This is because the followers are subject to power constraints

and seek energy-aware tracking, refraining from fast maneuvers at fast energy consumption. After

catching up with the leader, the followers then keep more accurate tracking. The evolutions of the

position tracking errors are further shown in Figure 5.2b and 5.2c. From these two figures, the

tracking errors of all the followers relative to the leader gradually decrease to zero at around 800

s in both x- and y-axis directions. Looking at the discharging profiles in Figure 5.2d, one can see

that the followers adjust their individual power supply while obeying their own operation limits.

In particular, the discharging power of followers 1 and 5 is zero at the first few seconds, which can

be considered as “waiting” for followers 2, 3 and 4. They then jump to the upper power limit to

start tracking the leader. The followers see their discharging power running at different levels due

to their own battery constraints. At about the 800-th s, the discharging power of all the followers

drops because the followers catch up with the leader. After sometime, the followers increase the

discharging power again as the leader begins large maneuvers. In the final stage, the followers

continue to adjust the discharging power to maintain tracking of the leader. The SoC profiles of the

followers are shown in Figure 5.2e. It is observed that follower 3 is the first to see battery depletion,

which ends the tracking process.

Let us now consider the case when the method in [1] is used. Figures 5.3a, 5.3b and 5.3c illus-

trate an exponential convergence of tracking, due to the assumed unlimited instantaneous power

available to each follower. Associated with this, the discharging profiles in Figure 5.3d show that

considerable power is applied in the initial stage, which leads to fast tracking. However, this comes

at the expense of significantly short runtime. Figure 5.3e demonstrates the SoC decreasing more

rapidly, and when follower 4 reaches its lower SoC limit, the operation time lasts for nearly only

1,800 s. By comparison, the total operation time of the MAS under the distributed MPC strategy

is around 2,460 s, representing an improvement of 37%. With the time extension, the range of the

MAS is also increased. According to Figures 5.2a and 5.3a, the leader’s cruise distance reaches

5.68 Km from 3.70 Km, provided that all the followers can keep tracking. This counts as an in-

crease of 53% in traveling distance. These results demonstrate the effectiveness of the proposed
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approach. It should also be pointed out that the time/range extension can be made more significant

if one imposes stricter constraints on the power consumption limits. It is found that time/range ex-

tended operation may not be achieved through other simulation runs if we increase the value of qi

in (5.7). This is because the coefficient setting requires tracking objective to be completed at a fast

speed. Hence, it result in large and fast power consumption by rate capacity effect. This scenario

should be avoided during simulation runs.

5.5 Conclusion

This chapter considers energy-aware time/range-extended cooperative tracking. Electric-powered

MASs nowadays often face limited energy budget and consequently, limited operation time/range,

due to the limitations imposed by the onboard batteries. It thus becomes a pressing need to extract

the maximum energy from the batteries to increase the time/range of an MAS, which, however,

remains unexplored thus far. Motivated by this need, this chapter investigates the leader-follower

tracking problem and proposes to integrate the MAS dynamics with battery dynamics. In this re-

gard, the promising opportunity is identified that a battery’s rate capacity effect can be exploited to

help draw more energy from the battery. Then, an MPC problem is formulated to deal with MAS

leader-follower tracking with a cognizance of the batteries’ rate capacity dynamics and power/en-

ergy constraints. It is solved by a distributed optimization strategy, which leads to a distributed

MPC algorithm. A simulation result shows its considerable effectiveness in extending the opera-

tion time/range of an MAS in comparison with an existing algorithm.
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Figure 5.2: Leader-follower tracking using the proposed distributed MPC algorithm: (a) state tra-
jectory in the MAS; (b) x tracking error in the MAS; (c) y tracking error in the MAS; (d) power
discharging; (e) evolution of SoC.

80



2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x position (Km)

2.5

3

3.5

4

4.5

5

5.5

6

6.5
y
 p

o
s
it
io

n
 (

K
m

)

Node 0(Leader)

Node 1(Follower)

Node 2(Follower)

Node 3(Follower)

Node 4(Follower)

Node 5(Follower)

(a)

200 400 600 800 1000 1200 1400 1600 1800

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x
 t

ra
c
k
in

g
 e

rr
o

r 
(K

m
)

Node 1

Node 2

Node 3

Node 4

Node 5

(b)

200 400 600 800 1000 1200 1400 1600 1800

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y
 t

ra
c
k
in

g
 e

rr
o

r 
(K

m
)

Node 1

Node 2

Node 3

Node 4

Node 5

(c)

200 400 600 800 1000 1200 1400 1600 1800

Time (s)

0

10

20

30

40

50

60

70

80

D
is

c
h
a
rg

in
g
 p

o
w

e
r 

(W
)

Node 1

Node 2

Node 3

Node 4

Node 5

(d)

200 400 600 800 1000 1200 1400 1600 1800

Time (s)

20

30

40

50

60

70

80

S
o
C

 (
%

)

Node 1

Node 2

Node 3

Node 4

Node 5

(e)

Figure 5.3: Leader-follower tracking using the distributed control algorithm in [1]: (a) state tra-
jectory in the MAS; (b) x tracking error in the MAS; (c) y tracking error in the MAS; (d) power
discharging; (e) evolution of SoC.
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Chapter 6

Conclusion and Future Work

In this dissertation, we studied distributed control for leader-follower MASs. Our goal was to ad-

dress several open problems that had persisted in the literature to challenge leader-follower tracking

control design. They include: 1) lack of information access by most of the followers to the leader,

due to network communication topology, 2) unknown disturbances affecting the agents’ dynam-

ics, 3) nonlinear, high-order dynamics governing the agents, and 4) energy awareness and effi-

ciency for long-endurance tracking operation. To tackle the challenges, we investigated distributed

observer-based control and distributed optimization to develop a series of studies. We summarize

the contributions of the dissertation as follows.

In Chapter 2, given that the majority of the followers cannot interchange information with

the leader, we proposed to enable all the followers to collectively estimate the leader’s dynamic

behavior. With this perspective, we developed distributed observers to allow a follower to infer the

leader’s state and driving input. Building upon them, we formulated an observer-based tracking

control framework and approaches. We first considered the first-order tracking problem and then

extended to the second-order tracking problem. We characterized the convergence properties of

the proposed control approaches. The work highlights distributed observers as a promising way to

overcome the distribution of information facing a leader-follower MAS.

In Chapter 3, we studied robust tracking control for a leader-follower MAS operating under

external disturbances. We considered a challenging problem, which is characterized by all the

leader and follower agents subjected to disturbances bounded only in rates of change. To deal

with the problem, we took the observer-based tracking control approach. We designed a set of

distributed observers to help the followers estimate the disturbance affecting the leader and the

82



leader’s state and maneuvering input. We then built tracking control approaches that exploit the

estimation to enhance the tracking performance for both first- and second-order MASs . We proved

that the approaches can lead to bounded-error tracking.

In Chapter 4, we investigated distributed tracking when the leader and followers are governed

by high-order dynamics. Departing from the literature, we focused the scenario where only the

first state of an agent is measured, considering restricted sensing capabilities. The scenario leads to

very limited information availability for the agents. To address this challenge, we developed novel

distributed observers to enable followers to reconstruct unmeasured or unknown quantities (e.g.,

state variables of higher than first order) about themselves and the leader. We further built observer-

based tracking control approaches. We conducted the design for for high-order linear MASs first

and then advanced to deal with high-order MASs with nonlinear dynamics in a generic form. We

established some conditions to ensure convergence of the proposed approaches.

In Chapter 5, we studied integrating battery-based energy awareness with distributed tracking

control synthesis to extend the operation time/range of an electric-powered leader-follower MAS.

We proposed to leverage a battery’s rate capacity effect to increase its runtime and formulated

a model predictive control framework for battery-aware tracking control design. The framework

is designed to strike a tradeoff between tracking performance and energy consumption rates, ac-

count for the battery’s rate capacity dynamics, and incorporate the energy and power constraints.

We applied a distributed optimization method to execute the framework. The obtained algorithm

was shown to help an MAS gain longer endurance by mitigating the restriction of limited battery

capacity.

Looking into the future, MASs will find ever-growing application across more sectors and

domains. This will motivate many new MAS control problems worthwhile to explore. Among

them, we highlight the following for future work:

• Existing MAS control research has concentrated largely on the case when agents are gov-

erned by deterministic linear or nonlinear dynamics. However, practical agents or systems

are often subjected to the effects of random noise and thus better to be modeled as stochastic
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dynamic systems. Even control design of stochastic MASs has emerged recently as an im-

portant line of research, it is still far from reaching a level of maturity. Optimal estimation

theory has proven as a useful tool to deal with stochastic systems. It is thus of our interest to

extend the notion of observer-based control in this dissertation to develop novel distributed

estimation methods and leverage them to enable distributed control design for stochastic

MASs.

• Future MASs may generate large quantities of data due to increasing sensing and measure-

ment capabilities. A stimulating question will be how to make effective use of data to en-

hance distributed control, especially when an MAS has sophisticated or even incomprehen-

sible dynamics. Machine learning, with its widespread success in various data analysis and

understanding tasks in the past years, can likely offer a path forward toward data-driven MAS

control. To this end, machine learning must be profoundly blended with distributed control.

Meanwhile, a growing number of machine learning problems, e.g., federated learning, are

formulated in distributed frameworks for the sake of computation, scalability, and privacy.

Distributed MAS control may provide inspirations or methods for distributed machine learn-

ing.

• Connected vehicle technologies have advanced rapidly, thanks to the sweeping progress in

autonomy and vehicle-to-vehicle and vehicle-to-infrastructure communication. They hold a

promise for pushing the efficiency, safety, and mobility of transportation to unprecedented

heights. Connected vehicles running on roads can be modeled as large-scale MASs. It is

hence promising to address related problems of automation and control for connected vehi-

cles from the perspective MAS control. The studies in this dissertation and potential exten-

sions may be useful in this regard. We will be interested to investigate the intersections of

connected vehicles and distributed control.
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