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Abstract 

The focus of education is shifting towards a learner-centered approach that highlights the 

importance of engagement, interaction, and personalization in learning. This thesis explores 

new technologies to facilitate immersive, self-directed, curiosity-driven learning experiences 

aimed at addressing these key factors. I explore the use of Mixed Reality (MR) to build a 

context-aware system that can support learners’ curiosity and improve knowledge recall. I 

design and build “Curiosity XR,” an application for MR headsets using a 

research-through-design methodology. Curiosity XR is also a platform that enables educators to 

create contextual multi-modal interactive mini-lessons, and learners can engage with these 

lessons and other AI-assisted learning content. To evaluate my design, I conduct a user 

participant study followed by interviews. The participants’ responses show higher levels of 

engagement, curiosity to learn more, and better visual retention of the learning content. I hope 

this work will inspire others in the MR community and advance the use of MR and AI hybrid 

designs for the future of curiosity-driven education. 
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1. Introduction

1.1 Motivation 

Since I was a child, I have always been curious about the world around me and eager to learn. I 

remember wondering about many things during my school days, but I didn't always get the 

answers I was looking for. However, everything changed when we got a computer at home, and 

I discovered the vast amount of information and knowledge it could provide. I felt like I had 

found a mentor and became more knowledgeable and confident every day. 

As I grew older, I realized how computers and the internet are transforming the way we learn. 

Engaging with interactive content and watching videos seemed to be much more efficient than 

traditional learning methods. I realized that watching videos and engaging with interactive 

content makes the learning experience more enjoyable and effective, providing learners with 

more dynamic and engaging ways to learn. 

My curiosity to learn how computers work and to design interactive experiences brought me to 

where I am today, pursuing my Master in Design at Digital Futures in Toronto. Recently, during a 

trip to Goa in India with my family, I saw sea creatures such as octopuses for the first time in my 

life. After watching them move and holding them in my hands, I realized that engaging content 

that lacks immersion, interactivity, multimodality, or active participation is just a projection of true 

knowledge and doesn't necessarily drive curiosity. 

Having seen my mother teach students for 30 years and having experience teaching kids from 

K-12, I understand the importance of multimodality and dynamism in learning content. I learned

that people have different learning preferences and interests, and there is a need for learning

content that is immersive, dynamic, and self-driven, where technology can assist them with their

curiosity.

I believe technology-assisted learning can be improved by providing tools that allow learners to 

take ownership of their learning process, adapt the learning experience to individual needs and 

preferences, and fully immerse the learner in the content with multiple senses. With my thesis, I 
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hope to address these issues and create immersive and interactive learning experiences that 

drive curiosity and motivate learners. 

1.2 The challenge of context and curiosity support in 

Education 

Context and curiosity are two critical factors that influence learning and education. Providing 

appropriate historical, physical, practical, or cultural context to the content helps to make 

learning more meaningful and relevant while fostering curiosity and encouraging learners to 

explore and discover new ideas and concepts on their own (Brown et al., 1989). However, 

supporting context and curiosity in education can be challenging, as it requires a deep 

understanding of the learners and their needs, as well as the ability to design learning 

environments and experiences that can accommodate these factors. 

Figure 1: A Diagram to visualize the focus of this research to connect educational information to the 

real-world context using Mixed Reality headsets. 

In the realm of formal education, there are instances that demonstrate the limitations of our 

ability to directly experience phenomena during the learning process. For example, when 

acquiring knowledge about nutrients, we do not interact with the soil's texture. Likewise, when 

learning about gravity, we do not physically experiment with a bouncing ball. Similarly, we do not 

traverse hills when studying topography, nor do we immerse ourselves in the water cycle while 

standing in the rain. Additionally, when learning calculus, we do not feel the expansion of a 

balloon. These examples emphasize the lack of direct experiential engagement with the 

subjects studied and the potential limitations of traditional teaching methods in delivering a 

comprehensive understanding of the material. 
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In some cases, experiential labs do offer a hands-on approach to learning, where students 

engage in practical activities to acquire knowledge and develop skills. This type of learning is 

often more effective than traditional formal education, which relies on lectures, textbooks, and 

exams. Although lab-based learning provides a more immersive experience, it faces challenges 

such as the need for expensive equipment, materials, and space to support interactive 

information and 3D models across multiple domains. For instance, while learning about a plant 

cell, we do not touch a plant or watch it grow, and we may not question its colorful illustration 

compared to the green plant in our backyard. Traditional methods of instruction may limit 

learners' curiosity and prevent them from exploring non-traditional questions driven by direct 

experience. 

Apart from these challenges, traditional modes of learning also have other issues. Instruction 

material for Mathematics concepts, for example, often focuses on abstract representations, 

making it difficult for learners to find them interesting or relevant to explore further. Laboratory 

experiences, while useful in demonstrating theoretical concepts, may rely on predetermined 

examples that may not appeal to all students. Such static materials may not address the diverse 

practical applications that students may be curious about, thus limiting their curiosity and desire 

to learn. 

Human nature drives us to be curious and learn as we experience the world, and although 

curiosity varies from individual to individual, everyone possesses it. As we grow older, the 

concepts we learn become more abstract, and the applications, context, and motivation fade 

making it challenging to remain lifelong explorers and learners. Current 2D display technology, 

such as laptops and mobiles, restricts us to limited senses, primarily utilizing our vision and 

some auditory senses. However, our other senses, such as tactile, spatial, and olfactory, often 

do not play a role in the learning process at all. By addressing these limitations and 

incorporating a more experiential approach to learning, we can foster a more engaging, 

immersive, and effective educational experience. 

1.3 How can the challenge of curiosity and context 

support in education be addressed? 

Emerging technologies such as AI [Artificial Intelligence] (McCarthy, 2007), MR [Mixed Reality] 

(Milgram, 1994), and IoT [Internet-of-things] are advancing rapidly and possess the potential to 
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fulfill the requirement of fostering curiosity among learners and supporting self-directed learning 

(Reiners et al., 2021). Combining these technologies could enable new forms of context-aware 

agents (Hong et al., 2001) using cloud-based infrastructure, as well as new forms of real-time 

visualizations which can support learning frameworks. Combining sources such as ego-centric 

sensing, environment cameras, and other wearable sensors makes it possible to gather context 

and visualize or augment educational content through Mixed Reality head-mounted displays. 

Together, this may enable learning experiences where users can build and discover contextual 

knowledge about their environment and drive personalized lessons based on their interests. To 

enable these experiences, systems built using context-aware agents are needed. These agents 

could gather context to support users in learning, awareness, and knowledge management 

need to be designed. 

1.4 Research Summary 

1.4.1 Problem Statement 

Spatial context and presence are essential components of a learning experience. They refer to 

how well learners can perceive, understand, and engage with information in a given 

environment. Current 2D display technology restricts learners to limited use of spatial context 

and presence, which hinders their ability to explore objects and learn through them effectively. 

Traditional modes of learning often focus on generic pre-designed instruction material and may 

not consider information relevant to learners that motivate them. 

1.4.2 Hypothesis 

This thesis hypothesizes that learners' curiosity and knowledge recall can be enhanced when they 

are immersed in a contextually-relevant environment while engaging with educational content, as 

opposed to conventional learning methods, such as reading books, viewing 2D videos, or hands-on 

experiences. Furthermore, MR has the potential to effectively cultivate an individual's curiosity, 

leading to a more engaging and efficient learning experience. 

1.4.3 Goals 

This research aims to explore the potential of Context-aware Mixed Reality (MR) agents to 

enhance curiosity and knowledge recall in educational contexts. Specifically, this study aims to 

investigate how a Context-aware MR agent can be developed to support interactive learning 
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experiences that leverage contextual information acquired from mixed reality devices. To 

achieve this goal, the following questions will be addressed: 

1.4.4 Research Questions 

How can a Context-aware Mixed Reality agent support curiosity and knowledge recall for 

education? 

Sub-Questions 

SQ1: How can a Context-aware educational system acquire context from mixed reality 

devices to support educational lessons? 

SQ2: How can acquired context be used to present an educational concept to the learner? 

SQ3: How can we build a curiosity-support agent through Mixed Reality? 

SQ4: How can educators/adaptive-context aware systems create/generate environment-based 

multimodal mixed-reality lessons to teach concepts to the learner? 

SQ5: How can Mixed Reality use multimodal content to support interactive learning experiences 

in context? 

SQ6: How can we evaluate if such learning experiences support the learner’s curiosity and 

retention of knowledge? 

1.4.5 Approach 

To address these questions, I start by exploring the literature for Mixed Reality (MR), Context, and 

learning pedagogies. I look to understand related MR applications and frameworks for Context 

agents to stage this research. Later, I design techniques and build prototypes to leverage the 

potential of Mixed Reality which supports learning experiences. Finally, I evaluate the efficiency of 

the last prototype in supporting learners’ curiosity and the ability to recall information. 

1.4.6 Contributions 

This research contributes to the field of Mixed Reality learning environments. It would help digital 

learning content have a stronger connection to the real world which we experience in our day-day 

lives. It would also help educators and interaction designers understand the modalities, benefits, and 

limitations of such environments. The research would also contribute to the body of knowledge in 
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understanding how various interaction techniques can be used to make natural interfaces for 

designing lessons in Mixed Reality. 

1.4.7 Scope and limitations 

Due to the time limitation and the broader nature of the target audience for this project, this research 

focuses on innovative interaction design techniques and their impact on curiosity support and 

improvement of knowledge recall. This research does not talk about curriculum design or supporting 

educational systems but aims to look at the broader picture of the concept and focus on subjects 

such as Science, Maths, and Language which are easier to connect to the real world and can serve 

as a proof-of-concept for this technique. 

When measuring recall, the user tests and research focuses on short-term recall of around a week 

and not long-term recall. When measuring curiosity support, it is a qualitative analysis and provides 

an addition to the body of knowledge through documenting anonymous experiences, elements of 

fun, and surprise which drive self-motivation. It does not measure curiosity in an academic context. 

1.5 Chapter Overview 

This chapter introduced the Curiosity XR project, the thesis, and the inspiration behind it. It also 

mentions the research goals, expected contributions, and scope. 

Chapter 2 begins with a literature review talking about different contexts important to understand 

this thesis. It introduces Mixed Reality (MR) and talks about the role of education in MR. The 

discussion then continues to define the context and explain context-awareness and agent 

frameworks to support context-aware environments. The last section discusses different 

pedagogies that could be used to support curiosity and knowledge recall. 

In Chapter 3, the related works in academia are introduced as applications that use similar 

techniques to address the context and curiosity-support gap in learning techniques. It starts with 

an overview and compares different applications in different contexts. The discussion illustrates 

its relation with this thesis and how these learnings could be used for designing and building 

prototypes. 

Chapter 4 discusses the use of a mixed-method approach as a research methodology to 

conduct this project. It mentions the use of design through research to iterate on ideation, 

designing, building, and testing prototypes. It also revisits the concept from a speculative design 

perspective to discuss concepts for a learning framework. 
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Chapter 5 discusses the iterative prototypes conducted during the thesis. It talks about how 

these prototypes were designed through various stages from ideation to reflection. It talks about 

the architecture of the system which progressively develops as the iterations occurred to help 

design and develop the final prototype. 

In Chapter 6, the final prototype: Curiosity XR is presented. It talks about ideation, process, 

outcomes, and evaluation of the final prototype. The evaluation is performed as a 

user-participant study. 

In conclusion, Chapter 7 of this thesis revisits its objectives and contributions. The discussion 

finally highlights the future work and limitations of the scope of this thesis. 
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2. Literature Review 

To discuss this thesis project of contextual-aware mixed reality learning environments this 

section provides the background knowledge of Mixed Reality, its role in Education, an 

introduction to context and context awareness, a theoretical framework for curiosity, and 

pedagogical techniques to support the tools built in this project. 

The first section introduces Mixed Reality and talks about how the tactility of physical objects 

combined with the dynamism of the virtual world allows mixed reality to enrich learning 

experiences. It also analyzes the state-of-the-art learning techniques in Mixed Reality. The next 

section introduces the concept of context awareness which is about computationally acquiring 

and processing information about the user and the physical environment. The last section 

introduces a theoretical framework for curiosity and talks about pedagogies related to contextual 

learning. 

2.1. Background for Mixed Reality 

2.1.1 What is Mixed Reality? 

Mixed reality (MR) is a term that refers to a range of technologies and experiences that combine 

elements of the physical and digital worlds. This can include experiences such as augmented 

reality (AR), where digital information is overlaid with the physical world, and virtual reality (VR), 

where users are fully immersed in a digital environment (Milgram, 1994). Mixed reality 

technologies are often used to create new ways for people to interact with computers and digital 

information. MR enhances the physical environment with virtual objects while also enhancing 

the virtual environment with data from the physical world. The term XR is often also used as a 

generic expression covering both AR and VR (Çöltekin et al., 2020). 
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Figure 2. Reality–Virtuality Continuum adapted from Milgram & Kishino (1994) 

MR is referred to with multiple existing notions. For this thesis, I focus on the notion; of “Strong 

AR” which considers MR as a “stronger” version of AR (Speicher et al., 2019). It is mainly 

characterized by an advanced environmental understanding as well as interactions, both of the 

users with virtual objects and the virtual objects with the environment. 

2.1.2 Education in MR 

MR has been applied to benefit several industries. Various academic papers talk about its 

application in fields such as healthcare (McCarthy et al., 2019), manufacturing (Egger et al., 

2020), agriculture (Huuskonen et al., 2018), and maintenance (Siew et al., 2019); however, one 

of the most potential use cases implemented are in the field of education (Bacca et al., 2014). 

Education in MR has been shown to improve the learning process and outcomes across various 

subjects for students. Recent research talks about how using sensory immersion, navigation, 

and information manipulation MR can improve student performance by stimulating learning with 

didactic materials (Hincapie et al., 2021). Another article presents the use of AR in mathematics 

to improve the understanding of vector geometry. The study proposes a modular augmented 

reality application that allows students to visualize geometric objects overlaid in the real 

environment, actively engaging them in the learning process. The app was found to be robust, 

easy to use, and effective in enhancing students' understanding of 3D space in a playful and 

didactic manner (Schutera et al., 2021). Kurubacak and Altinpulluk have reported that 

Augmented Reality (AR) has a plethora of advantages for students in the field of education 

including making courses enjoyable, lowering mental demands, boosting motivation and interest 

in the course, providing more opportunities to ask questions, encouraging interaction among 

students, creating new chances for personal learning, clarifying abstract ideas, and resulting in 

higher success rates (Kurubacak et al., 2017). With MR, students can interact with objects in 

both the virtual and real world, allowing for hands-on learning and increased motivation and 

engagement (Klopfer et al., 2008). Additionally, the ability to visualize abstract concepts makes 
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learning more enjoyable and effective, even for complex topics (Sumadio et al., 2010), 

(Kurubacak et al., 2017). 

Apart from the benefits of MR in education from the student’s perspective, there have been 

numerous studies done on how technology can enhance the teaching experience as well. 

Researchers believe that MR is a particularly useful tool in this regard (Kaufmann et al., 2006). 

Kurubacak and Altinpulluk reported the benefits of AR for teachers including fostering creativity 

in students, ensuring active student participation in the course, and allowing students to 

progress at their own pace (Kurubacak et al., 2017). 

These studies indicate that MR has a significant capacity to improve learning across various 

subjects, but limited attention has been given to an MR tool that can aid in the creation of 

educational content across these subjects. Previous studies have centered on mobile MR for 

education, while HMD(Head-mounted display)-based MR presents a possibility for a more 

engaging and immersive experience with the learning material. 

2.2. Context and Context-awareness 

2.2.1 What is context and context-awareness? 

Literature has various sources to define context and context awareness. A definition for Context 

by Abowd et al states that “Context is any information that can be used to characterize the 

situation of an entity. An entity is a person, place, or object that is considered relevant to the 

interaction between a user and an application, including the user and applications themselves.” 

(Abowd et al., 1999) 

The concept of context-awareness was first introduced by Schilit et al. (1994), where the 

authors discussed the ability of mobile applications to detect and respond to changes in their 

surrounding environment. Later, the definition of context and context awareness was simplified 

and expanded upon by Abowd et al. (1999) and Dey et al. (2001). This definition states that 

context is any information that can describe the situation of an entity, whether that entity is a 

person, place, or object. The use of context awareness in mobile sensing and smart spaces was 

introduced by Rodden et al. (1998) and Essa (2000). Today, the vision of seamless interaction 

between smart devices and users has become a reality, and it is clear that this trend will only 

continue to grow in the future. The increasing availability of ubiquitous sensing has led to a 
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growing demand for new applications and services that provide context-rich information anytime 

and anywhere. 

Context-aware agents are artificial intelligence systems that are capable of understanding and 

adapting to the context of their environment (Hong et al., 2001). These agents use data from 

various sources, such as sensors and user input, to infer information about the context and 

make decisions based on that information. Context-aware systems, on the other hand, refer to 

larger systems or environments that incorporate context-aware agents. These systems can 

monitor and respond to various contextual factors and provide relevant services, applications, or 

interactions to the user (Hong et al., 2009). 

Past research establishes a theoretical framework to provide a better understanding of 

context-aware systems. Perera et al. (2014) discuss the context life cycle and its four phases. 

First, the acquisition of context from various sources which could be physical sensors or virtual 

sensors (context acquisition). Second, modeling of the collected data in a useful manner(context 

modeling). Third, processing of the modeled data to derive high-level context information from 

low-level raw sensor data (context reasoning). Finally, the distribution of both high-level and 

low-level context to the consumers who are interested in context (context dissemination) (Perera 

et al., 2014). In another study, Hong et al (2009) talk about the various layers of context-aware 

systems. The four comprising layers of these systems are the network layer which supports 

context-aware systems and collects context information from sensors, the middleware layer 

which manages processes and stores context information, the application layer which provides 

users with appropriate services, and the user infrastructure layer which manages the interface 

to offer a suitable interface to users. These frameworks provide guidelines to build a 

well-structured tool and provide a deeper understanding of requirements to build a 

context-aware system. 

There are several benefits of context-aware systems in human-centered computational 

environments. Researchers have talked about how context awareness adds to the system's 

capabilities to become more human-centered. “The ultimate objective of human-centered 

computing is that it will serve the benefit of users (acting as individuals or in teams) by 

empowering them, by improving their experience, by making them more productive and 

creative, and by integrating social and technical dimensions.” (Fischer, 2012) Another study 

mentions the ability of context-aware systems to provide adaptivity for computational systems in 

nature. It explains that adaptive systems are those that change themselves to better suit the 

needs of the user, while adaptable systems are those that allow the user to change them to 
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better suit their needs. It argues that adaptable systems are better because they allow the user 

to keep control and because they are more likely to be compatible with other systems (Colman 

et al., 2014). The benefits of these systems have the potential to be realized for educational 

purposes and provide possibilities for a learner-centered context-aware system. 

2.2.2 The role of context-awareness in Ubiquitous Computing 

The term ubiquitous computing refers to computing in context. Ubiquitous computing is the next 

step in the evolution of technology, where computers are embedded into our daily interactions 

and environments (Lyytinen & Yoo, 2002). It consists of a large number of autonomous agents 

working together to build a smart and interactive physical environment [31]. Agents need to 

sense and reason about the current context of the environment for efficient functioning. 

In recent years, there has been a shift towards creating a positive user experience, which can 

improve overall perception and satisfaction with using computer systems, particularly for tasks 

that require creativity or leisure (Schmidt, 2003). Using conventional interfaces, such as desktop 

computers with screen, keyboard, mouse, and speakers limits the design space for creating an 

experience; however, including the real environment as part of interaction for a computer 

system offers many interesting possibilities. 

The role of context has gained great importance in the field of ubiquitous computing. “Context” 

is any information about the circumstances, objects, or conditions by which a user is surrounded 

that is considered relevant to the interaction between the user and the ubiquitous computing 

environment (Dey et al., 2001). Many applications have been built in ubiquitous computing 

environments that are context-aware and can adapt to different situations and be more receptive 

to users’ needs (Shafer et al., 2001) (Hong et al., 2021). Schmidt et al. describe the concept of 

Ubiquitous Computing and the importance of context in interaction with computers. They 

highlight that users' expectations and anticipations of a system's reaction are dependent on the 

situation and environment, as well as prior experience. They mention that the real world plays a 

crucial role in shaping these expectations as interaction with physical objects is experienced 

from a young age (Schmidt, 2003). Such contextual systems with ubiquitous computing 

principles can help create delightful experiences and enhance the possibilities of designing 

natural interactions. 

Recent researchers are analyzing the requirements to build contextually aware environments. 

Dasgupta et al. (2020) talk about the importance of image recognition and speech recognition 

techniques in capturing context and analyzing environments. Real-time object detection is a 
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computationally intensive process and would be a resource-heavy task on current MR devices 

as they already run at their full capacity to handle virtual object rendering. To solve these 

concerns, a few related works have used techniques to distribute computation for various 

applications such as object recognition in the workplace, dynamic identification of IoT objects 

within proximity, and complex manufacturing training processes (Dasgupta et al.,2020). AK Dey 

suggested a simplified design process to build context-aware applications. The process consists 

of three steps: (1) Specification, which involves specifying the problem, context-aware 

behaviors, and the required context, (2) Acquisition, which involves determining and installing 

the hardware or sensors to provide the required context, and (3) Action, which involves 

choosing and performing the context-aware behavior. The author refers to this system as a 

“Context toolkit” and used it to develop and analyze several applications (Dey, 2000). 

Overall, these findings contribute to the larger body of work on context awareness and its role in 

ubiquitous computing. It also provides a strong foundation for future studies to build upon. 

2.3 Learning theories to support curiosity and improve 

knowledge recall 

2.3.1 Curiosity and curiosity-based learning 

In the academic literature, there is a lack of consensus on the definition of curiosity. Some 

authors define it simply as the desire for knowledge, while others offer more nuanced definitions 

that consider multiple dimensions of the concept (Maw & Maw, 1961). Fitzgerald (1999) 

describes curiosity as the urge to investigate, to discover. In another definition, curiosity has 

been defined as a desire for information in the absence of extrinsic reward and has long been 

recognized as a crucial motivation driving educational attainment (Markey & Loewenstein, 

2014). 

Several research studies show that curiosity can have benefits on learning. Litman and Klahr 

(2012) show that curiosity leads to exploration and learning. Another study focusing on children 

shows that children who are more curious have higher teacher ratings of competence, 

motivation, attention, and persistence, and they ask more questions (Jirout & Klahr, 2012). 

Research on the brain and memory indicates that individuals who are more curious tend to have 

enhanced memory retention for information related to their curiosity, as well as improved 

memory recall for unrelated information encountered while they were in a state of curiosity. 
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These effects persist over a prolonged period. Researchers have also explored various 

techniques to promote curious behavior such as exploring an object’s functions or using 

questions to solve tasks (Gruber et al., 2014). This body of research holds significant 

implications for educational practices, highlighting the crucial role of curiosity in the learning 

process. 

2.3.2 Concreteness fading 

Concreteness fading is a teaching technique where a given concept is introduced in decreasing 

levels of concreteness (Bruner et al., 1966). The first form is the physical or concrete model of 

the concept; the second one is a graphical model and the last is the abstract model. Suh et al. 

(2020) have presented techniques to design interfaces and interaction methods to support this 

learning technique. They talk about different types of concreteness representations namely in an 

embodiment, concept complexity, concept complexity, perceptual richness, and information. 

Fyfe, E. R. & Nathan (2019) mentions the theory of concreteness fading as a promising 

approach to instructional design that aims to support learning and transfer by creating 

connections between multiple representations. This theory outlines a three-step progression 

from concrete to abstract representations of a concept, which is intended to facilitate initial 

learning and support transfer learning by starting with concrete experiences and gradually 

building up to more abstract representations, learners are better able to make connections 

between different contexts and apply their knowledge in new and unfamiliar situations. In this 

paper, the theoretical framework of concreteness fading is expanded by defining relevant terms, 

outlining the practical solutions it offers, and generating six testable hypotheses to motivate 

research and inform implementation by practitioners. The goal is to design and test instructional 

techniques that foster connections during learning, with the potential to contribute to an 

optimized version of concreteness fading that informs learning environments. Their work sheds 

light on the nature of learning and transfer and makes the concreteness fading theory more 

robust. 

Kokkonen et al (2021) analyze the use of concreteness fading as a general instructional 

approach in mathematics, physics, biology, and chemistry. The authors find that the approach is 

more straightforward in mathematics, where the concrete representations used can be selected 

and constructed freely to support the understanding of the target concept. However, in physics, 

biology, and chemistry, concrete representations are specific instantiations of a particular 

phenomenon or principle and may only become meaningful to students after some prior 
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knowledge has been acquired. The authors conclude that the use of concreteness fading in 

different domains is not analogous to each other and that different levels of representation in 

biology and chemistry provide complementary information, making the approach less 

generalizable. They suggest that these differences should be considered when attempting to 

use concreteness fading as an instructional approach. 

This teaching strategy can be an effective way to promote deep learning and understanding in 

students. The approach involves gradually reducing the level of structure and support provided 

by the teacher, allowing students to internalize and apply their learning in increasingly complex 

and authentic situations. While concreteness-fading may require a more student-centered 

approach and a shift in the teacher's role, the results by Fyfe, E. R. & Nathan (2019) and 

Kokkonen et al (2021) suggest that this method can lead to greater student engagement and 

motivation, as well as improved learning outcomes. 

2.3.3 Situated learning 

Situated learning is a technique wherein students are placed in environments where they are 

immersed in an activity while using critical thinking skills (Anderson et al., 1996). Researchers 

have analyzed and applied these techniques to various concepts. 

Several research studies show the importance and benefits of situated learning to improve 

knowledge recall. Miller and Gildea (1987) found that words are learned much more effectively 

when they are taught in the context of ordinary communication, rather than from dictionary 

definitions and exemplary sentences. This is because words are not islands, entirely unto 

themselves, and the context of an utterance provides extralinguistic help that is necessary to 

resolve ambiguity, polysemy, nuance, metaphor, and so forth. Another study mentions that there 

is substantial importance of activity in learning, and how activity provides an experience that is 

necessary for subsequent action. The essay argues that activity also produces representations 

that are lexicalized, meaning that they are dependent on context. The essay concludes by 

suggesting that knowledge similarly indexes the situation in which it arises and is used (Brown 

et al., 1989). 

The body of research discussed in this section suggests that situated learning can lead to 

deeper, more meaningful, and authentic learning experiences, as well as increased engagement 

and motivation. Overall, the literature highlights the potential benefits of adopting a situated 

learning approach in educational contexts. 
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2.3.4 Constructivist learning theory 

Researchers have analyzed the importance of constructivism in learning. (Bada et al., 2015) 

mention constructivist learning theory as a theory that emphasizes the role of the learner in 

constructing their own understanding and knowledge of the world. They mention that an 

important limitation of education is that knowledge cannot simply be transmitted from professors 

to students; rather, knowledge must be actively created in the minds of pupils. VonGlaserfeld 

(1989) identifies the learner as an active agent in the process of acquiring knowledge in this 

constructivist theory of learning (Bada et al., 2015). 

Constructivism actually stimulates and taps into students' natural curiosity about the world and 

how things work. Instead of trying to invent the wheel from scratch, students try to comprehend 

how it works. They become involved by putting their prior knowledge and experience into 

practice, developing their ability to posit hypotheses, putting their theories to the test, and 

ultimately drawing conclusions from their findings (Bada et al., 2015). In another study, 

Fernando et al. (2017) investigate the constructivist teaching/learning theory and participatory 

teaching methods through a survey of 41 undergraduate students. The three claims of 

constructivist teaching/learning theory that learning is active, influenced by students' prior ideas, 

and socially and culturally rooted were supported by the student’s responses. The survey also 

showed that participatory teaching methods, particularly question and answer, and group 

discussion, are popular and effective in improving the learning experience. The paper concludes 

by advocating for a combination of traditional lectures with participatory methods to enhance the 

learning experience, balancing subjectivity and objectivity in the classroom (Fernando et al., 

2017). 

In conclusion, constructivist learning theory emphasizes the importance of active, 

student-centered learning where individuals construct their own understanding through 

interaction and reflection, rather than simply receiving information from a teacher. 

2.4 Summary 

The literature suggests that mixed reality (MR) technologies, including augmented reality (AR) 

and virtual reality (VR), offer a range of benefits for enhancing the learning process across 

various subjects. However, limited attention has been given to MR tools that aid in the creation 

of educational content across various subjects, particularly in the context of a head-mounted 
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display (HMD)-based MR, which presents a possibility for a more engaging and immersive 

experience with the learning material. 

In the literature discussed, theoretical frameworks have been developed to provide a better 

understanding of context-aware systems, such as the context life cycle and the various layers of 

context-aware systems. There are several benefits of context-aware systems in 

human-centered computational environments, including improved user experience, increased 

productivity, and creativity. These systems could be beneficial for education and offer 

opportunities for a learner-focused, context-aware experience. 

Overall, the literature suggests that different learning techniques such as Curiosity-based 

learning, Situated learning, Concreteness Fading, and Constructivist learning theory have the 

potential to lead to deeper, more meaningful learning experiences, increased engagement and 

motivation, and improved learning outcomes. 
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3. Related Works 

This chapter introduces the existing literature on mixed reality (MR) technology in education and 

context-aware agents in fields including education and training. The first section reviews the 

applications of MR technology in education and compares them based on the Mixed Reality 

continuum, learning content metrics, and pedagogy frameworks. This section provides a better 

understanding of how these applications work and helps situate the prototypes explored in the 

later chapters within the context of the research questions. The second section discusses the 

literature on context-aware frameworks and their requirements and how they are applied in the 

context of education and training. This section provides insight into the importance of 

context-aware agents in various fields and their potential impact on education and training. 

3.1 MR Education Applications 

In this section, I will explore the existing literature on the use of mixed reality (MR) technology in 

education. This section reviews various aspects of the applications which are related to the 

prototypes explored in the later chapters. I have summarized what these applications are used 

for, and how they work and make a comparison table based on the Mixed Reality continuum 

(Milgram, 1994), learning content metrics, and pedagogy frameworks. Using these parameters 

to analyze related works helped me better situate my prototypes in the context of the research 

questions. 

3.1.1 Applications 

a) Serendipitous Language Learning in Mixed Reality (Vazquez et al., 2017) 

This research work talks about the benefits of situated learning outside the classroom where the 

student is in control of the experience through exploration. They present a prototype for 

language learning called “WordSense: Vocabulary learning in the wild”. The user wearing a 

Hololens is able to look at the objects around them and find vocabulary help in the contextual 
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affinity of the object. For eg., a user looks at the cup and finds options to see example 

sentences, hear the pronunciation, etc. 

Figure 3: Vocabulary help guide contextual affinity built for Serendipitous Language Learning in Mixed 

Reality. Recreated image for reference (Vazquez et al., 2017) 

b) NeverMind: Using Augmented Reality for Memorization (Rosello et al., 2016) 

The prototype built in this research work uses the technique of memory palace. The hypothesis 

is that using a virtual memory palace with AR can improve memorization. They introduce the 

concept of the memory palace method, “Given a concept or word you want to memorize, you 

come up with a visual mental symbol for this concept that will help you remember it by 

association. Then, take this imaginary image and mentally place it in an architectural scene. 

Finally, to recall your concept, you imagine the scene you mentally created and the concept you 

want to remember will effortlessly emerge.” 

They ran experiments to measure recall accuracy for memorizing Superbowl champions with 14 

participants. They compared their technique with the Paper-based learning task and the results 

indicated positive and recall accuracy had significant improvements when measured a day and 

a week after the participants learned it. 

c) Enabling the Use of Real-World Objects to Improve Learning (Niemann et al., 2010) 

This paper presents the use of RWOs (real-world objects) in the MACE (Multimedia Annotation 

and Corpus Engineering) system, which connects related learning materials used in architecture 

education. RWOs allow learners to explore new paths while using the MACE portal. The paper 

describes how RWOs are automatically generated and how they are used in MACE. The 
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authors plan to further research the identification of RWOs and to include more repositories in 

MACE. 

3.1.2 Table comparison of Related works 

The above-related works were compared based on different parameters in a table (Table 1). 

Firstly, whether the prototype is mobile-based or HMD-based, or neither. Secondly, the 

multimodality of the prototype was marked with tactile, auditory, and visual support for learning 

content. Thirdly, the prototypes were marked for eye-gaze or hand interactions support. 

Fourthly, the relation of learning content with the environment context was compared. The table 

also describes the nature of learning content instruction, if it’s predetermined or is dynamically 

based on certain factors such as the user’s surroundings or interests. Finally, it also describes 

the learning pedagogy frameworks used. 

Table 1: Comparison of Related Works based on various parameters 

Analysis of these prototypes inspired me to direct aspects of the prototypes which I built later. 

Firstly, these related works use several pedagogies and I decided to focus on different learning 

frameworks in each of my prototypes. Secondly, none of these works used gaze or hand 

interactions to incorporate contextual learning, I wanted to explore the use of hand interactions. 

Finally, these applications have used different techniques to provide contextually-relevant 
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learning content to the learners, which inspired me to experiment with different approaches 

during the interactive prototyping. 

3.2 Context-aware agent framework for learning systems 

Context-aware agents have become increasingly important in various fields, including industrial 

and training domains. In this section, I discuss literature about different requirements to build 

context-aware frameworks and how they are applied in the context of education and training. 

3.2.1 Frameworks 

Researchers have built frameworks to support context-aware applications. In one paper, Ashok 

(2020) suggests three categories of requirements and conditions for designing such 

applications. Firstly, the user interaction should be dynamically created based on the structure of 

the task rather than hard-coded. Secondly, the services used by the application should be 

specified abstractly, and the system should dynamically compose, adapt, and load application 

components based on available resources. Finally, the application should be able to adapt to the 

resources available and handle task context transfer seamlessly between environments. In 

certain cases, users should also be given control over multiple choices. 

Researchers have also built frameworks to support specific use cases. Yaghmaie (2011) 

proposed a system framework for improving the learning process quality based on multi-agent 

concepts, where agents with properties such as autonomy, pre-activity, pro-activity, and 

co-operability are used to tailor content to learners' needs. Four types of agents are used in the 

system: context management, content selector, content organizer, and content presenter. These 

agents retrieve the current learner on the model, decide on appropriate course topics and 

content packages, and deliver them to the LMS. The use of agents in learning adaptation has 

become more common and they simulate the human side of learning more naturally than other 

computer-based methods. Dasgupta et al. (2020) propose a mixed reality (MR) system to create 

context-aware spaces that can be applied in industrial and training domains. They suggest that 

their system can be used in industrial assembly operations to improve the assembly process 

and reduce human error, and can also reduce the user's cognitive load. Their system uses 

machine learning-based object detection in real-time to assist with object manipulation tasks 

and generates audio-visual cues for the user to follow. 
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4. Methodology 

My research focuses on building a framework to support contextual educational lessons in MR. 

The goal of the framework is to create engaging learning experiences. Such a framework could 

help improve curiosity support for learners and help improve the ability to recall concepts 

learned. I call this tool “Curiosity XR”. 

4.1 Overview 

I used a Mixed-methods approach which focuses on the Research-through-design (Zimmerman 

et al., 2010) and the Interaction Design process approach (Sharp et al., 2019). During the 

process, I worked on defining, ideating, designing, building, and evaluating five prototypes. This 

iterative prototyping approach (Figure 4) is adapted from the interaction design process by 

Sharp et al. (2019). Helen et al. 2010 describe an efficient approach to designing prototypes for 

HCI (Human-computer interaction) and mention a life cycle model. Using an adapted form of 

this approach, my iterative prototyping method involved these steps for each of the five 

prototypes: Defining use cases and pain points, ideating storyboards, building prototypes, 

analyzing and reflecting on them, and proceeding to the next prototype. Finally, I built a final 

prototype “Curiosity XR” as a learning system framework that could be used for creating and 

experiencing in-context mixed reality learning content. 

4.2 Process 

This project also involves collecting both quantitative and qualitative data such that combining 

two approaches provides a more complete understanding of the research problem than either 

approach alone (Creswell 2014). In this work, qualitative approaches include participants' user 

study responses while quantitative approaches include analyzing the MR prototypes and data 

collected during the experience testing. 
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Figure 4: Outline of the adapted Interaction design process for the iterative prototypes (Sharp et al., 2019) 

In the sections of the next chapter, I present the entire process in detail for each of the five 

prototypes (Figure 6) by explaining the ideation, design, development, system architecture, and 

reflection of the iterative prototypes. 

The five prototypes were designed to explore the concept of my thesis in parts. For Prototype 1, 

I explored a tool for language learning through the real-world objects around the user wearing 

Vuzix Blade smart glasses (Vuzix Corporation, 2018). Prototype 2 tested the capabilities of MR 

as visualization support through paper sketches and doodles using an MR HMD; Hololens 2 

(Microsoft, 2019). Prototype 3 was designed to explore the concept of providing real-time 

dynamic learning content to the user wearing Hololens 2 as well through a Voice User Interface 

(VUI). Prototype 4 focuses on a tool to provide automated learning content anchored to 

real-world objects through Hololens 2. Prototype 5 was built to support template-based lesson 

creation to support educators to create contextual MR interactive learning content using 

Hololens 2. 

Figure 5: Research sub-questions for reference for Figure 6 
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Figure 6: Methodology flow for this thesis (SQ indicating the Sub-questions relevant to the prototype, see 

Figure 5 for reference) 
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The final prototype “Curiosity XR” builds on top of the components of the previous prototypes 

and utilizes user context to support learning in a single MR application. Curiosity XR was earlier 

built on Hololens 2 (Microsoft, 2019) and later transitioned to target Quest 2 (Meta, 2019) and 

Quest Pro (Meta, 2022). 

To evaluate the first five prototypes, various parameters were analyzed with reference to the 

literature and compared through a radar plot visualization (Figure 7) based on the following 

parameters in relation to the literature. This evaluation is based on my subjective understanding 

of the literature. The final prototype is then tested through a user study that involves 

participants. The design knowledge is then generated in the form of prototypes, its analysis, and 

the participant study findings for the final prototype. 

4.3 Design criteria for measuring the prototypes 

Figure 7: Radar plot visualization template for evaluating prototypes 

Reality Continuum: Scale of 1-5. Based on the reality-continuum scale (Figure 2) (Milgrim 

1994). 1 indicates the Real environment and 5 indicates the Virtual environment. 

Context awareness: Scale of 1-5. This scale is based on the ability of the system to analyze 

the environmental context and user context. 1 indicates the system has no context awareness, 
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while 5 indicates that the system is completely aware of the object instances in the environment, 

the 3D spatial position of each object, the user’s speech, the user’s actions and intents, the 

user’s history with past interactions with the prototype, and preferences for learning. 

Curiosity support: Scale of 1-5. This scale is based on the ability of the system to support the 

learner’s curiosity. 1 indicates the system isn’t able to support the learner’s curiosity in any form. 

5 indicates the system is able to support curiosity in any form MR AI-assisted technology can 

assist the learner including answering questions, understanding user intent, and providing visual 

and auditory support when required. 

Learning content complexity: Scale of 1-5. 1 indicates simple plain static learning context, 

while 5 indicates dynamic multimedia learning content including text, speech, video, image, and 

3D models. 

Contextual relevance of learning content: Scale of 1-5. 1 indicates low relevance of the 

learning content, i.e. not based on the environment, user, or context resulting in low-contextual 

relevance which might affect the effectiveness of the learning content. While 5 indicates, total 

relevancy with the context, where the system provides learning content highly correlated to the 

user context, and environment context. 

Multimodality: Scale of 1-5. This scale is based on the capability of the system to provide 

multimodal input and output. 1 indicates supporting one mode of input/output. (Visual, audio, 

tactile), whereas 5 indicates supporting multiple modes providing seamless integration of 

multiple inputs to enhance the learning experience. 
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5. Iterative Prototyping 

In this chapter, we will explore five iterative prototypes that aim to enhance learning and 

visualization support through MR. Each prototype focuses on a specific aspect of learning, 

ranging from language learning to real-time content generation, and incorporates different tools 

such as Augmented Reality (AR), 3D visualization, Speech, and AI-generated content. Each 

prototype will be introduced with its motivation, followed by a description of the process used to 

develop it. The outcomes and architecture of each prototype will also be discussed, along with 

reflections on their effectiveness and potential for future development. Overall, this chapter aims 

to showcase the potential of technology to enhance the learning experience in various ways, 

providing learners with personalized, engaging, and effective tools for acquiring knowledge and 

skills. 

5.1 Prototype 1: Language learning with AR through 
Context 
To start with the research, the first prototype was aimed to explore the first and the second 

sub-question (SQ1, SQ2), “How can a Context-aware educational system acquire context from 

mixed reality devices to support educational lessons?” and “How can acquired context be used to 

present an educational concept for the learner?”. Exploring these questions through the first 

prototype provided me with a better understanding of how sensors could be used to acquire 

context and further present educational information to the learner. 

5.1.1 Personal Motivation 

When I arrived in Canada in 2021, I used various methods in an attempt to acquire proficiency 

in the French language. These approaches included utilizing popular language-learning 

applications like Duolingo, completing targeted exercises to strengthen my knowledge of French 

grammar, and immersing myself in French cinema. While these techniques undoubtedly 

facilitated my acquisition of certain grammatical structures and vocabulary, I found that they lack 

a certain level of practical application when attempting to comprehend real-world language 

usage. For example, as children, we learn the name of an object such as a bicycle through 
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direct observation and parental instruction which is different from how the above-mentioned 

approaches work. After a bit of research reading about the theory of immersion, I realized that 

immersion can significantly accelerate the learning process and I was curious to build an app 

that could make learning languages fun and highly efficient for me and all the other language 

learners. 

5.1.2 Process 

With an inspiration to make language learning fun and efficient for certain concepts, I started 

researching user personas for language learners (Figure 8). 

For this prototype, I wanted to target language learners who have started out as language 

exchange travelers or students. Building a tool for advanced concepts needed a deeper 

understanding of different languages and learning instructional design for teaching languages. A 

few language learners who are beginners travel to other countries to immerse and look for as 

much immersion as possible to make the most of their limited time travel. While some people 

are able to travel to the language-speaking country of the language they want to learn, It is not 

feasible for most people to travel for immersion, and in such cases, technology can help provide 

virtual immersion. 

Figure 8: User personas to represent the target audience for Prototype 1 

Most language-learning apps introduce new languages by introducing users to simple nouns 

such as a dog, cup, etc. with images that aren’t presented in the context when they experience 

such objects in the real world. Also, language learning apps such as Duolingo rely support on 

pedagogical techniques for spaced repetition where a concept is introduced again after some 

time to result in longer retention for vocabulary, but it doesn’t regard the learner’s context which 



39 

is their environment where things and situations do repeat and could be used to provide 

language lessons to the user. Immersion shouldn’t require learners to travel to other countries 

and should have a natural interaction mechanism where the technology is hidden, supporting 

learners to grasp vocabulary and grammar effortlessly similar to first-language acquisition. 

Krashen (2017) talks about comprehensible input in his paper and the theory of immersion. He 

talks about providing contextual information with hearing and reading comprehensible input is 

enough and most effective when acquiring a second language. 

The concept behind this prototype was to explore language learning with smart glasses which 

would have major benefits over Mobile-based AR in terms of immersion, usability, and 

interactivity through ubiquitous design techniques (Abowd et al., 1999). Using mobile-based AR 

limits learners to have constant immersion while smart glasses allow being immersed in the 

learning content while being actively present in the real environment. 

Figure 9: Sketches to visualize multiple object recognition 

I brainstormed several scenarios through sketches to visualize the capabilities of the basic 

context-aware system (Figure 9) and its various use cases. After that, I also designed 

high-fidelity mockups to understand interactions that could help users learn vocabulary or 

grammar through smart glasses (Figures 10 & 11). 
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Figure 10: Sketches to visualize use cases with the user wearing smart glasses 

Figure 11: High-fidelity mockups for learning nouns, adjectives, and grammar using environment context 
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5.1.3 Outcomes 

After designing some sketches and high-fidelity mockups, I had to choose an HMD for this 

project. With the various available HMDs such as Oculus Quest 2, Hololens 2, and other 

smartglasses, I chose the Vuzix blade smart glasses (Vuzix Corporation, 2018) as they are ideal 

for daily outdoor use, and have a compact form factor that made them a suitable choice for the 

target audience and my familiarity with Android OS on which the Vuzix blades run on. Steve 

Mann1 was kind enough to lend them to me for this project. Vuzix Smartglass are android 

smartglasses with a camera, a microphone, a speaker, and a heads-up display. 

The app built (Figure 12) for this prototype uses image recognition to recognize objects in the 

user’s surroundings and is followed by translation to translate objects near the user. When users 

wearing smart glasses look at any object around them, they see what that object is called in the 

target language on the HUD(heads-up display) screen. It is able to support multiple languages 

and allows the users to switch between languages by tapping on the capacitive touch panel on 

the glasses. The smart glasses displayed the translation of the object’s name and spoke out the 

pronunciation as well. 

Figure 12: First-person-view screenshots of the language learning application 

The glasses also have in-built speakers and could also speak out the pronunciation of the 1 

target object for multimodal feedback. The app was selected to be presented at VRTO 2022 

Expo2 (Figure 13). Around 50 people tried it during the 2-day period. People could see it as a 

potential tool for language learning and helpful when traveling to foreign countries. 

1 Mann, S. (1996). Wearable computing. IEEE Technology and Society Magazine, 15(3), 12-23. 
2 VRTO 2022. (2022). About VRTO. Retrieved from https://conference.virtualreality.to/about/ 

https://conference.virtualreality.to/about/
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Figure 13: Prototype 1 demonstration using Vuzix blades (Vuzix Corporation, 2018) at the VRTO 2022 

Expo, OCAD University, Toronto. 

Figure 14: Visual representation of the working of Prototype 1 
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Figure 15: System architecture diagram for Prototype 1 (See Appendix E for details) 

5.1.4 Reflection 

The prototype was built for daily wearable smartglasses with a small display augmented onto 

the user’s vision. The user interface simply had a text for the translated object and hence had a 

minimum information overlay on top of the real world. According to the Reality–Virtuality 

Continuum (Milgram et al., 1994), this work lies closer to the point of AR in the spectrum and 

has less of the MR component to it. 

The system was able to recognize the objects in the user's environment and had a set user 

preference for the language the users wanted to learn. Although it was limited to identifying 80 

objects, they were common enough to help a user learn from their environment. Being able to 

comprehend other parameters in the surroundings could have helped in providing variety in the 

educational information. Apart from recognizing the object categories; colors, texture, pattern, 

and scene descriptions can be a great addition to the contextual awareness system. Providing 

real-time translations and pronunciation guidance can help language learners feel more 

confident and motivated to explore and learn new words and phrases. They would also better 

understand and remember new vocabulary, which can spark their curiosity and encourage them 

to learn more. 
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This prototype incorporates parts of different learning theories. The key interaction, which is 

triggered by the user's gaze, initiates the lesson content using a curiosity-based intent as the 

user looks at an object and the system displays the translated word. The educational content 

delivered relates to the user's surroundings, exemplifying the concept of situated learning. 

Figure 16: Radar plot visualization for Prototype 1 

5.2 Prototype 2: 3D visualization support through paper 

sketches 

Exploring SQ1, and SQ2 through the first prototype provided me a better understanding of how 

sensors could be used to acquire context and further present educational information to the 

learner. My experience with the earlier prototype revealed the importance of exploring advanced 

headsets like 6DoF displays for spatial learning content. Offline object detection and translation 

are limited, and exploring other models is necessary for versatility. A 2D display may not provide 

sufficient information for users. Identifying users' desired objects for translation was challenging 

due to the absence of eye-tracking sensors in Vuzix smart glasses. Reflecting upon the previous 
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prototype, I realized the necessity to continue exploring the research questions with a headset 

with advanced display capabilities. 

This prototype was aimed to explore the third sub-question (SQ3), “How can we build a 

curiosity-support agent through Mixed Reality?”. The prototype explores a technique that uses 

Mixed Reality to provide visualization support for learners. 

5.2.1 Personal Motivation 

When I was a kid, I remember watching a television show, Shaka Laka Boom Boom3, in which 

the lead character; Sanju, had a magic pencil that brought his sketches to real life. I always 

wanted to get that magic pencil however as I grew up I realized that it was nothing more than 

fiction. 

Looking at that television show from a different perspective while working on my thesis, I 

realized the importance of connecting sketches and art on paper with 3D objects. The concept 

of turning sketches into objects such as a chair, car, etc. would help learners visualize various 

visual perspectives and this idea could also be extended to drawing objects which don’t exist 

like purple apples or magical worlds of mushrooms with abstract gradients as the background. 

The interaction techniques for this expression in 3D spaces could be through 2D sketches and 

could provide learners with a natural way to imagine and create 3D spaces/objects. This 

technique could support curiosity by not limiting the learner’s imagination to the paper. 

5.2.2 Process 

The aim of this prototype is to understand the benefits and scope of a Mixed Reality 

visualization agent initiated through sketching on paper. As for the device to be used for this 

prototype, I decided to use the Hololens 2 because of its advanced display capabilities as 

opposed to the earlier prototype’s Vuzix blade. Hololens 2 allowed applications to anchor 3D 

models spatially while the users could move and also use hand interactions to manipulate 

(scale, rotate, move) 2D/3D holograms in space. The other alternatives were using a Quest 2 / 

Quest Pro which used a Pass-through AR display (showing a projection of the real world 

through cameras) whereas the Hololens 2 uses an Optical AR display (direct perception of the 

real world as we see with our eyes). There was a major drawback in using the Quest platform 

which led me to choose the Hololens 2. Quest didn’t allow the developers to access the raw 

3 Shaka Laka Boom Boom (2000). Retrieved from https://www.imdb.com/title/tt10510908/ 

https://www.imdb.com/title/tt10510908/
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cameras due to its privacy policies, and hence it was not possible to use the Quest cameras to 

detect characteristics of a sketch from a paper. 

Figure 17: Paper-based sketch visualization support with MR 

To begin with the storyboarding, I brainstormed use cases of recognizing user-drawn objects 

and augmenting them in the MR space and drew some use case sketches to visualize this tool 

(Figure 17). Users could draw rough sketches on paper but also could be using a whiteboard or 

a blackboard to draw concepts. They might want to visualize objects, concepts, or spaces 

(Figure 18). Users could want to visualize what a 3D model of a car concept looks like. They 

might want to visualize a UI design through a low-fidelity prototype they’ve drawn. The 

visualization support could also be beneficial to architects when designing building concepts on 

paper or through a rough sketch. These and many such use cases, however, have a much 

broader scope, and before proceeding to build these concepts I had to understand the 

requirements and technical constraints. For the first step, I looked into the different kinds of 

information which could be extracted from sketches on paper. I started exploring different 

datasets which could be used to train ML models for inferring objects or other characteristics 

from sketches. 
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Figure 18: Marker-board-based visualization support with MR 

One of the interesting datasets which I came across was the largest doodling data set; the 

Google Quickdraw dataset (Ha & Eck, 2017) has about 350 categories (car, apple, chair, etc.) 

and 10,000 images for each category. Whereas, the Google Quickdraw dataset allowed for an 

ability to recognize user-drawn objects on paper. Other datasets which I found relevant were the 

BendSketch (Li et al., 2017) which allowed the modeling of freeform surfaces through 2D 

sketching, and OpenSketch (Gryanditskaya et al., 2019); a richly annotated dataset of product 

design sketches. Most of the other generally available datasets used camera-captured footage 

of the real world to identify objects and were not suitable for context recognition from paper 

sketches. 

Among the ones mentioned above, the Quickdraw dataset was a better choice to implement 

and build a prototype considering the time constraints. I decided to work on a prototype that 

could recognize objects using the Quickdraw dataset and display the 3D model of that object to 

the user. For eg., the user draws a chair and sees a chair in front of them. Once the context 

(objects, colors, textures, situation, etc. in the sketch is acquired, it would be used to choose 

relevant 3D models and display them in the user’s surroundings through the MR display. 

To enable the generation of 3D models, I looked into quite a few 3D generation techniques; 

text-to-3D machine learning-trained models such as Magic3D (Lin et al., 2022) and Dreamfusion 

(Poole et al., 2022) which accept user text queries to generate 3D models based on the query 

and similar techniques on the rise but they were not feasible to generate models in real-time. 

There were a few other drawbacks associated with this approach as well. Firstly, the sketch 
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would have had to be transformed into a text query using techniques similar to visual question 

answering which was a bit cumbersome to work on for an initial prototype. Also, due to the 

display limitations of the Hololens 2, it is difficult to convert the generated 3D models into a 

usable and supported format for Hololens 2 on the go. 

Another technique that I looked into for generating 3D models was using 3D model databases 

available for non-commercial uses. I came across the largest 3D model database; SketchFab 

API (Sketchfab, 2022) which had most of the basic objects available which could be fetched in 

real-time and displayed on the Hololens 2. I decided to use Sketchfab’s API to fetch 3D models 

for this prototype. 

5.2.3 Outcomes 

The prototype (Figure 19) was built on Hololens 2 (Microsoft, 2019), with real-time object 

detection from a sketch to generate 3D models and place them in the user’s vision. The model 

is trained on the Google Quickdraw dataset and works with around 350 common objects (chairs, 

cars, apples, etc.). 

Figure 19: Screenshot from the Prototype 2 experience: Drawing a sketch of an apple loads a 3D model 

of an apple 

The 3D models are fetched from the SketchFab API. This allows for real-time searching for 

models such as an “apple”, filtering and finding a suitable model format and specifications that 

are supported by Hololens 2, downloading it, and then rendering it in front of the user. The 
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prototype also implements MRTK3 (Microsoft, 2022) to support hand interactions with the 3D 

models. Implementing this tool allowed the user to use their hands to interact to scale, rotate or 

move these holographic objects in space. 

Figure 20 demonstrates the process of recognizing an object from a sketch to showing it in MR. 

Figure 21 demonstrates the system architecture diagram for this prototype. It shows how 

information is transmitted from the headset to the python server and back to the headset using 

several APIs to support this prototype. 

Figure 20: Flow diagram to demonstrate the functionality of Prototype 2, Sketch-to-3D visualization 
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Figure 21: System architecture diagram for Prototype 2 (See Appendix E for details) 

5.2.4 Reflection 

This prototype would lie close to the central part of the Reality-Virtuality continuum (Milgram et 

al., 1994). Compared to the previous prototype, it has more virtual components than fixed text 

such as spatially-anchored and interactive 3D fully-colored models augmented in the user’s 

environment. I think that allowing users to manipulate the virtual objects gives users the ability 

to be able to fully immerse into the models (Right extremum of the Reality-Virtuality continuum) 

and also scale it down to have minimal augmentation in the real world. (Left extremum of the 

Reality-Virtuality continuum). 

The context recognition subsystem for this prototype had various limitations. It was able to 

understand the bounding box of the paper through the camera stream but it wasn’t able to 

recognize if the paper had multiple sketches or a single sketch. Also, if the camera stream had 

multiple pages in the environment It chose a paper at random. This subsystem helped 

understand which object has the user drawn assuming one object was drawn by the user on 
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one page with no other visible pages to the camera. Also, the camera on Hololens couldn’t 

capture the entire sketch most of the time, since it had a placement much above the user’s eyes 

and had a narrower field of view. The images had cropped parts of the sketches or sometimes 

completely missed if the user is quite close to what they are drawing. Lastly, the 

sketch-object-recognition module recognized incorrect objects occasionally. Different colors of 

pens, pencils, markers, and lighting situations altered its performance. Being able to retrieve 

other parameters from the sketch could have helped in generating more relevant 3D models. 

Apart from recognizing object categories, the ability to derive spatial properties from the sketch, 

colors, and textures could have helped generate 3D models with specific materials and shaders. 

The goal of this prototype was to understand and explore the limitations of a Mixed Reality 

agent to support users with visualization through sketches. This prototype doesn’t directly relate 

to providing educational content but the generated 3D models can be considered as a visual aid 

for improving the spatial understanding capabilities of learners. It allows them to visualize 

objects they’re curious about from different perspectives and acts as a visualization support tool 

for ideation. 

Figure 22: Radar plot visualization for Prototype 2 with the previous prototypes 
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5.3 Prototype 3: Real-time lesson content generation 
using Speech 

Exploring SQ3 through the previous prototype, an agent to provide 3D visualization support at 

runtime was built and helpful but I realized the need for an agent which could continuously 

support learners’ curiosity once the 3D models appear. Working on the previous prototype, I 

could identify technical problems associated with acquiring context from paper sketches and 

look for an alternative interaction to acquire user intent. I could see a need for an interactive tool 

that could assist learners to help with imagination and visualize things they are curious about 

and also answer related queries. For eg. If a learner would like to understand how a car engine 

works while having a 3D model in their hand, they don't have a tool that would help them 

visualize and assist with related queries in Mixed Reality. 

This prototype was aimed to explore the third and the gift sub-question (SQ3, SQ5), “How can 

we build a curiosity-support agent through Mixed Reality?” and “How can Mixed Reality use this 

multimodal content to support interactive learning experiences in context?”. This prototype aims to 

solve such visualization aids through a different approach and continue supporting the user’s 

curiosity. 

5.3.1 Personal Motivation 

I am a visual learner and wonder about how things work around me. I realized that there is a 

need for a system that can respond to questions to better understand objects around us. A great 

resource that helped me visualize this concept was Bret Victor’s TED video on “Humane 

representation of thought”. Bret Victor (2014) talks about how we are trapped by current 

technology to use only our vision and auditory sense while the tactile, kinesthetic, and spatial 

abilities are disregarded. He talks about a need for a dynamic medium that is responsive, 

computational, and connected. He mentions infusing computation with physical matter to use 

most of the human capabilities to interact with computers and each other. However, 

nanotechnology isn’t quite mature yet and this is possible today, but using his ideas as a 

motivation I realized some of these things could be implemented using Mixed Reality. 
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5.3.2 Process 

The aim of this prototype is to understand how to build an MR application that can have 

functionalities to not only help users visualize 3D models instantly but also answer relevant 

questions while they interact with them as if they had a virtual teacher with them. To map out the 

use case scenarios, I drew some use case sketches (Figure 23) to imagine this tool’s 

possibilities. 

Figure 23: Sketches to visualize use cases for Prototype 3. (Top) Visualizing a model and having a query 

about the model as a whole, (Middle) Visualizing multiple models and having a query about one model, 

(Bottom) Visualizing a model and having a query about a specific part of the model. 
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In the first scenario, the user might want to visualize a model and have a query about the model 

as a whole. This could involve viewing the model's overall structure, understanding its key 

features and components, and asking questions about how it operates and functions. In the 

second scenario, the user might want to visualize multiple models and have a query about one 

specific model. This could involve comparing and contrasting multiple models, understanding 

their similarities and differences, and asking questions about specific aspects of one model in 

particular. A third scenario could be in which the user would like to visualize a model and have a 

query about a specific part of the model. This could involve examining a particular aspect or 

feature of the model in detail, understanding how that part works and how it fits into the overall 

model structure, and asking questions about its function and significance. 

I decided to focus on the first scenario due to the technical support and timeline limitations. The 

other two scenarios would require understanding user context from voice, hand recognition, and 

camera image to deduce the part of the models the user is asking a query about. 

To build for the first scenario, the starting step was to consider different methods to initiate a 3D 

model in space. The user could either select a model from the UI with options or type an object’s 

name to search for one or request a model through voice. I decided to draw storyboarding ideas 

for a voice user interface for initiating 3D models. This interface could be more efficient and 

natural while wearing the HMD compared to the other approaches. 

After brainstorming and sketching ideas, some of the use case scenarios could be the following. 

The user could say things like “I wonder what an electric car looks like from the inside”, “Can I 

see a model of a laptop PCB” or “I would like to see a moon? Once a relevant model is 

displayed, the user could then request follow-up questions. 

The VUI (Voice User Interface) could provide real-time feedback through text or speech while 

the user is interacting with the models around them. To be able to have a natural VUI, the first 

requirement would be to have an intent recognizer in the context-acquisition subsystem. Intent 

recognizer would help the system understand the user has the intention to visualize a 3D model 

of Mars from queries such as “Can I see Mars”, “I would like to visualize Mars”, “How does Mars 

look like” etc. Among the various intent recognizer pre-trained models available, I found Wit.ai4 

to be quite reliable and customizable for this prototype’s use case. Integrating Wit.ai would also 

4 Facebook. (2018). Wit.ai Retrieved from https://wit.ai/ 

https://wit.ai/
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allow the agent to understand if the user would like to see a model, know something else about 

it, or ask factual questions in relation to what they’re curious to learn about. 

For the next part, to generate the 3D models, this prototype used the same technique as the 

previous prototype (using SketchFab API). Lastly, the system needed to display the results of 

users’ queries. For eg., Once the user sees a Mars model, they might be curious to learn about 

the planet’s properties, or wonder “The possibility of life on mars, or how long would it take to 

reach mars from a rocket?”. 

The scope of the user’s questions could be boundless and the aim of this system is to be able to 

answer as many kinds of queries as the user has and support the learner’s curiosity. To achieve 

this capability, I decided to use OpenAI’s GPT-3 API which supports a variety of general 

text-related tasks such as question-answering, summarization, translation, etc. It has immense 

capabilities in being able to answer users’ queries which could range from philosophy to core 

sciences. GPT-3 had a few known drawbacks and provided misinformation for logical and 

computational-based results. For eg. “What is the size of a plant cell?” provided answers such 

as “<1cm” or “very small of the size of a grain of salt” which isn’t accurate as learning content. 

To provide users with a response to such queries, I decided to use Wolfram Alpha’s API which is 

known to be one of the best computational engines on the web. 

5.3.3 Outcomes 

The prototype was built on Hololens 2 and allowed users to talk and request 3D models by 

speaking out prompts such as “I would like to see mars”, or “Show me earth” (Figure 24). The 

system used SketchFab API to get 3D models which have a collection of 500,000+ models. The 

users could interact with the models and ask questions like “How far is earth from mars?” or 

“How long is 1 Earthian day on mars?” using different APIs to request answers. The user was 

able to see and read the relevant answer in the text box and the system also speaks out the 

answer content. 
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Figure 24: Interacting with planets and learning about them through the Voice User interface 

This prototype uses a similar flow as the previous prototype to gather user context and show a 

3D model. Figure 25 depicts how models are rendered in real-time using the user’s voice 

context. 

Figure 25: Process explaining real-time 3D model rendering through a Voice-user interface 
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Figure 26: System Architecture diagram for Prototype 3 (See Appendix E for more details) 

Figure 26 demonstrates the system architecture diagram for this prototype. It shows how 

information is transmitted from the headset to the python server and back to the headset using 

several APIs to support this prototype. 

5.3.4 Reflection 

This prototype would lie close to the central part of the Reality-Virtuality continuum (Milgram et 

al., 1994). Similar to the previous prototype, it has spatially anchored, interactive, fully-colored 

3D models augmented in the user’s environment. Compared to the previous prototype, the 

context recognition subsystem was better at identifying users’ intents. Voice as a query interface 

was capable of more complex requests allowing users to mention colors, textures, and various 

other object-specific characteristics of what they’d like to visualize. One of the technical 

challenges of this prototype was related to the voice command initiations. There was no wake 

word associated with the VUI and the microphone was always active to find possible intents 

from the recognized speech. Due to this, it was very challenging to disregard speech detected 

from people nearby and converse with the people around while engaging with this prototype. 

The other technical challenge was to understand the context of the object which the user 

wanted to visualize. For e.g., If a user were to ask about the "earth" required for a plant to grow 
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while looking at a plant cell, the system would show a model of the planet earth instead of 

recognizing that the user is referring to the soil. 

Similar to prototype 1, this prototype incorporates parts of different learning theories. The ability 

to visualize and interact with objects through a VUI ties back to the principles of curiosity-based 

learning. The same theory also is exemplified in the learning content generation where the user 

could ask what they’re curious to learn about and get answers. This prototype also benefits from 

the constructivist learning theory. During the experience, the learners actively engage and 

construct information through their own understanding similar to how Bada et al. (2015) 

describe it. 

Figure 27: Radar plot visualization for Prototype 3 with the previous prototypes 
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5.4 Prototype 4: Serendipitous AI-generated learning 
content based on environment context & learner context 
Exploring SQ1, SQ2, SQ3 & SQ5 through the previous prototypes helped me understand the 

techniques to acquire context, build curiosity-support agents, and use multimodal content to 

support interactive learning experiences. A part of SQ5 to support these interactive learning 

experiences in context was something that was yet to be explored. 

This prototype was aimed to discover and analyze the missing pieces of SQ5; possibilities of 

interactive learning experiences incorporating the environmental context and the learner 

context, and, parts of SQ4; exploring how these adaptive-context aware systems create 

environment-based multimodal mixed-reality lessons to teach concepts to the learner. 

5.4.1 Personal Motivation 

In our daily lives, we often see parents teaching their kids about the things around them in their 

environment. For instance, a parent might show their child how to tie their shoes or explain the 

different types of trees in the park. This type of learning is highly effective, as it allows children 

to learn in a natural and engaging way, using the objects and experiences around them. 

However, this kind of learning is not always possible in traditional educational settings. 

By integrating a contextual learning system framework into educational content, we can create a 

learning environment that is tailored to the user's individual needs and interests. Users could 

interact with real-world objects like chairs, lamps, and other household items while 

simultaneously learning about their history, functioning, and inventors. Additionally, such a 

system could make learning more accessible to a wider range of users, including those with 

different learning preferences and abilities. 

5.4.2 Process 

I made a few sketches to visualize the use cases. After brainstorming and storyboarding the 

possible interactions, I realized the independence of users’ interests to the surrounding objects 

for generating educational content. For eg. If someone is curious to learn physics, they can 

learn physics concepts through a plant, through a table, or through a basketball. To learn 

physics concepts through a plant, the mixed reality system could simulate various physics 
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experiments, such as measuring the plant's growth rate, the force required to move its leaves, 

or the amount of energy required for 

photosynthesis (Figure 28). Mixed reality can allow users to examine the properties of the table, 

such as its weight, height, and center of mass. This can help users understand concepts like 

gravity, mass, and energy. For example, they can see how the table’s center of mass affects its 

stability and how its weight affects the amount of force needed to move it (Figure 29). Users can 

also bounce a basketball and visualize the trajectory of a ball, which helps them understand the 

concepts of motion, velocity, acceleration, and how the force of gravity affects motion (Figure 

30). 

Such learning techniques could change users’ perceptions of the objects and add a learning 

perspective to the things they experience, making them curious to learn more about the subject 

they’re interested in. 

Figure 28: Learning about thermodynamics and growth rate from a plant 

Figure 29: Learning about force and center-of-mass concepts from a table 
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Figure 30: Learning velocity-time graphs while playing with a basketball 

Also, the lesson information need not be a text similar to a single translated word in the first 

prototype but could also be a long text and contain images/videos/3D models. 

The first part to build this prototype was to explore the interaction techniques to generate the 

learning content. One of the options was gaze intent; which would allow the user to gaze at 

objects and initiate a curiosity intent further loading the lesson content. This technique however 

may occlude the environment with information and constantly update as the user moves their 

eyes and head around. A rather modified interaction called “Gaze Pinch” solves this concern. It 

is available in MRTK3 and allows for intent activation based on both a user’s gaze and a pinch 

gesture. Another interaction that can define a user’s explicit interest would be to have a 

curiosity-initiation prompt anchored to objects in the user’s environment. 

The next part was to understand how to spatially anchor content to real-world objects. To 

achieve this, the system needed objects’ spatial 3D coordinates in the user’s environment. I 

designed a few mockups to visualize the spatial anchor for the lesson content (Figure 31). 

To accomplish this, I tried using the depth sensor on Hololens 2 but the development 

documentation for it is complex and requires a deeper understanding of its hardware interface 

libraries. As an alternative, I decided to use an external camera and a depth sensor instead. 

Among the various external depth sensors, Zed Mini (Stereolabs, 2018) with its Python SDK 

provides access to the RGB camera stream and Depth sensor stream. Zed mini served the 

requirements of this prototype quite well as it could be used for real-time object detection and to 

get the 3D coordinates of each object in the environment. Figure 32 depicts a sketch to visualize 

Zed mini, Hololens 2, and a Python socket server in the user space. 
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Figure 31: High-fidelity mockups using MRTK3 (Microsoft, 2022) design system to depict Object-anchored 

curiosity-initiation prompts 

Figure 32: Low-fidelity sketch to visualize real-time object detection in 3D space using a Zed Mini, 

Hololens 2, and Python socket server 

To support lessons such as the ones mentioned above, a context acquisition agent was required 

which could gather information about the objects such as their category, and other properties 

like color, material, and texture. And for specific cases, it should be able to recognize 

specifications as well. For eg. for a plant, find out the type of the plant, its common name, and 

its scientific name. For a building, its name if it’s a monument. Such tasks are categorized as 

instance recognition tasks and there aren’t machine learning models that currently solve this 

task in general. It was also challenging to acquire complex properties and behaviors of 

surrounding objects. For eg. tracking real-time 3D coordinates of the basketball, or mesh 
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approximation of a plant, or table’s dimensions and weights of its different parts. Although such 

a complex context is possible to derive through sensors and could be used for generating highly 

informative and contextual learning content, but, due to the time constraints and to limit this 

prototype to a proof-of-concept validity requirement I decided to use an object detection model 

to only recognize the object category. The desired agent should then be able to identify the 

object and tag it as “plant”, “apple”, or “cup” etc. which could be used to generate relevant 

learning content. 

One of the main goals for this prototype was to identify a tool capable of producing educational 

content based on users' interests and objects. While I considered using knowledge graphs such 

as Wikipedia, which associate objects with facts or concepts, I found them to be unsuitable for 

generating brief lessons. Instead, I found that GPT-3, which was used in a previous prototype, 

was a viable option. For eg., if the user is interested to learn physics, it could provide answers to 

queries such as “teach me a concept of physics using a mug“ or if the user is interested to learn 

history, it could also answer prompts such as “tell me a historical fact about chair”. And then the 

generated text could be directly used to display a lesson for the user. The other tool which 

seemed a viable solution was Wolfram Alpha’s summary box API which could provide summary 

cards for objects such as monuments, physical elements like metals, animals, or plants, etc. 

These summary cards included an image and a basic set of information but generating lesson 

content through these cards disregards users’ interests and rather provides general information. 

5.4.3 Outcomes 

With this Hololens 2 prototype, the user was able to set preferences of the topic of interest such 

as Physics, Maths, History, Science, etc. by simply speaking out a phrase like “I would like to 

learn physics”. Example use cases are shown in Figure 33. Wit.ai was used to recognize users’ 

intent to change their subject of interest. Once the topic of interest is set, the user can gaze at 

objects around them and see a text prompt of a fact or concept anchored to the object. Figure 

34 depicts a flow diagram for this system architecture. 
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Figure 33: Screenshots from Prototype 4, the user is able to see object-anchored AI-generated learning 

content about different objects 
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Figure 34: System architecture diagram for Prototype 4. See Appendix E for more details. 

5.4.4 Reflection 

This prototype would lie close to the Augmented reality part of the Reality-Virtuality continuum 

(Milgram et al., 1994). Similar to prototype 1, it has augmented text in the user’s environment 

but unlike a fixed display the learning content is spatially anchored. 

The context recognition subsystem was a bit different as compared to the previous prototypes. 

The agent used multiple sensors to be able to derive objects’ spatial coordinates in real time 

and another agent monitored the user interest preferences. 

This prototype focused on the principles of situated learning where the surrounding objects 

generated the learning content for the user. It also had components of curiosity-based learning 

which allowed the user to set their topic of preference using the VUI. 
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Figure 35: Radar plot visualization for comparing Prototype 4 with the previous prototypes 

There were however a few challenges in the learning content generation. Firstly, Even though 

the answering APIs like GPT-3 allowed for open-ended queries, not all the topics were 

correlated to all the objects around the user. Eg. “Biology fact from a chair”, or “Geography 

lesson from a monitor” resulted in weird facts that didn’t make sense. The Former resulted in the 

output “A chair is a piece of furniture that people sit in to support their weight.” and the latter 

resulted in “The largest monitor in the world is the Ultra HD monitor from Samsung.“ After 

engaging with basic queried AI-generated learning materials, it became apparent to me that the 

availability of a supplementary source of carefully curated learning content is crucial in 

enhancing the quality of educational resources. 

5.5 Prototype 5: Framework to support the creation of 
contextual MR mini-lessons 

After exploring AI-generated learning content for MR learning experiences, I decided to work on 

a prototype to explore the ways to provide educators with tools for creating learning content for 

contextual MR lessons. This prototype focuses on exploring the remaining part of the SQ5 

which was left unexplored in the previous prototype; “How can educators create 

environment-based multimodal mixed-reality lessons to teach concepts to the learner?” 
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5.5.1 Personal Motivation 

In recent years, I have reflected on the impact of online video-sharing platforms such as 

YouTube on learning. I recognized the potential of video as a medium for sharing experiences 

and knowledge, which has significantly transformed traditional learning methods based on text 

and image-based content. However, I also realized that video content is limited to a 2D display, 

which restricts interactivity with the material. I acknowledged the need to offer greater flexibility 

to users in directing their learning content in a way that aligns with their interests. I recognized 

that traditional video-based learning can promote passive learning, while interactive MR 

environments can provide a more active, immersive, and engaging learning experience. 

5.5.2 Process 

To build a prototype that could support multiple domains of knowledge, I started sketching 

various formats of MR lesson content that could benefit learners. These lessons could vary in 

multiple dimensions, the dimensions would be the amount of self-directedness, the media types 

of learning content (text,2D, 3D), affordances, and interactability. 

Building a platform that could support the creation of such dynamic aspects of these lessons 

was challenging and required more time and technical support. To overcome these challenges, I 

decided to proceed with a template-based design solution wherein the educators could choose 

a template that best supports the lesson requirements and they could then fill in the required 

details to create a lesson (Figure 37). Since this had relatively limited information, I describe it 

as mini-lessons. The templates would be a predetermined format of the learning content with a 

set of features incorporated. This would also make it easy for educators to create MR 

mini-lessons. The templates could incorporate a variety of elements. For e.g. One could learn 

so many things about plants (how much water does it need, why are leaves green, how much 

can it grow when full size, what is a plant cell, etc.). All these mini-lessons would need support 

elements like text, video, image, or 3D models which the learner could interact with while 

engaged in the mini-lesson. 
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Figure 36: Various formats of MR lesson content a) Video, text, and 3D models, b) Interactive annotated 

3D models, c) VUI and 3D model-based learning, d) Image, text, and 3D models, e) Real-world object 

augmented with interactive 3D models and annotated labels. 

The educators would also need a tool to be able to create such mini-lessons easily. I designed 

mockups to visualize the UI for educators. They would have to select an object with which the 

mini-lesson is associated, apply relevant object filters (eg. Cactus if they select a plant), and 

select a template for the mini-lesson which would have components like title, description, 

models, images, etc. This would help them focus on designing the learning content and not be 

limited by the technical knowledge to build Mixed Reality applications. 

Figure 37: Mini-lesson creation web UI mockup for Educators 
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5.5.3 Outcomes 

The Educator interface was built on React Native5 and allows educators to create a mini-lesson 

by opening a form on a web/iOS/Android (Figure 39). The developed version is a simpler form 

of the mockup and only supports a subset of the mini-lesson configuration. In the app, an 

educator can select an object to associate a mini-lesson with, and enter a title, description, and 

model name for the mini-lesson; they can also add tags to associate this mini-lesson with 

different topics. This mini-lesson information is then added to a database and will be displayed 

to users based on the semantic match of the user’s topic of interest with the mini-lesson tags for 

a corresponding environment object. 

Figure 38: Educator interface to create an MR mini-lesson 

As users explore the environment using this prototype, they will be prompted with curiosity 

prompts that are relevant to the objects in the environment. For example, a prompt such as 

"What is a plant cell?" would appear near a plant, while a prompt such as "How to measure the 

volume of this cup?" would appear when a user sees a cup (Figure 38). These works were 

accepted at IEEEVR 2023 in the Technical Video Track (Vaze et al., 2023). 

5 Facebook. (2015). React Native. Retrieved from https://reactnative.dev/ 

https://reactnative.dev/
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Figure 39: MR learning experiences using MRTK3 for Prototype 4 (left) Comparing an Animal cell with a 

Plant cell near a real plant, (right) Scaling Cylinder to learn about the volume of a cylinder near a real cup. 

Figure 40: Content-context mapping, (Left) Represents data of a lesson, (Right) represents the Context 

(User, Environment). The diagram depicts a case when this lesson is chosen. This happens when 

“objects” in Lesson data match the “objects” in the environment and “tags” in the lesson data semantically 

match the “topic” of the user’s interest. 
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A new additional component added to this prototype (Figure 40) helps to choose a mini-lesson 

based on the environmental context and user context. The learner is able to set up their 

interests while using the interface, either through VUI or updating it in the settings. The user can 

select a topic of interest: “topic”. Eg. “subject: mathematics, philosophy, technology, reality, etc.” 

etc. Figure 41 depicts the system architecture for Prototype 5. 

Figure 41: System architecture for Prototype 5. See Appendix E for details. 

5.5.4 Reflection 

This prototype would lie close to the central part of the Reality-Virtuality continuum (Milgram et 

al., 1994). Similar to prototype 3, It has spatially anchored, interactive, fully-colored 3D models 

and text augmented in the user’s environment. The context recognition agent system was also 

similar to the previous prototype, determining objects’ spatial coordinates and user preferences. 

This prototype similar to the previous prototype focused on the principles of situated learning 

where the surrounding objects generated the learning content for the user. It also had 

components of curiosity-based learning which allowed the user to set their topic of preference 

using the VUI. 
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The lesson content presented to the user had multiple components such as text, images, and 

3D models which would ideally be curated by an educator. This allows for better learning 

content complexity. The content is also determined based on the learner’s interests. 

Figure 42: Radar plot comparison of all prototypes 

There were a few challenges associated with this prototype. Firstly, there wasn’t any interface 

available for learners to support their queries after they interacted with the template content. 

Another challenge was the repetition of the same lesson experiences due to a limited amount of 

educator-curated lessons which wouldn’t be able to make the best use of educational content 

on the web. Hence, I considered combining parts of all the prototypes that provided value to the 

learning experiences and building a final prototype, “Curiosity XR” which I discuss in the next 

chapter. 
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6. Final Prototype: Curiosity XR 

After having explored various sub-questions through the past prototypes, I decided to combine 

the modules built into an MR educational application called “Curiosity XR”. Curiosity XR aimed 

to benefit through the learnings by building the earlier prototypes. 

I started building Curiosity XR around Jan 2023 on the Hololens 2 but during building it, Meta 

released the Quest Pro headset with color passthrough capabilities. Quest Pro provided much 

more advanced hardware, a better field of view, better rendering capabilities, and ease of 

sharing this application through the Quest store. Due to these benefits compared to the 

Hololens platform, I decided to switch this application to the Quest platform during the Winter of 

2023. 

This prototype also explored the last sub-question SQ6; “ How can we evaluate if such lessons 

support the learner’s curiosity and retention of knowledge?”. User participants were recruited to 

experience a lesson through Curiosity XR which helped analyze its potential to support learners’ 

curiosity and retention of knowledge as compared to the traditional learning methods. 

6.1 Process 

To start laying down the requirements for this application, I listed down the modules which 

needed to be imported from the previous prototypes and noted the learnings and analyzed how 

they could be incorporated into this application. 

P1; the language learning prototype was an efficient example of translating objects around the 

user to teach languages through a minimal UI. The language translation module would be 

required to support language learning for Curiosity XR. That prototype was quick and provided 

translations in real-time due to the offline computation for the learning content. To carry forward 

these learnings into Curiosity XR, I decided to have translation and text-to-speech (TTS) 

modules running offline to provide minimal latency. 

The next prototype, P2, explored supporting curiosity through sketches. Although the prototype 

worked well for a certain set of use cases, it had a lot of limitations due to technical constraints. 
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Later, an alternative interface, VUI in the next prototype was analyzed as a better interface to 

support learners’ curiosity. Hence, I decided not to explicitly use any of the modules of P2, 

rather using many functionalities of P3 (some of which were imported from P2) would be quite 

relevant for this application. 

Reflecting upon the learnings from P3, I decided to import the intent recognition agent which 

allowed users to use a natural language interface to select their topics of interest, request 3D 

models, ask questions, and get results as text. I would also be importing the Text-to-speech 

module to display the response in the form of a speech. 

The final two prototypes, P4 and P5 featured spatial object detection with 3D coordinates using 

the zed mini which allowed for learning content anchored to the objects in the real environment. 

This environment context recognition system would be imported along with both the 

AI-generated and user-curated lesson support. A new agent would be necessary to choose 

whether an AI-generated lesson or an educator-curated lesson is more relevant to present to 

the user. 

After laying out the learnings from the earlier prototypes, I proceeded with storyboarding and 

sketching concepts for Curiosity XR (Figure 43). This helped me visualize the application as a 

whole and how a mixed reality environment would look like for the learners when provided with 

different functionalities. Storyboarding also helped me visualize two ways to initiate 

curiosity-support for the users, either agent-based or user-based. 

To choose an appropriate educational concept for the user at a given time when using Curiosity 

XR, various context parameters would play an important role. Eg. the User’s past encountered 

lessons, what they’re curious to learn, the environment objects and the physical properties of 

these objects, the user’s location, the time, etc. Once a relevant concept has been chosen, 

using the Prototype 4 and Prototype 5 modules, an AI-assisted lesson and a user-curated 

lesson are generated. The system can be trained to choose which lesson to choose for the 

learner through A/B testing. (Figure 44) 
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Figure 43: Storyboard concept for user-initiated curiosity(Top), Storyboard for agent-initiated curiosity 

(bottom) 

The next step would be to provide capabilities for the possible templates which the lessons 

could use. The modules imported from the past prototype allowed for lessons to display a title, 

description, images, and 3D models. It is possible that video content could be a great addition to 

some lessons for eg. If a user needs to be shown a lesson about how paper is recycled, a video 

would be quite helpful, while an interactive 3D model wouldn’t help much in that case. Hence I 

decided to incorporate the capability of adding a video to the lesson as well. 
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Figure 44: Determining a relevant concept and a lesson for the user 

Figure 45: High-fidelity prototypes for Curiosity XR 

As VUI is a major component for interactions and was required to perform various tasks merging 

from the different prototypes, it was necessary to rethink its flow. Reflecting upon the learnings 

from Prototype 3, where the VUI was always active causing false interpretations, I had to 

reimagine the voice activation interaction. One of the methods would be to use a wake word 

similar to “Hey Siri”, or “Alexa” before speaking out a command. However, I wanted to provide 

an alternative way to initiate voice commands, which were better suited for an educational 

environment and intuitive as well. After some ideation, I decided to proceed with a 
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gesture-based initiation. This approach had various benefits, including, helping provide active 

multimodal participation of learners, the hand provided an anchor for placing 3D objects as if 

they were in the user’s hand, and seemed a natural interaction to initiate a query. 

6.2 Outcomes 

Curiosity XR was initially built for the Hololens 2. The application supports AI-based and 

user-curated Mixed Reality mini-lesson with curiosity-driven and personalized lesson content 

generation to support learning experiences across various domains of Math, Science, History, 

Geography, Language, etc. Later in Feb 2023, Curiosity XR was transitioned to the Quest 

platform (Figures 46 & 47), providing a better overall Mixed Reality experience on Quest Pro 

due to the color passthrough but also supported Quest 1 / 2 with the greyscale passthrough. 

Figure 46: Screenshots from Curiosity XR, (Top-right) Learning about robots using robot models6, 

(Top-left) Learning about airplane aerodynamics using airplane model7, (Bottom-left) Requesting to show 

a specific part of a plant cell while looking at a plant cell model8, (Bottom-right) Learning about meteors 

with meteor models9. 

6 Biped robot (https://skfb.ly/KBnH) by Willy Decarpentrie is licensed under Creative Commons Attribution 
(http://creativecommons.org/licenses/by/4.0/). 
7 "The Flying Circus: Stylized WW1 Airplane" (https://skfb.ly/6ZFPI) by Alyssa Valcorza is licensed under Creative Commons 
Attribution (http://creativecommons.org/licenses/by/4.0/). 
8 Plant Cell (https://skfb.ly/oC8YM) by brianj.seely is licensed under Creative Commons Attribution 
(http://creativecommons.org/licenses/by/4.0/). 
9 Meteors (https://skfb.ly/6SAQp) by octopushh is licensed under Creative Commons Attribution 
(http://creativecommons.org/licenses/by/4.0/). 

http://creativecommons.org/licenses/by/4.0
https://skfb.ly/6SAQp
http://creativecommons.org/licenses/by/4.0
https://skfb.ly/oC8YM
http://creativecommons.org/licenses/by/4.0
https://skfb.ly/6ZFPI
http://creativecommons.org/licenses/by/4.0
https://skfb.ly/KBnH
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Figure 47: Screenshots from Curiosity XR, (Top-left) Open-palm gesture to activate voice commands, 

(Top-right) Plant-cell lesson content (title, description, image, plant cell10 model) initiated through a real 

plant in the surrounding, (Bottom) Open-palm gesture to request and load Animal cell model11 other 3D 

models. 

10 Plant Cell (https://skfb.ly/oC8YM) by brianj.seely is licensed under Creative Commons Attribution 
(http://creativecommons.org/licenses/by/4.0/). 
11Animal Cell (https://skfb.ly/6nZZP) by Forged1212 is licensed under Creative Commons Attribution 
(http://creativecommons.org/licenses/by/4.0/). 

http://creativecommons.org/licenses/by/4.0
https://skfb.ly/6nZZP
http://creativecommons.org/licenses/by/4.0
https://skfb.ly/oC8YM
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6.3 Architecture 

The architecture system (Figure 48) for Curiosity XR is designed to support multiple 

components working together. First, the Context-awareness subsystem (Figure 49) gets the 

user and environment context. Secondly, the curiosity-initiation subsystem uses the acquired 

context to determine potential lessons and present curiosity prompts to the user as they explore 

their environment, and lastly, the multimodal learning-support subsystem supports users’ 

curiosity through interactive educational information in MR. 

Figure 48: System architecture diagram for Curiosity XR. See Appendix D for more details on the 

architecture. 
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Figure 49: Context abstraction layers and their correlation to the learning content requirements. 

6.4 User Study Evaluation 

To evaluate Curiosity XR once it was complete and functional, I conducted an REB-approved 

user study with 6 participants (Figure 50) wherein the session provided users with the 

opportunity to experience learning concepts in Mixed Reality (MR) using an MR headset 

(Hololens 2 / Quest Pro) and later the same concept through a former method using a laptop. 

The study focused on understanding and measuring how well this application enhances 

learners’ curiosity and knowledge recall as opposed to traditional methods of learning. 
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Figure 50: User participants using CuriosityXR to experience a lesson about a Plant cell 

The research study evaluated participants' experiences using mixed reality as a learning tool for 

understanding plant cells and further exploring learning content using CuriosityXR. 2 of the 

participants used Hololens 2 and 4 of them used a Quest Pro for this study. Participants 

generally found the tool engaging and immersive, allowing them to interact with 3D models in 

real-world settings and request new information. However, some participants found parts of the 

tool challenging to use, particularly with voice recognition and gestures. The tool was hard to 

use due to the issues with the accuracy of voice recognition where the system was unable to 

understand various speech patterns and dialect accents. They felt that the application didn’t 
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understand their questions and answers were sometimes difficult to understand. They also 

reported interface issues not detecting hand gestures when modifying models. 

Participants wanted more 3D visualizations and self-directed learning prompts and wished the 

tool had a browser panel to access additional information on the web. They also wished for 

more control over queries and the ability to have different models. The tool's effectiveness was 

rated about 3.5 out of 5, with most participants rating it moderately helpful. 

Due to the limited number of participants for this part of the study, nothing concrete can be said 

about enhancing curiosity or knowledge recall using these research prototypes. Both the 

participants had an engaging experience but some of the major concerns were related to the 

usability of CuriosityXR. Figure 51 shows a bar chart visualization of the evaluation of six user 

participants in terms of effectiveness in aiding learning (rated by participants), engagement 

level, and ease of use (indicative from questionnaire transcription notes). 

Overall, the study demonstrated the potential of mixed reality as a learning tool and highlighted 

the importance of improving voice recognition and more visualization support. 

Figure 51: Ratings for CuriosityXR by 6 user participants. Left, Engagement level (indicative from 

questionnaire transcription notes). Middle, Effectiveness in aiding learning (Rated by participants). Right, 

Ease of use (indicative from questionnaire transcription notes). 

6.5 Comparative subjective analysis 

6.5.1 Comparison with previous prototypes 

As compared to the previous prototypes, CuriosityXR covers a combination of abilities to help 

users provide curiosity support and a more immersive learning environment. (Figure 52) 
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With respect to the Reality-Virtuality continuum (Milgram et al., 1994), CuriosityXR had a similar 
setup to P5, allowing different types of learning media as part of the MR experience. It was able 

to support 3D models, text, images, and videos which had much more virtual content 
capabilities than any of the earlier prototypes, P1 - P4. The context recognition agent shares 

similarities with P4 & P5 in terms of identifying the location and category of objects in 3D space 

and understanding user learning preferences. It also adheres to the principles of situated 

learning, where the surrounding objects serve as the basis for learning material similar to all the 

previous prototypes. Furthermore, it incorporates elements of curiosity-based learning and 

constructivist learning. It enables users to specify their preferred topics using the VUI, ask 

questions to drive the learning content dynamically, and request models to visualize what they 

are curious to know about. CuriosityXR also supports educator-curated and AI-generated 

learning content which enables it to provide more contextually-relevant content. 

Figure 52: Comparison of the final prototype; CuriosityXR with all the prototypes 

6.5.2 Comparison with related works 

Compared to the related works, CuriosityXR offers a distinct learning experience through the 

use of Mixed Reality. Figure 53 showcases a Radar plot that subjectively compares CuriosityXR 

with each related work. 
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Figure 53: Comparison of the final prototype; CuriosityXR with the related works. 

While each of the related works utilized a specific learning pedagogy to facilitate their 
applications, CuriosityXR leveraged a combination of learning pedagogy frameworks to create 

an immersive learning environment. 

None of the related works provided hand interaction capabilities for immersive learning, unlike 

CuriosityXR. With this feature, learners can directly explore models and learning content with 

their hands, providing a more tangible and natural interaction within a relevant contextual 
setting. For example, manipulating a plant cell model with one hand while touching a leaf with 

the other. The related work applications used various techniques to provide contextually 

relevant learning content, whereas CuriosityXR enables much deeper, connected 

environment-context-based learning content. 

CuriosityXR aims to deliver learners an immersive and dynamic experience, but it does have 

technical limitations and design issues. It solely uses object category context to generate 

learning content and doesn't capture accents, dialects, or support multimodal context, which 

could allow for a better understanding of audio and visual information. 
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7. Reflection & Future work 

7.1 Reflection 

This research aimed to explore how Context-aware agents could support curiosity and 

knowledge recall through Mixed Reality. This question was explored through different 

sub-questions that investigated topics such as acquiring context from mixed reality devices, 

creating curiosity-support agents, and evaluating the effectiveness of mixed reality in supporting 

interactive learning experiences. 

During this thesis, a series of iterative prototypes were designed, built, and analyzed to address 

various sub-questions that ultimately contributed to answering the main research question. 

Through this process, a range of contexts was explored, which informed the selection and 

integration of relevant educational content. Additionally, agents were designed and analyzed to 

deliver diverse forms of learning content that supported learners' curiosity. 

An important aspect of the project was the analysis of the prototypes based on parameters that 

were deemed relevant to mixed reality educational environments. Through this evaluation, I was 

able to refine and improve the design of the system, taking into account considerations such as 

design solutions and interactions. 

To measure the effectiveness of CuriosityXR in terms of knowledge recall and curiosity support, 

a user study was conducted. Although the results were limited due to time constraints and a 

small sample size, the study provided valuable insights into the system's capabilities, 

challenges, and benefits and helped analyze the design solutions. It is important to note that the 

study did not provide a concrete answer to the main research question directly; however, it 

offered valuable guidance for future work in this area, particularly in terms of design 

approaches, architectural frameworks, and curiosity-support agents that could be used to 

achieve these goals. 
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Overall, the iterative prototype process and user study helped to inform the development of 

CuriosityXR, resulting in a system that provides engaging and immersive learning experiences 

that support learners' curiosity. While further research is necessary to fully evaluate the system's 

effectiveness, this work represents a significant step towards creating educational experiences 

that harness the potential of mixed reality technologies. 

7.2 Future Work 

Curiosity XR has the potential in several key areas for further research and development. 

(1) A near-future work would be to implement a feedback system, where users can provide 

feedback on the lessons they experience to evaluate their effectiveness and improve 

future iterations. 

(2) A multimodal assistant to better support learning in MR, similar to how chatbots are 

trained and are trained on text -> text models, this multimodal assistant but with the 

ability to process a wide range of multimedia inputs such as text, image, and video, and 

3D content, and hand interaction reference. The assistant would capture this multimedia 

context and provide an output that would include a combination of text, images, video, 

and 3D content, or even present an interactive subpart of the lesson to best support the 

user’s query considering the multimedia context. 

(3) The inclusion of animation support and dynamic control for 3D models. Providing 

educators the ability to provide labels to subparts of 3D models, making it easier for 

learners to play with components and explore each component separately would greatly 

enhance the learning experience. Also, having the ability to provide animated 3D models 

could help better design instruction for various use cases. Eg. working of a bicycle, 

breakdown of a laptop, or growth of a plant, etc. 

(4) A (Mixed Reality) interface application could be designed and built which would allow 

educators to create and design learning experiences for MR in MR. This would provide 

an immersive and interactive platform for educators to create the course material and 

better visualize the learning content presented. 

(5) An addition of an auditory element to the environmental context would provide 

opportunities to create unique learning experiences, which would trigger relevant lesson 

content based on specific sounds or cues in the environment, such as the sound of a 
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bird triggering a lesson about that bird. These developments have the potential to greatly 

enhance the effectiveness and engagement of digital learning experiences and provide a 

more holistic and interactive learning environment for students. 

(6) One potential avenue for future research is exploring how AI can be integrated into our 

surroundings as an object itself, equipped with contextual information about the object. 

The learner could then have a conversation with the object, asking questions to learn 

more about it and the AI would respond through an embodied object perspective. 

(7) Support for local multi-user learning experiences would provide the following benefits. 

Local multiplayer MR experiences in educational applications can facilitate increased 

collaboration and socialization among students. By working together in the same 

physical space, students can view models, discuss concepts, solve problems, and help 

each other learn, which can lead to a more engaging and interactive learning 

experience. It would also benefit the teachers to be able to produce interactive learning 

content on-demand and facilitate an immersive collaborative learning experience with 

the students. 
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8. Conclusion 

8.1 Revisiting Objectives 

Much of the literature has explored the use of emerging technologies for learning through 

pre-determined instruction that may not be applicable or significant to each student. The 

literature also has gaps in exploring curiosity-based learning using MR. 

The goal of this research is to create and evaluate an application, Curiosity XR to facilitate 

self-guided learning and foster personally relevant and engaging learning experiences driven by 

curiosity. Curiosity XR hypothetically helps better support learners with contextual educational 

content and self-directed learning tools as opposed to other traditional learning techniques such 

as reading books or watching videos on 2D displays. 

8.2 Revisiting Contributions 

In this thesis paper, a mixed reality learning system, Curiosity XR is presented to meet the 

research goals. Curiosity XR allows users to learn languages, science, history, general 

knowledge, and mathematics concepts through the objects around them and the environment. It 

also provides tools to self-direct the learning content through immersive interactions in MR. 

(1) A thorough literature review at the intersection of three fields: Mixed Reality (MR), 

Context, and educational theories which are necessary for the creation and evaluation of 

a research project similar to Curiosity XR. 

(2) An approach to mapping multiple context sources for multi-modal learning through 

agents using APIs (deep learning models) to support curiosity and knowledge recall 

among learners. 
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(3) An architectural framework to support a new form of learning and teaching supported by 

MR multimodal mini-lessons. For educators, this architecture provides support by 

allowing them to create new mini-lessons based on 3D user interface templates for 

various educational topics. The architecture also supports self-driven learning in context 

through the use of 3D visualizations, access to the educational content, and 

conversational agents which allow them to explore further into the topic by querying the 

system. This is achieved by combining head-mounted displays, external sensors, 

conversational agents, 3D user interfaces, and machine learning models. This 

architectural framework has been instantiated for the proof-of-concept use cases below 

involving mathematics and biology. 

(4) CuriosityXR: Overall, the iterative prototype process and user study helped to inform the 

development of CuriosityXR, resulting in a system that provides engaging and immersive 

learning experiences that support learners' curiosity. While further research is necessary 

to fully evaluate the system's effectiveness, this work represents a significant step 

towards creating educational experiences that harness the potential of mixed reality 

technologies. 

(5) Validation of the benefits of MR and its potential to support curiosity for education and 

learning purposes. 

8.3 Revisiting Limitations 

This work does not focus on building a structured pedagogy or helping curriculum design for 

education. This work is not targeted to a specific user audience and aims to explore a general 

platform that could support learning content across different fields. 

Although this work was aimed to explore metrics for knowledge retention, due to a limited 

number of participants and time constraints it does not have concrete conclusions about 

whether the techniques produced are better in the knowledge retention metrics as opposed to 

the traditional learning methods. 

There are a few remarks about this tool as a curiosity-support agent that depicts positive 

experiences from the participant study but does not have quantitative comparisons of measuring 

curiosity and comparing it with other techniques. The curiosity here is used more in the sense of 
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a general connotation of “wanting to know/learn more” aspect and does not talk about or refer to 

the psychological or philosophical nature of this term and is not the scope of this project either. 

8.4 Final Remarks 

In summary, this thesis paper explores the potential of mixed reality (MR) technology to support 

self-guided and curiosity-based learning experiences. The paper presents Curiosity XR, a mixed 

reality learning system, and an architectural framework that supports self-driven learning in 

context through the use of 3D visualizations, access to educational content, and conversational 

agents. While the paper does not focus on building a structured pedagogy, it validates the 

benefits of MR technology and its potential to support curiosity for educational purposes. 

However, the paper acknowledges its limitations in terms of limited data on knowledge retention 

and a lack of quantitative comparisons to other learning techniques in terms of measuring 

curiosity. As we move forward, it is crucial for researchers, educators, and developers to 

continue exploring and refining the use of MR technology in education to create more engaging 

and effective learning experiences. By embracing curiosity as a driving force for learning, we 

can create a future where XR systems change the landscape of education and provide students 

with the tools they need to explore and discover their interests. 
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10. Appendix 

Appendix A: REB study overview 

This research aims to develop a platform that supports educators and education content 

creators to create mixed-reality learning lessons that can be accessed by students through 

Mixed reality headsets. The lessons are aimed to teach users about the environment. For eg. 

Looking at a coffee cup could teach a learner about coffee plantations or interacting with a plant 

could show a lesson about photosynthesis. We would like to analyze this learning technique 

instead of the conventional methods of using books, images, or videos. 

What: A context-aware Mixed Reality system to support environment-based & learner-directed 

multimodal educational lessons that help improve curiosity and knowledge retrieval in learners. 

Who: 15 participants will be selected from an applicant pool based on subject knowledge, and 

interests. Participants should be able to visit the OCAD U campus to engage in MR lesson 

experience (to be conducted in compliance with OCADU's social distancing guidelines and 

equipment use restrictions) and to access requisite MR equipment. There are no required 

demographics for the participants. 

Why: We would like to get usability feedback and understand if an interactive self-directed 

learning method in context can help recall information and result in a deeper understanding of 

concepts. It would be impossible to carry out this study without human participants. Building a 

platform to support such learning techniques and learning their benefits carries out a significant 

potential both for learners and educators and the technical support systems for the current 

education system. 

Where: Hosted on-site at 230 Richmond St W, OCAD U. 

Structure: 

1. Completing an in-person pre-session survey on educational interests. (5 mins) 

2. Setup and training session for the Mixed Reality headset. (5 min) 

3. Learning session and UX interview. (30 mins) 

4. 7 days later: Recall session and exit interview(15 min) (10 min) 
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Time Requirement (in hours): 1 hour 

Detailed activities can be found in Appendix G: Research Protocol 

Appendix B: REB study session details 

The research will be scheduled to run 2 sessions and ensure that this MR experience is 

organized in a socially-distanced context and is compliant with OCADU Safety Protocols. All 

equipment will be thoroughly cleaned and disinfected between sessions. 

This session will be hosted in 2 parts, the first session with the major experience and a follow-up 

second session for an interview to measure recall with a total time up to a maximum of 1 hour 

per participant. 

Details of the in-person learning session experience: 

Total time: 55 mins 

1. First session (In-person Mixed Reality experience and interview): 40 mins 

a. In-person pre-session survey: Choose a lesson that the user would interact with based on 

their educational interests in science, math, or languages. (5 min) 

b. Setup and training session for the Mixed Reality headset. (5 min) 

c. Learning session and UX interview: Wearing a mixed reality headset to experience a 

lesson to learn either a science concept, a math concept, or a language concept. During this 

mini-lesson users would be interacting through voice and touch with real objects (coffee cup, 

plant, table, chair, etc.) and virtual learning content (audio, 2D media, and 3D models). Learning 

a different concept of the same topic with a textbook and/or video content on a laptop. 

Completing a Post-Session in-person Interview for usability feedback and user experience or 

enthusiasm to learn more to compare traditional techniques with our technique. (30 mins) 

2. Second session (Recall session and exit interview): 15 mins 

After the preliminary screening survey, the selected participants would have to complete a 

pre-session survey on prior educational knowledge. The aim of this survey is to select a lesson 

suitable for the participant to minimize bias in measuring the learning experience outcomes. 

https://docs.google.com/document/d/1NKjGWsd7SZDYgHXcE-USYSYc4p8Vjue2Lvlb8b0tWTI/edit#heading=h.v9jv54gd5kj
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The 10-minute online survey will be hosted on Microsoft Forms and be completed individually. 

1. What is your prior knowledge in learning Maths on a scale of 1-5? (1-Beginner, 5-Expert) 

2. Could you highlight your prior experience in learning Maths? 

3. What is your prior knowledge in learning Science on a scale of 1-5? (1-Beginner, 5-Expert) 

4. Could you highlight your prior experience in learning Science? 

5. What is your prior knowledge in learning a second language on a scale of 1-5? (1-Beginner, 

5-Expert) 

6. Could you highlight your prior experience in learning this language? 

POST-SESSION IN-PERSON INTERVIEW QUESTIONS 

A 15-minute debrief interview takes place after the learning experience and seeks to 

capture reflections from the experience: 

1. Tell us about your experience. 

2. What did you find yourself enjoying most during the learning process? Why? 

3. How did you find the experience of learning through mixed reality as opposed to 

watching a video or reading the concept from a book? 

4. Do you think you are more curious to learn about the concept you learned now? 

5. At what points was the tool hard to use? 

6. How did this tool feel to use? 

7. What is one thing you wish was different in this tool and which would have made your 

learning experience better? 

8. What, if anything, will you take from this experience? 

9. On a scale of 1-5, how well do you feel it helped you learn (1 - not at all, 5 - extremely 

helpful) 

10. For the subject that you were assigned, how well do you think this system helped you 

learn? 

11. What specific information are you able to recall from the lesson that you learned? 
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(RECALL AND EXIT INTERVIEW) POST- 1 WEEK IN-PERSON 

INTERVIEW QUESTIONS 

A 15-minute in-person interview will take place after 7 days from the learning experience: 

Recall session interview questions: 

1. For the subject that you were assigned, how well do you think this system helped you 

learn? 

2. For the subject that you were assigned, are you interested or curious to learn more 

about it? 

3. What specific information are you able to recall from the lesson that you learned? 

Appendix C: Unity C# code and project website 

https://github.com/thisisvaze/the-learning-sense 

https://www.thisisvaze.com/works/things/ 

Appendix D: CuriosityXR Architecture 

The context-awareness subsystem is equipped with multiple processing layers and uses Zed 

mini’s depth sensor and camera streams for real-time 3D object awareness, instance-level 

recognition techniques, and basic shape, color, material, and object name properties to support 

context for various lessons. Real-time scene understanding is set up by offloading heavy GPU 

tasks for inference and processing onto a dedicated local server. This subsystem is equipped 

with APIs for multiple object detection, text-to-speech, speech-to-text, speech-intent-recognition 

(Wit.ai), visual-question-answering, language translation, etc. This subsystem also features 

multithreading capabilities to run constant inference for multi-box object tracking using the 

point-cloud, and video stream data stream from Zed Mini/Headset, keeping it readily available 

for context analysis. Real-time information updates such as user interactions, user intents, user 

speech, status updates, etc. are sent via WebSocket one-to-many communication between the 

server and the headset. 

The front end of the system is powered by Unity using Oculus Integration SDK, which offers 

support for Quest 1/2, Rift, and Quest Pro. The system features several interaction design 

elements, including hand interactions, natural language interface, and contextually-aware 

https://github.com/thisisvaze/the-learning-sense
https://www.thisisvaze.com/works/things/
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interactions. The curiosity-initiation system uses interaction design to create a concept-context 

map and understand how it relates to curiosity. The system can generate both user-generated 

and system-generated curiosity components. The multimodal learning-support subsystem 

allows for various modalities during the learning experience such as the gaze, touch (scale, 

rotate, and move), speech, audio output, hand-interactions, and tactility through the relevant 

real-world objects while learning. The system also allows users to move around the space for 

enhanced perceptions and interactions with the real world and virtual objects. Overall, the 

architecture system for Curiosity XR offers a robust and comprehensive platform for immersive 

and engaging learning experiences. 

Appendix E: Prototype Architectures 

Prototype 1 

The application uses simpler technologies and doesn’t need heavy computationally intensive 

processing and can work without the need for the internet or external computation. Figure 14 

provides a simpler visualization of how the agent system works. 

Figure 15 depicts the architecture diagram for this prototype. A live stream from the RGB 

camera in the smartglasses is used to get offline real-time multi-box object detection and based 

on the head position the closest object to the user’s gaze is chosen and the translated object 

along with the object’s name in the native language (chaise - chair) is 

presented on the HUD screen. The application uses TensorFlow lite for offline object detection 

and Offline Google Translate API which supports 50+ languages. 

Prototype 2 

There are majorly four technical parts to this prototype, first, getting the paper crop from the 

camera stream, then, detecting the user-drawn object on the paper, further using SketchFab to 

display the model, and finally adding the hand interaction abilities (rotate, scale and move) for 

the 3D model. Figure 20 demonstrates the process of recognizing an object from a sketch to 

showing it in MR. 

For the first part, the prototype uses an OpenCV custom module, which is similar to the 

techniques used to crop pages to create PDFs from images. The parameters were fine-tuned to 
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meet the requirements of this use case. For the second part, a custom-trained model using the 

Google Quickdraw dataset was used. The Google Quickdraw dataset was collected from mouse 

or touch gesture-drawn sketches on a website and hence is vector-based and needed to be 

transformed into raster-based drawings to make it usable for this use case. To use the dataset 

for recognizing objects from the Hololens’ camera stream, a custom-trained model was trained 

through transfer learning using a Vision Transformer pre-trained model. 

For the third part, the SketchFab search API was used to request a model, for eg. “apple”, which 

responds with search results in JSON format. The developed subsystem filters and finds the 

most suitable 3D model with a mesh having less than 50,000 triangles (a technical limitation of 

the Hololens 2) and fetches the model ID. This model ID is used to download the 3D model in 

GLB/GLTF format and display it to the user using an open-source library; GLTFast (Borg, 2021) 

to load GLTF models in real-time using Unity. 

For the final part, the system uses MRTK3 (Microsoft, 2022) which provides hand-tracking and 

object manipulation capabilities allowing users to perform hand gestures such as pinch, poke or 

tap to select objects and other intuitive gestures to rotate, scale, or move them around. 

Figure 21 demonstrates the system architecture diagram for this prototype. It shows how 

information is transmitted from the headset to the python server and back to the headset using 

several APIs to support this prototype. 

Prototype 3 

This prototype uses a similar flow as the previous prototype to gather user context and show a 

3D model. Figure 25 depicts how models are rendered in real-time using the user’s voice 

context. 

For the first part of this prototype, the system needed to understand the user’s intent from the 

recognized speech. I used Wit.ai to support speech intent recognition. With the custom-trainable 

wit.ai tool, It was easy to train the system to recognize intents for speech such as “I would like to 

see Mars”, "Show me a model of a ship” or “Can I see a 3D printer?” to capture two parameters. 

The first is that the user would like to see the 3D model, and the second is the object itself. The 

intent recognition system is understood for various such differences spoken by the user to 
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understand parameters for Intent: “Load_3D_Model” and Traits: “Mars” etc. Once the system 

recognizes the object, a 3D model generation module (using SketchFab API) is used from the 

previous prototype to display that object to the user. With the model loaded in the space 

available to the user to interact with, for the final part, the last module enables the user to ask 

questions and get responses through displayed text or speech. 

For this module, I used different tools available namely, the Wolfram API and GPT-3. Wolfram 

Alpha has a mission to collect and curate all objective data; implement every known model, 

method, and algorithm; and make it possible to compute whatever can be computed about 

anything. With their API it was possible to get either spoken or short textual answers to 

questions about history, science, math, social science, general knowledge, etc. This prototype 

uses their Spoken Results API and Short answers API. Although it covers a variety of fields and 

provides accurate results, it does have limitations with the amount of knowledge stored. For eg. 

it doesn’t provide answers to questions such as “What is the difference between a plant cell and 

an animal cell?”. 

In such cases, the system falls back to the OpenAI API to find answers to users’ queries. 

OpenAI API uses GPT-3 (OpenAI, 2022) which is a general-purpose neural network that 

performs a variety of natural language tasks such as question-answering, translation, 

summarization, etc. This is used to get short responses to users’ queries. Once the query 

response is available, the system needs to display it to the user through text or speak it out. To 

display the results to the user through text, the prototype uses MRTK3 to display a 3D UI 

canvas with text. To speak out the results, the system uses a Text-to-Speech library to generate 

realistic human-like speech and then sends it to the hololens to play it through its speakers 

(Wang, 2020). 

Figure 26 demonstrates the system architecture diagram for this prototype. It shows how 

information is transmitted from the headset to the python server and back to the headset using 

several APIs to support this prototype. 

Prototype 4 

The system has multiple components working concurrently. Figure 34 depicts a flow diagram for 

this system architecture. The main connection point is the python server, which is 

communicating with both the zed mini and the Hololens 2. A separate thread is running on this 
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server which receives the RGB camera stream and point-cloud information of the environment 

on the server. The other main component is the WebSocket server which is communicating with 

the Hololens 2. All other modules to communicate with multiple APIs and offline inferences are 

called upon request. 

The frame from the RGB camera stream is sent to the Multiple object detection module every 

second which uses the detr-resnet-50 (Facebook Research, 2018) trained model for local 

inference. The recognized objects with their center coordinates are further mapped to Zed mini’s 

point cloud coordinates to acquire the 3D location of each object in space. These 3D 

coordinates are relative to the Zed mini camera and are further translated to the Hololens 2’s 

position as the origin. 

Prototype 5 

There are two major components of this prototype, the educator side, and the learner side are 

discussed below. 

For the educator side, the frontend framework is set up using React Native. Using the web, 

Android, or iOS, a user could select the mini-lesson elements. The user is able to fill up a form 

to create a mini-lesson. Once the form is submitted, all the mini-lesson component properties 

are saved in a JSON format which is added to the mini-lesson database. Each mini-lesson 

comprises an ID, which uniquely identifies the mini-lesson in the main database. 

On the other side, there are a few components similar to the previous Prototype 4. The python 

server communicates with both the zed mini and the Hololens 2, spatially anchoring the learning 

content to objects in the user environment and uses gazepinch & curiosity-prompt buttons to 

initiate the mini-lesson. Figure 40 shows the system architecture diagram for Prototype 5. 
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